
Service Cloud Voice for Partner
Telephony Developer Guide

Version 63.0, Spring ’25

Last updated: February 28, 2025

© Copyright 2000–2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Overview . 1

Chapter 2: Recent Changes . 3

Chapter 3: Publish Partner Telephony Package . 8

A Note About Scratch Orgs . 9
Create a Service Cloud Voice Package . 9

Create Developer Hub and Namespace Orgs . 9
Create a Salesforce DX Project . 11
Create and Deploy Your Package . 14
Assign User Permissions . 16
Generate a Self-Signed Certificate with OpenSSL . 16

Get Started with the Quick Start Partner Telephony Package . 17

Chapter 4: Set Up Your Production Org . 20

Set Up Omni-Channel and a Lightning Console App . 21
Set Up Service Cloud Voice for Partner Telephony in Your Org . 21

Chapter 5: Add Support for Voice Resiliency . 30

Chapter 6: Connect Telephony System to Salesforce . 31

Use the Demo Connector . 32
Use the Connector API . 33
Test Your Implementation with the Voice Call Simulator . 34

Chapter 7: Set Up Authentication . 39

Set Up Single Sign-On . 40
Develop a Telephony System Login Page . 43

Chapter 8: Customize Your Implementation . 46

Key Provisioning . 47
Add a Partner Settings UI to Omni-Channel . 47
Customize Error Messages . 50
Communicating with Lightning Components . 52

Use the Lightning Message Service Bridge . 52
Use the Service Cloud Voice Toolkit API . 55

Chapter 9: Start Calls . 56

Accept Inbound Calls in Omni-Channel . 57
Integrate Incoming Voice Call Creation . 58
Record Linking . 59

Queued Callbacks . 60
Let Agents Control the Callback Experience . 62
Outbound Dialers . 63
Enable the Phone Book for Outbound Calls . 64
Set the Voice Call Record Type . 65
Send Voicemails to Agents . 65
Hide Call Controls . 67

Chapter 10: During Call Actions . 69

Associate Partner Telephony Users and Groups with Queues . 70
Change Status While on a Call . 77
Transcribe Calls in Real Time . 77
Send Real-Time Signals . 78
Supervisor Listen In or Barge In . 81
Send Additional Call Information . 83

Chapter 11: Post-Call Actions . 84

Call Recordings . 85
Post-Call CTR Sync with the Update VoiceCall API . 88
After Conversation Work . 89
Mean Opinion Score (MOS) . 89

Chapter 12: Route Calls . 91

Omni-Channel Flows . 92
Add Contact Center Channels to Enable Routing . 92
Queue Mapping and Agent Mapping . 93
Enable the Voice Extension Page in Lightning App Builder . 94
Understand Agent Statuses . 94
Two-Way Agent Status Syncing . 95
Handling Missed Calls and Call Errors . 96
External Routing . 97
Unified Routing (Beta) . 98

Chapter 13: Transfer Calls . 100

Configure Estimated Wait Times for Queues . 101
Agent Availability . 101
Customize the Destination List for Call Transfers in Omni-Channel 102
Enable Voice Call Transfers Using Omni-Channel Flows and Partner Telephony 103
Transfer Calls to a Queue . 104
Perform a Blind Transfer . 104
Use Click-to-Dial for Transfers . 105
Phone Contact Search . 105

Chapter 14: Disable Call Actions . 108

Chapter 15: Desk Phone Support . 109

Contents

Chapter 16: Enable Headset Support . 113

Chapter 17: Additional Info . 114

Einstein Conversation Insights (Call Coaching) . 115
Replay Active Calls on Refresh . 115
Host the Connector as a Visualforce Page . 116
Call Scenario Diagrams . 117
Line-Specific Controls . 119
Download Connector Logs . 119

Chapter 18: Apex Reference . 121

Chapter 19: Service Cloud Connector API Reference . 126

Chapter 20: Troubleshooting . 127

Contents

CHAPTER 1 Service Cloud Voice for Partner Telephony Developer
Guide

EDITIONS

Available in: Lightning
Experience

Available in: Performance,
Enterprise, Unlimited, and
Developer Editions

Available in: Sales Cloud,
Service Cloud, and
Government Cloud as an
add-on license. Government
Cloud is supported only on
Service Cloud Voice with
Amazon Connect and
Service Cloud Voice for
Partner Telephony.

Connect your telephony system with Service Cloud Voice, creating
a unified and intuitive agent experience to give customers faster
and more personalized service. Salesforce process automation offers
recommendations, initiates workflows, and reduces post-call handle
time to help agents resolve calls faster. If you’re a telephony provider
that wants to integrate your system with Voice, this guide is for
you. We’ll walk you through creating a connector and package for
customers so they can add the power of Voice to your own system.

Important: This guide is for telephony providers who are
creating a solution that integrates Service Cloud Voice with
their telephony system. If that’s not you, see the Service Cloud
Voice Implementation Guide or Salesforce Help. To update
your solution to include Bring Your Own Channel for CCaaS
Messaging capabilities along with Service Cloud Voice, see
the Bring Your Own Channel Developer Guide.

Be sure to bookmark the Service Cloud Voice Learning Map, a
centralized collection of Voice resources that provides
documentation, demos, and more for every step in your Voice
implementation.

1

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://help.salesforce.com/s/articleView?id=sf.voice_learning_map.htm&language=en_US

SEE ALSO:

Service Cloud Voice Learning Map

Salesforce Help: Service Cloud Voice

Salesforce Help: Set Up Service Cloud Voice with Partner Telephony

Trailhead: Service Cloud Voice

2

Service Cloud Voice for Partner Telephony Developer Guide

https://learnservicecloudvoice.herokuapp.com/
https://help.salesforce.com/s/articleView?id=sf.voice_about.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.voice_pt_setup.htm&language=en_US
https://trailhead.salesforce.com/en/content/learn/modules/service-cloud-voice

CHAPTER 2 Recent Changes to the Service Cloud Voice for
Partner Telephony Developer Guide

This section describes recent changes that have been made to this guide.

Updates for Spring ‘25

• Moved the Service Cloud Contact Center Connector API reference to a standalone reference guide
and removed Contact Center from the title. Access the Service Cloud Connector API Reference in its
new location.

• Added Disable Call Actions on page 108, and related field updates for VoiceCapabilitiesResult, CallInfo,
and publishEvent.

• Added Headset Support on page 113 which allows agents to control call handling actions using
headset, and related field updates for VoiceCapabilitiesResult.

• Updated Desk Phone Support on page 109 which allows agents to use a desk phone even if
microphone settings are disabled in the browser. With this change, we store the
selectedPhoneType value and for this release, the param.selectedPhone field of the
AgentConfigResult object will be reset to default value due to this change. Added
SetAgentConfigResult object.

• Added Unified Routing (Beta) on page 98 so that Salesforce handles the routing of the inbound
voice calls in the voice channels.

Updates for Winter ‘25

• Updated the event type and error type (eventType) values in various code samples and pages
of the Connector API Reference to reflect backend changes. For example, changed
VOICE.CALL_CONNECTED to VOICE_EVENT_TYPE.CALL_CONNECTED and changed LOGIN_REQUIRED
to SHARED_ERROR_TYPE.LOGIN_REQUIRED.

• Added the customIcon field in the Conversation Channel Definition record in Create a Salesforce
DX Project on page 11. This new field helps admins identify the contact center partner during setup.

• Added the getContacts method to the Connector API Reference under the Common API
Methods section. The getContacts method returns a new ContactsResult object.

• Reorganized capabilities into shared and voice categories, resulting in these changes:

– Removed support for the CapabilitiesResult object in the Connector API Reference.
Use the SharedCapabilitiesResult object or VoiceCapabilitiesResult
object instead.

3

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm

– Removed support for the getCapabilities method in the Connector API Reference. Use
the getSharedCapabilities method or getVoiceCapabilities method
instead.

Updates for Summer ‘24

• Added instructions for how to Let Agents Control the Callback Experience on page 62.

Updates for Spring ‘24

• Moved the ConversationVendorInfo topic to the Object Reference for the Salesforce
Platform Guide.

• Updated the Connector API Reference with the following changes: separated the Connector API
Methods into a Common API Methods section and a Voice API Methods section; and updated the
event type (eventType) values in various code samples and pages to reflect backend changes,
for example, changed CALL_CONNECTED to VOICE.CALL_CONNECTED.

• Added the getTelephonyConnector method to the Connector API Reference. The
getTelephonyConnector method returns an object of the TelephonyConnector class.

• Added the onAgentWork method to the Connector API Reference. The onAgentWork method
sends non-Voice related AgentWork events to the partner contact center

• Added the AgentWork object to the Connector API Reference. The AgentWork object stores
information about an AgentWork record.

Updates for Winter ‘24

• Added the ability to Set the Voice Call Record Type on page 65 to determine the page layout of a
voice call record.

• Added a disconnectReason parameter to the Update a Voice Call Record Telephony Integration
API to pass in the reason why a voice call was disconnected.

• Added the ability to Send Real-Time Conversation Events on page 78 generated from intelligence
sources to the agent console. Also added Apex classes and interfaces to the Apex Reference on page
121 section to support real-time signals.

Updates for Summer ‘23

• Added the Create Transcripts in Bulk Telephony Integration API to support bulk transcriptions in real
time.

• Added steps on how to Customize Error Messages. Also added the CustomError Connector API object
to support the feature.

• Added steps on how to Enable Agent-to-Agent Calls. Also added the hasPhoneBook parameter
to the CapabilitiesResult Connector API object.

• Added the Service Cloud Voice Lightning Web Component Toolkit API Telephony Actions page to
support LWC telephony actions.

4

Recent Changes to the Service Cloud Voice for Partner
Telephony Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_conversationvendorinfo.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_conversationvendorinfo.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_transcript_bulk.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_pt_developer_guide.meta/voice_pt_developer_guide/voice_pt_custom_messages.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_pt_developer_guide.meta/voice_pt_developer_guide/voice_pt_connector_objects_customerror.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_pt_developer_guide.meta/voice_pt_developer_guide/voice_pt_enable_agent_to_agent_calls.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_pt_developer_guide.meta/voice_pt_developer_guide/voice_pt_connector_objects_capabilitiesresult.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_lc_toolkit_lwc_telephony_actions.htm

• Added the addParticipant, endCall, merge, sendDigits, and swap Toolkit API
telephony actions to automate softphone call control events. The actions are supported for both
Lightning Web Component and Aura components.

• Updated the Create a Voice Call Record Telephony Integration API to state that callAttributes
now supports call transfers and callbacks.

Updates for Spring ‘23

• Added more guidelines regarding call transcription: Transcribe Calls in Real Time.

• Added Hide Call Controls and the associated new show methods in CallInfo.

• Added UpdateOrgDomainProvider to the list of supported Apex interfaces. Implement this
interface to get notified of My Domain changes in your org, which require updates to Service Cloud
Voice. See Service Cloud Voice for Partner Telephony Apex Reference.

• Added steps on how to Configure Estimated Wait Times for Queues on page 101 and associated
fields to the CallInfo, CapabilitiesResult, and Contact objects.

• Added steps on how to Enable the Voice Extension Page in Lightning App Builder on page 94. Also
introduced a VoiceExtension metadata type to support the Voice Extension FlexiPage.

• Added Associate Partner Telephony Users and Groups with Queues.

Updates for Winter ‘23

• This guide has been reorganized so that it’s easier to find information.

• Updated information in the Outbound Dialers section about how to use a preview dialer. Related
updates:

– Added the startPreviewCall method to the Toolkit API Lightning component.

– Added the CallOrigin field to the VoiceCall object (in the Object Reference Guide).

• New topic: Send Voicemails to Agents. Related updates:

– Added a callOrigin parameter to Create a Voice Call Record Telephony Integration API.

– Added a callOrigin parameter to Update a Voice Call Record Telephony Integration API.

• New topic: Transfer Calls to a Queue. Related updates:

– Added a queue parameter to Create a Voice Call Record Telephony Integration API.

• New topic: Change Status While on a Call.

Updates for Summer ‘22

New topics:

• Perform a Blind Transfer

• Use Click-to-Dial for Transfers

• Customize the Destination List for Call Transfers in Omni-Channel on page 102

• Enable Voice Call Transfers via Salesforce Omni-Channel Flows on page 103

5

Recent Changes to the Service Cloud Voice for Partner
Telephony Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_lc_toolkit_lwc_telephony_actions.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_lc_toolkit_aura_telephony_actions.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_lc_toolkit_aura_telephony_actions.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_voicecall.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_update.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm

• Connector & Supervisor API

– CapabilitiesResult—Moved existing capabilities from AgentConfigResult to this new object.
Added capabilities for new features (supervisor barge in, blind transfer, transfer to Omni-Channel
flow, filter by transfer category).

– getCapabilities

– supervisorBargeIn

– SupervisedCallInfo

– hasTransferToOmniFlow on page 103

Changes to existing topics:

• Quick Start Partner Telephony Package on page 17. Added the ServiceCloudVoice component,
which is automatically enabled when the quick-start-partner-telephony package is installed.

• Supervisor Listen In or Barge In on page 81—Added info about Supervisor Barge In and changed
all references from AgentConfigResult to the new CapabilitiesResult.

• Troubleshooting—Added info about the possible causes when the Omni-Channel widget doesn't
show agent work.

• Connector & Supervisor API

– AgentConfigResult—Moved some of the params to CapabilitiesResult.

– getPhoneContacts—Added a mention to contact types (not just contacts).

– PhoneContactsResults—Added a parameter for contact types.

– publishEvent—Added new events for Supervisor Barge In.

– SupervisorEvents—Added new events for Supervisor Barge In.

Updates for Spring ‘22

New topics:

• Add Contact Center Channels to Enable Routing on page 92

• Add a Partner Settings UI to Omni-Channel on page 47

• Two-Way Agent Status Syncing on page 95

• Automated Key Provisioning on page 47

• Supervisor Listen In on page 81

• Outbound Dialers on page 63

• Line-Specific Controls on page 119

• Supervisor API

• Universal Call Recording Playback in Call Recordings on page 85

Changes to existing topics:

• Apex Reference on page 121—Added KeyProvider and PhoneNumberProvider.

• ConversationVendorInfo—Added keyProvisioningSupported, partnerPhoneNumberSupported, and
universalCallRecordingAccessSupported.

• Connector API

– publishEvent—Added supervisor events.

6

Recent Changes to the Service Cloud Voice for Partner
Telephony Developer Guide

– AgentStatusInfo—New class.

– CallInfo—New class.

• Troubleshooting on page 127—Added a Download Connector Logs section.

7

Recent Changes to the Service Cloud Voice for Partner
Telephony Developer Guide

CHAPTER 3 Set Up and Publish Your Partner Telephony Package

To get started with Service Cloud Voice for Partner Telephony, set up and publish a managed package.
This package lets you develop and distribute resources that are needed to integrate your telephony
system with Service Cloud Voice and enable Service Cloud Voice in an org.

In this chapter ...

• A Note About Scratch
Orgs

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice

• Create a Service
Cloud Voice Package

Implementation Guide or Salesforce Help. To update your solution to include Bring Your Own• Get Started with the
Quick Start Partner
Telephony Package

Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own
Channel Developer Guide.

Note: We assume that you’re a Salesforce admin who is comfortable using git, generating public
and private keys, and working with Salesforce APIs.

To integrate your telephony system with Service Cloud Voice, you’ll also include a connector in your
package that lets Salesforce and your telephony system talk to each other. The connector enables inbound
and outbound calling as well as common call controls such as mute, hold, and transfer.

8

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html

A Note About Scratch Orgs

When developing your managed package, we recommend using a scratch org. The scratch org is a source-driven and disposable
deployment of Salesforce code and metadata.

A scratch org is fully configurable, so developers can emulate different Salesforce editions with different features and preferences. You
can share the scratch org configuration file with other team members so you all have the same basic org in which to do your development.

The scratch org definition file contains the configuration values that determine the shape of the scratch org. To enable Service Cloud
Voice Partner Telephony features in a scratch org, specify “ServiceCloudVoicePartnerTelephony” in the features field in your scratch org
definition. Add a quantity value (between 1–50) when you add the ServiceCloudVoicePartnerTelephony scratch org feature. To learn
more about all of the supported features, see Scratch Org Features.

Note: To learn more about scratch orgs and the Salesforce Developer Experience (DX), see How Salesforce Developer Experience
Changes the Way You Work.

SEE ALSO:

Salesforce DX Developer Guide: Scratch Org Features

Create a Service Cloud Voice Package

This managed package lets you develop and distribute resources that are needed to integrate your telephony system with Service Cloud
Voice and enable Voice in an org.

Important: This guide is for telephony providers who are creating a solution that integrates Service Cloud Voice with their
telephony system. If that’s not you, see the Service Cloud Voice Implementation Guide or Salesforce Help. To update your solution
to include Bring Your Own Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own
Channel Developer Guide.

1. Create Developer Hub and Namespace Orgs

Linking a Developer Hub to a namespace org lets you use the Salesforce Developer Experience to develop a second-generation
package.

2. Create a Salesforce DX Project

Allow Service Cloud Voice to communicate with your telephony provider. The package you’re creating includes a connector, contact
center, settings metadata, and more.

3. Create and Deploy Your Package

Use these commands to create, update, and install the package.

4. Assign User Permissions

Service Cloud Voice for Partner Telephony comes with the following user permissions, which should be assigned to users as part of
the Contact Center Admin (Partner Telephony) and Contact Center Agent (Partner Telephony) permission sets.

5. Generate a Self-Signed Certificate with OpenSSL

Use OpenSSL to generate an RSA private key and certificate.

Create Developer Hub and Namespace Orgs
Linking a Developer Hub to a namespace org lets you use the Salesforce Developer Experience to develop a second-generation package.

9

A Note About Scratch OrgsSet Up and Publish Your Partner Telephony Package

https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm#sfdx_dev_scratch_orgs_def_file_config_values
https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_intro.html
https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_intro.html
https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html

1. Create an org with Dev Hub features enabled.

a. Create a Developer Edition org.

b. Enable Lightning Experience.

c. Enable Dev Hub features: From Setup, enter Dev Hub in the Quick Find box and select Dev Hub. Then, click Enable. After
you enable Dev Hub, you can’t disable it.

d. Enable Unlocked Packages and Second-Generation Managed Packages.

2. Create a namespace org.

a. Create a Developer Edition org.

b. Enable Lightning Experience.

c. Create a namespace.

Note: Choose your namespace carefully. If you’re trying out this feature or need a namespace for testing purposes, choose
a disposable namespace. Don’t choose a namespace that you want to use in the future for a production org or some other
real use case. After you associate a namespace with an org, you can't change it or reuse it.

d. In the Dev Hub org, use Namespace Registry to register the namespace that you created. To learn more, see Link a Namespace
to a Dev Hub Org.

e. In the sfdx-project.json file, specify your namespace using the namespace attribute.

3. Create a connected app in your Dev Hub org for authorization. The app allows you to set the refresh token timeout, specify IP ranges,
and more. Use any name; for example, Dev Hub Connected App.

4. To authenticate into the dev hub, use the following Salesforce CLI command. For HUB_ORG_ALIAS, choose any name. For
CLIENT_ID, use the consumer key. For INSTANCE_URL, use https://login.salesforce.com.

sf org login web --set-default-dev-hub --alias [HUB_ORG_ALIAS] --client-id [CLIENT_ID]
—instance-url [INSTANCE_URL]

5. You are prompted for the secret. To retrieve it, click Click to reveal under Consumer Secret.

Tip: To view the OAuth client ID and personal connected app secret, from Setup, enter App Manager in the Quick Find
box and click App Manager. Click Connected App Consumer Key and Consumer Secret. To learn about more authentication
methods, see Authorize an Org Using the Web Server Flow.

10

Create Developer Hub and Namespace OrgsSet Up and Publish Your Partner Telephony Package

https://developer.salesforce.com/docs/atlas.en-us.254.0.lightning.meta/lightning/namespaces_creating.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_connected_app.htm
https://login.salesforce.com
https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm

Create a Salesforce DX Project
Allow Service Cloud Voice to communicate with your telephony provider. The package you’re creating includes a connector, contact
center, settings metadata, and more.

1. Clone the scv-partner-telephony-quickstart GitHub repository, and install Salesforce CLI.

git clone --recurse-submodules
https://github.com/service-cloud-voice/scv-external-telephony-quickstart
cd scv-external-telephony-quickstart
npm install # This will install Salesforce CLI

• You can also install the Salesforce CLI separately. To learn more, see Salesforce CLI.

• If you already have Salesforce CLI installed, make sure to update it to the latest version sf update. This step is important
because we’ve added our new Metadata type support.

• Make sure to use API version 53.0 in the Salesforce DX project file sfdx-project.json. If you have the local API version
override, make sure it’s set to 53.0.

• If you aren’t using API version 53.0 or are using an older Salesforce CLI version, you may see errors related to ConversationVendorInfo
Metadata type. The error message from Salesforce CLI looks like this:

Unexpected file found in package directory:
/Users/.../scv-partner-telephony-quickstart/force-app/main/default/ConversationVendorInformation/sampleVendor.ConversationVendorInformation-meta.xml

2. Develop your connector. For a sample implementation, see the open-source demo connector repo in GitHub.

3. Update ConversationVendorInfo in
scv-partner-telephony-quickstart/force-app/main/default/ConversationVendorInformation/sampleVendor.ConversationVendorInformation-meta.xml.

Use the following guidelines when updating the fields in this file.

DescriptionField

Set the bridgeComponent to:
<package-namespace>:<lms bridge name>. If

bridgeComponent

you aren’t using it, you can remove it. If you’re testing with the
demo connector, you can use
{your_namespace}:lwcBridge or
{your_namespace}:AuraBridge. To learn more see
Use the Lightning Message Service Bridge on page 52.

Set this capability to true to support Einstein Conversation
Insights for customers. Implement the

einsteinConversationInsightsSupported

service_cloud_voice.RecordingMediaProvider
on page 121 interface in your Apex integration class to provide
Salesforce call recording URLs for analysis. NOTE: To use this
capability, you must also set
namedCredentialSupported to true.

Set this capability to true if the customer account has multiple
contact centers and the customer has to select one to connect

partnerContactCenterListSupported

with Salesforce. NOTE: To use this capability, you must also set
namedCredentialSupported to true.

11

Create a Salesforce DX ProjectSet Up and Publish Your Partner Telephony Package

https://github.com/salesforce/scv-partner-telephony-quickstart
https://developer.salesforce.com/tools/salesforcecli
https://github.com/salesforce-misc/byo-demo-connector
https://github.com/salesforce/scv-partner-telephony-quickstart/tree/main/force-app/main/default
https://github.com/salesforce-misc/byo-demo-connector

DescriptionField

Set this capability to true if you support prescriptive setup
through a named credential. Implement the

namedCredentialSupported

service_cloud_voice.PartnerConnector on page
121 interface in your Apex integration class, which tests the
connection to the new customer account using the customer
named credential

Set this capability to true so that Salesforce can fetch agent
queues in order for Salesforce and agent queues to be mapped.

partnerTransferDestinationsSupported

Implement the
service_cloud_voice.TransferDestinationProvider
on page 121 interface in your Apex integration class. NOTE: To
use this capability, you must also set
namedCredentialSupported to true.

Set this capability to true if you support Agent SSO using
Salesforce as the identity provider. Implement the

agentSSOSupported

service_cloud_voice.PartnerSSO on page 121
interface in your Apex integration class. NOTE: To use this
capability, you must also set
namedCredentialSupported to true.

This field is deprecated in API version 53.0 and later. Possible
values are “SSO”, “Custom” and “Mixed”.

clientAuthMode

URL of the connector.connectorUrl

a. If you’re testing with the demo connector, use the absolute
link from the steps you performed in the Use the Demo
Connector on page 32 page. For example,
https://www.myTelephonyDemo.com:8080.

b. You can also choose to host the connector as a Visualforce
page from the same Salesforce managed package. Use the
relative URL format from Host the Connector as a Visualforce
Page on page 116. For example,
/apex/<namespace>__<connector visual
force page name>.

The name of the custom object that defines the fields for storing
custom settings for contact centers.

customConfig

ID of the static resource used to identify the contact center
integration, such as a partner telephony provider logo.

customIconId

Add a custom icon to Salesforce by defining the static resource,
and then use the ID value for this field. The static resource must
be in SVG format.

This field is optional.

12

Create a Salesforce DX ProjectSet Up and Publish Your Partner Telephony Package

https://github.com/salesforce-misc/byo-demo-connector
https://help.salesforce.com/s/articleView?id=sf.pages_static_resources_create.htm&language=en_US

DescriptionField

The URL that is used to load the telephony system login page. If
you’re testing with the demo connector, use the link from the

customLoginUrl

steps you performed in the Use the Demo Connector
on page 32 page. For example,
https://www.myTelephonyDemo.com:8080/login.html.

Set this value to a unique name. It must match the file name.developerName

This field is deprecated in API version 53.0 and later.integrationClassName

Set this foreign key to the name of the Apex class that
implements methods to communicate to the vendor during the

integrationClass

partner telephony setup. NOTE: If you’ve turned on any of the
previous capabilities, you must provide the Apex class.

Set this to the desired display name for the telephony provider.
This label shows up in the contact center record as the telephony
provider.

masterLabel

Set this foreign key to the name of the named credential. You
can choose to use this named credential or create one similar to

namedCredential

this one. In both cases you have to update the named credential
with the account secret credentials (for JWT, AWS Signature v4)
or authorize the named credential (for OAuth-based named
credentials).

This field is deprecated in API version 53.0 and later. Set to the
serverAuthMode. Possible values are OAuth and None.

serverAuthMode

Set this capability to true if you support automated user
syncing whenever a user is added or removed to a contact center.

userSyncingSupported

Implement the service_cloud_voice.UserSyncing
on page 121 interface in your Apex integration class, which is
required for user syncing. NOTE: To use this capability, you must
also set namedCredentialSupported to true.

Set this value to ServiceCloudVoicePartner.vendorType

4. Update the following resources as needed. For details, see Use the Lightning Message Service Bridge on page 52. If you don’t plan
to use the Lightning Message Bridge, remove the /aura, /lwc and /messageChannels folders.

a. Aura Bridge: This example is a sample Aura bridge component. When referring to the LMS channel, use the namespace as a
prefix: <namespace>__<lms channel name>__c.

i. In force-app/main/default/aura/AuraBridge/AuraBridge.cmp, change <lightning:messageChannel
type="REPLACE_WITH_NAMESPACE_NAME__ServiceCloudVoiceMessageChannel__c" .. to
<lightning:messageChannel type="<namespace>__<lms channel name>__c" ..

b. Aura LMS Sample: This sample Aura component subscribes to the lightning message channel. When referring to the LMS
channel, use the namespace as a prefix: <namespace>__<lms channel name>__c.

13

Create a Salesforce DX ProjectSet Up and Publish Your Partner Telephony Package

https://github.com/salesforce-misc/byo-demo-connector

i. In force-app/main/default/aura/AuraLmsSample/AuraLmsSample.cmp, change <lightning:messageChannel
type="REPLACE_WITH_NAMESPACE_NAME__ServiceCloudVoiceMessageChannel__c" .. to
<lightning:messageChannel type="<namespace>__<lms channel name>__c"

c. LWC Bridge: This example is a sample LWC bridge component. When referring to the LMS channel, don’t use the namespace
as a prefix.

d. LWC LMS Sample: This is a sample LWC component that subscribes to the lightning message channel. When referring to the
LMS channel, don’t use the namespace as a prefix.

5. Other information about the sample resources that you can modify as necessary.

• The config custom object defines the fields for storing the custom settings of a contact center. A sample custom config is provided
at force-app/main/default/sampleCustomConfig__c. This custom config, along with the associated layout,
is used during contact center setup to fill out custom contact center details.

• A layout can be assigned to a custom object to specify how the custom object should be displayed. A sample layout is provided
at force-app/main/default/layouts. This layout is referenced by sampleCustomConfig__c object.

• A named credential can be added to the package to be used by Apex callouts. A named credential specifies the URL of a callout
endpoint and its required authentication parameters in one definition. Salesforce manages all authentication for Apex callouts
that specify a named credential as the callout endpoint. A sample named credential is provided at
force-app/main/default/namedCredentials.

• Lightning pages can be used to create a customized page with different Lightning components. A sample Lightning page is
provided at force-app/main/default/flexipage.

• A utility bar is a specialized Lightning page that can provide quick access to commonly used tools. A sample utility bar for Service
Cloud Voice is provided at force-app/main/default/flexipage.

• A Salesforce application can be used to group tabs and objects used for a specific functionality. A sample application for Service
Cloud Voice is provided at force-app/main/default/applications.

• An Apex class on page 121 should be provided to automate setup operations that require server-to-vendor communication (for
example, SSO, user syncing). The class must implement the interfaces corresponding to the capabilities that are supported as
defined in the ConversationVendorInfo. A sample Apex integration class is provided at
force-app/main/default/classes. Tests for the Apex classes should also be added so that the package can be
published in the App Exchange.

• You can replace the placeholder namespace with your desired namespace in the SFDX project by running the following
commands:

export LANG=C
export LC_CTYPE=C
find ./ -type f -exec sed -i '' 's/REPLACE_WITH_NAMESPACE_NAME'/'"<YOUR NAMESPACE
NAME>"'/g' {} \;

SEE ALSO:

GitHub: https://github.com/salesforce/scv-partner-telephony-quickstart

Create and Deploy Your Package
Use these commands to create, update, and install the package.

14

Create and Deploy Your PackageSet Up and Publish Your Partner Telephony Package

https://developer.salesforce.com/docs/atlas.en-us.254.0.api_meta.meta/api_meta/customobject.htm
https://github.com/salesforce/scv-partner-telephony-quickstart/tree/main/force-app/main/default
https://github.com/salesforce/scv-partner-telephony-quickstart/tree/main/force-app/main/default
https://developer.salesforce.com/docs/atlas.en-us.254.0.apexcode.meta/apexcode/apex_callouts_named_credentials.htm
https://github.com/salesforce/scv-partner-telephony-quickstart/tree/main/force-app/main/default
https://developer.salesforce.com/docs/atlas.en-us.254.0.api_meta.meta/api_meta/meta_flexipage.htm
https://github.com/salesforce/scv-partner-telephony-quickstart/tree/main/force-app/main/default
https://developer.salesforce.com/docs/atlas.en-us.254.0.api_console.meta/api_console/sforce_api_console_js_utility.htm
https://github.com/salesforce/scv-partner-telephony-quickstart/tree/main/force-app/main/default
https://github.com/salesforce/scv-partner-telephony-quickstart/tree/main/force-app/main/default
https://github.com/salesforce/scv-partner-telephony-quickstart/tree/main/force-app/main/default
https://developer.salesforce.com/docs/atlas.en-us.254.0.apexcode.meta/apexcode/apex_code_coverage_intro.htm
https://github.com/salesforce/scv-partner-telephony-quickstart

Create the Package
sf package create --name "<Package Name>" --path force-app --package-type Managed
--error-notification-username <Dev Hub Username>

Create a Package Version
sf package version create --package "<Package Name>" --code-coverage
--installation-key-bypass --wait 20

The same command is used to create newer versions of the package. This command generates an installation link that can be used in
customer orgs.

Successfully created the package version [08cB0000000****IA0]. Subscriber Package Version
Id: 04tB0000000d****IAQ
Package Installation URL:
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB00000****DIAQ
(https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000d2wDIAQ)

Release a Package Version
Each new package version is marked as beta when created. As you develop your package, you may create several package versions
before you create a version that is ready to be released and distributed. Only released package versions can be listed on AppExchange
and installed in customer orgs.

Before you promote the package version, ensure that the Promote a package version to released user permission is enabled in the
Dev Hub org associated with the package. Consider creating a permission set with this user permission, and then assigning the permission
set to the appropriate user profiles.

When you’re ready to release, use sf package version promote --package "Expense Manager@1.3.0-7"

If the command is successful, a confirmation message appears. Successfully promoted the package version, ID:
04tB0000000719qIAA to released.

After the update succeeds, view the package details. sf package version report --package "Expense
Manager@1.3.0.7"

Confirm that the value of the Released property is true.

=== Package Version
NAME VALUE
────────────────────────────── ───────────────────
Name ver 1.0
Alias Expense Manager-1.0.0.5
Package Version Id 05iB0000000CaahIAC
Package Id 0HoB0000000CabmKAC
Subscriber Package Version Id 04tB0000000NPbBIAW
Version 1.0.0.5
Description update version
Branch
Tag git commit id 08dcfsdf
Released true
Created Date 2018-05-08 09:48
Installation URL
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000NPbBIAW

15

Create and Deploy Your PackageSet Up and Publish Your Partner Telephony Package

You can promote and release only one time for each package version number, and you can’t undo this change.

To learn more, see Workflow for Second-Generation Managed Packages.

Create a Scratch Org
You can create a scratch org to test your package. This process may take a few minutes. sf org create scratch
--definition-file config/project-scratch-def.json --target-org <Dev Hub Username>

Open the Scratch Org
To find a list of scratch orgs, including the one you created, run this command.

sf org ist --verbose

To open the scratch org, run this command.

sf org open -u <scratch org username>

Install the Package
Before installing, make sure that the org has the Service Cloud Voice Partner Telephony license. Then, run this command:

sf package install --package "<Package Name>@<Package Version>" --target-org <Target
Org Username>

Target Org is the org where you want to install the package.

Or, use the installation URL that’s created when you run the Salesforce CLI command for creating or promoting a package version.

Look for an email indicating whether the package was installed. If the installation failed, review the email for details and try again. To
learn more about installation methods, see Use the CLI to Install a Second-Generation Managed Package.

Assign User Permissions
Service Cloud Voice for Partner Telephony comes with the following user permissions, which should be assigned to users as part of the
Contact Center Admin (Partner Telephony) and Contact Center Agent (Partner Telephony) permission sets.

• Contact Center Agent for External Telephony Provider: Access contact centers that use an external telephony provider.

• Contact Center Admin for External Telephony Provider: Manage contact centers that use an external telephony provider.

• View Call Recording: View call recordings.

• Control Call Recording: Pause and resume recording of individual calls.

Generate a Self-Signed Certificate with OpenSSL
Use OpenSSL to generate an RSA private key and certificate.

You need the certificate to set up the contact center. The reqTelephonyIntegrationCertificate value should be the value in server.crt
from these steps.

Important: This key pair must be unique for each org installation. Shared key pairs would allow the private key holder to
call SCV APIs for any org using the corresponding public key. Subscriber orgs should be able to rotate this key on demand.

1. Create a folder to hold the generated certificate: $ mkdir certificates

2. Change the current directory to the certificates folder: $ cd certificates

16

Assign User PermissionsSet Up and Publish Your Partner Telephony Package

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_workflow.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_install_pkg_cli.htm

3. In the certificates folder, specify a password and generate an RSA private key. Replace <your_password> with your own
password.

Note: The Certificate Authorities use this password to authenticate the certificate owner when they want to revoke their
certificate. Because the certificate is self-signed, you can’t revoke it using CRL (Certificate Revocation List).

$ openssl genrsa -des3 -passout pass:<your_password> -out server.pass.key 2048

4. Create a key file from the server.pass.key file, using the password that you just created. $ openssl rsa -passin
pass:<your_password> -in server.pass.key -out server.key

5. Delete the server.pass.key: $ rm server.pass.key

6. Request and generate the certificate: $ openssl req -new -key server.key -out server.csr

7. Enter the requested information. Press Enter when prompted for the challenge password. To skip entering a company name, enter
a period (.).

8. Generate the SSL certificate: $ openssl x509 -req -sha256 -days 365 -in server.csr -signkey
server.key -out server.crt

Get Started with the Quick Start Partner Telephony Package

You can explore the partner telephony features in your partner telephony-enabled org. We’ve published a sample quick start package
that you can install in your org, create a contact center, and get started.

The quick-start-partner-telephony package has a ConversationVendorInfo record. You can reference it while creating a
contact center. It contains a connector URL which points to a Visualforce page (quickStartPT__quickStartPTVFConnector).
You can change it to localhost (127.0.0.1). Both options require you to run a local server. For localhost, you must host the connector from
http://127.0.0.1. For the Visualforce page, you need the server to call SCRT APIs.

The package also includes an LMS channel and Lightning web component/Aura record home and bridge components. The Visualforce
page connector uses the AuraBridgeComponent. The localhost connector uses the lwcBridge component.

Installing the quick-start-partner-telephony package automatically enables MyDomain, Omni-Channel, and the external
Service Cloud Voice telephony system.

The package includes these components:

DescriptionTypeName

Voice Call Record Home Aura component
to demonstrate LMS

Aura Component BundleAuraLmsSample

Aura bridge component needed for LMS
messages

Aura Component BundleAuraMessageBridge

LMS channelLightning Message ChannelServiceCloudVoiceMessageChannel

Connector page used as the connector URLVisualforce PageconnectorPage

JS script referenced in the Connector VF
page

Static ResourcedemoConnector

Demo login page used in Omni-Channel for
partner login

Visualforce PageloginPage

JS script referenced in the login VF pageStatic Resourcelogin_page

17

Get Started with the Quick Start Partner Telephony PackageSet Up and Publish Your Partner Telephony Package

Image iconStatic Resourcelogo

LWC bridge component needed for LMS
messages

Lightning Web Component BundlelwcBridge

Voice Call record home Lightning web
component (LWC) to demonstrate LMS

Lightning Web Component BundlelwcLmsSample

ConversationVendorInfo record for VF page
connector

Conversation Vendor InformationquickStartPTVFConnector

ConversationVendorInfo record for localhost
connector

Conversation Vendor InformationquickStartPartnerTelephony

VF page used for simulator page (also
known as “remote”)

Static Resourceremote_control

JS script referenced in simulator VF pageVisualforce PagesimulatorPage

CSS for simulator VF pageStatic Resourceslds_stylesheet

Image iconsStatic Resourcesymbols

Application containing components used
for Service Cloud Voice

ApplicationService_Cloud_Voice (applications)

Class that implements interfaces for
automated setup

Apex ClassSampleIntegrationImpl.cls

Tests for Apex integration classApex ClassSampleIntegrationImplTest.cls

Lightning page for customized Service
Cloud Voice page

FlexiPageService_Cloud_Voice (FlexiPage)

Utility base with common tools for Service
Cloud Voice

FlexiPageService_Cloud_Voice_UtilityBar

Layout to define display for custom config
object

LayoutsampleCustomConfig__c-sampleCustomConfig
Layout

Named credential to authenticate
server-to-server communication for
automated setup

Named CredentialsampleNamedCredential

Custom object for defining custom settings
for contact centers

Custom ObjectsampleCustomConfig__c

Voice Call objectVoice CallVoiceCall

Verifies that My Domain is enabledSettingMyDomain

Turns on Omni-Channel in the orgSettingOmniChannel

Turns on the external Service Cloud Voice
telephony system.

If you've already installed the
quick-start-partner-telephony

SettingServiceCloudVoice

18

Get Started with the Quick Start Partner Telephony PackageSet Up and Publish Your Partner Telephony Package

package, you can turn on the external
Service Cloud Voice telephony system by
copying the
ServiceCloudVoice.settings-meta.xml
file from the quick-start-partner-telephony
package and adding it to the
force-app/main/default/settings
folder.

1. Install the quick-start-partner-telephony package in your org.

2. After installing the quick-start-partner-telephony package, follow the Partner Telephony Setup instructions to create
a contact center and assign permission sets.

3. Import a contact center XML (see the sample XML in Set Up Service Cloud Voice for Partner Telephony in Your Org on page 21).

4. Set reqVendorInfoApiName as needed.

• For the connector from localhost:

<item sortOrder="2"
name="reqVendorInfoApiName" label="Conversation Vendor Info Developer
Name">quickStartPT__quickStartPartnerTelephony</item>

quickStartPartnerTelephony is the developer name of the ConversationVendorInfo record where the connector URL is pointing
to localhost (that is, https://127.0.0.1:8080). Make sure the connector is running on localhost 8080.

• For the connector from the Visualforce page:

<item sortOrder="2"
name="reqVendorInfoApiName" label="Conversation Vendor Info Developer
Name">quickStartPT__quickStartPTVFConnector</item>

Start a server for SCRT server calls (such as inbound call, transcription, and call recording) and one initial call to set org details.
The VF page included in the package uses localhost:3030 for SCRT calls (that is, http://127.0.0.1:3030/). Configure
the org details using the configureTenantInfo call. Enable Cors on the server to enable calls to the other domain from the VF
connector.

– Run npm install cors in the demo connector.

– Add the following two lines in server.js.

import cors from 'cors';
app.use(cors());

5. Set reqVendorInfoApiName as needed.

19

Get Started with the Quick Start Partner Telephony PackageSet Up and Publish Your Partner Telephony Package

https://github.com/salesforce/scv-partner-telephony-quickstart/tree/main/force-app/main/default/settings
https://github.com/salesforce/scv-partner-telephony-quickstart/tree/main/force-app/main/default/settings
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB00000007T1S

CHAPTER 4 Set Up Your Production Org

After you’ve installed the managed package, set up your production org.In this chapter ...

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice

• Set Up
Omni-Channel and a

Implementation Guide or Salesforce Help. To update your solution to include Bring Your OwnLightning Console
App Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own

Channel Developer Guide.• Set Up Service Cloud
Voice for Partner
Telephony in Your
Org

20

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html

Set Up Omni-Channel and a Lightning Console App

Service Cloud Voice uses Omni-Channel to send calls to agents in your Lightning console app. Agents use the Phone tab in the
Omni-Channel utility to accept or decline calls and use other call controls.

Important: This guide is for telephony providers who are creating a solution that integrates Service Cloud Voice with their
telephony system. If that’s not you, see the Service Cloud Voice Implementation Guide or Salesforce Help. To update your solution
to include Bring Your Own Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own
Channel Developer Guide.

To get started, assign the automatically generated custom permission, which contains the service presence status set to agents. Then
create a Lightning console app and add the Omni-Channel utility to the app.

1. Assign Partner Telephony Permission Set to agents.

There’s an automatically generated permission set with the label “Partner Telephony Permission Set.” This permission set contains
an automatically generated Service Presence Status called “Available for Voice.” Assign the agents in the contact center to this
permission set.

2. Create a Lightning console app.

a. From Setup in Lightning Experience, enter App Manager in the Quick Find box, then select App Manager.

b. Click New Lightning App.

c. For Name, enter a name such as Contact Center.

d. The Developer Name is automatically filled. Click Next.

e. In the App Options settings, select Console navigation. Click Next.

f. In the Utility Bar settings page, click Add Utility Item.

g. To add Omni-Channel to the utility bar in the console footer, select Omni-Channel.

h. After you add Omni-Channel to the utility bar, the Omni-Channel utility item properties are displayed. Leave them as is and click
Next.

i. Add Voice Calls as a navigation item in the console.

j. Click Save & Finish.

Set Up Service Cloud Voice for Partner Telephony in Your Org

When Service Cloud Voice for Partner Telephony licenses are added to an org, Salesforce admins in the org can open the Partner Telephony
Setup page and follow the steps to set up their contact center. This guide describes how you can customize that experience.

Important: This guide is for telephony providers who are creating a solution that integrates Service Cloud Voice with their
telephony system. If that’s not you, see the Service Cloud Voice Implementation Guide or Salesforce Help. To update your solution
to include Bring Your Own Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own
Channel Developer Guide.

21

Set Up Omni-Channel and a Lightning Console AppSet Up Your Production Org

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html

Customers can install the managed package from the App Exchange or from an external URL provided by the telephony partner.
Telephony partners can skip installing the managed package from the App Exchange, because they would install the managed package
in their scratch orgs in Create an SFDX Project on page 11. Telephony partners can also follow these steps to set up contact centers in
their scratch orgs.

After the admin completes the initial step of enabling Omni-Channel, they can enable Voice in their org. The next steps require assigning
the contact center permissions and creating the contact center.

1. Both customers and telephony partners can follow the setup wizard to create a contact center.

2. After selecting the available vendor from the installed packages, there are two options. Either enter the contact center display name
and internal name, or import an XML file to create a contact center.

22

Set Up Service Cloud Voice for Partner Telephony in Your OrgSet Up Your Production Org

Note: As you type text into the text field, the Upload an XML definition file link becomes disabled. Clear the text field to
re-enable the link.

The next several steps describe the flow if you choose to enter the contact center name (rather than importing the XML).

3. The next setup step shows custom settings based on a custom object you can specify in the ConversationVendorInfo setup object.
If you don’t have a custom object specified in ConversationVendorInfo, this step is skipped.

23

Set Up Service Cloud Voice for Partner Telephony in Your OrgSet Up Your Production Org

If the partner wants to allow customers to provide some non-standard settings, the partner can create a custom object and specify
it in the ConversationVendorInfo object customConfig field. In this step, the setup wizard loads all the fields from the default
layout to allow customers to provide values for settings. It creates a record of this custom object and stores the record ID in the
contact center. When agents log in to the contact center, the record details are loaded as part of the contact center settings.

4. If the partner wants to have an advanced feature that would require the server-to-server communication with a named credential,
it must be declared in the ConversationVendorInfo object namedCredentialSupported field. If the partner doesn’t support
this feature, this step is skipped.

24

Set Up Service Cloud Voice for Partner Telephony in Your OrgSet Up Your Production Org

This functionality can be used for Einstein Conversation Insights, user syncing, or retrieving the external queue ID for queue mapping.
These features require named credentials for the server-to-server authentication. In this step, the screen allows customers to choose
which named credentials to use. It shows all the available named credentials in this org, either from local creation or an installed
managed package. After clicking the Next button, it invokes the connect method from the Apex class that implements the
service_cloud_voice.PartnerConnector on page 121 interface. If the response is successful, it stores the named
credential ID in the contact center.

a. If the partner also supports the agent SSO authentication, it must be declared in the ConversationVendorInfo object
agentSSOSupported field. You must also provide an Apex class, which implements the
service_cloud_voice.PartnerSSO on page 121 interface. This step invokes the Apex class methods to get the
required parameters and create the connected app to set up the SAML identity provider.

b. If the partner supports named credentials, and there are multiple contact center instances in the vendor’s system, and you want
to let the customer choose which one to connect to, this information must be declared in the ConversationVendorInfo object
partnerContactCenterListSupported field. This information also must be declared in the connect method from
the Apex class that implements the service_cloud_voice.PartnerConnector on page 121 interface. This interface
returns the list of the contact centers, with external IDs and labels. This step allows the customer to choose which external contact
center to connect to. If this feature isn’t supported, this step is skipped.

25

Set Up Service Cloud Voice for Partner Telephony in Your OrgSet Up Your Production Org

5. When importing XML, the content contains two mandatory sections and some optional, vendor-specific sections.

• General Info Section:

– Contains the Display Name and Internal Name. Use alphanumeric characters for the internal name of contact center. The
internal name must be unique.

– Set the reqVendorInfoApiName to <namespace prefix of managed package>__<developer name of the Conversation
Vendor Info component>. You can check the namespace prefix and developer name from View Components inside the
managed package.

• SCV Settings Section:

26

Set Up Service Cloud Voice for Partner Telephony in Your OrgSet Up Your Production Org

Set the reqTelephonyIntegrationCertificate to the certificate as generated in Generate a Self-Signed
Certificate with OpenSSL on page 16. Customers can use this info as provided by the telephony partner.

–

– Update reqLongDistPrefix to the desired area code prefix. The Omni-Channel softphone uses this area code for
outbound calls.

• Partner Settings Sections:

– Telephony partners can include their specific configurations in the rest of the sections with a name other than
reqGeneralInfo/reqHvcc. Customers don’t must change the configurations specified by the telephony partner.

• There’s a maximum limit of 500 sections per XML file and 1,000 items per section.

<callCenter>

<!-- General Info Section. This is a required section. -->
<section sortOrder="0" name="reqGeneralInfo" label="General Information">

<item sortOrder="1" name="reqDisplayName" label="Display Name">Quick Start
Partner Telephony</item>

<item sortOrder="0" name="reqInternalName"
label="InternalName">quickStartPartnerTelephony</item>

<!-- Provide Full API Name of the Conversation Vendor Info Component present
in installed vendor managed package -->

<item sortOrder="2" name="reqVendorInfoApiName" label="Conversation Vendor
Info Developer Name">quickStartPT__quickStartPartnerTelephony</item>

</section>

<!-- SCV Settings. This is a required section. -->
<section sortOrder="1" name="reqHvcc" label="SCV Settings">

<item sortOrder="0"
name="reqTelephonyIntegrationCertificate" label="Telephony Integration

Certificate">-----BEGIN CERTIFICATE-----
MIIC/jCCAeYCCQCIBPHtpQA4CjANBgkqhkiG9w0BAQsFADBBMQswCQYDVQQGEwJV
UzELMAkGA1UECAwCQ0ExJTAjBgkqhkiG9w0BCQEWFm9mYXRlaGlAc2FsZXNmb3Jj
ZS5jb20wHhcNMjAwNTIyMDUxOTU4WhcNMjEwNTIyMDUxOTU4WjBBMQswCQYDVQQG
EwJVUzELMAkGA1UECAwCQ0ExJTAjBgkqhkiG9w0BCQEWFm9mYXRlaGlAc2FsZXNm
b3JjZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQC2xABiXaS/
ZTMY+SlXocYT3cgrnw9b8pHfx8EZ1XCQebfn4n9PWAhfF2y+NAHJcAnVxk1Hht8d
jsHexeNQhjF6xvyk4uA9nPFxft52WClYzJ1eZJeg8DRntAsJ5T2x/LI2Ol8Wcboz
sZ+KasdC8NNd/65dKx297mTbqcYQ4jv9bKtniFQ4ZibrWjjG9cTKu9eCArzBJmzQ
R+CXkZUmVJNfPRuQaMFvkxpETHKU6qlLVQbmMocb91g2XRzXZMNo2WBIkhmobH2F
jbNNKy+B6z50grewtSrFFCoAfmtPspMZw/6VfvMdkFge+ymZkyNBT2El8r17pd5e
45hsaPBI6XG1AgMBAAEwDQYJKoZIhvcNAQELBQADggEBACE4cbldEtB+S6z7Gh4q
fEhJ6xH2Aa1+VE1wrj+gIXLFanEp1eyWbLeM2TEwdv0G9P38wA20fJW/X2ZYgHDk
aFWBvKNjQxRNslMKZ+xDXVEoP42EY5YH37Vo3L2s1FirPGFKWdFUxoWGh5I9ZHGc
FN1mTx0lMF2PHqcjLTMeoanImVEbLveB9yCBcVSI3wswc4S51puswqiSU1E3WARi
wJnKaUgZQwphWGOMQ+YrLpuBIHcswr20OCil+0DwggQGsRz0WkDg/+Z0G553rWVR
1XhjBmA6TTKEC0xTTnwLMYEQA0qQupTGRDFC1FO5rFJGGe9tczdtFOKLqCaqwkXV
DZg=
-----END CERTIFICATE-----</item>

<item sortOrder="1" name="reqLongDistPrefix" label="Long Distance
Prefix">+1</item>

</section>

27

Set Up Service Cloud Voice for Partner Telephony in Your OrgSet Up Your Production Org

<!-- All below sections below contain vendor settings-->
<section sortOrder="2" name="providerSettings1" label="Button Assignment">

<item sortOrder="0" name="custom2" label="custom2">Custom2 </item>
<item sortOrder="2" name="custom0" label="custom0">custom0</item>
<item sortOrder="1" name="custom1" label="custom1">Custom1</item>

</section>
<section sortOrder="3" name="providerSettings2" label="Dialing Options">

<item sortOrder="2" name="custom0" label="custom0">custom0</item>
<item sortOrder="0" name="custom2" label="custom2">Custom2</item>
<item sortOrder="1" name="custom1" label="custom1">Custom1</item>

</section>
</callCenter>

6. After the setup flow is completed, the contact center appears in the Partner Telephony Contact Centers node and the admin can
add users to the contact center.

Other details about the setup process:

• The admin clicks Create Contact Center to launch the wizard.

28

Set Up Service Cloud Voice for Partner Telephony in Your OrgSet Up Your Production Org

• You can change the values on the contact center details page after the contact center is created.

• If the setup flow is canceled before completion, the steps can still be completed on the contact center details page. The custom
settings can be edited in the second section of the contact center details page. The connect button is on the top-right corner, which
allows the admin to launch the wizard to select the named credential to connect to the telephony account. In the create contact
center wizard, it doesn’t ask the public key, so the admin must update the contact center to provide the public

key.

• After this step is completed, the contact center appears in the Partner Telephony Contact Centers node and the admin can add users
to the contact center.

29

Set Up Service Cloud Voice for Partner Telephony in Your OrgSet Up Your Production Org

CHAPTER 5 Add Support for Voice Resiliency

Voice resiliency ensures that calls can still go through when the number of conversations is over limit
or when the background service is affected.

The voice resiliency service allows customers to continue using basic voice features such as inbound
calling, outbound calling, call transfers, and callbacks when the conversation entities creation fails. During
this period, certain features and functionalities may be impacted. See the Voice Resiliency for Service
Cloud Voice knowledge article for more information about voice resiliency.

If your environment isn’t set up correctly for voice resiliency, you may experience missing calls. To support
voice resiliency, make sure that in the event of a call failure the call still gets routed to the agent or queue.

Configure the following steps to ensure your environment is set up correctly for voice resiliency.

1. If the Create a Voice Call Record API (/telephony/v1/voiceCalls) fails, perform up to three
retries. Retries may fail if, for example, you've reached the conversation limit.

2. If the retries continue to fail, still route the call to the agent or queue, and send the CALL_STARTED
event through the connector.

30

https://help.salesforce.com/s/articleView?id=000395549&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000395549&type=1&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm

CHAPTER 6 Connect Your Telephony System to Salesforce

The demo connector is a quick and effective way to get your telephony system communicating with
your Salesforce org. This demo connector uses the Connector API, which is the interface between your
telephony system and Salesforce.

In this chapter ...

• Use the Demo
Connector

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice

• Use the Connector
API

Implementation Guide or Salesforce Help. To update your solution to include Bring Your Own• Test Your
Implementation with Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own

Channel Developer Guide.the Voice Call
Simulator

SEE ALSO:

Service Cloud Connector API Reference

Service Cloud Connector API Reference: Get Started with the Service Cloud Connector API

31

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_get_started.hm

Use the Demo Connector

The demo connector is a sample application for partner telephony systems that integrate with Service Cloud Voice. It demonstrates an
optimal Voice implementation based on a group of telephony API mocks. It also includes a voice call simulation tool that you can use
to test call actions such as making and answering calls and using phone controls.

Start the demo connector
The byo-demo-connector is provided as part of the Demo Connector in GitHub.

1. Clone the git repo, and install the NPM dependencies.

$ git clone git@github.com:salesforce-misc/byo-demo-connector.git
$ cd byo-demo-connector
$ npm install

2. Add a private key generated from Generate a Self-Signed Certificate with OpenSSL on page 16.

{byo-demo-connector}
|__src

|__server
|__private.key

3. Launch the tool.

$ npm start

By default, the web server runs in SSL on port 8080. The adapterUrl in your contact center points to this web server (for example,
https://www.myTelephonyDemo.com:8080).

The previous command also starts the SCV REST APIs connector on default port 3030. It’s used for creating voice calls, transcription, and
recording.

You can run them on separate terminals using the following commands.

$ npm run client
$ npm run server

Verify That the Connector is Loaded
Test that the connector is working.

1. The byo-demo-connector app uses a self-signed certificate, so you must get your web browser to accept a self-signed
certificate.

a. Open the byo-demo-connector app URL (for example, https://serverURL:8080/remote.html) in a separate
tab.

b. Click through any warnings for untrusted certificates.

2. Log in to Salesforce as one of the users that were added to the contact center.

3. Log in to the Omni-Channel utility and change the agent status to Available.

32

Use the Demo ConnectorConnect Your Telephony System to Salesforce

https://github.com/salesforce-misc/byo-demo-connector

Open the Browser Debugger and make sure that you see messages from the connector. The messages start with [sdk] or
[connector].

SEE ALSO:

GitHub: Demo Connector

Use the Connector API

The Connector API is the interface between your partner messaging or telephony system and your Salesforce org. This API allows you
to pass information to Salesforce, and to receive events back from Salesforce.

Important: The Service Cloud Connector API is for partners who are implementing Bring Your Own Channel for Messaging, Bring
Your Own Channel for CCaaS, or Service Cloud Voice with Partner Telephony.

33

Use the Connector APIConnect Your Telephony System to Salesforce

https://github.com/salesforce-misc/byo-demo-connector

For Service Cloud Voice with Partner Telephony, the demo connector on page 32 is a working example that uses the Connector API.
For details on using the Connector API, you can review our reference documentation.

The Service Cloud Connector API contains two parts:

1. Base Connector API

2. Connector API Methods

SEE ALSO:

Service Cloud Connector API Reference

Service Cloud Connector API Reference: Get Started with the Service Cloud Connector API

Test Your Implementation with the Voice Call Simulator

The Voice Call Simulator component helps you get comfortable with Service Cloud Voice. As you set up Service Cloud Voice, use the
simulator to walk through a variety of call scenarios.

To get started, load the demo connector project as described in Use the Demo Connector on page 32. Then, open the Voice Call
Simulator by navigating to https://:8080/remote.html. We recommend leaving the simulator open in one browser tab and
the service console in another tab.

The following screens appear with the simulator.

34

Test Your Implementation with the Voice Call SimulatorConnect Your Telephony System to Salesforce

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_base.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_interface.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_get_started.hm

• Agent Settings: Let agents mute, record, swap, merge calls, allow signed recording URLs, support contact search, and support MOS
for vendors.

35

Test Your Implementation with the Voice Call SimulatorConnect Your Telephony System to Salesforce

• Call Transcript: Simulate a real-time call transcript. Select a speaker and enter or record a statement or question. For example, select
Agent and enter, “Hello, how can I help you?”. Build out the transcript by switching between speakers. Comments appear in the
Conversation component on the Voice Call record.

• Call Simulator: The call simulator serves to simulate both softphone and hardphone devices. With the call simulator, you can do
the following.

– Call Initial State: Set the initial state of the call for recording, mute, and hold controls.

– Enable Omni Call Controls: Enable or disable Omni-Channel controls when a call is ongoing.

– Inbound Call: Initiate an inbound call from the number you entered.

– Outbound Call: With Hardphone selected, you can trigger an outbound call.

– Add Participant: With Hardphone selected, you can add a participant.

– Callback: Trigger a callback.

– After the call is connected, the Agent Actions section appears. The agent actions can be used to mute, unmute, hold, resume,
pause recording, resume recording, swap, and conference. For an outbound call, Call Participant Actions can be used to add the
customer to the call, simulate the customer leaving the call, or simulate a third party joining and leaving the call.

– Active Calls: This section shows the state of the active calls including ringing, connected states. It also shows the details of the
active calls:

36

Test Your Implementation with the Voice Call SimulatorConnect Your Telephony System to Salesforce

• Login Settings: Show or hide the telephony login screen in the Omni-Channel utility. Log out from the telephony system. When
the telephony login screen is hidden, the agent uses single sign-on to log in.

• Call Recording: After you record a call, enter the recording details and publish it to the Voice Call record in Salesforce. The recording
URL should point to an audio stream or audio file of the call recording, can’t be more than 1,000 characters, and must be fully qualified,
meaning that the source is included Trusted URLs with the media-src CSP directive.

• Messages: Communicate with a Lightning bridge component in your org. The Received Message field shows the last message
received from the component. To learn more, see Use the Lightning Message Service Bridge on page 52.

37

Test Your Implementation with the Voice Call SimulatorConnect Your Telephony System to Salesforce

• Errors: Test your error user experience by generating an error in response to any API call. For example, select Display an error and
mute the call to test the muteCall API error scenario. When you’re done, deselect Display an error.

• MOS: Test the Mean Opinion Score (MOS) feature by submitting a JSON object for the audio status.

38

Test Your Implementation with the Voice Call SimulatorConnect Your Telephony System to Salesforce

CHAPTER 7 Set Up Authentication

Set up authentication between the Salesforce app and the telephony provider.In this chapter ...

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice

• Set Up Single
Sign-On

Implementation Guide or Salesforce Help. To update your solution to include Bring Your Own• Develop a Telephony
System Login Page Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own

Channel Developer Guide.

39

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html

Set Up Single Sign-On

Set up single sign-on (SSO) for your solution.

Set Up the SSO Connected App and Salesforce with Identity Provider (IdP)
1. From Setup, enter Identity Provider in the Quick Find box, then select Identity Provider and enable it. Download the

certificate and metadata file.

2. Enter App Manager in the Quick Find box. Click App Manager > New connected App.

3. Create a new connected app and provide the details in Basic information and Web App settings.

a. Name the connected app.

b. Enable SAML.

c. Enter the ACS URL and Entity ID.

d. Select Subject Type as required and update the name ID format to match the SSO expected.

e. Select your IdP Certificate from the dropdown options.

f. Click Save.

g. Click Manage profile and select all the profiles for which you want to grant access to use SSO.

4. After enabling Identify Provider, download the metadata file for using Salesforce as IdP. This metadata XML file should be used for
setting up SSO.

Perform Headless SSO
If a telephony system login page isn’t needed, you can use a headless single sign-on (SSO) to your service. Salesforce sends a message
to the connector iFrame with the entire contact center configuration as defined in {contactCenterName}.callCenter. Use these details
to allow SSO, and notify Salesforce by returning a fulfilled Promise with a value of type InitResult when the Promise is successful
or rejected.

To set up single sign-on (SSO), configure your Salesforce org as the SAML identity provider. For help, see:

• Set Up SSO Connected App and Salesforce with Identity Provider on page 40

• Salesforce as an Identity Provider

Here’s a sample contact center configuration sent from Salesforce during connector init:

40

Set Up Single Sign-OnSet Up Authentication

https://help.salesforce.com/articleView?id=sso_sfdc_idp_parent.htm&type=5&language=en_US

init(ssoConfig) {
const ssoResult = pbx.performSSO(ssoConfig)
if (ssoResult.success) {
return Promise.resolve(new InitResult({}));

} else {
return Promise.reject("Failed to login");

}
}

If SSO is successful, the SSO dialer is enabled to allow the agent to make outbound calls.

41

Set Up Single Sign-OnSet Up Authentication

If SSO fails, the base connector dispatches a CAN_NOT_LOG_IN error. The agent receives an error message in the Omni-Channel utility
or the Salesforce window, and their keypad remains disabled.

42

Set Up Single Sign-OnSet Up Authentication

SEE ALSO:

Service Cloud Connector API Reference

Develop a Telephony System Login Page

If needed, create a telephony system login page that appears in the Omni-Channel utility in the Lightning service console.

Complete this step if your telephony provider doesn’t support SSO, meaning that agents must log into a telephony system to make and
receive calls. The telephony system must maintain the duration and validity of the login session.

1. In your callCenter file, include a scvVendorLoginUrl in the customSettings field {contactCenterName}.callCenter.

<?xml version="1.0" encoding="UTF-8"?>
<CallCenter xmlns="http://soap.sforce.com/2006/04/metadata">

43

Develop a Telephony System Login PageSet Up Authentication

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm

...

<customSettings>{"reqTimeout":"5000","reqCallCenterType":"SCVBYOT",*scvVendorLoginUrl":"https://YOUR_SERVER_LOGIN_URL"*,"reqStandbyUrl":"https://domain:port/softphone","reqSoftphoneHeight":"300","reqUseApi":"true","reqSoftphoneWidth":"500","reqSalesforceCompatibilityMode":"Lightning"}</customSettings>
...
</CallCenter>

2. In the response to init(), set showLogin to true and include an optional number for loginFrameHeight in the InitResult object.

3. Upon initialization, the Omni-Channel utility shows an iframe that is populated with the URL specified in the scvVendorLoginUrl
field of customSettings in the callCenter file:

4. Publish a Connector API event with the login result to show either a login failure or the dialer.

publishEvent({
eventType: Constants.SHARED_EVENT_TYPE.LOGIN_RESULT,
payload: new GenericResult({ success: true })

});

5. The agent can now log out from Omni-Channel.

44

Develop a Telephony System Login PageSet Up Authentication

6. In the event of a session timeout, the telephony vendor can trigger a logout from the Connector API and use the Connector API
publishEvent method. The vendor can provide a loginFrameHeight for the login iframe. If no value is provided, a default value of
350 is used.

publishEvent({
eventType: Constants.SHARED_EVENT_TYPE.LOGOUT_RESULT,
payload: new LogoutResult({ success: true, loginFrameHeight: 350 })

})

Note: Clicking Log Out in the Voice Call Simulator performs the same action. To learn more, see Test Your Implementation
with the Voice Call Simulator on page 34.

SEE ALSO:

Service Cloud Connector API Reference

Service Cloud Connector API Reference: logout

45

Develop a Telephony System Login PageSet Up Authentication

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_logout.hm

CHAPTER 8 Customize Your Implementation

Use this information to customize the setup and add vendor value to your implementation.In this chapter ...

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice

• Automated Key
Provisioning with

Implementation Guide or Salesforce Help. To update your solution to include Bring Your OwnService Cloud Voice
for Partner Telephony Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own

Channel Developer Guide.• Add a Partner
Settings UI to
Omni-Channel

• Customize Error
Messages

• Communicating with
Lightning
Components

46

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html

Automated Key Provisioning with Service Cloud Voice for Partner
Telephony

When a contact center is created and connected with the partner telephony system, the public key for the contact center can be
provisioned automatically with an Apex call to the partner system.

The key can also be renewed by clicking the Update Key button in the contact center details page, or by using the Update Key
dropdown action in the contact center list page.

For automated key provisioning and renewal, the following requirements must be met:

1. Partners must set the CapabilitiesSupportsKeyProvisioning capability to true in their ConversationVendorInfo
object.

2. The Apex integration class must implement the KeyProvider interface. This interface includes the getPublicKey method,
which is called when the key is provisioned or renewed and returns the public key and its expiration date.

When a contact center has an expired public key, the expiration date on the contact center details page and the contact center list
page has a red circle with a slash icon next to it. When the public key expires within 5 days, it has a yellow warning icon next to it.

Add a Partner Settings UI to Omni-Channel

Partners can launch a Lightning component from the Omni-Channel widget with their own additional settings. This Lightning component
is shown in the Additional Settings section along with other common agent settings.

47

Automated Key Provisioning with Service Cloud Voice for
Partner Telephony

Customize Your Implementation

This Lightning web component (LWC) can show any available LWC elements, such as radio boxes, checkboxes, comboboxes, input
boxes.

To make this feature available, Partners have to provide the fully qualified name of the Lightning component from within Conversation
Vendor Info, along with the LWC component in the published package. Salesforce reads the component name from the Conversation
Vendor Info and displays the partner component from within the Omni-Channel widget.

To fully integrate the LWC component, partners must provide the mandatory hooks for Save and Cancel. The following diagram illustrates
how the LWC component interacts with other components.

48

Add a Partner Settings UI to Omni-ChannelCustomize Your Implementation

In Conversation Vendor Info, set the TelephonySettingsComponent field to {namespace}:{componentName}.

Sample agentConfig.html:

<template>
<div class="slds-p-left_large slds-p-right_large">
<lightning-input type="text" label="Caller Id" onchange={onCallerIdChange}

value={callerId} placeholder="Enter your caller ID">
</lightning-input>
<lightning-input type="text" label="Queue Id" onchange={onQueueIdChange} value={queueId}

placeholder="Enter your Queue ID">
</lightning-input>

</div>
</template>

Sample agentConfig.js:

import { LightningElement, track, api } from 'lwc';
export default class AgentConfig extends LightningElement {

@track queueId;
@track callerId;
_settings = {};

onQueueIdChange(event) {
this.queueId = event.detail.value;

}

onCallerIdChange(event) {
this.callerId = event.detail.value;

}

@api
save() {

49

Add a Partner Settings UI to Omni-ChannelCustomize Your Implementation

this._settings = {
queueId: this.queueId,
callerId: this.callerId

};
}

@api
cancel() {

this.queueId = this._settings.queueId;
this.callerId = this._settings.callerId;

}
}

Customize Error Messages

Improve agent efficiency by displaying custom error messages in the Omni-Channel utility whenever a telephony action fails. By default,
generic labels are displayed.

Custom error messages can be displayed in response to failed telephony actions. For example, you can display a custom error message
in response to a failed acceptCall action. Here’s an example of how the custom error message flow works when the acceptCall
telephony action fails.

1. The agent tries to accept the call.

2. Salesforce passes this information to the Connector API (vendorConnector), which in turn passes the information to your
telephony provider.

3. The Connector API responds.

4. If the error is of type CustomError, Salesforce displays a custom error message. Otherwise, the default error string for
MESSAGE_TYPE.ACCEPT_CALL is displayed.

Here’s a sample, taken from the baseConnector.js file in GitHub.

} catch (e) {
isSupervisorConnected = false;
if (e instanceof CustomError) {
dispatchCustomError(e, constants.MESSAGE_TYPE.ACCEPT_CALL);

} else {
dispatchInfo(constants.INFO_TYPE.CAN_NOT_ACCEPT_THE_CALL, {messagetype:

constants.MESSAGE_TYPE.ACCEPT_CALL, additionalInfo: e});
}

}

Custom error messages can also be displayed at any time based on the publishError event type (eventType). Here’s an example
of how the custom error message flow works with publishError MUTE_TOGGLE event type.

1. The agent mutes the call.

2. Salesforce passes this information to the Connector API (vendorConnector), which in turn passes the information to your
telephony provider.

3. The Connector API responds.

4. If the error is of type CustomError, Salesforce displays a custom error message. Otherwise, the default error string for
ERROR_TYPE.CAN_NOT_MUTE_ALL is displayed.

50

Customize Error MessagesCustomize Your Implementation

https://github.com/salesforce/scv-connector-base/blob/master/src/main/baseConnector.js

Here’s a sample, taken from the baseConnector.js file in GitHub.

} catch (e) {
if (e instanceof CustomError) {
dispatchCustomError(e, constants.MESSAGE_TYPE.MUTE);

} else {
dispatchError(constants.ERROR_TYPE.CAN_NOT_MUTE_CALL, e, constants.MESSAGE_TYPE.MUTE);

}
}

After you create a custom error message, whenever you invoke an API, a promise object is returned. If the promise resolves to a failure,
Salesforce looks for a CustomError object to the promise response. If a CustomError object exists in the response, Salesforce displays the
custom error. Otherwise, the default error message is displayed.

Note: If a CustomError object exists in the promise response but Salesforce can’t find the labelName, the following message
appears, and Salesforce doesn’t fall back to the generic error message, “We couldn’t find [namespace.customErrorLabel].”

Whenever you create a custom error message, perform a test to ensure the message appears when the appropriate telephony action
or event fails. Perform the test through the Errors section of your demo connector phone simulator. You can find out more about the
Errors section in the remote.html file of the demo connector in GitHub:

<div class="slds-checkbox">
<input type="checkbox" name="options" id="throwErrorCheckbox"></input>
<label class="slds-checkbox__label" for="throwErrorCheckbox">

Display an error
</label>

</div>

Create Custom Error Messages
There are two ways to create custom error messages:

• Create the custom labels for the error messages through the UI by following the steps in the Custom Labels page.

• Create the custom labels for the error messages yourself, distribute them in a managed package to AppExchange, and finally deploy
the managed package in your org. See the CustomError Connector API object for more information.

After you create a custom error message, perform a test to ensure the message appears when the appropriate telephony action or event
fails.

Test Custom Error Messages
You can only test one custom error message at a time. Repeat these steps for each custom error message you want to test.

To test the custom error messages you configured:

1. In the Errors section of your demo connector phone simulator, select Display on error to display the message during the simulation.

2. In the text box, enter the custom label you want to test. The custom label must be in the format <namespace>.<labelName>,
where namespace is the name of the Salesforce org’s namespace prefix, and labelName is the name of the custom label in your org.
If you don’t have a namespace, set the value to c. For example, c.cannotMuteLabel.

3. Simulate the telephony action or event in the Omni-Channel utility and view the error message to make sure the customized version
appears.

51

Customize Error MessagesCustomize Your Implementation

https://github.com/salesforce/scv-connector-base/blob/master/src/main/baseConnector.js
https://github.com/salesforce-misc/byo-demo-connector/blob/main/public/remote.html
https://help.salesforce.com/s/articleView?id=sf.cl_about.htm&language=en_US

4. Deselect Display or error after you're done testing your custom error messages.

SEE ALSO:

Salesforce Help: Custom Labels

Service Cloud Connector API Reference: publishError

Service Cloud Connector API Reference: customError

Create and Deploy Your Package

Test Your Implementation with the Voice Call Simulator

Communicating with Lightning Components

If you set up Service Cloud Voice with Partner Telephony, you must enable communication between the Lightning components and
your telephony system. You can do this by creating a Lightning Message Service (LMS) bridge and/or configuring the Service Cloud
Voice Toolkit APIs.

The Lightning Message Service bridge lets you:

• Send messages to the connector and receive messages from the connector at any time.

• Send custom messages between the telephony system and components on the page.

The Service Cloud Voice Toolkit API lets you:

• Receive telephony events, including start, end, and mute call events.

• Take advantage of a predefined set of Voice-related messages, such as CALL_STARTED, CALL_CONNECTED, and PAUSE_RECORDING.

We recommend using the LMS Bridge for communication between the Omni-Channel softphone and your components because it’s
more secure and flexible. However, you may choose to use the Service Cloud Voice Toolkit API instead because of its simplicity.

Use the Lightning Message Service Bridge

Use the Lightning Message Service Bridge component to enable communication between the telephony system and other Lightning
components.

Use the Service Cloud Voice Toolkit API

Configure the Service Cloud Voice Toolkit APIs to listen to telephony events and perform telephony actions.

Use the Lightning Message Service Bridge
Use the Lightning Message Service Bridge component to enable communication between the telephony system and other Lightning
components.

To use the Lightning Message Service (LMS) channel in your contact center, create a Lightning component using Aura or a Lightning
Web Component that serves as the bridge component. This component supports communication between the connector and other
Lightning components on the page.

Using Aura
• It must implement the Aura interface service_cloud_voice:messageBridge.

• It must reference the LMS channel you defined with namespace.

• It must implement the publishMessage method to publish connector messages to the channel.

52

Communicating with Lightning ComponentsCustomize Your Implementation

https://help.salesforce.com/s/articleView?id=sf.cl_about.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_base_publisherror.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_customerror.hm
https://developer.salesforce.com/docs/component-library/documentation/en/lwc
https://developer.salesforce.com/docs/component-library/documentation/en/lwc

• It must call the handleMessage Action handler to send messages to the connector.

• It must not have any UI markups.

.cmp example:

<aura:component implements="service_cloud_voice:messageBridge">
<lightning:messageChannel type="{your_namespace}__{LMS_channel_name}__c"

aura:id="sampleMessageChannel" onMessage="{!c.handleMessage}"/>
</aura:component>

Controller.js sample:

({
publishMessage : function(component, event, helper) {

var message = event.getParam('arguments').message;
component.find('sampleMessageChannel').publish({ source : 'CONNECTOR',

payload:message});
},

handleMessage: function(cmp, message, helper) {
var messageWrapper = message.getParams();
if(messageWrapper.source != 'CONNECTOR') {

cmp.get("v.handleMessage")(messageWrapper.payload);
}

}
})

Using Lightning Web Components (LWC)
• There’s no interface equivalent in LWC.

• It must reference the LMS channel you defined without a namespace.

• It must expose the publishMessage API to publish messages to the channel.

• It must expose a handleMessage attribute and use that as a callback to send messages to the connector.

• It must not have any UI markups.

.js example:

import { LightningElement, track, wire, api } from 'lwc';
import { publish, subscribe, APPLICATION_SCOPE, MessageContext } from
'lightning/messageService';
import SAMPLEMC from "@salesforce/messageChannel/{LMS_channel_name}__c";

export default class Lms_LWC extends LightningElement {
@wire(MessageContext)
messageContext;

@api handleMessage;

constructor() {
super();

}

connectedCallback() {
subscribe(this.messageContext,

53

Use the Lightning Message Service BridgeCustomize Your Implementation

https://developer.salesforce.com/docs/atlas.en-us.254.0.lightning.meta/lightning/ref_attr_types_aura_action.htm
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reactivity_public

SAMPLEMC,
(message) => {

if(message.source != 'CONNECTOR'){
this.handleMessage(message.payload);

}
},
{scope: APPLICATION_SCOPE}

);
}

@api
publishMessage(message) {

publish(this.messageContext, SAMPLEMC, { source : 'CONNECTOR', payload:message});

}
}

Note:

• To avoid echo, a source property is inserted during message publishing. When a message from the connector is published to
the channel, it’s filtered out and not sent back. The source property may not be needed if the communication is one-way.

• The connector starts receiving messages sent from the message bridge after the connector is fully initialized.

Configure the Contact Center to Use the Message Bridge Component
After creating the component, configure the contact center to use it.

Using the ConversationVendorInfo setup entity (for Production): In a production environment, specify the message bridge
component’s fully qualified name in the ConversationVendorInfo record from the same managed package that has the actual Lightning
component. When a Salesforce admin imports an XML file to create a contact center, it references the ConversationVendorInfo to read
the message bridge component name and configure the contact center custom settings automatically.

Using CallCenter Metadata API (for Local Testing): Add the message bridge component FQN to the contact center’s custom settings
for testing. This can be done using theCallCenter Metadata type. Set the messageBridgeComponentFqn value in the Metadata file
to the fully qualified name of your bridge component. For an example:

<?xml version="1.0" encoding="UTF-8"?>
<CallCenter xmlns="http://soap.sforce.com/2006/04/metadata">
...

<customSettings>{"messageBridgeComponentFqn":"xtelephony:lwcBridge","reqTimeout":"5000","reqCallCenterType":"SCVBYOT",*scvVendorLoginUrl":"https://YOUR_SERVER_LOGIN_URL"*,"reqStandbyUrl":"https://domain:port/softphone","reqSoftphoneHeight":"300","reqUseApi":"true","reqSoftphoneWidth":"500","reqSalesforceCompatibilityMode":"Lightning"}</customSettings>
...
</CallCenter>

Test Your Bridge Component
You can test the bridge component using the Messages section of the Voice Call Simulator. To learn more, see Test Your Implementation
with the Voice Call Simulator on page 34.

Limitations
See Lightning Message Service Limitations.

54

Use the Lightning Message Service BridgeCustomize Your Implementation

https://developer.salesforce.com/docs/atlas.en-us.254.0.api_meta.meta/api_meta/meta_callcenter.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.lightning.meta/lightning/message_channel_considerations.htm

Use the Service Cloud Voice Toolkit API
Configure the Service Cloud Voice Toolkit APIs to listen to telephony events and perform telephony actions.

To learn more about the Service Cloud Voice Toolkit API, see the Toolkit API documentation in the Service Cloud Voice Implementation
Guide. The following examples in GitHub show a Lightning Web Component and an Aura component that can subscribe to and handle
call events (such as CALL_STARTED, CALL_CONNECTED).

Note: Components (such as the Lightning Message Bridge) that implement the lightning:backgroundUtilityItem
interface aren’t supported locations for the Service Cloud Voice Toolkit API. Use this API in a component that resides on a page, or
resides in a visible utility bar component.

SEE ALSO:

Service Cloud Voice Implementation Guide: Toolkit API

55

Use the Service Cloud Voice Toolkit APICustomize Your Implementation

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_lc_toolkit_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_lc_toolkit_overview.htm
https://github.com/service-cloud-voice/examples-from-doc/tree/main/ToolkitAPI
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_pt_developer_guide.meta/voice_pt_developer_guide/voice_pt_advanced_use_lightning_bridge.htm
https://developer.salesforce.com/docs/component-library/bundle/lightning:backgroundUtilityItem/documentation
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_lc_toolkit_overview.htm

CHAPTER 9 Start Calls

This section provides guidelines related to starting calls.In this chapter ...

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice

• Accept Inbound Calls
in Omni-Channel

Implementation Guide or Salesforce Help. To update your solution to include Bring Your Own• Integrate Incoming
Voice Call Creation Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own

Channel Developer Guide.• Record Linking

• Queued Callbacks

• Let Agents Control
the Callback
Experience

• Outbound Dialers
with Service Cloud
Voice for Partner
Telephony

• Enable the Phone
Book for Outbound
Calls

• Set the Voice Call
Record Type

• Send Voicemails to
Agents

• Hide Call Controls

56

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html

Accept Inbound Calls in Omni-Channel

Now that you’ve added support for inbound calls, open the Voice Call Simulator and click New Inbound Call.

For details, see Test Your Implementation with the Voice Call Simulator on page 34.

The call appears in the Omni-Channel utility.

To accept the call, click the checkmark. You can mute, unmute, transfer, and end the call. Salesforce opens the VoiceCall record that is
created.

57

Accept Inbound Calls in Omni-ChannelStart Calls

Integrate Incoming Voice Call Creation

For inbound calls, when the telephony system receives the incoming call and prepares to route the call to an agent, the telephony
system can invoke Service Cloud Voice REST APIs to create the essential Voice Call record to represent the conversation.

You can use following REST endpoint: https://{org_domain_name}.my.salesforce-scrt.com/telephony/v1.
For org_domain_name, specify the value as defined in Set Up Single Sign-On on page 40.

The Service Cloud Voice REST APIs use JWT for authorization.

• Salesforce requires that a JWT is signed using RSA SHA256, which uses an uploaded certificate as the signing secret.

• As part of your contact center setup, ensure that the call center has been updated with the certificate you generated in Generate a
Self-Signed Certificate with OpenSSL on page 16. The generated private key is used to sign the JWT bearer token payload.

• Store the private key so you can retrieve it whenever you generate a JWT token.

• The public key is saved in the call center information, whereas the private key is saved on the telephony provider side to sign the
JWT bearer token. Ideally, the private key is never exposed on the network and stays on the server where it was generated.

For instructions on setting up authorization, see Telephony Integration REST API Authorization.

Once you have authorization set up, call the Create VoiceCall REST API. Use the callAttributes parameter to ingest Interactive
Voice Response (IVR) data into a VoiceCall record.

SEE ALSO:

Service Cloud Voice Implementation Guide: Telephony Integration REST API Authorization

Service Cloud Voice Implementation Guide: Create VoiceCall

58

Integrate Incoming Voice Call CreationStart Calls

https://jwt.io/
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_authorization.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_authorization.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm

Record Linking

Use record linking to associate a voice call with other related records.

Related Records
Add the Voice Call related list to a Lightning record page to show a list of calls associated with a record. For example, add the list to your
Case record page, so agents can see a case's associated calls and learn about the customer's interactions with your company.

1. From the Object Manager in Setup, select the object that you want to add the Voice Call related list to. For example, to add the Voice
Call related list to a Case page layout, select Case.

2. Select Lightning Record Pages .

3. Select the page that you want to modify, then click Edit.

4. Drag the Related List - Single component to the page layout.

5. In the Related List menu, select Voice Calls.

6. Save your changes.

Object Linking
When an agent accepts a call in the workspace, prompt them to choose from recommended records, search for a record, or add a new
one.

1. From Setup, enter Channel-Object in the Quick Find box, then select Channel-Object Linking.

2. Click New Linking Rule.

3. Select the Phone channel and the object to link to (such as Contact).

4. Create a rule name and description.

5. Set rule actions for Action for No Record Found and Action for Single Record Found. For example, if no matches are found for a
contact, include a rule to automatically create and link a record, or prompt the agent to search for or create a record. If a single
matching record is found, set a rule to automatically link the record. Alternatively, prompt the agent to pick the suggested record,
search for a record, or create a record.

6. Save your work.

7. After completing the Phone setup, add the Object-Linking Notifications background utility in the App Manager. This utility displays
toast messages in the console that prompt the agent to link a suggested record or add a new one.

8. From Setup, enter App Manager in the Quick Find box, then select App Manager.

9. Click Edit in the action menu for your app.

10. Click Utility Items (Desktop Only) | Add Utility Items | Object-Linking Notifications.

11. Save your work.

Using Flow for Record Linking
Flow builder can also be used to link a case or contact to a voice call.

1. From Setup, enter Flow in the Quick Find box, then select Flows from Process Automations.

59

Record LinkingStart Calls

2. Use the logic and data elements from the flow builder to trigger events such as opening cases associated with a voice call or opening
a contact associated with a voice call.

SEE ALSO:

Salesforce Help: Channel-Object Linking

Queued Callbacks

When a customer makes an inbound call, the telephony system first creates a voice call and then routes the call to the available agent.
If no agent is available and the customer requests a callback, you must publish a QUEUED_CALLBACK_STARTED event.

Call the Service Cloud Connector API publishEvent() method with a Call payload having callType of callback and an
original inbound call ID as initialCallId to link it with the new callback voice call.

On the QUEUED_CALLBACK_STARTED event, a new conversation and Voice Call record are created and the agent work is created.

// Create phone call object
const call = new PhoneCall({

callId: vendorCallKey,
phoneNumber : '{CallBack number}',
callInfo : { initialCallId: previousVendorCallKey},
callType: Constants.CALL_TYPE.CALLBACK.toLowerCase()/*'callback'*/,
contact: new Contact({ phoneNumber }),
callAttributes: { participantType: Constants.PARTICIPANT_TYPE.INITIAL_CALLER

} });

// Publish the event
publishEvent({ eventType: Constants.VOICE_EVENT_TYPE.QUEUED_CALL_STARTED, payload: new
CallResult({ call })});

Note: initialCallId is not a mandatory field. If you do not have a initial inbound call before a callback request, you can skip it.

For example, suppose that a customer makes an inbound call and the connecter creates a VoiceCall VC1. If no agents are available, the
IVR asks the customer if they want a callback. If a customer asks for a callback, then the telephony system can queue a callback after an
initial delay (in which the callback is initiated as soon as an agent is available) or a callback is scheduled for a customer on a particular
date.

A callback can also be requested from a particular agent. The telephony system creates a new voice call VC2 and the connector sends
a QUEUED_CALL_STARTED event as per agent availability and routing rules along with callback phone number and VC1 as the
initialCallId. The callBack is displayed in Omni-Channel as shown in the following screenshot. When an agent accepts the call,
an outbound call is triggered to the given phone number and the previousCall field on the VC2 becomes VC1 and next call on
VC1 becomes VC2 in the Voice Call details.

Here are some scenarios where a callback request is accepted but fails to connect with the customer.

60

Queued CallbacksStart Calls

https://help.salesforce.com/articleView?id=sf.channel_object_linking_parent.htm&language=en_US

Callback acceptance and outbound call dialing:

61

Queued CallbacksStart Calls

If an agent declines the call or the call times out, the telephony system can try to connect to another available agent with the same VC2.

SEE ALSO:

Service Cloud Connector API Reference

Service Cloud Connector API Reference: publishEvent

Service Cloud Connector API Reference: CallResult

Service Cloud Connector API Reference: PhoneCall

Let Agents Control the Callback Experience

Let Agents Control the Callback Experience

Customize the way agents handle callbacks.

By default with queued callbacks, when an agent accepts a callback request, the Omni-Channel utility automatically dials the callback
number and the call is immediately active.

To give agents more control, configure the callback feature so agents can decide how the call is handled when they accept a callback
request. Agents can view the callback details with information about the customer’s request. Then they can transfer the callback request
to another agent, initiate a callback through click-to-dial with the listed preferred phone number, or contact the end user at another
phone number.

Available in API version 60.0 and later for Service Cloud Voice with Partner Telephony.

Prerequisites:

62

Let Agents Control the Callback ExperienceStart Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_base_publishevent.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_callresult.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_phonecall.hm

Enable the option so that customers can create callback requests.

To allow click-to-dial callbacks or transfers from Contact Requests, follow these steps.

1. When a customer submits a contact request to request a callback, the partner creates a ContactRequest record and an associated
AgentWork record. The ContactRequest has the IsCallback field set to true.

2. An agent gets assigned the agentWork record through the Omni-Channel widget and accepts the work.

3. The agent can review the details of the contact request and determine their next steps.

• If the agent is ready, they call the customer by using click-to-dial from one of the options on the Contact Request page. This
callback is handled through the ContactRequest object, and it creates an additional agentWork record. To ensure that click-to-dial
calls made through the content request are marked as callbacks rather than outbound calls, verify that
ContentRequest.IsCallback is true.

• If the agent prefers to transfer the contact request and its associated agentWork instead, the agent clicks Transfer on the
ContactRequest record page. The partner must send Salesforce the TRANSFER_CALLBACK_REQUEST Connector event
to open the Phone transfer view in the Omni-Channel utility. When the agent identifies who they want to transfer the call to
and selects Transfer, Salesforce sends an add_participant event to the partner with isBlindTransfer=true.

4. The partner listens for the AgentWorkClosed event to release the agent’s capacity so that they can receive the next call.

SEE ALSO:

Queued Callbacks

Object Reference for the Salesforce Platform: ContactRequest

Salesforce Help: Return a Callback Request

Outbound Dialers with Service Cloud Voice for Partner Telephony

You can use a preview dialer or a progressive dialer with Service Cloud Voice for Partner Telephony.

Preview (Push) Dialer
Note: The PREVIEW_CALL_STARTED Connector API call is no longer supported starting with the Winter '23 release.

To use a preview dialer, create a preview dialer Lightning component and then use the startPreviewCall method in the Aura-based
Toolkit API to initiate outbound calls. Calling this method ensures that the VoiceCall record has the CallType field set to Outbound
and the CallOrigin field set to Preview. See the Sample Aura Component in GitHub.

Progressive Dialer
A progressive dialer works similarly to inbound calls. The vendor telephony system dials the customer without notifying the agent. After
the customer picks up the call, the vendor follows the inbound call flow (that is, create a Voice Call, send CALL_STARTED, accept or
decline).

63

Outbound Dialers with Service Cloud Voice for Partner
Telephony

Start Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_contactrequest.htm
https://help.salesforce.com/s/articleView?id=sf.voice_return_callbacks.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_lc_toolkit_aura_telephony_actions.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_lc_toolkit_aura_telephony_actions.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_voicecall.htm
https://github.com/service-cloud-voice/examples-from-doc/tree/main/ToolkitAPI/SampleAuraComponent

Enable the Phone Book for Outbound Calls

Enable the phone book so agents can use their speed-dial list to make agent-to-agent and agent-to-queue calls. When the phone book
is enabled, an agent can view a list of agents and queues in the Omni-Channel utility and place a call to the destination agent. For
agent-to-queue calls, an agent selects the queue from the phone book, which determines which agent to contact.

This feature leverages the Service Cloud Connector API getPhoneContacts() function to get the list of phone contacts and contact types
that appear in the Omni-Channel utility.

This feature applies to the following telephony model:

• Service Cloud Voice with Partner Telephony

Enable the Phone Book
Perform the following steps using the Connector API to enable the phone book feature.

1. When implementing getCapabilities(), set the value of hasPhoneBook in CapabilitiesResult to true.

2. When implementing dial(), set the appropriate callType for the agent and queue contact types. For example, if contact
type is 'agent', set callType to InternalCall, which represents a call made between agents within a contact center. In our demo
implementation of dial(), contact type ‘agent’ is set to callType InternalCall, and contact type ‘queue’ is set to
callType Outbound.

3. To ensure internalCall works seamlessly, make sure the Salesforce administrator configures support for agent-to-agent calls
at the org level by selecting the Voice Call (VoiceCall) Change Data Capture entity.

4. When an agent makes a phone book InternalCall, the agent’s participantType should be Initial_Caller, and the
receiving agent’s participantType should be Agent in your CallResult. See the demo implementation of dial()
for an example.

5. To ensure the agents’ respective names appear in voice call transcripts, make sure the participantId appears in the transcripts. See
the Create a Transcript API for more information.

6. When two agents share the same voice call record for callType InternalCall, the first agent (Agent 1) is a standard user
with restricted access to the VoiceCall object, while the second agent (Agent 2) becomes the owner of the VoiceCall record. This
might cause Agent 1 to lose access to the VoiceCall record. To ensure Agent 1 can access the VoiceCall record, create sharing rules
based on group membership by adding all agents who use the phone book feature as members of a Salesforce group that has “Read
Only” access created for that group.

Test the Phone Book
1. In the Capabilities section of your Service Cloud Voice (demo connector) phone simulator, select Support Phone Book. You can

also find the hasPhoneBook capability listed in the baseConnector.js demo connector file in GithHub.

2. In the Omni-Channel utility, click the phone book icon (person avatar) just to the right of the phone number field.

3. Verify the directory of agent and queue contacts appears.

Note: If two agents are on a phone book InternalCall and one of the agents transfers the call to a third agent, the new
VoiceCall record created for the third agent will be callType Transfer.

SEE ALSO:

Service Cloud Connector API Reference

Salesforce Help Configure the Phone Book for Outbound Calls

64

Enable the Phone Book for Outbound CallsStart Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_voicecall.htm
https://github.com/salesforce-misc/byo-demo-connector/blob/main/public/remote.html
https://github.com/salesforce/scv-connector-base/blob/master/src/main/baseConnector.js
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://help.salesforce.com/s/articleView?id=sf.voice_phone_book.htm&language=en_US

Set the Voice Call Record Type

Customize the page layout of a voice call record.

The record type determines the page layout of a voice call record. Configure your system to automatically set the record type when you
create the voice call record by passing in “RecordTypeId”:”RECORD_TYPE” inside the callAttributes parameter, where
RECORD_TYPE is the unique identifier for the voice call record type. For example, {"callAttributes":
"{\"RecordTypeId\": \"012300000012BYNQAG\"}"}.

After a voice call record is set, agents can manually change its record type through the Salesforce Lightning Experience UI.

SEE ALSO:

Service Cloud Voice Implementation Guide: Create a Voice Call Record

Salesforce Object Reference for the Salesforce Platform: VoiceCall

Send Voicemails to Agents

Let customers send your agents voicemails that agents can review along with a transcription.

When your customer chooses to leave a voicemail through your telephony system, use the Telephony API to create or update a VoiceCall
record. When calling the API, set the callOrigin parameter to Voicemail. See Create a Voice Call Record and Update a Voice
Call Record in the Telephony API documentation. This call record can contain both the recording and the transcription.

Note: When a voicemail is routed to an agent, if the transcription is still being processed in Salesforce, it may not show up when
the agent accepts the voicemail. If that’s the case, the agent can refresh the page to see the transcription when it’s ready.

Setup for Routing Voicemails
Voicemails are routed through Omni-Channel using an Omni-Channel flow. An admin can create a flow that routes voicemails to a
particular queue. You can create a queue in setup and add a routing configuration to the queue (by using a routing other than External
Routing).

You can also define a single flow that routes both voice calls and voicemails, and then branch your routing by using the callOrigin
field of the VoiceCall record.

Voicemail routing can be defined for any inbound phone number in the contact center channels section.

65

Set the Voice Call Record TypeStart Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_voicecall.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_update.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_update.htm

Sample Sequence of Operations
1. The customer calls the Contact Center number.

2. The partner system creates a VoiceCall using the Create a Voice Call Record Telephony API.

3. If no agents are available, the customer chooses to leave a voicemail.

4. The customer records a voice message.

5. The partner system updates the VoiceCall using the Update a Voice Call Record Telephony API. With this API call, isActiveCall
is set to true to ensure that the conversation isn’t closed, as we have more updates ahead. Also, callOrigin is set to
"Voicemail" to ensure that the call is tagged as a voicemail message. (Alternatively, the partner can set the callOrigin
when creating the call earlier if they know this information when the call record is first created.)

6. The partner system creates a transcription using the Create a Transcript Telephony API.

7. The partner system executes an Omni-Channel Flow using the Telephony API. With this API, the dialedNumber parameter
contains the routing configuration that is defined in the Contact Center details page. (Make sure that callOrigin is updated
to "Voicemail" before this API call so that the flow picks the voicemail routing instructions.)

8. The partner system does a final update (using the Update a Voice Call Record Telephony API) so that the conversation is completed
by setting isActiveCall to false, along with the recording details.

Example Code
For a complete example implementation, see the demo connector code.

A sample REST call to the Telephony API that includes the callOrigin parameter when creating a VoiceCall record:

POST /telephony/v1/voiceCalls

{

66

Send Voicemails to AgentsStart Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_update.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_transcript.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_omniflow_execute.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_update.htm
https://github.com/salesforce-misc/byo-demo-connector/blob/main/src/server/scrtConnector.mjs
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm

"callCenterApiName": "MyContactCenter",
"vendorCallKey": "5324881f-1e84-4367-8930-f69a74b30fff",
"to": "999999999",
"from": "999999999",
"initiationMethod": "Inbound",
"callOrigin": "Voicemail",
"startTime": "2022-08-02T17:32:28Z",
"participants": [
{
"participantKey": "999999999",
"type" : "END_USER"

}
]

}

Hide Call Controls

You can hide many of the call control buttons that appear to the agent in the Omni-Channel widget. These buttons can be hidden or
shown for each call. By default, buttons are visible.

These buttons can be hidden from view.

• Mute

• Record (or Recording)

• Add Caller

• Blind Transfer

• Merge

67

Hide Call ControlsStart Calls

• Swap

The keypad is always displayed.

To hide a button, specify false for the show method in the CallInfo object. For instance, use showAddCallerButton to
hide or show the add caller button. The CallInfo object is used by the PhoneCall object for methods such as acceptCall.

SEE ALSO:

Service Cloud Connector API Reference

68

Hide Call ControlsStart Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm

CHAPTER 10 During Call Actions

This section provides guidelines about actions you can take during a call.In this chapter ...

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice

• Associate Partner
Telephony Users and
Groups with Queues Implementation Guide or Salesforce Help. To update your solution to include Bring Your Own

Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own
Channel Developer Guide.

• Change Status While
on a Call

• Transcribe Calls in
Real Time

• Send Real-Time
Signals

• Supervisor Listen In
or Barge In with
Service Cloud Voice
for Partner Telephony

• Send Additional Call
Information

69

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html

Associate Partner Telephony Users and Groups with Queues

Set up queue management to associate partner telephony users and groups with Service Cloud Voice queues.

Overview
We enhanced the Queue Management behavior so that it’s easy for partners and their customers to associate users and groups to an
associated Voice queue.

To use this feature, implement these Apex interfaces from the service_cloud_voice namespace.

• QueueManager. This class describes whether Service Cloud Voice supports queue management. It contains this method.

– supportsQueueUserGrouping. Indicates whether your implementation supports the queue user grouping feature.

• QueueSetup. This class performs all the work so that your partner telephony implementation stays in sync with Salesforce. It
contains these methods.

– listQueues. Lists all existing queues.

– createQueue. Creates a queue.

– removeQueue. Removes an existing queue.

– associateUsersAndGroupsWithQueue. Associates partner telephony users and groups with a Service Cloud Voice
queue.

• GroupSetup. This class performs all the work so that your implementation stays in sync with Salesforce. It contains the following
methods.

– listGroups. Lists all the existing groups.

– createGroup. Creates a group.

– associateUsersWithGroup. Associates users with a group.

The sample code describes how to implement these methods.

Set Up Queue Management for Partner Telephony
To enable the BYOT queue management feature, follow these instructions.

1. Contact your Salesforce representative to opt-in to this feature and turn on the org permission.

2. When your org permission is enabled, visit Partner Telephony in Setup and turn on Update Partner Telephony Queues and
Groups.

70

Associate Partner Telephony Users and Groups with QueuesDuring Call Actions

3. When the vendor imports the ConversationVendorInfo record, they must set the following fields.

• CapabilitiesSupportsQueueManagement. Set this value to true.

• IntegrationClassId. This value contains the ID of Apex implementation class. For example, 01pxx000000wxyzABC.

You must follow all these instructions. Otherwise, the new feature isn’t available and Salesforce falls back to no syncing behavior.

In addition to these instructions, customers still have to implement the Apex class using the sample code in the next section. Customers
must specify the IntegrationClassId field in the ConversationVendorInfo record shown in the screenshot. If this
value isn’t set, an error message appears when trying to set up queue mapping.

Implement the Apex Class
Implement the Apex class using the sample code. Specify the class ID in the IntegrationClassId field of the
ConversationVendorInfo record. If this value isn’t set, an error message appears when trying to set up a queue mapping.

This code block contains a sample implementation of all interface methods. To interact with your queues, update the “TO DO” comments
with your own implementation.

/**
* Sample code that implements QueueManager, QueueSetup, and GroupSetup in order to handle
* queue and group management requests.
*/
public class PartnerQueueManagementSampleClass implements service_cloud_voice.QueueManager,

service_cloud_voice.QueueSetup, service_cloud_voice.GroupSetup {

/** ========== Sample code for methods defined in interface QueueManager ========== */

/**
* @description Returns whether the contact center supports user grouping.
* (Implementation for QueueManager.)
* @param contactCenterInfo Info about the contact center.
* @return QueueUserGroupingResponse Response containing whether the queue

71

Associate Partner Telephony Users and Groups with QueuesDuring Call Actions

* supports user grouping.
*/
public service_cloud_voice.QueueUserGroupingResponse

supportsQueueUserGrouping(service_cloud_voice.ContactCenterInfo contactCenterInfo) {
// Grab information from the request
String contactCenterId = contactCenterInfo.getContactCenterId();

// Returns whether contact center supports user grouping.
// * @param boolean Indicates whether the method execution was successful.
// * @param String Contains any error info that occurred during the
// * method execution.
// * @param boolean Indicate if user grouping is supported.
return new service_cloud_voice.QueueUserGroupingResponse(true, null, false);

}

/** ========== Sample code for methods defined in interface QueueSetup ========== */

/**
* @description Gets the list of queues. (Implementation for QueueSetup.)
* @param queueListRequest Request containing information about retrieving queue list.

* @return ListQueuesResponse Response containing the desired queues.
*/
public service_cloud_voice.ListQueuesResponse

listQueues(service_cloud_voice.ListQueuesRequest queueListRequest) {

// TO DO: Call vendor's list queue API to retrieve the vendor queue list.
// The code below creates a dummy queue list.
Map<String, String> queues = new Map<String, String>
{'CustomerSupport' => 'External Customer Support',
'ITSupport' => 'External IT Support',
'FinancialSupport' => 'External Financial Support',
'TechSupport' => 'External Tech Support'};

// Returns the list of queues (for a successful response).
// * @param boolean Indicates whether the method execution was successful.
// * @param Map<String, String> Map of queues with queueKey <=> queue label pairs.

// * @param String Contains any customer error message that occurred during the
// * method execution.
return new service_cloud_voice.ListQueuesResponse(true, queues, null);

// ERROR HANDLING
// If an error occurs, you can return the error by passing false
// in the response with an error message.
//
// Error Example (false response):
// return new service_cloud_voice.ListQueuesResponse(false,
// null, '<customized error message on expected error>');

}

72

Associate Partner Telephony Users and Groups with QueuesDuring Call Actions

/**
* @description Creates a queue. (Implementation for QueueSetup.)
* @param createQueueRequest Request containing information about creating a new queue.

* @return CreateQueueResponse Response containing the new queue (or an error).
*/
public service_cloud_voice.CreateQueueResponse

createQueue(service_cloud_voice.CreateQueueRequest createQueueRequest) {

// Grab information from the request
String contactCenterId =

createQueueRequest.getContactCenterInfo().getContactCenterId();
String queueName = createQueueRequest.getQueueName();

// TO DO: Call vendor's create queue API to create a new vendor queue and return
its id.

// The code below creates a dummy new queue ID.
String queueId = 'TechSupport';

// Returns the new queue ID (for a successful response).
// * @param boolean Indicates whether the method execution was successful.
// * @param String ID of the new queue.
// * @param String Contains any error that occurred during the method execution.
return new service_cloud_voice.CreateQueueResponse(true, queueId, null);

// ERROR HANDLING
// If an error occurs, you can return the error by passing false
// in the response with an error message.
//
// Error Example (false response):
// return new service_cloud_voice.CreateQueueRequest(false,
// null, '<customized error message on expected error>');

}

/**
* @description Removes an existing queue. (Implementation for QueueSetup.)
* @param removeQueueRequest Request containing information about queue removal.
* @return RemoveQueueResponse Response containing the queue removal information.
*/
public service_cloud_voice.RemoveQueueResponse

removeQueue(service_cloud_voice.RemoveQueueRequest removeQueueRequest) {

// Grab information from the request
String contactCenterId =

removeQueueRequest.getContactCenterInfo().getContactCenterId();
String queueId = removeQueueRequest.getQueueId();

// TO DO: Call vendor's remove queue API to remove the existing vendor queue.

73

Associate Partner Telephony Users and Groups with QueuesDuring Call Actions

// Returns the status of the removed queue (for a successful response).
// * @param boolean Indicates whether the method execution was successful.
// * @param String Contains any error info that occurred during the
// * method execution.
return new service_cloud_voice.RemoveQueueResponse(true, null);

// ERROR HANDLING
// If an error occurs, you can return the error by passing false
// in the response with an error message.
//
// Error Example (false response):
// return new service_cloud_voice.RemoveQueueResponse(false,
// null, '<customized error message on expected error>');

}

/**
* @description Associates users and groups with a queue.
* @param associateUsersAndGroupsWithQueueRequest Request containing
* information about the users and groups.
* @return SyncUsersAndGroupsWithQueueResponse Response containing the result.
*/
public service_cloud_voice.SyncUsersAndGroupsWithQueueResponse

associateUsersAndGroupsWithQueue(service_cloud_voice.SyncUsersAndGroupsWithQueueRequest
associateUsersAndGroupsWithQueueRequest) {

// Grab information from the request
String contactCenterId =

associateUsersAndGroupsWithQueueRequest.getContactCenterInfo().getContactCenterId();
String queueId =

associateUsersAndGroupsWithQueueRequest.getQueueId();
List<service_cloud_voice.UserInfo> userInfoList =

associateUsersAndGroupsWithQueueRequest.getUserInfoList();
List<service_cloud_voice.GroupInfo> groupInfoList =

associateUsersAndGroupsWithQueueRequest.getGroupInfoList();

// TO DO: Call vendor's sync users and groups with queue API to add users and groups
to

// the existing vendor queue.

// Returns the status of the association (for a successful response).
// * @param boolean Indicates whether the method execution was successful.
// * @param String Contains any error info that occurred during the
// * method execution.
return new service_cloud_voice.SyncUsersAndGroupsWithQueueResponse(true, null);

// ERROR HANDLING
// If an error occurs, you can return the error by passing false
// in the response with an error message.
//

74

Associate Partner Telephony Users and Groups with QueuesDuring Call Actions

// Error Example (false response):
// return new service_cloud_voice.SyncUsersAndGroupsWithQueueResponse(false,
// null, '<customized error message on expected error>');

}

/** ========== Sample code for methods defined in interface GroupSetup ========== */

/**
* @description Gets the list of groups. (Implementation for GroupSetup.)
* @param groupListRequest Request containing information about retrieving group list.

* @return ListGroupsResponse Response containing the desired groups.
*/
public service_cloud_voice.ListGroupsResponse

listGroups(service_cloud_voice.ListGroupsRequest groupListRequest) {

// TO DO: Call vendor's list group API to retrieve the vendor group list.
// The code below creates a dummy group list.
Map<String, String> groups = new Map<String, String>
{'CustomerSupportGroup' => 'External Customer Support Group',
'ITSupportGroup' => 'External IT Support Group',
'FinancialSupportGroup' => 'External Financial Support Group',
'TechSupportGroup' => 'External Tech Support Group'};

// Returns the list of groups (for a successful response).
// * @param boolean Indicates whether the method execution was successful.
// * @param Map<String, String> Map of groups with groupKey <=> group Label pairs
// * @param String Contains any customer error message that occurred during the
// * method execution.
return new service_cloud_voice.ListGroupsResponse(true, groups, null);

// ERROR HANDLING
// If an error occurs, you can return the error by passing false
// in the response with an error message.
//
// Error Example (false response):
// return new service_cloud_voice.ListGroupsResponse(false,
// null, '<customized error message on expected error>');
//

}

/**
* @description Creates a group. (Implementation for GroupSetup.)
* @param createGroupRequest Request containing information about creating a new group.

* @return CreateGroupResponse Response containing the new group (or an error).
*/
public service_cloud_voice.CreateGroupResponse

75

Associate Partner Telephony Users and Groups with QueuesDuring Call Actions

createGroup(service_cloud_voice.CreateGroupRequest createGroupRequest) {

// Grab information from the request
String contactCenterId =

createGroupRequest.getContactCenterInfo().getContactCenterId();
String groupName = createGroupRequest.getGroupName();

// TO DO: Call vendor's create group API to create a new vendor group and return
its id.

// The code below returns a dummy new group ID.
String groupId = 'TechSupportGroup';

// Returns the new group ID (for a successful response).
// * @param boolean Indicates whether the method execution was successful.
// * @param String ID of the new group.
// * @param String Contains any customer error message that occurred during the

method execution.
return new service_cloud_voice.CreateGroupResponse(true, groupId, null);

// ERROR HANDLING
// If an error occurs, you can return the error by passing false
// in the response with an error message.
//
// Error Example (false response):
// return new service_cloud_voice.CreateGroupResponse(false,
// null, '<customized error message on expected error>');
//

}

/**
* @description Associates users with a group.
* @param associateUsersWithGroup Request containing information about the users.
* @return SyncUsersWithGroupResponse Response containing the result.
*/
public service_cloud_voice.SyncUsersWithGroupResponse

associateUsersWithGroup(service_cloud_voice.SyncUsersWithGroupRequest
associateUsersWithGroupRequest) {

// Grab information from the request
String contactCenterId =

associateUsersWithGroupRequest.getContactCenterInfo().getContactCenterId();
String groupId =

associateUsersWithGroupRequest.getGroupId();
List<service_cloud_voice.UserInfo> addedUserInfoList =

associateUsersWithGroupRequest.getAddedUserInfoList();
List<service_cloud_voice.UserInfo> removedUserInfoList =

associateUsersWithGroupRequest.getRemovedUserInfoList();

// TO DO: Call vendor's sync users with group API to add users to the
// existing vendor group.

76

Associate Partner Telephony Users and Groups with QueuesDuring Call Actions

// Returns the status of the association (for a successful response).
// * @param boolean Indicates whether the method execution was successful.
// * @param String Contains any customer error message that occurred during the
// * method execution.
return new service_cloud_voice.SyncUsersWithGroupResponse(true, null);

// ERROR HANDLING
// If an error occurs, you can return the error by passing false
// in the response with an error message.
//
// Error Example (false response):
// return new service_cloud_voice.SyncUsersWithGroupResponse(false,
// null, '<customized error message on expected error>');
//

}
}

Change Status While on a Call

With the pending status change feature, agents can change their Omni-Channel status while on a call.

To use this feature, vendors should set the value of hasPendingStatusChange in CapabilitiesResult to true. After
Salesforce receives a value of true from the getCapabilities() method, the Omni-Channel status change button is enabled
for agents during a call.

Then, when setAgentStatus requests are made, Salesforce supports an additional parameter, enqueueNextState, and the
vendor can implement the enqueue status change feature to support this behavior.

SEE ALSO:

Service Cloud Connector API Reference

Transcribe Calls in Real Time

To see transcriptions in real time, add the Enhanced Conversation component to the Voice Call record page through the Lightning App
Builder. You can add this component for orgs that use Service Cloud Voice with Amazon Connect. For orgs that use Service Cloud Voice
with Partner Telephony, add this component only if your telephony provider supports transcription.

You can create and send transcripts for one voice call at a time or in bulk. To send transcripts for one voice call at a time, use the Create
Transcript API. To send transcripts in bulk, use the Create Transcripts in Bulk API. You can also use the Connect REST API to upload or
update transcripts.

The Create Transcript API and Create Transcripts in Bulk API use JWT authorization to communicate with Salesforce, so make sure to
send the transcribed messages with a valid JWT token.

You can also use the Connect REST API to upload or update transcripts.

Review the following information before you configure real-time transcription:

• Review the transcript-related limitations specified in the Service Cloud Voice Limits and Limitations page.

77

Change Status While on a CallDuring Call Actions

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm

• When specifying the vendorCallKey for a transferred call, use the vendorCallKey of the parentVoiceCall. That
is, use the vendorCallKey of the voice call (VoiceCall) record for the call with the original agent.

• During a conversation that involves a transfer, all calls in the conversation get transcripts from the entire call. After the call ends, the
transcript disappears from the conversation body component for a brief period while the post-call association takes place.

• The post-call association process is triggered by the conversation closed event. This process ensures that the transcript for each call
segment only includes the conversation during that time period. This process can take a few minutes.

SEE ALSO:

Service Cloud Voice Implementation Guide: Create a Transcript

Service Cloud Voice Implementation Guide: Create Transcripts in Bulk

Service Cloud Voice Implementation Guide: Upload or Update Transcripts with Connect REST API

Service Cloud Voice Implementation Guide: Increase Performance of the ContactLensProcessor Lambda Function

Salesforce Help: Service Cloud Voice Limits and Limitations

Send Real-Time Signals

Voice resiliency ensures that calls can still go through when the number of conversations is over limit or when the background service
is affected.

Add support for sending real-time signals so that Salesforce can ingest the signals from your partner telephony system.

Perform the steps in this document to support sending real-time signals, giving administrators the ability to set up intelligent signals
when they configure Conversation Intelligence rules. In the following steps, you will add support for sending real-time signals, implement
the IntelligenceServiceProvider Apex interface and related classes, and then create and deploy the managed package for distribution
to customers.

After the customer installs the managed package in their org, they can set the intelligence signal source and signal types when they
create a Conversation Intelligence rule.

To add support for sending real-time signals, follow these instructions.

1. When you import the ConversationVendorInfo record, set the CapabilitiesSupportsIntelligence field to true to enable the feature.

2. Using the following code blocks as guides, implement the service_cloud_voice.IntelligenceServiceProvider
Apex interface and related classes.

IntelligenceServiceProvider Apex Interface. Implement this interface to add support for sending real-time signals.

global interface IntelligenceServiceProvider {
/**
* This method is to get a map of supported intelligence services and corresponding

signal types
* @return IntelligenceServiceResponse
*/
IntelligenceServiceResponse

getSupportedIntelligenceServicesAndSignalTypes(IntelligenceServiceRequest
intelligenceServiceRequest);
}

78

Send Real-Time SignalsDuring Call Actions

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_transcript.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/�voice_rest_voicecalls_transcript_bulk.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_connect_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_pt_developer_guide.meta/voice_pt_developer_guide/voice_pt_transcribe_calls.htm
https://help.salesforce.com/s/articleView?id=sf.voice_limitations.htm&language=en_US

IntelligenceServiceRequest Apex Class. The following class definition represents the shape of the request payload that is needed for
the IntelligenceServiceResponse getSupportedIntelligenceServicesAndSignalTypes method.

global with sharing class IntelligenceServiceRequest {
private ContactCenterInfo contactCenterInfo;
/**
* Constructor for creating IntelligenceServiceRequest
* @param contactCenterInfo contact center info
*/
global IntelligenceServiceRequest(ContactCenterInfo contactCenterInfo) {
this.contactCenterInfo = contactCenterInfo;

}
global ContactCenterInfo getContactCenterInfo() {
return contactCenterInfo;

}
}

IntelligenceServiceResponse Apex Class. This class definition represents the shape of the response that is returned from the
IntelligenceServiceResponse getSupportedIntelligenceServicesAndSignalTypes method.

global with sharing class IntelligenceServiceResponse extends PartnerResponse {
private List<IntelligenceServiceAndSignalsInfo> intelligenceServiceAndSignalsInfos;
/**
* Constructor for creating IntelligenceServiceResponse
* @param intelligenceServiceInfos Map of supported intelligence services and

corresponding signal types
*/
global IntelligenceServiceResponse(boolean success, String errorMessage,

List<IntelligenceServiceAndSignalsInfo> intelligenceServiceAndSignalsInfos) {
super(success, errorMessage);
this.intelligenceServiceAndSignalsInfos = intelligenceServiceAndSignalsInfos;
}
/**
* @return supported intelligence services and corresponding signal types
*/

global List<IntelligenceServiceAndSignalsInfo> getIntelligenceServiceAndSignalsInfos()
{

return this.intelligenceServiceAndSignalsInfos;
}

}

IntelligenceServiceAndSignalsInfo Apex Class. This class definition represents an individual instance of an intelligence service along
with a list of the supported signal types. The IntelligenceServiceResponse class contains this class.

global with sharing class IntelligenceServiceAndSignalsInfo {
private String service;
private String masterLabel;
private Set<IntelligenceSignalType> signalTypes;
/**
* Constructor for creating IntelligenceServiceInfo.
* @param List of Services and Supported SignalTypes for the Service.
*/
global IntelligenceServiceAndSignalsInfo(String service, String masterLabel,

Set<IntelligenceSignalType> signalTypes) {
this.service = service;

79

Send Real-Time SignalsDuring Call Actions

this.masterLabel = masterLabel;
this.signalTypes = signalTypes;

}
global String getService() {
return this.service;

}
global String getMasterLabel() {
return this.masterLabel;

}
global Set<IntelligenceSignalType> getSignalTypes() {
return this.signalTypes;

}
}

IntelligenceSignalType Apex Class. This enum represents the list of supported intelligence signal types. This class is used in the
IntelligenceServiceAndSignalsInfo Apex class.

global enum IntelligenceSignalType {
Category,
Sentiment

}

Sample Implementation. Use the following sample to add your implementation to the IntelligenceServiceProvider
class:

/**
* Adds support for sending real-time signals,
* <INTELLIGENCE SERVICE> represents the intelligence service that the partner is using.
This name is unique to each partner. . For example, if the partner telephony vendor is
NICE, set <INTELLIGENCE SERVICE> to CXoneAgentAssistService. If the partner telephony
is another vendor, reach out to your PM to find the value for <INTELLIGENCE SERVICE>.
* <INTELLIGENCE SERVICE NAME> is the label name describing the intelligence service that
the partner uses. For example, if the intelligence service is CXone, set <INTELLIGENCE
SERVICE NAME> to CXone Agent Assist Service.
*/
global class intelligenceService implements
service_cloud_voice.IntelligenceServiceProvider {
global service_cloud_voice.IntelligenceServiceResponse

getSupportedIntelligenceServicesAndSignalTypes(service_cloud_voice.IntelligenceServiceRequest
intelligenceServiceRequest) {

List<service_cloud_voice.IntelligenceServiceAndSignalsInfo>
intelligenceServiceAndSignalsInfos = new
List<service_cloud_voice.IntelligenceServiceAndSignalsInfo>();

Set<service_cloud_voice.IntelligenceSignalType> signalTypes = new
Set<service_cloud_voice.IntelligenceSignalType>();

signalTypes.add(service_cloud_voice.IntelligenceSignalType.Sentiment);

intelligenceServiceAndSignalsInfos.add(new
service_cloud_voice.IntelligenceServiceAndSignalsInfo(‘<INTELLIGENCE SERVICE>’,
‘<INTELLIGENCE SERVICE NAME>’, signalTypes));

return new service_cloud_voice.IntelligenceServiceResponse(true, null,
intelligenceServiceAndSignalsInfos);

80

Send Real-Time SignalsDuring Call Actions

}
}

3. Prepare the managed package.

• If you’ve never deployed a managed package for Service Cloud Voice, deploy the managed package now.

• If you’ve deployed a managed package for Service Cloud Voice before, update the managed packages with your implementation
of the IntelligenceServiceProvider class.

After you prepare the managed package, copy the URL and send it to your customer, who will use it to install the managed package
in their org.

Supervisor Listen In or Barge In with Service Cloud Voice for Partner
Telephony

When an agent belongs to a supervised group, a supervisor can monitor their active calls using the Supervisor Panel.

When a supervisor clicks Monitor on an active call, in addition to viewing the conversation entries (and real-time transcription), the
supervisor can join and listen in, muted. If supported, the supervisor can also barge in (unmute), or disconnect.

For listening in to work, the supervisor can load the vendor’s connector using the Omni-Channel widget. The supervisor must belong
to the contact center that they’re supervising.

In addition to these requirements, the supervisor must be assigned the SCV supervisor user permission and also have the value of the
CapabilitiesResult field hasSupervisorListenIn set to true. In order for the supervisor to join a call unmuted,
hasSupervisorBargeIn must also be set to true

In order for a supervisor to listen in or barge in:

1. In Permission Sets, add the App Permission “Contact Center Supervisor” to the user in addition to “Contact Center Agent (Partner
Telephony)”.

2. When implementing getCapabilities(), have hasSupervisorListenIn set to true in the returned
CapabilitiesResult. If you want to allow the supervisor to barge in, unmuted, set hasSupervisorBargeIn to true.

3. Have the Omni-Channel widget available for this user.

4. Add the supervisor to the same contact center that they’re supervising.

5. Create an Omni-Channel Supervisor configuration.

6. Add Omni-Channel Supervisor to the Salesforce console.

7. Add Omni-Channel Supervisor to a Lightning console app.

8. Set up a supervisor queue.

After the setup is complete, a supervisor can see the Listen In button enabled when monitoring a Voice Call.

81

Supervisor Listen In or Barge In with Service Cloud Voice for
Partner Telephony

During Call Actions

https://help.salesforce.com/s/articleView?id=sf.omnichannel_create_supervisor_configuration.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.omnichannel_add_supervisor_console.htm&language=en_US
https://help.salesforce.com/s/articleView?id=omnichannel_add_supervisor_console_LEX.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.automation_rules_queues_parent.htm&language=en_US

Supervisor Listen In Details
When a supervisor clicks the Listen In button, the call information is delegated to the vendor’s connector
superviseCall(supervisedCallInfo) method. The superviseCall(supervisedCallInfo) method creates
a call leg between the supervisor and the parent call, updates the list of active calls, and returns a promise of type
SupervisorCallResult.

If the supervisor is on a hard phone, after the returned promise is resolved successfully, the supervisor call leg enters a Dialing state. The
hard phone is expected to publish the SUPERVISOR_CALL_STARTED event after the Supervisor picks up the headset.

If the Supervisor is on a softphone, after the returned promise is resolved successfully, the supervisor call leg enters the Connected state.
No extra events should be fired.

When the supervisor leaves the call using the softphone, the call information is delegated to the vendor’s connector
supervisorDisconnect(call) method. This method must create a call leg between the supervisor and the parent call and
return a promise. The vendor implementation should destroy the supervisor leg and update the list of active calls.

When the supervisor leaves the call using the hard phone, the vendor implementation should destroy the supervisor leg and update
the list of active calls, and fire the SUPERVISOR_HANGUP event.

For example:

// This is used when using deskphone as call controls (not Omni-Channel)

// Called by deskphone when initiating the SV call - the call starts ringing
superviseCallonHardphone(call){

return await sdk.superviseCall(call);
}

// Called by deskphone after SV picks up on deskphone
connectSupervisedCallonHardphone(call){
try {
const result = await sdk.connectSupervisedCall(call);
publishEvent({ eventType: constants.VOICE_EVENT_TYPE.SUPERVISOR_CALL_CONNECTED, new

SuperviseCallResult(call) });
} catch (e) {
publishError(constants.VOICE_EVENT_TYPE.SUPERVISOR_CALL_CONNECTED, e);

}
}

82

Supervisor Listen In or Barge In with Service Cloud Voice for
Partner Telephony

During Call Actions

Supervisor Barge In Details
When a supervisor barges in, we use the same VoiceCall record. The participant type is created automatically and is reused for transcription.

POST /voiceCalls/${vendorCallKey}/messages, {
messageId,
content,
senderType: "SUPERVISOR",
startTime,
endTime,
participantId: "supervisorId"

}, headers

When a supervisor barges in, you can reuse the toggle callInfo.recordEnabled and the capability
CapabilitiesResult.hasRecord to control whether the supervisor can toggle a recording. Specifically, a recording toggle
is allowed if all these conditions are met:

1. CapabilitiesResult.hasRecord is true.

2. callInfo.recordEnabled is true.

3. CapabilitiesResult.hasSupervisorListenIn and CapabilitiesResult.hasSupervisorBargeIn
are both true.

4. The call is connected.

When clicked, we call the same pauseRecording() and resumeRecording() functions.

SEE ALSO:

Service Cloud Connector API Reference

Send Additional Call Information

You can disable certain call handling options such as end call, dial pad, and phone book in the softphone.

Use the CALL_UPDATED event to send additional information during a call to disable certain call handling options such as end call, dial
pad, and phone book in the softphone. This event uses the CallResult class object, so you can use the CallInfo object to update the
softphone controls. This event can be published during the call.

When implementing the getVoiceCapabilities(), set the value of the required field of the VoiceCapabilitiesResult to disable the corresponding
option in the softphone. For example, to disable the dial pad, when implementing getVoiceCapabilities(), set the value of the
isDialPadDisabled field of VoiceCapabilitiesResult to true.

83

Send Additional Call InformationDuring Call Actions

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_base_publishevent.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_callresult.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_callinfo.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_getvoicecapabilities.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_voicecapabilitiesresult.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_getvoicecapabilities.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_voicecapabilitiesresult.htm

CHAPTER 11 Post-Call Actions

This section provides guidelines about how to fine-tune post-call actions.In this chapter ...

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice

• Call Recordings

• Post-Call CTR Sync
with the Update
VoiceCall API

Implementation Guide or Salesforce Help. To update your solution to include Bring Your Own
Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own
Channel Developer Guide.• After Conversation

Work

• Mean Opinion Score
(MOS)

84

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html

Call Recordings

Each voice call supports one call recording. If a participant is added to the call, each of the component voice calls can be updated to list
the recording URL and duration details.

During the Post-Call CTR Sync on page 88, you can call the Update Voice Call API with the following fields to add call recording information
to a voice call.

• recordingLocation: A complete call recording URL. This URL belongs to your domain, and can be accessed only if the agent is
logged into the telephony system through SSO or a login page. Otherwise, the agent sees a message indicating that they don’t have
access or need to log into the phone system. This URL can be a public URL or a URL only accessible through an agent SSO or login
page.

• totalHoldDuration: The total number of seconds the call was on hold. If an audio recording doesn’t include hold time, this value
is zero.

• agentInteractionDuration: The total number of seconds the call wasn’t on hold.

Note: The call recording duration shown in the Call Audio Player is the sum of the agentInteractionDurationand and
totalHoldDuration values. If this sum doesn’t equal the recording’s actual duration, the recording may appear to end before or
after the boundaries of the slider.

The callDurationInSeconds field on voice calls is determined by calculating the difference between the startTime and endTime fields,
and is unrelated to call recording duration.

Note: The date in the top-right corner of the media player is the call’s start time, and it matches the start time shown in the Voice
Call details. If the date doesn’t display properly on an inbound call, verify that:

• The start time is sent correctly when calling the Create Voice Call API

• The start time in the Voice Call details is correct

Trusted URL: To allow recordings to be loaded, add your domain as a Trusted URL in Salesforce Setup. To learn more, see Manage
Trusted URLs.

Example and testing: See Use the Demo Connector on page 32 for a demonstration of calling Update Voice Call API with a recording
URL and duration details. The recording link is capped at 1,000 characters and should not exceed this length. The Call Recording section
in the Voice Call Simulator lets you experiment with the recording feature.

85

Call RecordingsPost-Call Actions

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_update.htm
https://help.salesforce.com/articleView?id=trusted_urls_manage.htm&language=en_US
https://help.salesforce.com/articleView?id=trusted_urls_manage.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_update.htm

getSignedRecordingUrl
In order to provide recording URLs based on the vendorCallKey, Salesforce Voice Call ID, or recordingUrl inserted via Update Voice Call
API, vendors can implement Service Cloud Connector API getSignedRecordingUrl in their connectors. This API accepts vendorCallKey,
callId, recordingUrl as parameters and returns a SignedRecordingUrlResult object.

The vendor specifies hasSignedRecordingUrl as true. When the recording component loads, Salesforce issues a request to the
Service Cloud Connector API getSignedRecordingUrl to get the recording URL for the Voice Call. Using this method, the vendor can
provide updated recording URLs when requested by the Voice Call Recording component.

// Create a signed recording url capability
function getCapabilities() {

return new CapabilitiesResult({
hasSignedRecordingUrl: true

});
}

function getSignedRecordingUrl(recordingUrl, vendorCallKey, callId) {
// Implementation goes in here

}

Pause and Resume Recording
Agents can pause and resume recording while on a call. This feature can be used when call participants want to share confidential details
and don’t want them to be recorded.

Implement these Service Cloud Connector APIs to allow users to pause and resume recording:

• pauseRecording(call)

• resumeRecording(call)

86

Call RecordingsPost-Call Actions

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_update.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_update.htm

Universal Call Recording Playback
Contact centers can be configured so that you can share voice calls (and the associated voice call recordings) with other users in your
contact center. This feature can be enabled with the Universal Call Recording Access checkbox on the contact center record details
page.

To view this configuration setting, the following requirements must be met:

1. Partners must set the supportsUniversalCallRecordingAccess capability to true in their ConversationVendorInfo
object.

2. The contact center should be connected to the partner telephony system.

3. The Apex integration class must implement the RecordingMediaProvider interface. This interface includes the
getSignedUrls method, which is called to fetch the signed recording URL from the partner telephony system for loading the
voice call recording playback.

After these requirements are met, check Let any Salesforce user listen to this contact center’s recordings.

87

Call RecordingsPost-Call Actions

When a warning dialog appears, click Allow.

SEE ALSO:

Service Cloud Connector API Reference

Service Cloud Connector API Reference

Service Cloud Connector API Reference: Get Started with the Service Cloud Connector API

Post-Call CTR Sync with the Update VoiceCall API

This API updates a VoiceCall record after the call has ended. Use this API to update call-related parameters that are unavailable during
the VoiceCall creation stage, such as callDuration and numberOfHold.

The Update VoiceCall API is an asynchronous operation. You can’t query for the status of the API call. To learn more, see Update VoiceCall.

For production orgs you can use the Service Cloud Voice REST API:
https://{org_domain_name}.my.salesforce-scrt.com/telephony/v1.

Use the org domain name as defined in the first step of Set Up SSO Connected App and Salesforce with Identity Provider on page 40.

This API uses JWT authorization to communicate with Salesforce.

SEE ALSO:

Voice Implementation Guide: Update VoiceCall

88

Post-Call CTR Sync with the Update VoiceCall APIPost-Call Actions

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_get_started.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_update.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_update.htm

After Conversation Work

After Conversation Work (ACW) gives agents a set amount of time after a customer conversation to wrap up their work before they start
a new conversation.

In order for agents to configure After Conversation Work, follow these steps to support the feature:

1. Fire an AFTER_CALL_WORK_STARTED event (using the publishEvent() method) with the callId to trigger after conversation
work for the agent.

a. Fire this event regardless of whether the org has enabled After Conversation Work. In case After Conversation Work isn’t enabled,
this event is ignored.

b. If there’s a case (for example, a missed call) when the agent isn’t put into wrap-up mode in the telephony system, the connector
should not fire the AFTER_CALL_WORK_STARTED event.

publishEvent({ eventType: Constants.VOICE_EVENT_TYPE.AFTER_CALL_WORK_STARTED,
payload: { callId: <uniqueCallId> }

});

2. Implement the wrapUpCall() method in the connector. The implementation of this method should remove the agent from
wrap-up and put the agent back into the queue for receiving calls.

3. If you have Sales Engagement setup in your org and you’d like to advance a cadence after your agent wraps up a call, fire
WRAP_UP_ENDED (using the publishEvent() method) event after you receive wrapUpCall(), with the following
sample payload.

{
callType: 'outbound' ,
callId: <callId>,
callStatus: 'ended'
}

SEE ALSO:

Service Cloud Connector API Reference

Service Cloud Connector API Reference: Get Started with the Service Cloud Connector API

Service Cloud Connector API Reference: wrapUpCall

Service Cloud Connector API Reference: publishEvent

Salesforce Help: Configure After Conversation Work Time

Release Notes: Give Agents Time for After-Conversation Work (Pilot)

Mean Opinion Score (MOS)

Support MOS using Service Cloud Voice for Partner Telephony.

The Mean Opinion Score (MOS) is a commonly used metric to measure the overall voice call quality. The MOS is a rating from 1 to 5,
with 1 being the lowest score, and 5 being the highest. This rating is standardized by the International Telecommunications Union ITU-T.

The standard ITU-T G.107 defines the algorithm we use to calculate the G.711 MOS score, based on network performance metrics (for
example, latency, jitter and packet loss).

In order to support MOS as a Service Cloud Voice partner:

89

After Conversation WorkPost-Call Actions

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_base_publishevent.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_wrapupcall.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_get_started.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_wrapupcall.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_base_publishevent.hm
https://help.salesforce.com/s/articleView?id=sf.omnichannel_configure_after_conversation_work_time.htm&language=en_US
https://help.salesforce.com/articleView?id=release-notes.rn_voice_acw.htm&type=5&release=230&language=en_US

1. Specify agent configuration the field config.supportsMos using the setAgentConfig method.

2. Publish the UPDATE_AUDIO_STATS event using the publishEvent method to report the audio stats during the call
(between the call getting connected and ending). Stats are ignored before the call is connected and after you specify
isAudioStatsCompleted as true in the AudioStats payload of the publishEvent method.

In order to get the MOS:

1. The audio stats are collected during the call. The MOS is calculated when the connector specifies isAudioStatsCompleted
as true in the last UPDATE_AUDIO_STATS publishEvent payload. The value is stored in the Mean Opinion Score in the
VoiceCall record.

2. The Salesforce admin must add the Mean Opinion Score in the VoiceCall layout to show the score in VoiceCall record UI.

SEE ALSO:

Service Cloud Connector API Reference

90

Mean Opinion Score (MOS)Post-Call Actions

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm

CHAPTER 12 Route Calls

This section provides guidelines related to routing calls.In this chapter ...

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice

• Omni-Channel Flow
for Service Cloud

Implementation Guide or Salesforce Help. To update your solution to include Bring Your OwnVoice for Partner
Telephony Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own

Channel Developer Guide.• Add Contact Center
Channels to Enable
Routing

• Queue Mapping and
Agent Mapping

• Enable the Voice
Extension Page in
Lightning App Builder

• Understand Agent
Statuses

• Two-Way Agent
Status Syncing

• Handling Missed
Calls and Call Errors

• External Routing

• Unified Routing (Beta)

91

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html

Omni-Channel Flow for Service Cloud Voice for Partner Telephony

Run an Omni-Channel flow using the Service Cloud Voice Telephony Integration REST API.

To learn more, see Execute OmniFlow in the Service Cloud Voice Implementation Guide.

Note: Executing an Omni-Channel Flow for incoming calls (by calling
/telephony/v1/voiceCalls/{CALL_ID}/omniFlow) creates a PendingServiceRouting (PSR) record in Salesforce
which stays in the queue until the voice call is routed to the agent and the agent accepts the Agent Work. If the voice call is never
routed to the agent or the agent declines the Agent Work, the PSR record stays in Salesforce. In order to clean up a PSR record
associated with an abandoned or declined voice call, call the Clear Routing API
(/telephony/v1/voiceCalls/{CALL_ID}/clearRouting) to clean it up.

SEE ALSO:

Salesforce Help: Omni-Channel Flows

Service Cloud Voice Implementation Guide: Execute OmniFlow

Service Cloud Voice Implementation Guide: Clear Routing

Salesforce Help: The Routing Lifecycle

Add Contact Center Channels to Enable Routing

To let customers configure call routing for voice calls and to determine when to create an End User record, create a phone channel. After
creating a phone channel, you can set up a caller ID tool to create or reuse an End User record. You can also choose whether to associate
the End User record with the number dialed.

Contact center channels can be added from the contact center details page. From Setup, enter Partner Telephony in the Quick
Find box, then select Partner Telephony Contact Centers. Select your contact center and then scroll to the Contact Center Channels
section. Click Add.

Partners can automate the phone number selection by providing the phone number list through an Apex implementation. Otherwise,
the phone input box displays a text box where the agent can manually enter the phone number.

92

Omni-Channel Flow for Service Cloud Voice for Partner
Telephony

Route Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_omniflow_execute.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_omniflow_execute.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.omni_channel_dev.meta/omni_channel_dev/sforce_api_objects_pendingservicerouting.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_clear_routing.htm
https://help.salesforce.com/s/articleView?id=sf.omnichannel_flows.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_omniflow_execute.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_clear_routing.htm
https://help.salesforce.com/s/articleView?id=sf.omnichannel_psr_lifecycle.htm&language=en_US

Partners can turn on the capability CapabilitiesSupportsPartnerPhoneNumbers in ConversationVendorInfo and
implement the service_cloud_voice.PhoneNumberProvider interface in their Apex class on page 121 as shown in the
following code sample.

public service_cloud_voice.PhoneNumberResponse
listPhoneNumbers(service_cloud_voice.PhoneNumberRequest phoneNumberRequest) {
List<service_cloud_voice.PhoneNumberInfo> phoneNumberInfos = new

List<service_cloud_voice.PhoneNumberInfo>();
phoneNumberInfos.add(new service_cloud_voice.PhoneNumberInfo('+12018867861', 'US',

'TOLL_FREE', '12018867861'));
phoneNumberInfos.add(new service_cloud_voice.PhoneNumberInfo('+11019987861', 'US',

'TOLL_FREE', '11019987861'));
phoneNumberInfos.add(new service_cloud_voice.PhoneNumberInfo('+11101000011', 'US',

'TOLL_FREE', '11101000011'));
return new service_cloud_voice.PhoneNumberResponse(true, null, phoneNumberInfos);

}

PhoneNumberInfo contains phoneNumber, countryCode, and an identifier.

Queue Mapping and Agent Mapping

This topic provides guidance on how to handle queue mapping and agent mapping.

Queue Mapping
Partners can provide a list of queues at runtime, which can be mapped by the admin to external queues in Salesforce using contact
center UI. This mapping is used when a flow executes and returns a queue. In order to provide a list of queues for the UI, the partner
package has to perform the following steps:

1. Set partnerTransferDestinationsSupported to true in the partner ConversationVendorInfo record.

2. Implement the Apex interface service_cloud_voice.TransferDestinationProvider on page 121.

93

Queue Mapping and Agent MappingRoute Calls

Agent Mapping
Partners who support user syncing are able to support agent mapping in Salesforce. There’s currently no UI to see the agent mapping,
but the mapping entries are stored in CallCenterRoutingMap in Salesforce. This mapping is used when a flow executes and
returns an agent. In order to support agent mapping, the partner package has to perform the following steps:

1. Set userSyncingSupported to true in the partner ConversationVendorInfo record.

2. Implement the Apex interface service_cloud_voice.UserSyncing on page 121, and return a unique user ID from the partner system
in UserSyncingResponse.

SEE ALSO:

Set Up Service Cloud Voice for Partner Telephony in Your Org

Salesforce Help: Omni-Channel Flows

Enable the Voice Extension Page in Lightning App Builder

Configure this feature to let administrators add custom voice controls to their Omni-Channel softphones using the Voice Extension
FlexiPage in the Lightning App Builder.

Administrators can create and customize Voice Extension pages, then enable them in a contact center so that any agent in the org can
use the feature. For steps on how to enable and configure the Voice Extension Page, see the Enable the Voice Extension Page in Lightning
App Builder page in the Service Cloud Voice Implementation Guide.

SEE ALSO:

Salesforce Help: Customize Call Controls and Voice Extensions

Understand Agent Statuses

See how setAgentStatus() is called from the Salesforce core to the connector when an agent performs an action in the Salesforce
phone control panel.

This table explains how agent statuses are represented in Omni-Channel and in the connector.

Agent Status in Vendor/QueueConnector
Event/Callback

SetAgentStatus
sent to
Connector

Agent Status
in Omni

Agent Action in
Salesforce

Offline/NotAvailableForRoutingSetAgentStatusYESOfflineLog in as offline

Online/AvailableForRoutingSetAgentStatusYESOnlineLog in as online

NotAvailableForRoutingdial()NOOnlineMake outbound call

NotAvailableForRoutingCALL_CONNECTEDNOOnlineDuring outbound call

NotAvailableForRoutingHANG_UP/endCall()NOOnlineDuring After
Conversation Work
(ACW) after outbound
call

94

Enable the Voice Extension Page in Lightning App BuilderRoute Calls

https://help.salesforce.com/s/articleView?id=sf.omnichannel_flows.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_examples.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_examples.htm
https://help.salesforce.com/s/articleView?id=sf.voice_pt_setup_extensions.htm&language=en_US

Agent Status in Vendor/QueueConnector
Event/Callback

SetAgentStatus
sent to
Connector

Agent Status
in Omni

Agent Action in
Salesforce

AvailableForRoutingSetAgentStatusYESOnlineClose Voice Call tab
during ACW after
outbound call

NotAvailableForRoutingCALL_STARTEDNOOnlineReceive inbound call

NotAvailableForRoutingacceptCall()NOOnlineAccept inbound call

AvailableForRoutingdeclineCall()NOOnlineDecline inbound call

NotAvailableForRoutingCALL_CONNECTEDNOOnlineDuring inbound call

NotAvailableForRoutingHANG_UP/endCall()NOOnlineDuring ACW after
inbound call

AvailableForRoutingSetAgentStatusYESOnlineClose Voice Call tab
during ACW after
inbound call

Note: The telephony system should be in an infinite wrap-up for all calls (including for After Conversation Work). This way, when
an agent finishes a call, they aren’t added to the queue until they’re made available by logging in as online or by closing the Voice
Call tab during an After Conversation Work period.

SEE ALSO:

Service Cloud Connector API Reference: Get Started with the Service Cloud Connector API

Service Cloud Connector API Reference: setAgentStatus

Two-Way Agent Status Syncing

Agent status (that is, agent presence) can be changed from the Omni-Channel widget, which sends status information to the partner
connector. We added the ability to change the agent status from the connector, which passes status information back to Salesforce.

For example, a telephony partner system may have scheduled time breaks for the agents where they would want to change the agent
status in Omni accordingly. If an agent is on a call, status change is ignored and doesn’t have any impact. In order to support complete
two-way syncing of the status between Omni and the telephony system, the telephony system should persist a table with mapping
between the Salesforce status ID and the partner status.

When the connector loads, the init() API is called, and the argument callCenterConfig contains a JSON field called
userPresenceStatuses that can be parsed into a map of statusId: statusInfo. For example:

{
"0": {

"statusName": "Offline",
"hasChannels": "false",
"isOffline": "true",
"statusId": "0"

},

95

Two-Way Agent Status SyncingRoute Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_get_started.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_setagentstatus.hm

"0N5xx0000004CSO": {
"statusName": "Available",
"hasChannels": "true",
"isOffline": "false",
"statusId": "0N5xx0000004CSO"

},
"0N5xx0000004D56": {

"statusName": "Away",
"hasChannels": "false",
"isOffline": "false",
"statusId": "0N5xx0000004D56"

},
"0N5xx0000004D3U": {

"statusName": "Busy",
"hasChannels": "false",
"isOffline": "false",
"statusId": "0N5xx0000004D3U"

}
}

The statusId 0 is reserved for the Offline status. Other statusIDs represent Salesforce Omni-Channel presence statuses that are
available for the user.

The statusInfo fields are:

• statusName: The name of the status.

• hasChannels: false indicates that the status is busy or offline. true indicates that it’s routable by a channel.

• isOffline: true indicates that it’s an offline status (with statusId 0).

• statusId: Salesforce status ID

In order to invoke the status change from the connector, call publishEvent() with the event SET_AGENT_STATUS and the
required status ID. For example:

Const statusId = "0N5xx0000004D3U";
publishEvent({ eventType: "SET_AGENT_STATUS", payload: new AgentStatusInfo({ statusId })
});

To change the status to offline:

Const offlineStatusId = "0";
publishEvent({ eventType: "SET_AGENT_STATUS", payload: new AgentStatusInfo({ statusId:
offlineStatusId })});

See setAgentStatus() for information on how to update the vendor agent status when the Omni-Channel status changes.

SEE ALSO:

Service Cloud Connector API Reference

Service Cloud Connector API Reference

Handling Missed Calls and Call Errors

A voice call typically ends when an agent hangs up. Voice calls can also end when an agent misses the call or when the call is in an error
state. This topic shows you how missed voice calls, including inbound, outbound, transfer, and callback calls, and call errors are handled.

96

Handling Missed Calls and Call ErrorsRoute Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_setagentstatus.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm

To end a call, call.reason must be set to ended or error, and call.closeCallOnError must be set to true or
false.

Calls usually end when an agent clicks the End Call button, invoking the vendor’s Connector API endCall() method. In such cases,
configure the connector to raise a HANGUP event with call.reason set to ended to mark the voice call as completed.

However, calls can also end when an agent misses or declines the call, or when the call fails and is in an error state.

For missed, declined, or failed calls, configure the connector to:

• Raise a HANGUP event type with call.reason set to error in the Connector API publishEvent() method.

• Set call.closeCallOnError to false to keep the conversation open and leave the voice call in a “new” state. Don’t set
call.closeCallOnError to true unless you want to close the conversation and mark the voice call as completed.

For missed, declined, or failed calls, also set the following for inbound or callback calls:

• When an agent misses a call, set call.agentStatus to MissedCallAgent.

• When an agent declines a call, set call.agentStatus to DeclinedByAgent.

• When a call fails due to the agent, set call.agentStatus to FailedConnectAgent.

• When a call fails due to any reason that’s unrelated to the agent, set call.agentStatus to FailedConnectCustomer.

To set the agent’s status automatically when the call is declined, go to Setup | Presence Configuration Settings | Update Status on
Decline, and choose a presence status for when the agent declines a work item.

To set the agent’s status automatically when the call is missed or if there’s any error that isn’t due to call declined, go to Setup | Presence
Configuration Settings | Update Status on Push Time-Out and choose a presence status.

SEE ALSO:

Service Cloud Connector API Reference

Service Cloud Connector API Reference: Get Started with the Service Cloud Connector API

Service Cloud Connector API Reference: publishEvent

Service Cloud Connector API Reference: CallResult

Service Cloud Connector API Reference: PhoneCall

External Routing

Omni-Channel routes work to agents using a two-step process. In the first step, a PendingServiceRouting (PSR) is created which represents
a work assignment that’s waiting to be routed. If this PSR’s RoutingModel field is set to ExternalRouting, Omni-Channel won’t route the
PSR and waits for the vendor to create the AgentWork record for the assigned agent using the PSR.

To learn more about the PendingServiceRouting (PSR), see The Routing Lifecycle in Salesforce Help.

As an example, here’s what a vendor system does for an agent to accept a work item.

1. Chat visitor initiates a chat request from the external routing button.

2. PendingServiceRouting is created.

3. Partner is notified by a pushTopic event (EventType = Create, isPushed = false).

4. Partner creates AgentWork using the PSR.

5. Agent is routed to the chat request (AgentWork Status = Assigned).

6. Agent accepts the chat request (AgentWork Status = Accept).

7. Omni-Channel deletes the PendingServiceRouting record after the agent accepts the work.

97

External RoutingRoute Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_get_started.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_base_publishevent.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_callresult.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_phonecall.hm
https://help.salesforce.com/articleView?id=sf.omnichannel_psr_lifecycle.htm&type=5&language=en_US

8. Partner is notified by a pushTopic event (EventType = Delete).

SEE ALSO:

Salesforce Help: The Routing Lifecycle

Unified Routing (Beta)

Unified routing lets Salesforce handle the routing of inbound voice calls to the agents. Configure unified routing so that the admins can
enable the feature.

Note: Unified routing is a pilot or beta service that is subject to the Beta Services Terms at Agreements - Salesforce.com or a
written Unified Pilot Agreement if executed by Customer, and applicable terms in the Product Terms Directory. Use of this pilot
or beta service is at the Customer's sole discretion.

To configure unified routing so that admins can enable the feature, set the CapabilitiesSupportsUnifiedRouting field
of the ConversationVendorInfo object to true, , and invoke the omni flow. The admins can then enable unified routing for the contact
centers from the contact center details page. Once the supportsUnifiedRouting field is set to true, it can’t be changed to false.

When unified routing is enabled, you don’t have to handle the routing of the inbound voice calls, instead place the calls in a holding or
temporary queue.

If you want to use the sample implementation in the Demo Connector, select the Unified Routing capability in the Routing Settings to
enable unified routing. Also provide the omni flow dev name and the Salesforce fallback queue id in the Demo Connector. For example
to support unified routing for inbound voice calls:

startInboundCall(phoneNumber, callInfo, flowConfig) {
callInfo = callInfo || { isOnHold: false };
flowConfig = flowConfig || { isUnifiedRoutingEnabled: false };
callInfo.callStateTimestamp = new Date();
if (!this.state.agentAvailable) {

const message = `Agent is not available for a inbound call from phoneNumber -
${phoneNumber}`;

this.log(message);
return Promise.reject(new Error(message));

}
let callAttributes = { participantType: Constants.PARTICIPANT_TYPE.INITIAL_CALLER

};
const id = Math.random().toString(36).substring(5);
let contact = new Contact({ phoneNumber, id, name: 'Customer '+ id });
return this.createVoiceCall(undefined, Constants.CALL_TYPE.INBOUND, phoneNumber,

callInfo && callInfo.additionalFields).then((data) => {
callAttributes.voiceCallId = data.voiceCallId;
const call = new Call(Constants.CALL_TYPE.INBOUND.toLowerCase(), contact,

callAttributes, new CallInfo(callInfo), data.vendorCallKey || this.generateCallId());
this.addCall(call);
const callResult = new CallResult({

call
});

//When Unified Routing is enabled, we need to invoke OmniFlow, otherwise regular
flow to publish CALL_STARTED event.

if(flowConfig.isUnifiedRoutingEnabled) {
console.log('Inside isUnifiedRoutingEnabled ' +

flowConfig.isUnifiedRoutingEnabled);

98

Unified Routing (Beta)Route Calls

https://help.salesforce.com/articleView?id=sf.omnichannel_psr_lifecycle.htm&language=en_US
https://www.salesforce.com/company/legal/agreements/
https://ptd.salesforce.com/?_ga=2.247987783.1372150065.1709219475-629000709.1639001992
https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_conversationvendorinfo.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_omniflow_execute.htm

var response = this.executeOmniFlowForUnifiedRouting(data, flowConfig);
console.log('response From execute onmi flow' + response);

} else {
console.log('Non UnifiedRouting flow');

publishEvent({ eventType: Constants.VOICE_EVENT_TYPE.CALL_STARTED, payload:
callResult });

}
return this.executeAsync('startInboundCall', callResult);

});
}

SEE ALSO:

Salesforce Object Reference for the Salesforce Platform: ConversationVendorInfo

99

Unified Routing (Beta)Route Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_conversationvendorinfo.htm

CHAPTER 13 Transfer Calls

This section provides guidelines related to transferring calls.In this chapter ...

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice

• Configure Estimated
Wait Times for
Queues Implementation Guide or Salesforce Help. To update your solution to include Bring Your Own

Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own
Channel Developer Guide.

• Agent Availability

• Customize the
Destination List for
Call Transfers in
Omni-Channel

• Enable Voice Call
Transfers Using
Omni-Channel Flows
and Partner
Telephony

• Transfer Calls to a
Queue

• Perform a Blind
Transfer

• Use Click-to-Dial for
Transfers

• Phone Contact
Search

100

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html

Configure Estimated Wait Times for Queues

Agents can see estimated wait times for a given queue before transferring a call.

Estimated wait times can be calculated by Salesforce or the telephony provider. By default, estimated wait times are calculated by
Salesforce.

Let Salesforce Calculate Estimated Wait Times
Salesforce calculates estimated wait times only if 10 calls were made to the queue over the past 10 minutes. If this criterion isn’t met,
the estimated wait time field isn’t shown.

To let Salesforce calculate estimated wait times:

1. Verify the hasQueueWaitTime field in the CapabilitiesResult object is set to false. This is the default value.

2. Verify the telephony provider queues are mapped to Salesforce queues.

3. When accepting a call, provide the telephony provider’s queueId value to the CallInfo object.

4. When accepting a call, optionally provide the telephony provider’s queueTimestamp and queueName value to the CallInfo
object.

Let the Telephony Provider Calculate Estimated Wait Times
To display estimated wait times using the telephony provider’s calculations, set the hasQueueWaitTime field in the CapabilitiesResult
object to true.

Optionally include the queueWaitTime key in the Contact object that’s returned for getPhoneContacts. The queueWaitTime
field represents the telephony provider’s queue wait time measured in seconds.

For example,

new Contact ({
id: 'queueId1'
type: Constants.CONTACT_TYPE.QUEUE,
name: "Queue Name",
queue: 'queueId1',
queueWaitTime: 240

})

SEE ALSO:

Service Cloud Connector API Reference

Knowledge Article: Estimated Wait Time Calculation When Routing Work with Omni-Channel

Salesforce Help: Map Your Salesforce Queues to Telephony Provider Queues

Salesforce Help: Make Smarter Routing Decisions by Checking Agent Availability Queues

Agent Availability

This topic provides guidance on agent availability.

101

Configure Estimated Wait Times for QueuesTransfer Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://help.salesforce.com/s/articleView?id=003817179&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=sf.service_map_queues.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.omnichannel_check_availability_for_routing.htm&language=en_US

Service Cloud Voice for Partner Telephony supports showing agent availability in the Omni-Channel transfer UI. There are two options
for showing agent availability.

1. Vendor-Provided Availability. If a partner wants to provide availability data as part of the phone book contacts for transfer, they
can provide the agent availability as a new availability field on the Contact object. This value is shown in the UI as an availability icon.
In order for the Transfer UI to use the vendor-provided availability, the connector also must set hasAgentAvailability to
true in the AgentConfigResult.

2. Salesforce-Provided Availability. If the partner doesn’t provide agent availability as part of the phone book contacts
(hasAgentAvailability is false in AgentConfigResult), Salesforce tries to map the phone book contacts to
Salesforce agents in the current org and calculates the availability. This agent mapping is done based on the
CallCenterRoutingMap entries (see Agent Mapping above). If there are matches, Salesforce shows the agent availability for
matched agents. The agent available is calculated based on the following criteria:

• Available—Agent is available for the Voice channel and has 100% percent capacity available

• Busy—Agent isn’t available for the Voice channel

• Offline—Agent is offline in Omni-Channel

SEE ALSO:

Service Cloud Connector API Reference

Customize the Destination List for Call Transfers in Omni-Channel

Customize the list of transfer destinations to only show the destination types that apply when transferring calls for Omni-Channel.

During an in-progress call, agents can transfer a caller to any of the following transfer destination types through the Omni-Channel
widget:

• Agent

• Contact

• Queue

• Flow

102

Customize the Destination List for Call Transfers in
Omni-Channel

Transfer Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm

By default, the widget displays all transfer destination types, giving agents the option to transfer a call to a specific agent, contact, queue,
or flow.

To customize the list so that only certain transfer destination types appear:

• Using the Connector API, set the value of contactTypes in PhoneContactsResult to the list of transfer destination
types you want to appear in the Omni-Channel widget. If contactTypes isn't set, all transfer destination types are listed in the
widget for agents to pick from.

SEE ALSO:

Service Cloud Connector API Reference

Enable Voice Call Transfers Using Omni-Channel Flows and Partner
Telephony

Configure this feature to enable voice call transfers via Salesforce Omni-Channel flows.

This configuration applies to the Service Cloud Voice with Partner Telephony telephony model. To enable this feature for Service Cloud
Voice with Amazon Connect or Service Cloud Voice for Partner Telephony from Amazon Connect, go to Enable Voice Call Transfers Using
Omni-Channel Flows and Amazon Connect.

Omni-Channel flows can be used to transfer voice calls through External Routing. Configure this feature to enable voice call transfers
using Omni-Channel flows. When this feature is enabled, all active flows of process type Omni-Channel Flow that are assigned to the
phone channel appear in the Omni-Channel widget for agents to select as transfer destinations.

To enable voice call transfers using Omni-Channel flows:

1. Verify that your system is configured to Create a Voice Call Record for transfer.

103

Enable Voice Call Transfers Using Omni-Channel Flows and
Partner Telephony

Transfer Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_example_omni_amazon_enable_voice_call_transfers.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_example_omni_amazon_enable_voice_call_transfers.htm

2. While calling the Execute an Omni-Channel Flow REST API, verify that your system is properly routing the voice calls. The
flowDevName parameter is required. Don't set the dialedNumber parameter.

3. Verify that the hasTransferToOmniFlow parameter in CapabilitiesResult is set to true.

When an agent transfers a call to an Omni-Channel flow, Salesforce calls the addParticipant Connector API along with the fully qualified
name of the Omni-Channel flow. For example, {Namespace}__{API Name of the Omni-Channel Flow}.

The telephony partner system creates a voice call record for transfer through the Create a Voice Call Record REST API, and then executes
the Omni-Channel flow through the Execute an Omni-Channel Flow REST API. A sample implementation of this entire process can be
found in the vendor-sdk.js script of the demo connector in GitHub.

SEE ALSO:

Service Cloud Connector API Reference

Transfer Calls to a Queue

Transfer a call to a Salesforce queue so that a supervisor can see the transferred call waiting in the queue.

To use this feature, when transferring a call with the Create a Voice Call Record Telephony API, set initiationMethod to
"Transfer" and set queue to either the Salesforce queue object ID or the vendor’s external queue ID. See Create a Voice Call
Record.

Perform a Blind Transfer

With the blind transfer feature, vendors can use the addParticipant Connector API method to hang up and transfer a call rather than add
a caller to an existing conversation.

To enable blind transfer:

1. Using the Connector API, set the value of hasBlindTransfer in CapabilitiesResult to true. See
getCapabilities().

2. Update the implementation of addParticipant() to perform a blind transfer when the isBlindTransfer argument
is true. A sample blind transfer is implemented in the demo connector on page 32.

To perform a blind transfer:

1. Using a softphone, when the call is connected, a new button with the label “Blind Transfer” shows up. Click this button to call
addParticipant(contact, call, true).

2. Using a hardphone, perform a blind transfer and publish the PARTICIPANT_ADDED event.

104

Transfer Calls to a QueueTransfer Calls

https://github.com/salesforce-misc/byo-demo-connector/blob/main/src/main/vendor-sdk.js#L1513
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_rest_voicecalls_create.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_getcapabilities.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_base_publishevent.htm

SEE ALSO:

Service Cloud Connector API Reference

Use Click-to-Dial for Transfers

Enable click-to-dial for phone numbers so that an agent can call or transfer to that number.

Phone numbers (using the lightning:clickToDial Lightning component) are clickable when an agent isn’t on an active call. Clicking the
phone number starts an outbound call. An agent can also transfer a call when a call is in progress and the phone number is clicked.
Clicking a click-to-dial component transfers the call to the new phone.

When clicking a phone number, the agent is prompted with two options. The agent can either add the phone number to the call or use
a blind transfer to transfer the call without context. To support a blind transfer, see Perform a Blind Transfer.

Note: Phone numbers no longer support click-to-dial when the call ends or when a participant has already been added to the
call.

Phone Contact Search

When an agent adds a participant to a call, Salesforce provides a UI to search for transfer destinations.

105

Use Click-to-Dial for TransfersTransfer Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/component-library/bundle/lightning:clickToDial/documentation

The contacts are returned from the vendor when implementing getPhoneContacts().

The API supports a long list of contacts and lets agents search for contacts that they want to transfer to.

Search and Pagination
getPhoneContacts() is called by Salesforce with a filter argument. The filter object has the keys contains, limit, and
offset. limit is a constant set to 50 and offset is calculated by the UI.

If the vendor supports contact search (by specifying AgentConfigResult.hasContactSearch as true), the following
events occur.

• When the transfer UI is shown, getPhoneContacts({limit: 50}) is called and the vendor can return the most recent
50 items.

• With every search or filtering request, Salesforce calls getPhoneContacts({contains: string, limit: 50,
offset: number }).

• When scrolling down (“progressive loading”), Salesforce calls getPhoneContacts({contains: string, filter:
string, limit: 50, offset: calculated}).

Example scenarios:

• At initialization time: getPhoneContacts({limit: 50}) → [a1,b2... x50] (most recent contacts)

• When searching for "xyz": getPhoneContacts({contains: "xyz", limit: 50, offset: 0}) →
[xyz1,xyz2... xyz50]

• When scrolling down: getPhoneContacts({contains: "xyz", offset: 50, limit: 50}) →
[xyz51,xyz52... xyz100]

106

Phone Contact SearchTransfer Calls

Pseudo Contact Search
A new capability called hasContactSearch is available. When the vendor doesn’t implement contact search, the capability is set
to false or undefined. If the capability is false or undefined, Salesforce gets all phone contacts (up to 1000) and stores them in
memory. Then, for every scroll or search, Salesforce does a “pseudo search,” or a simple filtering, and shows the data that matches the
filter. getPhoneContacts() is called one time.

SEE ALSO:

Service Cloud Connector API Reference

107

Phone Contact SearchTransfer Calls

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm

CHAPTER 14 Disable Call Actions

You can disable call handling options such as end call, dial pad, and phone book in the softphone to
support compliance with internal policies and industry regulations.

To disable the dial pad, when implementing getVoiceCapabilities(), set the value of the isDialPadDisabled
field of VoiceCapabilitiesResult to true.

To disable the phone book, when implementing getVoiceCapabilities(), set the value of the
isPhoneBookDisabled field of VoiceCapabilitiesResult to true.

To disable the End Call button, when implementing getVoiceCapabilities(), set the value of the
endCallDisabled field of CallInfo to true.

The CALL_UPDATED event is used to send additional information during a call. This event uses the
CallResult class object and so you can use the CallInfo object to update the softphone controls. This
event can be published during the call.

SEE ALSO:

VoiceCapabilitiesResult

CallInfo

publishEvent

108

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_getvoicecapabilities.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_voicecapabilitiesresult.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_getvoicecapabilities.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_voicecapabilitiesresult.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_getvoicecapabilities.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_callinfo.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_base_publishevent.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_callinfo.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_voicecapabilitiesresult.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_callinfo.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_base_publishevent.htm

CHAPTER 15 Desk Phone Support

If the telephony provider supports desk phones, agents can make outbound calls or answer inbound
calls from their desk phone. Agents can also decline calls and initiate transfers from their desk phone.
By default, the softphone is enabled for all agents. To use a deskphone, agents should enable the
deskphone from the Omni-Channel utility.

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice
Implementation Guide or Salesforce Help. To update your solution to include Bring Your Own
Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own
Channel Developer Guide.

Test Device Selection API

The Service Cloud Connector API getAgentConfig() and setAgentConfig() methods
should be implemented in the vendor connector. The getAgentConfig() method is invoked
when the agent clicks the Agent Settings icon. It returns an AgentConfigResult object. For
example:

new AgentConfigResult({
phones: ["SOFT_PHONE", "DESK_PHONE"],
selectedPhone: new Phone("DESK_PHONE", “5554443333”)

})

The setAgentConfig() method is implemented by the vendor and returns a
SetAgentConfigResult object indicating whether the operation is successful. For example:

new SetAgentConfigResult({ success: true })

Publish an Event from a Desk Phone

When using the Omni-Channel softphone, call control events and errors get published automatically
by Salesforce. Each promise can be resolved or rejected from the vendor’s Connector API Interface
implementation. However, when using a desk phone, events and errors must be published from the
vendor’s code using publishEvent() and publishError().

For example, when clicking the mute button from a softphone, the mute() method is called on the
vendor’s Connector API Interface implementation and a promise is sent back to Salesforce.

109

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_pt_developer_guide.meta/voice_pt_developer_guide/voice_pt_connector_objects_setagentconfigresult.htm

When using a hard phone, you must explicitly call publishEvent() when the mute occurs.

The publishEvent() method can be called from the Connector API Interface implementation
with many potential event types. The publishError() method can be called for desk phone events
for the same events. For example:

• MUTE_TOGGLE — when the phone is muted or unmuted

• HOLD_TOGGLE — when the phone is on hold or resumed

• RECORDING_TOGGLE — when the recording is enabled or disabled

• SWAP — when the hold state of two callers is switched

• CONFERENCE — when two calls are being conferenced

• ADD_PARTICIPANT — when adding a call participant

See the reference documentation for all the possible event types.

110

Desk Phone Support

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_base_publishevent.htm

Accept or Decline a Call

If accepting or declining a call from a hard phone (desk phone), add the attribute isSoftphoneCall:
false to call.callInfo when calling the publishEvent() method.

publishEvent({
eventType: Constants.VOICE_EVENT_TYPE.CALL_CONNECTED,
payload: new CallResult({ call }) // "call" contain the PhoneCall

object
});

When initiating an outbound or transfer call from a desk phone, isSoftphoneCall should also be
false.

Disable Call Controls Dynamically

When publishing call events such as CALL_STARTED using publishEvent(), the connector
can disable call controls if you prefer that agents not use the Omni-Channel softphone call controls at
a desk phone. By default, all controls are enabled, but you can pass any of these values in the callInfo
parameter (from the PhoneCall object) to disable call controls.

callInfo: {
acceptEnabled: boolean,
declineEnabled: boolean,
holdEnabled: boolean,
muteEnabled: boolean,
extensionEnabled: boolean,
swapEnabled: boolean,
conferenceEnabled: boolean,
extensionEnabled: boolean,
recordEnabled: boolean,
addCallerEnabled: boolean

}

Start an Outbound Call Programmatically

While in most cases, agents start outbound calls by click-to-dial on a contact or the Omni-Channel dial
pad, there’s also a way to start a call programmatically using the Service Cloud Connector API. Specifically,
use the publishEvent() method with the CALL_STARTED event type and a CallResult
payload.

This code sample is adapted from the Demo Connector on page 32 in GitHub (byo-demo-connector).

/**
* Start a call
* @param {Contact} contact
* @param {Object} callInfo (callInfo.isSoftphoneCall is false if
dialing from a desk phone)
*/
function dial(contact, callInfo) {
const callAttributes = { participantType:

111

Desk Phone Support

https://github.com/salesforce-misc/byo-demo-connector/blob/main/src/main/vendor-sdk.js#L361

Constants.PARTICIPANT_TYPE.INITIAL_CALLER };
const call = new Call(Constants.CALL_TYPE.OUTBOUND, contact,

callAttributes, new CallInfo(callInfo));
if (!callInfo.isSoftphoneCall) {
publishEvent({ eventType: Constants.VOICE_EVENT_TYPE.CALL_STARTED,

payload: new CallResult({ call })});
}

}

/**
* Example usage
*/
dial(new Contact({ phoneNumber: "5554445555"}), {
isSoftphoneCall: false,
callStateTimestamp: new Date(),
isOnHold: false,
isMuted: false,
isRecordingPaused: false,
muteEnabled: true,
swapEnabled: true,
conferenceEnabled: true,
extensionEnabled: true,
holdEnabled: true,
recordEnabled: true,
addCallerEnabled: true

});

SEE ALSO:

Service Cloud Connector API Reference

Service Cloud Connector API Reference: Get Started with the Service Cloud Connector API

Service Cloud Connector API Reference: publishEvent

Service Cloud Connector API Reference: GenericResult

Service Cloud Connector API Reference: getAgentConfig

Service Cloud Connector API Reference: setAgentConfig

Service Cloud Connector API Reference: CallResult

Service Cloud Connector API Reference: PhoneCall

112

Desk Phone Support

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_get_started.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_base_publishevent.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_genericresult.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_getagentconfig.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_setagentconfig.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_callresult.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_phonecall.hm

CHAPTER 16 Enable Headset Support

Enable headset support so that agents can control call actions such as accept, mute, unmute, and decline
calls from their headsets.

This feature applies to the following telephony model:

• Service Cloud Voice with Partner Telephony

Perform the following steps using the Connector API to enable headset support.

• When implementing getVoiceCapabilities(), set the value of isHidSupported in VoiceCapabilitiesResult
to true. When the agent selects the headset, the headset information is sent using the
SET_AGENT_CONFIG event.

• Add handlers to listen to the events from the headset, adding parsers for each type of HID device
to determine the event type as accept, mute, unmute, or decline.

• Each headset model has a specific signal for each of the actions. Configure the Connector API interface
to explicitly publish each headset call event and error using the publishEvent() and publishError()
APIs, respectively. For example, when muting the headset, call the mute() method on the Connector
API Interface implementation and send a promise back to Salesforce.

See a sample implementation of the headset capabilities in the demo connector. The demo connector
code available in Github is not generic which means a headset parser is required for each kind of headset,
for example the Github sample supports only certain models such as:

• Plantronics Blackwire 5220 Series - accept/decline/mute/unmute call actions supported

• Jabra Evolve Link Ms - accept/decline call actions supported

SEE ALSO:

publishEvent

113

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_getvoicecapabilities.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_objects_voicecapabilitiesresult.htm
https://github.com/salesforce-misc/byo-demo-connector/tree/main/src/hid
https://github.com/salesforce-misc/byo-demo-connector/tree/main/src/hid
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_pt_developer_guide.meta/voice_pt_developer_guide/voice_pt_connector_base_publishevent.htm

CHAPTER 17 Additional Info

This section provides additional information about your Service Cloud Voice for Partner Telephony
implementation.

In this chapter ...

• Einstein Conversation
Insights (Call
Coaching)

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice
Implementation Guide or Salesforce Help. To update your solution to include Bring Your Own• Replay Active Calls

on Refresh Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own
Channel Developer Guide.• Host the Connector

as a Visualforce
Page

• Call Scenario
Diagrams

• Line-Specific Controls
with Service Cloud
Voice for Partner
Telephony

• Download Connector
Logs

114

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html

Einstein Conversation Insights (Call Coaching)

Provide support for Einstein Conversation Insights to Service Cloud Voice agents.

In order to support Einstein Conversation Insights (ECI) for customers, vendors must perform several steps.

ECI is available in Performance and Unlimited Editions, and as an add-on in Enterprise Edition. Please reach out to your Salesforce account
executive if you require one of these orgs to test your ECI integration.

For more information about setting up ECI, see Set Up Einstein Conversation Insights in Salesforce Help.

1. Turn on this feature in the ConversationVendorInfo object by specifying the einsteinConversationInsightsSupported
value to true. This value creates an entry in the General Settings section of Conversation Insights, which the admin can choose to
toggle on or off.

2. Implement service_cloud_voice.RecordingMediaProvider on page 121 in the Apex class. The method
getSignedUrls is called by Salesforce with named credentials (if set up for the org) and a list of vendor call keys. The named
credentials can be used to make a call out to the partner system for authentication. The partner has to return a signed URL for each
vendor call key (or an error) that is valid for at least five minutes. Salesforce then uses this signed URL to download the recording file
for that particular voice call and analyze it.

SEE ALSO:

Set Up Service Cloud Voice for Partner Telephony in Your Org

Replay Active Calls on Refresh

When an agent refreshes the Salesforce page in the middle of a call, getActiveCalls() is called to restore the state of the VoiceCall
record page and to attempt to replay the call with the same payload.

115

Einstein Conversation Insights (Call Coaching)Additional Info

https://help.salesforce.com/s/articleView?id=sf.call_coaching_setup.htm&language=en_US

Note: This section assumes that you’ve implemented the getActiveCalls() API in the connector.

For example, if an active call is refreshed while it’s connected, a CALL_CONNECTED event is replayed with the same call. If an active call
is refreshed while it’s ringing, a CALL_STARTED event is replayed with the same call.

The getActiveCalls() method is implemented in the demo connector on page 32 using JS local storage, but it’s best that you
implement it on the server side rather than in local storage. We recommend storing the active calls in a server-side database as soon as
a call starts, and updating the database on subsequent events. This way, Salesforce receives the most current data when
getActiveCalls() is called.

In case you want to replay the calls yourself, we recommend that you set the isReplayable field in callInfo attribute of the
call object to false so that the base connector doesn’t replay the calls when the agent becomes available.

getActiveCalls() {
// Get the current calls in progress
const callsInProgress = getCallsInProgress();

// Create active calls and set isReplayable to false
const activeCalls = callsInProgress.map((call) => {

call.callInfo = new CallInfo({ isReplayable: false });
return new PhoneCall(call);

});

// Return the active calls back in ActiveCallsResult
const activeCallsResult = new ActiveCallsResult({ activeCalls });
return activeCallsResult;

}

SEE ALSO:

Service Cloud Connector API Reference

Service Cloud Connector API Reference: getActiveCalls

Host the Connector as a Visualforce Page

You can also host your connector as a Visualforce page in Salesforce and package it.

1. Inside your connector, call this command:

// Generates files at dist/ for the connector
$ npm run build:dev
// (you can use npm run build:prod to generate minified js files)

2. Add these files to main/default/staticresources in the Salesforce DX project.

3. Make sure you have the corresponding -meta.xml files for the resources added in staticresources. For help adding static
resources, see Salesforce DX Project Structure and Source Format.

4. Create a connector Visualforce page inside
scv-external-telephony-quickstart/force-app/main/default/pages/ as follows:

<apex:page>
<apex:includeScript value="{!$Resource.REPLACE_WITH_CONNECTOR_RESOURCE_NAME}"/>
</apex:page>

116

Host the Connector as a Visualforce PageAdditional Info

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_getactivecalls.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_interface_getactivecalls.hm
https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_source_file_format.htm

5. Update adapterUrl and reqAdapterUrl to /apex/<namespace>__<connector visual force page name> in the
ConversationVendorInfo file of your Salesforce DX project.

6. Create and install a new package version.

Note: For different calls to SCRT2 such as transcription, call recording, and create voice call (salesforce-scrt.com/telephony/v1),
you need a standalone server which can receive requests from the Visualforce page connector and call SCRT2 using JWT.

Alternatively, you can use the Apex web service. The Visualforce page connector can call the Apex web service, which can call the SCRT2
endpoints with a valid JWT token for voice call creation and transcription. For information on Apex Web Services, see Exposing Apex
Classes as REST Web Services.

Call Scenario Diagrams

Understand different call scenarios, such as an agent receiving or declining an inbound call.

Agent Accepts Inbound Call

Agent Declines Inbound Call

117

Call Scenario DiagramsAdditional Info

https://developer.salesforce.com/docs/atlas.en-us.254.0.apexcode.meta/apexcode/apex_rest.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.apexcode.meta/apexcode/apex_rest.htm

Agent Makes Outbound Call

Agent Transfers a Call

118

Call Scenario DiagramsAdditional Info

Line-Specific Controls with Service Cloud Voice for Partner Telephony

We now support enabling and disabling the Remove Participant UI control for each participant during a conference call. For example,
you can disable the Remove Participant UI control for the primary caller.

The Remove Participant button can be disabled by setting the removeParticipantVariant parameter of the Service Cloud
Connector API CallInfo object.

Possible values are:

• ALWAYS: Remove participant button is always enabled.

• NEVER: Remove participant button is always disabled.

• ALWAYS_EXCEPT_ON_HOLD: Remove participant button is disabled when the participant is on hold.

SEE ALSO:

Service Cloud Connector API Reference

Download Connector Logs

Partners can log messages from their connector and then download these logged messages as a text file.

To enable logging, set debugEnabled to true in the CapabilitiesResult object that is returned as a result of the
getCapabilities() method in the connector interface.

When debugEnabled is set to true, Agent Settings in Omni-Channel has a new link titled “Download agent debug information”
under Debugging. Click this link to download a text file that contains the data logged.

To log a message in the connector:

import { log, Constants } from 'scv-connector-base';

Example for logging an error message:

119

Line-Specific Controls with Service Cloud Voice for Partner
Telephony

Additional Info

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm

log({message: "Log this error"}, Constants.LOG_LEVEL.ERROR);

Example for logging an info message:

log({anyobject: 1}, Constants.LOG_LEVEL.INFO);

120

Download Connector LogsAdditional Info

CHAPTER 18 Service Cloud Voice for Partner Telephony Apex
Reference

Service Cloud Voice for Partner Telephony uses several Apex classes.

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice
Implementation Guide or Salesforce Help. To update your solution to include Bring Your Own
Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own
Channel Developer Guide.

To automate all user operations on the contact center in Salesforce, partners should provide an Apex
integration class that implements the supported Apex interfaces.

Note: Make sure, along with implementing the supported interfaces, you also declare that
capability in ConversationVendorInfo. If you don’t declare the capability, your implemented methods
aren’t called.

When implementing an Apex interface method, if the operation is successful, create a response object
using the response constructor with success as true and set the response field. If the operation fails,
create a response object with success as false, an appropriate errorMessage, and a null response
field.

The following interfaces can be implemented by partners.

service_cloud_voice.ContactCenterInfo

For guidance on this Apex class, see Send Real-Time Signals on page 78.

service_cloud_voice.IntelligenceServiceAndSignalsInfo

For guidance on this Apex class, see Send Real-Time Signals on page 78.

service_cloud_voice.IntelligenceServiceProvider

For guidance on this Apex interface, see Send Real-Time Signals on page 78.

service_cloud_voice.IntelligenceServiceRequest

For guidance on this Apex class, see Send Real-Time Signals on page 78.

121

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html

service_cloud_voice.IntelligenceServiceResponse

For guidance on this Apex class, see Send Real-Time Signals on page 78.

service_cloud_voice.IntelligenceSignalType

For guidance on this Apex class, see Send Real-Time Signals on page 78.

service_cloud_voice.GroupSetup

For guidance on this interface, see Associate Partner Telephony Users and Groups with Queues.

service_cloud_voice.IntelligenceServiceProvider

For guidance on this interface, see Enable Conversation Intelligence for Partner System Intelligence
Signals.

service_cloud_voice.KeyProvider

Implement this interface to automate key provisioning and renewal. Whenever a Salesforce contact
center is connected to the partner system (during contact center creation flow or later using the Connect
Account button on the contact center details page), Salesforce calls the getPublicKey method
on the integration class. The same method is also called when the public key is renewed (using the
Update Key button on the contact center details page).

For this interface, turn on the keyProvisioningSupported capability.

KeyResponse getPublicKey(ContactCenterInfo contactCenterInfo);

KeyResponse contains four fields: a success flag, an error message, a public key, and the expiration
date of the public key.

service_cloud_voice.PartnerConnector

For this interface, turn on the namedCredentialSupported capability. This interface contains
one method.

ConnectPartnerResponse connect(service_cloud_voice.ContactCenterInfo
contactCenterInfo);

The ConnectPartnerResponse response has three fields:

• Success: Boolean value for whether operation was a success or failure.

• contactCenters: Map of partner contact center ID and partner contact center name.

• errorMessage: Failure message if the operation failed.

122

Service Cloud Voice for Partner Telephony Apex Reference

Use the following constructor to create a response instance:

ConnectPartnerResponse(boolean success, Map<String, String>
contactCenters, String errorMessage);

The ContactCenterInfo input value contains information about the contact center, such as the
internal name, the display name, the org ID, the partner contact center ID, and the fully qualified name
of the named credential selected by user.

service_cloud_voice.PartnerSSO

Implement this interface to set up SSO for the agents with Salesforce as an identity provider. See Set Up
Single Sign-On on page 40 for more information.

For this interface, turn on the agentSSOSupported capability. It contains two methods.

PartnerResponse setupSamlIdentityProvider(SetupSamlIdpRequest
setupSamlIdpRequest);

This method is used to create a SAML identity provider in the partner account.
SetupSamlIdpRequest has two fields: the SAML XML and the named credential. The SAML XML
is generated from the Salesforce identity provider. You can reuse an identity provider since this is needed
one time per account.

ConnectedAppSetupParams getConnectedAppSetupParams(ContactCenterInfo
contactCenterInfo);

This method is called from Salesforce to get the ConnectedAppSetupParams, which contains
fields to create a connected app in Salesforce. ConnectedAppSetupParams contains acsUrl,
entityUrl, customAttributes and sloUrl.

service_cloud_voice.PhoneNumberProvider

Implement this interface to support listing phone numbers when creating contact center channels.

PhoneNumberResponse
listPhoneNumbers(service_cloud_voice.PhoneNumberRequest
phoneNumberRequest);

PhoneNumberResponse contains a list of PhoneNumberInfos. PhoneNumberInfo
contains phoneNumber, countryCode, and an identifier.

PhoneNumberRequest contains ContactCenterInfo.

service_cloud_voice.QueueManager

For guidance on this interface, see Associate Partner Telephony Users and Groups with Queues.

service_cloud_voice.QueueSetup

For guidance on this interface, see Associate Partner Telephony Users and Groups with Queues.

123

Service Cloud Voice for Partner Telephony Apex Reference

service_cloud_voice.RecordingMediaProvider

For this interface, turn on the einsteinConversationInsightsSupported capability. It
contains one method to provide the recording URLs, which can be downloaded and analyzed.

RecordingMediaResponse
getSignedUrls(service_cloud_voice.RecordingMediaRequest request);

The RecordingMediaResponse response is a list of RecordingMediaItem objects. Each
item contains recordingUrl, partnerVoiceCallId, and an error message if the recording
URL isn’t present. Use the following constructor to create an instance of RecordingMediaItem:

RecordingMediaItem(String vendorCallKey, String signedRecordingUrl,
String expiryTime, String errorCode);

Set the expiryTime parameter to the length of time, measured in minutes, before the signed
recording URL (signedRecordingUrl) expires. If signedRecordingUrl doesn't expire, set
expiryTime to NULL. Set the errorCode parameter to the HTTP error code that's returned if
the recording URL (recordingUrl) doesn't exist. Salesforce will retry the voice call for all error codes
except for error code 404. If an error code is not expected, set the value to NULL.

The RecordingMediaRequest input value contains the named credentials to be used for the
callout, and the list of partner Voice Call IDs for the recording URLs.

service_cloud_voice.TransferDestinationProvider

For this interface, turn on the partnerTransferDestinationsSupported capability. It
contains one method to fetch agent queues.

TransferDestinationResponse
getQueues(service_cloud_voice.ContactCenterInfo contactCenterInfo);

The TransferDestinationResponse response contains three fields: a success flag, a map of
queue ID and queue names, and an error message for a failed operation. Use the following constructor
to create a response instance:

TransferDestinationResponse (boolean success, Map<String, String>
queues, String errorMessage);

service_cloud_voice.UserSyncing

Implement this interface to automate user syncing. Whenever a user is added or removed from the
Salesforce contact center, Salesforce calls these methods on the integration class. For this interface, turn
on the agentSSOSupported capability.

UserSyncingResponse addUsersToContactCenter(UserSyncingRequest
userSyncingRequest);

The UserSyncingResponse response contains three fields: a success flag, an error message, and
a map of a Salesforce user ID and a partner system user ID.

124

Service Cloud Voice for Partner Telephony Apex Reference

Note: User addition and removal is atomic. That is, users are added or removed in Salesforce only
if all the users in that batch are successfully added or removed in a partner system.

UserSyncingRequest contains a Salesforce contact center ID, a named credential, and a list of
UserInfo objects, each having a Salesforce user ID, first name, last name, and the Salesforce username
of the agent.

service_cloud_voice.UpdateOrgDomainProvider

Your org’s My Domain is a subdomain for the URLs that Salesforce uses to serve your org. That means
that some URLs that are used for Service Cloud Voice features, such as the Connector URL, the telephony
API (SCRT2 URL), and the Connect API URL, contain the domain value. If you change your My Domain
name, that subdomain value changes and impacts the URLs used by Service Cloud Voice features. In
that situation, this Apex class notifies you of updated domain information.

Implement this interface to get notified of My Domain changes in your org.

PartnerResponse
updateOrgDomainValues(service_cloud_voice.ContactCenterInfo
contactCenterInfo);

This method has a parameter, ContactCenterInfo, which contains two new properties:

• orgDomainVal contains the latest value for the My Domain URL.

• scr2Url contains the URL for the SCRT2 server.

ContactCenterInfo also has the following properties: contactCenterId,
partnerContactCenterId, internalName, displayName, namedCredentials,
orgId.

125

Service Cloud Voice for Partner Telephony Apex Reference

https://help.salesforce.com/s/articleView?id=sf.domain_name_overview.htm&language=en_US

CHAPTER 19 Service Cloud Connector API Reference

Pass information between your partner telephony, Messaging, or Contact Center as a Service (CCaaS)
system and a Salesforce org by using the Service Cloud Connector API.

SEE ALSO:

Service Cloud Connector API Reference

126

https://developer.salesforce.com/docs/atlas.en-us.254.0.service_connector_api_developer_guide.meta/service_connector_api_developer_guide/service_connector_api_overview.htm

CHAPTER 20 Service Cloud Voice for Partner Telephony
Troubleshooting

Review tips for troubleshooting common problems.

Important: This guide is for telephony providers who are creating a solution that integrates
Service Cloud Voice with their telephony system. If that’s not you, see the Service Cloud Voice
Implementation Guide or Salesforce Help. To update your solution to include Bring Your Own
Channel for CCaaS Messaging capabilities along with Service Cloud Voice, see the Bring Your Own
Channel Developer Guide.

Omni-Channel Doesn't Show Agent Work to Accept
or Reject Incoming Call

Issues you could see:

• Omni-Channel widget doesn’t show the Agent Work user interface (UI) to accept or reject the call.

• Omni-Channel user interface (UI) goes blank on incoming call.

Possible causes:

• Agent Work creation failed. Check your connector CALL_STARTED event payload and verify that you
don’t have invalid data. Also, check that the agent is online with the correct Omni-Channel status
for the assigned phone channel.

• Salesforce Omni-Channel has an outage, which prevents pushing Agent Work from the server to
the agent console UI. Check Omni-Channel service status at trust.salesforce.com. To verify that Agent
Work has been created successfully, refresh the page. Omni-Channel should load the Agent Work
and allow the agent to accept or decline the call.

The Connector Doesn’t Load Successfully

Issues you could see:

• Omni-Channel widget doesn’t show the phone control panel.

• Log in failed in Omni-Channel widget.

Possible causes:

• Your org doesn’t have the proper licenses to allow you to use the Service Cloud Voice Partner
Telephony product.

• The agent isn’t assigned to the required permission set.

• The agent isn’t added to the Contact Center.

127

https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.voice_developer_guide.meta/voice_developer_guide/voice_intro.htm
https://help.salesforce.com/articleView?id=sf.voice_about.htm&language=en_US
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://developer.salesforce.com/docs/service/messaging-byoc-ccaas/guide/add-messaging-to-voice.html
https://trust.salesforce.com

• The adapter URL isn’t configured correctly in your Contact Center.

– To find out the adapter URL of your Contact Center, you could use any Salesforce public API to
read the CallCenter object.

– The adapter URL in the Contact Center gets inserted from the value in the ConversationVendorInfo
record. When you import the Contact Center XML file in Setup, it points to the developer name
of the ConversationVendorInfo record.

• The adapter URL isn’t accessible.

• The microphone isn’t allowed and enabled in the browser.

• CORS-related issue. The connector is loaded in an iframe. You can try to set up CORS for your host
in Salesforce Setup.

Partner Telephony Setup Node Doesn’t Display

Issues you could see:

• You can't find the Partner Telephony Setup node in Salesforce Setup.

• You can’t find the Partner Telephony Contact Center List View node in Salesforce Setup.

Possible causes:

• Your org doesn’t have the proper licenses to allow you to use the Service Cloud Voice for Partner
Telephony product.

• Service Cloud Voice for Partner Telephony product isn’t turned on.

– If Voice for Partner Telephony isn’t enabled in the org, the Partner Telephony Contact Center
node that shows the Contact Center list view doesn’t appear in the Salesforce Setup.

Phone Control Fails

Issues you could see:

• Some of the phone controls aren’t working (for example, accept a call, hold a call, transfer a call).

• Seeing error message or warnings in the Service Console.

Possible causes:

• The connector API isn’t implemented properly.

Troubleshooting tips:

• Open the browser developer console and look for errors. Pay attention to the log messages that start
with [sdk] or [connector].

• Enable the Debug mode in Salesforce to see non-minified JavaScript code in the browser developer
console.

• Use the remote simulator to compare the API parameters and responses between the demo connector
and your connector implementation.

128

Service Cloud Voice for Partner Telephony Troubleshooting

Download Connector Logs

Partners can log messages from their connector and then download these logged messages as a text
file.

See Download Connector Logs.

129

Service Cloud Voice for Partner Telephony Troubleshooting

	Overview
	Recent Changes
	Publish Partner Telephony Package
	A Note About Scratch Orgs
	Create a Service Cloud Voice Package
	Create Developer Hub and Namespace Orgs
	Create a Salesforce DX Project
	Create and Deploy Your Package
	Assign User Permissions
	Generate a Self-Signed Certificate with OpenSSL

	Get Started with the Quick Start Partner Telephony Package

	Set Up Your Production Org
	Set Up Omni-Channel and a Lightning Console App
	Set Up Service Cloud Voice for Partner Telephony in Your Org

	Add Support for Voice Resiliency
	Connect Telephony System to Salesforce
	Use the Demo Connector
	Use the Connector API
	Test Your Implementation with the Voice Call Simulator

	Set Up Authentication
	Set Up Single Sign-On
	Develop a Telephony System Login Page

	Customize Your Implementation
	Key Provisioning
	Add a Partner Settings UI to Omni-Channel
	Customize Error Messages
	Communicating with Lightning Components
	Use the Lightning Message Service Bridge
	Use the Service Cloud Voice Toolkit API

	Start Calls
	Accept Inbound Calls in Omni-Channel
	Integrate Incoming Voice Call Creation
	Record Linking
	Queued Callbacks
	Let Agents Control the Callback Experience
	Outbound Dialers
	Enable the Phone Book for Outbound Calls
	Set the Voice Call Record Type
	Send Voicemails to Agents
	Hide Call Controls

	During Call Actions
	Associate Partner Telephony Users and Groups with Queues
	Change Status While on a Call
	Transcribe Calls in Real Time
	Send Real-Time Signals
	Supervisor Listen In or Barge In
	Send Additional Call Information

	Post-Call Actions
	Call Recordings
	Post-Call CTR Sync with the Update VoiceCall API
	After Conversation Work
	Mean Opinion Score (MOS)

	Route Calls
	Omni-Channel Flows
	Add Contact Center Channels to Enable Routing
	Queue Mapping and Agent Mapping
	Enable the Voice Extension Page in Lightning App Builder
	Understand Agent Statuses
	Two-Way Agent Status Syncing
	Handling Missed Calls and Call Errors
	External Routing
	Unified Routing (Beta)

	Transfer Calls
	Configure Estimated Wait Times for Queues
	Agent Availability
	Customize the Destination List for Call Transfers in Omni-Channel
	Enable Voice Call Transfers Using Omni-Channel Flows and Partner Telephony
	Transfer Calls to a Queue
	Perform a Blind Transfer
	Use Click-to-Dial for Transfers
	Phone Contact Search

	Disable Call Actions
	Desk Phone Support
	Enable Headset Support
	Additional Info
	Einstein Conversation Insights (Call Coaching)
	Replay Active Calls on Refresh
	Host the Connector as a Visualforce Page
	Call Scenario Diagrams
	Line-Specific Controls
	Download Connector Logs

	Apex Reference
	Service Cloud Connector API Reference
	Troubleshooting

