
Mobile and Offline Developer
Guide

Version 63.0, Spring ’25

Last updated: May 2, 2025

© Copyright 2000–2025 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Mobile App Development with Lightning Web Components and LWC
Offline . 1

About This Developer Guide . 2
LWC Offline Enabled Apps . 2
Learn Lightning Web Components . 2

Learn Lightning Web Components with Trailhead . 3
Learn Lightning Web Components with Documentation . 4

Chapter 2: Create Mobile-Ready Components . 5

Understand Mobile Development . 6
Use Built-In Mobile Tools and Features . 6

Validate Your Base Component References . 7
Use Mobile Validation with Salesforce Lightning Design System 9

Minimize Bandwidth Usage . 11
Create Responsive Layouts . 12
Follow Accessible Mobile Design Guidelines . 16
Disable Pull-to-Refresh in the Salesforce Mobile App . 19

Chapter 3: Use Mobile Device Features in Mobile Apps . 22

Request App Review . 24
AppReviewService User Experience . 24
Use the AppReviewService API . 27
AppReviewService Example . 28
Compatibility and Requirements . 30
Considerations and Limitations . 30

Scan Barcodes . 31
Barcode Scanning User Experience . 32
Use the BarcodeScanner API . 34
BarcodeScanner Example–Modern Scanning API . 38
BarcodeScanner Example—Single Scan (Legacy) . 40
Scan Multiple Barcodes (Legacy) . 43
BarcodeScanner Example—Continuous Scanning (Legacy) . 45
Create a Self-Service Kiosk Application . 48
BarcodeScanner Example—Self-Service Kiosk (Legacy) . 51
Customize the BarcodeScanner User Interface . 54
Compatibility and Requirements . 56
Considerations and Limitations . 57

Access Device Biometrics . 58
BiometricsService User Experience . 59

Use the BiometricsService API . 59
BiometricsService Example . 61
Compatibility and Requirements . 62
Considerations and Limitations . 62

Manage Calendar Events . 63
CalendarService User Experience . 63
Use the CalendarService API . 64
CalendarService Example . 67
Compatibility and Requirements . 77
Considerations and Limitations . 77

Access Contacts . 78
ContactsService User Experience . 79
Use the ContactsService API . 80
ContactsService Example . 82
Compatibility and Requirements . 84
Considerations and Limitations . 84

Scan Documents on a Mobile Device . 86
Use the DocumentScanner API . 86
DocumentScanner Example . 88
Compatibility and Requirements . 91
Considerations and Limitations . 92

Monitor Geofence Regions on a Mobile Device . 93
GeofencingService User Experience . 94
Use the GeofencingService API . 94
GeofencingService Example . 97
Compatibility and Requirements . 98
Considerations and Limitations . 98

Use Location . 99
LocationService User Experience . 100
Location Basics . 101
Use the LocationService API . 101
LocationService Example . 103
Compatibility and Requirements . 106
Considerations and Limitations . 107

Interact with NFC Tags on a Mobile Device . 108
NFCService User Experience . 108
Use the NFCService API . 109
NFCService Example . 110
Compatibility and Requirements . 113
Considerations and Limitations . 113

Accept On-Site Payments with Tap-to-Pay . 114
PaymentsService User Experience . 115
Use the PaymentsService API . 115
PaymentsService Example . 117

Contents

Compatibility and Requirements . 120
Considerations and Limitations . 120

Chapter 4: Offline Considerations and Limitations . 121

General Considerations . 122
Considerations for Field Service Mobile App . 122
Base Components Support . 123
Modules Support . 125
Wire Adapters Support . 128
Entity Support . 132
Metadata and Custom Metadata Types Support . 132

Chapter 5: Offline Environment Details . 133

What Happens When Something Isn’t Primed (Preloaded) . 134
Create Components with Offline Analysis In Mind . 134
Determine Online or Offline Status . 135

Chapter 6: Use Salesforce Features While Offline . 136

Use GraphQL While Mobile and Offline . 137
Understand Salesforce GraphQL Implementations . 137
Feature Limitations of Offline GraphQL . 138
Best Practices for Using GraphQL in LWC Offline . 140

Use Apex While Mobile and Offline . 141
Use Apex in Lightning Web Components While Online . 142
Enable Caching of Apex Results . 143
Apex Results Are Separate from Other Primed Data . 144
Understand Apex Behavior While Offline . 145
Additional Considerations for Apex in an Offline-Enabled Mobile App 147
Additional Documentation for Apex in Lightning Web Components 147

Use Images in an LWC Offline-Enabled Component . 147
Use Images Uploaded as Files (ContentDocument) in an LWC 148
Use Images Uploaded as Asset Files . 150
Use Images Uploaded as Static Resources . 151
Image Priming and Offline Considerations . 152

Upload Images While Offline . 153
Understand File Uploads in Salesforce . 153
Image Upload Basics . 154
Image Upload Example . 154

Use Third-Party JavaScript in an LWC Offline-Enabled Component . 161
Navigation . 162

Navigation User Experience . 162
Base Components with Built-In Navigation Actions . 162
Programmatic Navigation Actions . 163

Chapter 7: Development Tools and Processes . 170

Contents

Understand the Mobile Development Cycle . 171
Set Up Your Development Environment . 172

Set Up Xcode . 174
Set Up Android Studio . 175
Install Mobile Extensions . 180

Preview Components on Mobile . 184
Mobile Development Preview Environments . 184
Preview from the Command Line . 188
Preview from VS Code . 191
Preview in the Salesforce Mobile App . 192
Preview in Custom Mobile Apps . 194

Validate Lightning Web Components for Offline Use . 196
Install the Komaci Static Analyzer . 196
Troubleshoot Installation Problems . 197
Validate Components During Development . 198
Static Analyzer Validation Rules . 198
Install ESLint Rules for Mobile Lightning Web Components . 199

Develop Offline-Ready LWCs with the LWC Offline Test Harness . 200
Test Harness Overview . 201
Install the Test Harness App . 210
Use the Test Harness App . 212
Debug Lightning Web Components . 213

Debug Mobile Components . 216
Customize the Offline Experience for the Salesforce Mobile App . 217

Prerequisites & Setup Considerations . 218
Download and Install . 218
Configure the Offline Experience . 219

Chapter 8: Quick Start Tutorials . 225

Develop a Lightning Web Component Quick Action . 226
Prerequisites . 226
Field Service Org Setup . 226
iOS Simulator Setup . 228
Android Emulator Setup . 229
Workspace Setup . 232
Create and Configure a Lightning Web Component . 233

Debug Lightning Web Components in the Field Service Mobile App 239
Install Local Development Server Plugin . 239
Debug in iOS . 240
Debug in Android . 241

Contents

CHAPTER 1 Mobile App Development with Lightning Web
Components and LWC Offline

Customize Salesforce mobile apps with features built with Lightning web components, and deploy your
customizations to mobile users. Create components and apps that work even when mobile devices are
offline while in the field. Optimize your features to handle low- and no-network connectivity situations
with grace.

In this chapter ...

• About This Developer
Guide

• LWC Offline Enabled
Apps

LWC Offline is an advanced runtime environment for Lightning web components. Available only for
mobile devices, it replaces the standard Lightning components runtime, and augments it with features
designed specifically for mobile and offline use.• Learn Lightning Web

Components
• Briefcase Builder lets you define advanced data priming strategies, customized for the objects and

records that your users need access to while offline.

• A new priming engine preloads records when you prepare to go offline.

• A durable on-device cache holds primed records for offline access, including changes made while
offline.

• Lightning Data Service (LDS) is enhanced to work seamlessly with primed records. While online, LDS
uses the cache as a performance enhancer. While offline, LDS allows transparent access to existing,
changed, and even new records.

There are many, many other changes that you (mostly) don’t need to worry about. The overall goal for
LWC Offline is to let you develop Lightning web components that “just work” whether you’re online or
offline.

1

About This Developer Guide

Documentation for LWC Offline is a work in progress, and will improve continuously throughout the pilot and beta programs. The initial
release of the program documentation is shared across several LWC Offline-enabled mobile apps. Use this developer guide for the
purpose of evaluating LWC Offline in your own orgs.

Where possible, documentation refers to LWC Offline features generally, and applies to all LWC Offline-enabled mobile apps. However,
these efforts are in progress and incomplete. You’ll likely notice references to Field Service in the documentation, and some instructions
might be specific to Field Service. In the early stages of this pilot, we’ll ask for your forbearance and forgiveness.

In the meantime, if you’re unable to interpret these differences, don’t hesitate to reach out with questions on the relevant Trailblazer
community.

LWC Offline Enabled Apps

LWC Offline is available as an optional, opt-in enhancement to existing Salesforce mobile apps.

The following apps can use LWC Offline when the feature is enabled for your org.

• Salesforce mobile app

Available as a GA feature.

Note: Your organization must purchase and license Salesforce Mobile App Plus in order to use Mobile Offline. Contact your
Salesforce sales rep for more information.

• Field Service mobile app

Available as GA feature that any Field Service org can opt into. Join the Trailblazer community for access to additional resources.

SEE ALSO:

Salesforce Help: Salesforce Mobile App Plus

GitHub: Offline App Developer Starter Kit

Learn Lightning Web Components

To create Lightning web components for use in LWC Offline-enabled mobile apps, you must learn the basics of Lightning web components.

Lightning Web Components (the name of the framework) was introduced in 2018, and represents the best, most performant, and most
modern framework for building custom apps for Salesforce. Learning Lightning web components lets you build apps for desktop, mobile
online, and mobile offline environments.

IN THIS SECTION:

Learn Lightning Web Components with Trailhead

If you’re not already an experienced LWC developer, the best way to learn Lightning web components is with the extensive collection
of lessons and projects on Trailhead.

Learn Lightning Web Components with Documentation

Use the Lightning Web Component Developer Guide to understand the Lightning Web Components framework and how to use it
with Salesforce.

2

About This Developer GuideMobile App Development with Lightning Web Components
and LWC Offline

https://trailblazers.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F94S000000GwNL
https://help.salesforce.com/s/articleView?id=sf.salesforce_app_plus.htm&type=5&language=en_US
https://github.com/salesforce/offline-app-developer-starter-kit

Learn Lightning Web Components with Trailhead
If you’re not already an experienced LWC developer, the best way to learn Lightning web components is with the extensive collection
of lessons and projects on Trailhead.

Comprehensive Trailhead Trails
For the most complete foundation, start with these Trailhead trails to get you up to speed with Lightning web components, including
necessary JavaScript skills.

• Learn to Work with JavaScript

Lightning web components are implemented using modern HTML, JavaScript, and CSS. We suggest that you have at least an
intermediate level of skill with JavaScript. This trail consists of two modules that make sure your JavaScript background is solid.

• Build Lightning Web Components

This Trailhead trail provides a complete foundation for working with Lightning web components.

Essential Trailhead Modules
To focus only on the essentials, these Trailhead modules provide the conceptual basics of Lightning web component development.
Every developer working with LWCs should complete all of these modules to ensure they have solid, basic skills.

• Lightning Web Components Basics

• Lightning Web Components and Salesforce Data

• Communicate Between Lightning Web Components

Focused Trailhead Projects
These projects get you going fast with Lightning web components. Fast is exciting!

Note: Most LWC modules and projects are general purpose, rather than specific to a particular mobile app. For setting up to
specifically work with Lightning web components and your specific mobile app, such as the Field Service mobile app, follow the
steps provided in Set Up Your Development Environment on page 172.

• Quick Start: Lightning Web Components

• Set Up Your Salesforce Mobile Developer Tools for Lightning Web Components

• Set Up Your Lightning Web Components Developer Tools

MOAR, MOAR, MOAR
These modules and projects are great if you want to learn specific areas of Lightning web components, or have experience with our
other UI customization frameworks, such as Visualforce or Lightning Aura components.

• Lightning Web Component Troubleshooting

• Lightning Web Components Tests

• Lightning Web Components for Aura Developers

• Lightning Web Components for Visualforce Developers

• Build a Bear-Tracking App with Lightning Web Components

3

Learn Lightning Web Components with TrailheadMobile App Development with Lightning Web Components
and LWC Offline

https://trailhead.salesforce.com/en/content/learn/trails/learn-to-work-with-javascript
https://trailhead.salesforce.com/en/content/learn/trails/build-lightning-web-components
https://trailhead.salesforce.com/en/content/learn/modules/lightning-web-components-basics
https://trailhead.salesforce.com/en/content/learn/modules/lightning-web-components-and-salesforce-data
https://trailhead.salesforce.com/en/content/learn/projects/communicate-between-lightning-web-components
https://trailhead.salesforce.com/en/content/learn/projects/quick-start-lightning-web-components
https://trailhead.salesforce.com/en/content/learn/projects/set-up-your-salesforce-mobile-developer-tools-for-lightning-web-components
https://trailhead.salesforce.com/en/content/learn/projects/set-up-your-lightning-web-components-developer-tools
https://trailhead.salesforce.com/en/content/learn/modules/lwc-troubleshooting
https://trailhead.salesforce.com/en/content/learn/modules/test-lightning-web-components
https://trailhead.salesforce.com/en/content/learn/modules/lightning-web-components-for-aura-developers
https://trailhead.salesforce.com/en/content/learn/modules/lwc-for-visualforce-developers
https://trailhead.salesforce.com/en/content/learn/projects/lwc-build-flexible-apps

Learn Lightning Web Components with Documentation
Use the Lightning Web Component Developer Guide to understand the Lightning Web Components framework and how to use it with
Salesforce.

The Lightning Web Component Developer Guide is the canonical resource for all details of developing with Lightning web components.
After you’ve learned the conceptual basics, you continue to use the developer guide to find answers to specific “how do I...?”-type
questions. The developer guide also includes the Component Reference, which provides reference documentation for all of the built-in
base components available in the framework.

Mobile-specific documentation for Lightning web components includes the following:

• Preview Lightning Web Components on Mobile (full details on development tools)

• Create Mobile-Ready Components (guidelines and best practices)

• Use Mobile Device Features in Mobile Apps (add platform native features to LWCs)

While not specific to Lightning web components or LWC Offline, the following documentation can be helpful during your development
efforts.

• Field Service Developer Guide

• Field Service Mobile App Salesforce Help

• Briefcase Builder Salesforce Help

• Quick Actions Salesforce Help

• Salesforce Mobile Debugging Tools

• Field Service Mobile LWCs Trailblazer community

• Mobile Automated Testing Trailblazer community

4

Learn Lightning Web Components with DocumentationMobile App Development with Lightning Web Components
and LWC Offline

https://developer.salesforce.com/docs/component-library/documentation/en/lwc
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.mobile_extensions
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.mobile
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.use_mobile_capabilities
https://developer.salesforce.com/docs/atlas.en-us.254.0.field_service_dev.meta/field_service_dev/
https://help.salesforce.com/s/articleView?id=sf.mfs_overview.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.briefcase_builder_overview.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=actions_overview.htm&type=5&language=en_US
https://developer.salesforce.com/tools/mobile-debugging
https://trailhead.salesforce.com/trailblazer-community/groups/0F94S000000GwNLSA0
https://trailblazers.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000DQPd&fId=0D54S000006D6Bp

CHAPTER 2 Create Mobile-Ready Components

Build components that perform well across mobile experiences. These guidelines are best practices, not
universal rules. Consider them carefully, but don’t be afraid to go your own way if there are compelling
reasons in specific situations.

In this chapter ...

• Understand Mobile
Development for
Lightning Web
Components

• Use Built-In Mobile
Tools and Features

• Minimize Bandwidth
Usage

• Create Responsive
Layouts

• Follow Accessible
Mobile Design
Guidelines

• Disable
Pull-to-Refresh in the
Salesforce Mobile
App

5

Understand Mobile Development for Lightning Web Components

The best way to start building mobile-ready components is to deep dive into Lightning Web Components first.

Accelerate your mobile development journey with these resources.

• Build Lightning Web Components

Start with learning how to build Lightning web components before you can build mobile-ready Lightning web components.

• Set Up Your Salesforce Mobile Developer Tools for Lightning Web Components

Learn how to configure your local workspace with the tools needed for developing and testing your mobile-ready Lightning web
components.

• Quick Start: Salesforce DX and App Development with Salesforce DX

Learn about modern development tools for developing on the Salesforce platform. These tools are essential for being successful
with Lightning web components.

• Transform Your Business with Mobile

Learn how mobile apps can transform your business and improve employee productivity.

• Develop with Mobile SDK

Create your own iOS, Android, or hybrid mobile apps powered by the Salesforce Platform.

• Developer Intermediate

Take your apps to the next level with powerful integration and mobile tools.

• Video: Salesforce Mobile Tools

Install and configure your mobile tools with follow-along videos.

Use Built-In Mobile Tools and Features

Before you write code for your users on mobile devices, configure your environment and use built-in mobile-ready tools and features.

To develop Lightning web components that are optimized for mobile, follow these prerequisites and processes.

• Set up your development environment

We recommend setting up the VS Code editor and the Salesforce DX tools for an end-to-end development experience. You’ll also
want to set up a local development server and other tools that can help with mobile development.

• Install the mobile extensions plug-in for VS Code

Inspect and preview your components on virtual mobile devices before you deploy them to mobile users.

• Install the SLDS validator for VS Code

The SLDS validator enables syntax highlighting and code completion with intelligent token and utility class recommendations. The
validator optimizes your component styling and helps you build components across screen sizes without having to memorize all
the SLDS guidelines. It also checks for usage of base components that aren’t deemed mobile ready and suggests replacement
options.

– Validate Your Base Component References

– Use Mobile Validation with Salesforce Lightning Design System

6

Understand Mobile Development for Lightning Web
Components

Create Mobile-Ready Components

https://trailhead.salesforce.com/en/content/learn/trails/build-lightning-web-components
https://trailhead.salesforce.com/content/learn/projects/set-up-your-salesforce-mobile-developer-tools-for-lightning-web-components
https://trailhead.salesforce.com/content/learn/projects/quick-start-salesforce-dx
https://trailhead.salesforce.com/content/learn/modules/sfdx_app_dev
https://trailhead.salesforce.com/en/content/learn/trails/salesforce1_mgmt
https://trailhead.salesforce.com/en/content/learn/trails/mobile_sdk_intro
https://trailhead.salesforce.com/en/content/learn/trails/force_com_dev_intermediate
https://www.youtube.com/playlist?list=PLgIMQe2PKPSJsVvAdRvJbot0KjD_XpzT5
https://developer.salesforce.com/docs/platform/lwc/guide/install-setup-develop.html
https://developer.salesforce.com/docs/platform/lwc/guide/mobile-extensions.html
https://www.lightningdesignsystem.com/tools/validator/

After you create a Lightning web component:

• Validate the component in mobile preview environments

The preceding list of prerequisites prepares your environment for mobile previews, which helps you validate your visual changes
and other basic mobile behavior.

• Configure your component for Lightning App Builder

Configuring your component for Lightning App Builder allows an admin or business user to use the component when they create
or customize Lightning app pages and record pages. Alternatively, you can surface your Lightning web component via a custom
tab instead.

• Create a Lightning app page and add the component to your mobile navigation

Enable your components for Lightning App Builder to allow admins to create Lightning pages with your components. Lightning
app pages and record pages are supported for mobile experiences, such as the Salesforce mobile app and custom mobile apps. If
you surface your component in a custom tab instead, make it available to the mobile app via App Manager or Salesforce Navigation
in Setup.

IN THIS SECTION:

Validate Your Base Component References

Base components help you develop apps quickly. However, not all base components are designed for mobile environments. The
SLDS Validator for VS Code can help you determine the mobile readiness of the base components you use.

Use Mobile Validation with Salesforce Lightning Design System

The Salesforce Lightning Design System (SLDS) validator checks your code for SLDS mobile guidelines adherence as you type. If it
finds a potential issue, the validator provides a warning with suggested improvements. These warnings apply to HTML and CSS
code.

Validate Your Base Component References
Base components help you develop apps quickly. However, not all base components are designed for mobile environments. The SLDS
Validator for VS Code can help you determine the mobile readiness of the base components you use.

What Are Mobile-Ready Components?
A component is considered mobile-ready if it meets the following conditions:

• The component renders correctly when displayed on a mobile device:

– The component responds to fit within the reduced screen size.

– The layout of component elements and controls remains sensible.

• The component doesn’t require interactions that are awkward when performed using touch-based input. For example, side-to-side
scrolling is awkward or not supported on a narrow phone screen.

• The component doesn’t require constant connections to a server-side controller as you interact with it. For example, auto-suggest
look-ups can require a new server request with every search term change you type.

• There are no known issues when the component is used in a non-desktop browser.

The SLDS validator uses the same list of mobile-ready components used by the Component Reference. You can find documentation,
examples, and specifications for all base components in the Component Reference of the Lightning Component Library. Select a
component, then click Example, Documentation, or Specifications.

7

Validate Your Base Component ReferencesCreate Mobile-Ready Components

https://developer.salesforce.com/docs/platform/lwc/guide/mobile-extensions-preview-options.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-for-app-builder.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-custom-tab.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-custom-tab.html
https://trailhead.salesforce.com/en/modules/lightning_app_builder/units/lightning_app_builder_apphome
https://help.salesforce.com/articleView?id=salesforce_app.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/intro.htm
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-custom-tab-lex.html
https://help.salesforce.com/articleView?id=salesforce_app_customize_nav_menu.htm&language=en_US
https://developer.salesforce.com/docs/platform/lwc/guide/get-started-component-library.html

Install the SLDS Validator
Base component validation requires version 1.4.4 or later of the SLDS Validator for Visual Studio Code.

Enable or Disable the SLDS Validator
You can globally enable or disable the SLDS validator. In VS Code Preferences, go to Settings > Extensions > SLDS Validator >
Salesforce-vscode-slds > Basic: Mobile Validation.

Validate Base Components in Your Code
While you’re coding, the SLDS validator places markers on components that are known to have mobile issues. For example, the validator
checks all base component references against its “mobile ready” list. This list shows components that function as well on a limited mobile
screen as on a desktop. If the component isn’t on the list, the validator highlights the code that uses that component with a yellow
underline. Any base component reference that doesn’t show the yellow underline is ready to go mobile.

To read details about the warning, hover your mouse over the highlighted code.

Resolve Warnings
To avoid or address validation warnings, consider these options.

• Use only mobile-ready base components. To find these components:

– Open the Component Reference.

– Expand Filters.

– Under Targets, choose Salesforce Mobile App. The filtered list shows only mobile-ready components.

8

Validate Your Base Component ReferencesCreate Mobile-Ready Components

https://marketplace.visualstudio.com/items?itemName=salesforce.salesforce-vscode-slds
https://developer.salesforce.com/docs/component-library

• Update your existing Lightning web components to be mobile-ready. See:

– Follow Accessible Mobile Design Guidelines

– Lightning Design System: Accessible Mobile Design Guidelines

• If you’re creating your first mobile-ready component, start with Create Mobile-Ready Components.

Use Mobile Validation with Salesforce Lightning Design System
The Salesforce Lightning Design System (SLDS) validator checks your code for SLDS mobile guidelines adherence as you type. If it finds
a potential issue, the validator provides a warning with suggested improvements. These warnings apply to HTML and CSS code.

SLDS defines a wide range of tokens that standardize user interface style descriptors and units. For example, you can use SLDS tokens
to specify text style attributes such as font, font size, and font color. Tokens make it easy to ensure that your design is consistent, and
simplify updates as your design evolves.

SLDS provides its own validator extension for Visual Studio Code. The SLDS validator scans your Lightning web component code looking
for expressions that stray from SLDS guidelines. If it finds issues, the validator suggests an appropriate SLDS token or provides other
advice for improving the underlined expression.

For mobile readiness, the validator performs additional checks that address mobile accessibility. Accessibility on mobile devices demands
stricter guidelines than on desktop browsers, for the benefit of all users. On smaller phone screens, for example, fonts that fall below
certain size thresholds can be difficult to read even for customers with excellent eyesight. Word wrapping also becomes more important
on limited screen sizes that don’t support horizontal scrolling. SLDS validator warnings keep you informed when your settings appear
to degrade a component’s mobile effectiveness.

SLDS Guidelines for Mobile Accessibility
Warning messages for mobile readiness are based on the following SLDS guidelines.

Font size
To improve mobile readability, use an SLDS token from the following value range. If you must use another unit type, choose a value
from one of the equivalent px, pt, em, rem, or % ranges:

9

Use Mobile Validation with Salesforce Lightning Design
System

Create Mobile-Ready Components

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/mobile_a11y.html
https://lightningdesignsystem.com/accessibility/guidelines/mobile-design/

Recommended value rangeUnit

$font-size-4 or larger. See “Font Size” in Lightning Design
System.

SLDS token (recommended)

14 px or largerpx

10.5 pt or largerpt

0.875 or largerem, rem

87.5 or larger%

For specific use case recommendations, see Follow Accessible Mobile Design Guidelines on page 16.

Word wrapping in labels
To avoid truncation at runtime, always use word wrapping in labels. Avoid using the ellipsis.

Clickable images, Button icons, form elements
To clarify UI behavior, always provide labels for visual elements that support user interaction.

Install the SLDS Validator
SLDS mobile validation requires version 1.4.7 or later of the SLDS Validator for Visual Studio Code.

Enable or Disable the SLDS Validator
You can globally enable or disable the SLDS validator. In VS Code Preferences, go to Settings > Extensions > SLDS Validator >
Salesforce-vscode-slds > Basic: Mobile Validation.

Use SLDS Warnings to Validate Your Code
While you’re coding, the SLDS validator places markers on components that don’t conform to mobile guidelines. For example, if an
element of your component uses a text size smaller than $font-size-4, the validator highlights the unsuitable font size with yellow
underlining.

To read details about the warning, hover your mouse over the highlighted code.

Suppress Selected Mobile Readiness Warnings
Sometimes, you have a good reason to ignore a warning—for example, you’re at a stage of development where you’re focusing only
on the “big picture”. In such cases, you can suppress SLDS warnings using the Quick Fix menu.

In HTML or CSS files:

1. Hover over an element that’s underlined in yellow. In the warning window, click Quick Fix.

2. From the Quick Fix submenu, choose to suppress either the warning for the current line only, or all SLDS warnings for the current
file.

10

Use Mobile Validation with Salesforce Lightning Design
System

Create Mobile-Ready Components

https://www.lightningdesignsystem.com/design-tokens/#category-font-size
https://www.lightningdesignsystem.com/design-tokens/#category-font-size
https://marketplace.visualstudio.com/items?itemName=salesforce.salesforce-vscode-slds

To remind itself—and you—of suppressed mobile readiness warnings, the SLDS validator inserts code comments. If you’d like to pre-empt
these warnings manually in HTML files, you can insert the comments yourself as follows:

• Any content that is between the following pair of lines is exempt from SLDS validation:

<!-- sldsValidatorIgnore -->
...
<!-- sldsValidatorAllow -->

• The following line exempts the immediate next line from SLDS validation:

<!-- sldsValidatorIgnoreNextLine -->

• If the line <!-- sldsValidatorAllow --> doesn’t exist elsewhere in the HTML file, the following line at the top of the
file exempts the file’s entire content from SLDS validation:

<!-- sldsValidatorIgnore -->

SEE ALSO:

SLDS: Accessible Mobile Design Guidelines

SLDS: Design Tokens

W3C CSS Tips and Tricks

Minimize Bandwidth Usage

Since mobile users have network constraints, consider bandwidth on mobile devices when building your components.

Minimize CSS and JavaScript Libraries
Having many CSS and JavaScript resources can impact loading time. To improve load time, minimize your CSS and JavaScript libraries.
Remove comments and whitespace, and compress the resources before you upload your files as static resources. Images and other
assets served this way benefit from the caching and content distribution network (CDN) built into Salesforce. See Access Static Resources.

A Lightning web component’s JavaScript file can have a maximum file size of 128 KB (131,072 bytes). To work with third-party JavaScript
libraries, consider building custom versions of JavaScript libraries with only the functions you need. Many open-source JavaScript libraries
provide this option, which substantially reduces the file size. See Use Third-Party JavaScript Libraries.

Reduce Image Size
Loading large or high-resolution image files can significantly affect performance. Use fewer images and smaller background textures,
and use CSS instead of images when possible. If you must work with multiple or large images, reduce image download size by compressing
image files 10–30% using image compression tools.

Consider using CSS sprites instead of individual images. CSS sprites combine a group of similarly sized graphics, such as buttons and
icons, into a single file. To display parts of the combined image, use the CSS background-image and background-position
properties. Reducing the number of image files used minimizes the number of HTTP requests. Also, the combined sprite file of images
is easily cached, and therefore more performant for all devices.

11

Minimize Bandwidth UsageCreate Mobile-Ready Components

https://www.lightningdesignsystem.com/accessibility/guidelines/mobile-design/#site-main-content
https://www.lightningdesignsystem.com/design-tokens/
https://www.w3.org/Style/Examples/007/units.en.html
https://developer.salesforce.com/docs/platform/lwc/guide/create-resources.html
https://developer.salesforce.com/docs/platform/lwc/guide/js-third-party-library.html

Prioritize vector graphics, also known as SVG images, as they are often smaller in file size, and scale efficiently at any screen sizes. To use
a raster image, such as a JPEG or PNG file, follow general responsive design guidelines and consider provisioning raster images only for
high-resolution screens. Check the screen resolution for the devices you plan to support. Prepare an image for various resolutions and
serve the best quality image corresponding to the screen size. See Use SVG Resources.

Follow General Development and Offline Management Best Practices
To improve overall bandwidth usage, follow development best practices. Present a simple landing page to your mobile users and link
to more complex components or pages later. Similarly, lazy load the page to allow basic HTML to load first before loading custom libraries.

Since mobile connectivity issues are common, we recommend that your app handles offline scenarios gracefully. Offline access is available
in Salesforce for Android and iOS. When you cache data to make it available offline, mobile users get better overall performance and
faster access to previously accessed records. See Enable Offline Access and Offline Edit for the Salesforce Mobile App. If you build a
custom mobile app using the Mobile SDK, consider storing and synchronizing data for offline use. See Offline Management.

We recommend following the Lightning Design System design guidelines for a consistent experience. When you expect a noticeable
lag when loading a page, use loading indicators, such as a spinner (lightning-spinner) or another animated SVG or GIF image.
Use lightweight stencils when data takes longer than 300 ms to retrieve. See Loading in the SLDS Design Guidelines.

SEE ALSO:

MDN: Responsive Images

Create Responsive Layouts

For a responsive, mobile-first app, create layouts using the grid system.

Responsive design enables your app page or website to scale elegantly across screen sizes. It uses fluid grids and media queries to display
the right layout for different screens. Responsive design improves app maintainability and reliability, while future proofing for different
browsers and platforms.

Note: To vary functionality across devices, or to create a mobile version of a large existing site, consider creating a separate mobile
site or app. In these cases, creating something new may be easier that creating a responsive layout.

The first step in creating a responsive layout is to implement a fluid grid. The SLDS grid utility provides a mobile-first layout system with
granular column control. To implement the grid system in a Lightning web component, use the lightning-layout and
lightning-layout-item base components. When implementing fluid grids, the layout starts to break down at specific breakpoints.
To resolve this layout issue, media queries determine how the layout should look at each breakpoint. These responsive breakpoints are
built into lightning-layout-item, enabling you to define how each column adjusts to the screen size.

Let’s start with a one-column grid. Despite being simple visually, in this example there are three separate levels of containment. The
lightning-card base component defines a container with rounded corners around the content. The lightning-layout
base component creates a wrapper around the content using the slds-grid class. The lightning-layout-item component
creates columns using the slds-col class.

<!-- Page header here -->
<!-- Start page content -->
<lightning-card>

<lightning-layout>
<lightning-layout-item padding="around-small">

<p>Main Content Goes Here</p>
</lightning-layout-item>

</lightning-layout>

12

Create Responsive LayoutsCreate Mobile-Ready Components

https://developer.salesforce.com/docs/platform/lwc/guide/use-svg-in-component.html
https://help.salesforce.com/articleView?id=salesforce_app_enable_offline_access.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.mobile_sdk.meta/mobile_sdk/offline_management.htm
https://lightningdesignsystem.com/guidelines/overview/
https://developer.salesforce.com/docs/component-library/bundle/lightning-spinner
https://lightningdesignsystem.com/guidelines/loading/
https://developer.mozilla.org/en-US/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images
https://lightningdesignsystem.com/utilities/grid/

</lightning-card>
<!-- End page content -->

To increase the number of columns, add another lightning-layout-item with some content.

<lightning-card>
<lightning-layout>

<lightning-layout-item padding="around-small">
<p>Main Content Goes Here</p>

</lightning-layout-item>
<lightning-layout-item padding="around-small">

<p>Sidebar Content Goes Here</p>
</lightning-layout-item>

</lightning-layout>
</lightning-card>

13

Create Responsive LayoutsCreate Mobile-Ready Components

Let’s make some adjustments so that the content is more readable on mobile. To make each column full width, add size="12". The
12-column grid is the most frequently used SLDS grid. On this grid, the size attribute for lightning-layout-item accepts a
value from 1 to 12.

The multiple-rows attribute on lightning-layout adds a slds-wrap class to the container, which wraps your column to a
new row.

<lightning-card>
<lightning-layout multiple-rows>
<lightning-layout-item size="12" padding="around-small">
<p>Main Content Goes here</p>
</lightning-layout-item>
<lightning-layout-item size="12" padding="around-small">
<p>Sidebar Content Goes Here</p>

</lightning-layout-item>
</lightning-layout>

</lightning-card>

14

Create Responsive LayoutsCreate Mobile-Ready Components

When we view the page on a tablet or desktop, the sidebar column should align horizontally with the main content column. Specify
the width of the main content such that it takes up 75% of the container width using small-device-size="9". See
lightning-layout-item.

Using just markup, you can provide size details for both desktop/tablet and phone/small mobile. It’s ratio-based and enables the device
to effectively pick the right layout based on its own screen size.

<lightning-card>
<lightning-layout multiple-rows>

<lightning-layout-item size="12"
small-device-size="9"
padding="around-small">
<p>Main Content Goes Here</p>

</lightning-layout-item>
<lightning-layout-item size="12"

small-device-size="3"
padding="around-small">
<p>Sidebar Content Goes Here</p>

</lightning-layout-item>
</lightning-layout>

</lightning-card>

15

Create Responsive LayoutsCreate Mobile-Ready Components

https://developer.salesforce.com/docs/component-library/bundle/lightning-layout-item

Use Your Component on a Lightning Page
We walked through creating a Lightning web component with a responsive layout. What if you want to make your component available
in Lightning Experience or the Salesforce mobile app? You can surface your Lightning web component via a Lightning page or custom
tab.

Lightning pages in your org support desktop and mobile form factors by default. Therefore, it’s important that your components follow
a responsive design so they work seamlessly across devices.

We recommend that you use the Lightning App Builder to build Lightning pages. In Lightning App Builder, you can select a template
with the layout you want and drag your custom components onto the page. The template you choose controls how the page displays
on a device. The structure of a Lightning page adapts for the device it’s viewed on. See Lightning Pages in Salesforce Help.

If you don’t find a template you want, create a custom template using an Aura component. See Create a Custom Lightning Page Template
Component. Creating a custom template using a Lightning web component isn’t supported.

Use Your Component on a Custom Tab
Alternatively, you can surface your Lightning web component via a custom tab instead of a Lightning page. If you use a custom tab, the
tab content and layout can’t be edited or configured in Lightning App Builder. Also, custom tabs don’t automatically adapt for different
devices and screen sizes. So make sure that your component follows responsive design guidelines before you make the custom tab
available. See Custom Tabs.

Follow Accessible Mobile Design Guidelines

Before you build and test your components on a mobile screen, follow best practices for making your designs accessible.

16

Follow Accessible Mobile Design GuidelinesCreate Mobile-Ready Components

https://help.salesforce.com/articleView?id=lightning_page_overview.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.254.0.lightning.meta/lightning/components_config_for_app_builder_template_component.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.lightning.meta/lightning/components_config_for_app_builder_template_component.htm
https://developer.salesforce.com/docs/platform/lwc/guide/use-config-custom-tab-intro.html

Mobile characteristics like smaller viewport size and reduced processing power can constrain your design for layout, control mechanisms,
and navigation. These constraints impact accessibility for mobile users. For example, imagine touch targets that are too small and cause
a user to abandon your app.

The good news is that mobile devices run on similar web technologies to desktop and can usually handle fully featured websites. To
make your components accessible on mobile, follow general web design and accessibility best practices. Consider the accessibility
guidelines for mobile screens early in your design so there aren’t surprises when you deploy.

Use Base Components and Salesforce Lightning Design System (SLDS)
Use base components whenever possible. Base components implement SLDS styling, so they match the look-and-feel of the Salesforce
mobile app and have accessible features built in. To style the base component, use design variations, styling hooks, and design tokens.
If these techniques don’t meet your requirements, use an SLDS component blueprint to build your own component.

Note: Not all base components are mobile-ready. For example, lightning-tabset and lightning-tab are based
on the Tabs SLDS component blueprint. However, the tabs don’t stack on mobile to adapt to a more narrow screen. Refer to the
component reference for device support details.

Use Mobile-Friendly Fonts, Padding, and Color
To ensure that your mobile app or page design is consistent, use SLDS tokens. Avoid using font sizes smaller than $font-size-4
(14 px) as they can be hard to read on small screens. Consider these font guidelines.

• Use $font-size-4 (14 px) for secondary text, like input labels–

– Use $font-size-5 (16 px for primary text, like input values

– Use $font-size-6 (18 px) for a heading, like for a section of a form

– Use $font-size-7 (20 px) for a title, like for a record name

Padding provides spacing around your content. Use a consistent spacing system to keep your app pages neat. We recommend using
the SLDS padding utility for a consistent layout throughout your app. Besides padding, use the various SLDS utilities for alignment,
margin, text, and many others.

Colors on a mobile screen are especially important because users have to deal with glare and movement. Text and informational icons
should have good color contrast. Aim for a color contrast ratio of 4.5:1 or higher for regular-sized text, 3:1 for icons and large text. Large
text is 24 px or more, or 18 px for bold text.

Avoid Horizontal Swiping Tabs and Carousels
Content in tabs and carousels is easy to miss and poses accessibility and discoverability issues. If you must use a tab or carousel, keep
swiping to a minimum so that users can reach the last item in 3 or 4 steps. To present a high number of items, we recommend presenting
your content vertically in the viewport, such as using a list view. A list view enables users to access any item on the page directly.
Alternatively, apply a container around a related grouping of information using the lightning-card base component to match
the look-and-feel of the Salesforce mobile app. If you’re using a table to display data, the table should responsively collapse into tile lists
on narrow screens. See Displaying Data.

Provide Alternatives to Gestures
Gestures such as tapping or swiping enable users to interact with screen elements. However, users who require keyboard input or run
assistive technology can’t perform gestures on their mobile screens. Avoid making gestures the only way to access functionality. When

17

Follow Accessible Mobile Design GuidelinesCreate Mobile-Ready Components

https://developer.salesforce.com/docs/component-library/overview/components
https://developer.salesforce.com/docs/platform/lwc/guide/create-components-css-slds.html
https://developer.salesforce.com/docs/platform/lwc/guide/create-components-css-slds-blueprint.html
https://lightningdesignsystem.com/components/tabs/
https://developer.salesforce.com/docs/component-library/overview/components
https://lightningdesignsystem.com/design-tokens/
https://lightningdesignsystem.com/utilities/padding/
https://lightningdesignsystem.com/utilities/alignment/
https://lightningdesignsystem.com/guidelines/displaying-data/

using a gesture, provide a button or other control to trigger an action. You can enable gestures as shortcuts for users who perform a
task repeatedly. If you use a custom gesture, include assistive text to describe the behavior.

Make Control Mechanisms Accessible
Some people use screen readers or voice control for navigation and input. To support accessibility, make control mechanisms such as
buttons, links, and form fields focusable. Since buttons are used widely as a call to action, it’s important to make them user-friendly and
accessible. Button text should have good color contrast ratio for the button background, compared to the background the button is
placed on. See MDN: Accessibility concerns for buttons.

By default, native interactive elements, such as button, a, and input are focusable and include the required semantics and behavior.
If you must use div and span elements, set their tabindex value to 0 so they receive keyboard focus. Base components have
built-in accessibility and take care of the tab order. See Handle Focus.

Links take user away from their current view, so the link content should indicate where the link goes. For example, “click here” is not
helpful compared to “about our services”. To optimize navigating across the Salesforce mobile app, use the navigation service available
in the lightning/navigation module. The navigation service enables you to navigate to many different page types, like records,
list views, and objects. The navigation service provides extensive routing, deep linking, and login redirection. You can use it for app
navigation, state changes, and refreshes. See Navigate to Pages, Records, and Lists.

Note: For security reasons, these methods aren’t supported: window.open, window.location, and location.href.
To navigate to an external URL, use lightning/navigation with the standard__webPage attribute.

Follow Standard Tap Target Size
Mobile users are constrained with a smaller viewport size. For interactive elements, like buttons and links, provide an area that’s large
enough to tap or activate the element. It’s also helpful to provide spacing to separate interactive elements, since mobile users can easily
click or activate the wrong element.

The minimum size for a tap target for any actionable item on mobile devices is 44x44 px. If there is more than one target on a screen
that performs the same action, only one of the targets need to meet the target size of 44 by 44 CSS pixels. Secondary tap targets, such
as a listview picker or breadcrumb link, can have a minimum size of 32px.

Consider these tap target guidelines.

1. Tap target size: The tap target consists of the visual signifier, the container (if there is one), and the internal or external padding. The
minimum size is 44px.

18

Follow Accessible Mobile Design GuidelinesCreate Mobile-Ready Components

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button#Accessibility_concerns
https://developer.salesforce.com/docs/platform/lwc/guide/create-components-focus.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-navigate.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-page-reference-type.html

2. Internal padding: Changes based on the size of the visual signifier used.

3. Visual signifier: An avatar, icon, image, or text. The size can change but the tap target cannot go below 44px.

See the WCAG guidelines.

Make User Input as Painless as Possible
Mobile users typically take action or consume information quickly. These quick actions are known as micro-moments, short bursts of
focused activity that last about a minute on average. If you are requesting user input, minimize the amount of typing for mobile users.

To get user input for Salesforce records, we recommend using the lightning-record-form or
lightning-record-edit-form base component. Alternatively, use lightning-input to get user input using the
lightning/ui*Api Wire Adapters and Functions to work with Salesforce data and metadata. When you use the base components,
the <label> and <input> elements are automatically configured for you to adhere to accessibility best practices. See Work with
Records Using Base Components.

Provide a visible label for every form field and avoid long labels or truncating labels on mobile. If you work with long labels, consider
placing your labels on the top of the field instead of horizontally aligning them with the field. If you can’t include a visible label, provide
a hidden label so it’s still available to assistive technologies. The base components top aligns the label on the field automatically for you.
They also enable you the option to hide a label visually and still make it available to assistive technologies.

SEE ALSO:

Lightning Design System: Accessible Mobile Design Guidelines

MDN: Mobile Accessibility

Lightning Web Components Developer Guide: Component Accessibility

Disable Pull-to-Refresh in the Salesforce Mobile App

Disable pull-to-refresh on pages where accidentally triggering it can cause loss of data in the Salesforce mobile app. Disabling pull-to-refresh
is as simple as firing a CustomEvent. Fire this event in your own components, or create a component you can use throughout your
Salesforce org.

Pull-to-refresh is a long-established convention in mobile apps as a way to reload data appearing on a mobile app screen. It’s the default
behavior for nearly all screens in the Salesforce mobile app. However, triggering pull-to-refresh while entering data into a form causes
the form to refresh, losing values entered into the form. A custom event lets you disable pull-to-refresh on any screen from within a
Lightning web component.

First, create a CustomEvent with the name updateScrollSettings, and a data payload as illustrated here:

const disable_ptr_event = new CustomEvent("updateScrollSettings", {
detail: {

isPullToRefreshEnabled: false
},
bubbles: true,
composed: true

});

Then fire the event:

this.dispatchEvent(disable_ptr_event);

19

Disable Pull-to-Refresh in the Salesforce Mobile AppCreate Mobile-Ready Components

https://www.w3.org/WAI/WCAG21/Understanding/target-size.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-ui-api.html
https://developer.salesforce.com/docs/platform/lwc/guide/data-get-user-input-intro.html
https://developer.salesforce.com/docs/platform/lwc/guide/data-get-user-input-intro.html
https://lightningdesignsystem.com/accessibility/guidelines/mobile-design/
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/Mobile
https://developer.salesforce.com/docs/platform/lwc/guide/create-components-accessibility.html

This event has no effect outside the Salesforce mobile app. You can include it on pages that are shared between desktop and mobile
without affecting the behavior of Salesforce for your desktop users.

Example: Faceless DisablePullToRefresh Component

The following example code shows a component that does only one thing: disable pull-to-refresh on any page that includes it in
the Salesforce mobile app. This component is “faceless”, in that it doesn’t have a user interface, or any visual effect at all on pages
that include it.

Create the component in your org, and then use it anywhere you need to disable pull-to-refresh. You can add it to Lightning Pages,
flows, and record pages just by adding this component to your page or layout. You can also add it as a child component to any
custom component you create where pull-to-refresh could interfere with your component’s intended behavior.

Component Metadata

Adding the correct targets to the component metadata allows it to be used in all contexts where it’s useful.

<?xml version="1.0" encoding="UTF-8"?>
<!-- disablePullToRefresh.js-meta.xml -->
<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata">

<masterLabel>Disable Pull-to-Refresh (No UI)</masterLabel>
<description>This component disables "pull to refresh" behavior in the Salesforce

Mobile app.
Add it to a page, or as a child component in your component. This component has

no user
interface, and has no effect outside supported mobile apps.</description>
<apiVersion>54.0</apiVersion>
<isExposed>true</isExposed>
<targets>

<target>lightning__AppPage</target>
<target>lightning__FlowScreen</target>
<target>lightning__HomePage</target>
<target>lightning__RecordAction</target>
<target>lightning__RecordPage</target>
<target>lightning__Tab</target>

</targets>
</LightningComponentBundle>

Component Template

This component has no user interface. Its only purpose is to fire the event that disables pull-to-refresh. As such, the component
template is empty.

<!-- disablePullToRefresh.html -->
<template>

<!-- This component has no user interface -->
<!-- It just fires its event, and is done -->

</template>

Component Implementation

The component does one thing: fire the event that disables pull-to-refresh as soon as it’s loaded. It defines a function that fires the
event, and calls that function in the connectedCallback lifecycle hook.

// disablePullToRefresh.js
import { LightningElement } from 'lwc';

export default class DocDisablePullToRefresh extends LightningElement {

20

Disable Pull-to-Refresh in the Salesforce Mobile AppCreate Mobile-Ready Components

// Trigger this component's effect when the component loads
connectedCallback() {

this.disablePullToRefresh();
}

// Fire the event to disable pull-to-refresh on this page
// This has an effect only in the Salesforce Mobile and
// Mobile Publisher apps
disablePullToRefresh () {

// CustomEvent is standard JavaScript. See:
// https://developer.mozilla.org/en-US/docs/Web/API/CustomEvent/CustomEvent
const disable_ptr_event = new CustomEvent("updateScrollSettings", {

detail: {
isPullToRefreshEnabled: false

},
bubbles: true,
composed: true

});
this.dispatchEvent(disable_ptr_event);

}
}

SEE ALSO:

Lightning Web Components Developer Guide: XML Configuration File Elements

Lightning Web Components Developer Guide: Lifecycle Hooks

Lightning Web Components Developer Guide: Create and Dispatch Events

21

Disable Pull-to-Refresh in the Salesforce Mobile AppCreate Mobile-Ready Components

https://developer.salesforce.com/docs/platform/lwc/guide/reference-configuration-tags.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lifecycle-hooks.html
https://developer.salesforce.com/docs/platform/lwc/guide/events-create-dispatch.html

CHAPTER 3 Use Mobile Device Features in Mobile Apps

Mobile capabilities let you use mobile device features from within a Lightning web component. Access
camera and location detection hardware, and platform features like contacts and calendar data, right
from your component code. Build Lightning apps that feel like native mobile apps using these
mobile-specific features.

In this chapter ...

• Request an App
Review on a Mobile
Device

Mobile capabilities are built by Salesforce using the Nimbus framework. Nimbus creates a bridge between
Lightning web components and a mobile device’s native operating system and hardware. Nimbus plugins

• Scan Barcodes on a
Mobile Device

use the Nimbus framework, and are compiled into Salesforce mobile apps, with each plugin providing
access to a specific feature area.• Access a Mobile

Device’s Biometrics
Capabilities Nimbus plugins expose native features to Lightning web components through JavaScript APIs, allowing

you to easily access these features in your Lightning web components.• Manage Calendar
Events on a Mobile
Device

Mobile capabilities built with Nimbus can only be used when your Lightning web component runs in a
supported mobile app running on a mobile device. They are built on, and depend on, compiled code
included in the mobile app. They cannot be used on desktop, or in a mobile web browser.• Access Contacts on

a Mobile Device

Mobile Capabilities Compatibility Summary

Mobile capabilities are supported individually by each Salesforce mobile app. Not every mobile capability
is supported in every mobile app. The following table provides a compatibility overview, but see the
compatibility topic for each mobile capability for full compatibility details.

• Scan Documents on
a Mobile Device

• Monitor Geofence
Regions on a Mobile
Device

• Use Location on a
Mobile Device

Field Service
Mobile

Mobile
Publisher

Salesforce
Mobile App
Plus

Salesforce
Mobile

Mobile
Capability• Interact with NFC

Tags on a Mobile
Device

AppReviewService• Accept On-Site
Payments with
Tap-to-Pay See note.BarcodeScanner

BiometricsService

 iOS only.CalendarService

 iOS only.ContactsService

DocumentScanner

GeofencingService

22

Field Service
Mobile

Mobile
Publisher

Salesforce
Mobile App
Plus

Salesforce
Mobile

Mobile
Capability

 Android only.LocationService

NFCService

PaymentsService

Note: The Field Service Mobile app provides an alternative implementation of BarcodeScanner.
See Scan Barcodes on a Mobile Device in the Field Service Developer Guide for details.

23

Use Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/atlas.en-us.254.0.field_service_dev.meta/field_service_dev/fsl_dev_mobile_lwc_barcode_scanner.htm

Request an App Review on a Mobile Device

A Lightning web component can use a mobile device to prompt users to rate and submit a review of your app to the app stores (Apple
and Google). Their feedback can help improve your app experience, encourage downloads, and improve your app’s discoverability.

AppReviewService requires access to platform-specific APIs that are available only within compatible Salesforce mobile apps.

Important: AppReviewService does not and cannot function when running in a web browser, whether on a desktop or mobile
device.

IN THIS SECTION:

AppReviewService User Experience

Your component can deliver any user experience you desire.

Use the AppReviewService API

To develop a Lightning web component with app review features, use the AppReviewService API.

AppReviewService Example

Here’s a minimal but complete example of a Lightning web component that uses AppReviewService to request an app review.

Compatibility and Requirements

AppReviewService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is
only available when AppReviewService runs within a compatible Salesforce mobile app. It does not and cannot function when
running in a standard web browser, whether the browser runs on a desktop or mobile device.

Considerations and Limitations

Consider these guidelines and limitations when developing features that use the AppReviewService API.

SEE ALSO:

Lightning Web Components Developer Guide: AppReviewService API

AppReviewService User Experience
Your component can deliver any user experience you desire.

Here’s an example of the app review component.

1. A button displays to start the process of requesting an app review.

24

Request an App Review on a Mobile DeviceUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-appreviewservice.html

2. When the button is tapped, AppReviewService opens an app review prompt.

25

AppReviewService User ExperienceUse Mobile Device Features in Mobile Apps

3. After users rate the app, they can submit their rating to the app stores.

26

AppReviewService User ExperienceUse Mobile Device Features in Mobile Apps

Use the AppReviewService API
To develop a Lightning web component with app review features, use the AppReviewService API.

1. Import AppReviewService into your component definition to make the AppReviewService API functions available to your code.

2. Test to make sure AppReviewService is available before you call app feedback functions.

3. Use the app review functions to ask users app review related questions.

Import AppReviewService into a Component
In your component’s JavaScript file, import AppReviewService using the standard JavaScript import statement. Specifically, import
the getAppReviewService() factory function from the lightning/mobileCapabilities module, like so:

import { getAppReviewService } from 'lightning/mobileCapabilities';

After it’s imported into your component, use the factory function to get an instance of AppReviewService. With your AppReviewService
instance, use the utility functions and constants to verify availability. Use the app review related functions to perform app review
operations.

27

Use the AppReviewService APIUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-appreviewservice-factory.html

Test AppReviewService Availability
AppReviewService depends on physical device hardware and platform features. A component that uses AppReviewService renders
without errors on a desktop computer or in a mobile browser, but app review functions fail. To avoid these errors, test if AppReviewService
functionality is available before you use it.

handleBeginClick(event) {
const myAppReviewService = getAppReviewService();
if(myAppReviewService.isAvailable()) {

// Perform app review related operations
}
else {

// AppReviewService not available
// Handle with message, error, beep, and so on

}
}

Request an App Review
It’s straightforward to create an app review feature using AppReviewService.

1. Start a review request with requestAppReview().

2. Handle the results of the app review request.

For example:

myAppReviewService.requestAppReview(null)
.then(() => {

// Do something with success response
console.log("App review request complete successfully");

})
.catch((error) => {

// Handle cancelation and scanning errors here
console.error(error);

});

See requestAppReview() for more details about how to handle errors.

SEE ALSO:

Lightning Web Components Developer Guide: AppReviewService API

AppReviewService Example

AppReviewService Example
Here’s a minimal but complete example of a Lightning web component that uses AppReviewService to request an app review.

The component’s HTML template contains a button to request an app review.

<!-- appReviewFeedbackServiceExample.html -->
<template>

<lightning-card title="App Review Feedback" icon-name="custom:custom14">
<div class="slds-var-m-around_medium">

<div>Hello, {name}!</div>

28

AppReviewService ExampleUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-appreviewservice-requestappreview.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-appreviewservice.html

<div class="slds-var-m-top_x-small">
<lightning-button label="Request App Review" value="Action"

onclick={handleBeginClick}></lightning-button>
</div>

</div>
</lightning-card>

</template>

Each phase of the app review request writes a console message.

// appReviewServiceExample.js
import { LightningElement, wire } from 'lwc';
import { getAppReviewService } from 'lightning/mobileCapabilities';
import { getRecord, getFieldValue } from 'lightning/uiRecordApi';
import Id from '@salesforce/user/Id';
import NAME_FIELD from '@salesforce/schema/User.Name';
const fields = [NAME_FIELD];
const userName = getFieldValue(this.user.data, NAME_FIELD)

export default class AppReviewFeedbackService extends LightningElement {
userId = Id;
user;

@wire(getRecord, { recordId: '$userId', fields })
user;

get name() {
return userName || "Guest User";

}

handleBeginClick(event) {
const myAppReviewService = getAppReviewService();
if (myAppReviewService.isAvailable()) {

myAppReviewService.requestAppReview(null)
.then(() => {

// Do something with success response
console.log("App review request complete successfully");

})
.catch((error) => {

// Handle cancellation and scanning errors here
console.error(error);

});
}
else {

// Handle with message, error, beep, and so on
console.error("App Review service not available");

}
}

}

SEE ALSO:

Use the AppReviewService API

29

AppReviewService ExampleUse Mobile Device Features in Mobile Apps

Compatibility and Requirements
AppReviewService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is only
available when AppReviewService runs within a compatible Salesforce mobile app. It does not and cannot function when running
in a standard web browser, whether the browser runs on a desktop or mobile device.

AppReviewService is available in Lightning apps that are distributed using Mobile Publisher for Experience Cloud.

AppReviewService is fully functional when used in a Lightning app or Lightning site that’s run from a compatible Mobile Publisher for
Experience Cloud mobile app on a compatible iOS or Android mobile device. See Requirements for Mobile Publisher for Experience
Cloud, or the requirements page for your target mobile app for specific device and operating system requirements.

AppReviewService is not fully available when running on other devices, such as a desktop, or when running in a web browser, even on
a mobile device. It requires the Mobile Publisher for Experience Cloud app. The AppReviewService API is accessible in Lightning Experience
on all devices, so your code won’t fail due to missing functions. However, when your app runs in a browser—desktop or mobile—it can
use only AppReviewService constants and utility functions. Attempting any app review-related operation will fail.

Considerations and Limitations
Consider these guidelines and limitations when developing features that use the AppReviewService API.

Development Considerations

You can develop the user experience for your component on a desktop or laptop development system. Be sure to test app review
functionality on the physical devices on which you plan to deploy your Lightning app.

Apple and Google provide their own tips and best practices for requesting app reviews.

• iOS: Requesting App Store reviews (Apple)

• iOS: Ratings, Reviews, and Responses

• Android: Google Play In-App Reviews API (Google)

Testing Limitations

iOS

When you test app review features while your app is in development mode, the app rating and review request view is displayed so you
can test the UI experience. If you're testing app reviews on an app that you distribute through TestFlight, it won't display the app rating
and review request.

Android

You can test the app review integration without publishing your app to production using either internal test tracks or internal app
sharing.

• Test using an internal test track (Google)

• Test using internal app sharing (Google)

As you test your app review features on Android, you might encounter issues. To learn about some common issues with reviews on
Google Play and their solutions, see Troubleshooting (Google).

Publisher Playground App

While testing app review features isn’t available on the Publisher Playground app, you can test it using Playground app virtual device
builds.

• Playground App Virtual Device Builds (Salesforce)

Device Limitations

30

Compatibility and RequirementsUse Mobile Device Features in Mobile Apps

https://help.salesforce.com/s/articleView?id=sf.s1_branded_apps_requirements_commun.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.s1_branded_apps_requirements_commun.htm&type=5&language=en_US
https://developer.apple.com/documentation/storekit/requesting_app_store_reviews
https://developer.apple.com/app-store/ratings-and-reviews/
https://developer.android.com/guide/playcore/in-app-review
https://developer.android.com/guide/playcore/in-app-review/test#internal-test-track
https://developer.android.com/guide/playcore/in-app-review/test#internal-app-sharing
https://developer.android.com/guide/playcore/in-app-review/test#troubleshooting
https://help.salesforce.com/s/articleView?id=sf.s1_branded_apps_playground_app_simulator.htm&language=en_US

AppReviewService doesn’t implement an app review feature itself. Instead, it makes available the native features of the underlying
platform (Android or iOS). While the features provided by AppReviewService are the same across both, it’s subject to platform-specific
quirks and minor differences.

AppReviewService Considerations

Be aware of the following considerations when using AppReviewService in your Lightning app.

• AppReviewService is built on top of mobile operating system and device features. AppReviewService’s capabilities therefore depend
on Android or iOS features, which are subject to change beyond our control. When mobile operating system features change, the
behavior of AppReviewService can change without notice.

• A Lightning component that uses AppReviewService can have a custom user interface in the component itself.

Scan Barcodes on a Mobile Device

A Lightning web component can use a mobile device’s camera and mobile OS platform features to scan a barcode, such as a UPC symbol
or QR code. When a barcode is successfully scanned, the data that was read from the barcode is returned to the Lightning web component
that invoked it.

Scanning is performed locally on the mobile device, and doesn’t need a network connection. BarcodeScanner does require access to
platform-specific APIs that are available only within compatible Salesforce mobile apps.

Important: BarcodeScanner does not and cannot function when running in a web browser, whether running on a desktop or
mobile device.

BarcodeScanner provides to your component a string value of the data encoded in a scanned barcode. It doesn't attempt to interpret
or process the decoded value.

IN THIS SECTION:

Barcode Scanning User Experience

Your component can deliver any user experience you desire, but there’s a common flow for any component that can scan a barcode.

Use the BarcodeScanner API

To develop a Lightning component with barcode scanning features, use the BarcodeScanner API.

BarcodeScanner Example–Modern Scanning API

Here’s a complete example of a Lightning web component that uses BarcodeScanner to scan multiple barcodes simultaneously and
process them in a batch after scanning is completed.

BarcodeScanner Example—Single Scan (Legacy)

Here’s a minimal but complete example of a Lightning web component that uses BarcodeScanner to recognize a barcode.

Scan Multiple Barcodes (Legacy)

To scan multiple barcodes in a single scanning session, use resumeCapture() to create a continuous scanning cycle that scans
barcodes until the user clicks the Cancel button.

BarcodeScanner Example—Continuous Scanning (Legacy)

Here’s a minimal but complete example of a Lightning web component that uses BarcodeScanner to scan for and recognize multiple
barcodes in a continuous cycle.

Create a Self-Service Kiosk Application

Use BarcodeScanner with a device’s front-facing camera to create applications suitable for use as an unattended self-service kiosk.

BarcodeScanner Example—Self-Service Kiosk (Legacy)

Here’s a complete example of a Lightning web component with BarcodeScanner that could serve as a self-service kiosk.

31

Scan Barcodes on a Mobile DeviceUse Mobile Device Features in Mobile Apps

Customize the BarcodeScanner User Interface

BarcodeScanner provides a standard, minimal user interface that can be used out of the box. For applications and use cases where
the standard user interface doesn’t provide enough information, or to customize for your company or brand, create a custom UI
using HTML.

Compatibility and Requirements

BarcodeScanner is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is
only available when BarcodeScanner runs within a compatible Salesforce mobile app. It does not and cannot function when
running in a web browser, whether the browser runs on a desktop or mobile device.

Considerations and Limitations

Keep the following in mind when developing features that use the BarcodeScanner API.

SEE ALSO:

Lightning Web Components Developer Guide: BarcodeScanner API

Barcode Scanning User Experience
Your component can deliver any user experience you desire, but there’s a common flow for any component that can scan a barcode.

1. A Lightning web component displays a button (or other user interface control) to start a scan.

2. When the button is pressed, BarcodeScanner invokes the mobile device’s user interface for the camera and barcode scanning
function. When the camera detects a valid barcode, it displays a bounding box around the barcode, reads the data from the barcode,
and returns the result to the Lightning web component that invoked it.

32

Barcode Scanning User ExperienceUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner.html

3. The Lightning web component displays or otherwise processes the results of the scan.

33

Barcode Scanning User ExperienceUse Mobile Device Features in Mobile Apps

Use the BarcodeScanner API
To develop a Lightning component with barcode scanning features, use the BarcodeScanner API.

1. Import BarcodeScanner into your component definition to make the BarcodeScanner API functions available to your code.

2. Test to make sure BarcodeScanner is available before you call scanning lifecycle functions.

3. Use the scanning lifecycle functions to start, continue, and stop scanning.

Important: We recommend using the modern scan() and dismiss() API functions in your LWC scanning code to
streamline your development experience. The legacy API functions beginCapture(), resumeCapture(), and
endCapture() are still available, but will be retired in a future release. See Understand BarcodeScanner Modern and Legacy
APIs on page 35 for additional details.

Add BarcodeScanner to a Lightning Web Component
In your component’s JavaScript file, import BarcodeScanner using the standard JavaScript import statement. Specifically, import the
getBarcodeScanner() factory function from the lightning/mobileCapabilities module, like so:

import { getBarcodeScanner } from 'lightning/mobileCapabilities';

After it’s imported into your component, use the factory function to get an instance of BarcodeScanner. With your BarcodeScanner
instance, use the utility functions and constants to verify scanner availability and to configure scans. Use the scanning lifecycle functions
to perform scanning operations.

Test BarcodeScanner Availability
BarcodeScanner depends on physical device hardware and platform features. A component that uses BarcodeScanner renders without
errors on a desktop computer, but scanning functions fail. To avoid these errors, test if BarcodeScanner functionality is available before
you use it.

handleBeginScanClick(event) {
const myScanner = getBarcodeScanner();
if(myScanner.isAvailable()) {

// Perform scanning operations
}
else {

// Scanner not available
// Not running on hardware with a scanner
// Handle with message, error, beep, and so on

}
}

Scan a Barcode
Scanning with BarcodeScanner is simple using the scanning lifecycle functions.

1. Start a scan with scan(options).

2. Handle the result of the scan, which is returned in the form of a promise.

3. End the scan with dismiss().

34

Use the BarcodeScanner APIUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-scan.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-dismiss.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-scan.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-dismiss.html

For example:

myScanner.scan(scanningOptions)
.then((resultsArray) => {

// Do something with the result of the scan
for (let singleResult in resultsArray) {

console.log(singleResult);
this.scannedBarcodes.push(singleResult.value);

}
})
.catch((error) => {

// Handle cancellation and scanning errors here
console.error(error);

})
.finally(() => {

myScanner.dismiss();
});

See scan(options) for more details of how to handle scan results, handle errors, and so on.

IN THIS SECTION:

Understand BarcodeScanner Modern and Legacy APIs

In previous versions of BarcodeScanner, scanning a single barcode in a scanning session required a different programmatic approach
than scanning several barcodes in a row without requiring user intervention after each scan. Now, BarcodeScanner has new APIs to
streamline the development experience for these common use cases, and new capabilities to scan large quantities of barcodes more
efficiently.

Understand the BarcodeScanner Scanning Lifecycle

BarcodeScanner has four distinct scanning modes, each appropriate for different use cases.

SEE ALSO:

Lightning Web Components Developer Guide: BarcodeScanner API

BarcodeScanner Example–Modern Scanning API

BarcodeScanner Example—Single Scan (Legacy)

Understand BarcodeScanner Modern and Legacy APIs
In previous versions of BarcodeScanner, scanning a single barcode in a scanning session required a different programmatic approach
than scanning several barcodes in a row without requiring user intervention after each scan. Now, BarcodeScanner has new APIs to
streamline the development experience for these common use cases, and new capabilities to scan large quantities of barcodes more
efficiently.

Legacy APIs and Modern APIs
We use the terms legacy APIs and modern APIs here. Let’s clarify what they mean.

• Legacy APIs refer to the functions beginCapture(), resumeCapture(), and endCapture()

• Modern APIs refer to the functions scan() and dismiss()

The legacy APIs are supported, but will be retired in a future release–the modern APIs replace them fully. The legacy APIs support single
scanning and continuous scanning modes, but not bulk scanning or multi-scanning.

35

Use the BarcodeScanner APIUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-scan.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner.html

The modern APIs are, as you’ve probably guessed, a newer addition to BarcodeScanner. They were created to simplify the development
experience, and they support all scanning modes, including bulk scanning and multi-scanning.

Note: If you’re adding BarcodeScanner to your LWC for the first time, use the modern APIs. There’s no advantage to using the
legacy APIs, and you’ll eventually have to switch to the modern APIs anyway, when the retirement of the legacy APIs becomes
official.

If you have an existing LWC that uses the legacy APIs, we encourage you to update your code to use the modern APIs as soon as
possible, so you can enjoy a more streamlined development experience and also have access to the new bulk scanning and
multi-scanning capabilities.

The following table summarizes the relationships of the legacy APIs to the modern APIs replacing them:

NotesModern APILegacy API

scan() replaces both beginCapture() and
resumeCapture().

scan()beginCapture()

scan()resumeCapture()

dismiss()endCapture()

Practical Differences Between scan() and beginCapture()

For the most part, the behavior of the modern APIs is identical to their legacy counterparts. One notable difference is how the returned
promise is resolved in scan(), compared to beginCapture().

In beginCapture(), the returned Promise resolves to a single result. In scan(), the returned Promise resolves to an array of
results. Because bulk scanning and multi-scanning process multiple barcodes simultaneously, only the modern scan() API supports
them.

SEE ALSO:

Lightning Web Components Developer Guide: BarcodeScanner API

Understand the BarcodeScanner Scanning Lifecycle

Use the BarcodeScanner API

Understand the BarcodeScanner Scanning Lifecycle
BarcodeScanner has four distinct scanning modes, each appropriate for different use cases.

The different scanning cycles are the following:

• Single Scanning

• Continuous Scanning

• Bulk Scanning

• Multi-Scanning

Single Scanning
Single scanning mode consists of scanning a single barcode, followed immediately by processing the barcode data.

36

Use the BarcodeScanner APIUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner.html

Single scanning is ideal when the use case is a situation where user interaction is desired right after the barcode is scanned. For example,
if your application seeks to confirm the user’s identity, one possible implementation starts with a barcode scan and then immediately
prompts the user to answer a security question before the next user can scan their barcode.

Continuous Scanning
Continuous scanning mode consists of scanning several barcodes, one after the other, processing each one after it’s scanned.

Continuous scanning is ideal where only one barcode must be scanned at a time and the processing must take place after each scan.
For example, if your application relates to inventory management in a warehouse, one possible implementation involves employees
scanning many items, one at a time, updating the inventory system in real-time and prompting inventory managers to reorder more of
a given product if stock runs low.

Bulk Scanning and Multi-Scanning
The default continuous scanning mode (explained in the previous section) is ideal for use cases where you want to scan one barcode
at a time, over and over again, processing each barcode as it’s scanned. But what if you want to scan several barcodes before processing
them? Or scan a bunch simultaneously? Enter bulk scanning and multi-scanning.

Bulk scanning and multi-scanning are represented as Boolean parameters (enableBulkScan and enableMultiScan, respectively)
on the BarcodeScannerOptions object. They’re enabled when their values are set to true.

Bulk scanning mode consists of scanning several barcodes, one after the other, and then processing all of them in a batch after scanning
is completed.

Bulk scanning is ideal when multiple barcodes are to be scanned in a single session, but the processing can take place in one batch at
the end, after all items are scanned. For example, if your application is used for checking out materials at a library, one possible
implementation involves librarians scanning many books, one at a time. After all the books have been scanned for check-out, the system
processes all the books at once, assigning them to the patron checking out the books and marking those books unavailable for other
patrons until they’re returned.

Multi-scanning mode consists of scanning several barcodes simultaneously, processing all of them in a batch after scanning is completed.

Multi-scanning is ideal when the use case is a situation where many barcodes must be scanned at a time. For example, if your application
is used in a manufacturing quality control setting, one possible implementation involves multiple barcodes being placed on each product,
at different stages of the manufacturing process. Scanning all of these barcodes simultaneously allows for an efficient quality check,
confirming that each product is ready for sale and shipment.

Similarities Between the Scanning Modes
From a technical perspective, there aren’t really four distinct scanning modes–there are just two.

We’ve defined four modes in the preceding section because, from a user perspective, those four styles of scanners are what you have
to choose from, depending on your use case. However, when it comes to controlling the scanning cycle from your LWC code, single
scanning is just a special case of continuous scanning. And, although bulk scanning and multi-scanning provide a different user experience,
they’re practically identical in the scanning code you need to write. So, single and continuous scanning represent one of the fundamental
scanning lifecycles, while bulk and multi-scanning represent the other.

The main difference between these two types of scanning lifecycles is when the processing of the barcode data occurs. For single
scanning and continuous scanning, the processing takes place immediately after each scan, while for bulk scanning and multi-scanning
it takes place after the user manually ends the scanning cycle. Your code handles the actual processing of the barcode data, so be sure
to select the type of scanning behavior that works best for your application.

37

Use the BarcodeScanner APIUse Mobile Device Features in Mobile Apps

BarcodeScanner Example–Modern Scanning API
Here’s a complete example of a Lightning web component that uses BarcodeScanner to scan multiple barcodes simultaneously and
process them in a batch after scanning is completed.

The HTML template provides a minimal scanning user interface. There’s an element to display the results of the scans in a list view, a bit
of static help text, and a button to start scanning.

<!-- barcodeScannerMultiScan.html -->
<template>
<div class="slds-text-align_center">
BarcodeScanner: Multi-Scan

</div>

<!-- Static help text -->
<div class="slds-text-color_weak slds-m-vertical_large slds-m-horizontal_medium">
<p>Tap Start a Scanning Session to open a barcode scanner camera view.

Position barcodes in the scanner view to scan them.</p>
<p>Continue scanning items. Tap Done when you are done scanning.</p>

</div>

<!-- Scan button, always enabled -->
<div class="slds-align_absolute-center slds-m-vertical_large">
<lightning-button
variant="brand"
class="slds-var-m-left_x-small"
icon-name="utility:scan"
label="Start a Scanning Session"
title="Start scanning barcodes, until there are no more barcodes to scan"
onclick={beginScanning}
></lightning-button>

</div>

<!-- After barcodes are scanned, their values are displayed here: -->
<template lwc:if={scannedBarcodes}>
<div class="slds-var-m-vertical_large slds-var-p-vertical_medium slds-border_top

slds-border_bottom">
<p>Scanned barcode values are:</p>
<pre>{scannedBarcodesAsString}</pre>

</div>
</template>

</template>

This example displays all the values of successful scans in a list view. It’s a streamlined example, emphasizing the scanning lifecycle of
the modern scanning APIs.

// barcodeScannerMultiScan.js
import { LightningElement, track } from "lwc";
import { getBarcodeScanner } from "lightning/mobileCapabilities";

export default class BarcodeScannerContinuousDocDemo extends LightningElement {
barcodeScanner;

38

BarcodeScanner Example–Modern Scanning APIUse Mobile Device Features in Mobile Apps

@track scannedBarcodes;

connectedCallback() {
this.barcodeScanner = getBarcodeScanner();

}

beginScanning() {
// Set your configuration options, including bulk and multi-scanning if desired, in

this scanningOptions object
const scanningOptions = {
barcodeTypes: [this.barcodeScanner.barcodeTypes.QR],
scannerSize: "FULLSCREEN",
cameraFacing: "BACK",
showSuccessCheckMark: true,
enableBulkScan: true,
enableMultiScan: true,

};

// Make sure BarcodeScanner is available before trying to use it
if (this.barcodeScanner != null && this.barcodeScanner.isAvailable()) {
// Reset scannedBarcodes before starting new scanning session
this.scannedBarcodes = [];

// Start scanning barcodes
this.barcodeScanner
.scan(scanningOptions)
.then((results) => {
this.processScannedBarcodes(results);

})
.catch((error) => {
this.processError(error);

})
.finally(() => {
this.barcodeScanner.dismiss();

});
} else {
console.log("BarcodeScanner unavailable. Non-mobile device?");

}
}

processScannedBarcodes(barcodes) {
// Do something with the barcode scan value:
// - look up a record
// - create or update a record
// - parse data and put values into a form
// - and so on; this is YOUR code
console.log(JSON.stringify(barcodes));
this.scannedBarcodes = this.scannedBarcodes.concat(barcodes);

}

processError(error) {
// Check to see if user ended scanning
if (error.code == "USER_DISMISSED") {
console.log("User terminated scanning session.");

39

BarcodeScanner Example–Modern Scanning APIUse Mobile Device Features in Mobile Apps

} else {
console.error(error);

}
}

get scannedBarcodesAsString() {
return this.scannedBarcodes.map((barcode) => barcode.value).join("\n");

}
}

SEE ALSO:

Use the BarcodeScanner API

BarcodeScanner Example—Single Scan (Legacy)
Here’s a minimal but complete example of a Lightning web component that uses BarcodeScanner to recognize a barcode.

Important: We recommend using the modern scan() and dismiss() API functions in your LWC scanning code to
streamline your development experience. The legacy API functions beginCapture(), resumeCapture(), and
endCapture() are still available, but will be retired in a future release. See Understand BarcodeScanner Modern and Legacy
APIs on page 35 for additional details.

The HTML template provides the bare minimum for a scanning user interface. There’s an element to display the results of a scan, a bit
of static help text, and a button to start a scan. The only thing mildly interesting is the use of the disabled attribute to disable the
scan button when not on a mobile device. This attribute is set based on the results of isAvailable() when the component is
initialized.

<!-- barcodeScannerExample.html -->
<template>

<div class="slds-text-align_center">
BarcodeScanner: Single Scan

</div>

<!-- After a barcode is successfully scanned,
its value is displayed here: -->

<template lwc:if={scannedBarcode}>
<div class="slds-var-m-vertical_large slds-var-p-vertical_medium

slds-text-align_center slds-border_top slds-border_bottom">
Scanned barcode value is:
{scannedBarcode}

</div>
</template>

<!-- Static help text -->
<div class="slds-text-align_center slds-text-color_weak slds-m-vertical_large">

Click Scan Barcode to open a barcode scanner camera view. Position
a

barcode in the scanner view to scan it.
</div>

<!-- The click-to-scan button;
Disabled if BarcodeScanner isn't available -->

40

BarcodeScanner Example—Single Scan (Legacy)Use Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-scan.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-dismiss.html

<div class="slds-align_absolute-center slds-m-vertical_large">
<lightning-button

variant="brand"
class="slds-var-m-left_x-small"
disabled={scanButtonDisabled}
icon-name="utility:scan"
label="Scan Barcode"
title="Open a camera view and look for a barcode to scan"
onclick={handleBeginScanClick}>

</lightning-button>
</div>

</template>

This simple example displays the decoded value of a successful scan. It also displays a toast-style message based on the results of the
scan. Each phase of the scanning lifecycle writes a console message.

// barcodeScannerExample.js
import { LightningElement } from 'lwc';
import { ShowToastEvent } from 'lightning/platformShowToastEvent';
import { getBarcodeScanner } from 'lightning/mobileCapabilities';

export default class BarcodeScannerExample extends LightningElement {
myScanner;
scanButtonDisabled = false;
scannedBarcode = '';

// When component is initialized, detect whether to enable Scan button
connectedCallback() {

this.myScanner = getBarcodeScanner();
if (this.myScanner == null || !this.myScanner.isAvailable()) {

this.scanButtonDisabled = true;
}

}

handleBeginScanClick(event) {
// Reset scannedBarcode to empty string before starting new scan
this.scannedBarcode = '';

// Make sure BarcodeScanner is available before trying to use it
// Note: We _also_ disable the Scan button if there's no BarcodeScanner
if (this.myScanner != null && this.myScanner.isAvailable()) {

const scanningOptions = {
barcodeTypes: [this.myScanner.barcodeTypes.QR],
instructionText: 'Scan a QR Code',
successText: 'Scanning complete.'

};
this.myScanner

.beginCapture(scanningOptions)

.then((result) => {
console.log(result);

// Do something with the barcode scan value:
// - look up a record
// - create or update a record
// - parse data and put values into a form

41

BarcodeScanner Example—Single Scan (Legacy)Use Mobile Device Features in Mobile Apps

// - and so on; this is YOUR code
// Here, we just display the scanned value in the UI
this.scannedBarcode = result.value;
this.dispatchEvent(

new ShowToastEvent({
title: 'Successful Scan',
message: 'Barcode scanned successfully.',
variant: 'success'

})
);

})
.catch((error) => {

// Handle cancellation and unexpected errors here
console.error(error);

if (error.code == 'userDismissedScanner') {
// User clicked Cancel
this.dispatchEvent(

new ShowToastEvent({
title: 'Scanning Cancelled',
message:

'You cancelled the scanning session.',
mode: 'sticky'

})
);

}
else {

// Inform the user we ran into something unexpected
this.dispatchEvent(

new ShowToastEvent({
title: 'Barcode Scanner Error',
message:

'There was a problem scanning the barcode: ' +
error.message,

variant: 'error',
mode: 'sticky'

})
);

}
})
.finally(() => {

console.log('#finally');

// Clean up by ending capture,
// whether we completed successfully or had an error
this.myScanner.endCapture();

});
} else {

// BarcodeScanner is not available
// Not running on hardware with a camera, or some other context issue
console.log(

'Scan Barcode button should be disabled and unclickable.'
);
console.log('Somehow it got clicked: ');

42

BarcodeScanner Example—Single Scan (Legacy)Use Mobile Device Features in Mobile Apps

console.log(event);

// Let user know they need to use a mobile phone with a camera
this.dispatchEvent(

new ShowToastEvent({
title: 'Barcode Scanner Is Not Available',
message:

'Try again from the Salesforce app on a mobile device.',
variant: 'error'

})
);

}
}

}

SEE ALSO:

BarcodeScanner Example–Modern Scanning API

Use the BarcodeScanner API

Scan Multiple Barcodes (Legacy)
To scan multiple barcodes in a single scanning session, use resumeCapture() to create a continuous scanning cycle that scans
barcodes until the user clicks the Cancel button.

Important: We recommend using the modern scan() and dismiss() API functions in your LWC scanning code to
streamline your development experience. The legacy API functions beginCapture(), resumeCapture(), and
endCapture() are still available, but will be retired in a future release. See Understand BarcodeScanner Modern and Legacy
APIs on page 35 for additional details.

Sometimes you want to scan many barcodes in a row, without requiring user interaction between scans. For example, when scanning
a shelf of inventory, you might not want to stop after each item, or to click a Scan button for every item. In these cases, it can make more
sense to click Scan once, and then scan barcodes repeatedly until done with all of the items. Implementing a continuous scanning cycle
like this is slightly different from scanning a single item.

1. Start a scanning session as usual, with beginCapture().

2. When the promise resolves, process the scanned barcode as usual, in the then() block.

Note: Processing the barcode can’t change the user interface, or require interacting with the user. That needs to wait until
after the scanning cycle completes.

3. At the end of the then() block, call a new continue scanning function, which uses resumeCapture() to continue the current
scanning session.

4. Call endCapture() at the end of the catch() block, instead of in the finally() block.

5. When the user clicks Cancel to end the scanning session, BarcodeScanner returns a BarcodeScannerError object
with a code property value of userDismissedScanner. Handle cancellation and actual errors in the catch() block.

Single Scan vs. Continuous Scan
The core scanning lifecycles for single scans and continuous scanning are similar, but different enough that it’s worth comparing the
two.

43

Scan Multiple Barcodes (Legacy)Use Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-scan.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-dismiss.html

Continuous ScanSingle Scan

sessionScanner.beginCapture(scanningOptions)singleScanner.beginCapture(scanningOptions)

.then((scannedBarcode) =>.then((scannedBarcode) =>

this.processScannedBarcode(scannedBarcode)this.processScannedBarcode(scannedBarcode)
this.continueScanning();

))
.catch((error) => {.catch((error) => {

console.error(error);console.error(error);
sessionScanner.endCapture();

});})
.finally(() => {

singleScanner.endCapture();
});

There are two significant differences to note.

• The continuous scanning then() block has a call to a new function, continueScanning(). See the Continue a Scanning
Session section.

• The call to endCapture() is made in the finally() block for the single scan, but is called in the catch() error handling
block for continuous scanning. See the End Capture for Continuous Scanning section.

Continue a Scanning Session
In the preceding code comparison, the technique of continuing a scanning session was hidden behind the new line, a call to
continueScanning(). Here’s an example of that function.

continueScanning() {
this.sessionScanner.resumeCapture()
.then((scannedBarcode) => {

this.processScannedBarcode(scannedBarcode);
this.continueScanning();

})
.catch((error) => {

this.processError(error);
this.sessionScanner.endCapture();

});
}

This code should look familiar; it’s nearly identical to the earlier beginCapture() example for continuous scanning. There‘s only
one difference: continueScanning() creates a promise chain by calling sessionScanner.resumeCapture(), while
the earlier example called sessionScanner.beginCapture(). It might be obvious, but you only call beginCapture()
once, at the beginning of a scanning cycle.

While the difference in the code is minor, the difference in the flow of execution is significant. The scanning cycle begins in a promise
chain created by beginCapture(), which executes only once. That initial promise resolves one of two ways:

• If the scan is successful, the barcode result is processed, and then the flow of control for the scanning cycle is handed off to
continueScanning().

44

Scan Multiple Barcodes (Legacy)Use Mobile Device Features in Mobile Apps

• If the user clicks Cancel, or if there’s an error, the promise chain ends in the catch() error handling block, covered in the End
Capture for Continuous Scanning section.

The promise chain in continueScanning() ends the same two ways, with one important difference. While the code is the same,
after a successful scan it continues the scanning cycle by calling itself, creating a recursive loop that continues the scanning cycle until
the user clicks Cancel, or there’s an error.

Whoops. Didn’t mean to scare you with that word, recursive. Yes, continueScanning() ends by calling itself, which makes it a
recursive function. But this recursion is pretty simple—it’s just a loop, an event loop of sorts. The loop handles scan-something events
(in the then() block) until a user-clicked-Cancel event comes along (in the catch() block), and then it ends. It might take a minute,
but you can wrap your head around it.

The overall pattern here is the following:

• You begin a scanning cycle using beginCapture().

• The promise resolution chain from beginCapture() ends in a call to continueScanning(), your own function.

• continueScanning() continues the existing scanning cycle by calling resumeCapture(), but is otherwise the same as
the beginCapture() that started the cycle.

• The promise resolution chain in continueScanning() ends in a call to continueScanning(), creating a scanning cycle
loop.

• The loop ends when the user clicks Cancel, BarcodeScanner rejects the promise with a BarcodeScannerError, and
you call endCapture() in the error handling catch() block.

The code duplication between the beginCapture() and resumeCapture() promise chains is unfortunate, but unavoidable.
Move as much processing code, such as the handling of a scanned barcode, into functions you can call from both chains. In the example
here, processScannedBarcode() is a function that both promise chains use to handle a successful scan. See BarcodeScanner
Example—Continuous Scanning (Legacy) on page 45 for the complete sample, which includes that function’s implementation.

End Capture for Continuous Scanning
In a continuous scanning session, the user scans items repeatedly until they’re out of items. Then they click the Cancel button to end
the session. In code, BarcodeScanner handles cancellation by rejecting the promise, and returning a BarcodeScannerError
to signal that the user canceled scanning. See BarcodeScanner Example—Continuous Scanning (Legacy) on page 45 for how to
distinguish between the user clicking Cancel and an actual error.

Importantly, clicking the Cancel button is the only way to end a continuous scanning session. This is in contrast to a single scan session,
which can end with either a successful scan or the Cancel button.

Because continuous scanning always ends with the Cancel button, and thus a BarcodeScannerError, we can call
endCapture() in the error handling catch() block.

However, because a single scan might not end in a BarcodeScannerError, the catch() block might never execute. So for a
single scan, we put endCapture() in the finally() block, to make sure that, success or failure, it always gets called.

SEE ALSO:

BarcodeScanner Example—Continuous Scanning (Legacy)

BarcodeScanner Example—Continuous Scanning (Legacy)
Here’s a minimal but complete example of a Lightning web component that uses BarcodeScanner to scan for and recognize multiple
barcodes in a continuous cycle.

45

BarcodeScanner Example—Continuous Scanning (Legacy)Use Mobile Device Features in Mobile Apps

Important: We recommend using the modern scan() and dismiss() API functions in your LWC scanning code to
streamline your development experience. The legacy API functions beginCapture(), resumeCapture(), and
endCapture() are still available, but will be retired in a future release. See Understand BarcodeScanner Modern and Legacy
APIs on page 35 for additional details.

The HTML template provides the bare minimum for a scanning user interface. There’s an element to display the results of the scans, a
bit of static help text, and a button to start scanning.

<!-- barcodeScannerContinuous.html -->
<template>

<div class="slds-text-align_center">
BarcodeScanner: Multi-Scan

</div>

<!-- After barcode are scanned, their values are displayed here: -->
<template lwc:if={scannedBarcodes}>

<div class="slds-var-m-vertical_large slds-var-p-vertical_medium
slds-text-align_center slds-border_top slds-border_bottom">
Scanned barcode values are:
{scannedBarcodesAsString}

</div>
</template>

<!-- Static help text -->
<div class="slds-text-align_center slds-text-color_weak slds-m-vertical_large">

Click Start a Scanning Session to open a
barcode scanner camera view. Position a barcode in the scanner
view to scan it.

<p>Continue scanning items. Click � when there are no
more items to scan.</p>

</div>

<!-- Scan button, always enabled -->
<div class="slds-align_absolute-center slds-m-vertical_large">

<lightning-button
variant="brand"
class="slds-var-m-left_x-small"
icon-name="utility:scan"
label="Start a Scanning Session"
title="Start scanning barcodes, until there are no more barcodes to scan"
onclick={beginScanning}

></lightning-button>
</div>

</template>

This example displays all of the values of successful scans, one after the other. This example is streamlined, omitting some of the comments
and processing illustrated in BarcodeScanner Example—Single Scan (Legacy) on page 40, to focus on the scanning cycle itself.

// barcodeScannerContinuous.js
import { LightningElement, track } from 'lwc';
import { ShowToastEvent } from 'lightning/platformShowToastEvent';
import { getBarcodeScanner } from 'lightning/mobileCapabilities';

export default class BarcodeScannerContinuous extends LightningElement {

46

BarcodeScanner Example—Continuous Scanning (Legacy)Use Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-scan.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-dismiss.html

sessionScanner;
@track scannedBarcodes;

connectedCallback() {
this.sessionScanner = getBarcodeScanner();

}

beginScanning() {
// Reset scannedBarcodes before starting new scanning session
this.scannedBarcodes = [];

// Make sure BarcodeScanner is available before trying to use it
if (this.sessionScanner != null && this.sessionScanner.isAvailable()) {

const scanningOptions = {
barcodeTypes: [this.sessionScanner.barcodeTypes.QR],
instructionText: 'Scan barcodes — Click �� when done',
successText: 'Successful scan.'

};
this.sessionScanner.beginCapture(scanningOptions)
.then((scannedBarcode) => {

this.processScannedBarcode(scannedBarcode);
this.continueScanning();

})
.catch((error) => {

this.processError(error);
this.sessionScanner.endCapture();

})
}
else {

console.log("BarcodeScanner unavailable. Non-mobile device?");
}

}

async continueScanning() {
// Pretend to do some work; see timing note below.
await new Promise((resolve) => setTimeout(resolve, 1000));

this.sessionScanner.resumeCapture()
.then((scannedBarcode) => {

this.processScannedBarcode(scannedBarcode);
this.continueScanning();

})
.catch((error) => {

this.processError(error);
this.sessionScanner.endCapture();

})
}

processScannedBarcode(barcode) {
// Do something with the barcode scan value:
// - look up a record
// - create or update a record
// - parse data and put values into a form
// - and so on; this is YOUR code

47

BarcodeScanner Example—Continuous Scanning (Legacy)Use Mobile Device Features in Mobile Apps

console.log(JSON.stringify(barcode));
this.scannedBarcodes.push(barcode);

}

processError(error) {
// Check to see if user ended scanning
if (error.code == 'userDismissedScanner') {

console.log('User terminated scanning session via Cancel.');
}
else {

console.error(error);
}

}

get scannedBarcodesAsString() {
return this.scannedBarcodes.map(barcodeResult => {

return barcodeResult.value;
}).join('\n\n');

}
}

Note: This example doesn’t process a scanned barcode in any meaningful way. As a result, the processScannedBarcode()
function executes quickly—too quickly. It can trigger a timing issue that causes the example to fail. To avoid the issue, we’ve
inserted a one-second delay before starting the next scan. Real-world barcode processing typically takes long enough to avoid
the issue. In that case, you can remove the line with the delay and the async keyword preceding the continueScanning()
function.

See Scan Multiple Barcodes (Legacy) on page 43 for an explanation of how beginScanning() and continueScanning()
work together to create the continuous scanning cycle.

SEE ALSO:

Scan Multiple Barcodes (Legacy)

Create a Self-Service Kiosk Application
Use BarcodeScanner with a device’s front-facing camera to create applications suitable for use as an unattended self-service kiosk.

Imagine a convention hall where convention attendees scan their badge for entry. The convention organizers have set up an entry point
with a row of tablets, and on each tablet screen is a check-in application, displaying both a scanner view and instructions prompting
attendees to scan their badge. Attendees can easily hold their badge up to the scanner view, after which they receive a confirmation
message (indicating that they may enter) or a warning message (indicating that there is an issue with their badge, and that they should
head over to the information booth to get help).

At the same conference, presenters at each booth in the convention hall need a way to collect leads and stay connected with conference
attendees who express interest in their product or service. Each booth is outfitted with a tablet with a scanner view, similar to what the
attendees encountered when entering the conference. These scanners, however, scan an attendee’s badge for the purpose of collecting
their information and sharing it with the booth presenter, so that after the conference the two parties can stay connected, finalize
purchase discussions, and more.

To implement these self-service scanning stations, conference organizers and booth presenters used BarcodeScanner in their applications
to seamlessly integrate their check-in and lead collection processes with Salesforce. Once scanned, the check-in application processes
the barcode to find the associated registration record and verify that the person scanning the barcode is a registered conference attendee.
Along the same lines, the booth scanner scans barcodes, extracts embedded attendee data, and uses it to create leads in Salesforce.

48

Create a Self-Service Kiosk ApplicationUse Mobile Device Features in Mobile Apps

Whether you want to update an existing LWC component to use the self-service features of BarcodeScanner, or you’re creating a
brand-new component, you only need to keep a few things in mind to get started.

What You'll Need
As with all mobile capabilities, the user interface and other implementation details for creating a self-service “kiosk” application are up
to you, the LWC developer, to create and maintain. However, there are common elements that any implementation will have.

Important: We recommend using the modern scan() and dismiss() API functions in your LWC scanning code to
streamline your development experience. The legacy API functions beginCapture(), resumeCapture(), and
endCapture() are still available, but will be retired in a future release. See Understand BarcodeScanner Modern and Legacy
APIs on page 35 for additional details.

Continuous Scanning Lifecycle

To create a scanner that continuously scans and processes barcode data without manual user intervention, use the resumeCapture()
function in your programming logic to create a continuous scanning lifecycle.

For more information about resumeCapture() and how the scanning lifecycle works under the hood, see Scan Multiple Barcodes
on page 43.

Front-Facing Camera

BarcodeScanner functionality to use the front-facing camera allows for a better user experience when creating a kiosk application. It
allows the screen of your kiosk setup to function as a sort of mirror, which helps your users more easily position their scannable code
(whether the code is on a badge, card, or something else) within the scanner view. To use the front-facing camera in your component,
set the value of the cameraFacing property on the BarcodeScannerOptions object to FRONT.

For more information on this property and other details of configuring BarcodeScanner, see BarcodeScanner Data Types.

Custom Scanner UI

Finally, you’ll want to add your own custom UI to BarcodeScanner to replace the standard, minimal UI. To do this, first build your user
interface as custom, static HTML page. Then provide the HTML for your custom UI as a string for the value of the
backgroundViewHTML property of the BarcodeScannerOptions object.

Note: Your custom UI completely replaces the standard BarcodeScanner UI, including the Cancel button used for dismissing
the scanner. Be sure to include this essential element in your custom UI, as well as any other user interface details, such as custom
graphics or instructions, you want for your component.

For more information on customizing the UI, see Customize the BarcodeScanner User Interface on page 54.

Putting It All Together
With all of these pieces in place, you’ll have an LWC that can serve as a kiosk for continuously scanning barcodes (and processing the
data in whatever way your component allows for) without the need to interact with the physical device.

Here are examples of both the standard BarcodeScanner UI and a custom UI appropriate for a Kiosk Mode implementation.

Standard UI

49

Create a Self-Service Kiosk ApplicationUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-scan.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-dismiss.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-data-types.html

Custom UI

50

Create a Self-Service Kiosk ApplicationUse Mobile Device Features in Mobile Apps

SEE ALSO:

BarcodeScanner Example—Self-Service Kiosk (Legacy)

Customize the BarcodeScanner User Interface

BarcodeScanner Example—Self-Service Kiosk (Legacy)
Here’s a complete example of a Lightning web component with BarcodeScanner that could serve as a self-service kiosk.

Important: We recommend using the modern scan() and dismiss() API functions in your LWC scanning code to
streamline your development experience. The legacy API functions beginCapture(), resumeCapture(), and
endCapture() are still available, but will be retired in a future release. See Understand BarcodeScanner Modern and Legacy
APIs on page 35 for additional details.

The HTML template provides the bare minimum for a scanning user interface. There’s an element to display the results of the scans, a
bit of static help text, and a button to start scanning.

<!-- barcodeScannerKiosk.html -->
<template>

<div class="slds-text-align_center">
BarcodeScanner: Multi-Scan

</div>

<!-- After barcode are scanned, their values are displayed here: -->
<template lwc:if={scannedBarcodes}>

<div class="slds-var-m-vertical_large slds-var-p-vertical_medium
slds-text-align_center slds-border_top slds-border_bottom">
Scanned barcode values are:
{scannedBarcodesAsString}

</div>
</template>

<!-- Static help text -->
<div class="slds-text-align_center slds-text-color_weak slds-m-vertical_large">

Click Start a Scanning Session to open a
barcode scanner camera view. Position a barcode in the scanner
view to scan it.

<p>Continue scanning items. Click � when there are no
more items to scan.</p>

</div>

<!-- Scan button, always enabled -->
<div class="slds-align_absolute-center slds-m-vertical_large">

<lightning-button
variant="brand"
class="slds-var-m-left_x-small"
icon-name="utility:scan"
label="Start a Scanning Session"
title="Start scanning barcodes, until there are no more barcodes to scan"
onclick={beginScanning}

></lightning-button>

51

BarcodeScanner Example—Self-Service Kiosk (Legacy)Use Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-scan.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-dismiss.html

</div>

<!-- Custom UI for the scanner is defined here. We set display:none here because the
scanner will show this. -->

<div data-id="BarcodeScannerCustomUI" style="display: none;">
<div>
<h1 align="right"><a style="text-decoration: none;"

href="nimbusbarcodescanner://dismiss">�</h1>
<h2 align="center">Welcome, let's get you verified!</h2>
<h3 align="center">Point the front side of your Health Card
at the camera on

this device.</h3>
</div>

</div>
</template>

This example borrows heavily from the code sample in BarcodeScanner Example—Continuous Scanning (Legacy) on page 45. The
differences in this example provide all the basic elements needed for a self-service kiosk use case. It uses the front-facing camera for
scanning, employs a continuous scanning lifecycle to minimize the need for user interaction, and even defines and uses a custom UI.

// barcodeScannerKiosk.js
import { LightningElement, track } from 'lwc';
import { ShowToastEvent } from 'lightning/platformShowToastEvent';
import { getBarcodeScanner } from 'lightning/mobileCapabilities';

export default class NimbusPluginBarcodeScannerCustomUI extends LightningElement {

sessionScanner;
@track scannedBarcodes;

connectedCallback() {
this.sessionScanner = getBarcodeScanner();

}

beginScanning() {
// Reset scannedBarcodes before starting new scanning session
this.scannedBarcodes = [];

// Make sure BarcodeScanner is available before trying to use it
if (this.sessionScanner != null && this.sessionScanner.isAvailable()) {

let elem = this.template.querySelector('div[data-id=BarcodeScannerCustomUI]');

let backgroundViewHTML = '<header><meta name="viewport"
content="width=device-width, initial-scale=1.0, maximum-scale=1.0,
minimum-scale=1.0"></header>';

backgroundViewHTML += `<html><body>${elem.innerHTML}</body></html>`;

// Specify the size of the scanner camera view, use of the front-facing camera,
and pull in the custom UI defined above

const scanningOptions = {
"barcodeTypes": [this.sessionScanner.barcodeTypes.QR],
"scannerSize": "XLARGE",
"cameraFacing": "FRONT",
"showSuccessCheckMark": true,
"presentWithAnimation": false,
"backgroundViewHTML": backgroundViewHTML

52

BarcodeScanner Example—Self-Service Kiosk (Legacy)Use Mobile Device Features in Mobile Apps

};

this.sessionScanner.beginCapture(scanningOptions)
.then((scannedBarcode) => {

this.processScannedBarcode(scannedBarcode);
this.continueScanning();

})
.catch((error) => {

this.processError(error);
this.sessionScanner.endCapture();

})
}
else {

console.log("BarcodeScanner unavailable. Non-mobile device?");
}

}

async continueScanning() {
// Pretend to do some work; see timing note below.
await new Promise((resolve) => setTimeout(resolve, 1000));

this.sessionScanner.resumeCapture()
.then((scannedBarcode) => {

this.processScannedBarcode(scannedBarcode);
this.continueScanning();

})
.catch((error) => {

this.processError(error);
this.sessionScanner.endCapture();

})
}

processScannedBarcode(barcode) {
// Do something with the barcode scan value:
// - look up a record
// - create or update a record
// - parse data and put values into a form
// - and so on; this is YOUR code
console.log(JSON.stringify(barcode));
this.scannedBarcodes.push(barcode);

}

processError(error) {
// Check to see if user ended scanning
if (error.code == 'userDismissedScanner') {

console.log('User terminated scanning session via Cancel.');
}
else {

console.error(error);
}

}

get scannedBarcodesAsString() {
return this.scannedBarcodes.map(barcodeResult => {

53

BarcodeScanner Example—Self-Service Kiosk (Legacy)Use Mobile Device Features in Mobile Apps

return barcodeResult.value;
}).join('\n\n');

}
}

Note: This example doesn’t process a scanned barcode in any meaningful way. As a result, the processScannedBarcode()
function executes quickly—too quickly. It can trigger a timing issue that causes the example to fail. To avoid the issue, we’ve
inserted a one-second delay before starting the next scan. Real-world barcode processing typically takes long enough to avoid
the issue. In that case, you can remove the line with the delay and the async keyword preceding the continueScanning()
function.

See Scan Multiple Barcodes (Legacy) on page 43 for an explanation of how beginScanning() and continueScanning()
work together to create the continuous scanning cycle.

SEE ALSO:

Create a Self-Service Kiosk Application

Customize the BarcodeScanner User Interface

Customize the BarcodeScanner User Interface
BarcodeScanner provides a standard, minimal user interface that can be used out of the box. For applications and use cases where the
standard user interface doesn’t provide enough information, or to customize for your company or brand, create a custom UI using HTML.

Using HTML to define your custom user interface gives you a lot of flexibility for your UI. Here’s an example of the HTML for a minimal
custom UI:

<header><meta name="viewport" content="width=device-width, initial-scale=1.0,
maximum-scale=1.0, minimum-scale=1.0"></header>

<html>
<head>
<style>

a:link { text-decoration: none; }
a:hover { text-decoration: none; }

</style>
</head>
<body>
<h1 align="right">�</h1>
<h2 align="center">Welcome, let's get you verified!</h2>
<h3 align="center">Point the front side of your Health Card

at the camera on this device.</h3>

</body>
<html>

You can use a static HTML string, or generate the HTML at runtime. There are only a few requirements.

• The <header> element is required, and should not be modified. Confine your customizations to the <html> and child elements
of the page.

• You should also provide a UI element to dismiss or cancel the scanning session. See Dismiss the Scanner.

54

Customize the BarcodeScanner User InterfaceUse Mobile Device Features in Mobile Apps

To apply your custom UI to BarcodeScanner, set the backgroundViewHTML property of the BarcodeScannerOptions
configuration object to the string value of your HTML page, including the <header>. Then provide BarcodeScannerOptions
when calling beginCapture().

UI Customization Layers
Your custom UI overlays — and completely hides — all parts of the standard BarcodeScanner UI. The following diagram illustrates the
layers of the scanner UI as rendered by BarcodeScanner:

Dismiss the Scanner

Important: We recommend using the modern scan() and dismiss() API functions in your LWC scanning code to
streamline your development experience. The legacy API functions beginCapture(), resumeCapture(), and
endCapture() are still available, but will be retired in a future release. See Understand BarcodeScanner Modern and Legacy
APIs on page 35 for additional details.

When you define a custom UI, you replace the standard scanner dismissal control. In your custom UI, it’s your responsibility to handle
dismissing the scanner. You can dismiss the scanner two different ways:

• Programatically: by calling endCapture to dismiss the scanner UI.

• UI Triggered: by adding an element to your custom UI that, when triggered, navigates to a special URL:
nimbusbarcodescanner://dismiss.

For example, here’s a simple text link that closes the scanner when tapped

Dismiss

55

Customize the BarcodeScanner User InterfaceUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-scan.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-dismiss.html

Place this anywhere in your custom user interface that makes sense.

Considerations
• The camera view is always placed in the center of the device screen (horizontally and vertically), and is superimposed onto your

custom UI. Consider this when designing your custom UI, and avoid having essential parts of the UI obscured by the camera view.

• The custom UI is rendered in a separate webview container than the main webview container that hosts your Lightning web
component. The HTML that renders your custom UI can’t reference or access elements or objects that are defined in your component.

• Note: This plugin is not supported in the Field Service mobile app.

Compatibility and Requirements
BarcodeScanner is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is only
available when BarcodeScanner runs within a compatible Salesforce mobile app. It does not and cannot function when running in
a web browser, whether the browser runs on a desktop or mobile device.

BarcodeScanner is available in Lightning apps distributed using:

• Salesforce Mobile app

• Mobile Publisher for Salesforce App

• Mobile Publisher for Experience Cloud

Note: The Field Service Mobile app provides an alternative implementation of BarcodeScanner. See Scan Barcodes on a Mobile
Device in the Field Service Developer Guide for details.

BarcodeScanner is fully functional when used in a Lightning app or Lightning site run from one of these Salesforce apps on a compatible
iOS or Android mobile device. See Requirements for the Salesforce Mobile App, or the requirements page for your target mobile app,
for specific device and operating system requirements.

BarcodeScanner is not fully functional when running on other devices, such as a desktop, or when running in a web browser, even on
a mobile device. It requires one of the mobile apps listed above. The BarcodeScanner API is accessible in Lightning Experience on all
devices, so your code won’t fail due to missing functions. However, when your app runs in a browser—desktop or mobile—it can use
only BarcodeScanner constants and utility functions. Attempting any scanning operation will fail.

Supported Barcode Types
BarcodeScanner can recognize the following standard barcode symbologies. (References not affiliated with Salesforce.)

BarcodeScanner Type (barcodeTypes)Barcode Symbology Standard

CODE_128Code 128

CODE_39Code 39

CODE_93Code 93

DATA_MATRIXData Matrix

EAN_13EAN-13 / GTIN-13

EAN_8EAN-8 / GTIN-8

56

Compatibility and RequirementsUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/atlas.en-us.254.0.field_service_dev.meta/field_service_dev/fsl_dev_mobile_lwc_barcode_scanner.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.field_service_dev.meta/field_service_dev/fsl_dev_mobile_lwc_barcode_scanner.htm
https://help.salesforce.com/articleView?id=salesforce_app_requirements.htm&type=5&language=en_US
https://www.barcodefaq.com/barcode-match/
https://www.barcodefaq.com/1d/code-128/
https://www.barcodefaq.com/1d/code-39/
https://www.barcodefaq.com/barcode-match/
https://www.barcodefaq.com/2d/data-matrix/
https://www.barcodefaq.com/1d/upc-ean/
https://www.barcodefaq.com/1d/upc-ean/

BarcodeScanner Type (barcodeTypes)Barcode Symbology Standard

ITFInterleaved 2 of 5

PDF_417PDF417

QRQR-Code

UPC_AUPC-A / GTIN-12

UPC_EUPC-E / GTIN-12

To access or compare barcode types in code, use the barcodeTypes constant.

BarcodeScanner doesn’t attempt to interpret the value found in a barcode. The contents of the barcode are decoded into a string value.
It’s up to the controlling component or application to further parse and interpret the result and decide what to do with it. For more
information about barcode standards and symbologies, see Barcoding for Beginners (not affiliated with Salesforce).

Considerations and Limitations
Keep the following in mind when developing features that use the BarcodeScanner API.

Device Limitations

• BarcodeScanner requires the use of the mobile device camera. The user must grant your app access to the camera. The exact user
experience is governed by the platform. The request happens automatically on first use, and is managed by the device itself, but
you should plan for it when designing the user experience of your app.

• In Android 11 or later, if the user taps “Deny” for permission to access the Contacts app more than once during the app’s lifetime of
installation on a device, the user won’t see the system permissions dialog again. Tapping Deny multiple times implicitly chooses the
“don’t ask again” option.

In previous versions of Android, users would see the system permissions dialog each time the app requested permission unless the
user had previously selected “don’t ask again”. This change in Android 11 discourages repeated requests for permissions that users
have chosen to deny.

If the user has denied permission to access the Contacts app and needs to change their permissions to allow access, they can do so
in their device’s settings.

• BarcodeScanner doesn’t implement scanning itself. Instead, it makes available the scanning feature of the underlying platform
(Android or iOS). While the features provided by BarcodeScanner are the same across both platforms, it is subject to some
platform-specific quirks and minor differences.

– If you can’t get a clear picture of the barcode, it can’t be recognized. The quality of the device camera affects barcode recognition.
A damaged or low-quality camera lens or focusing system, poor lighting, motion, and other factors can make it difficult or
impossible to get a clear picture of a barcode.

– The quality of the barcode affects barcode recognition. Specifically, damaged or obscured barcodes are hard to recognize
successfully.

• If you’re having trouble getting BarcodeScanner to recognize a barcode, try the following:

– First, verify that the barcode type is one of the supported barcode symbologies. There are other barcode types that aren’t
supported.

– Second, verify that you’ve configured BarcodeScanner to recognize the expected symbology. See BarcodeScannerOptions
in BarcodeScanner Data Types for configuration details.

57

Considerations and LimitationsUse Mobile Device Features in Mobile Apps

https://www.barcodefaq.com/barcode-match/
https://www.barcodefaq.com/2d/pdf417/
https://www.barcodefaq.com/2d/qr-code/
https://www.barcodefaq.com/1d/upc-ean/
https://www.barcodefaq.com/1d/upc-ean/
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-constants.html
https://www.barcodefaq.com/barcoding-for-beginners/
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-barcodescanner-data-types.html

– Finally, check whether another app on the same device is able to recognize the barcode. If the standard camera app on the
device can’t recognize the barcode, neither can BarcodeScanner.

Development Considerations

• BarcodeScanner requires access to camera hardware. To test scanning during development, use actual, physical devices.

– The Android emulator can simulate camera hardware by using a webcam on your development system. To do so, edit the camera
configuration for your Android Virtual Device, in the advanced settings panel. However, the camera built into most laptops is
much lower quality than what’s found on modern mobile phones. A low-quality camera limits the usefulness of testing barcode
recognition.

– The iOS simulator doesn’t provide access to simulated camera hardware at all.

You can certainly develop the user experience for your component on a desktop or laptop development system. But be sure to test
scanning functionality on the physical devices on which you plan to deploy your Lightning app.

BarcodeScanner Considerations

Be aware of the following considerations when using BarcodeScanner in your Lightning app.

• BarcodeScanner is built on top of mobile operating system features. BarcodeScanner’s scanning capabilities therefore depend on
Android or iOS features, which are subject to change beyond our control. When mobile operating system features change, the
behavior of BarcodeScanner can change without notice.

• BarcodeScanner provides haptic feedback (a short vibration) after a successful scan on iOS devices. There’s no haptic feedback on
Android devices.

Access a Mobile Device’s Biometrics Capabilities

A Lightning web component can use a device’s biometrics functionality to prompt a user to confirm their identity. When these
biometrics-related actions occur, the result is returned to the Lightning web component that invoked it.

Biometrics checks are managed locally on the mobile device, and don't need a network connection. However, BiometricsService requires
access to platform-specific APIs that are available only within compatible Salesforce mobile apps.

Important: BiometricsService does not and cannot function when running in a web browser, whether on a desktop or mobile
device.

IN THIS SECTION:

BiometricsService User Experience

Your component can deliver any user experience you desire, but there’s a common flow for any component that calls for a biometrics
check.

Use the BiometricsService API

To develop a Lightning web component with biometrics-checking features, use the BiometricsService API as your method for
accessing a device’s native biometrics functionality.

BiometricsService Example

Here’s a basic example of a Lightning web component that uses a device’s biometrics capabilities to verify device ownership.

Compatibility and Requirements

BiometricsService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is
only available when BiometricsService runs within a compatible Salesforce mobile app. It does not and cannot function when
running in a standard web browser, whether the browser runs on a desktop or mobile device.

58

Access a Mobile Device’s Biometrics CapabilitiesUse Mobile Device Features in Mobile Apps

Considerations and Limitations

Consider these guidelines and limitations when developing features that use the BiometricsService API.

SEE ALSO:

Lightning Web Components Developer Guide: BiometricsService API

BiometricsService User Experience
Your component can deliver any user experience you desire, but there’s a common flow for any component that calls for a biometrics
check.

• Your user performs an action that triggers a biometrics check.

• The OS prompts the user to confirm their identity via a biometrics check.

• The OS provides a success message when the biometrics are confirmed, and continues the operation that the user initiated before
the biometrics check. The OS provides an error message if the biometrics check isn’t successful.

In some of these examples, BiometricsService is only a part of the complete solution. Determining where in your app experience a
biometrics check is appropriate, implementing it as part of a user flow, and so on, are other parts that you must implement yourself.

Use the BiometricsService API
To develop a Lightning web component with biometrics-checking features, use the BiometricsService API as your method for accessing
a device’s native biometrics functionality.

1. Import BiometricsService into your component definition to make the BiometricsService API functions available to your code.

2. Test to make sure BiometricsService is available before you call for a biometrics check.

3. Use the feature functions to prompt app users for biometrics checks.

Add BiometricsService to a Lightning Web Component
In your component’s JavaScript file, import BiometricsService using the standard JavaScript import statement. Specifically, import
the getBiometricsService() factory function from the lightning/mobileCapabilities module, like so:

import { getBiometricsService } from 'lightning/mobileCapabilities';

After it’s imported into your component, use the factory function to get an instance of BiometricsService. With your BiometricsService
instance, use the utility functions and constants to verify availability. Then use the feature functions to perform the associated functionality.

Test BiometricsService Availability
BiometricsService depends on physical device hardware and platform features. A component that uses BiometricsService renders without
errors on a desktop computer or in a mobile browser, but biometrics-checking functions fail. To avoid these errors, test if BiometricsService
functionality is available before you use it.

handleCheckBiometricsClick(event) {
const myBiometricsService = getBiometricsService();
if(myBiometricsService.isAvailable()) {

// Perform biometrics-checking operations
}
else {

59

BiometricsService User ExperienceUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-biometricsservice.html

// BiometricsService not available, or consuming app hasn’t implemented it

// Not running on hardware with biometrics functionality, etc.
// Handle with message, error, beep, and so on

}
}

Check Biometrics Availability and Configuration
It’s simple to confirm a device’s biometrics functionality in your Lightning web component using BiometricsService. First, use
isBiometricsReady() to confirm that a device has biometrics functionality and that it’s set up for use. Then, process the result
in whatever manner you wish.

For example:

// Check for device biometrics functionality, console log the results
myBiometricsService.isBiometricsReady(options)
.then((results) => {

console.log(results);
})
.catch((error) => {

// Handle cancellation or other errors here
console.error('Error code: ' + error.code); +
console.error('Error message: ' + error.message);

});

Prompt a Biometric Check
Prompt a device biometrics check with the checkUserIsDeviceOwner() function. First, call the
checkUserIsDeviceOwner() function, optionally including a BiometricsServiceOptions parameter. Then, handle
the outcome in whatever manner you wish.

For example:

// Get events from a specified date range from the specified calendar(s), and then process
them
myBiometricsService.checkUserIsDeviceOwner(options)
.then((results) => {

// Do something with the event(s) data
this.events = results;
console.log(results);

})
.catch((error) => {

// Handle cancellation or other errors here
this.events = [];
console.error('Error code: ' + error.code); +
console.error('Error message: ' + error.message);

});

SEE ALSO:

Lightning Web Components Developer Guide: BiometricsService API

BiometricsService Example

60

Use the BiometricsService APIUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-biometricsservice.html

BiometricsService Example
Here’s a basic example of a Lightning web component that uses a device’s biometrics capabilities to verify device ownership.

The component’s HTML template is minimal, with a “Verify” button to initiate the biometrics check.

<template>
<lightning-card title="Biometrics Service Demo" icon-name="custom:privately_shared">
<div class="slds-var-m-around_medium">
Use device biometrics capabilities to verify current user is indeed device owner:
<lightning-button
variant="brand"
label="Verify"
title="Verify device ownership using biometrics"
onclick={handleVerifyClick}
class="slds-var-m-left_x-small">

</lightning-button>
</div>
<div class="slds-var-m-around_medium">
<lightning-formatted-text value={status}></lightning-formatted-text>

</div>
</lightning-card>

</template>

This example simply uses BiometricsService to prompt the user to complete a biometrics check. A status message is returned, indicating
whether the check was successful or not.

import { LightningElement } from 'lwc';
import { getBiometricsService } from 'lightning/mobileCapabilities';

export default class NimbusPluginBiometricsService extends LightningElement {
status;
biometricsService;

connectedCallback() {
this.biometricsService = getBiometricsService();

}

handleVerifyClick() {
if (this.biometricsService.isAvailable()) {
const options = {
permissionRequestBody: "Required to confirm device ownership.",
additionalSupportedPolicies: ['PIN_CODE']

};
this.biometricsService.checkUserIsDeviceOwner(options)
.then((result) => {
// Do something with the result
if (result === true) {
this.status = "� Current user is device owner."

} else {
this.status = "�� Current user is NOT device owner."

}
})
.catch((error) => {
// Handle errors

this.status = 'Error code: ' + error.code + '\nError message: ' + error.message;

61

BiometricsService ExampleUse Mobile Device Features in Mobile Apps

});
} else {
// service not available
this.status = 'Problem initiating Biometrics service. Are you using a mobile

device?';
}

}
}

SEE ALSO:

Use the BiometricsService API

Compatibility and Requirements
BiometricsService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is only
available when BiometricsService runs within a compatible Salesforce mobile app. It does not and cannot function when running
in a standard web browser, whether the browser runs on a desktop or mobile device.

BiometricsService is available in Lightning apps distributed using:

• Salesforce Mobile app

• Mobile Publisher for Experience Cloud

BiometricsService is fully functional when used in a Lightning app or Lightning site that’s run from a compatible Salesforce mobile app
on a compatible iOS or Android mobile device. See Requirements for Mobile Publisher for Experience Cloud, or the requirements page
for your target mobile app for specific device and operating system requirements.

BiometricsServiceis not fully available when running on other devices, such as a desktop, or when running in a web browser, even on
a mobile device. It requires one of the apps listed above. The BiometricsService API is accessible in Lightning Experience on all devices,
so your code won’t fail due to missing functions. However, when your app runs in a browser—desktop or mobile—it can use only
BiometricsService constants and utility functions. Attempting any biometrics related operation will fail.

Considerations and Limitations
Consider these guidelines and limitations when developing features that use the BiometricsService API.

Device Limitations

BiometricsService doesn’t manage biometrics data and checking itself. Instead, it makes available certain biometrics capabilities of the
underlying platform (Android or iOS) and hardware (phone or other mobile device). While the features provided by BiometricsService
are the same across both platforms, they’re subject to some platform-specific quirks and minor differences.

Development Considerations

You can certainly develop the user experience for your component on a desktop or laptop development system. But be sure to test
biometrics functionality on the physical devices on which you plan to deploy your Lightning app.

BiometricsService Considerations

BiometricsService is built on top of mobile operating system and device features. BiometricsService’s capabilities therefore depend on
Android or iOS features, which are subject to change beyond our control. When mobile operating system features change, the behavior
of BiometricsService can change without notice.

62

Compatibility and RequirementsUse Mobile Device Features in Mobile Apps

https://help.salesforce.com/s/articleView?id=sf.s1_branded_apps_requirements_commun.htm&type=5&language=en_US

Manage Calendar Events on a Mobile Device

A Lightning web component can use a device’s calendar functionality to create, read, update, and delete calendar events to and from
the device. When these calendar-related actions occur, the event data is returned to the Lightning web component that invoked it.

Calendar events are managed locally on the mobile device, and don’t need a network connection. However, CalendarService requires
access to platform-specific APIs that are available only within compatible Salesforce mobile apps.

Important: CalendarService does not and cannot function when running in a web browser, whether on a desktop or mobile
device.

IN THIS SECTION:

CalendarService User Experience

Your component can deliver any user experience you like. There are a number of common calendar-based features where
CalendarService might be suitable.

Use the CalendarService API

To develop a Lightning web component with calendar-based features, use the CalendarService API as your method for accessing a
device’s native calendar functionality.

CalendarService Example

Here’s a basic example of a Lightning web component that displays calendar events and allows the user to perform basic
calendar-related functions.

Compatibility and Requirements

CalendarService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is only
available when CalendarService runs within a compatible Salesforce mobile app. It does not and cannot function when running
in a standard web browser, whether the browser runs on a desktop or mobile device.

Considerations and Limitations

Keep the following in mind when developing features that use the CalendarService API.

SEE ALSO:

Lightning Web Components Developer Guide: CalendarService API

CalendarService User Experience
Your component can deliver any user experience you like. There are a number of common calendar-based features where CalendarService
might be suitable.

Here are a few examples of common calendar-based features:

• View all calendar events for a specified date or date range

• Add a new calendar event to a device’s calendar

• Check if a newly scheduled event conflicts with any events on a device’s calendar

• Schedule a reminder to avoid missing important events

• Compare an event on a device calendar to another calendar

• Perform an action when a calendar event begins

• Read, change, or remove an existing calendar event

63

Manage Calendar Events on a Mobile DeviceUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-calendarservice.html

In some of these examples, CalendarService is only a part of the complete solution. Displaying event data, checking a calendar for
availability, and so on are other parts that you need to implement yourself.

Use the CalendarService API
To develop a Lightning web component with calendar-based features, use the CalendarService API as your method for accessing a
device’s native calendar functionality.

1. Import CalendarService into your component definition to make the CalendarService API functions available to your code.

2. Test to make sure CalendarService is available before you call calendar-related functions.

3. Use the calendar functions to create, read, update, and delete calendar events.

Add CalendarService to a Lightning Web Component
In your component’s JavaScript file, import CalendarService using the standard JavaScript import statement. Specifically, import the
getCalendarService() factory function from the lightning/mobileCapabilities module, like so:

import { getCalendarService } from 'lightning/mobileCapabilities';

After it’s imported into your component, use the factory function to get an instance of CalendarService. With your CalendarService
instance, use the utility functions and constants to verify availability. Then use calendar-related functions to perform the associated
functionality.

Test CalendarService Availability
CalendarService depends on physical device hardware and platform features. A component that uses CalendarService renders without
errors on a desktop computer or in a mobile browser, but calendar-related functions fail. To avoid these errors, test if CalendarService
functionality is available before you use it.

handleManageCalendarEventsClick(event) {
const myCalendarService = getCalendarService();
if(myCalendarService.isAvailable()) {
// Perform calendar-related operations

}
else {
// CalendarService not available, or consuming app hasn’t implemented it
// Not running on hardware with a native calendar application, etc.
// Handle with message, error, beep, and so on

}
}

Get Calendars
It’s simple to import device calendars into your Lightning web component using CalendarService. First, use getCalendars() to
enable access within your component to available device calendars. Then, process the calendar data in whatever manner you wish.

For example:

// Get access to device calendars and process them
myCalendarService.getCalendars(options)
.then((results) => {

64

Use the CalendarService APIUse Mobile Device Features in Mobile Apps

// do something with the calendar(s) data
this.calendars = results;
console.log(results);

})
.catch((error) => {
// Handle cancellation or other errors here
this.calendars = [];
console.error('Error code: ' + error.code); +
console.error('Error message: ' + error.message);

});

Get Events
Fetch all calendar events within a specified date range with the getEvents() function. First, call the getEvents() function
with the necessary parameters. Then, process or display event data in whatever manner you wish.

For example, if your calendar component has a “week view” and a “month view,” the startDateSecondsUTC and
endDateSecondsUTC parameters need to be adjusted to capture the appropriate date range to be displayed. If you don’t want to
display events from all mobile device calendars, specify the ones you want to work with in the calendars[] array.

For example:

// Get events from a specified date range on the specified calendar(s), and process them
myCalendarService.getEvents(startDateSecondsUTC, endDateSecondsUTC, calendars, options)
.then((results) => {
// Do something with the event(s) data
this.events = results;
console.log(results);

})
.catch((error) => {
// Handle errors here
this.events = [];
console.error('Error code: ' + error.code); +
console.error('Error message: ' + error.message);

});

Create a Calendar Event
Create and add new calendar events to a mobile device with the addEvent() function. First, call the addEvent() function with
the necessary parameters. Then, handle a successful outcome with a success message, or in any manner you wish. For more information
on what the addEvent() function returns, see Implicit Data Coercion on page 67.

For example:

// Add an event to a mobile device calendar, and then handle a success
myCalendarService.addEvent(event, options)
.then((results) => {
// Do something with the event(s) data
this.newEvent = results;
console.log(results);

})
.catch((error) => {

65

Use the CalendarService APIUse Mobile Device Features in Mobile Apps

// Handle cancellation or other errors here
console.error('Error code: ' + error.code); +
console.error('Error message: ' + error.message);

});

Update a Calendar Event
Update calendar events on a mobile device with the updateEvent() function. First, call the updateEvent() function with
the necessary parameters. Then, handle a successful outcome with a success message, or in any manner you wish. For more information
on what the updateEvent() function returns, see Implicit Data Coercion on page 67.

For example:

// Update an event on a mobile device calendar, and then handle a success
myCalendarService.updateEvent(event, options)

.then((results) => {
// Do something with the event(s) data
this.updatedEvent = results;
console.log(results);

})
.catch((error) => {
// Handle cancellation or other errors here
console.error('Error code: ' + error.code); +
console.error('Error message: ' + error.message);

});

Warning: Using updateEvent() is an inherently dangerous action, as it allows event data to be irreversibly altered. Use
caution when using this functionality in your component. At an absolute minimum, consider adding a confirmation window for
your users that clearly states the outcome of the action, with an option for them to cancel if they wish.

Remove a Calendar Event
Remove calendar events on a mobile device with the removeEvent() function. First, call the removeEvent() function with
the necessary parameters. Then, handle a successful outcome with a success message, or in any manner you wish.

For example:

// Remove an event on a mobile device calendar, and then handle a success
myCalendarService.removeEvent(event, options)
.then((results) => {
// Handle successful deletion here
console.log('Event successfully deleted!');

})
.catch((error) => {
// Handle cancellation or other errors here
console.error('Error code: ' + error.code); +
console.error('Error message: ' + error.message);

});

Warning: Using removeEvent() is an inherently dangerous action, as it allows event data to be irreversibly altered. Use
caution when using this functionality in your component. At an absolute minimum, consider adding a confirmation window for
your users that clearly states the outcome of the action, with an option for them to cancel if they wish.

66

Use the CalendarService APIUse Mobile Device Features in Mobile Apps

Implicit Data Coercion
When passing in event data to a CalendarService function (namely the addEvent() and updateEvent() functions),
CalendarService can change some event data before returning it. This behavior, referred to here as implicit data coercion, occurs when
CalendarService adjusts the value of a property as a result of a user’s change of another property.

For example, if a new all-day event is added (or if an existing event is updated to be all-day) and a start time or end time is specified,
CalendarService rejects the times. Instead, the start time is set to 00:00:00 (12:00:00 AM) and the end time to 23:59:59 (11:59:59 PM).

Implicit data coercion can also occur when changing details of recurring events. Any time recurring events are changed, their old IDs
are overwritten and replaced with newly generated IDs.

Keep this in mind when using the addEvent() and updateEvent() functions. Your code should always use the coerced event
data returned by CalendarService. Using raw (uncoerced) event data in your component can lead to errors and incorrect behavior.

SEE ALSO:

Lightning Web Components Developer Guide: CalendarService API

CalendarService Example

CalendarService Example
Here’s a basic example of a Lightning web component that displays calendar events and allows the user to perform basic calendar-related
functions.

The component’s HTML template is minimal, with a “main” display view that lists calendar events and a “detail” display view that shows
an event’s details.

<template>
<!-- Main View -->
<template if:false={detailViewIsOpen}>

<lightning-card title="Today's Events" icon-name="utility:dayview">
<template for:each={todayEvents} for:item="item">

<div class="slds-var-p-horizontal_medium slds-var-p-vertical_x-small"
key={item.id} onclick={showDetailView} data-id={item.id}>

<p class="slds-text-heading_small">{item.title}</p>
<p class="slds-text-heading_small">{item.startTimeDisplay} —

{item.endTimeDisplay}</p>
</div>

</template>
</lightning-card>

</template>

<!-- Detail View -->
<template if:true={detailViewIsOpen}>

<div class="slds-var-p-around_medium" style="background-color: white; border-radius:
4px;">

<table>
<tbody>

<tr>
<td class="slds-align-top" width="1">

<lightning-icon icon-name="utility:chevronleft"
onclick={hideDetailView}></lightning-icon>

</td>

67

CalendarService ExampleUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-calendarservice.html

<td class="sldx-align-top slds-text-heading_medium
slds-var-p-bottom_medium slds-align_absolute-center">Event Details</td>

<td class="slds-align-top" width="1">
<lightning-button-menu alternative-text="Show menu"

variant="border-filled" menu-alignment="auto">
<lightning-menu-item prefix-icon-name="utility:add"

value="Add" label="Add to Device Calendar" onclick={addCalendarEvent}></lightning-menu-item>

<lightning-menu-item prefix-icon-name="utility:edit"
value="Update" label="Update in Device Calendar"
onclick={updateCalendarEvent}></lightning-menu-item>

<lightning-menu-item prefix-icon-name="utility:delete"
value="Delete" label="Remove from Device Calendar"
onclick={deleteCalendarEvent}></lightning-menu-item>

</lightning-button-menu>
</td>

</tr>
<tr>

<td colspan="3">
<ul class="slds-has-dividers_bottom-space">

<li class="slds-item">
<span

class="slds-text-heading_small">{selectedItem.title}

<span

class="slds-text-heading_small">{selectedItem.startTimeDisplay} —
{selectedItem.endTimeDisplay}

<li class="slds-item">

Reminders

<template for:each={selectedItem.alarmsDisplay}
for:item="alarm">

<span class="slds-text-body_regular"
key={alarm}>{alarm}

</template>

<li class="slds-item">

Location

{selectedItem.location}

<li class="slds-item">

Attendees

<template for:each={selectedItem.attendees}
for:item="attendee">

<span class="slds-text-body_regular"
key={attendee.name}>{attendee.name} ({attendee.email})

</template>

<li class="slds-item">
Notes

68

CalendarService ExampleUse Mobile Device Features in Mobile Apps

{selectedItem.notes}

</td>
</tr>

</tbody>
</table>
</div>

</template>
</template>

This example simply uses CalendarService to display events, and allows you to perform simple actions on calendar items. A status message
is returned when there’s an error. In this example, the events are hard-coded, rather than fetched via API calls from a Salesforce org.
You’ll need to build functionality to fetch event data from your Salesforce org as part of your component.

import { api, LightningElement } from 'lwc';
import { getCalendarService } from 'lightning/mobileCapabilities';
import LightningAlert from 'lightning/alert'
import LightningConfirm from 'lightning/confirm';

export default class CalendarForToday extends LightningElement {

todayEvents = [];
detailViewIsOpen = false;
selectedItem = null;
selectedItemIndex = -1;
calendarPermissionRationaleText = "Allow access to your calendar to enable calendar

event processing.";
calendarService;

connectedCallback() {
console.log("Start connected callback");

try {
this.calendarService = getCalendarService();
this.todayEvents = this.getTodayEvents();
this.todayEvents.forEach(item => this.generateDisplayFields(item));
console.log(`End connected callback with ${this.todayEvents.length} events for

today.`);
} catch (err) {

console.log(`connectedCallback failed with error: ${err}`);
}

}

showDetailView(event) {
const id = event.currentTarget.dataset.id;
this.selectedItemIndex = this.todayEvents.findIndex(item => item.id === id);
if (this.selectedItemIndex != -1) {

this.selectedItem = this.todayEvents[this.selectedItemIndex];
} else {

this.selectedItem = null;
}

69

CalendarService ExampleUse Mobile Device Features in Mobile Apps

this.detailViewIsOpen = this.selectedItem != null;
}

hideDetailView() {
this.detailViewIsOpen = false;
this.selectedItem = null;
this.selectedItemIndex = -1;

}

addCalendarEvent() {
if (this.calendarService.isAvailable() && this.selectedItemIndex != -1 &&

this.selectedItem) {
const options = {

"permissionRationaleText" : this.calendarPermissionRationaleText
};

console.log(`options: ${JSON.stringify(options)}`);
console.log(`Adding selectedItem: ${JSON.stringify(this.selectedItem)}`);

this.calendarService.addEvent(this.selectedItem, options)
.then((sanitizedEvent) => {

this.generateDisplayFields(sanitizedEvent);
this.selectedItem = sanitizedEvent;
this.todayEvents[this.selectedItemIndex] = sanitizedEvent;
this.showSuccessAlert("Add Event", "Event was added successfully to the

device default calendar.");
console.log(`sanitizedEvent: ${JSON.stringify(sanitizedEvent)}`);

})
.catch((error) => {

console.error(error);
this.showFailureAlert("Add Event", `There was a problem adding the event

to the device default calendar: ${error.message}`);
});

} else {
console.log("Calendar Service Is Not Available");
this.showFailureAlert("Add Event", "Calendar Service is not available.");

}
}

updateCalendarEvent() {
if (this.calendarService.isAvailable() && this.selectedItemIndex != -1 &&

this.selectedItem) {

// For this sample code, we've hard-coded some trivial changes

this.selectedItem.title += " - Updated";
this.selectedItem.notes += " - Updated";

const options = {
"permissionRationaleText" : this.calendarPermissionRationaleText,
"span" : "ThisEvent"

};

console.log(`options: ${JSON.stringify(options)}`);

70

CalendarService ExampleUse Mobile Device Features in Mobile Apps

console.log(`Updating selectedItem: ${JSON.stringify(this.selectedItem)}`);

this.calendarService.updateEvent(this.selectedItem, options)
.then((sanitizedEvent) => {

this.generateDisplayFields(sanitizedEvent);
this.selectedItem = sanitizedEvent;
this.todayEvents[this.selectedItemIndex] = sanitizedEvent;
this.showSuccessAlert("Update Event", "Event was updated successfully in

the device default calendar.");
console.log(`sanitizedEvent: ${JSON.stringify(sanitizedEvent)}`);

})
.catch((error) => {

console.error(error);
this.showFailureAlert("Update Event", `There was a problem updating the

event in the device default calendar: ${error.message}`);
});

} else {
console.log("Calendar Service Is Not Available");
this.showFailureAlert("Update Event", "Calendar Service is not available.");

}
}

deleteCalendarEvent() {
if (this.calendarService.isAvailable() && this.selectedItemIndex != -1 &&

this.selectedItem) {
LightningConfirm.open(

{
label: "Delete Event",
message: "Are you sure you want to delete this event?",
theme: "warning"

}
).then((response) => {

if (response === true) {
const options = {

"permissionRationaleText" : this.calendarPermissionRationaleText,

"span" : "ThisEvent"
};

console.log(`options: ${JSON.stringify(options)}`);
console.log(`Deleting selectedItem:

${JSON.stringify(this.selectedItem)}`);

this.calendarService.removeEvent(this.selectedItem, options)
.then(() => {

this.todayEvents.splice(this.selectedItemIndex, 1);
this.hideDetailView();

this.showSuccessAlert("Delete Event", "Event was removed successfully
from the device default calendar.");

})
.catch((error) => {

console.error(error);
this.showFailureAlert("Delete Event", `There was a problem removing

the event from the device default calendar: ${error.message}`);

71

CalendarService ExampleUse Mobile Device Features in Mobile Apps

});
}

});
} else {

console.log("Calendar Service Is Not Available");
this.showFailureAlert("Delete Event", "Calendar Service is not available.");

}
}

getTodayEvents() {
// For this sample code, we've hard-coded some made-up values.
// Your component should fetch events from your SF org and convert them to the

following object format.
const events = [

{
id: "event_id_1", // will be overwritten after a call to

calendarService.addEvent()
isAllDay: false,
startDateSecondsUTC: this.getTodayTimestampAtTimeOfDay(8, 0, 0), // 8 AM
endDateSecondsUTC: this.getTodayTimestampAtTimeOfDay(10, 0, 0), // 10 AM
availability: "Busy",
status: "Confirmed",
calendarId: null, // will be assigned to the default device calendar
title: "Team Meeting",
location: "3514 Ruckman Road, San Francisco, CA 94105",
notes: "Discussing customer request for new calendar feature",
alarms: [{relativeOffsetSeconds: 600}], // 10 mins before event
attendees: [

{ name: "Jamal Booker", email: "jbooker_fake_email@email.com", role:
"Required", status: "Accepted" },

{ name: "Robert Bullard", email: "bob.bullard.fake.email@email.com",
role: "Required", status: "Pending" },

{ name: "Gordon Chu", email: "gordonchu736251_email@email.com", role:
"Optional", status: "Declined" },

],
recurrenceRules: null

},
{

id: "event_id_2", // will be overwritten after a call to
calendarService.addEvent()

isAllDay: false,
startDateSecondsUTC: this.getTodayTimestampAtTimeOfDay(10, 30, 0), // 10:30

AM
endDateSecondsUTC: this.getTodayTimestampAtTimeOfDay(11, 0, 0), // 11 AM
availability: "Busy",
status: "Confirmed",
calendarId: null, // will be assigned to the default device calendar
title: "Quarterly Review",
location: "2135 Alpha Avenue, Fernandina Beach, FL 32034",
notes: "Reviewing results of Q2 and planning Q3",
alarms: [{relativeOffsetSeconds: 1800}], // 30 mins before event
attendees: [

{ name: "Alex Driskel", email: "adriskell_fake_email@email.com", role:
"Required", status: "Accepted" },

72

CalendarService ExampleUse Mobile Device Features in Mobile Apps

{ name: "Kim Friedman", email:
"nothing_is_kimpossible_fake_email@email.com", role: "Required", status: "Tentative" },

{ name: "April Guthman", email: "guthman.april.fake@email.com", role:
"Required", status: "Pending" },

{ name: "Leif Hansen", email: "leifhansenfakeemail@email.com", role:
"Required", status: "Accepted" },

],
recurrenceRules: null

},
{

id: "event_id_3", // will be overwritten after a call to
calendarService.addEvent()

isAllDay: false,
startDateSecondsUTC: this.getTodayTimestampAtTimeOfDay(11, 0, 0), // 11

AM
endDateSecondsUTC: this.getTodayTimestampAtTimeOfDay(12, 0, 0), // 12 PM
availability: "Busy",
status: "Confirmed",
calendarId: null, // will be assigned to the default device calendar
title: "Portfolio Checklist",
location: "2281 Radford Street, Louisville, KY 40291",
notes: "Creating a guide to help sales in compiling a strong portfolio",
alarms: [{relativeOffsetSeconds: 600}], // 10 mins before event
attendees: [
{ name: "Marie Hill", email: "marieriefake@email.com", role: "Required",

status: "Accepted" },
{ name: "Foua Khang", email: "khanghangemail@email.com", role:

"Required", status: "Accepted" },
{ name: "Mindy Lee", email: "mindyfakeemaillee@email.com", role:

"Required", status: "Accepted" },
],
recurrenceRules: null

},
{

id: "event_id_4", // will be overwritten after a call to
calendarService.addEvent()

isAllDay: false,
startDateSecondsUTC: this.getTodayTimestampAtTimeOfDay(12, 30, 0), // 12:30

PM
endDateSecondsUTC: this.getTodayTimestampAtTimeOfDay(13, 30, 0), // 1:30

PM
availability: "Tentative",
status: "Tentative",
calendarId: null, // will be assigned to the default device calendar
title: "Lunch with Jennifer West",
location: "171 2nd St, San Francisco, CA 94105",
notes: "Bring latest version of contract",
alarms: [{relativeOffsetSeconds: 1800}], // 30 mins before event
attendees: [

{ name: "Awanasa Locklear", email: "this_is_awanasa_fake@email.com",
role: "Required", status: "Tentative" },

{ name: "Elena Nieto", email: "elenasfakeemail@email.com", role:
"Required", status: "Tentative" },

],

73

CalendarService ExampleUse Mobile Device Features in Mobile Apps

recurrenceRules: null
},
{

id: "event_id_5", // will be overwritten after a call to
calendarService.addEvent()

isAllDay: false,
startDateSecondsUTC: this.getTodayTimestampAtTimeOfDay(14, 30, 0), // 2:30

PM
endDateSecondsUTC: this.getTodayTimestampAtTimeOfDay(15, 30, 0), // 3:30

PM
availability: "Tentative",
status: "Tentative",
calendarId: null, // will be assigned to the default device calendar
title: "Sales Workgroup",
location: "3270 Armbrester Drive, Gardena, CA 90248",
notes: "Discuss the new customer opportunities",
alarms: [{relativeOffsetSeconds: 1800}], // 30 mins before event
attendees: [

{ name: "Raul Nieto", email: "raul.fake.nieto@email.com", role:
"Required", status: "Accepted" },

{ name: "Salome Ofodu", email: "salomesalomefakeemail@email.com", role:
"Required", status: "Tentative" },

{ name: "Justus Pardo", email: "justuspardofake@email.com", role:
"Required", status: "Tentative" },

{ name: "Gorav Patel", email: "gpatel.fake.email@email.com", role:
"Required", status: "Pending" },

],
recurrenceRules: null

},
{

id: "event_id_6", // will be overwritten after a call to
calendarService.addEvent()

isAllDay: false,
startDateSecondsUTC: this.getTodayTimestampAtTimeOfDay(15, 30, 0), // 3:30

PM
endDateSecondsUTC: this.getTodayTimestampAtTimeOfDay(17, 30, 0), // 5:30

PM
availability: "Busy",
status: "Confirmed",
calendarId: null, // will be assigned to the default device calendar
title: "Executive Team",
location: "56 Main Street, Seattle, WA 98119",
notes: "Report on Q2 sales and new leads",
alarms: [{relativeOffsetSeconds: 600}, {relativeOffsetSeconds: 3600}], //

10 mins and 1 hour before event
attendees: [

{ name: "Florentina Perez", email: "florperfakeemail@email.com", role:
"Required", status: "Accepted" },

{ name: "Harryette Randall", email: "doubleletteremailfake@email.com",
role: "Required", status: "Accepted" },

{ name: "Sofia Rivera", email: "fakeemailforsofie@email.com", role:
"Required", status: "Accepted" },

],
recurrenceRules: null

74

CalendarService ExampleUse Mobile Device Features in Mobile Apps

}
];

return events;
}

getTodayTimestampAtTimeOfDay(hours, minutes, seconds) {
let d = new Date();
d.setHours(hours, minutes, seconds, 0);
return d.getTime() / 1000; // milliseconds to seconds

}

timeOfDayToString(dateSecondsUTC) {
let d = new Date(dateSecondsUTC * 1000); // seconds to milliseconds
let ampm = "AM";
let str = "";

if (d.getHours() > 12) {
ampm = "PM";
str += `${d.getHours() - 12}`;

} else {
str += `${d.getHours()}`;

}

if (d.getMinutes() > 0) {
if (d.getMinutes() < 10) {

str += `:0${d.getMinutes()}`;
} else {

str += `:${d.getMinutes()}`;
}

}

str += ` ${ampm}`;

return str;
}

alarmsToString(alarms) {
let results = [];

if (alarms) {
alarms.forEach(alarm => {

if (alarm.relativeOffsetSeconds == 0) {
results.push("At time of event");

} else {
const mins = parseInt(Math.ceil(Math.abs(alarm.relativeOffsetSeconds)

/ 60.0));
if (mins == 1) {

results.push("1 minute before");
} else if (mins < 60) {

results.push(`${mins} minutes before`);
} else {

const hours = parseInt(Math.ceil(mins / 60.0));
if (hours == 1) {

75

CalendarService ExampleUse Mobile Device Features in Mobile Apps

results.push("1 hour before");
} else if (hours < 24) {

results.push(`${hours} hours before`);
} else {

const days = parseInt(Math.ceil(hours / 24.0));
if (days == 1) {

results.push("1 day before");
} else {

results.push(`${days} days before`);
}

}
}

}
});

} else {
results.push("None");

}

return results;
}

generateDisplayFields(calendarEvent) {
// these are used for display purpose only
calendarEvent.startTimeDisplay =

this.timeOfDayToString(calendarEvent.startDateSecondsUTC);
calendarEvent.endTimeDisplay =

this.timeOfDayToString(calendarEvent.endDateSecondsUTC);
calendarEvent.alarmsDisplay = this.alarmsToString(calendarEvent.alarms);

}

showSuccessAlert(title, message) {
LightningAlert.open(

{
message: message,
theme: "success",
label: title,

}
);

}

showFailureAlert(title, message) {
console.log(`calendarService.isAvailable(): ${this.calendarService.isAvailable()}`);

console.log(`selectedItemIndex: ${this.selectedItemIndex}`);
console.log(`selectedItem: ${this.selectedItem.id}`);

LightningAlert.open(
{

message: message,
theme: "error", // a red theme intended for error states
label: title,

}
);

}

76

CalendarService ExampleUse Mobile Device Features in Mobile Apps

}

SEE ALSO:

Use the CalendarService API

Compatibility and Requirements
CalendarService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is only
available when CalendarService runs within a compatible Salesforce mobile app. It does not and cannot function when running in
a standard web browser, whether the browser runs on a desktop or mobile device.

CalendarService is available in Lightning apps distributed using:

• Mobile Publisher for Experience Cloud

CalendarService is fully functional when used in a Lightning app run from a compatible Salesforce mobile app on a compatible iOS or
Android mobile device. See Requirements for Mobile Publisher for Experience Cloud or the requirements page for your target mobile
app for specific device and operating system requirements.

CalendarService is not fully functional when running on other devices, such as a desktop, or when running in a web browser, even on
a mobile device. It requires one of the mobile apps listed above. The CalendarService API is accessible in Lightning Experience on all
devices, so your code won’t fail due to missing functions. However, when your app runs in a browser–desktop or mobile–it can use only
CalendarService constants and utility functions. Attempting any calendar-related operation will fail.

Considerations and Limitations
Keep the following in mind when developing features that use the CalendarService API.

Device Limitations

CalendarService doesn’t manage calendar and event data itself. Instead, it makes available certain calendar and event data of the
underlying platform (Android or iOS) and hardware (phone or other mobile device). While the features provided by CalendarService are
the same across both platforms, they’re subject to some platform-specific quirks and minor differences.

• In order for CalendarService to access a calendar and perform associated actions, the account associated with a calendar must be
synced to the device and grant the device permission to access the calendar. For example, if a user has an email account synced to
their device but has not granted the device access to that account’s calendar, CalendarService won’t be able to interact with that
calendar.

• Some devices have other restrictions, such as an employer-managed MDM, that limit access to certain device calendar APIs. Such
restrictions can prohibit CalendarService from accessing and interacting with these calendars.

• CalendarService requires the use of the mobile device’s calendar. Your user must grant your app access to the calendar. The exact
user experience is governed by the platform. The request happens automatically on first use, and is managed by the device itself,
but you should plan for it when designing the user experience of your app.

• In Android 11 or later, if the user taps “Deny” for permission to access the Calendar app more than once during the app’s lifetime of
installation on a device, the user won’t see the system permissions dialog again. Tapping Deny multiple times implicitly chooses the
“don’t ask again” option.

77

Compatibility and RequirementsUse Mobile Device Features in Mobile Apps

https://help.salesforce.com/s/articleView?id=sf.s1_branded_apps_requirements_commun.htm&language=en_US

In previous versions of Android, users would see the system permissions dialog each time the app requested permission unless the
user had previously selected “don’t ask again”. This change in Android 11 discourages repeated requests for permissions that users
have chosen to deny.

If the user has denied permission to access the Calendar app and needs to change their permissions to allow access, they can do so
in their device’s settings.

Development Considerations

You can certainly develop the user experience for your component on a desktop or laptop development system. But be sure to test
calendar and event functionality on the physical devices on which you plan to deploy your Lightning app.

Important: CalendarService allows for actions that, if used irresponsibly or incorrectly, can lead to irreversible consequences on
your users’ devices. These dangerous actions include altering and deleting calendar events.

As with all mobile capabilities, implementation of CalendarService’s functionality, dangerous actions included, is at your discretion.
Use caution when using dangerous actions in your component.

CalendarService Considerations

CalendarService is built on top of mobile operating system and device features. CalendarService’s capabilities therefore depend on
Android or iOS features, which are subject to change beyond our control. When mobile operating system features change, the behavior
of CalendarService can change without notice.

Access Contacts on a Mobile Device

A Lightning web component can use a mobile device’s contacts feature to select contacts from the device. When contacts are selected,
they’re returned to the Lightning web component that invoked it. Your component can import the contacts into Salesforce, attach
contact data to a record, or otherwise process the contacts as needed.

Contacts are accessed locally on the mobile device, and ContactsService doesn’t require a network connection. However, ContactsService
requires access to platform-specific APIs that are available only within compatible Salesforce mobile apps.

Important: ContactsService does not and cannot function when running in a web browser, whether on a desktop or mobile
device.

IN THIS SECTION:

ContactsService User Experience

Your component can deliver any user experience you desire, but there’s a common flow for any component that imports or processes
contact data.

Use the ContactsService API

To develop a Lightning web component with contacts-based features, use the ContactsService API as your method for selecting
contacts from a device’s address book.

ContactsService Example

Here’s a minimal but complete example of a Lightning web component that uses ContactsService to select on-device contacts and
then process the contact data in the component.

Compatibility and Requirements

ContactsService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is
only available when ContactsService runs within a compatible Salesforce mobile app. It does not and cannot function when
running in a standard web browser, whether the browser runs on a desktop or mobile device.

78

Access Contacts on a Mobile DeviceUse Mobile Device Features in Mobile Apps

Considerations and Limitations

Keep the following in mind when developing features that use the ContactsService API.

SEE ALSO:

Lightning Web Components Developer Guide: ContactsService API

ContactsService User Experience
Your component can deliver any user experience you desire, but there’s a common flow for any component that imports or processes
contact data.

1. A Lightning web component displays a button (or other user interface control) to start a process that uses contacts data.

2. When the button is tapped, ContactsService opens a list view for the user to select any number of contacts from the device’s native
contacts list.

3. After the desired contacts are selected, tap the “check” icon or Done button to continue.

79

ContactsService User ExperienceUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-contactsservice.html

4. Your Lightning web component receives the data from the selected contacts. Your component can display additional user interface
controls to further process the contacts, add the contacts to Salesforce, or otherwise apply whatever custom logic your business
process requires.

Use the ContactsService API
To develop a Lightning web component with contacts-based features, use the ContactsService API as your method for selecting contacts
from a device’s address book.

1. Import ContactsService into your component definition to make the ContactsService API functions available to your code.

2. Test to make sure ContactsService is available before you call contacts-related functions.

3. Use the getContacts() function to select and access contacts.

Add ContactsService to a Lightning Web Component
In your component’s JavaScript file, import ContactsService using the standard JavaScript import statement. Specifically, import the
getContactsService() factory function from the lightning/mobileCapabilities module, like so:

import { getContactsService } from 'lightning/mobileCapabilities';

After it’s imported into your component, use the factory function to get an instance of ContactsService. With your ContactsService
instance, use the utility functions and constants to verify availability. Then use contacts-related functions to select contacts from the
device.

80

Use the ContactsService APIUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-contactsservice-factory.html

Test ContactsService Availability
ContactsService depends on physical device hardware and platform features. A component that uses ContactsService renders without
errors on a desktop computer or in a mobile browser, but contacts-related functions fail. To avoid these errors, check if ContactsService
functionality is available before you use it.

handleGetContactsClick(event) {
const myContactsService = getContactsService();
if(myContactsService.isAvailable()) {

// Perform contacts-related operations
}
else {

// ContactsService not available, or consuming app hasn’t implemented it
// Not running on hardware with contacts, address book, etc.
// Handle with message, error, beep, and so on

}
}

Access and Process Contacts
It’s straightforward to create a custom contacts processing feature using ContactsService.

1. Open the contacts selection list view using getContacts().

2. Your user selects contacts from the list.

3. Process the results (the contacts data for the selected contacts).

For example:

// Select on-device contacts, and then process them
myContactsService.getContacts(options)
.then((results) => {

// Do something with the contacts data
this.contacts = results;
console.log(results);

})
.catch((error) => {

// Handle cancellation, or selection errors here
this.contacts = [];
console.error('Error code: ' + error.code); +
console.error('Error message: ' + error.message);

});

See getContacts(options) for more details about how to handle contacts data, handle errors, and so on.

SEE ALSO:

Lightning Web Components Developer Guide: ContactsService API

ContactsService Example

81

Use the ContactsService APIUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-contactsservice-getcontacts.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-contactsservice.html

ContactsService Example
Here’s a minimal but complete example of a Lightning web component that uses ContactsService to select on-device contacts and then
process the contact data in the component.

The component’s HTML template is minimal, with a button to start selecting contacts, and a place to display results.

<!-- contactsServiceExample.html -->
<template>

<!-- User interface control -->
<lightning-card title="ContactsService Example">

<div class="slds-var-m-around_medium">
<lightning-button

variant="brand"
label="Process Contacts"
onclick={handleImportContacts}
class="slds-var-m-left_x-small">

</lightning-button>
</div>

</lightning-card>

<!-- After contacts are selected, they're displayed here -->
<div class="slds-var-m-around_medium">

<p>Contacts Selected</p>
<p><lightning-formatted-text

value={contactsResults}></lightning-formatted-text></p>
<ul class="slds-var-m-around_medium">

<template for:each={contacts} for:item="contact">
<li key={contact.Id}>

{contact.name.givenName} {contact.name.familyName}
<ul class="slds-var-m-around_medium">

<template for:each={contact.phoneNumbers}
for:item="phoneNumber">
<li key={phoneNumber.value}>

{phoneNumber.value} ({phoneNumber.label})

</template>

</template>

</div>

</template>

Note the use of the for:each directive and nested template tag to iterate through the list of contacts, and a further nested
for:each directive and template to iterate through each contact’s list of phone numbers. You can do the same for email addresses,
IM handles, and other contact details.

82

ContactsService ExampleUse Mobile Device Features in Mobile Apps

This example doesn’t import contacts into Salesforce, or otherwise use the contacts data provided from the device. It simply uses
ContactsService to allow you to select contacts on the device, and then displays the returned contact data, or a status message when
there’s an error.

// contactsServiceExample.js
import { LightningElement } from 'lwc';
import { getContactsService } from 'lightning/mobileCapabilities';

export default class ContactsServiceExample extends LightningElement {

// Component state: result status, and result contacts data
contactsResults = 'No contacts selected.';
contacts = [];

handleImportContacts() {

const myContactsService = getContactsService();

// Make sure ContactsService is available before trying to access contacts
if(myContactsService.isAvailable()) {

// Configuration for ContactsService
let options = {

"permissionRationaleText":
"Allow access to your contacts to enable contacts processing."

};

// Select on-device contacts, and then process them
myContactsService.getContacts(options)
.then((results) => {

this.contacts = results;
this.contactsResults = 'Number of contacts selected: ' +

this.contacts.length;
})
.catch((error) => {

// Handle cancellation, or selection errors here
this.contacts = [];
this.contactsResults = JSON.stringify(error) +

'\n\nError code: ' + error.code +
'\n\nError message: ' + error.message;

console.error(this.contactsResults);
})

} else {
// ContactsService isn't available
// Are you running in a supported mobile app?
this.contactsResults = "ContactsService API isn't available.";

}
}

83

ContactsService ExampleUse Mobile Device Features in Mobile Apps

}

SEE ALSO:

Use the ContactsService API

Lightning Web Components Developer Guide: Render Lists

Compatibility and Requirements
ContactsService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is only
available when ContactsService runs within a compatible Salesforce mobile app. It does not and cannot function when running in
a standard web browser, whether the browser runs on a desktop or mobile device.

ContactsService is available in Lightning apps distributed using:

• Mobile Publisher for Salesforce App

• Mobile Publisher for Experience Cloud

ContactsService is fully functional when used in a Lightning app or Lightning site run from a compatible Salesforce mobile app on a
compatible iOS or Android mobile device. See Requirements for the Salesforce Mobile App, Requirements for Mobile Publisher for
Salesforce App, or the requirements page for your target mobile app for specific device and operating system requirements.

ContactsService is not fully functional when running on other devices, such as a desktop, or when running in a web browser, even on
a mobile device. It requires one of the mobile apps listed above. The ContactsService API is accessible in Lightning Experience on all
devices, so your code won’t fail due to missing functions. However, when your app runs in a browser—desktop or mobile—it can use
only ContactsService constants and utility functions. Attempting any contacts-related operation will fail.

Considerations and Limitations
Keep the following in mind when developing features that use the ContactsService API.

Device Limitations

ContactsService doesn’t manage contact information itself. Instead, it makes available certain contact data of the underlying platform
(Android or iOS) and hardware (phone or other mobile device). While the features provided by ContactsService are the same across both
platforms, they’re subject to some platform-specific quirks and minor differences.

• The user interface for selecting contacts are subject to differences between platforms. For example, the Done button on iOS vs. a
checkmark icon on Android, and differences in cancellation:

84

Compatibility and RequirementsUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/create-lists.html
https://help.salesforce.com/articleView?id=salesforce_app_requirements.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.s1_branded_apps_requirements.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.s1_branded_apps_requirements.htm&type=5&language=en_US

• ContactsService requires the use of the mobile device’s contacts. Your user must grant your app access to contacts. The exact user
experience is governed by the platform. The request happens automatically on first use, and is managed by the device itself, but
you should plan for it when designing the user experience of your app.

• In Android 11 or later, if the user taps “Deny” for permission to access the Contacts app more than once during the app’s lifetime of
installation on a device, the user won’t see the system permissions dialog again. Tapping Deny multiple times implicitly chooses the
“don’t ask again” option.

In previous versions of Android, users would see the system permissions dialog each time the app requested permission unless the
user had previously selected “don’t ask again”. This change in Android 11 discourages repeated requests for permissions that users
have chosen to deny.

If the user has denied permission to access the Contacts app and needs to change their permissions to allow access, they can do so
in their device’s settings.

• If Mobile Device Management (MDM) is in use on a device, and MDM restricts access to contacts data, ContactsService can’t access
it.

• If the user doesn't have any contacts in their device’s contact list, ContactsService won’t work.

• If the user has contacts associated with specific accounts on their device, those accounts must have contacts sync enabled in order
for ContactsService to access them. In other words, ContactsService can only access contacts that are visible in your user’s device’s
native contact list. See Use other contact accounts on iPhone (iOS) and Back up & sync device contacts (Android) for more information.

If you’re having trouble getting ContactsService to access contact data, try the following:

• First, verify that your device contact list contains the contact data you’re trying to access. ContactsService can only access contacts
that are visible in your device’s native contact list.

• Next, verify that you’ve granted contacts permission to the mobile app where your component is running. You can check this in
your device’s settings.

• Finally, double-check the configuration of ContactsService in your code.

Development Considerations

Virtual devices might not have any contact data when they’re created. To test ContactsService on a virtual device, you’ll first need to
create some contact records in the virtual device’s Contacts app. Alternatively, you can import contact data in the standard .vcf format,
or sign into a real Google or iCloud account that has contact data associated with it.

You can certainly develop the user experience for your component on a desktop or laptop development system. But be sure to test
contact access functionality on the physical devices on which you plan to deploy your Lightning app.

ContactsService Considerations

85

Considerations and LimitationsUse Mobile Device Features in Mobile Apps

https://support.apple.com/guide/iphone/use-other-contact-accounts-iph14a87326/ios
https://support.google.com/contacts/answer/9423168?hl=en&ref_topic=9160153

Be aware of the following considerations when using ContactsService in your Lightning app.

• ContactsService is built on top of mobile operating system and device features. ContactsService’s capabilities therefore depend on
Android or iOS features, which are subject to change beyond our control. When mobile operating system features change, the
behavior of ContactsService can change without notice.

• A Lightning component that uses ContactsService can have a custom user interface in the component itself. However, the contacts
selection user interface can’t be customized.

Scan Documents on a Mobile Device

A Lightning web component can use a device’s camera and optical character recognition (OCR) to scan documents. When a document
is successfully scanned, text data extracted from the scanned document is returned to the Lightning web component that invoked it.
DocumentScanner recognizes printed text and handwritten form factors. However, DocumentScanner provides the most accurate results
when scanning printed text compared handwritten text, which varies on the legibility of handwritten characters.

DocumentScanner results are returned in two formats:

• A simple string of all recognized text, suitable for simple document capture.

• Structured text data aligned with the scanned image, suitable for interactive processing of document content.

Scanning is performed locally on the mobile device, and doesn't need a network connection. However, DocumentScanner requires
access to APIs implemented in platform-native code that are available only within compatible Salesforce mobile apps.

Important: DocumentScanner does not and cannot function when running in a web browser, whether on a desktop or mobile
device.

IN THIS SECTION:

Use the DocumentScanner API

To add document scanning features to a Lightning web component, use the DocumentScanner API.

DocumentScanner Example

Here’s an example of a Lightning web component that uses DocumentScanner to capture text data from an image.

Compatibility and Requirements

DocumentScanner is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is
only available when DocumentScanner runs within a compatible Salesforce mobile app. It does not and cannot function when
running in a standard web browser, whether the browser runs on a desktop or mobile device.

Considerations and Limitations

Consider these guidelines and limitations when developing features that use the DocumentScanner API.

Use the DocumentScanner API
To add document scanning features to a Lightning web component, use the DocumentScanner API.

1. Import DocumentScanner into your component definition to make the DocumentScanner API functions available to your code.

2. Test to make sure DocumentScanner is available before you call the scan() function.

3. Use the scan() function to begin a document scanning session.

4. Process the scan results.

86

Scan Documents on a Mobile DeviceUse Mobile Device Features in Mobile Apps

For complete reference documentation of the DocumentScanner API, see DocumentScanner API in the Lightning Web Components
Developer Guide.

Add DocumentScanner to a Lightning Web Component
In your component’s JavaScript file, import DocumentScanner using the standard JavaScript import statement. Specifically, import
the getDocumentScanner() factory function from the lightning/mobileCapabilities module, like so:

import { getDocumentScanner } from 'lightning/mobileCapabilities';

After it’s imported into your component, use the factory function to get an instance of DocumentScanner. With your DocumentScanner
instance, use the utility functions and constants to verify availability. Then use the scan function to initiate a document scan.

Test DocumentScanner Availability
DocumentScanner depends on physical device hardware and platform features. A component that uses DocumentScanner renders
without errors on a desktop computer or in a mobile browser, but scanning functions fail.. To avoid these errors, test if DocumentScanner
functionality is available before you use it.

handleBeginScanEventClick(event) {
const myDocumentScanner = getDocumentScanner();
if(myDocumentScanner.isAvailable()) {

// Perform document scanning operations
}
else {

// DocumentScanner not available, or consuming app hasn’t implemented it
// Not running on hardware with a scanner
// Handle with message, error, beep, and so on

}
}

Scan a Document
Scanning documents with DocumentScanner is straightforward.

• Start a scan with scan(options).

• (Your user scans a document.)

• Handle the result of the scan, which is returned in the form of a promise.

For example:

myScanner
.scan(scanningOptions)
.then((result) => {
// Do something with the result of the scan
console.log(result);
this.scannedDocument = result.value;

})
.catch((error) => {
// Handle cancellation and scanning errors here
console.error(error);

});

87

Use the DocumentScanner APIUse Mobile Device Features in Mobile Apps

When scanning is successful, the returned promise contains the string value of the scanned text. See (reference doc link) for the structure
and contents of the result.

If scanning is unsuccessful, the promise is returned as an error, which includes an error code and message that you can use in error
handling. See DocumentScanner API in the Lightning Web Components Developer Guide for more information.

Process Scan Results
When scanning completes successfully, DocumentScanner returns an array of Document objects in the result object. Document objects
include scan data in two different formats.

• A simple string of all recognized text.

• Structured text data that includes positional details aligned with the underlying scanned image.

Both formats are available from Documents in the result object. The simple string of all recognized text makes it easy to implement
simple features where you scan a document into a text field. The structured text results require more processing to handle, but allow
you to develop complex UIs for extracting portions of the scanned document, assign elements to multiple form fields, and so on. See
DocumentScanner Example for an example of handling both types of scanned document data.

DocumentScanner Example
Here’s an example of a Lightning web component that uses DocumentScanner to capture text data from an image.

There’s an option to select the source of the image to be scanned, from either the device camera or the device image library.

<template>
<table class="rootTable">
<tbody>

<!-- Document scanning controls -->
<tr>
<td style="height: 1px;">
// Choose source of the document to be scanned
<lightning-card title="Document Scanner" icon-name="custom:display_text">
<div class="slds-var-p-around_medium">
Select source of document to be scanned:

<lightning-button
variant="brand"
label="Camera"
title="Capture document with camera"
onclick={handleScanFromCameraClick}>
</lightning-button>

<lightning-button
variant="brand"
label="Photo Library"
title="Scan document from photo library"
onclick={handleScanFromPhotoLibraryClick}
class="slds-var-m-left_x-small">
</lightning-button>
</div>

88

DocumentScanner ExampleUse Mobile Device Features in Mobile Apps

<!-- Display errors, if any -->
<template if:true={scannerError}>
<lightning-formatted-text value={scannerError}>
</lightning-formatted-text>
</template>

<!-- Display text of scanned document, if any -->
<template if:true={scannedDocument}>
// results of the scan are displayed here
<div class="slds-var-p-around_medium">
Text Recognition Result:

{scannedDocument.text}
</div>
</template>

</lightning-card>
</td>
</tr>

<!-- If there is a scanned document, display a preview -->
<tr>
<td>
<template if:true={scannedDocument}>
<div class="previewDiv">

<!-- document image -->
<div class="divContentCentered">
<img class="previewImage" src={scannedDocument.imageBytes}
onload={addImageHighlights} />

</div>

<!-- highlights overlay; note use of manual DOM rendering -->
<div class="divContentCentered">
<div class="contour" lwc:dom="manual"></div>
</div>

</div>
</template>
</td>
</tr>

</tbody>
</table>
</template>

This example uses DocumentScanner to choose a source for the document to be scanned, and to perform a basic scanning operation.
After the scan completes, the results are displayed, along with an SVG graphic that annotates the scanned document graphic with an
overlay of the result structured text data. A status message is returned when there’s an error.

import { LightningElement } from "lwc";
import { getDocumentScanner } from "lightning/mobileCapabilities";

export default class DocumentScanner extends LightningElement {
// Scan results (if any)
scannerError;

89

DocumentScanner ExampleUse Mobile Device Features in Mobile Apps

scannedDocument;

handleScanFromCameraClick() {
this.scanDocument("DEVICE_CAMERA");

}

handleScanFromPhotoLibraryClick() {
this.scanDocument("PHOTO_LIBRARY");

}

scanDocument(imageSource) {
// Clear previous results / errors
this.resetScanResults();

// Main document scan cycle
const myScanner = getDocumentScanner();
if (myScanner.isAvailable()) {
// Configure the scan
const options = {
imageSource: imageSource,
scriptHint: "LATIN",
returnImageBytes: true,

};

// Perform document scan
myScanner
.scan(options)
.then((results) => {
// Do something with the results
this.processScannedDocuments(results);

})
.catch((error) => {
// Handle errors
this.scannerError =
"Error code: " + error.code + "\nError message: " + error.message;

});
} else {
// Scanner not available
this.scannerError =
"Problem initiating scan. Are you using a mobile device?";

}
}

resetScanResults() {
this.scannedDocument = null;
this.scannerError = null;

}

processScannedDocuments(documents) {
// DocumentScanner only processes the first scanned document in an array
this.scannedDocument = documents[0];
// And this is where you take over; process results as desired

}

90

DocumentScanner ExampleUse Mobile Device Features in Mobile Apps

// Build an annotation overlay graphic, to display on top of the scanned image
addImageHighlights(event) {
const textBlocks = this.scannedDocument?.blocks;
if (!textBlocks) {
return;

}

const img = event.srcElement;
const cWidth = img.clientWidth;
const cHeight = img.clientHeight;
const nWidth = img.naturalWidth;
const nHeight = img.naturalHeight;
const width = Math.min(cWidth, nWidth);
const height = Math.min(cHeight, nHeight);

let svg =
`<svg version="1.1" xmlns="http://www.w3.org/2000/svg" ` +
`xmlns:xlink="http://www.w3.org/1999/xlink" ` +
`width="${width}" height="${height}" viewBox="0, 0, ${nWidth}, ${nHeight}">`;

textBlocks.forEach((block) =>
block.lines.forEach((line) =>
line.elements.forEach((element) => {
const frame = element.frame;
svg +=
`<rect x="${frame.x}" y="${frame.y}" width="${frame.width}" ` +
`height="${frame.height}" style="fill:green;fill-opacity:0.5" />`;

})
)

);
svg += "</svg>";

// Manually attach the overlay SVG to the LWC DOM to render it
this.template.querySelector(".contour").innerHTML = svg;

}
}

Compatibility and Requirements
DocumentScanner is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is only
available when DocumentScanner runs within a compatible Salesforce mobile app. It does not and cannot function when running
in a standard web browser, whether the browser runs on a desktop or mobile device.

DocumentScanner is available in Lightning apps distributed using:

• Salesforce Mobile app

• Salesforce Field Service app

DocumentScanner is fully functional when used in a Lightning app or Lightning site that’s run from a compatible Salesforce mobile app
on a compatible iOS or Android mobile device. See Requirements for the Salesforce Mobile App, or the requirements page for your target
mobile app for specific device and operating system requirements.

91

Compatibility and RequirementsUse Mobile Device Features in Mobile Apps

https://help.salesforce.com/articleView?id=salesforce_app_requirements.htm&type=5&language=en_US

DocumentScanner is not fully available when running on other devices, such as a desktop, or when running in a web browser, even on
a mobile device. It requires one of the apps listed above. The DocumentScanner API is accessible in Lightning Experience on all devices,
so your code won’t fail due to missing functions. However, when your app runs in a browser—desktop or mobile—it can use only
DocumentScanner constants and utility functions. Attempting any document scanning operation will fail.

Considerations and Limitations
Consider these guidelines and limitations when developing features that use the DocumentScanner API.

Device Limitations

• To scan documents using a mobile device’s camera, DocumentScanner requires permission to use the camera. Your user must grant
your app access to the camera. The exact user experience is governed by the platform. The request happens automatically on first
use, and is managed by the device itself, but you should plan for it when designing the user experience of your app.

• To scan documents stored in the device photo library, DocumentScanner requires permission to access the photo library. Your user
must grant your app access to the photo library. Again, the user experience is managed by the platform (iOS or Android).

• In Android 11 or later, if the user taps “Deny” for permission to access the Camera app or photo library more than once during the
app’s lifetime of installation on a device, the user won’t see the system permissions dialog again. Tapping Deny multiple times
implicitly chooses the “don’t ask again” option.

In previous versions of Android, users would see the system permissions dialog each time the app requested permission unless the
user had previously selected “don’t ask again”. This change in Android 11 discourages repeated requests for permissions that users
have chosen to deny.

If the user has denied permission to access the Camera app or photo library and needs to change their permissions to allow access,
they can do so in their device’s settings.

• DocumentScanner doesn’t implement scanning itself. Instead, it delegates document scanning and recognition to an underlying
SDK implemented in native code (Android or iOS). While the features provided by DocumentScanner are the same across both
platforms, they’re subject to some platform-specific quirks and minor differences.

– If the chosen input for the document to be scanned is the device camera, DocumentScanner automatically uses the “main”
device camera. Built-in controls allow choosing other device cameras, if available.

– If you can’t get a clear picture of the document, it can’t be recognized. The quality of the device camera affects text recognition.
A damaged or low-quality camera lens or focusing system, poor lighting, motion, and other factors can make it difficult or
impossible to get a clear picture of a document.

– The quality of the document affects text recognition. Specifically, documents with damaged or obscured text are hard to recognize
successfully.

– DocumentScanner recognizes printed text and handwritten form factors. However, DocumentScanner provides the most accurate
results when scanning printed text compared handwritten text, which varies on the legibility of handwritten characters. While
DocumentScanner is capable of performing text recognition on a variety of typefaces, highly stylized fonts can lower recognition
accuracy.

Development Considerations

• DocumentScanner requires access to camera hardware, or to the device photo library. To test scanning using a camera during
development, use actual, physical devices.

– The Android emulator can simulate camera hardware by using a webcam on your development system. To do so, edit the camera
configuration for your Android Virtual Device, in the advanced settings panel. However, the camera built into most laptops is
much lower quality than what’s found on modern mobile phones. A low-quality camera limits the usefulness of testing text
recognition.

92

Considerations and LimitationsUse Mobile Device Features in Mobile Apps

– The iOS simulator doesn’t provide access to simulated camera hardware at all. You can certainly develop the user experience
for your component on a desktop or laptop development system. But, be sure to test camera scanning functionality on the
physical devices on which you plan to deploy your Lightning app.

• As a work-around for limited camera access in virtual devices, you can load a few sample images into the virtual device’s photo
library, and use those for scanning operations. However, if you expect your users to scan using a device camera, be sure to also test
using real device cameras.

DocumentScanner Considerations

DocumentScanner is built on top of mobile operating system and device features. DocumentScanner’s capabilities therefore depend
on Android or iOS features, which are subject to change beyond our control. When mobile operating system features change, the
behavior of DocumentScanner can change without notice.

Monitor Geofence Regions on a Mobile Device

A Lightning web component can use a mobile device’s location features to determine a user’s current location to the user’s proximity
to areas that may be of interest, or to perform location-related tasks. The longitude, latitude, and radius define a geofence around the
regions of interest.

Geofence location is determined locally on the mobile device, and doesn’t need a network connection. However, GeofencingService
does require a GPS signal from the device. For Android devices, Google Location Accuracy must be enabled in the system settings.
GeofencingService does require access to platform-specific APIs that are available only within compatible Salesforce mobile apps.

Important: GeofencingService does not and cannot function when running in a web browser, whether on a desktop or mobile
device.

IN THIS SECTION:

GeofencingService User Experience

Your component can deliver any user experience you desire. There are a number of geofencing-based features where
GeofencingService might be suitable.

Use the GeofencingService API

To develop a Lightning web component with location-based features for creating and monitoring geofences, use the GeofencingService
API.

GeofencingService Example

Here’s a basic example of a Lightning web component that uses a device’s biometrics capabilities to verify device ownership.

Compatibility and Requirements

GeofencingService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is
only available when GeofencingService runs within a compatible Salesforce mobile app. It does not and cannot function when
running in a standard web browser, whether the browser runs on a desktop or mobile device.

Considerations and Limitations

Consider these guidelines and limitations when developing features that use the GeofencingService API.

SEE ALSO:

Lightning Web Components Developer Guide: GeofencingService API

93

Monitor Geofence Regions on a Mobile DeviceUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-geofencingservice.html

GeofencingService User Experience
Your component can deliver any user experience you desire. There are a number of geofencing-based features where GeofencingService
might be suitable.

• Your user enters or exits a geofence region and triggers an event.

• Your user enters an area of interest and receives a notification.

• Display an alert based on user location.

Use the GeofencingService API
To develop a Lightning web component with location-based features for creating and monitoring geofences, use the GeofencingService
API.

1. Import GeofencingService to make the GeofencingService API functions available to your code.

2. Test to make sure GeofencingService is available before you call geofencing functions.

3. Use the geofencing functions to get the current location and to define regions of interest.

94

GeofencingService User ExperienceUse Mobile Device Features in Mobile Apps

Add GeofencingService to a Lightning Web Component
In your component’s JavaScript file, import GeofencingService using the standard JavaScript import statement. Specifically, import
the getGeofencingService() factory function from the lightning/mobileCapabilities module, like so:

import { getGeofencingService } from 'lightning/mobileCapabilities';

After it’s imported into your component, use the factory function to get an instance of GeofencingService. With your GeofencingService
instance, use the utility functions and constants to verify availability. Then use the geofencing function to create location arrival or
departure notifications for geographic regions.

Test GeofencingService Availability
GeofencingService depends on physical device hardware and platform features. A component that uses GeofencingService renders
without errors on a desktop computer or in a mobile browser, but geofencing functions fail. To avoid these errors, test whether
GeofencingService functionality is available before you use it.

handleClickAddGeofencingRegion(event) {
const myGeofencingService = getGeofencingService();
if(myGeofencingService.isAvailable()) {

// Perform geofencing operations
}
else {

// GeofencingService not available
// Not running on hardware with location APIs, etc.
// Handle with message, error, beep, and so on

}
}

Start Monitoring a Geofence Region
Use the StartMonitoringGeofence() function to start monitoring a geofence region. Then, handle the outcome in whatever
manner you wish.

sftowerEntry = {
latitude: 37.7899,
longitude: -122.3969,
radius: 50,
notifyOnEntry: true,
message: “Welcome to Salesforce Tower”,
triggerOnce: false

}

addGeofence() {
// …
if(myGeofencingService.isAvailable()) {

// Perform geofencing operations
myGeofencingService.startMonitoringGeofence(this.sftowerEntry)

.then((id) => {
console.log(`ID for geofence SF Tower Entry created: ${id}`);

})
.catch((error) => {

console.log(error);
});

95

Use the GeofencingService APIUse Mobile Device Features in Mobile Apps

}
}

Stop and Remove All Monitored Geofence Regions
Use the StopMonitoringAllGeofences() function to stop monitoring all geofence regions. Callback is called when the
monitoring stops for all geofence regions, or with an error if the monitoring fails to stop.

handleClickRemoveGeofencingRegion(geofenceRegionId) {
// …
if(myGeofencingService.isAvailable()) {

// Perform geofencing operations
myGeofencingService.stopMonitoringGeofence(geofenceRegionId)

.then(() => {
console.log(`Success`);

})
.catch((error) => {

console.log(error);
});

}
}

Stop and Remove A Specific Monitored Geofence Region
Use the StopMonitoringAllGeofences() function to stop monitoring all geofence regions. Callback is called when the
monitoring stops for a geofence region, or with an error if the monitoring fails to stop.

handleClickRemoveGeofencingRegion(geofenceRegionId) {
// …
if(myGeofencingService.isAvailable()) {

// Perform geofencing operations
myGeofencingService.stopMonitoringGeofence(geofenceRegionId)

.then(() => {
console.log(`Success`);

})
.catch((error) => {

console.log(error);
});

}
}

Get the IDs of Active Geofences
Use the getMonitoredGeofences() function to get the IDs of active geofence regions. Provide a callback function to handle
all IDs of geofences being monitored, or with an error if the query fails.

handleClickGetAllGeofenceIDs() {
// …
if(myGeofencingService.isAvailable()) {

// Perform geofencing operations
myGeofencingService.getMonitoredGeofences()

.then((results) => {

96

Use the GeofencingService APIUse Mobile Device Features in Mobile Apps

const activeGeofences = JSON.parse(JSON.stringify(results));
const msg = `Number of geofences: + ${activeGeofences.length}`;

console.log(msg);
})
.catch((error) => {

console.log(error);
});

}
}

SEE ALSO:

Lightning Web Components Developer Guide: GeofencingService API

GeofencingService Example

GeofencingService Example
Here’s a basic example of a Lightning web component that uses a device’s biometrics capabilities to verify device ownership.

Here’s a basic example of a Lightning web component that uses GeofencingService to monitor and determine when a user arrives or
departs a geographic region.

<template>
<lightning-card title="Geofencing Service" icon-name="custom:custom14">

<div class="slds-var-m-around_medium">
<p><lightning-formatted-text

value={geofencingResults}></lightning-formatted-text></p>
<div class="slds-var-m-around_medium">

<p>Create an entry and exit geofence at the Salesforce Tower:</p>
<lightning-button variant="brand" label="Add Geofences"

title="Add Geofences to SF Tower"
onclick={addGeofence}
class="slds-var-m-around_x-small"
disabled={geofencingServiceDisabled}>

</lightning-button>
</div>
<div class="slds-var-m-around_medium">

<p><lightning-formatted-text
value={geofencingAddedResults}></lightning-formatted-text></p>

</div>
</div>
<div class="slds-var-m-around_medium">

<div class="slds-var-m-around_medium">
<p>Remove all active geofences:</p>
<lightning-button variant="brand" label="Remove All Geofences"

title="Remove all geofences"
onclick={removeGeofences}
class="slds-var-m-around_x-small"
disabled={geofencingServiceDisabled}>

</lightning-button>
</div>
<div class="slds-var-m-around_medium">

<p><lightning-formatted-text
value={removeGeofencesResults}></lightning-formatted-text></p>

97

GeofencingService ExampleUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-geofencingservice.html

</div>
</div>
<div class="slds-var-m-around_medium">

<div class="slds-var-m-around_medium">
<p>Get list of all active geofences:</p>
<lightning-button variant="brand" label="Get Active Geofences"

title="Get active geofences"
onclick={getActiveGeofences}
class="slds-var-m-around_x-small"
disabled={geofencingServiceDisabled}>

</lightning-button>
</div>
<div class="slds-var-m-around_medium">

<p><lightning-formatted-text
value={activeGeofencesResults}></lightning-formatted-text></p>

<ul class="slds-var-m-around_medium">
<template for:each={activeGeofences} for:item="geofence">

<li key={geofence}>{geofence}
</template>

</div>

</div>
</lightning-card>

</template>

SEE ALSO:

Use the GeofencingService API

Compatibility and Requirements
GeofencingService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is only
available when GeofencingService runs within a compatible Salesforce mobile app. It does not and cannot function when running
in a standard web browser, whether the browser runs on a desktop or mobile device.

GeofencingService is available in Lightning apps distributed using:

• Salesforce Field Service app

GeofencingService is fully functional when used in a Lightning app or Lightning site that’s run from a compatible Salesforce mobile app
on a compatible iOS or Android mobile device. See Field Service Mobile App Requirements, or the requirements page for your target
mobile app for specific device and operating system requirements.

GeofencingService is not fully available when running on other devices, such as a desktop, or when running in a web browser, even on
a mobile device. It requires one of the listed apps. The GeofencingService API is accessible in Lightning Experience on all devices, so
your code won’t fail due to missing functions. However, when your app runs in a browser—desktop or mobile—it can use only
GeofencingService constants and utility functions. Attempting any geofencing-related operation results in failure.

Considerations and Limitations
Consider these guidelines and limitations when developing features that use the GeofencingService API.

Device Limitations

98

Compatibility and RequirementsUse Mobile Device Features in Mobile Apps

https://help.salesforce.com/s/articleView?id=sf.mfs_requirements.htm&type=5&language=en_US

• GeofencingService requires the use of the mobile device location detection hardware. The user must grant your app access to the
device’s location. The exact user experience is governed by the platform. The request happens automatically on first use, and is
managed by the device itself, but you should plan for it when designing the user experience of your app.

• In Android 11 or later, if the user taps “Deny” for permission to access the mobile device location more than once during the app’s
lifetime of installation on a device, the user won’t see the system permissions dialog again. Tapping Deny multiple times implicitly
chooses the “don’t ask again” option.

In previous versions of Android, users would see the system permissions dialog each time the app requested permission unless the
user had previously selected “don’t ask again”. This change in Android 11 discourages repeated requests for permissions that users
have chosen to deny.

If the user has denied permission to access the mobile device location and needs to change their permissions to allow access, they
can do so in their device’s settings.

• Location tracking is subject to significant privacy, processing, and power use restrictions, imposed by the underlying platform (Android
or iOS). See important details in the GeofencingService API reference documentation.

• Many factors affect the accuracy of location detection, the speed of determining the current location, and how much impact location
tracking has on battery life.

• Mobile devices vary in the quality of the location detection they provide.

• If a mobile device can’t determine its location, neither can GeofencingService. The quality of the device’s positioning hardware, tall
or dense buildings, indoor use, and other external factors can reduce the accuracy of location determination.

• Location tracking on high accuracy can significantly increase power use, which affects how quickly a mobile device drains its battery.

Development Considerations

GeofencingService requires access to positioning hardware, such as GPS, Wi-Fi, cellular, and other location-detection hardware of your
mobile device. To test location services during development, use actual, physical devices when possible.

• The Android emulator and iOS simulator can each be configured to provide simulated location details.

• Neither virtual device accurately simulates location detection in the real world, especially for environments where location detection
is challenging.

You can certainly develop the user experience for your component on a desktop or laptop development system. But be sure to test
geofencing-based functionality on the physical devices on which you plan to deploy your Lightning app.

GeofencingService Considerations

Be aware of the following considerations when using GeofencingService in your Lightning app.

• GeofencingService is built on top of mobile operating system and device features. GeofencingService’s capabilities therefore depend
on Android or iOS features, which are subject to change beyond our control. When mobile operating system features change, the
behavior of GeofencingService can change without notice.

• There’s a maximum number of 20 monitored geofences at any time.

Use Location on a Mobile Device

A Lightning web component can use a mobile device’s location features to determine the current location of the device and, by
association, the person who is holding it. You can access the device’s current location at a moment in time, or you can subscribe to
location changes, and receive updates to the device’s location when it changes significantly.

Location is determined locally on the mobile device, and doesn’t need a network connection. LocationService does require access to
platform-specific APIs that are available only within compatible Salesforce mobile apps.

99

Use Location on a Mobile DeviceUse Mobile Device Features in Mobile Apps

Important: LocationService does not and cannot function when running in a web browser, whether running on a desktop or
mobile device.

LocationService provides coordinate data only: latitude, longitude, altitude, and some motion details. It doesn’t include derived data,
such as a physical address or map detail. If you’re using the location information to, for example, show a position on a map, you might
need a network connection to receive map data, such as map tiles, and so on.

IN THIS SECTION:

LocationService User Experience

Your component can deliver any user experience you desire. There are a number of common location-based features where
LocationService might be suitable.

Location Basics

On the surface, the concept of location is a simple one. Where am I? Where is Salesforce Tower? How do I get to Salesforce Tower
from where I am right now? These are all location-based features, and we’ve been using them on mobile devices for many years.
As a developer, the concept of location can be more complex.

Use the LocationService API

To develop a Lightning web component with location-based features, use the LocationService API to determine the current location.

LocationService Example

Here’s a basic example of a Lightning web component that gets the user’s current location and displays it on a map.

Compatibility and Requirements

LocationService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. LocationService requires access to device hardware and device platform APIs.
This access is only available when LocationService runs within a compatible Salesforce mobile app. It does not and cannot function
when running in a standard web browser, whether the browser runs on a desktop or mobile device.

Considerations and Limitations

Keep the following in mind when developing features that use the LocationService API.

SEE ALSO:

Lightning Web Components Developer Guide: LocationService API

LocationService User Experience
Your component can deliver any user experience you desire. There are a number of common location-based features where LocationService
might be suitable.

Here are a few examples of common location-based features:

• Display a user’s current location on a map

• Get the user’s current location when they perform an action in your app

• Provide directional guidance for travel between the current location and another location

• Calculate travel time from the current location to another

• Perform an action when a user approaches a destination

• Perform an action when a user moves a significant distance

In these examples, LocationService is usually only a part of the complete solution. Map display, route and travel time calculations, and
so on are other parts that you need to implement yourself.

100

LocationService User ExperienceUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-locationservice.html

If your feature is a straightforward, map-based page, you can use LocationService position information along with the lightning-map
base component. For more complex solutions, such as those requiring routing directions, you might need to integrate with other tools
or services.

Location Basics
On the surface, the concept of location is a simple one. Where am I? Where is Salesforce Tower? How do I get to Salesforce Tower from
where I am right now? These are all location-based features, and we’ve been using them on mobile devices for many years. As a developer,
the concept of location can be more complex.

Location itself can be reduced to basic X,Y coordinates: a latitude and longitude, also known as a geolocation. For example,
{37.7898007,-122.3991439} (the location of Salesforce HQ). But knowing the coordinates of Salesforce Tower doesn’t show
you where it is on a map, or tell you where you are in relation to it, or how to get there. These are location-based features, but simple
location is not enough to build them. It also requires map rendering, geocoding of street addresses, and route calculation, among other
things.

LocationService is a simple API, with features inspired by the similar Geolocation API available in web browsers. It provides a straightforward
mechanism for getting the current geolocation of the physical device on which it runs. That’s it. For basic map display, combine
LocationService with the lightning-map component. For more complex mapping solutions, consider adding third-party libraries
and services, such as Google Maps or Leaflet.

Use the LocationService API
To develop a Lightning web component with location-based features, use the LocationService API to determine the current location.

1. Import LocationService into your component definition to make the LocationService API functions available to your code.

2. Test to make sure LocationService is available before you call location functions.

3. Use the location functions to get the current location, or to request location change updates.

Add LocationService to a Lightning Web Component
In your component’s JavaScript file, import LocationService using the standard JavaScript import statement. Specifically, import the
getLocationService() factory function from the lightning/mobileCapabilities module, like so:

import { getLocationService } from 'lightning/mobileCapabilities';

After it’s imported into your component, use the factory function to get an instance of LocationService. With your LocationService
instance, use the isAvailable() utility function to verify availability. Use the location calculation functions to get the current
location, or to configure and receive location change updates.

Test LocationService Availability
LocationService depends on physical device hardware and platform features. A component that uses LocationService renders without
errors on a desktop computer or in a mobile browser, but location functions fail. To avoid these errors, check if LocationService functionality
is available before you use it.

handleGetCurrentLocationClick(event) {
const myLocationService = getLocationService();
if(myLocationService.isAvailable()) {

// Perform geolocation operations
}

101

Location BasicsUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/component-library/bundle/lightning-map/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning-map/documentation
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation_API
https://developer.salesforce.com/docs/component-library/bundle/lightning-map/documentation
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-locationservice-factory.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-locationservice-isavailable.html

else {
// LocationService not available
// Not running in an app with GPS, location APIs, etc.
// Handle with message, error, beep, and so on

}
}

Determine Current Location
Determining the current location is a simple function call. While the call is asynchronous, and must be handled as a JavaScript Promise,
it’s a “one and done” call that allocates and releases resources automatically.

myLocationService.getCurrentPosition({ enableHighAccuracy: true }).
then((result) => {

this.myLocation = result.coords;
// Do something with the location here
// Display a map, look up an address, save to a record
// �� It's your thing, do what you wanna do ��

}).
catch((error) => {

// Handle any errors here
console.error(error);

});
}

See getCurrentPosition(options) for more details for configuration, results format, and error handling.

Request Location Change Updates
To receive updates when a device’s location changes significantly, subscribe to location updates with the
startWatchingPosition() function. Provide a callback function to handle position updates when they happen.

myLocationWatchId = 0;
async startTracking() {

let locationService = getLocationService();
this.myLocationWatchId = await locationService.

startWatchingPosition({ enableHighAccuracy:true }, (result, error) => {

// Check for error first
if(error) {

console.error(error);
this.stopTracking();

}
else {

this.myLocation = result.coords;

// Now do your thing with the updated location
// Refresh a map, upsert a record, or whatever

}
});

}

102

Use the LocationService APIUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-locationservice-getcurrentposition.html

See startWatchingPosition(options, callback) for additional usage details, including important resource allocation
notes. See stopWatchingPosition(watchId) for an example stopTracking() function.

SEE ALSO:

Lightning Web Components Developer Guide: LocationService API

LocationService Example

LocationService Example
Here’s a basic example of a Lightning web component that gets the user’s current location and displays it on a map.

The HTML template provides the bare minimum for a location-based interface. There’s an element to display the map, a bit of static help
text, and a button to get the location. There are two interesting aspects of this template:

• Disabling the Get Current Location button using the disabled attribute when not in a supported Salesforce mobile app. This
attribute is set based on the results of isAvailable() when the component is initialized.

• A spinner that indicates “indeterminate progress” while waiting for the current location request to resolve.

<!-- locationServiceExample.html -->
<template>

<div class="slds-text-align_center">
Where in the World Am I?

</div>

<!-- After the current location is received,
its value is displayed here: -->

<template lwc:if={currentLocation}>
<div class="slds-m-vertical_large slds-p-vertical_medium

slds-text-align_left slds-border_top slds-border_bottom">

<!-- Current location as latitude and longitude -->
Your current location is:
<pre>{currentLocationAsString}</pre>

<!-- Current location as a map -->
<lightning-map map-markers={currentLocationAsMarker} zoom-level=16>
</lightning-map>

</div>
</template>

<!-- While request is processing, show spinner -->
<div class="slds-m-around_large">

<template lwc:if={requestInProgress}>
<div class="slds-is-relative">

<lightning-spinner
alternative-text="Getting location...">

</lightning-spinner>
</div>

</template>
</div>

<!-- Static help text -->

103

LocationService ExampleUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-locationservice-startwatchingposition.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-locationservice-stopwatchingposition.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-locationservice.html

<div class="slds-text-align_center slds-text-color_weak slds-m-vertical_large">
Click Get Current Location to see where you are.

</div>

<!-- The get-current-location button;
Disabled if LocationService isn't available -->

<div class="slds-align_absolute-center slds-m-vertical_large">
<lightning-button

variant="brand"
disabled={locationButtonDisabled}
icon-name="utility:target"
label="Get Current Location"

title="Use your device's GPS and other location sensors to determine your current
location"

onclick={handleGetCurrentLocationClick}>
</lightning-button>

</div>
</template>

Once the current location is determined, we use the lightning-map base component to display it. Each phase of the location
request lifecycle writes a console message.

// locationServiceExample.js
import { LightningElement } from 'lwc';
import { ShowToastEvent } from 'lightning/platformShowToastEvent';
import { getLocationService } from 'lightning/mobileCapabilities';

export default class LocationServiceExample extends LightningElement {

// Internal component state
myLocationService;
currentLocation;
locationButtonDisabled = false;
requestInProgress = false;

// When component is initialized, detect whether to enable Location button
connectedCallback() {

this.myLocationService = getLocationService();
if (this.myLocationService == null || !this.myLocationService.isAvailable()) {

this.locationButtonDisabled = true;
}

}

handleGetCurrentLocationClick(event) {
// Reset current location
this.currentLocation = null;

if(this.myLocationService != null && this.myLocationService.isAvailable()) {

// Configure options for location request
const locationOptions = {

enableHighAccuracy: true
}

// Show an "indeterminate progress" spinner before we start the request

104

LocationService ExampleUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/component-library/bundle/lightning-map/documentation

this.requestInProgress = true;

// Make the request
// Uses anonymous function to handle results or errors
this.myLocationService

.getCurrentPosition(locationOptions)

.then((result) => {
this.currentLocation = result;

// result is a Location object
console.log(JSON.stringify(result));

this.dispatchEvent(
new ShowToastEvent({

title: 'Location Detected',
message: 'Location determined successfully.',
variant: 'success'

})
);

})
.catch((error) => {

// Handle errors here
console.error(error);

// Inform the user we ran into something unexpected
this.dispatchEvent(

new ShowToastEvent({
title: 'LocationService Error',
message:

'There was a problem locating you: ' +
JSON.stringify(error) +
' Please try again.',

variant: 'error',
mode: 'sticky'

})
);

})
.finally(() => {

console.log('#finally');
// Remove the spinner
this.requestInProgress = false;

});
} else {

// LocationService is not available
// Not running on hardware with GPS, or some other context issue
console.log('Get Location button should be disabled and unclickable. ');
console.log('Somehow it got clicked: ');
console.log(event);

// Let user know they need to use a mobile phone with a GPS
this.dispatchEvent(

new ShowToastEvent({
title: 'LocationService Is Not Available',
message: 'Try again from the Salesforce app on a mobile device.',

105

LocationService ExampleUse Mobile Device Features in Mobile Apps

variant: 'error'
})

);
}

}

// Format LocationService result Location object as a simple string
get currentLocationAsString() {

return `Lat: ${this.currentLocation.coords.latitude}, Long:
${this.currentLocation.coords.longitude}`;

}

// Format Location object for use with lightning-map base component
get currentLocationAsMarker() {

return [{
location: {

Latitude: this.currentLocation.coords.latitude,
Longitude: this.currentLocation.coords.longitude

},
title: 'My Location'

}]
}

}

SEE ALSO:

Use the LocationService API

Compatibility and Requirements
LocationService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. LocationService requires access to device hardware and device platform APIs. This
access is only available when LocationService runs within a compatible Salesforce mobile app. It does not and cannot function when
running in a standard web browser, whether the browser runs on a desktop or mobile device.

LocationService is available in Lightning apps distributed using:

• Salesforce Mobile app

• Mobile Publisher for Salesforce App

• Mobile Publisher for Experience Cloud

• Field Service Mobile app

LocationService is fully functional when used in a Lightning app or Lightning site run from one of these Salesforce apps on a compatible
iOS or Android mobile device. See Requirements for the Salesforce Mobile App, Requirements for Mobile Publisher for Salesforce App,
Field Service Mobile App Requirements, or the requirements page for your target mobile app, for specific device and operating system
requirements.

LocationService is not fully functional when running on other devices, such as a desktop, or when running in a standard web browser,
even on a mobile device. It requires one of the mobile apps listed above. The LocationService API is accessible in Lightning Experience
on all devices, so your code won’t fail due to missing functions. However, when your app runs in a browser—desktop or mobile—it can
use only LocationService constants and utility functions. Attempting to use location-specific features will fail.

LocationService only provides location data, in the form of geo-coordinates and some metadata. What you do with the location data is
up to your component to parse, compare, and place in context—for example, to calculate distance, display on a map, and so on.

106

Compatibility and RequirementsUse Mobile Device Features in Mobile Apps

https://help.salesforce.com/articleView?id=salesforce_app_requirements.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.s1_branded_apps_requirements.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.mfs_requirements.htm&type=5&language=en_US

Considerations and Limitations
Keep the following in mind when developing features that use the LocationService API.

Device Limitations

LocationService doesn’t implement location calculation itself. Instead, it makes available certain location features of the underlying
platform (Android or iOS) and hardware (phone or other mobile device). While the features provided by LocationService are the same
across both platforms, they are subject to some platform-specific quirks and minor differences.

• LocationService requires the use of the mobile device location detection hardware. The user must grant your app access to the
device’s location. The exact user experience is governed by the platform. The request happens automatically on first use, and is
managed by the device itself, but you should plan for it when designing the user experience of your app.

• In Android 11 or later, if the user taps “Deny” for permission to access the mobile device location more than once during the app’s
lifetime of installation on a device, the user won’t see the system permissions dialog again. Tapping Deny multiple times implicitly
chooses the “don’t ask again” option.

In previous versions of Android, users would see the system permissions dialog each time the app requested permission unless the
user had previously selected “don’t ask again”. This change in Android 11 discourages repeated requests for permissions that users
have chosen to deny.

If the user has denied permission to access the mobile device location and needs to change their permissions to allow access, they
can do so in their device’s settings.

• Location tracking is subject to significant privacy, processing, and power use restrictions, imposed by the underlying platform (Android
or iOS). See important details in the LocationService API reference documentation.

• Many factors affect the accuracy of location detection, the speed of determining the current location, and how much impact location
tracking has on battery life.

• Mobile devices vary in the quality of the location detection they provide.

• If a mobile device can’t determine its location, neither can LocationService. The quality of the device’s positioning hardware, tall or
dense buildings, indoor use, and other external factors can reduce the accuracy of location determination.

• Location tracking on high accuracy can significantly increase power use, which affects how quickly a mobile device drains its
battery.

If you’re having trouble getting LocationService to provide an accurate location, try the following:

• First, verify that the device is able to determine its location. If the standard Maps app can’t get an accurate location, neither can
LocationService.

• Next, verify that the user has granted location access to the mobile app where your component is running.

• Finally, double-check the configuration of LocationService in your code. In particular, verify that you’ve set the accuracy level as
needed for your component’s features.

Development Considerations

LocationService requires access to positioning hardware, such as GPS, Wi-Fi, cellular, and other location-detection hardware of your
mobile device. To test location services during development, use actual, physical devices when possible.

• The Android emulator and iOS simulator can each be configured to provide simulated location details.

• Neither virtual device accurately simulates location detection in the real world, especially for environments where location detection
is challenging.

You can certainly develop the user experience for your component on a desktop or laptop development system. But be sure to test
location-based functionality on the physical devices on which you plan to deploy your Lightning app.

LocationService Considerations

107

Considerations and LimitationsUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-locationservice.html

Be aware of the following considerations when using LocationService in your Lightning app.

• LocationService is built on top of mobile operating system and device features. LocationService’s location capabilities therefore
depend on Android or iOS features, which are subject to change beyond our control. When mobile operating system features change,
the behavior of LocationService can change without notice.

• LocationService doesn’t provide map data. To display the current location on a map, you need to add extra functionality, for example,
to retrieve map tile graphics.

• LocationService detects a device’s current location only. While you can receive updates when the current location changes, updates
provide only the new location. If needed, perform distance, proximity, or geofencing calculations yourself, in your own JavaScript.

Important: While it’s possible and not too difficult, a manually implemented geofencing feature can result in severe battery
drain on devices that use it.

Interact with NFC Tags on a Mobile Device

A Lightning web component can use a device’s native NFC functionality to read, erase, and write to NFC tags. When an NFC operation
is successful, the text data extracted from the NFC tag or a simple success message is returned to the Lightning web component that
invoked it.

NFC operations are performed locally on the mobile device, and don't need a network connection. However, NFCService requires access
to platform-specific APIs that are available only within compatible Salesforce mobile apps.

Important: NFCService does not and cannot function when running in a web browser, whether on a desktop or mobile device.

IN THIS SECTION:

NFCService User Experience

Your component can deliver any user experience you desire, but there’s a common flow for any component that interacts with NFCs.

Use the NFCService API

To develop a Lightning web component capable of interacting with NFCs, use the NFCService API.

NFCService Example

Here’s a basic example of a Lightning web component that uses NFCService to parse text data from an image.

Compatibility and Requirements

NFCService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is
only available when NFCService runs within a compatible Salesforce mobile app. It does not and cannot function when running
in a standard web browser, whether the browser runs on a desktop or mobile device.

Considerations and Limitations

Consider these guidelines and limitations when developing features that use the NFCService API.

NFCService User Experience
Your component can deliver any user experience you desire, but there’s a common flow for any component that interacts with NFCs.

• User initiates an NFC operation (read, erase, or write).

• OS prompts the user to hold their device near the NFC tag to be interacted with.

• OS provides a success message when the operation completed successfully, or an error message if something went wrong.

108

Interact with NFC Tags on a Mobile DeviceUse Mobile Device Features in Mobile Apps

Use the NFCService API
To develop a Lightning web component capable of interacting with NFCs, use the NFCService API.

1. Import NFCService into your component definition to make the NFCService API functions available to your code.

2. Test to make sure NFCService is available before you call NFC-related functions.

3. Use the feature functions to perform NFC-related operations.

For complete API reference documentation of the NFCService API, see NFCService API in the Lightning Web Components Developer
Guide.

Add NFCService to a Lightning Web Component
In your component’s JavaScript file, import NFCService using the standard JavaScript import statement. Specifically, import the
getNFCService() factory function from the lightning/mobileCapabilities module, like so:

import { getNFCService } from 'lightning/mobileCapabilities';

After it’s imported into your component, use the factory function to get an instance of NFCService. With your NFCService instance, use
the utility functions and constants to verify availability. Then use NFC-related functions to perform the associated functionality.

Test NFCService Availability
NFCService depends on physical device hardware and platform features. A component that uses NFCService renders without errors on
a desktop computer or in a mobile browser, but NFC scanning functions fail. To avoid these errors, test if NFCService functionality is
available before you use it.

handleBeginNFCEventClick(event) {
const myNFCService = getNFCService();
if(myNFCService.isAvailable()) {

// Perform NFC-related operations
}
else {

// NFCService not available, or consuming app hasn’t implemented it
// Not running on hardware with NFC capabilities
// Handle with message, error, beep, and so on

}
}

Read an NFC Tag
Perform NFC read operations with read(). First, call the read() function, optionally passing in an NFCServiceOptions object
as a parameter. Then, handle the result of the operation in any manner you wish.

For example:

myNFCService
.read(options)
.then((result) => {
// Do something with the result of the read operation
console.log(result);
this.readResult = result.value;

})

109

Use the NFCService APIUse Mobile Device Features in Mobile Apps

.catch((error) => {
// Handle cancellation and read errors here
console.error(error);

});

Erase an NFC Tag
Perform NFC erase operations with erase(). First, call the erase() function, optionally passing in an NFCServiceOptions
object as a parameter. Then, handle the result of the operation in any manner you wish.

For example:

myNFCService
.erase(options)
.then((successMessage) => {
// Receive a success message following a successful erase operation
console.log(successMessage);

})
.catch((error) => {
// Handle cancellation and erase errors here
console.error(error);

});

Note: The erase() function can only be performed on writable NFC tags. Attempting this function on a read-only NFC tag
results in an error.

Write to an NFC Tag
Perform NFC write operations with write(). First, call the write() function, optionally passing in an NFCServiceOptions
object as a parameter. Then, handle the result of the operation in any manner you wish.

For example:

myNFCService
.write(options)
.then((successMessage) => {
// Receive a success message following a successful write operation
console.log(successMessage);

})
.catch((error) => {
// Handle cancellation and write errors here
console.error(error);

});

Note: The write() function can only be performed on writable NFC tags. Attempting this function on a read-only NFC tag
will result in an error.

NFCService Example
Here’s a basic example of a Lightning web component that uses NFCService to parse text data from an image.

110

NFCService ExampleUse Mobile Device Features in Mobile Apps

The component’s HTML template is minimal, with a display view that includes three buttons, one each for read, erase, and write operations.

<template>
<lightning-card title="NFC Service Demo" icon-name="custom:phone_portrait">
<div class="slds-var-m-around_medium">
Choose an action to perform on an NFC tag:

<lightning-button
variant="brand"
label="Read"
title="Read the content of an NFC tag"
onclick={handleReadClick}>

</lightning-button>
<lightning-button
variant="brand"
label="Erase"
title="Erase the content of an NFC tag"
onclick={handleEraseClick}
class="slds-var-m-left_x-small">

</lightning-button>
<lightning-button
variant="brand"
label="Write"
title="Write sample content to an NFC tag"
onclick={handleWriteClick}
class="slds-var-m-left_x-small">

</lightning-button>
</div>
<div class="slds-var-m-around_medium">
<lightning-formatted-text value={status}></lightning-formatted-text>

</div>
</lightning-card>

</template>

This example uses NFCService to select the NFC operation to be performed, performs the operation, and displays a success message
when completed successfully. An error message is returned when there’s an error.

import { LightningElement } from 'lwc';
import { getNfcService } from 'lightning/mobileCapabilities';

export default class NimbusPluginNfcService extends LightningElement {
status;
nfcService;

connectedCallback() {
this.nfcService = getNfcService();

}

handleReadClick() {
if(this.nfcService.isAvailable()) {
const options = {
"instructionText": "Hold your phone near the tag to read.",
"successText": "Tag read successfully!"

};
this.nfcService.read(options)

111

NFCService ExampleUse Mobile Device Features in Mobile Apps

.then((result) => {
// Do something with the result
this.status = JSON.stringify(result, undefined, 2);

})
.catch((error) => {
// Handle errors

this.status = 'Error code: ' + error.code + '\nError message: ' + error.message;

});
} else {
// service not available
this.status = 'Problem initiating NFC service. Are you using a mobile device?';

}
}

handleEraseClick() {
if(this.nfcService.isAvailable()) {
const options = {
"instructionText": "Hold your phone near the tag to erase.",
"successText": "Tag erased successfully!"

};
this.nfcService.erase(options)
.then(() => {
this.status = "Tag erased successfully!";

})
.catch((error) => {
// Handle errors

this.status = 'Error code: ' + error.code + '\nError message: ' + error.message;

});
} else {
// service not available
this.status = 'Problem initiating NFC service. Are you using a mobile device?';

}
}

async handleWriteClick() {
if(this.nfcService.isAvailable()) {
const options = {
"instructionText": "Hold your phone near the tag to write.",
"successText": "Tag written successfully!"

};
const payload = await this.createWritePayload();
this.nfcService.write(payload, options)
.then(() => {
this.status = "Tag written successfully!";

})
.catch((error) => {
// Handle errors

this.status = 'Error code: ' + error.code + '\nError message: ' + error.message;

});
} else {
// service not available

112

NFCService ExampleUse Mobile Device Features in Mobile Apps

this.status = 'Problem initiating NFC service. Are you using a mobile device?';
}

}

async createWritePayload() {
// Here we demonstrate how you can write several records to an NFC tag.
// Consider the scenario where you want to write the content of a business card
// to an NFC tag. The content can be broken down into a number of text and uri

records.
const nameRecord = await this.nfcService.createTextRecord({text: "John Smith", langId:

"en"});
const phone1Record = await this.nfcService.createTextRecord({text: "(123) 456-7890

Office", langId: "en"});
const phone2Record = await this.nfcService.createTextRecord({text: "(321) 654-0987

Direct", langId: "en"});
const emailRecord = await

this.nfcService.createUriRecord("mailto:john.smith@email.com");
const addressRecord = await this.nfcService.createTextRecord({text: "584 South Paris

Hill Ave., Lancaster, CA 93535", langId: "en"});
const websiteRecord = await

this.nfcService.createUriRecord("https://www.mycompany.com");
return [nameRecord, phone1Record, phone2Record, emailRecord, addressRecord,

websiteRecord];
}

}

Compatibility and Requirements
NFCService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform (operating
system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is only available
when NFCService runs within a compatible Salesforce mobile app. It does not and cannot function when running in a standard
web browser, whether the browser runs on a desktop or mobile device.

NFCService is available in Lightning apps distributed using:

• Salesforce Mobile app

• Salesforce Field Service app

NFCService is fully functional when used in a Lightning app or Lightning site that’s run from a compatible Salesforce mobile app on a
compatible iOS or Android mobile device. See Requirements for the Salesforce Mobile App, or the requirements page for your target
mobile app for specific device and operating system requirements.

NFCService is not fully available when running on other devices, such as a desktop, or when running in a web browser, even on a mobile
device. It requires one of the apps listed above. The NFCService API is accessible in Lightning Experience on all devices, so your code
won’t fail due to missing functions. However, when your app runs in a browser—desktop or mobile—it can use only NFCService constants
and utility functions. Attempting any NFC-related operation will fail.

Considerations and Limitations
Consider these guidelines and limitations when developing features that use the NFCService API.

Device Limitations

113

Compatibility and RequirementsUse Mobile Device Features in Mobile Apps

https://help.salesforce.com/articleView?id=salesforce_app_requirements.htm&type=5&language=en_US

• In Android 11 or later, if the user denies permission to access NFC functionality more than one time during the app’s lifetime of
installation on a device, the user won’t see the system permissions dialog again. Tapping Deny multiple times implicitly chooses the
“don’t ask again” option.

• In previous versions of Android, users see the system permissions dialog each time the app requested permission unless the user
had previously selected “don’t ask again”. This change in Android 11 discourages repeated requests for permissions that users have
chosen to deny.

• If the user has denied permission to access NFC functionality and needs to change their permissions to allow access, they can do so
in their device’s settings.

Development Considerations

• NFCService requires access to NFC hardware. To test NFC interactions during development, use actual, physical devices.

Warning: NFCService allows for an action that, if used irresponsibly or incorrectly, can lead to irreversible consequences for
your users. This dangerous action is the capability to erase NFC tags from a mobile device.

As with all mobile capabilities, implementation of NFCService’s functionality, dangerous actions included, is at your discretion.
Use caution when using dangerous actions in your component.

NFCService Considerations

• NFCService is built on top of mobile operating system and device features. NFCService’s capabilities therefore depend on Android
or iOS features, which are subject to change beyond our control. When mobile operating system features change, the behavior of
NFCService can change without notice.

Accept On-Site Payments with Tap-to-Pay

A Lightning web component can use a mobile device to let your customers use the Tap-to-Pay capability of the Payments plug-in to
pay mobile workers directly. The Field Service mobile app then integrates with Pay Now to connect the Lightning web component to
a secure payment system that processes the interaction.

The PaymentsService plugin allows Field Service mobile workers to collect payments from their customers using Tap to Pay. This service
integrates with Salesforce Payments and Stripe as a payment provider. Tap to Pay is supported on iOS and Android devices with Stripe
as the payment provider.

Important: PaymentsService does not and cannot function when running in a web browser, whether on a desktop or mobile
device.

IN THIS SECTION:

PaymentsService User Experience

Your component can deliver any user experience you want, but you must follow a common flow for any component that calls for
a Payment Service.

Use the PaymentsService API

To develop an LWC with the Payments Service plug-in features, use the Payments Plugin API as your method for accessing a device’s
native Tap to Pay functionality.

PaymentsService Example

Here’s a basic example of a Lightning web component minimal HTML template that includes a button that initiates collecting
payment.

114

Accept On-Site Payments with Tap-to-PayUse Mobile Device Features in Mobile Apps

Compatibility and Requirements

PaymentsService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is
only available when PaymentsService runs within a compatible Salesforce mobile app. It does not and cannot function when
running in a standard web browser, whether the browser runs on a desktop or mobile device.

Considerations and Limitations

Consider these guidelines and limitations when developing features that use the PaymentsService API.

SEE ALSO:

Lightning Web Components Developer Guide: PaymentsService API

PaymentsService User Experience
Your component can deliver any user experience you want, but you must follow a common flow for any component that calls for a
Payment Service.

The user performs an action that triggers a collect payment flow. The operating system provides messages for the user to tap their credit
card in the right direction. If the collect payment method isn’t successful, the plug-in provides an error message. If it’s successful, a
PaymentIntent object is returned to the user, so they can perform any other follow-up actions on the Stripe dashboard, such as refund
or cancel the payment, if needed.

Use the PaymentsService API
To develop an LWC with the Payments Service plug-in features, use the Payments Plugin API as your method for accessing a device’s
native Tap to Pay functionality.

1. Import PaymentsService to make the PaymentsService API functions available to your code.

2. Test to make sure PaymentsService is available before you call payment functions.

3. Use the payment functions to start collecting payments.

Add PaymentsService to a Lightning Web Component
In your component’s JavaScript file, import PaymentsService using the standard JavaScript import statement. Specifically, import the
getPaymenntsService() factory function from the lightning/mobileCapabilities module, like so:

import { getPaymentsService } from 'lightning/mobileCapabilities';

After it’s imported into your component, use the factory function to get an instance of PaymentsService. With your PaymentsService
instance, use the utility functions and constants to verify availability. Then use the feature functions to perform the associated functionality.

Test PaymentsService Availability
PaymentsService depends on physical device hardware and platform features. A component that uses PaymentsService renders without
errors on a desktop computer or in a mobile browser, but PaymentsService functions fail. To avoid these errors, test if PaymentsService
functionality is available before you use it.

handleCheckCollectPaymentServiceClick(event) {
const myPaymentsService = getPaymentsService();
if(myPaymentsService.isAvailable()) {

115

PaymentsService User ExperienceUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-paymentsservice.html

// Perform next operations
} else {
// Payments Service isn’t available, or consuming app hasn’t implemented it
// Not running on hardware with TTP functionality, etc.
// Handle with message, error, beep, and so on
}

}

Start PaymentsService to Collect Payments
The PaymentsService exposes two API endpoints. The first one is getSupportedPaymentMethods that returns a list of available
payment methods for the current device running. The second API method is called collectPayment.

Start by checking which payment methods are available, and then call the collect payment method to collect the payment using one
of the available methods.

handleGetSupportedMethodsClicked(event) {
if (this.myPaymentsService != null && this.myPaymentsService.isAvailable()) {
let supportedMethodsOptions = {
countryIsoCode: "USD",
merchantAccountId: "8zbxxxxxxxxxxx"
}
this.myPaymentsService.getSupportedPaymentMethods(supportedMethodsOptions).then((supportedMethodsResult)
=> {
if (supportedMethods.contains("TAP_TO_PAY")) {
let collectPaymentOptions = {
amount: "350.50",
paymentMethod: "TAP_TO_PAY"
currencyIsoCode: "USD",
merchantAccountId: "8zbxxxxxxxxxxx",
merchantName: "My Service",
payerAccountId: "001xxxxxxxxxx",
sourceObjectIds: ["xxxxxxxxxxx", "xxxxxxxxxxx"]
}
this.myPaymentsService.collectPayment(collectPaymentOptions).then((collectPaymentResult)
=> {
let paymentStatus = collectPaymentResult.status;
// handle status. "success" status will reflect a successful payment collect
}).catch((collectPaymentError) => {
if (collectPaymentError.code !== 'USER_DISMISSED') {
// handle error case
}
})

}
}).catch((error) => {
console.log(error);
});
}
}

Considerations:

• Calling getSupportedPaymentMethods or collectPayment requires passing in an options object.

116

Use the PaymentsService APIUse Mobile Device Features in Mobile Apps

• The options object has some required fields and missing those fields results in the Payments plugin not working properly. See the
PaymentsService API for the required fields.

SEE ALSO:

Lightning Web Components Developer Guide: PaymentsService API

PaymentsService Example

PaymentsService Example
Here’s a basic example of a Lightning web component minimal HTML template that includes a button that initiates collecting payment.

<template>
<lightning-card title="Payment Processing">

<div class="slds-m-around_medium">
<lightning-button

label="Validate Supported Methods"
onclick={handleValidateMethods}
variant="neutral"
class="slds-m-right_x-small">

</lightning-button>
<lightning-button

label="Collect Payment"
onclick={handleCollectPayment}
variant="brand">

</lightning-button>
</div>

<div class="slds-var-m-around_medium">
<div if:true={spinnerEnabled} class="spinnerHolder">
<lightning-spinner alternative-text="Processing" size="large"></lightning-spinner>

</div>
<lightning-formatted-rich-text

value={paymentsServiceResponse}></lightning-formatted-rich-text>
</div>
</lightning-card>

</template>

This example uses PaymentsService to let the user collect a payment.

import { LightningElement, track } from 'lwc';
import { ShowToastEvent } from 'lightning/platformShowToastEvent';
import { getPaymentsService } from 'lightning/mobileCapabilities';

export default class PaymentsService extends LightningElement {
myPaymentsService;
paymentServiceUnavailable = false;
tapToPayUnAvailable = true;

paymentsServiceResponse = '';
spinnerEnabled = false;
amountValue = '150.00';
currencyCodeValue = 'USD';

117

PaymentsService ExampleUse Mobile Device Features in Mobile Apps

https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-paymentsservice.html

paymentMethodValue = 'TAP_TO_PAY';
merchantNameValue = 'Play Board';
merchantAccountIdValue = '8zbXXXXXXXXXXXXX';
payerAccountIdValue = '001XXXXXXXXXXXXX';
sourceObjectIdValue = 'XXXXXXXXXXXXXXXX';

showSpinner() { this.spinnerEnabled = true; }
hideSpinner() { this.spinnerEnabled = false; }

// When the component is initialized, determine whether to enable the buttons
connectedCallback() {

this.myPaymentsService = getPaymentsService();
if (!this.myPaymentsService?.isAvailable()) {

this.paymentServiceUnavailable = true;
this.paymentsServiceResponse = 'Payments Service is unavailable.';

}
}

processResult(result) {
var confirmationId = JSON.stringify(result.guid, undefined, 2);
var confirmationStatus = JSON.stringify(result.status, undefined, 2);

this.paymentsServiceResponse = "Confirmation Status: " + confirmationStatus + ",
Confirmation ID: " + confirmationId;

}

processError(error) {
// The user canceled the operation
if (error.code === 'USER_DISMISSED') {

this.dispatchEvent(
new ShowToastEvent({

title: 'Operation Canceled',
message: 'Operation canceled by the user.',
mode: 'sticky'

})
);

}
else {
// There was some other kind of error so inform the user we ran into something

unexpected

this.dispatchEvent(
new ShowToastEvent({

title: 'Payments Service Error',
message: 'Message: ${error.message}\nCode: ${error.code}',
variant: 'error',
mode: 'sticky'

})
);

}

118

PaymentsService ExampleUse Mobile Device Features in Mobile Apps

}

handleBeginSupportedMethodsClick() {
let options = {

'countryIsoCode': this.currencyCodeValue,
'merchantAccountId': this.merchantAccountIdValue

}

this.paymentsServiceResponse = '';
this.showSpinner();

this.myPaymentsService.getSupportedPaymentMethods(options)
.then((result) => {

if (result.contains("TAP_TO_PAY")) {
this.tapToPayUnAvailable = false;

}

})
.catch((error) => {

this.tapToPayUnAvailable = true;
})
.finally(() => this.hideSpinner());

}

handleBeginCollectPaymentClick() {

let options = {
'amount': Number(this.amountValue),
'currencyIsoCode': this.currencyCodeValue,
'paymentMethod': this.paymentMethodValue,
'merchantName': this.merchantNameValue,
'merchantAccountId': this.merchantAccountIdValue,
'payerAccountId': this.payerAccountIdValue,
'sourceObjectIds': [this.sourceObjectIdValue]

}

this.paymentsServiceResponse = '';
this.showSpinner();

this.myPaymentsService.collectPayment(options)
.then((result) => this.processResult(result))
.catch((error) => this.processError(error))
.finally(() => this.hideSpinner());

}
}

SEE ALSO:

Use the PaymentsService API

119

PaymentsService ExampleUse Mobile Device Features in Mobile Apps

Compatibility and Requirements
PaymentsService is a JavaScript module that provides an API to Lightning web components to make mobile hardware and platform
(operating system) features available in JavaScript. It requires access to device hardware and device platform APIs. This access is only
available when PaymentsService runs within a compatible Salesforce mobile app. It does not and cannot function when running
in a standard web browser, whether the browser runs on a desktop or mobile device.

PaymentsService is available in Lightning apps distributed using:

• Salesforce Field Service app

PaymentsService is fully functional when used in a Lightning app or Lightning site that’s run from a compatible Salesforce mobile app
on a compatible iOS or Android mobile device. See Field Service Mobile App Requirements, or the requirements page for your target
mobile app for specific device and operating system requirements.

PaymentsService is not fully available when running on other devices, such as a desktop, or when running in a web browser, even on
a mobile device. It requires one of the listed apps. The PaymentsService API is accessible in Lightning Experience on all devices, so your
code won’t fail due to missing functions. However, when your app runs in a browser—desktop or mobile—it can use only PaymentsService
constants and utility functions. Attempting any payment-related operation results in failure.

Considerations and Limitations
Consider these guidelines and limitations when developing features that use the PaymentsService API.

PaymentsService Considerations

Be aware of the following considerations when using PaymentsService in your Lightning app.

• PaymentsService is built on top of mobile operating system and device features. PaymentsService’s capabilities therefore depend
on Android or iOS features, which are subject to change beyond our control. When mobile operating system features change, the
behavior of PaymentsService can change without notice.

• Calling getSupportedPaymentMethods or collectPayment requires passing in an options object.

• The options object has some required fields and missing those fields will result in the Payments plugin not working properly. See
the PaymentsService API for the required fields.

120

Compatibility and RequirementsUse Mobile Device Features in Mobile Apps

https://help.salesforce.com/s/articleView?id=sf.mfs_requirements.htm&type=5&language=en_US

CHAPTER 4 Offline Considerations and Limitations

LWC Offline is designed to let you build great apps that can function without a network connection, but
it’s not the full Salesforce service. Lightning web components have a number of limitations when used
offline, including missing capabilities, reduced performance, and software defects (bugs). Keep these
limitations in mind as you design and develop your offline customizations.

In this chapter ...

• General
Considerations

• Considerations for
Field Service Mobile
App

• Base Components
Support

• Modules Support

• Wire Adapters
Support

• Entity Support

• Metadata and
Custom Metadata
Types Support

121

General Considerations

Consider these general details when planning your Lightning web components development efforts.

• The Lightning Web Components framework includes a wide range of built-in components, a number of modules that enable features,
and a range of wire adapters for data access. The implementation available in LWC Offline supports a subset of these features. See
additional details elsewhere in this guide.

• You can only use Lightning web components that are used as global or object-specific quick actions.

• Object-specific quick actions can only be added to record detail pages.

• Your components must be Lightning web components.

– You can’t use Aura-based Lightning components, despite the similar name.

– You can’t use Visualforce at all with Lightning web components.

• Headless quick actions aren’t supported at this time.

• Deep links to quick actions are supported. Deep links to global quick actions aren’t supported at this time.

• To work offline, your custom components must be statically analyzable by the Salesforce service so that they can be preloaded
before going offline. See Offline Environment Details for details.

• Calling alert() from JavaScript in a Lightning web component is unsupported. It’s also an anti-pattern in Lightning web
components. For debugging and logging, use console.log() and console.error(). Better yet, use Chrome DevTools
or Safari Web Inspector.

• For user-facing messages, the correct pattern is to use a toast message. However, support for the
lightning/platformShowToastEvent module is incomplete. Use LightningAlert instead.

• Lightning web components perform minimal validations while offline. It’s possible for a record to be changed, or a new record
created, which passes local validation while offline. However, it’s possible for this record to subsequently fail server-side validation
when the draft record is uploaded. Record drafts that fail server-side validation block the offline queue and prevent record changes
from uploading. Manually clear the invalid record to unblock the queue.

• Depending on context, it can be unclear which field of a draft record has failed server-side validation.

• Some Lightning web components don’t render properly due to incorrect form factor detection in certain circumstances. See the
known issues in Modules Support for details.

• A maximum of 50 records are fetched for each related list. The list size indicator — for example, “(50+)” — reflects the number of
records downloaded to the app, not the number of records that exist. This limit will be customizable in a future release.

Considerations for Field Service Mobile App

The following considerations apply to LWC Offline when you run your components in the Field Service Mobile app.

These considerations apply to LWCs only when run in the Field Service mobile app.

• Global quick actions are available on all pages that have the Actions menu. They do not receive the record ID of the current record
when invoked from a record detail page.

• A Community license user who opens a Service Appointment can experience a missing record error. This is a known issue with this
specific user type.

• Task objects added to a briefcase aren’t primed. If a briefcase contains a Task object and priming is attempted, an error message is
displayed. However, other objects in the briefcase are primed. To resolve the error, remove Task objects from the briefcase.

• There’s a conflict between Appointment Assistance and LWC Offline that can result in missing URLs. See this known issue for details.

122

General ConsiderationsOffline Considerations and Limitations

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/use_quick_actions_headless
https://developer.salesforce.com/docs/atlas.en-us.254.0.field_service_dev.meta/field_service_dev/fsl_dev_mobile_deep_linking_schema.htm
https://developer.salesforce.com/docs/component-library/bundle/lightning-alert/documentation
https://trailblazer.salesforce.com/issues_view?id=a1p4V000001cWaaQAE

• (iOS only) Changes to Lightning web components are loaded into the app only when the app is fully quit and then relaunched (a
“cold start”).

Base Components Support

Base components are described in the Lightning Web Components Reference. All components are being reviewed for correct behavior
in LWC Offline-enabled mobile apps.

The following table provides details for base components where support is incomplete or not available. Base components that are
generally available but not listed here are supported.

• — Limited Support. Can be used, but has known (and possibly unknown) issues.

• — Not Supported. Doesn’t work, or shouldn’t be used.

CommentsStatusComponent

Supported for use, but not mobile friendly.lightning-combobox

This complex component was never designed for mobile use, and
its behavior in mobile contexts is subject to change without notice.

See this post in the Trailblazer community for sample code for a
simplified, mobile-friendly data table.

lightning-datatable

lightning-file-upload

The static map feature only works in online mode. If a user is offline,
an error message is displayed instead.

lightning-formatted-address

Supported for en-US locale only.lightning-formatted-date-time

URLs don’t open within a navigation view; external URLs work, but
links to records don’t. Additionally, you can’t open any URL with a
target="_blank" attribute.

lightning-formatted-rich-text

Supported for en-US locale only.lightning-formatted-time

URLs don’t open within a navigation view; external URLs work, but
links to records don’t. Additionally, you can’t open any URL with a
target="_blank" attribute.

lightning-formatted-url

Supported for en-US locale only.lightning-input

The address lookup feature only works in online mode. If a user is
offline, an error message is displayed instead.

lightning-input-address

Associated components,
lightning-rich-text-toolbar-button and

lightning-input-rich-text

lightning-rich-text-toolbar-button-group,
aren’t supported.

Image uploading within a rich text field isn’t supported.

123

Base Components SupportOffline Considerations and Limitations

https://trailhead.salesforce.com/trailblazer-community/feed/0D54S00000HDhDwSAL

CommentsStatusComponent

This component requires a connection to a mapping service, and
can’t work while offline.

If users access this component while offline, an error message is
displayed instead.

lightning-map

URLs don’t open within a navigation view; external URLs work, but
links to records don’t.

lightning-pill

URLs don’t open within a navigation view; external URLs work, but
links to records don’t.

lightning-pill-container

lightning-record-form doesn’t work with draft records,
that is, records created while offline. See Considerations for
getRecordUi for an explanation of the limitations.

Lookup fields are read-only.

lightning-record-form

Getters and setters aren’t supported in offline priming. In your
custom components, make sure attributes passed to
lightning-record-form are either hardcoded or have a
simple API.

lightning-record-edit-form doesn’t work with draft
records, that is, records created while offline. See Considerations
for getRecordUi for an explanation of the limitations.

Lookup fields are read-only.

lightning-record-edit-form

Getters and setters aren’t supported in offline priming. In your
custom components, make sure attributes passed to
lightning-record-edit-form are either hardcoded or
have a simple API.

If the input field isn’t on the page layout, you must pass the field
in using optional-fields.

lightning-record-view-form doesn’t work with draft
records, that is, records created while offline. See Considerations
for getRecordUi for an explanation of the limitations.

Getters and setters aren’t supported in offline priming. In your
custom components, make sure attributes passed to

lightning-record-view-form

lightning-record-view-form are either hardcoded or
have a simple API.

If the input field isn’t on the page layout, you must pass the field
in using optional-fields.

Supported for use, but not mobile friendly.lightning-tab

Supported for use, but not mobile friendly.lightning-tabset

124

Base Components SupportOffline Considerations and Limitations

CommentsStatusComponent

lightning-tree-grid

Additional Component Considerations
Several localization and globalization issues affect a number of components. These issues generally affect formatting of dates, times,
currencies, and numbers. They’re mostly irritating, but only cosmetic. However, a few can cause errors, most often due to incorrect
processing of numbers with too many digits (15 or more digits) in them. If you encounter these, try rounding the number manually in
JavaScript, to no more than 14 digits of precision, before passing it to a base component.

None of the lightningsnapin-* components are supported.

SEE ALSO:

Component Reference

Modules Support

Lightning web component modules in the lightning namespace are described in the Component Reference in the Lightning Web
Components Developer Guide. Modules scoped with @salesforce are described in @salesforce Modules in the Lightning
Web Components Developer Guide. All modules are being reviewed for correct behavior in LWC Offline-enabled mobile apps.

The following table presents current findings.

• — Supported. Expected to behave as documented.

• — Limited Support. Can be used, but has known (and possibly unknown) issues.

• — Not Supported. Doesn’t work, or shouldn’t be used.

CommentsStatusModule

lightning Namespace Modules

These modules contain resources that don’t change and are universal to all orgs.

lightning/alert

Create an alert modal within your component.

lightning/confirm

Create a confirm modal within your component.

Not supported in mobile apps.lightning/empApi

Provides methods for subscribing to a streaming
channel and listening to event messages.

lightning/flowSupport

125

Modules SupportOffline Considerations and Limitations

https://https://developer.salesforce.com/docs/component-library/overview/components
https://developer.salesforce.com/docs/component-library/bundle/lightning-alert/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning-confirm/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning-emp-api/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning-flow-support/documentation

CommentsStatusModule

Provides events to control flow navigation and
notify the flow of changes in attribute values.

Lightning Aura components and Visualforce aren’t supported in
the Field Service mobile app. This isn’t expected to change.

lightning/messageService

Communicates across the DOM between
Visualforce pages, Aura components, and
Lightning web components.

Available for use, but supported page reference types are limited.
See Navigation for details.

lightning/navigation

Generates a URL or navigates to a page reference.

Not supported in mobile apps.lightning/pageReferenceUtils

Provides utilities for encoding and decoding
default field values.

Not supported for offline use.lightning/platformResourceLoader

Imports a third-party JavaScript or CSS library.

You can import this module and fire toast events. However, toast
messages aren’t handled or displayed. Use lightning/alert,
lightning/confirm, or lightning/prompt instead.

lightning/platformShowToastEvent

Displays toasts to provide feedback to a user
following an action, such as after a record is
created.

lightning/prompt

Create a prompt modal within your component.

Relevant only for Experience Builder pages.lightning/userConsentCookie

Utility functions to incorporate the Cookie
Consent mechanism in your components.

@salesforce Scoped Modules

The shape of these modules can be dynamic, defined by your organization’s metadata.

See Use Apex While Mobile and Offline for usage details.@salesforce/apex

Import Apex methods as functions that a
component can call either via @wire or
imperatively.

See Use Apex While Mobile and Offline for usage details.@salesforce/apexContinuation

Import methods from Apex continuation classes.

This module “works,” but always returns Small when used in an
LWC Offline-enabled app.

@salesforce/client/formFactor

Import a name that refers to the form factor of
the hardware running the app.

126

Modules SupportOffline Considerations and Limitations

https://developer.salesforce.com/docs/component-library/bundle/lightning-message-service/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning-navigation/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning-page-reference-utils/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning-platform-resource-loader/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning-platform-show-toast-event/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning-prompt/documentation
https://developer.salesforce.com/docs/component-library/bundle/lightning-user-consent-cookie/documentation
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/apex.html
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/apex_continuations.html
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.create_client_form_factor

CommentsStatusModule

Relevant only for Experience Builder pages.@salesforce/community

Import the ID of the current Experience Builder
site.

@salesforce/contentAssetUrl

Import content asset files.

@salesforce/i18n

Import internationalization properties.

@salesforce/label

Import labels defined in your Salesforce
organization.

Lightning Message Service isn’t supported in LWC Offline-enabled
mobile apps.

@salesforce/messageChannel

Import a Lightning message channel that a
component can use to communicate via the
Lightning Message Service.

@salesforce/resourceUrl

Import static resources defined in your Salesforce
organization.

@salesforce/schema

Import references to Salesforce objects and fields
defined in your org.

@salesforce/user

Import the current user’s ID.

@salesforce/userPermission

Import a permission and check whether it’s
assigned to the current user.

@salesforce/customPermission

Import a custom permission and check whether
it’s assigned to the current user.

SEE ALSO:

Component Reference

Lightning Web Components Developer Guide: @salesforce Modules

127

Modules SupportOffline Considerations and Limitations

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/create_community_info.html
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/create_content_assets.html
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/create_i18n.html
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/create_labels.html
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.use_message_channel_intro
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/create_resources.html
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.apex_schema
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/get_current_user.html
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/create_get_permissions.html
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/create_get_permissions.html
https://https://developer.salesforce.com/docs/component-library/overview/components
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_salesforce_modules

Wire Adapters Support

Lightning web component wire adapters and JavaScript functions are described in “lightning/ui*Api Wire Adapters and
Functions” in the Lighting Web Components Developer Guide.

The following wire adapters and functions can be used.

Support Status

• — Supported. Expected to behave as documented.

• — Limited Support. Can be used, but has known (and possibly unknown) issues.

• — Not Supported. Doesn’t work, and shouldn’t be used.

Offline Capability

• Drafts-Enabled. Supports creation and modification of records while offline.

• Offline-Supported. Supports offline read-only use of primed data while offline, but not creation or modification.

CommentsOffline CapabilityStatusWire Adapter

lightning/uiRecordApi

Read record data and default values. Create, update, delete, and refresh records.

Drafts-EnabledcreateRecord

createRecordInputFilteredBy
EditedFields

Drafts-EnableddeleteRecord

generateRecordInputForCreate

generateRecordInputForUpdate

getFieldValue

getFieldDisplayValue

getRecord supports two ways to
specify which fields to load:

Drafts-EnabledgetRecord

• explicitly, by providing a fields list,
or

• implicitly, by providing a layout
that contains the desired fields.

At this time, you must provide a specific
list of fields; getRecord by layout
isn’t supported.

Drafts-EnabledgetRecords

128

Wire Adapters SupportOffline Considerations and Limitations

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/reference_lightning_ui_api_record.html

CommentsOffline CapabilityStatusWire Adapter

Offline-SupportedgetRecordCreateDefaults

getRecordNotifyChange

See Wire Adapter Considerations.getRecordUi (deprecated)

Drafts-EnabledupdateRecord

CommentsOffline CapabilityStatusWire Adapter

lightning/uiObjectInfoApi

Get object metadata, and get picklist values.

Offline-SupportedgetObjectInfo

Offline-SupportedgetObjectInfos

Offline-SupportedgetPicklistValues

Offline-SupportedgetPicklistValuesByRecordType

CommentsOffline CapabilityStatusWire Adapter

lightning/uiLayoutApi

Get record layout metadata and data.

Offline-SupportedgetLayout

CommentsOffline CapabilityStatusWire Adapter

lightning/uiAppsApi (beta)

Get data and metadata for apps displayed in the Salesforce UI.

Not yet supported due to beta status.getNavItems (beta)

CommentsOffline CapabilityStatusWire Adapter

lightning/uiListApi (deprecated)

Get records and metadata for a list view.

129

Wire Adapters SupportOffline Considerations and Limitations

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_lightning_ui_api_object_info
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-ui-layout-api.html
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_lightning_ui_api_apps
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_lightning_ui_api_list_ui

CommentsOffline CapabilityStatusWire Adapter

See Wire Adapter Considerations.getListUi (deprecated)

CommentsOffline CapabilityStatusWire Adapter

lightning/uiListsApi

Get metadata for a list view.

Use this adapter instead of
lightning/uiListApi.getListUi.

Offline-SupportedgetListInfoByName

getListInfosByName

CommentsOffline CapabilityStatusWire Adapter

lightning/uiRelatedListApi

Get records, metadata, and record count for a related list.

getRelatedListRecords works
while offline, but doesn’t update to add

Offline-SupportedgetRelatedListRecords

or remove records that are created or
deleted while offline.

getRelatedListRecordsBatch

Offline-SupportedgetRelatedListInfo

Offline-SupportedgetRelatedListInfoBatch

Offline-SupportedgetRelatedListsInfo

getRelatedListCount works
while offline, but doesn’t update to add

Offline-SupportedgetRelatedListCount

or remove records that are created or
deleted while offline.

Wire Adapter Considerations
We describe getRecordUi and getListUi as having Limited Support. Both adapters are deprecated for all customers, and each
has additional considerations for offline use. getRecordUi in particular has significant limitations. We would prefer to note both of
these adapters as Not Supported, but each provides functionality that’s not easily replaced today. We recommend you carefully limit
your use of these wire adapters.

Note: Forward looking statement: Our goal is to provide supported alternatives to getRecordUi and getListUi. If you
limit your usage of these adapters today, you’ll have an easier time migrating later.

130

Wire Adapters SupportOffline Considerations and Limitations

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_lightning_ui_api_lists_ui
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_lightning_ui_api_related_list

• In the case of getRecordUi, limit yourself to getting layout metadata details, and use the data-only adapters getRecord and
getRecords for data access.

• In the case of getListUi, use the new getListInfoByName wire adapter to get list view metadata. If you must use
getListUi to access list view records, see the following considerations.

Considerations for List Adapters

List- or collection-oriented adapters such as getListUi, getRelatedListRecords, and getRelatedListCount have
limited support for offline updates. Specifically, list logic isn’t re-evaluated for changes made while you’re offline. That is, if you create or
modify a record offline and it falls into or out of the list criteria, the record isn’t added or removed from the list until you’re back online.
The list updates only after the changes sync back to Salesforce. This limitation affects list membership, but does not affect the display of
records that are a part of a list.

Here’s an example to make this clear. Let’s say you use getRelatedListRecords as a source to display a list of records, and the
related list criteria limits list membership to accounts whose name begins with “A”. While offline, if you update one of those records to
change an account name to begin with a “B”, from “Apple” to “Banana”, that record will still display in the list, with the updated account
name “Banana”. Once you return online, the change syncs to Salesforce, and the list criteria is reevaluated. The Banana account will no
longer be a member of the related list, and the wire adapter is updated, triggering a component refresh. The list of records returned by
getRelatedListRecords won’t include the record for the Banana account, and it will disappear from the list displayed in your
component’s user interface.

Considerations for getRecordUi

getRecordUi is affected by numerous issues when used while offline.

• Invoking getRecordUi on a draft record that was created while offline returns an error.

• If you edit a record such that its layout changes—for example, by changing the record type—the results of invoking getRecordUi
on that record can be inconsistent.

• If you change a relationship field on a record, and the new relationship references a record with a different object type or record
type, the results of invoking getRecordUi on that record can be inconsistent or result in an error.

In theory, if you’re able to limit changes to records while offline to the scalar (non-relationship, non-metadata affecting) fields of that
record, then invoking getRecordUi on that record should work as documented. In practice this is challenging, and when you miss
it results in inconsistent or incorrect behavior that can be hard to troubleshoot. If you must use it, exercise extreme caution.

getRecordUi is used in the implementations of the following Lightning base components, causing them to have similar limitations:

• lightning-record-form

• lightning-record-edit-form

• lightning-record-view-form

Handle Errors Defensively
When handling errors returned by wire adapters there’s potentially an issue with the “shape” of the error response. In contexts outside
LWC Offline, the response returns a single error object. However, when an LWC wire adapter receives an error running in an LWC
Offline-enabled mobile app, the response is returned as an array of error objects—most often, an array containing just one error object.

To make your components compatible across environments, we recommend a small amount of defensive coding at the start of your
error handling. Convert a non-array into an array to ensure that the error shape is consistent:

let errors = ...; // errors from wire adapter
if (! Array.isArray(errors)) {

131

Wire Adapters SupportOffline Considerations and Limitations

errors = [errors];
}

SEE ALSO:

Lightning Web Components Developer Guide: lightning/ui*Api Wire Adapters and Functions

Entity Support

LWC Offline uses the UI-API to access entity data. The UI-API supports a long list of standard entities, and all custom entities.

For a complete list of supported entities, see Supported Objects in the User Interface API Developer Guide.

Note: The ContentDocument, ContentVersion, and associated entities, used as part of file uploading features, aren’t fully supported
at this time. This limitation affects all base components that provide file uploading functionality. See Upload Photos from LWCs
Using lightning-input Base Component in the Trailblazer community for additional details and a partial work-around.

The following entities aren’t fully supported by UI-API, but are commonly used in Field Service. Support for them is incomplete.

• Case (not supported in related lists)

• LinkedArticleTask (recurrence isn’t supported)

• WorkOrder (not supported in related lists)

• WorkOrderStatus (not supported in related lists)

• WorkOrderLineItem (not supported in related lists)

SEE ALSO:

User Interface API Developer Guide: Supported Objects

User Interface API Developer Guide

Metadata and Custom Metadata Types Support

LWC Offline uses the UI-API to access standard metadata.

Metadata for entities, layouts and other customizations, and Lightning web components is automatically primed or loaded when used,
and is cached for offline use. However, the UI-API doesn’t support loading custom metadata types. As a consequence, custom metadata
isn’t primed or cached automatically. This affects features that use custom metadata, such as Flows.

If you must retrieve custom metadata, you can do that using Apex requests. If your Apex request methods are cacheable, the custom
metadata you access is available while offline. See Use Apex While Mobile and Offline.

SEE ALSO:

User Interface API Developer Guide

132

Entity SupportOffline Considerations and Limitations

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_ui_api
https://developer.salesforce.com/docs/atlas.en-us.254.0.uiapi.meta/uiapi/ui_api_get_started_supported_objects.htm
https://trailhead.salesforce.com/trailblazer-community/feed/0D54S00000HleCnSAJ
https://trailhead.salesforce.com/trailblazer-community/feed/0D54S00000HleCnSAJ
https://developer.salesforce.com/docs/atlas.en-us.254.0.uiapi.meta/uiapi/ui_api_get_started_supported_objects.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.uiapi.meta/uiapi/
https://developer.salesforce.com/docs/atlas.en-us.254.0.uiapi.meta/uiapi/

CHAPTER 5 Offline Environment Details

The offline environment presents a number of technical challenges for LWC Offline-enabled mobile
apps, and for your Lightning web components.

In this chapter ...

• What Happens When
Something Isn’t
Primed (Preloaded)

Salesforce mobile apps are heavily optimized for offline use. These optimizations are enabled by our
complete understanding of how the built-in features are implemented, including code, data, and
metadata relationships. The app contains or loads the information it needs for built-in features to perform
well, online and offline. See the following topics in Salesforce Help for application-specific details.

• Create Components
with Offline Analysis
In Mind • Salesforce Mobile App Plus: Offline Behaviors

• Field Service Mobile App: Offline Priming in the Field Service Mobile App• Determine Online or
Offline Status Salesforce mobile apps don’t, and can’t, have this same level of knowledge about your custom features

built with Lightning web components. Instead, the app analyzes your custom objects, page layouts,
components, and other metadata, and then loads the data and metadata it thinks you need. To improve
the quality of this analysis, and thus the performance of your components, you must follow a number
of guidelines when developing your Lightning web components.

133

https://help.salesforce.com/s/articleView?id=sf.salesforce_app_plus_offline_behavior.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=sf.mfs_offline_parent.htm&type=5&language=en_US

What Happens When Something Isn’t Primed (Preloaded)

Priming for offline use is a “best effort” mechanism. Salesforce mobile apps are resilient in situations where resources are required by a
mobile client but weren’t primed.

• If the client is online, missing data and metadata resources are loaded when needed. There’s a minor performance impact due to
the extra network requests.

• If the client is offline, then missing data and metadata can’t be retrieved. The Lightning Web Components framework, and the
Salesforce mobile app it’s running within, handle this situation with either a status display or an error message, depending on what
wasn’t primed before going offline. Specific behavior is dependent on the component and how it’s implemented.

Create Components with Offline Analysis In Mind

To use a feature implemented with Lightning web components while offline, it must be preloaded, or primed, before you go offline.

Specifically, an LWC Offline-enabled mobile app must prime:

• The component, and all its dependencies.

• The data to be displayed by the component, and all its dependencies.

The process for determining and resolving component dependencies is complex, and our implementation is continually improving. The
fundamental aspect to understand is that this dependency resolution is done without executing or rendering the component. Dependency
calculations are performed by static analysis of the component code, recursively applied to every child component, module, and wire
adapter used by the top-level component.

In general, anything that requires code to execute to determine its execution path can’t be resolved during static dependency analysis.
The following guidelines are an incomplete list of ways to avoid anti-patterns that can prevent a complete dependency analysis of a
component.

• Don’t use a private property as an input value to a wire adapter.

• Don’t use a getter as an input value to a wire adapter when the getter result depends on an instance member or any computation.

• Don’t use any computed value as an input value to a wire adapter where the value can’t be determined without creating and
executing the component, or which might be null when the component is instantiated.

• Don’t create a wire adapter chain where an earlier wire adapter outputs its results into a function.

• Don’t reference an array member from an array that is chained between wire adapters.

• Don’t reference an inherited property in an input value to a wire adapter in a subclass.

• Don’t create getter functions or properties that match an imported name. If a property name and import name are the same, the
static analyzer can’t differentiate them, and the imported item can’t be primed. For example:

import { recordContextQuery } from 'c/myModule';
export default class GetterTest extends LightningElement {

@api objectApiName;\

// Don’t make the getter name the same as the import name
// This prevents priming the imported recordContextQuery
get recordContextQuery() {

return recordContextQuery(this.objectApiName);
}

}

134

What Happens When Something Isn’t Primed (Preloaded)Offline Environment Details

Tip: See Validate Lightning Web Components for Offline Use to install validation tools that provide support within VS Code for
the previous guidelines.

Example and Workaround
Let’s consider an example. It’s common for a component to use CurrentPageReference in its code.

import { CurrentPageReference } from 'lightning/navigation';
// ...@wire(CurrentPageReference) pageRef;

During initial priming when the app loads, the “current page” can’t be known. This means that resources associated with that page —
layout metadata, object and field metadata, record data — can’t be fully determined in advance. And so the component can’t be primed
completely.

The workaround in this case, and in general, is to find another way to make these dependencies explicit, instead of implicitly defined by
a reference that can’t be resolved until runtime. Referencing a specific recordId, recordTypeId, or apiName provides enough
information to determine the dependencies without the specific page context.

Determine Online or Offline Status

The Salesforce Mobile app, Field Service Mobile app, and Lightning Web Components generally, don’t have a supported mechanism
for detecting whether a device is online or not. This is by design.

Online vs. offline connectivity is dynamic, and the signal given to the app from the mobile operating system is notoriously unreliable.
This lack of a clear signal is because the state of connectivity changes frequently. Connectivity isn’t a simple on/off switch. There’s a
range, from totally offline, to spotty, to slow-but-solid, and all the way up to faster than wired speed in the best circumstances. There’s
no good way to know if an action that requires a network connection will succeed or fail, except by attempting it.

In general, our design goal is that LWCs work offline first, and treat being offline as a normal condition, not a failure. When a network
request doesn’t succeed, the condition is handled as gracefully as possible. We recommend your components adhere to this practice.

135

Determine Online or Offline StatusOffline Environment Details

CHAPTER 6 Use Salesforce Features While Offline

Although LWC Offline is intended to “just work” when you use features while offline, there are nuances
and additional considerations for using some features while offline. This chapter provides details for how
to use these features effectively in LWCs to make them offline-ready.

In this chapter ...

• Use GraphQL While
Mobile and Offline

• Use Apex While
Mobile and Offline

• Use Images in an
LWC Offline-Enabled
Component

• Upload Images While
Offline

• Use Third-Party
JavaScript in an LWC
Offline-Enabled
Component

• Navigation

136

Use GraphQL While Mobile and Offline

GraphQL, often shortened to GQL, is a flexible, powerful query language for accessing record and other data. You can think of GraphQL
as a modern equivalent of SQL, the query language for relational databases.

Developers like GraphQL for modern web applications because, in contrast to many REST and CRUD-oriented APIs, GraphQL allows for
expressive queries, with features like filtering and scopes, ordering and aggregation, pagination, and relationship traversal to related
records. A single query can retrieve many records, and even records of multiple types. Using fewer queries reduces the number of server
requests required to load data, which can improve performance. A GQL query can specify precisely and only the fields required for a
given component, reducing the amount of data that needs to be transmitted before a page can render.

Salesforce offers several different implementations of GraphQL for use in your apps. Each implementation has an intended context and
purpose, and relevant use cases. Learning to use the appropriate implementation, or when you must use a specific implementation, is
straightforward. See Understand Salesforce GraphQL Implementations on page 137.

For mobile developers building apps that work while offline, however, there is only one implementation that matters: Offline GraphQL.
The rest of this chapter provides details of using Offline GraphQL, including important considerations and limitations.

Getting Started
• The fastest way to get up to speed on GraphQL and learn how to use it with the Salesforce Platform is to read the GraphQL API

Developer Guide.

• The fastest way to get up to speed on using GraphQL in Lightning web components is to read the Use the GraphQL Wire Adapter
chapter of the same developer guide. You’ll also want to refer to the lightning/uiGraphQLApi Wire Adapters and Functions
reference in the Lightning Web Components Developer Guide.

• The fastest way to learn how to build offline-ready LWCs with GraphQL is to keep reading this chapter.

If you’re new to GraphQL, you should plan to read and absorb all of these resources, in the order listed.

IN THIS SECTION:

Understand Salesforce GraphQL Implementations

Salesforce offers three different ways for LWC developers to use GraphQL in their components. Which one you select for your
components will depend on the specific needs of your application.

Feature Limitations of Offline GraphQL

Offline GraphQL uses the same wire adapter mechanism as the standard (online only) LWC wire adapter for GraphQL. You don’t
change any code to use Offline GraphQL, and your component can be used while online and offline.

Best Practices for Using GraphQL in LWC Offline

There are a number of best practices to be aware of when using GraphQL in your offline-ready components and apps.

Understand Salesforce GraphQL Implementations
Salesforce offers three different ways for LWC developers to use GraphQL in their components. Which one you select for your components
will depend on the specific needs of your application.

GraphQL API Endpoint

GraphQL is available using a traditional API endpoint, similar to the UI API. This implementation of GraphQL is the most complete and
feature-rich. It also requires you to handle more details yourself: authentication, request submission and response handling, and so on.

137

Use GraphQL While Mobile and OfflineUse Salesforce Features While Offline

https://developer.salesforce.com/docs/platform/graphql/guide
https://developer.salesforce.com/docs/platform/graphql/guide
https://developer.salesforce.com/docs/platform/graphql/guide/graphql-wire-lwc-use.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-lightning-graphql-api.html

The GraphQL API endpoint is accessible to any network-connected client, using any REST-capable tool, framework, or language. It’s also
the fastest way to “play” with the API; see Quick Starts: GraphQL API to quickly get started using a REST client.

GraphQL Wire Adapter for Lightning Web Components

The GraphQL Wire Adapter lets LWC developers use GraphQL via a wire adapter. Using a wire adapter simplifies the management of
your data by using Lightning Data Service (LDS).

Using GraphQL via the wire adapter simplifies making requests and handling responses, and allows your components to leverage other
features of LDS, such as caching data and requests for improved performance. The flexibility and expressiveness of GraphQL can enable
you to use GQL instead of Apex for advanced data retrieval operations. Preferring LDS and wire adapters over Apex is a best practice,
and part of the LWC Data Guidelines.

Offline GraphQL

Offline GraphQL is an implementation of GraphQL built into LWC Offline, which can run on a mobile device, even when it’s not connected
to the Internet. Offline GraphQL uses the same GraphQL wire adapter as online-only components—you don’t have to change your code
at all. Indeed, when a mobile device is online, it seamlessly uses the standard (not offline-enabled) GraphQL wire adapter.

However, when a mobile device is offline, and your LWC runs in an LWC Offline-enabled mobile app, Offline GraphQL is used, again,
automatically. Offline GraphQL runs client-side, on the mobile device, without a network connection. It uses data and metadata that is
already on the device in the Offline Cache, preloaded either by priming or by normal client activity.

Offline GraphQL has a number of limitations you need to be aware of. The standard implementations of GraphQL have access to your
org’s complete data and metadata, as well as access to the server-side resources of a vast data center. Offline GraphQL has ... your phone.

That might sound limiting, and it is. Offline GraphQL isn’t magic. There’s no sufficiently advanced GQL query that can load data that’s
not already present on the device. But with smart data access strategies you can make your custom LWCs perform work that looks like
magic to folks who need to use them in places without network access.

How to Choose a GraphQL Implementation
• For developers working with a framework other than Lightning Web Components, the choice is easy: use the GraphQL API Endpoint.

(It’s your only option.)

• For quickly experimenting with GraphQL, either as your first experience or just to work out a new GQL query, use the GraphQL API
Endpoint and a REST client of your choice. (We document using GraphQL with two different REST clients in Quick Starts: GraphQL
API.)

• For LWC developers building components that will be used only while connected to the Internet:

– Use the GraphQL wire adapter. It’s the recommended, natural method for data access in Lightning Web Components, and
leverages many additional features to make using GQL easier and more clear in your code.

– If and only if the GraphQL wire adapter is missing a GraphQL feature offered by the GraphQL API Endpoint, and you must use
that feature today, then use the GraphQL API Endpoint. We recommend you isolate this code such that it will be easy to refactor
to use the wire adapter when the feature catches up.

• For LWC developers building components that need to work offline, your only option is Offline GraphQL. (Keep reading.)

Feature Limitations of Offline GraphQL
Offline GraphQL uses the same wire adapter mechanism as the standard (online only) LWC wire adapter for GraphQL. You don’t change
any code to use Offline GraphQL, and your component can be used while online and offline.

While using different code isn’t necessary, you must restrict the GraphQL features that you use in your queries. The Offline GraphQL wire
adapter supports a subset of the features supported by the standard LWC wire adapter.

138

Feature Limitations of Offline GraphQLUse Salesforce Features While Offline

https://developer.salesforce.com/docs/platform/graphql/guide/get-started.html
https://developer.salesforce.com/docs/platform/lwc/guide/data-guidelines.html
https://developer.salesforce.com/docs/platform/graphql/guide/get-started.html
https://developer.salesforce.com/docs/platform/graphql/guide/get-started.html

Note: This subset grows in every release. A delay is typical in new features, and some features can’t be supported while disconnected
from Salesforce service.

Let’s get to the largest disappointments first. These major features don’t work while offline.

• Aggregate queries

• Mutations (data modification)

These major features are partially supported.

• Pagination

– Pagination is supported on top-level record queries, but not on nested child queries.

Where these features are required for your component or app to function, you must build them yourself, or use other data access
mechanisms besides GraphQL.

Data Access (Record Queries)
For “normal” data access, read-only queries that retrieve record data, most features are supported. These features are supported, but
with some limitations.

• Most scalar field operators are supported.

– Boolean operators and, not, and or are supported when the nested predicates (subclauses) use supported features.

– Geolocation and other compound fields have limited support. Location-based filtering isn’t supported.

– Sometimes picklist and multi-picklist results don’t exactly match results from the online implementation, particularly if null
values are included in the predicate.

– Relative date filtering is based on the device locale, not the org locale setting.

• DisplayValue for records and displayValue for fields are both supported.

• first argument to limit query result size is supported.

– While first isn’t a pagination feature, it’s often used with pagination features that aren’t supported.

• scope argument:

– MINE is supported for all entities.

– ASSIGNEDTOME is supported for ServiceAppointment.

– No other scopes are supported by Offline GraphQL.

• orderBy

– Ordering is supported, but it can have a negative impact on performance. Keep in mind where the sorting takes place, that is,
your phone. Keep your sort criteria simple, and don’t sort more records than necessary.

– Ordering results by a picklist field sorts by the picklist label, rather than the order of the picklist values defined in Setup.

• Relationships and related record access:

– Parent-to-child relationships are supported.

– Child-to-parent relationships are supported.

– Polymorphic relationship fields such as Owner are supported.

These features aren’t supported at this time.

• Compound fields such as Account.ShippingAddress aren’t supported in selections, predicates, or orderBy clauses.

139

Feature Limitations of Offline GraphQLUse Salesforce Features While Offline

https://developer.salesforce.com/docs/platform/graphql/guide/filter-fields.html
https://developer.salesforce.com/docs/platform/graphql/guide/filter-parent.html#parent-to-child-relationships
https://developer.salesforce.com/docs/platform/graphql/guide/filter-parent.html#parent-to-child-relationships
https://developer.salesforce.com/docs/platform/graphql/guide/filter-polymorphic.html

• Semi-join and anti-join filters such as inq and ninq aren’t supported.

• in and nin operators aren’t supported for Date and Date/Time fields.

• Location-based filters aren’t supported.

• Fiscal date literals aren’t supported in filters.

• Relative date ranges such as “last 30 days” aren’t supported in filters.

Metadata
Necessary object metadata, such as custom objects, fields, and layouts, is automatically loaded and cached during priming and online
activity. With GraphQL, you can manually query for metadata when the occasion calls for it. When offline, there are some limitations.

• Metadata fetched through GraphQL is cached separately from metadata fetched through the getObjectInfo wire adapter.
Sometimes they’re not perfectly in sync.

• Related list metadata can work, but it’s not supported at this time.

Other Feature Considerations
• Record query pagination:

– The after argument to paginate results is supported on top-level record queries. However, the after argument to
paginate results for nested child relationship queries isn’t supported.

– Cursor field selections aren’t supported.

• GraphQL query performance can be suboptimal on complex queries that filter or order by non-indexed fields.

• Queries that reference offline-created (draft) records in the predicate, directly in the query or indirectly through variables, return
locally cached results only. The query doesn’t make a network request to the server.

Important: Metaschema directives in GraphQL queries were deprecated in Summer ’23. However, if your GraphQL query fails
prefetch in the Salesforce mobile app, Salesforce Field Service, or Mobile Offline, you must continue to use metaschema directives
in your GraphQL query for referential integrity and offline priming functionality. See Known Issue: GraphQL query fails prefetch with
an "Unknown Field" warning.

SEE ALSO:

Understand Salesforce GraphQL Implementations

Best Practices for Using GraphQL in LWC Offline
There are a number of best practices to be aware of when using GraphQL in your offline-ready components and apps.

In addition to the general best practices detailed in GraphQL Wire Adapter Best Practices, we want to call your attention to two specific
practices that are especially important for the Offline GraphQL implementation.

Provide Query and Variables via Getter Function
To make the results of a GraphQL query primable, you must use a specific structure in your code. This structure is specifically required
for the GQL query to be discovered and processed by the static analyzer used by the priming subsystem. Do not inline the query with
your wire adapter function definition.

140

Best Practices for Using GraphQL in LWC OfflineUse Salesforce Features While Offline

https://developer.salesforce.com/docs/platform/graphql/guide/filter-joins.html
https://help.salesforce.com/s/articleView?id=release-notes.rn_lwc_modules.htm&release=244&type=5&language=en_US
https://developer.salesforce.com/docs/platform/graphql/guide/graphql-wire-lwc-namespace.html#referential-integrity
https://help.salesforce.com/s/articleView?id=sf.mfs_offline_parent.htm&language=en_US
https://issues.salesforce.com/issue/a028c00000xGGwE/graphql-query-fails-prefetch-with-an-unknown-field-warning
https://issues.salesforce.com/issue/a028c00000xGGwE/graphql-query-fails-prefetch-with-an-unknown-field-warning
https://developer.salesforce.com/docs/platform/graphql/guide/graphql-wire-lwc-best.html

For example, this code results in a query that can be analyzed and primed:

// BEST PRACTICE
// This GQL query can be primed
@wire(graphql, {
query: '$myQuery',
variables: '$myVariables'

})
wiredData;

get myQuery() {
return gql`query getSomeAccount($recordId: ID) {

uiapi { query { Account(...) { } } }`;
}
get myVariables() { return { recordId: '...' } }

In contrast, this example behaves the same as the preceding code, as long as you’re online, but does not result in the wire adapter results
being primed. If the required data and metadata isn’t primed by some other mechanism, it won’t function while you’re offline.

// ANTI-PATTERN
// This inline GQL query cannot be primed
@wire(graphql, {
query: gql`query getSomeAccount($recordId: ID) {

uiapi { query { Account(...) { } } }`,
variables: {recordId: '...'}

})
wiredData;

Delay Query Execution
This best practice is closely related to using getters to provide the GQL query string and variables, and uses the same code structures.
It’s similarly essential to maximizing the completeness of priming activities performed by the mobile app prior to going offline. The
details are described in Delay Query Execution in the GraphQL API Developer Guide.

Query Only the Data You Need
You can write a query that satisfies your data needs and gives you exactly what you asked for, nothing more and nothing less. Writing
a brief query that satisfies your data requirements makes the return result predictable, while ensuring that your query remains performant.

See Query Only the Data You Need in the GraphQL API Developer Guide for an example on how to use pagination to avoid loading a
large number of records in a single query.

Important: In the code example, totalCount isn’t supported for mobile use cases.

Use Apex While Mobile and Offline

Use Apex-backed wire adapters and imperative Apex in your Lightning web components to call Apex methods in your org.

When you use Apex in an LWC Offline-enabled mobile app, there are considerations to keep in mind so that you make efficient use of
network resources, data caching, and handle offline behavior correctly.

First, when the client device is online, Apex-based features of Lightning web components, including Apex continuations, “just work.”
You can use all of the features as documented in Call Apex Methods in the Lightning Web Components Developer Guide.

141

Use Apex While Mobile and OfflineUse Salesforce Features While Offline

https://developer.salesforce.com/docs/platform/graphql/guide/graphql-wire-lwc-best.html#delay-query-execution
https://developer.salesforce.com/docs/platform/graphql/guide/graphql-wire-lwc-best.html#query-only-the-data-you-need
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.apex

When a client device is offline, Apex-based features can read data that was cached while online, but changes (writing data) can’t be
saved back to the server. Nor can a change via Apex methods be enqueued as a draft into the Offline Queue. A Lightning web component
that uses Apex must be prepared to handle a network connection error as a normal response, for both reading and writing operations.

Important: Before you make plans to reuse existing Apex custom code in your offline features, read important details about
offline caching for Apex in Apex Results Are Separate from Other Primed Data.

IN THIS SECTION:

Use Apex in Lightning Web Components While Online

The essentials of using Apex within Lightning web components are described in "Call Apex Methods" in the Lightning Web Components
Developer Guide. While Apex features behave as documented when a client device is online, there are additional features available
within an offline-enabled mobile app.

Enable Caching of Apex Results

To allow results of Apex calls to be saved for offline use, enable caching on Apex methods used in your offline-enabled mobile apps.

Apex Results Are Separate from Other Primed Data

Apex results are saved in the durable store separately from data stored by built-in components, modules, and wires that use
Lightning Data Service (LDS) to access data.

Understand Apex Behavior While Offline

Additional features that are built into offline-enabled apps allow the app, including Lightning web components and even Apex, to
continue to function. Knowing these features, and their limitations, is critical to writing LWCs that function well, even without a
connection to the Salesforce service.

Additional Considerations for Apex in an Offline-Enabled Mobile App

The following differences in behavior compared to Apex run from a browser-based connection apply to Apex when used in Lightning
web components in an offline-enabled mobile app.

Additional Documentation for Apex in Lightning Web Components

Learn more about how to use Apex, including continuations, from Lightning web components documentation resources.

Use Apex in Lightning Web Components While Online
The essentials of using Apex within Lightning web components are described in "Call Apex Methods" in the Lightning Web Components
Developer Guide. While Apex features behave as documented when a client device is online, there are additional features available within
an offline-enabled mobile app.

To take advantage of these features, you need to know the basics of using Apex within Lightning web components. In particular, there
are two different ways of calling an Apex method from a Lightning web component.

IN THIS SECTION:

Reactive Apex Wires

Reading data via a wire adapter is the “natural” way to access data in Lightning web components. To add a read-only Apex method
to a Lightning web component, first import the Apex method from the @salesforce/apex module, and then use the @wire
annotation to connect that method to a property or function in your component.

Imperative Apex

Imperative Apex is the more traditional way to call an Apex method, as a network-based API call. Imperative Apex allows you to
control exactly when the method is called. You’re in control of the invocation, rather than the framework.

142

Use Apex in Lightning Web Components While OnlineUse Salesforce Features While Offline

Reactive Apex Wires
Reading data via a wire adapter is the “natural” way to access data in Lightning web components. To add a read-only Apex method to
a Lightning web component, first import the Apex method from the @salesforce/apex module, and then use the @wire
annotation to connect that method to a property or function in your component.

Read the details in Wire Apex Methods to Lightning Web Components in the Lightning Web Components Developer Guide.

The important things to understand about this method of using Apex are:

• @wire adapters are read-only.

• When you use @wire adapters, you don’t call your Apex method directly. Instead, the framework decides when to call it, when it
needs the value of the property or function connected to the @wire. This can happen more or less frequently than you expect.

• Your Apex method must not make server-side changes when called by the @wire service.

• The result of calling your Apex method is cached on the client. See important details in Apex Results Are Separate from Other Primed
Data.

These points are standard behavior for Lightning web components. They aren’t specific to the additional mobile and offline features of
an offline-enabled mobile app.

What is different is the cache. The mobile app saves the results of @wire calls to Apex methods in a durable store, instead of an
in-memory cache. The durable store is longer-lived than the standard cache used by Lightning web components. The standard cache
is designed for performance, rather than offline use. The durable store, in contrast, is designed specifically for offline use. It survives client
app restarts, and even device restarts. Data in the durable store is available to provide a result for an Apex method call, even when offline.
Again, see considerations in Apex Results Are Separate from Other Primed Data.

Imperative Apex
Imperative Apex is the more traditional way to call an Apex method, as a network-based API call. Imperative Apex allows you to control
exactly when the method is called. You’re in control of the invocation, rather than the framework.

Imperative Apex is more flexible—and less restrictive—than reactive Apex wires. For example, you can use imperative Apex calls to
change data on the server. The full details are described in Call Apex Methods Imperatively in the Lightning Web Components Developer
Guide.

Warning: Salesforce strongly recommends against using imperative Apex for offline use cases.

However, imperative Apex has a significant limitation in an offline-enabled mobile app. You can’t use imperative Apex while offline.
This is by design, since imperative Apex is allowed to change data on the server. There’s no way to reconcile what might change on the
server side with data cached on the client side. This is because the client has no knowledge of the implementation of a server-side Apex
method. See Imperative Apex While Offline.

Enable Caching of Apex Results
To allow results of Apex calls to be saved for offline use, enable caching on Apex methods used in your offline-enabled mobile apps.

Annotate the Apex method with @AuraEnabled(cacheable=true), which caches the method results on the client. When you
set cacheable=true, a method must only retrieve data, it can’t mutate (change) data.

• Apex methods used in reactive wires must be annotated with @AuraEnabled(cacheable=true), whether you intend to
use the results offline or not.

• Apex methods called imperatively only need to be annotated with @AuraEnabled(cacheable=true) if you want the
results to be available offline.

143

Enable Caching of Apex ResultsUse Salesforce Features While Offline

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.apex_wire_method
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.apex_call_imperative

Additional details of Apex method caching behavior and managing cached results can be found in the Lightning Web Components
Developer Guide.

SEE ALSO:

Lightning Web Components Developer Guide: Client-Side Caching of Apex Method Results

Apex Results Are Separate from Other Primed Data
Apex results are saved in the durable store separately from data stored by built-in components, modules, and wires that use Lightning
Data Service (LDS) to access data.

This is because Apex methods return arbitrary data, as an opaque data blob, rather than returning typed records in expected formats.

Data that’s loaded during priming activities, or that’s loaded using base components, wire adapters, and other built-in features of
Lightning web components, is stored in one consolidated cache. In an offline-enabled mobile app, it’s also saved to the durable store
for offline use. As you load new data, it’s merged into the local store of cached data. This merging includes updating existing items with
changes loaded from Salesforce.

The mechanism that makes this possible is Lightning Data Service, or LDS. LDS results include metadata about the returned results. This
metadata, sometimes referred to as ObjectInfo, allows LDS to treat the results as real Salesforce objects.

Apex requests are different. While Apex methods can return nothing more than records, there’s nothing that ensures this. Apex requests
can return arbitrary data, in any format you build in your Apex code. As a result, Apex methods don’t return ObjectInfos for the data
contained in the response. And without the ObjectInfos for the results, there’s no way to treat those results as Salesforce records—and
therefore no way to merge them in with records saved locally by LDS.

To simplify the actual implementations, think of LDS results as being records that are indexed by record ID, with each record stored in
a separate representation of a Salesforce object. In contrast, Apex results are stored as one big opaque blob per request, indexed on the
request URL, including parameters.

While you can interpret structured data inside that opaque blob, LDS and the LWC framework can’t. If you load the same records with
LDS and Apex, those records are stored separately, as duplicates. Updates to one copy don’t affect the other, unless you fire the Apex
request again (to load changes performed via LDS), or tell the framework to reload stale LDS data (to load changes performed via Apex).

This poses a challenge for implementing features that use both the built-in data access features of Lightning Web Components and the
fully customizable logic of Apex. Our advice is to use the base Lightning components whenever possible, then use LDS wire adapters,
and then if necessary, use Apex. An extensive discussion of this tiered strategy can be found in Data Guidelines in the Lightning Web
Components Developer Guide.

144

Apex Results Are Separate from Other Primed DataUse Salesforce Features While Offline

https://developer.salesforce.com/docs/platform/lwc/guide/apex-result-caching.html
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.data_guidelines

Note: We recognize that LDS and built in components don’t cover every use case, and that there’s always a place for custom
logic performed on the server, especially for transactional operations. We intend to improve the capabilities of LDS over time,
including adding advanced capabilities for complex queries and other operations. We advise planning your use of Apex in such
a way that you can refactor your data access logic to adopt new LDS features as they become available.

SEE ALSO:

Lightning Web Components Developer Guide: Data Guidelines

Lightning Web Components Developer Guide: Client-Side Caching of Apex Method Results

Understand Apex Behavior While Offline
Additional features that are built into offline-enabled apps allow the app, including Lightning web components and even Apex, to
continue to function. Knowing these features, and their limitations, is critical to writing LWCs that function well, even without a connection
to the Salesforce service.

The standard Salesforce web interface requires a continuous network connection to the Salesforce service. When a standard Salesforce
client, such as a desktop browser, is offline, features that require a connection to the Salesforce service—which is most features—don’t
work. Since Apex runs on the Salesforce service, this includes all Apex-based features of Lightning web components.

An offline-enabled mobile app, in contrast, is designed to continue to function even when no connection to the Salesforce service is
available. The offline features of the app aren’t magic; data that’s not already available on the client device is inaccessible. But carefully
designed features, including Lightning web components that use Apex, can continue to run with data that’s available locally, on the
device, even without a network connection.

IN THIS SECTION:

Apex Wires While Offline

Lightning web components that wire properties or functions to Apex methods continue to provide cached values from the durable
store, if available.

Imperative Apex While Offline

Imperative Apex calls always fail when the client device is offline. When using imperative Apex in an offline-enabled mobile
app, it’s essential to handle the possibility of a network failure error.

Refresh Records Cached in Durable Store While Offline

While it’s not possible to retrieve updated data from Salesforce while a client device is offline, it’s still possible to request updates
when data is known to be stale.

SEE ALSO:

Lightning Web Components Developer Guide: Client-Side Caching of Apex Method Results

Apex Wires While Offline
Lightning web components that wire properties or functions to Apex methods continue to provide cached values from the durable
store, if available.

If the result of an Apex method hasn’t been retrieved previously and saved to the durable store, an error is returned. The correct way to
handle the error depends on whether the Apex method is wired to a property or a function.

145

Understand Apex Behavior While OfflineUse Salesforce Features While Offline

https://developer.salesforce.com/docs/platform/lwc/guide/data-guidelines.html
https://developer.salesforce.com/docs/platform/lwc/guide/apex-result-caching.html
https://developer.salesforce.com/docs/platform/lwc/guide/apex-result-caching.html

When using a property, the wire service either provisions the results to the <property>.data property, or returns an error to the
<property>.error property. Use an if:true directive in your component template to check for the presence of each, and
render the appropriate output. Changes to <property> trigger a re-render of your component with new values.

With a function, the wire service provisions results to the wired function via an object with either an error or data property. Check
for the presence of each in your JavaScript function, and set an appropriate property of your component. This triggers a re-render of
your component with new values.

Example code for each of these approaches is available in Wire Apex Methods to Lightning Web Components in the Lightning Web
Components Developer Guide.

Imperative Apex While Offline
Imperative Apex calls always fail when the client device is offline. When using imperative Apex in an offline-enabled mobile app,
it’s essential to handle the possibility of a network failure error.

Treat errors as a normal, expected outcome, rather than a failure condition. Provide appropriate feedback to the user, and suggest
alternative behavior, rather than treating the situation as unexpected.

// apexImperativeMethod.js
import { LightningElement, track } from 'lwc';
import getContactList from '@salesforce/apex/ContactController.getContactList';

export default class ApexImperativeMethod extends LightningElement {
@track contacts;
@track error;

handleLoad() {
getContactList()

.then(result => {
this.contacts = result;

})
.catch(error => {

this.error = error;
});

}
}

Offline-savvy components expect to be offline at times, and know what to do when that happens.

Refresh Records Cached in Durable Store While Offline
While it’s not possible to retrieve updated data from Salesforce while a client device is offline, it’s still possible to request updates when
data is known to be stale.

For example, after updating a record via imperative Apex, you would want any version of that record cached by LDS to be updated. It’s
straightforward to write code that handles this process when your imperative Apex succeeds while online, but also handles an update
error if the client device is offline.

getRecordNotifyChange() is used to advertise the need to update cached records that were modified by imperative Apex. It
isn’t supported at this time. Note that getRecordNotifyChange(recordIds) simply notifies LDS that the records represented
by recordIds provided in the function call are known to be stale. It doesn’t share updated record values with LDS, even if those
records are available offline. It’s the responsibility of LDS to retrieve the latest values for those records. LDS can only do so when the
client is online.

146

Understand Apex Behavior While OfflineUse Salesforce Features While Offline

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.apex_wire_method

refreshApex() is used to request a refresh for data provisioned by an Apex @wire. It’s usable today and, while online, behaves
as expected. However, while refreshApex(valueProvisionedByApexWireService) can be called while offline, it
requires a network connection to actually succeed, and push a new value to the wired property or function.

Using getRecordNotifyChange() and refreshApex() to request updates for cached data that are possibly stale is
described in Client-Side Caching of Apex Method Results in the Lightning Web Components Developer Guide.

SEE ALSO:

Lightning Web Components Developer Guide: Client-Side Caching of Apex Method Results

Lightning Web Components Developer Guide: @salesforce/apex in @salesforce Modules

Additional Considerations for Apex in an Offline-Enabled Mobile App
The following differences in behavior compared to Apex run from a browser-based connection apply to Apex when used in Lightning
web components in an offline-enabled mobile app.

If a quick action uses a wired Apex method, and that quick action is primed at app startup, then the Apex results data can be primed as
well, and available offline. The LWC must be statically analyzable for priming to take place. Specifically, input parameters for the wire
adapter must be analyzable. For example, if the input parameters are derived from page reference attributes, or from the output of
another LDS wire that is also analyzable. See Validate Lightning Web Components for Offline Use for additional details about static
analysis. Note that the Apex method will be invoked during priming, possibly many times, to prime results for all possible adapter input
parameters.

Apex continuations are supported. However, because continuations tend to be longer running requests, we recommend providing
feedback to the user while a continuation is active. Otherwise, they might go offline before a continuation completes, which results in
an error.

Additional Documentation for Apex in Lightning Web Components
Learn more about how to use Apex, including continuations, from Lightning web components documentation resources.

In addition to the Call Apex Methods chapter, see the @salesforce/apex and @salesforce/apexContinuations
sections of the @salesforce Modules reference in the Lightning Web Components Developer Guide.

Use Images in an LWC Offline-Enabled Component

Lightning Web Components supports multiple ways of referencing graphics assets in a component. Not all of these methods work when
the component runs offline. LWC Offline supports several methods of referencing images in your offline-ready Lightning web components.

The standard methods for referencing images (and other binary assets) in an LWC are:

• Images uploaded as Files, using the VersionDataUrl field of the latest ContentVersion related to a particular
ContentDocument record.

• Content Assets, using the @salesforce/contentAssetUrl module.

• Static Resources, using the @salesforce/resourceUrl module.

For LWCs with images intended to be used offline, we recommend the first two options. Static resources support offline images, but
with limitations.

Note: Support for offline images requires that both your Salesforce org and your mobile app are updated to the Summer ’23
release (API 58.0) or later.

147

Additional Considerations for Apex in an Offline-Enabled
Mobile App

Use Salesforce Features While Offline

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.apex_result_caching
https://developer.salesforce.com/docs/platform/lwc/guide/apex-result-caching.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-salesforce-modules.html
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.apex
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_salesforce_modules

IN THIS SECTION:

Use Images Uploaded as Files (ContentDocument) in an LWC

Files are a general mechanism to upload and make binary files, such as images, available in your Salesforce org. Files can be associated
with a specific record, which makes them ideal for product photos, images captured during a service call or other transaction, and
otherwise adding images to business activities that you track in Salesforce.

Use Images Uploaded as Asset Files

Asset files are the modern alternative to static resources. Asset files are ideal for images that are used throughout your components
and apps—for example, user interface elements like icons—or otherwise aren’t related to a specific record.

Use Images Uploaded as Static Resources

Static resources are a method for packaging one or more images, stylesheets, or JavaScript files for use within Lightning web
components, and other Salesforce customization features.

Image Priming and Offline Considerations

LWC Offline isn’t magic. If an image hasn’t been primed before you go offline, it can’t be displayed while offline. LWC Offline primes
image assets that are referenced in component template files, in the src attribute of a standard HTML img tag.

Use Images Uploaded as Files (ContentDocument) in an LWC
Files are a general mechanism to upload and make binary files, such as images, available in your Salesforce org. Files can be associated
with a specific record, which makes them ideal for product photos, images captured during a service call or other transaction, and
otherwise adding images to business activities that you track in Salesforce.

Files have a complex representation in Salesforce, using multiple standard objects to store the file itself and information about it, including
ownership, access controls, and multiple versions of that file. ContentDocument is the primary object and, for the purposes of displaying
images in your LWCs, you can reference the binary data of a file through a relationship that is the same for any uploaded file.

The critical elements of an offline-ready implementation are:

• Access the URL of the File’s current version through the
@salesforce/schema/ContentDocument.LatestPublishedVersion.VersionDataUrl related field.

• Provide the image URL via a getter function that parses the record data of the current version.

• Use the getter function for the src attribute of an img tag in your HTML template.

Important: While there are other methods for referencing images in an LWC, the preceding elements are required for offline
image access to function. The Komaci static analyzer looks for this specific pattern when determining images to prime. Additionally,
your getter function must be statically analyzable. If its result can only be determined at runtime, the image can’t be primed.

Example: The following example is simple, and uses a hard-coded ContentDocument record ID, but it illustrates the details.
You can also access named renditions (thumbnails) of the image by adding a thumb parameter to the URL.

// imageFromContentDocument.js
import { LightningElement, wire } from 'lwc';
import { getFieldValue, getRecord } from 'lightning/uiRecordApi';
import IMAGE_URL_FIELD from

'@salesforce/schema/ContentDocument.LatestPublishedVersion.VersionDataUrl';

export default class ImageFromContentDocument extends LightningElement {

@wire(getRecord, {recordId: '069RO0000003FMoYAM', fields: [IMAGE_URL_FIELD] })
contentDocImage;

get imageUrl() {

148

Use Images Uploaded as Files (ContentDocument) in an LWCUse Salesforce Features While Offline

return getFieldValue(this.contentDocImage.data, IMAGE_URL_FIELD);
}

get resizedImageUrl() {
return getFieldValue(this.contentDocImage.data, IMAGE_URL_FIELD) +

'?thumb=THUMB240BY180';
}

}

With the image URL provided by the getter functions in the preceding component JavaScript, referencing the images in the HTML
template is just like referencing any image in HTML. Use it in the src attribute of an HTML img tag.

<!-- imageFromContentDocument.html -->
<template>

<lightning-card>Display an image from
ContentDocument {imageUrl}</lightning-card>

<template if:true={contentDocImage}>

</template>

<lightning-card>Display a resized image from ContentDocument
{resizedImageUrl}</lightning-card>

<template if:true={contentDocImage}>

</template>

</template>

This feature works in LWC Offline beginning in Spring ’23, which is API version 57.0. Be sure to set that minimum API version for
any component that references images while offline.

<?xml version="1.0" encoding="UTF-8"?>
<!-- imageFromContentDocument-meta.xml -->
<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata">

<apiVersion>57.0</apiVersion>
<isExposed>true</isExposed>
<targets>

<target>lightning__RecordPage</target>
<target>lightning__AppPage</target>
<target>lightning__RecordAction</target>
<target>lightning__GlobalAction</target>

</targets>
<targetConfigs>

<targetConfig targets="lightning__RecordAction,lightning__GlobalAction">
<actionType>ScreenAction</actionType>

</targetConfig>

149

Use Images Uploaded as Files (ContentDocument) in an LWCUse Salesforce Features While Offline

</targetConfigs>
</LightningComponentBundle>

SEE ALSO:

User Interface API Developer Guide: Upload Files

Salesforce Object Reference Guide: ContentDocument

Salesforce Object Reference Guide: ContentVersion

Use Images Uploaded as Asset Files
Asset files are the modern alternative to static resources. Asset files are ideal for images that are used throughout your components and
apps—for example, user interface elements like icons—or otherwise aren’t related to a specific record.

Referencing an image stored in an Asset file is straightforward, and fully documented. We present only a simple example here. See Access
Content Asset Files the Lightning Web Component Developer Guide for complete details.

The critical elements of an offline-ready implementation are:

• Access the URL of the asset using the @salesforce/contentAssetUrl module.

• Provide the image URL via a getter function.

• Use the getter function for the src attribute of an img tag in your HTML template.

Important: While there are other methods for referencing images in an LWC, the preceding elements are required for offline
image access to function. The Komaci static analyzer looks for this specific pattern when determining images to prime. Additionally,
your getter function must be statically analyzable. If its result can only be determined at runtime, the image can’t be primed.

Example:

// imageFromAssetFile.js
import { LightningElement } from 'lwc';
import ASSET_IMG from '@salesforce/contentAssetUrl/avatars-light-mode';
import ARCHIVE_IMG from '@salesforce/contentAssetUrl/branding-images';

export default class ImageFromAssetFile extends LightningElement {
get assetUrl() {

return ASSET_IMG;
}

get assetArchiveUrl() {
return ARCHIVE_IMG + '&pathinarchive=images/logo-large.png';

}
}

Warning: The assetArchiveUrl function in the preceding example appends a pathinarchive query parameter
and value, using a “&” separator. The “&” isn’t used in examples in the standard LWC documentation. The need for the “&”
separator is inconsistent between desktop and mobile today, and we consider this discrepancy to be a software defect. For
now, adding the “&” separator generally works on both desktop and mobile, even though it results in a double “&&” on
desktop.

150

Use Images Uploaded as Asset FilesUse Salesforce Features While Offline

https://developer.salesforce.com/docs/atlas.en-us.254.0.uiapi.meta/uiapi/ui_api_features_records_content_document.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_contentdocument.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_contentversion.htm
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.create_content_assets
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.create_content_assets

With the image URL provided by the getter functions in the preceding component JavaScript, referencing the images in the HTML
template is just like referencing any image in HTML. Use it in the src attribute of an HTML img tag.

<!-- imageFromAssetFile.html -->
<template>

<lightning-card>
Display an image directly from an Asset file {assetUrl}

</lightning-card>

<template if:true={assetUrl}>

</template>

<lightning-card>
Display an image from an archive Asset file {archUrl}

</lightning-card>

<template if:true={assetArchiveUrl}>

</template>

</template>

SEE ALSO:

Salesforce Help: Asset Files

Lightning Web Components Developer Guide: Access Content Asset Files

Lightning Web Components Developer Guide: @salesforce/contentAssetUrlin @salesforce Modules

Use Images Uploaded as Static Resources
Static resources are a method for packaging one or more images, stylesheets, or JavaScript files for use within Lightning web components,
and other Salesforce customization features.

Referencing an image stored in a Static Resource is straightforward, and fully documented. We present only a simple example here. See
Access Static Resources the Lightning Web Component Developer Guide for complete details.

The critical elements of an offline-ready implementation are:

• Access the URL of the resource by importing it using the @salesforce/resourceUrl module.

• Provide the image URL via a getter function.

• Use the getter function for the src attribute of an img tag in your HTML template.

Important: While there are other methods for referencing images in an LWC, the preceding elements are required for offline
image access to function. The Komaci static analyzer looks for this specific pattern when determining images to prime. Additionally,
your getter function must be statically analyzable. If its result can only be determined at runtime, the image can’t be primed.

Example:

// imageFromStaticResource.js
import { LightningElement } from 'lwc';
import TRAILHEAD_LOGO from '@salesforce/resourceUrl/trailhead_logo';

151

Use Images Uploaded as Static ResourcesUse Salesforce Features While Offline

https://help.salesforce.com/s/articleView?id=sf.admin_files_asset_files.htm&type=5&language=en_US
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.create_content_assets
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_salesforce_modules
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.create_resources

export default class ImageFromStaticResource extends LightningElement {
get trailheadLogoUrl() {

return TRAILHEAD_LOGO;
}

}

Warning: LWC Offline doesn’t support archive static resources at this time. While you can upload each image as a separate
static resource, we recommend that you use Content Assets, which do support archive files, for collections of related images.
See Use Images Uploaded as Asset Files.

With the image URL provided by the getter function in the preceding component JavaScript, referencing the image in the HTML
template is just like referencing any image in HTML. Use it in the src attribute of an HTML img tag.

<!-- imageFromStaticResource.html -->
<template>

<lightning-card>
Display an image directly from a static resource: {trailheadLogoUrl}

</lightning-card>

<template if:true={trailheadLogoUrl}>

</template>

</template>

SEE ALSO:

Salesforce Help: Static Resources

Lightning Web Components Developer Guide: Access Static Resources

Lightning Web Components Developer Guide: @salesforce/resourceUrlin @salesforce Modules

Image Priming and Offline Considerations
LWC Offline isn’t magic. If an image hasn’t been primed before you go offline, it can’t be displayed while offline. LWC Offline primes
image assets that are referenced in component template files, in the src attribute of a standard HTML img tag.

Note: Only the img tag is supported at this time. Images referenced in other ways or tags aren’t primed and won’t display
sometimes, even when online.

Primed images are stored locally on the mobile device, in a binary durable store (cache). Images stored in individual files are primed and
cached individually. Images stored in archive asset files are accessible, but be aware that the entire archive is primed and cached. Updates
to images in archive files require reloading the entire archive. Archive static resources aren’t supported at this time.

In Summer ’23, primed images aren’t automatically purged from the offline cache when they get stale. Be mindful of the size of your
images or archive asset files, and the space they take up locally on devices. LWC Offline-enabled apps can provide other methods of
purging stale images. Check the documentation for your target mobile app.

The binary contents of an item referenced in an img tag isn’t validated. It’s up to you to ensure that referenced files are valid images.
Support for specific image formats is dependent on the capabilities of the web view, which is provided by the operating system. Providing
an unsupported or non-image file to an img tag is an HTML error and can cause unpredictable behavior. As the joke goes, don’t do
that. Safe formats are the usual web image formats: GIF, JPEG, PNG, and so on. When in doubt, test specific image formats on your specific
supported mobile devices and operating system versions.

152

Image Priming and Offline ConsiderationsUse Salesforce Features While Offline

https://help.salesforce.com/s/articleView?id=sf.pages_static_resources.htm&type=5&language=en_US
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.create_resources
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_salesforce_modules

Upload Images While Offline

Upload files, such as images, to Salesforce, even when your mobile client is offline. For example, upload photos of equipment installed
during a service call, even if there’s no Internet service available. Images upload when your mobile device regains network service.

Important: This feature is available only in Salesforce mobile apps, such as Salesforce Mobile App Plus and Field Service Mobile.
This feature depends on functionality built into these mobile apps. While LWCs that use this feature don’t emit errors when used
on desktop, they don’t function as intended, either.

Your organization must purchase and license Salesforce Mobile App Plus in order to use this feature in the Salesforce mobile app.
Contact your Salesforce sales rep for more information.

IN THIS SECTION:

Understand File Uploads in Salesforce

It’s simple to upload files and attach them to other records in the Salesforce user interface, but a great deal takes place behind the
scenes. File uploads have a complex representation in Salesforce. This complexity makes it challenging to work with file uploads
programmatically in LWC code, especially in a way that works while a mobile device is offline.

Image Upload Basics

Uploading an image from an LWC using features supported offline is a two-step process. First, use
createContentDocumentAndVersion to upload the image file. This adapter creates ContentDocument and
ContentVersion records for the file upload. After the ContentDocument and ContentVersion exist, use
createRecord to create the ContentDocumentLink record that relates the image upload to the record you want to
attach it to.

Image Upload Example

Here’s a quick example of uploading an image to Salesforce using the createContentDocumentAndVersion adapter.
This technique works on mobile devices, whether they’re online or offline. This technique works only in Salesforce mobile apps.

Understand File Uploads in Salesforce
It’s simple to upload files and attach them to other records in the Salesforce user interface, but a great deal takes place behind the scenes.
File uploads have a complex representation in Salesforce. This complexity makes it challenging to work with file uploads programmatically
in LWC code, especially in a way that works while a mobile device is offline.

For the purposes of thinking about uploading files from an LWC, we can simplify the representation to four related objects.

153

Upload Images While OfflineUse Salesforce Features While Offline

Warning: This diagram oversimplifies file uploads in Salesforce. It omits ownership, sharing, and other features supported by
additional objects and APIs. For more details, including available fields and usage notes, start with ContentDocument, ContentVersion,
and ContentDocumentLink in the Salesforce Object Reference.

An uploaded, attached, or generated file is represented primarily by the ContentDocument object. However, this object holds no
file data. Instead, versions of an uploaded file are stored as ContentVersion objects. With this structure, you can update a file by
uploading a new version. Each upload creates another ContentVersion record, and this record is where the binary file data for
the upload is stored.

That record represents the file. To associate an uploaded file to another record—for example, to attach photos of a vehicle to a car rental
agreement record—the ContentDocumentLink object is used to link the two records together. A ContentDocumentLink
object represents the relationship between a ContentDocument and any other record. Associate an uploaded file with any number
of other records by creating the appropriate ContentDocumentLink records that join them.

When online, the LWC code for creating a file upload, while non-trivial, is straightforward, using standard Lightning Data Service (LDS)
adapters like createRecord.

Supporting offline uploads from mobile clients is more challenging. Not only is it hard to manage the various relationships between
records, but there’s also the challenge of holding binary file data in an offline store for later upload. To manage these technical issues,
use the dedicated, mobile-specific file upload adapter: createContentDocumentAndVersion.

Supported file sizes for uploads are dependent on device memory, and large file sizes can cause compatibility issues. Keeping file upload
sizes (especially images) under 100 MB maximizes compatibility.

Any supported file type can be uploaded, however only draft images can be viewed in the context of an LWC.

Note: Check with environment-dependent file viewing mechanisms, such as the native capabilities within the Salesforce Field
Service Mobile App or Salesforce Mobile App Plus.

Image Upload Basics
Uploading an image from an LWC using features supported offline is a two-step process. First, use
createContentDocumentAndVersion to upload the image file. This adapter creates ContentDocument and
ContentVersion records for the file upload. After the ContentDocument and ContentVersion exist, use
createRecord to create the ContentDocumentLink record that relates the image upload to the record you want to attach
it to.

Image Upload Example
Here’s a quick example of uploading an image to Salesforce using the createContentDocumentAndVersion adapter. This
technique works on mobile devices, whether they’re online or offline. This technique works only in Salesforce mobile apps.

This component is intended to be used as a quick action in a record context, for example, added to a record detail page. Uploaded
images are attached to the associated record, and they can be viewed in the Notes & Attachments related items panel for that record.

<!-- fileUpload.html -->
<template>

<h1>File Upload</h1>

<!-- File selection controls. Always displayed.
Set `accept="*/*"` to allow uploads of any type of file. -->

<div>
<lightning-input

type="file"

154

Image Upload BasicsUse Salesforce Features While Offline

https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_contentdocument.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_contentversion.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_contentdocumentlink.htm

name="fileUploader"
label="Select file to upload"
multiple="false"
accept="image/*"
onchange={handleFilesInputChange}

>
</lightning-input>

</div>

<!-- If a file is selected, display additional input controls. -->
<div if:true={fileName}>

<!-- Show the filename (read-only) -->
<p>Selected file:</p>
<p>{fileName}</p>

<!-- Form fields for upload details -->
<div class="inputs">

<lightning-input
type="text"
label="Title"
value={titleValue}
onchange={handleTitleInputChange}

></lightning-input>
<lightning-input

type="text"
label="Description"
value={descriptionValue}
onchange={handleDescriptionInputChange}

></lightning-input>
</div>

<!-- Button to actually do the upload (enqueued as a draft) -->
<button

class="slds-button slds-button_brand slds-var-m-top_medium"
disabled={uploadingFile}
onclick={handleUploadClick}

>
<label>Upload</label>

</button>
</div>

<!-- If there are errors, show them here -->
<div if:true={errorMessage}>

<lightning-card title="Error">
<div class="card-body">{errorMessage}</div>

</lightning-card>
</div>

</template>

The user interface has three main sections.

• A local file selection widget, which is always displayed.

• A selected file info panel, which is displayed only when there’s a file selected. This panel also contains an Upload button that triggers
the file upload to Salesforce.

155

Image Upload ExampleUse Salesforce Features While Offline

• An error messages panel, which is displayed only when there’s an error with an upload.

This template is standard markup for a simple widget. All the magic happens on the other side of those four onchange attributes,
and the handler functions that perform actions when the controls are used.

Here’s the component’s JavaScript implementation.

// fileUpload.js
import { LightningElement, api, track, wire } from "lwc";
import { ShowToastEvent } from "lightning/platformShowToastEvent";
import {
createContentDocumentAndVersion,
createRecord,

} from "lightning/uiRecordApi";
// Imports for forced-prime ObjectInfo metadata work-around
import { getObjectInfos } from "lightning/uiObjectInfoApi";
import CONTENT_DOCUMENT from "@salesforce/schema/ContentDocument";
import CONTENT_VERSION from "@salesforce/schema/ContentVersion";
import CONTENT_DOCUMENT_LINK from "@salesforce/schema/ContentDocumentLink";

export default class FileUpload extends LightningElement {
@api
recordId;

@track
files = undefined;

@track
uploadingFile = false;

@track
titleValue = "";

@track
descriptionValue = "";

@track
errorMessage = "";

// Object metadata, or "ObjectInfo", is required for creating records
// while offline. Use the getObjectInfos adapter to "force-prime" the
// necessary object metadata. This is a work-around for the static analyzer
// not knowing enough about the file object schema.
@wire(getObjectInfos, {
objectApiNames: [CONTENT_DOCUMENT, CONTENT_VERSION, CONTENT_DOCUMENT_LINK],

})
objectMetadata;

// Getter used for local-only processing. Not needed for offline caching.
// eslint-disable-next-line

@salesforce/lwc-graph-analyzer/no-getter-contains-more-than-return-statement
get fileName() {
// eslint-disable-next-line

@salesforce/lwc-graph-analyzer/no-unsupported-member-variable-in-member-expression
const file = this.files && this.files[0];
if (file) {

156

Image Upload ExampleUse Salesforce Features While Offline

return file.name;
}
return undefined;

}

// Input handlers
handleFilesInputChange(event) {
this.files = event.detail.files;
this.titleValue = this.fileName;

}

handleTitleInputChange(event) {
this.titleValue = event.detail.value;

}

handleDescriptionInputChange(event) {
this.descriptionValue = event.detail.value;

}

// Restore UI to default state
resetInputs() {
this.files = [];
this.titleValue = "";
this.descriptionValue = "";
this.errorMessage = "";

}

// Handle uploading a file, initiated by user clicking Upload button
async handleUploadClick() {
// Make sure we're not already uploading something
if (this.uploadingFile) {
return;

}

// Make sure we have something to upload
const file = this.files && this.files[0];
if (!file) {
return;

}

try {
this.uploadingFile = true;

// Create a ContentDocument and related ContentDocumentVersion for
// the file, effectively uploading it
const contentDocumentAndVersion =
await createContentDocumentAndVersion({
title: this.titleValue,
description: this.descriptionValue,
fileData: file,

});
console.log("ContentDocument and ContentDocumentVersion records created.");

// If component is run in a record context (recordId is set), relate

157

Image Upload ExampleUse Salesforce Features While Offline

// the uploaded file to that record
if (this.recordId) {
const contentDocumentId = contentDocumentAndVersion.contentDocument.id;

// Create a ContentDocumentLink (CDL) to associate the uploaded file
// to the Files related list of the target recordId
await this.createContentDocumentLink(this.recordId, contentDocumentId);

}

// Status and state updates
console.log("File upload created and enqueued.");
this.notifySuccess();
this.resetInputs();

} catch (error) {
console.error(error);
this.errorMessage = error;

} finally {
this.uploadingFile = false;

}
}

// Create link between new file upload and target record
async createContentDocumentLink(recordId, contentDocumentId) {
await createRecord({
apiName: "ContentDocumentLink",
fields: {
LinkedEntityId: recordId,
ContentDocumentId: contentDocumentId,
ShareType: "V",

},
});
console.log("ContentDocumentLink record created.");

}

notifySuccess() {
this.dispatchEvent(
new ShowToastEvent({
title: "Upload Successful",
message: "File enqueued for upload.",
variant: "success",

})
);

}
}

For the purpose of explanation, we can divide the implementation into these four sections.

• Import statements

• State tracking

• Simple convenience functions and change handlers

• The file upload handler

158

Image Upload ExampleUse Salesforce Features While Offline

Import Statements
The only thing interesting about the import statements is the API function, createContentDocumentAndVersion. The file
upload discussion describes how to use this function.

State Tracking
This component’s state tracking consists of one @api public attribute and five @track internal state attributes.

• recordId is public and allows the component to receive a record context. This context is used to associate (attach) files that are
uploaded to the record from which the component is launched. For example, to attach photos of equipment installed to the Service
Appointment record of a technician’s visit.

• files holds the currently selected local file prior to being uploaded. This variable is used to hold a file locally while the Title and
Description are edited. It’s an array so that, with some minor code changes, you can upload multiple files at a time.

• titleValue and descriptionValue hold the form field values for editing via the form fields.

• uploadingFile indicates active processing and is used to manage the Upload button’s enabled or disabled state.

• errorMessage holds messages about any errors that occur when the actual upload is attempted.

Convenience and Handler Functions
• The fileName getter is used locally only. It’s not relevant to or used for analysis of what to prime, so it’s exempt from the “simple

getters only” rule.

• resetInputs resets the form fields and state after a successful upload.

• handleFilesInputChange, handleTitleInputChange, and handleDescriptionInputChange each
update internal state values, in response to user changes on the form.

The code for each of these handlers is short, simple, and reasonably self-explanatory. They’re common for any LWC that handles user
input via a form. We’ll talk about how they’re used in the next section, but we’ll leave these few lines of implementation code for you
to read through yourself.

File Upload Handler Functions
The handleUploadClick and createContentDocumentLink functions together perform all of the work to upload a file
to Salesforce, and link that file to an associated record. Both functions are defined as asynchronous using the async keyword.

handleUploadClick handles the user interface event (clicking the Upload button), and also creates the file upload.
createContentDocumentLink is a utility function that creates the relationship between the file upload and the “owning”
record. These functions are fairly different in how they work, so they’re described separately.

handleUploadClick is called when the user clicks the Upload button, which can only happen after they select a local file to be
uploaded. It nevertheless begins by checking for a couple of situations where the upload can’t succeed:

• If an upload is already in progress, don’t start a new one.

• If there’s no actual file to upload, don’t try to upload a nonexistent file.

The user interface state should prevent these situations by disabling the Upload button when either of those conditions are true. However,
a well-written function verifies its inputs. These checks ensure that you don’t cause an error if these important assumptions aren’t correct.

159

Image Upload ExampleUse Salesforce Features While Offline

The actual upload processing takes place within a try block because all data mutations have the opportunity to fail, especially when
you’re allowing for them to occur while offline. The first part of uploading a file is creating a file upload with a call to the new API function.

const contentDocumentAndVersion =
await createContentDocumentAndVersion({
title: this.titleValue,
description: this.descriptionValue,
fileData: file,

});

This one call creates two related records. One record is a ContentDocument representing the file, including the name and description.
The second is a related ContentVersion record that holds the file data and represents the current version of the uploaded file.

This one call does a lot of work, including creating the relationship between the two records. While you can achieve the same end result
using the createRecord adapter, you can do that only while online. Creating and preserving the relationship between the two
isn’t possible using createRecord while offline, mostly due to the complexity of the representation of files in Salesforce.
createContentDocumentAndVersion abstracts that complexity, making file uploads as simple as the preceding snippet,
which is just one line of code, wrapped for readability.

createContentDocumentAndVersion creates a file upload, but it does not associate that uploaded file with the “owning”
record for the record context (if any). After it completes the upload (notice the await keyword before the call), we verify that we have
a record context (recordId). If so, call the createContentDocumentLink helper function to create that association, in the
form of a ContentDocumentLink record.

If handleUploadClick is exotic for using a mobile only API function, createContentDocumentLink is boring, using
createRecord, a staple of LWC code since the framework’s release.

async createContentDocumentLink(recordId, contentDocumentId) {
await createRecord({
apiName: "ContentDocumentLink",
fields: {
LinkedEntityId: recordId,
ContentDocumentId: contentDocumentId,
ShareType: "V",

},
});

This code is another one-liner when you unwrap it. The trick is knowing enough about the representation of files and their relationship
to other object types in Salesforce. In this case, it’s knowing that ContentDocumentLink represents a relationship between an
uploaded file and another record, and knowing which fields to stick the relevant record IDs into.

Tip: ShareType: "V" might seem a bit mysterious, but it’s simple and not particularly relevant. It sets the sharing level to
view-only. See ContentDocumentLink in the Object Reference for the Salesforce Platform for details.

Where’s the “Offline” Part?
You just finished looking at it. And it looks a lot like regular LWC code for an online-only mobile feature. The only thing new is the
createContentDocumentAndVersion adapter. There’s nothing offline-specific about the code here—it works fine while
you’re online, too. The offline details are behind the scenes. Follow the LWC Offline guidelines for optimizing priming, and you’re good
to go.

160

Image Upload ExampleUse Salesforce Features While Offline

https://developer.salesforce.com/docs/atlas.en-us.254.0.object_reference.meta/object_reference/sforce_api_objects_contentdocumentlink.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.mobile_offline.meta/mobile_offline/dx_validate_lwc_offline.htm

Use Third-Party JavaScript in an LWC Offline-Enabled Component

Use static resources to provide access to third-party JavaScript libraries in your Lightning web components. To enable JavaScript libraries
in static resources to be used while offline, follow these guidelines.

Loading JavaScript libraries stored in a static resource is straightforward, and fully documented. We present only a simple example here.
See Use Third-Party JavaScript Libraries the Lightning Web Component Developer Guide for complete details.

Important: LWC Offline doesn’t support archive static resources at this time. This limitation poses a challenge for libraries that
consist of many separate JavaScript files. While you can create a separate static resource for each file and load them individually,
that’s tedious. Look for a merged, concatenated, or minimized version of your JavaScript library; transformed versions of libraries
are often provided by the developer for performance and ease of deployment.

The critical elements of an offline-ready implementation are:

• Access the URL of the resource by importing it using the @salesforce/resourceUrl module.

• Load the library using the loadScript() function of the platformResourceLoader module, and then;

• Call your library’s entry point, initialization or factory function, or otherwise start using the library in a then() block chained from
your loadScript() call.

Important: While there are other methods for loading JavaScript libraries in an LWC, the preceding elements are required for
offline access to function. Static resources aren’t primed in advance; users must load (view) a component using the static resource
before going offline. This behavior will change in a future release.

Example:

// javascriptFromStaticResource.js
import { LightningElement } from 'lwc';
import { loadScript } from 'lightning/platformResourceLoader';
import myLib from '@salesforce/resourceUrl/myLib';

export default class JavascriptFromStaticResource extends LightningElement {
loadScript(this, myLib)
.then(() => {

let result = myLib.myFunction(2,2);
});

}

If you must load multiple separate JavaScript files, wrap them in a Promise, and call the initialization function after all of your calls
to loadScript() have resolved. For example:

Promise.all([
loadScript(this, resourceName1),
loadScript(this, resourceName2),
loadScript(this, resourceName3)

]).then(() => {

161

Use Third-Party JavaScript in an LWC Offline-Enabled
Component

Use Salesforce Features While Offline

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.js_third_party_library

// Start using the library here
});

SEE ALSO:

Salesforce Help: Static Resources

Lightning Web Components Developer Guide: Use Third-Party JavaScript Libraries

Lightning Web Components Developer Guide: @salesforce/resourceUrlin @salesforce Modules

Lightning Web Components Developer Guide: Platform Resource Loader

Navigation

Build navigation for Lightning web components.

When we talk about “navigation,” we can broadly separate things into two categories: things that appear on the screen—buttons, tabs,
links, and so on—and what actually happens when someone interacts with those things. Call these two categories navigation user
experience and navigation actions. These terms are loose, not specific to Salesforce, mobile apps, or Lightning web components, and we
use them informally here.

IN THIS SECTION:

Navigation User Experience

There are a variety of base components available to design the visual user interface that users tap or click to move around in your
app.

Base Components with Built-In Navigation Actions

Use base components that have automatic or built-in navigation actions.

Programmatic Navigation Actions

Some features require more complicated navigation designs. For the most complete control of your user interface and navigation
scheme, define navigation actions using JavaScript.

Navigation User Experience
There are a variety of base components available to design the visual user interface that users tap or click to move around in your app.

See Create Mobile-Ready Components in the Lightning Web Components Developer Guide for mobile-specific basics, and the Component
Reference for a complete catalog of available base components, including usage documentation.

SEE ALSO:

Create Mobile Components

Lightning Web Components Developer Guide: Component Reference

Base Components with Built-In Navigation Actions
Use base components that have automatic or built-in navigation actions.

162

NavigationUse Salesforce Features While Offline

https://help.salesforce.com/s/articleView?id=sf.pages_static_resources.htm&type=5&language=en_US
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.js_third_party_library
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.reference_salesforce_modules
https://developer.salesforce.com/docs/component-library/bundle/lightning-platform-resource-loader/documentation
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.mobile
https://developer.salesforce.com/docs/component-library/overview/components
https://developer.salesforce.com/docs/component-library/overview/components
https://developer.salesforce.com/docs/atlas.en-us.254.0.mobile_offline.meta/mobile_offline/ux.htm
https://developer.salesforce.com/docs/component-library/

The following base components support adding navigation controls to your own components. These components provide ways to
open another page, or otherwise perform URL-based actions. You supply the URL, or text containing linkable items, and the component
takes care of the rest.

DetailsBase Component

Behaves like a hyperlink if a URL is provided via the href attribute.lightning-breadcrumb

Behaves like a hyperlink if a URL is provided via the href attribute.lightning-carousel-image

Displays a formatted phone number as click-to-dial enabled or disabled for Open
CTI and Voice.

lightning-click-to-dial

Displays a formatted address with a link to the given location on Google Maps.lightning-formatted-address

Displays an email as a hyperlink with the mailto: URL scheme.lightning-formatted-email

Displays a phone number as a hyperlink with the tel: URL scheme.lightning-formatted-phone

Creates hyperlinks in rich text automatically for linkable text and email addresses.lightning-formatted-rich-text

URLs and email addresses are displayed as hyperlinks when you specify the
linkify attribute.

lightning-formatted-text

Displays a URL as a hyperlink.lightning-formatted-url

Behaves like a hyperlink if a URL is provided via the href attribute.lightning-pill

Behaves like a hyperlink if a URL is provided via the href attribute.lightning-vertical-navigation

Note: Some of these components have limitations when used in an offline-enabled mobile app. See Base Components Support
for details.

There are additional base components that can have navigation actions attached to them, such as buttons and tabs. These components
require you to add click handlers or other functionality in the form of JavaScript code. See Programmatic Navigation Actions.

SEE ALSO:

Lightning Web Components Developer Guide: Component Reference

Programmatic Navigation Actions
Some features require more complicated navigation designs. For the most complete control of your user interface and navigation scheme,
define navigation actions using JavaScript.

In Lightning web components, navigation actions are built using the navigation service, provided by the lightning/navigation
module. See Navigate to Different Page Types in the Lightning Web Components Developer Guide to get started.

This module is supported for use in LWC Offline-enabled mobile apps. Each different Salesforce mobile app has different features, and
each implements support for the navigation service independently. As a consequence, there are some differences in available and
supported navigation actions. See the documentation for your specific mobile apps for more details.

163

Programmatic Navigation ActionsUse Salesforce Features While Offline

https://developer.salesforce.com/docs/component-library/
https://developer.salesforce.com/docs/component-library/bundle/lightning-navigation/documentation
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.use_navigate_page_types

IN THIS SECTION:

Navigation Actions in the Salesforce Mobile App

Use these supported programmatic navigation actions in your Lightning web components intended for use in Salesforce Mobile
App Plus.

Navigation Actions in the Field Service Mobile App

Use these supported programmatic navigation actions in your Lightning web components intended for use in the Field Service
Mobile app.

Common Navigation Actions

These common navigation actions aren’t specific to Salesforce. Depending on your situation, use the LWC navigation service, or in
some special cases use standard JavaScript code techniques.

SEE ALSO:

Lightning Web Components Developer Guide: Basic Navigation

Lightning Web Components Developer Guide: Navigate to Different Page Types

Lightning Web Components Developer Guide: PageReference Types

Navigation Actions in the Salesforce Mobile App
Use these supported programmatic navigation actions in your Lightning web components intended for use in Salesforce Mobile App
Plus.

Each Salesforce mobile app implements support for the navigation service independently, which results in some differences in available
navigation actions. The following PageReference types are supported by the LWC navigation service when used in the Salesforce Mobile
App Plus mobile app.

• standard__quickAction

• standard__webPage

You can implement a surprising number of different navigation actions with these PageReference types. The following are examples of
navigation actions, and the PageReference used to implement them.

Navigate to a Quick Action
Create a navigation action that opens an LWC-based quick action.

{
"type": "standard__quickAction",
"attributes": {

"actionName": `objectApiName.actionApiName` },
"state": {

"recordId": "<recordId>",
"objectApiName": "<objectApiName>"

}
}

objectApiName.actionApiName represents the name of the quick action (actionApiName), and the sObject that it’s
defined on (objectApiName). The state object provides a way to pass data into the target component. In this example, recordID
and objectApiName are public properties defined in the objectApiName.actionApiName quick action’s JavaScript code.

164

Programmatic Navigation ActionsUse Salesforce Features While Offline

https://developer.salesforce.com/docs/platform/lwc/guide/use-navigate-basic.html
https://developer.salesforce.com/docs/platform/lwc/guide/use-navigate-page-types.html
https://developer.salesforce.com/docs/platform/lwc/guide/reference-page-reference-type.html

Open Salesforce Mobile App via Deep Link
Create a navigation action that leaves Mobile App Plus, and opens a specific page in the Salesforce mobile app.

{
"type": "standard__webPage",
"attributes": {

"url": "salesforce1://sObject/001D000000Jwj9v/view"
}

}

There’s a wide range of targets available for deep linking into the Salesforce Mobile app. See Configure Deep Linking for the Salesforce
Mobile App in the Salesforce Help for available URL formats.

Open the Field Service Mobile App via Deep Link
Create a navigation action that leaves Offline App Plus, and opens a specific page in the Field Service mobile app.

{
"type": "standard__webPage",
"attributes": {

"url": `com.salesforce.fieldservice://v1/sObject/${this.recordId}/details`
}

}

There’s a wide range of targets available for deep linking into the Field Service mobile app. See Deep Linking Schema for the Field Service
Mobile App in the Field Service Developer Guide for available URL formats.

Open Web Page
Create a navigation action that opens a screen that displays an external web page.

{
"type": "standard__webPage",
"attributes": {

"url": "https://salesforce.com"
}

}

Open Email App
Create a navigation action that opens the device’s native email client and pre-fills the addressee and subject lines.

{
"type": "standard__webPage",
"attributes": {

"url": "mailto:help@AcmeSupport.com?subject=Help with Asset"
}

}

165

Programmatic Navigation ActionsUse Salesforce Features While Offline

https://help.salesforce.com/s/articleView?id=sf.sapp_url_schemes.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.sapp_url_schemes.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.254.0.field_service_dev.meta/field_service_dev/fsl_dev_mobile_deep_linking_schema.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.field_service_dev.meta/field_service_dev/fsl_dev_mobile_deep_linking_schema.htm

Open Phone App
Create a navigation action that opens the device’s native phone app, and dials a phone number.

{
"type": "standard__webPage",
"attributes": {

"url": "tel:123-456-7890"
}

}

Open Message App
Create a navigation action that opens the device’s native SMS or message app, and pre-fills the recipient phone number.

{
"type": "standard__webPage",
"attributes": {

"url": "sms:12345678"
}

}

SEE ALSO:

Salesforce Help: Configure Deep Linking for the Salesforce Mobile App

Navigation Actions in the Field Service Mobile App
Use these supported programmatic navigation actions in your Lightning web components intended for use in the Field Service Mobile
app.

Each Salesforce mobile app implements support for the navigation service independently, which results in some differences in available
navigation actions. The following PageReference types are supported by the LWC navigation service when used in the Field Service
Mobile app.

• standard__webPage

You can implement a surprising number of different navigation actions with this PageReference type. The following are examples of
navigation actions, and the PageReference used to implement them.

Navigate from LWC to a Native Screen via Deep Link
Create a navigation action that moves from a LWC to a screen native to the Field Service mobile app.

{
"type": "standard__webPage",
"attributes": {

"url": `com.salesforce.fieldservice://v1/sObject/${this.recordId}/details`
}

}

There’s a wide range of targets available for deep linking into the Field Service mobile app. See Deep Linking Schema for the Field Service
Mobile App in the Field Service Developer Guide for available URL formats.

166

Programmatic Navigation ActionsUse Salesforce Features While Offline

https://help.salesforce.com/s/articleView?id=sf.sapp_url_schemes.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.254.0.field_service_dev.meta/field_service_dev/fsl_dev_mobile_deep_linking_schema.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.field_service_dev.meta/field_service_dev/fsl_dev_mobile_deep_linking_schema.htm

Navigate to a Quick Action via Deep Link
Create a navigation action that opens a quick action, including quick actions built with LWCs.

{
"type": "standard__webPage",
"attributes": {

"url":
`com.salesforce.fieldservice://v1/sObject/${this.recordId}/quickaction/<api_name>`

}
}

Open Salesforce Mobile App via Deep Link
Create a navigation action that leaves the Field Service mobile app, and opens a specific page in the Salesforce mobile app.

{
"type": "standard__webPage",
"attributes": {

"url": "salesforce1://sObject/WorkOrder/home"
}

}

See Configure Deep Linking for the Salesforce Mobile App for available URL formats.

Open Web Page
Create a navigation action that opens a screen that displays an external web page.

{
"type": "standard__webPage",
"attributes": {

"url": "https://salesforce.com"
}

}

Open Email App
Create a navigation action that opens the device’s native email client and pre-fills the addressee and subject lines.

{
"type": "standard__webPage",
"attributes": {

"url": "mailto:help@AcmeSupport.com?subject=Help with Asset"
}

}

Open Phone App
Create a navigation action that opens the device’s native phone app, and dials a phone number.

{
"type": "standard__webPage",
"attributes": {

167

Programmatic Navigation ActionsUse Salesforce Features While Offline

https://help.salesforce.com/s/articleView?id=sf.sapp_url_schemes.htm&type=5&language=en_US

"url": "tel:123-456-7890"
}

}

Open Message App
Create a navigation action that opens the device’s native SMS or message app, and pre-fills the recipient phone number.

{
"type": "standard__webPage",
"attributes": {

"url": "sms:12345678"
}

}

SEE ALSO:

Field Service Developer Guide: Deep Linking Schema for the Field Service Mobile App

Common Navigation Actions
These common navigation actions aren’t specific to Salesforce. Depending on your situation, use the LWC navigation service, or in some
special cases use standard JavaScript code techniques.

Important: Differences between desktop and mobile, and between different mobile applications, can affect the behavior of these
common navigation actions. Test your navigation thoroughly, on every platform and device onto which you plan to deploy your
components.

Open an Arbitrary URL
Navigate to another web page or URL. The equivalent of clicking a link, or entering a URL into the browser location field.

Don’t use window.open() to open or navigate to a new URL. Instead, use the navigation service to navigate to the URL using a web
page PageReference.

import { NavigationMixin } from "lightning/navigation";
// ...

navigateToDsc() {
this[NavigationMixin.Navigate]({
type: "standard__webPage",
attributes: {
"url": "https://developer.salesforce.com"

},
});

}

In addition to standard URLs, you can use the navigation service to open other apps or features. See PageReference Types and the deep
link documentation for your mobile apps for additional details on the kinds and format of special URL types.

Close a Modal Quick Action Panel
Close a modal panel opened by a quick action, usually to dismiss or cancel the action.

168

Programmatic Navigation ActionsUse Salesforce Features While Offline

https://developer.salesforce.com/docs/atlas.en-us.254.0.field_service_dev.meta/field_service_dev/fsl_dev_mobile_deep_linking_schema.htm
https://developer.salesforce.com/docs/platform/lwc/guide/reference-page-reference-type.html

When used to close or cancel a quick action, this is a special case of the Go Back navigation action. As a result, it’s tempting to use the
built-in window.history.back() JavaScript function. This works in some, but not all, contexts.

The correct approach in Lightning Web Components is to fire the CloseActionScreenEvent event, and let the framework take
care of closing the panel, disposing of framework resources, and so on. For example:

import { CloseActionScreenEvent } from "lightning/actions";
// ...

handleCancelClick(clickEvent) {
// Close the modal window
this.dispatchEvent(new CloseActionScreenEvent());

}

Not all Salesforce mobile apps support the CloseActionScreenEvent event. For those mobile apps, use
window.history.back() as a work-around.

Go Back
Navigate back to the previous page, the equivalent of clicking the browser Back button.

This navigation action is so common, it’s built into all browsers. As a result, it generally doesn’t have on screen user interface elements
in most web apps. However, Salesforce mobile apps don’t have a Back button in the standard user interface. If you want to provide a
button or other UI element to navigate backwards, you’ll need to build it yourself.

The standard method for doing so is to use the window.history.back() JavaScript function that’s available in most browser
containers. This function depends on the history mechanism built into the browser, or the web view of a mobile app, where it requires
explicit support. As a result, window.history.back() can behave differently across different browsers and mobile apps. It’s not
supported on all Salesforce mobile apps.

SEE ALSO:

Lightning Web Components Developer Guide: PageReference Types

Salesforce Help: Configure Deep Linking for the Salesforce Mobile App

Field Service Developer Guide: Deep Linking Schema for the Field Service Mobile App

169

Programmatic Navigation ActionsUse Salesforce Features While Offline

https://developer.salesforce.com/docs/platform/lwc/guide/reference-page-reference-type.html
https://help.salesforce.com/s/articleView?id=sf.sapp_url_schemes.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.254.0.field_service_dev.meta/field_service_dev/fsl_dev_mobile_deep_linking_schema.htm

CHAPTER 7 Development Tools and Processes

Set up and use your development tools for the most efficient developer experience while building mobile
and offline LWCs.

In this chapter ...

• Understand the
Mobile Development
Cycle

Developing LWCs and apps for use in Salesforce mobile apps uses all the same developer tools and
processes that developing LWCs for desktop use. It also poses special challenges, especially in the areas
of testing and debugging. This chapter describes a number of additional tools and processes designed
specifically for developing mobile LWCs.

• Set Up Your
Development
Environment

• Preview Lightning
Web Components on
Mobile

• Validate Lightning
Web Components for
Offline Use

• Develop
Offline-Ready LWCs
with the LWC Offline
Test Harness

• Debug Your
Components with
Virtual Device Builds

• Customize the Offline
Experience for the
Salesforce Mobile
App

170

Understand the Mobile Development Cycle

Learn the basics of the development cycle for mobile components, including the essential tasks and tools that you need to be productive
while building LWCs for use on mobile devices.

Everyone’s development process is different, in ways large and small. But no matter how different, there are common aspects of the
active development cycle — the “lather, rinse, repeat” — that every productive developer uses. Developing mobile components is no
different in that regard, but there are some differences in the details. In particular, there are unique challenges in examining code during
development that require some specialized tools and techniques.

The Active Development Cycle

Code
You know what this part is. Actually writing code in your development editor of choice. Coding is the fun part of every developer’s job,
and the more time you can spend doing it, the happier you are (usually). For LWC developers working on mobile apps, the editor of
choice is VS Code. Salesforce provides multiple extensions for VS Code to make your mobile dev work easier, including Salesforce DX
extensions, mobile extensions, and code validation.

• Visual Studio Code

• Salesforce DX

• Salesforce Extensions for VS Code

• Salesforce Mobile Extensions

• Code Validation

171

Understand the Mobile Development CycleDevelopment Tools and Processes

https://developer.salesforce.com/docs/platform/lwc/guide/get-started-editor-linter-org.html
https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm
https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode

Preview
Get the current version of your code into a container that can run it. Previews need to be a fast, lightweight process, not a release
ceremony. Salesforce mobile extensions for VS Code make this happen, whether you want to preview your components in development
in a local preview environment, in the Test Harness app, or in an official Salesforce mobile app on a virtual or physical device.

• Preview Lightning Web Components on Mobile

• Salesforce Extensions for VS Code

• Salesforce Mobile Extensions

• Test Harness App

Test
Testing is an overloaded term in software development. There are many different kinds of testing. For your daily, interactive development
work, the focus is on manually testing the behavior of the code you just added or changed. Once your component is in a preview
environment, being able to tap on the app, navigate the user interface, and interactively play with your component or app is
straightforward.

• Test Harness App

• Virtual Device Builds

• Salesforce Mobile App Betas

Debug
“Where did it all go wrong?” is a question every developer asks, usually many times a day. Debugging is how you answer that question.

“Why doesn’t X happen when I do Y?” and “What does happen when I do Y?” are questions you need real debugging tools to help answer.
LWC developers depend on standard debugging tools like Chrome DevTools and Safari Web Inspector to look inside their components
to understand behavior. Mobile developers can use these same tools but, because LWC Offline code runs inside a mobile app instead
of a web browser, it’s a bit trickier to attach a JavaScript console to the web view. The mobile Test Harness app gives you not only a
debuggable web view, but also a collection of specialized tools and functions to inspect the underlying behavior of your component
code while running offline.

• Debug Lightning Web Components

• Virtual Device Builds

• Test Harness App

• Chrome DevTools

• Safari Web Inspector

Set Up Your Development Environment

Before you can create your first Lightning web component (LWC), or test a LWC in a mobile app, you must set up your development
environment for mobile components.

The complete development environment for building Lightning web components for offline-enabled apps includes the following
elements.

• Salesforce CLI (SFDX)

• Visual Studio Code (VS Code)

172

Set Up Your Development EnvironmentDevelopment Tools and Processes

https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode
https://help.salesforce.com/s/articleView?id=000382422&type=1&language=en_US
https://developer.chrome.com/docs/devtools/
https://developer.apple.com/safari/tools/

• Salesforce Extensions for VS Code

• Android Studio and a virtual device emulator

• Apple Xcode and a virtual device simulator

• Salesforce Mobile Extensions

• A virtual device build for the relevant mobile app

While you can eventually choose to replace or add tools to this list, start with these and add to them as you become more experienced.

Note: Don’t let Android Studio or Xcode intimidate you. You only need to use it to provision a device emulator (Android) or
simulator (iOS). You don’t need both Android Studio and Xcode. If you want both, great. If not, pick the one you’re most comfortable
with.

Installation Instructions
We recommend the following installation sequence. Each link provides complete details for installing and configuring each of the
different tools.

• Install and configure Android Studio

• Install and configure Xcode

• Install the Salesforce CLI

• Install the Mobile Extensions

• Install VS Code

• Install Salesforce Extensions for VS Code

• Download the latest virtual device build for the mobile app

– For the Salesforce mobile app, use the standard virtual device builds, as described in Preview Components in the Salesforce
Mobile App.

Note: Your org must be enabled for LWC Offline before you can see or use LWC Offline features.

– For the Field Service mobile app, the download link is posted in the Trailblazer Community.

• Install a virtual device build into a configured Android emulator or iOS simulator instance

The Develop a Lightning Web Component Quick Action quick start provides hands-on instructions for setting up your development
environment, and also for creating, deploying, and running your first LWC.

IN THIS SECTION:

Set Up Xcode

Before you run previews in iOS simulators, make sure that Xcode 11 is properly installed and configured. After you install Xcode, test
your environment with the Mobile Preview setup command. If you’re using an existing Xcode installation, run the setup
command to verify that your installed environment meets Mobile Extensions requirements.

Set Up Android Studio

Before you run previews in Android emulators, make sure that Android Studio is properly installed and configured. After you install
Android Studio, test your environment with the setup command. If you’re using an existing Android Studio installation, run
setup to verify that your installed environment meets Mobile Extensions requirements.

173

Set Up Your Development EnvironmentDevelopment Tools and Processes

https://developer.salesforce.com/docs/platform/lwc/guide/get-started-cli.html
https://code.visualstudio.com/
https://developer.salesforce.com/tools/vscode/en/vscode-desktop/install
https://trailblazers.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F94S000000GwNL

Install Mobile Extensions

To use Mobile Extensions, install the lwc-dev-mobile Salesforce CLI plug-in. After it’s installed, use it to check for the required
Android and iOS configurations. If the plug-in finds problems, the command output gives you hints for how to fix your environment.
After your environment is set up, preview your components from the command line or from Visual Studio Code.

Set Up Xcode
Before you run previews in iOS simulators, make sure that Xcode 11 is properly installed and configured. After you install Xcode, test
your environment with the Mobile Preview setup command. If you’re using an existing Xcode installation, run the setup command
to verify that your installed environment meets Mobile Extensions requirements.

Install Xcode
How you install Xcode depends on your version of macOS. Mobile Extensions supports macOS version 10.14.4 (Mojave) and higher.

If you’ve already installed Xcode, skip to “Verify Your iOS Setup.”

macOS Catalina, version 10.15.x

•
If you’re new to Xcode or are running Xcode 10 or earlier, install the latest version of Xcode from the Mac App Store . The
latest version of Xcode meets the requirements of Mobile Extensions.

macOS Mojave, version 10.14.4 minimum

• Download and install Xcode 11.3.x from developer.apple.com/downloads/more. This site requires you to log in with your Apple
ID.

Verify Your iOS Setup
To verify that your new or existing Xcode environment is ready for iOS previews, run the Mobile Extensions setup command:

sf force:lightning:local:setup -p ios

If setup reports any issues, use the following steps to correct them.

1. Use a Mac: Mobile Extensions for iOS requires a Mac running macOS Mojave version 10.14.4 and higher.

a. On your Mac, click About This Mac in the System menu.

b. Under Overview, look for the operating system name and version. Examples: “macOS Catalina Version 10.15.5”, “macOS Mojave
Version 10.14.4”.

2. Verify that you’re running Xcode 11 or later.

a. In Xcode, select Xcode > About Xcode.

b. Look for “Version 11.x.y” where x and y can be any integer values.

3. Add an iOS simulator that runs iOS 13.

a. In Xcode > Preferences, select Components.

In the Simulator list, installed simulators are marked with a blue check. The default simulator for your version of Xcode doesn’t
appear in this list.

b. If none of your installed simulators use iOS 13, check and install at least one iOS 13 simulator.

174

Set Up XcodeDevelopment Tools and Processes

https://develop.apple.com/downloads/more

4. Final check: Rerun the setup command:

sf force:lightning:local:setup -p ios

5. To see the list of installed virtual devices that Mobile Extensions recognizes on your machine, use the device:list command:

sf force:lightning:local:device:list -p ios

Set Up Android Studio
Before you run previews in Android emulators, make sure that Android Studio is properly installed and configured. After you install
Android Studio, test your environment with the setup command. If you’re using an existing Android Studio installation, run setup
to verify that your installed environment meets Mobile Extensions requirements.

Install Android Studio
If you’ve already installed Android Studio, skip to “Verify Your Android Studio Setup.”

To install Android Studio, download and run the installer at developer.android.com/studio.

Android apps specify different API levels. According to the Android documentation:

• “Minimum API level” is the lowest API level with which your app is compatible

• “Target API level” is the highest API level against which you’ve designed and tested your app

For previews, recommended API levels are API 23 (Android 6.0 “Marshmallow”) to the latest available level. The Android Studio installer
downloads only the latest API level. For Salesforce previews, you’re free to add any other APIs from level 23 or later.

175

Set Up Android StudioDevelopment Tools and Processes

https://developer.android.com/studio

1. In the Android Studio Welcome screen, click Configure > SDK Manager.

2. If you require previewing with additional API levels, download one or more SDK Platforms from API level 23 or later. For each
required level:

a. Check the box next to its name.

b. On the same row, click Download .

Downloading new API versions can take several minutes.

c. If prompted, confirm each download, then accept the license agreement and click Next.

3. Select SDK Tools.

4. If the status of Android SDK Command-line Tools (latest) is “Not installed”, select Android SDK Command-line Tools (latest),
then click Download.

176

Set Up Android StudioDevelopment Tools and Processes

Although the latest version is recommended, any version of the command-line tools is expected to work.

5. When the downloads are finished, dismiss the SDK Manager.

Create a Virtual Device
Now that you’ve installed the SDK, create an emulator for testing and debugging your apps. Let’s choose a system image that supports
API 23 or higher and Google APIs.

1. In the Android Studio Welcome screen, click Configure > AVD Manager.

2. On the Your Virtual Devices page, click Create Virtual Device…

3. Select a device definition, and click Next.

4. Under Select a System Image, click x86 Images.

Note: In a new Android Studio installation, none of the images are downloaded.

5. Select an image listing that supports the following criteria.

• API Level: 23 or higher

• ABI: x86_64

• Target: Any image that Android Studio makes available by default

177

Set Up Android StudioDevelopment Tools and Processes

6. Click Download.

7. After the download completes and you return to the System Image list, select the downloaded image and click Next.

8. In Verify Configuration, you can change the AVD name to any value that helps you identify the configuration. For other settings, you
can accept the default values.

9. Click Finish to return to Your Virtual Devices.

10. To launch the emulator, click the Play button in your emulator’s listing.

Verify Your Android Studio Setup
During installation, Android Studio configures your system environment with standard Android paths and locations. The Mobile Extensions
setup command checks your settings and reports issues to the command-line console.

To verify that your environment is ready for Android previews, run the setup command:

sf force:lightning:local:setup -p android

If setup reports any issues, use the following guidelines to correct them.

System Variables

The ANDROID_HOME variable is the starting point for all Android development operations. If this variable isn’t set or is incorrect,
Mobile Extensions can’t use Android tools. You set ANDROID_HOME to point to the top-level directory of your Android SDK
installation. On macOS, for example, this variable’s default value is /Users/<user_name>/Library/Android/sdk. If
you’ve installed Android SDK in a custom directory, make sure that this path points to that location.

macOS X:

178

Set Up Android StudioDevelopment Tools and Processes

You can make these settings persistent by adding them to the ~/.bash_profile or similar startup file for your command
shell.

• Configure ANDROID_HOME as follows.

export ANDROID_HOME=/Users/<your_user_name>/Library/Android/sdk

• For Android, the Mobile Extensions plug-in requires the Java Development Kit (JDK) version used by Android Studio. Currently,
this version is JDK 8. Your plug-in commands might fail if:

– A JAVA_HOME system variable exists on your machine and points to a different JDK version.

– Other applications in your system path use a different JDK version.

You can find the correct JDK version installed with Android Studio’s Java runtime engine embedded in the Android Studio app.
For example:

export JAVA_HOME="/Applications/Android Studio.app/Contents/jre/jdk/Contents/Home"

See the Android Developer documentation.

Windows: In System Properties > Advanced, add the following variable definitions to either System Environment Variables or
User Environment Variables. (For help with finding System Properties, see
www.imatest.com/docs/editing-system-environment-variables.)

• Variable: ANDROID_HOME–

– Value: C:\Users\<user>\AppData\Local\Android\Sdk

• Variable: JAVA_HOME–

– Value: C:\Program Files\Android\Android Studio\jre

Note: For Android, the Mobile Extensions plug-in requires the Java Development Kit (JDK) version used by Android
Studio. Currently, this version is JDK 8. If you set JAVA_HOME to a custom path that points to a different JDK version,
the plug-in commands might fail.

Linux: Set the following variable definitions in your ~/.profile file.

• Variable: ANDROID_HOME–

– Value: ~/Android/Sdk

• Variable: JAVA_HOME–

– Value: /snap/android-studio/current/android-studio/jre

Note: For Android, the Mobile Extensions plug-in requires the Java Development Kit (JDK) version used by Android
Studio. Currently, this version is JDK 8. If you set JAVA_HOME to a custom path that points to a different JDK version,
the plug-in commands might fail.

Android SDK Version

One or more of: Android 6.0 (Marshmallow), API Level 23, or higher.

Android Tools and Emulator
For the following items, verify that you’ve installed the indicated version.

• Android Emulator: 23 or higher

• Android SDK Platform-Tools: 23 or higher

• Android SDK Command-line Tools: Any version (recommended: Latest)

179

Set Up Android StudioDevelopment Tools and Processes

https://developer.android.com/studio/intro/studio-config#jdk
https://www.imatest.com/docs/editing-system-environment-variables

Check these versions in the SDK Tools section of the Android SDK Manager.

Note: In addition to the version ranges listed here, later stable versions of these tools are also expected to work.

If you’ve changed any settings, rerun the setup command.

Install Mobile Extensions
To use Mobile Extensions, install the lwc-dev-mobile Salesforce CLI plug-in. After it’s installed, use it to check for the required
Android and iOS configurations. If the plug-in finds problems, the command output gives you hints for how to fix your environment.
After your environment is set up, preview your components from the command line or from Visual Studio Code.

The Mobile Extensions plug-in provides several tools:

Setup
Run force:lightning:local:setup to set up virtual mobile devices—iOS simulators and Android emulators—in their
local environments. Mobile Extensions provides a preconfigured default virtual device for iOS and for Android.

Preview
Run force:lightning:lwc:preview to preview your components on virtual mobile devices. You can choose either the
default device or one that you’ve configured. Mobile Extensions let you add and recall virtual device configurations. The plug-in
presents your component preview in the default browser of your virtual device. This preview acts as a playground—instantly reflecting
visual changes you apply to your component’s code.

List Devices
Run force:lightning:local:device:list to see a list of virtual devices found on your machine by the Mobile
Extensions plug-in.

Install the Mobile Extensions Plug-in
1. If you haven’t yet installed Salesforce CLI on your development machine, see Install the Salesforce CLI.

2. Install the Mobile Extensions plug-in:

sf plugins install @salesforce/lwc-dev-mobile

A message that the plug-in isn’t digitally signed is expected and isn’t a cause for concern.

3. If you’re prompted to continue installation, enter y.

4. To see the available commands, use grep with sf commands, which lists the commands with a space separator rather than a
colon. Salesforce CLI commands accept either separator. For example, the setup command is in the force lightning
local topic, while the preview command is in the force lightning lwc topic:

sf commands | grep "force lightning local"
force lightning local device create Create a virtual mobile device

force lightning local device list List the available virtual mobile devices
for Lightning Web Component development.

force lightning local device start Start a virtual mobile device

force lightning local setup Set up mobile environment for Lightning
Web Component development.

180

Install Mobile ExtensionsDevelopment Tools and Processes

https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm

sf commands | grep "force lightning lwc"
force lightning lwc preview Preview Lightning Web Components in a
virtual mobile environment

force lightning lwc start Develop Lightning Web Component modules
and see live changes without publishing your components to an org.

force lightning lwc test create creates a Lightning web component test
file with boilerplate code inside a __tests__ directory.

force lightning lwc test run invokes Lightning Web Components Jest unit
tests.

force lightning lwc test setup install Jest unit testing tools for
Lightning Web Components.

force lightning lwc test ui mobile configure Create a configuration file for running
UTAM tests on mobile.

force lightning lwc test ui mobile run Run UTAM test by specifying a WDIO
configuration. Test specs to run can be explicitly specified by using a flag.

To see the syntax of the available commands, call each command with the --help argument. For example:

sf force:lightning:local:setup --help
sf force:lightning:lwc:preview --help

Check Your Development Environment
To verify that your development environment meets Mobile Extensions requirements, run the setup command. This command runs
a series of tests that checks the presence and versions of your mobile platform libraries, tools, and virtual device configurations. If the
command detects problems, it prints hints for solving them in the Terminal console or Windows command prompt.

You can run this command to check either an Android or an iOS configuration.

sf force:lightning:local:setup -p <platform_name>

• -p, --platform: Mobile platform to verify. Can be either Android or iOS (case insensitive).

• Two other parameters—--json and --loglevel—are standard Salesforce CLI conventions and aren’t part of the setup
functionality.

1. Check your Android setup status.

sf force:lightning:local:setup -p android

a. If your setup is correct, this command prints “Passed” status for all tests. You’re ready to start previewing components on Android!

b. If any test fails, follow the suggestions printed in the console to finish setting up your Android environment. To review setup
instructions, see Set Up Android Studio on page 175.

c. Repeat this step until all tests report “Passed”.

2. Check your iOS setup status.

sf force:lightning:local:setup -p ios

181

Install Mobile ExtensionsDevelopment Tools and Processes

a. If your setup is correct, this command prints “Passed” status for all tests. You’re ready to start previewing components on iOS!

b. If any test fails, follow the suggestions printed in the console to finish setting up your iOS environment. To review setup instructions,
see Set Up Xcode on page 174.

c. Repeat this step until all tests report “Passed”.

Check Your Available Virtual Devices
To see which of your devices are available to Mobile Extensions, use the following command.

sf force:lightning:local:device:list -p <platform_name>

• -p, --platform: Mobile platform to verify. Can be either Android or iOS (case insensitive).

Note:

• The preview command allows you to select any of your installed simulators. However, Salesforce can’t guarantee preview
performance on all virtual devices.

• For iOS, the list produced by this command uses the format “device name, iOS_runtime version”.

• For Android, the list produced by this command uses the format “device name, device type, Android runtime version”.

• For Android, if your development environment variables aren’t properly configured, this command returns an empty list.

Create a Virtual Device
To create an iOS or Android device that’s guaranteed to meet Mobile Extensions requirements, use the following command:

sf force:lightning:local:device:create -n <name> -d <device_type> -p [ios|android]
[-l <android_api_level>]

• -n, --devicename
Name for the new virtual device. If the specified name is already in use on your machine, the command fails with an explanatory
error. To see the list of your existing device names, use the force:lightning:local:device:list command.

-d, --devicetype
Type of virtual device.

If the command doesn’t recognize your device type entry, choose one from the list provided by the resulting error message. For
example:

– Android:

� FAILED: Validating specified device type. (0.001 sec)
› Device type 'pixel_xlst' is invalid. Must be one of the following
valid types: pixel, pixel_xl, pixel_c

– iOS:

� FAILED: Validating specified device type. (0.287 sec)
› Device type '“iPhone 12 Pro Max 14.4”' is invalid. Must be one of the following

valid types: iPhone-8, iPhone-8-Plus, iPhone-X, iPhone-XS,
iPhone-XS-Max, iPhone-XR, iPhone-11, iPhone-11-Pro, iPhone-11-Pro-Max,
iPhone-12-mini, iPhone-12, iPhone-12-Pro, iPhone-12-Pro-Max

182

Install Mobile ExtensionsDevelopment Tools and Processes

-p, --platform
Mobile platform to create. Can be Android or iOS (case insensitive).

-l, --apilevel
(Optional, Android only) Android API level for the new device. Default value is your latest installed API level. Not used for iOS
devices.

• Two other parameters—--json and --loglevel—are standard Salesforce CLI conventions and aren’t part of the setup
functionality.

iOS Example
sf force:lightning:local:device:create -p ios -n 'iOS test' -d 'iPhone 12 Pro Max'

Android Example
sf force:lightning:local:device:create -p android -n 'API 29 pixelXL' -d 'pixel_xl'
-l 29

This command starts by running the force:lightning:local:setup command. If that command reports failures, address
the first reported failure, and then retry the force:create command.

If you specify a device name that already exists on your machine, the command exits with the message “A virtual device with the name
'<existing_name>' already exists.”

Start a Virtual Device
To launch a virtual device, use the following command.

sf force:lightning:local:device:start -p [ios|android] -t <virtual_device_name>]
[-w <true|false>]

• -p, --platform
Mobile platform of the target device. Can be Android or iOS (case insensitive).

-t, --target
Name of the virtual device to launch.

-w, --writablesystem
(Optional, Android only) Doesn’t accept a value. If present, the virtual device launches with a writable system. Otherwise, the
system is read-only.

• Two other parameters—--json and --loglevel—are standard Salesforce CLI conventions and aren’t part of the setup
functionality.

iOS Example
sf force:lightning:local:device:start -p ios -t "iPhone 12 Pro Max"

Android Examples

sf force:lightning:local:device:start -p android -t "API 29 pixelXL"

sf force:lightning:local:device:start -p android -t "API 29 pixelXL" -w

183

Install Mobile ExtensionsDevelopment Tools and Processes

Preview Lightning Web Components on Mobile

When you’re developing Lightning web components, it’s important to inspect your components’ presentation not only on the desktop,
but also on mobile devices. To preview your components on virtual mobile devices and see changes as you code, use the Salesforce CLI
Mobile Extensions plug-in. Then download and run virtual device builds of the Salesforce mobile app to preview how your components
coexist with other components in Salesforce.

You can provide feedback and suggestions for Mobile Extensions and Salesforce mobile app downloadable builds in the Mobile Tools
Trailblazer Community.

IN THIS SECTION:

Mobile Development Preview Environments

While coding components, developers can launch mobile previews from VS Code or from the command line. Developers can also
preview components in context in the Salesforce mobile app, or in a virtual device build of the Salesforce mobile app. Salesforce
admins can preview Lightning Experience on mobile from Lightning App Builder.

Preview Components from the Command Line

After you’ve installed the Mobile Extensions plug-in and set up Xcode and Android Studio, you can launch previews directly from
the command line. As you code, mobile previews immediately reflect your changes.

Preview Components from Visual Studio Code

After you’ve installed the Mobile Extensions plug-in and set up Xcode and Android Studio, install Salesforce Extensions for Visual
Studio Code. Now you can launch mobile previews from the VS Code command palette. Mobile previews immediately reflect visual
changes you make to your component as you edit.

Preview Components in the Salesforce Mobile App

To verify your Lightning web components in Salesforce on many devices, use virtual device builds of the Salesforce mobile app.
These builds make it possible to run Salesforce on iOS simulators and Android emulators.

Preview Components in Custom Mobile Apps

If you develop your own custom native apps for iOS and Android, you can adapt them to preview Lightning web components. You
provide configuration for installing your app on mobile devices and implement some means of hosting the preview. At runtime,
you use the advanced features of the lwc:preview command to send previews to your app.

Mobile Development Preview Environments
While coding components, developers can launch mobile previews from VS Code or from the command line. Developers can also
preview components in context in the Salesforce mobile app, or in a virtual device build of the Salesforce mobile app. Salesforce admins
can preview Lightning Experience on mobile from Lightning App Builder.

Administrators
Salesforce Administrators work with stakeholders to define requirements and to customize their org, using the full variety of tools available
in Salesforce. When customizing pages, administrators should validate their changes for both desktop and mobile.

App Builder Mobile Previews

Admins can use Lightning App Builder to build apps and pages to customize Lightning Experience on mobile. App Builder provides
previews for both desktop and mobile. Admins can specify certain components as mobile- or desktop-only. See Visibility Rules on
Lightning Pages for available filtering options.

184

Preview Lightning Web Components on MobileDevelopment Tools and Processes

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F94V000000Tz9J
https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F94V000000Tz9J
https://trailhead.salesforce.com/credentials/administratoroverview
https://help.salesforce.com/s/articleView?id=sf.lightning_page_components_visibility.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.lightning_page_components_visibility.htm&type=5&language=en_US

For more information about building and previewing pages in App Builder, see Build a Mobile App Page and Get Ready for Lightning
— 5 step-by-step videos.

If admins need more than a preview, they can run Lightning applications and components in the Salesforce mobile app on their devices.
Testing in the mobile app helps validate that users have the best experience on mobile.

Developers
Salesforce developers building Lightning web components have many options available to validate their components for mobile.

Preview with Local Development

During development you can view mobile previews for Lightning web components locally with the Salesforce Extensions for Visual
Studio Code. You can launch a mobile preview from the Command Palette while you’re editing a component. Mobile previews immediately
reflect visual changes you make to your component as you edit, before publishing to Salesforce. Local previews can display your
component in a web browser on your desktop and on a simulated mobile device.

185

Mobile Development Preview EnvironmentsDevelopment Tools and Processes

https://admin.salesforce.com/blog/2019/build-a-mobile-app-page
https://admin.salesforce.com/blog/2019/get-ready-for-lightning-experience-on-mobile-with-these-5-step-by-step-videos
https://admin.salesforce.com/blog/2019/get-ready-for-lightning-experience-on-mobile-with-these-5-step-by-step-videos
https://trailhead.salesforce.com/credentials/developeroverview

Learn more about mobile previews using local development tools.

• Preview Components from the Command Line on page 188

• Preview Components from Visual Studio Code on page 191

• Local Development (Beta)

Preview in the Salesforce Mobile App

Previews using the local development server are great for immediately seeing the effects of changes. After your component is validated
locally, publish it to a Salesforce development org and validate it on pages with other components in the Salesforce mobile app. You
can run the Salesforce mobile app on physical devices and on virtual devices.

• Physical Devices

You can run your Lightning applications and components using the Salesforce mobile app on your device. Use the mobile app to
review issues your applications and components encounter on mobile. The Salesforce mobile app is available for download from
the App Store and Google Play.

186

Mobile Development Preview EnvironmentsDevelopment Tools and Processes

https://developer.salesforce.com/tools/vscode/en/localdev/lwclocaldev

• Virtual Device Builds

You can run your Lightning applications and components using virtual device builds of the Salesforce mobile app. These builds
make it possible to run Salesforce on iOS simulators and Android emulators so you can validate and debug your components on
many devices. To learn how to download virtual device builds, see Preview Components in the Salesforce Mobile App on page 192.

187

Mobile Development Preview EnvironmentsDevelopment Tools and Processes

Preview Components from the Command Line
After you’ve installed the Mobile Extensions plug-in and set up Xcode and Android Studio, you can launch previews directly from the
command line. As you code, mobile previews immediately reflect your changes.

The force:lightning:lwc:preview command supports two sets of parameters: three basic parameters and four advanced
parameters. Every call requires the first two basic parameters and, optionally, the third. Advanced parameters let you designate and
configure a custom app to host the preview.

sf force:lightning:lwc:preview -p <platform_name> -n <component_name>
[-t <target_virtual_device_name>] [-a browser|<app_identifier>]
[-d <project_dir>] [-f <preview_config_file>] [--confighelp]

Basic Parameters

• -n, --componentname:

Name of your component.

• -p, --platform:

Mobile platform to use for the preview. Can be either Android or iOS (not case sensitive).

• (Optional) -t, --target:

Name of a target virtual device. This device is the iOS simulator or Android emulator configuration that hosts the preview. You
can pass the name of a new or an existing device. If you enter a name that’s not recognized by the selected platform, this
command creates the device using the system default configuration. If omitted, the command launches the default virtual device
for the given platform. See the Managing Devices section.

Advanced Parameters

• (Optional) -a, --targetapp

Target app for the preview. Acceptable values are browser, which means the default mobile browser, or an app ID. Defaults
to browser.

• (Optional) -d, --projectdir

Root directory of the CLI project. Defaults to the current working directory.

• (Optional) -f, --configfile

File named mobile-apps.json that specifies extended configuration options for the preview. If you pass an app ID to
--targetapp, you’re required to provide this file. Use the -f parameter to specify a custom path to this file. This path can
be relative (to the project’s working directory) or absolute.

• (Optional) --confighelp

Displays the schema of the extended configuration file.

Here’s a macOS example of a basic call. The name of your component is helloWorld, and you’re developing it in the
~/Projects/helloWorld/ directory.

1. In a Terminal window, cd to the directory of your Lightning Web Components project.

cd ~/Projects/helloWorld/

2. Start the Lightning Web Components server.

sf force:lightning:lwc:start

188

Preview Components from the Command LineDevelopment Tools and Processes

Because the server is a synchronous process, this window doesn’t accept further command input until the server is stopped.

3. Leaving the server running, open a second Terminal window or Windows command prompt in your project directory, and enter
this command:

sf force:lightning:lwc:preview -p Android -n HelloWorld -t "Pixel XL API 29"

Launching the virtual device can take a few seconds. After it has booted, the Mobile Extensions plug-in presents your component in the
device’s default browser. You can inspect and interact with your component. If you change visual aspects of your component’s code,
the simulator immediately reflects those changes without requiring a manual refresh.

Managing Devices
To manage devices:

• iOS: Use the Devices and Simulators tool in Xcode.

• Android: Use the Android Virtual Device (AVD) Manager.

To see the list of supported virtual devices in your environment, use the device:list command:

• iOS:

sf force:lightning:local:device:list ios

• Android:

sf force:lightning:local:device:list android

Use this command only after your development environment is fully configured and operational. Virtual device images are required to
match or exceed system requirements for Mobile Extensions. In addition, the following scopes can limit the number of devices shown
in the list.

iOS:
Devices must run iOS or iPadOS.

Android:
No known limitations.

Here are a few tips on how the device list works.

• If you enter a name that doesn’t match an existing virtual device, Mobile Extensions creates a device with that name.

• Android virtual devices created by Mobile Extensions are based on the latest SDK level and use Google APIs.

Configuring a Native Mobile App to Host Previews
You can use the force:lightning:lwc:preview command to launch a preview in an iOS or Android native mobile app that
you provide. No Salesforce-specific requirements apply to these custom native apps. Your app simply must provide some means of
displaying Lightning web components.

To launch previews in your custom app, the Mobile Extensions plug-in requires information about the app’s identity and its access points.
You specify the following properties in the JSON configuration file you specified in the --configfile parameter.

id

iOS
The app’s ID in reverse-DNS format.

189

Preview Components from the Command LineDevelopment Tools and Processes

Android
The app’s ID in the format supported by the Android Debug Bridge (adb) shell. For example, here’s the format that the adb
start command accepts:

adb shell am start -n com.package.name/com.package.name.ActivityName

name
The app’s “friendly” name. Salesforce VS Code Extensions use this name to identify the app.

get_app_bundle (Optional)

Name of a Node.js or TypeScript module that provides configuration for installing the app on the target device or emulator.

This module must expose a run() method that returns the path to the app bundle as a String. If this path is relative rather
than absolute, Mobile Extensions calculates the path relative to the configuration file. This module is also responsible for providing
any implementation details that allow access to the app bundle.

If the get_app_bundle argument is present, Mobile Extensions calls the run command before launching the preview. If
omitted, Mobile Extensions assumes that the bundle is already installed on the target device or emulator.

activity (Android only)
The class name of the app’s main activity in a format that supports launching the app from the Android Debug Bridge (adb) shell.
For example, here’s the format that the adb start command accepts:

adb shell am start -n com.package.name/com.package.name.ActivityName

In your configuration file, you use .ActivityName (including the leading period.)

launch_arguments (Optional)
An array of objects specifying arguments required for launching the app. Each object contains one argument’s name and value.
Each argument name and argument value is expressed as a name-value pair.

preview_server_enabled (Optional)
Indicates whether the native app requires a local development server for previewing a component. If false (default value), the preview
command proceeds without checking for a running server instance. If true, before beginning the preview the command checks for
a running server instance. If this check fails, the command returns an error and prompts the user to start the server before rerunning
the command.

Properties other than launch_arguments are simple name-value string pairs. Here’s a sample configuration file.

{
"apps": {
"ios": [
{
"id": "com.salesforce.mobiletooling.lwctestapp",
"name": "LWC Test App",
"get_app_bundle": "configure_ios_test_app.ts",
"launch_arguments": [
{ "name": "ShowDebugInfoToggleButton", "value": "true" },
{ "name": "username", "value": "Astro" }

],
"preview_server_enabled": true

}
],
"android": [
{
"id": "com.salesforce.mobiletooling.lwctestapp",
"name": "LWC Test App",

190

Preview Components from the Command LineDevelopment Tools and Processes

"get_app_bundle": "configure_android_test_app.ts",
"activity": ".MainActivity",
"launch_arguments": [
{ "name": "ShowDebugInfoToggleButton", "value": "true" },
{ "name": "username", "value": "Astro" }

],
"preview_server_enabled": true

}
]

}
}

You can access the schema for this file at /src/cli/commands/force/lightning/lwc/previewConfigurationSchema.json in the
forcedotcom/lwc-dev-mobile GitHub repo.

SEE ALSO:

Preview Components in Custom Mobile Apps

Preview Components from Visual Studio Code
After you’ve installed the Mobile Extensions plug-in and set up Xcode and Android Studio, install Salesforce Extensions for Visual Studio
Code. Now you can launch mobile previews from the VS Code command palette. Mobile previews immediately reflect visual changes
you make to your component as you edit.

When you launch a mobile preview, the extension initializes a virtual device for the platform you selected—an Android emulator or an
iOS simulator. You can choose:

• The default virtual device

• A compatible device that you’ve configured in Android Studio or Xcode

• A new named device based on the default configuration, using a custom name that you provide

• Your most recently used named device, if one exists

1. To install the Visual Studio Code extension, follow the instructions for Salesforce Extensions for Visual Studio Code.

2. While in Settings, you can also customize extension features.

a. For Log Level, select the degree of granularity that you prefer for compiler messages.

b. Check Remember Device to easily recall the named device that you most recently used.

3. In Visual Studio Code, open your Lightning Web Component project.

4. To preview your component, use one of the following methods.

• In your project, right-click your component folder and select SFDX: Preview Component Locally.

• In the Command Palette, enter preview component, and select SFDX: Preview Component Locally.

5. Select Use Android Emulator or Use iOS Simulator.

The extension searches your computer for virtual devices on the selected platform. It then displays a list of all discovered virtual
device names that support Salesforce mobile previews.

6. Do one of the following:

• If a list of remembered device names appears, select a device from the list.

• Enter the name of a new virtual device.

191

Preview Components from Visual Studio CodeDevelopment Tools and Processes

https://github.com/forcedotcom/lwc-dev-mobile/blob/master/src/cli/commands/force/lightning/lwc/previewConfigurationSchema.json
https://developer.salesforce.com/tools/vscode/en/getting-started/install/#salesforce-extensions-for-visual-studio-code

• Leave the field blank to use the default configuration.

7. For previews in custom native apps only: Select whether to preview the component on your mobile browser or in a custom native
app. Custom apps appear in the list when your Lightning web component project has mentioned them in its configuration file. For
VS Code, this file is required to be in the root directory of your project.

SEE ALSO:

Run Local Development SFDX Commands in VS Code

Preview Components in the Salesforce Mobile App
To verify your Lightning web components in Salesforce on many devices, use virtual device builds of the Salesforce mobile app. These
builds make it possible to run Salesforce on iOS simulators and Android emulators.

You can always inspect your components in Salesforce on physical mobile devices. However, if you’re testing a great variety of models,
you could quickly deplete your hardware budget. To test more efficiently, run Salesforce virtual device builds on virtual representations
of iOS and Android devices.

Virtual device builds come in packages that you can drop onto a running instance of an iOS simulator or an Android emulator. To obtain
simulators and emulators, install each platform’s development environment: Xcode for iOS, and Android Studio for Android. You can
run Salesforce on any supported simulator or emulator provided with these environments. The device you choose must be running iOS
12 or later, or Android 7.0 or later.

Salesforce has tested the Salesforce Android version on Google and Samsung devices, and the iOS version on iPhones and iPads. For a
list of tested devices, see “Requirements for the Salesforce App” in Salesforce Help.

Tip: Salesforce mobile app isn’t the only Salesforce app that supports virtual device builds. For example, you can also use the
following instructions with Salesforce Field Service.

Install Xcode and Simulators
If you haven’t installed Xcode 12, see Install Xcode on page 174. Salesforce mobile app requires Xcode 12 or later.

After you’ve installed Xcode 12, verify your system environment. See Verify Your iOS Setup on page 174.

Install Android Studio and Emulators
If you haven’t installed Android Studio and Android emulators, see Install Android Studio on page 175.

After you’ve installed Android Studio, verify your system environment. See Verify Your Android Studio Setup on page 178.

Download iOS and Android Mobile App Packages
To obtain virtual device builds, you download the mobile app package files that contain them. For iOS, the package is a ZIP file. For
Android, it’s an APK file. The packages are publicly available, don’t require you to log in, and don’t automatically expire.

Note: To download packages for other apps (like Salesforce Field Service), substitute the package download URL and the iOS app
file name as specified in the other app’s documentation.

iOS
Package (ZIP) file download: sfdc.co/salesforce-mobile-app-ios-simulator

Extracted file name: Chatter.app

192

Preview Components in the Salesforce Mobile AppDevelopment Tools and Processes

https://salesforcedx-vscode.netlify.app/tools/vscode/en/lwc/localdev/#run-local-development-sfdx-commands-in-vs-code
https://help.salesforce.com/articleView?id=salesforce_app_requirements.htm&language=en_US
https://sfdc.co/salesforce-mobile-app-ios-simulator

Android
Package (APK) file download: sfdc.co/salesforce-mobile-app-android-emulator

Install iOS and Android Virtual Device Builds
You can use Android builds on Mac and Windows operating systems. You can use iOS builds on Mac. Install the virtual device build on
each simulator or emulator you intend to use.

iOS

1. In Finder, unzip the downloaded package file to extract the app file.

2. Drag the app file from Finder and drop it on a running iOS simulator instance.

3. On the simulator, find the app’s icon and launch the app.

Android

1. Drag the downloaded APK file from Mac Finder or Windows Explorer and drop it on a running Android emulator instance.

2. On the emulator, find the app’s icon and launch the app.

Install Your Component in a Salesforce Org
You can develop Lightning web components in a Salesforce CLI (SFDX) project. If you’re new to SFDX projects for Lightning Web
Components, get started quickly with this Trailhead project.

From VS Code, it’s easy to install your component in a scratch org.

1. In VS Code, enter Command-Shift-P or Ctrl-Shift-P to launch the Command Palette.

2. If you don’t have a scratch org:

a. In the input field, enter SFDX: Create a Default Scratch Org, then click the matching VS Code listing.

b. Follow the prompts.

c. In the input field, enter SFDX: Push Source to Default Scratch Org, then click the matching VS Code listing.

d. As always, watch Output in the console panel to verify that everything goes smoothly.

Verify Your Components
1. Log in to the org where your component is installed.

2. Inspect and verify your component’s visibility and appearance in relation to other components.

3. Inspect the Salesforce web view by attaching Safari (iOS) or Chrome (Android) developer tools to the virtual device.

See Debug Your Components with Virtual Device Builds on page 216 for detailed instructions.

SEE ALSO:

Salesforce Help: Salesforce Mobile App

Trailhead: Salesforce Mobile App Customization

193

Preview Components in the Salesforce Mobile AppDevelopment Tools and Processes

https://sfdc.co/salesforce-mobile-app-android-emulator
https://trailhead.salesforce.com/content/learn/projects/quick-start-lightning-web-components
https://help.salesforce.com/articleView?id=salesforce_app.htm&language=en_US
https://trailhead.salesforce.com/en/content/learn/modules/salesforce1_mobile_app

Preview Components in Custom Mobile Apps
If you develop your own custom native apps for iOS and Android, you can adapt them to preview Lightning web components. You
provide configuration for installing your app on mobile devices and implement some means of hosting the preview. At runtime, you
use the advanced features of the lwc:preview command to send previews to your app.

The best way to learn about custom app previews is to study the examples at github.com/forcedotcom/LWC-Mobile-Samples. This repo
contains sample native mobile apps built to host previews, and sample Lightning Web Components projects for previewing in those
apps. Binding these artifacts together are the advanced parameters of the lwc:preview command.

HelloWorld: A Sample Lightning Web Component Project
The HelloWorld project in the top level of the LWC-Mobile-Samples repo is the simplest place to start. This Lightning Web Components
project satisfies the lwc:preview requirements by including a JSON configuration file and mobile app bundle scripts. You can find
these files in the root folder of the HelloWorld project:

• JSON configuration file: mobile-apps.json

• iOS bundle script file: configure_ios_test_app.ts

• Android bundle script file: configure_android_test_app.ts

You specify the bundle script file names in the get_app_bundle pairs of mobile-apps.json.

Custom Native Sample Apps
In the apps folder of the LWC-Mobile-Samples repo, you can find the iOS and Android native apps that the HelloWorld component
targets. These native apps are bare-bones projects that each add a container for Lightning web component previews to what’s essentially
a template app. In iOS, the container is an instance of WKWebView. In Android, it’s a WebView object. These two classes—WKWebView
and WebView—are implementation-dependent choices. For your own app, you can use whatever works best for hosting web content.

The iOS and Android apps follow the same preview flow:

1. Parse the configuration values and launch arguments from the JSON file.

2. Use the launch arguments to create a preview URL. If the preview_server_enabled argument is true but the launch
arguments don't include a web domain and port number, configure a URL based on a local private address and default port.

3. Instantiate a web view object.

4. To display the preview, send the URL with component name to the web view.

This sample also adds a bonus Debug Info button that reveals the launch argument configuration.

Where Do I Place the Configuration File?
To guarantee that the plug-in finds and uses your configuration file, follow these guidelines.

• Requirement (all cases): Name your configuration file mobile-apps.json. The plug-in doesn’t accept other configuration
file names.

Command-line usage

• Use the preview command’s optional -f and -d parameters to specify a custom location:

– -f specifies the config file’s location. This path can be absolute or relative.

– -d specifies the project’s root directory.

The Mobile Extensions plug-in uses these two parameters as follows.

194

Preview Components in Custom Mobile AppsDevelopment Tools and Processes

https://github.com/forcedotcom/LWC-Mobile-Samples

• If you specify -f but not -d, the plug-in uses the value of -f to determine the file’s location.

• If you specify -f and -d, the plug-in can consider both values to determine the file’s location.

– If -f uses a relative path, the file location is calculated starting from the directory specified by -d. If -d isn’t specified, the
path is calculated against the current working directory.

– If -f specifies an absolute path, the -d value is ignored in calculating the config file location.

Example 1

/../../mobile-apps.json-f

/Users/jdoe/MyProject-d

/Users/mobile-apps.jsonResult

Example 2

/Users/jdoe/OtherProject/mobile-apps.json-f

Not specified-d

/Users/jdoe/OtherProject/mobile-apps.jsonResult

Example 3

/Users/jdoe/OtherProject/mobile-apps.json-f

/Users/jdoe/MyProject-d

/Users/jdoe/OtherProject/mobile-apps.jsonResult

Example 4

mobile-apps.json-f

Not specified-d

<current_working_directory>/mobile-app.jsonResult

If the plug-in is unable to find the config file on the calculated path, it posts an error message showing the path that failed.

VS Code usage
In VS Code, you can’t specify a custom path for the config file. VS Code always looks for mobile-apps.json in the default root
folder of the Lightning Web Components project.

SEE ALSO:

Preview Components from the Command Line

195

Preview Components in Custom Mobile AppsDevelopment Tools and Processes

Validate Lightning Web Components for Offline Use

Use the Komaci Static Analyzer (or static analyzer for short) during component development to validate your Lightning web components
for offline use. Using the static analyzer helps you ensure that code dependencies and data your component depends on can be primed
when a network connection is available, making the component and its data available offline when the network has limited or no
connectivity.

IN THIS SECTION:

Install the Komaci Static Analyzer

The Komaci static analyser is an ESLint plugin that you install using a package manager, such as NPM or Yarn.

Troubleshoot Installation Problems

The Komaci Static Analyzer is implemented as a plugin for ESLint, a well-known JavaScript validation tool. ESLint plugins can be
finicky in their installation and configuration, requiring that all pieces are perfectly aligned for success.

Validate Components During Development

To ensure your components can be used in offline environments, watch for and act on the recommendations of the static analyzer.

Static Analyzer Validation Rules

The static analyzer validates that various code constructs and references in Lightning web components, such as wire decorators and
server calls, support offline priming. The majority of the rules focus on determining whether all code dependencies, such as imports
and modules, can be resolved; or on correct usage of offline-compatible wire adapters.

Install ESLint Rules for Mobile Lightning Web Components

We’ve created ESLint rules to help you develop code that works with mobile and offline Lightning web components. You can install
them on your development machine and run them on your source code.

Install the Komaci Static Analyzer
The Komaci static analyser is an ESLint plugin that you install using a package manager, such as NPM or Yarn.

• Node.js >= 14.0.0

• A supported package manager

– NPM >= 6.0.0

– Yarn (Classic) >= 1.22.19

Note: Use Terminal (or your command line tool of choice) to run all commands from the root directory of your Lightning web
components project.

1. Add the Komaci Static Analyzer plugin and its dependencies to the development dependencies of your project.

NPM

npm install --save-dev @salesforce/eslint-plugin-lwc-graph-analyzer

YARN

yarn add --dev @salesforce/eslint-plugin-lwc-graph-analyzer

2. Install all project modules and dependencies locally in the project.

196

Validate Lightning Web Components for Offline UseDevelopment Tools and Processes

NPM

npm install

YARN

yarn install

3. Configure your project to use the new plugin.

Modify the .eslintrc.json file under your project’s force-app/main/default/lwc directory by adding the bolded
text:

{

"extends": [
"@salesforce/eslint-config-lwc/recommended",

"plugin:@salesforce/lwc-graph-analyzer/recommended"
],
"overrides": [

...

Troubleshoot Installation Problems
The Komaci Static Analyzer is implemented as a plugin for ESLint, a well-known JavaScript validation tool. ESLint plugins can be finicky
in their installation and configuration, requiring that all pieces are perfectly aligned for success.

Unfortunately, there’s often not much feedback—if any—if something went wrong in the process. The most likely clue that there’s a
problem is when known errors in your code produce no feedback.

If you’re not sure if the static analyzer or ESLint has been successfully configured, open an LWC JavaScript file where you would expect
linting feedback. Then, check the ESLint section of the Output panel in VS Code for feedback messages. To open the Output panel, click
View Output. Then, to open the ESLint logs, select ESLint from the dropdown in the upper right corner of the Output panel.

Common Issues

• Install into your project — For the validation package to function properly, you must install all dependent packages using the
commands in the installation instructions from the root directory of your project. For example, the error in the preceding Output
panel screenshot indicates a missing package. This is due to not installing a package required for the project.

• Check your .eslintrc.json file — If you misconfigure your .eslintrc.json, the ESLint Output panel might show an
error related to that file. Ensure that the lines you add to your .eslintrc.json look exactly like the example in the installation
instructions and fix any syntax errors.

197

Troubleshoot Installation ProblemsDevelopment Tools and Processes

• ESLint must be authorized — If you don’t see any feedback in the ESLint output view, the ESLint server itself is likely not getting
initialized for your project. Make sure that you have:

– Installed theESLint extension for Visual Studio Code.

– Installed project dependencies into your project with npm install (or yarn install) from your project’s root directory.
The command installs the ESLint package and other dependencies locally to your project.

– Authorized ESLint to run in your project. If it’s not, you might see an “error” squiggly line in the first line of your JavaScript file,
indicating that ESLint isn’t authorized. Hovering over that error gives you the option to authorize it for your project.

Validate Components During Development
To ensure your components can be used in offline environments, watch for and act on the recommendations of the static analyzer.

As you develop your Lightning web components, validation indicators, displayed as colored squiggly lines, appear under code to highlight
that it violates a validation rule. Red lines indicate an error, and yellow lines indicate a warning.

To fix an issue, hover over the problematic code. A pop-up appears near the code, describing what the problem is and how to fix it.

• You’ll see a description of the issue, along with the linting package that found the issue.

• Click View Problem to highlight the code causing the issue, with a box underneath describing the issue and what linting package
found the issue.

• Click Quick Fix to show a dropdown of options of how to fix the issue. Then, select an option from the menu to automatically
perform that fix.

Static Analyzer Validation Rules
The static analyzer validates that various code constructs and references in Lightning web components, such as wire decorators and
server calls, support offline priming. The majority of the rules focus on determining whether all code dependencies, such as imports and
modules, can be resolved; or on correct usage of offline-compatible wire adapters.

Using a wire provides an efficient and mostly transparent mechanism to deliver required data for a given set of Lightning web components.
Today, not all wire adapters are enabled for offline use, and even those that are must be used correctly to work while offline. Without a
properly formatted wire, the number of network requests increases, components render slowly, and performance suffers.

198

Validate Components During DevelopmentDevelopment Tools and Processes

https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint

For offline support, mobile apps at Salesforce use these wires to ensure the correct data for each record and its components are always
ready to use. A wire that doesn’t align with the validation rules defined in this package can result in features implemented with Lightning
web components not working correctly when offline.

For more information on wires and how to use them, see Use the Wire Service to Get Data in the Lightning Web Components Developer
Guide.

Install ESLint Rules for Mobile Lightning Web Components
We’ve created ESLint rules to help you develop code that works with mobile and offline Lightning web components. You can install
them on your development machine and run them on your source code.

The ESLint rules flag violations for:

• Apex usage

• Offline GraphQL feature limitations

• Offline GraphQL hard limits

The ESLint rules are documented in the ESLint Plugin LWC Mobile GitHub repository.

The ESLint rules are a plugin that you install using a package manager, such as NPM or Yarn.

• Node.js >= 14.0.0

• A supported package manager

– NPM >= 6.0.0

– Yarn (Classic) >= 1.22.19

Note: Use Terminal (or your command line tool of choice) to run all commands from the root directory of your Lightning web
components project.

1. Install the node project dependencies.

NPM

npm install --save-dev @salesforce/eslint-plugin-lwc-mobile

YARN

yarn add --dev @salesforce/eslint-plugin-lwc-mobile

2. Configure your project to use the new plugin.

Modify the .eslintrc.json file under your project’s force-app/main/default/lwc directory. Extending the
plugin:@salesforce/lwc-mobile/recommended ESlint configuration enables static analysis of all .js files used in
your Lightning web components.

{
"extends": ["eslint:recommended", "plugin:@salesforce/lwc-mobile/recommended"]

}

IN THIS SECTION:

Use ESLint Rules in Visual Studio Code

The ESLint rules for warnings against Lightning web components are displayed in Visual Studio (VS) Code where your code violates
them. The rules map to distortions that affect your code. The popup for a rule violation includes a link to documentation for the rule.

199

Install ESLint Rules for Mobile Lightning Web ComponentsDevelopment Tools and Processes

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.data_wire_service
https://github.com/salesforce/eslint-plugin-lwc-mobile/tree/main/src/rules

Use ESLint Rules in Visual Studio Code
The ESLint rules for warnings against Lightning web components are displayed in Visual Studio (VS) Code where your code violates
them. The rules map to distortions that affect your code. The popup for a rule violation includes a link to documentation for the rule.

Note: Salesforce recommends using Visual Studio Code with the Salesforce Extensions for Visual Studio Code to develop offline
Lightning web components.

The ESLint rules are documented in the ESLint Plugin LWC Mobile GitHub repository.

• Apex usage rules

• Offline GraphQL rules

Here you can see the popup for a lint rule violation.

This popup shows a lint warning, not an error.

For more information on how to use Apex and GraphQL while mobile and offline, see Use Apex While Mobile and Offline and Use
GraphQL While Mobile and Offline in the Mobile and Offline Developer Guide.

Develop Offline-Ready LWCs with the LWC Offline Test Harness

The LWC Offline Test Harness (Test Harness, for short) is a lightweight testing, debugging, and inspection app. It enables developers to
debug Lightning web components for use in their LWC Offline-based mobile apps. Use Test Harness to execute Quick Actions on selected
SObjects from your Salesforce org, debug component JavaScript, and inspect drafts and draft queue behavior.

Test Harness provides error, warning, and info logs for your LWCs as it loads, runs, and interacts with Salesforce. View logging details for
your data sync via the drafts queue, inspect Lightning logs from Debug Console, and attach Chrome and Safari debuggers to view the
JavaScript console of the webview your LWCs run in.

Test Harness helps you confirm that your LWCs work as expected in LWC Offline-based environments and are ready for integration
testing within an offline-enabled Salesforce mobile app.

200

Develop Offline-Ready LWCs with the LWC Offline Test
Harness

Development Tools and Processes

https://developer.salesforce.com/tools/vscode
https://github.com/salesforce/eslint-plugin-lwc-mobile/tree/main/src/rules
https://github.com/salesforce/eslint-plugin-lwc-mobile/tree/main/src/rules/apex
https://github.com/salesforce/eslint-plugin-lwc-mobile/tree/main/src/rules/graphql
https://developer.salesforce.com/docs/atlas.en-us.254.0.mobile_offline.meta/mobile_offline/apex.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.mobile_offline.meta/mobile_offline/use_graphql.htm
https://developer.salesforce.com/docs/atlas.en-us.254.0.mobile_offline.meta/mobile_offline/use_graphql.htm

Features
• Uses the latest version of LWC Offline, with all mobile capabilities, including those in developer preview.

• Quick and convenient app flow, centered around launching LWC quick actions with a selected SObject.

• Visible draft queue, for viewing the status of pending data modification operations.

• Debug Console embedded into the app, for both a broad view of ongoing tasks and granular inspection of log messages.

• Immediate, on-demand app reloads for quickly re-bootstrapping and re-running your latest LWC code changes.

• Attach browser debuggers to view more developer-specific errors and warnings from the LWC webview.

IN THIS SECTION:

Test Harness Overview

Learn the major features and where to find them in the Test Harness app.

Install the Test Harness App

Test Harness is distributed as an installable app package, not via the Apple App Store or Google Play Store. As a developer tool, it’s
intended to be installed into and used with a working development environment. The installation process, prerequisites, and
compatibility details are consequently a bit more involved than with a normal mobile app.

Use the Test Harness App

Learn how to use the Test Harness to perform common testing and debugging actions.

Debug Lightning Web Components

The best way to develop and debug your Lightning web components is the same way you develop and debug anything built with
HTML, CSS, and JavaScript: with the built-in debugging tools in your web browser.

Test Harness Overview
Learn the major features and where to find them in the Test Harness app.

Test Harness is a general purpose development tool for mobile developers working on the Salesforce platform. It has a number of specific,
purpose-built tools for inspecting the LWC Offline environment. It also makes it easy to run and inspect custom components under
development. Some features look like they duplicate or overlap each other at a high level, but have important differences when you get
into the specific behavior. Understanding which tool to use for a given purpose is essential to being successful with the tool.

There are two separate navigation controls for Test Harness.

• 1 — Sidebar menu (”hamburger” icon)

• 2 — Tabs bar

201

Test Harness OverviewDevelopment Tools and Processes

The sidebar menu provides access to a few duplicate or secondary features of Test Harness. Documentation for secondary features is
forthcoming.

The tabs bar along the bottom of the app’s user interface provides access to the primary features of Test Harness.

IN THIS SECTION:

Test Harness Home Tab

The Home tab of the Test Harness app is your home base for using the tool in your daily development activities. This screen is where
you start from after you log into Salesforce with the app. It provides direct access to the most essential tools in Test Harness.

Test Harness Debug Tab

The Debug tab of the Test Harness app is a developer-centric tool for inspecting network logs, navigating to page references, and
switching applications.

Test Harness SObjects Tab

The SObjects tab of the Test Harness app is a developer-centric tool for examining Salesforce records, and the actions available on
them.

Test Harness Drafts Tab

The Drafts tab of the Test Harness app is a developer-centric tool for controlling and examining the contents of the Offline Queue,
including drafts you’ve created while offline.

Test Harness Home Tab
The Home tab of the Test Harness app is your home base for using the tool in your daily development activities. This screen is where
you start from after you log into Salesforce with the app. It provides direct access to the most essential tools in Test Harness.

The Home tab is organized as a series of cards. Scroll to the card with the feature or tool you want to use. Some cards offer controls right
on the card itself, while others lead you to secondary screens when you tap on them.

Test Harness comes with a predefined set of cards on the Home tab. Cards, such as My Offline Records, have a static user interface.
Others, such as Global Actions, are controlled by metadata, and can be configured in Setup in your org.

202

Test Harness OverviewDevelopment Tools and Processes

My Offline Records
The My Offline Records card matches the same card in the Offline App in Salesforce Mobile App Plus.

Note: Your organization must purchase and license Salesforce Mobile App Plus in order to use the enhanced features. Contact
your Salesforce sales rep for more information.

My Offline Records allows you to inspect the records that are primed by the Offline Briefcase assigned to your user. You can navigate
into the list of objects that are included in the briefcase, and further into specific records.

The record view available in My Offline Records matches what your users see when using the Salesforce Mobile app in offline mode.
That is, the view is driven by your org’s metadata for page layouts, the way non-developers see them. For example, you see only the
record-specific quick actions that are added to the page layout for the object, and each quick action has the icon you’ve defined for it.
In contrast, when you view records in the developer-centric SObjects tab, all LWC-based quick actions defined for the object are
displayed in a list, without icons.

Global Actions
This card displays quick actions that you’ve added to a global publisher layout in your org. This makes it quick and easy to test global
actions you’re working on. See Add Actions to Global Publisher Layouts in the Salesforce Help for details of how to add your global
actions to a publisher layout.

Recently Viewed Records
The Home tab displays the most recently accessed Account records in this card. The list is driven by activity, real record views in
Salesforce—not viewing them in Test Harness. If you don’t see the records you expect to see, view Salesforce in your desktop browser,
and visit records of the appropriate type there. Then return to the Test Harness app, where you can pull-to-refresh to see an updated
list of recently viewed records.

Test Harness Debug Tab
The Debug tab of the Test Harness app is a developer-centric tool for inspecting network logs, navigating to page references, and
switching applications.

203

Test Harness OverviewDevelopment Tools and Processes

https://help.salesforce.com/s/articleView?id=sf.customizing_global_publisher_layouts.htm&type=5&language=en_US

Page Refs
This is an advanced feature. It allows you to provide a list of resources to be primed by the LWC Offline engine. Each resource is specified
as a PageReference using JSON.

Warning: This tool is under development. It should be used only with guidance from a Salesforce representative.

Network Logs
This card allows you to capture and inspect details regarding the network requests made by your Lightning web components. The tool
captures requests after you tap Start, and stops capturing them when you tap Stop. To see a list of captured requests, tap Show. The
list shows the type and URL of the request, and the response code and duration. Tap a specific request to see further details, such as the
headers and body of the request and response.

LightningSDK Control
This card provides controls for affecting the LWC Offline engine. Currently, the only option is Rebootstrap. Use Rebootstrap to reload
a component under development when you’ve made changes to the component’s code. This allows you to quickly reload a custom
component, without quitting and restarting the Test Harness app.

204

Test Harness OverviewDevelopment Tools and Processes

Application Context
This card allows you to switch between applications for testing. Currently, the supported apps are the Salesforce Mobile App Plus and
the Field Service App.

Field Service App users must have the Field Service Mobile license and permission set enabled. See Field Service Permission Set Licenses
for more information.

Note: Switching applications closes the app session. Reopen the app for the change to take effect.

Test Harness SObjects Tab
The SObjects tab of the Test Harness app is a developer-centric tool for examining Salesforce records, and the actions available on them.

The SObjects tab presents a plain list of the objects defined in your org. This list is driven by org metadata, and presents an unfiltered
list of all of your objects. This list includes some objects that normally don’t make sense in the context of the Test Harness app. For
example, tapping the Apex Classes item displays an error.

Use the search field to filter the list to specific objects you’re interested in working with. Tap an object name to see a list of records of
that object type.

205

Test Harness OverviewDevelopment Tools and Processes

https://help.salesforce.com/s/articleView?id=service.fs_perm_set_licenses.htm&language=en_US

206

Test Harness OverviewDevelopment Tools and Processes

When you tap to view a record, minimal record data is displayed. The focus of this view is the list of actions available on the record. Tap
an action to run it.

The list of actions are all of the LWC-based quick actions defined for the object, whether the actions have been added to the object’s
page layout or not. This makes the SObjects tab record view a great way to quickly view new quick actions under development, without
the ceremony of adding them to a page layout, or the risk of appearing to users in your org before they’re completed. In contrast, the
record view available in My Offline Records presents a more end-user oriented view, and displays only the actions you’ve added to
the object’s page layout.

Test Harness Drafts Tab
The Drafts tab of the Test Harness app is a developer-centric tool for controlling and examining the contents of the Offline Queue,
including drafts you’ve created while offline.

The Drafts tab displays the Draft Control card at the top, and then a list of the drafts currently in the Offline Queue. Tap a draft item to
see the JSON data representation of the draft.

207

Test Harness OverviewDevelopment Tools and Processes

208

Test Harness OverviewDevelopment Tools and Processes

Draft Control. As a result, you can perform actions when online, such as creating or editing a record, and give you a chance to inspect
the results before they’re uploaded to the Salesforce service. With the Draft Control card, you can only start and stop the queue and
see how many drafts are waiting in the queue.

The Test Harness app starts with the Offline Queue in a paused state. Drafts that you create while the queue is paused wait in the Offline
Queue until you tap Start Queue. When the queue is running, the button label changes to Stop Queue. If an error occurs while uploading
a draft, the queue is paused automatically. Once the queue is empty, it returns to a paused state.

Draft records in the Offline Queue are listed in the order they were created. They are local-only data, until you start the Offline Queue to
upload the draft records to the Salesforce service.

Each item in the list can be more correctly described as representing a draft operation, or instructions for applying changes, either to
create a new record or modify an existing one. The representation therefore includes details of what the operation is, and data for the
record before and after the operation is applied.

Note: Documentation regarding the format and interpretation of draft records is forthcoming.

209

Test Harness OverviewDevelopment Tools and Processes

The Edit menu allows you to Copy the JSON representation of the draft into your clipboard. Copying can be useful for pasting into a
code editor for detailed examination. You can also Delete the draft from the queue.

Install the Test Harness App
Test Harness is distributed as an installable app package, not via the Apple App Store or Google Play Store. As a developer tool, it’s
intended to be installed into and used with a working development environment. The installation process, prerequisites, and compatibility
details are consequently a bit more involved than with a normal mobile app.

IN THIS SECTION:

Test Harness Prerequisites

To make full use of Test Harness, you need a complete working mobile development environment. If you haven’t set up your mobile
development tools yet, see the following resources for guidance.

Test Harness Compatibility

Test Harness is compatible with multiple versions of the Salesforce service. Some features of Test Harness can only be used with the
latest release of Salesforce. Update older versions of Test Harness to the latest release.

Download and Install — Android

After your mobile development tools are up and running, getting started with Test Harness on Android devices is a breeze.

Download and Install — iOS

After your mobile development tools are up and running, getting started with Test Harness on iOS virtual devices is a breeze.

Test Harness Prerequisites
To make full use of Test Harness, you need a complete working mobile development environment. If you haven’t set up your mobile
development tools yet, see the following resources for guidance.

Salesforce DX Setup

• Set Up Your Development Environment for Lightning Web Components

• Set Up Your Development Environment for LWC Offline

• Preview Lightning Web Components on Mobile

• Set Up Xcode (required for iOS simulator)

• Set Up Android Studio (required for Android emulator)

Note: You don’t need to set up both Xcode and Android Studio unless you want to use Test Harness in virtual devices on both
platforms.

Third-Party Developer Tools

• Xcode Overview (Apple developer documentation)

• Meet Android Studio (Google developer documentation)

Test Harness Compatibility
Test Harness is compatible with multiple versions of the Salesforce service. Some features of Test Harness can only be used with the
latest release of Salesforce. Update older versions of Test Harness to the latest release.

210

Install the Test Harness AppDevelopment Tools and Processes

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.install_setup_develop
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/mobile_extensions
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.mobile_extensions_setup_ios_xcode
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.mobile_extensions_setup_android_studio
https://developer.apple.com/documentation/xcode
https://developer.android.com/studio/intro

Test Harness Versions
The latest version of Test Harness can be downloaded by following the instructions provided.

• Download and Install — iOS

• Download and Install — Android

Salesforce Service Compatibility
For best results, always use the latest version of Test Harness with the latest release of the Salesforce Service. Don’t mix versions of Test
Harness and releases of Salesforce.

Mobile Device Platform Compatibility
On Android devices, the Test Harness app is distributed as an APK that can be installed on emulators or physical devices.

Minimum SDK version: API 28 (Pie)

On iOS devices, the Test Harness app is distributed as an app that can be installed on simulators. Test Harness can’t be installed on
physical devices.

Minimum iOS version: iOS 15.0

Download and Install — Android
After your mobile development tools are up and running, getting started with Test Harness on Android devices is a breeze.

1. Download the latest version of the Test Harness APK file.

Important: Salesforce doesn’t support releasing patch builds or bug fixes for older versions of the Test Harness APK file.

2. Open Android Studio and start an emulator compatible with Test Harness.

For help with emulators in Android Studio, see Run an app on the Android Emulator (Google).

3. Using Finder (macOS) or File Explorer (Windows), navigate to your Downloads folder.

4. Find the Test Harness APK file you downloaded, and drag it onto a running Android emulator.

The Test Harness app is now installed on your emulated device.

Optional: You can download and install the Salesforce Offline Test Harness managed package to provide more control over OAuth
authentication policies. See Install a Package in the Salesforce Help for more information on how to install a managed package.

Download and Install — iOS
After your mobile development tools are up and running, getting started with Test Harness on iOS virtual devices is a breeze.

1. Download the latest version of the Test Harness iOS app file.

Important: Salesforce doesn’t support releasing patch builds or bug fixes for older versions of the Test Harness iOS app.

2. Open Xcode and start a simulator compatible with Test Harness.

For help with simulators in Xcode, see Getting Started in Simulator (Apple).

3. Using Finder, navigate to your Downloads folder.

4. Locate the Test Harness iOS app file you downloaded (its name is LSDKTestHarness.app.zip, or similar).

211

Install the Test Harness AppDevelopment Tools and Processes

https://sfdc.co/testharness-android
https://developer.android.com/studio/run/emulator#runningapp
http://sfdc.co/TestHarnessPackage
https://help.salesforce.com/s/articleView?id=sf.distribution_installing_packages.htm&language=en_US
https://sfdc.co/testharness-ios
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html

5. Unzip LSDKTestHarness.app.zip by double-clicking it. Then, find the newly extracted file in your Downloads folder, named
LSDKTestHarness.app.

6. Drag the LSDKTestHarness.app onto a running iOS simulator.

The Test Harness app is now installed on your simulated device.

Optional: You can download and install the Salesforce Offline Test Harness managed package to provide more control over OAuth
authentication policies. See Install a Package in the Salesforce Help for more information on how to install a managed package. Configure
tabs available in the Field Service Mobile App.

Use the Test Harness App
Learn how to use the Test Harness to perform common testing and debugging actions.

IN THIS SECTION:

Create a Quick Action with an LWC

Quick actions are an easy way to add and launch your Lightning web components. It’s simple to add them to the Test Harness app.

Display and Run an LWC from a Quick Action

During active development, use quick actions in the Test Harness app to launch and test your Lightning web components.

Create a Quick Action with an LWC
Quick actions are an easy way to add and launch your Lightning web components. It’s simple to add them to the Test Harness app.

To create a Quick Action with an LWC, the LWC must have a target of type lightning__RecordAction defined in the component’s
meta.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata">
<apiVersion>59.0</apiVersion>
<isExposed>true</isExposed>
<targets>
<target>lightning__AppPage</target>
<target>lightning__HomePage</target>
<target>lightning__RecordAction</target>

</targets>
</LightningComponentBundle>

After a component is deployed to Salesforce, create a Quick Action that uses it. For details, see Quick Actions in the Lightning Web
Components Developer Guide.

Tip: You don’t need to add Quick Actions to a page layout to see it in Test Harness. The Test Harness app automatically shows all
LWC-based Quick Actions for the displayed sObject type.

Display and Run an LWC from a Quick Action
During active development, use quick actions in the Test Harness app to launch and test your Lightning web components.

The Test Harness SObjects tab displays a list of all of your org’s sObjects. Tap an sObject in the list to display up to 50 of the most recently
viewed records for the selected sObject.

212

Use the Test Harness AppDevelopment Tools and Processes

http://sfdc.co/TestHarnessPackage
https://help.salesforce.com/s/articleView?id=sf.distribution_installing_packages.htm&language=en_US
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.use_quick_actions

Tip: If the list is empty, log in to the org with the same user and view a few sample records you wish to test with. Those records
are added to the Most Recently Viewed list in Salesforce. Return to Test Harness and access the sObject again by tapping on it.
The recently viewed records appear in the list.

When you tap a record, you’re presented with all of the LWC-based Quick Actions that are defined in Buttons, Links, and Actions in
Setup for the selected sObject. Tap a Quick Action to launch the LWC.

SEE ALSO:

Test Harness SObjects Tab

Debug Lightning Web Components
The best way to develop and debug your Lightning web components is the same way you develop and debug anything built with HTML,
CSS, and JavaScript: with the built-in debugging tools in your web browser.

• For debugging on Android, use Chrome DevTools (Google)

• For debugging on iOS, use Safari Web Inspector (Apple)

Desktop users use Salesforce in a standard web browser. For developers, this makes using the development tools built into those browsers
the best way to experience the component code the same way their users do. It also makes it straightforward to use, examine, and
debug code while it’s under development. It all happens in the same tool, a standard web browser.

In contrast, mobile users don’t use Salesforce in a browser, desktop or mobile. Instead, they use Salesforce, including the custom
components you build, from within a Salesforce mobile app. Your LWCs run inside a web view, which is embedded in the mobile app.
Web views don’t have debugging tools built into them, so the process of debugging them is different.

The solution to this challenge is remote debugging. Remote debugging lets you use the exact same development and debugging tools
you’re used to—Chrome DevTools or Safari Web Inspector running on your development system—and connect them to the web view
running inside a separate mobile app. Remote debugging works whether you’re running your code in the app on a virtual device, or a
physical device. While that all might sound complicated, it’s actually simple once you understand the procedure.

IN THIS SECTION:

Enable Debugging for LWC Developers

Enable debugging settings for each LWC developer user who needs to use debugging tools while developing their LWCs.

Debug in Android

Follow these steps to attach Chrome DevTools in your browser to the webview of the Test Harness app.

Debug in iOS

Follow these steps to attach Safari Web Inspector in your browser to the webview of the Test Harness app.

Enable Debugging for LWC Developers
Enable debugging settings for each LWC developer user who needs to use debugging tools while developing their LWCs.

Debugging settings apply whether you’re using Test Harness or other Salesforce mobile apps during debugging.

Enable Debug Mode
In normal use, Salesforce minifies and compresses JavaScript, HTML, CSS, and other assets for improved performance. These alterations
can make it more difficult to debug your components. For example, tracing execution of your component’s JavaScript code is much
harder when the code has been minified.

213

Debug Lightning Web ComponentsDevelopment Tools and Processes

https://developer.chrome.com/docs/devtools/
https://developer.apple.com/safari/tools/

The solution is to enable Debug Mode for users who are developing LWCs.

• In Salesforce, from Setup, enter Debug Mode in the Quick Find box, then select Debug Mode Users.

• In the user list, locate any users who need debug mode enabled.

• Enable the checkbox next to users for whom you want to enable debug mode.

More details, including a more complete description of the effects of Debug Mode, are available in “Enable Debug Mode in Salesforce”
in the Lightning Web Components Developer Guide.

Debugging and Lightning Web Security
Lightning Locker and Lightning Web Security (LWS) enhance the security of your Salesforce org by enforcing certain rules about
component behavior, partially isolating components from each other, and other measures. The effects on your component code can
be significant, but are most likely to be problematic during debugging.

If, during debugging, your efforts are blocked by running into proxy objects, temporarily disable Lightning Web Security. This will allow
you to access LWC objects directly, instead of via proxies.

For much more detail, see “Debug Components in an Org With LWS Enabled” in the Lightning Web Components Developer Guide.

SEE ALSO:

Lightning Web Components Developer Guide: Enable Debug Mode in Salesforce

Lightning Web Components Developer Guide: Debug Components in an Org With LWS Enabled

Debug in Android
Follow these steps to attach Chrome DevTools in your browser to the webview of the Test Harness app.

1. On your emulated Android device, open the Settings app.

2. Enter About emulated device into the search bar, and tap the result titled About emulated device.

3. Scroll to the bottom of the page and tap Build number seven times. The message “You are now a developer!” appears after the
seventh tap, meaning that developer mode is enabled for the emulator.

You only need to do this step once for each emulated device you use for development.

4. Launch Chrome on your desktop. In the location bar, enter chrome://inspect/#devices.

5. Select Inspect for the WebView under the Remote Target emulator you’re using.
A window appears containing your emulator with Chrome DevTools connected to it. You can use Chrome DevTools to inspect the
LWC element, set breakpoints, and see the console output. You can use standard web development techniques for working with
HTML, CSS, and JavaScript to run, test, debug, and improve your LWC.

214

Debug Lightning Web ComponentsDevelopment Tools and Processes

https://developer.salesforce.com/docs/platform/lwc/guide/debug-mode-enable.html
https://developer.salesforce.com/docs/platform/lwc/guide/debug-lwsec.html
https://developer.android.com/studio/debug/dev-options#enable

For additional information on the basics of debugging with Chrome Developer Tools, see Remote debugging WebViews (Google).

For a deeper dive on debugging JavaScript in an embedded WebView of an Android mobile app, see Debugging embedded JavaScript
in an Android app using Chrome DevTools.

Debug in iOS
Follow these steps to attach Safari Web Inspector in your browser to the webview of the Test Harness app.

1. Launch Safari on your Desktop.

2. Select Safari > Preferences.

3. Select Advanced.

4. Enable Show Develop menu in menu bar. Then close the Preferences panel.

215

Debug Lightning Web ComponentsDevelopment Tools and Processes

https://developer.chrome.com/docs/devtools/remote-debugging/webviews/
https://engineering.salesforce.com/debugging-embedded-javascript-in-an-android-app-using-chrome-devtools-8553864ee09c
https://engineering.salesforce.com/debugging-embedded-javascript-in-an-android-app-using-chrome-devtools-8553864ee09c

You only need to do this step once for your development system.

5. Select Develop > Simulator - device - version, where the Simulator is the one that you’ve opened with the Test Harness app for
testing your new Lightning web component.
A window appears, showing the Safari Web Inspector developer tools connected to your simulator. You can use these tools and
standard web development techniques to refine and improve your content.

For additional information about the Web Inspector and how to use it, see Apple Web Development Tools (Apple).

Debug Your Components with Virtual Device Builds

To debug your components, connect your desktop browsers to the Salesforce mobile app running on your virtual devices. Then use
Safari (iOS) or Chrome (Android) developer tools to view and interact with HTML markup, step through JavaScript code, and see console
logging and error messages.

Note: You can debug the web-based code of your component, but you can’t debug the platform native code of the mobile app.

Virtual device builds of the Salesforce mobile app let you preview your mobile Lightning web components on a wide range of simulated
Android and iOS devices. To install a build into a simulated device, see Preview Components in the Salesforce Mobile App on page 192.

Debug on iOS Using Safari Developer Tools
To verify your component when running on iOS, use Safari Web Inspector.

216

Debug Your Components with Virtual Device BuildsDevelopment Tools and Processes

https://developer.apple.com/safari/tools/

To enable Safari’s developer tools, including Web Inspector, follow these steps.

1. On your desktop development machine, open the Safari browser.

2. Select Safari > Preferences….

3. Select Advanced.

4. Enable Show Develop menu in menu bar.

Safari developer tools are located in the Develop menu, and are active until you turn them off by reversing the preceding steps.

To debug a mobile component, connect your desktop instance of Safari to the Salesforce mobile app running on your virtual device.

1. On your desktop development machine, select Safari > Develop > Simulator — device — version, where device is
the simulated hardware, and version is the operating system installed on it. For example, Simulator — iPhone 11 Pro — iOS
13.3 (17C45).

2. Select Automatically Show Web Inspector for JSContexts.

When you interact with your component in the simulated device, a new Web Inspector window opens. Use Web Inspector to debug
your component in much the same way you debug it when it’s running directly in Safari on your desktop.

To learn more about using Safari Web Inspector, see webkit.org/web-inspector/enabling-web-inspector/.

Debug on Android Using Chrome DevTools
To debug your components when running on Android, use Chrome DevTools. First, enable Developer Mode on your emulated device.

1. On your emulated Android device, open Settings > About Emulated Device.

2. Scroll down to the build number. To enable Developer Mode, click the build number seven times. You see the message “You are
now a developer!”

3. Return to the home screen, and open the Salesforce mobile app. Navigate to a page where your component is displayed.

To debug a mobile component, connect your desktop instance of Google Chrome to the Salesforce mobile app running on your virtual
device.

1. In Chrome on your desktop development machine, enter this URL into the location bar: chrome://inspect/#devices.

2. You see a list of available remote debugging targets with names similar to “Android SDK built for x86_64 #EMULATOR-5554”.

3. Find the item for your active emulated device. Under the Remote Target item, click inspect.

Chrome opens a remote debugging window. On the left is the current webview in the Android emulator, which is the page holding
your mobile component. On the right is Chrome DevTools, which you can use to debug your component as if it were running in Chrome
on your desktop.

To learn more about using Chrome DevTools, see developers.google.com/web/tools/chrome-devtools/remote-debugging.

SEE ALSO:

Salesforce Help: Salesforce Mobile App

Trailhead: Salesforce Mobile App Customization

Customize the Offline Experience for the Salesforce Mobile App

Mobile Offline is an advanced runtime environment for Lightning web components. Available only for mobile devices, it replaces the
standard Lightning components runtime and augments it with features designed specifically for mobile and offline use.

217

Customize the Offline Experience for the Salesforce Mobile
App

Development Tools and Processes

https://webkit.org/web-inspector/enabling-web-inspector/
https://developers.google.com/web/tools/chrome-devtools/remote-debugging
https://help.salesforce.com/articleView?id=salesforce_app.htm&language=en_US
https://trailhead.salesforce.com/en/content/learn/modules/salesforce1_mobile_app

Note: Your organization must purchase and license Salesforce Mobile App Plus to configure and use the Offline App. Contact
your Salesforce sales rep for more information.

With the power of Lightning Web Components (LWC), you can create custom apps and experiences that tailor the Salesforce Mobile
App to your specific business needs. LWC represents the best of the Salesforce platform, bringing modern web standards in performant,
modular components that are easy to create. The goal of Mobile Offline with LWC is to help you build mobile experiences that work
regardless of network conditions.

The Offline App is a pro-code solution that lets users configure LWCs for mobile offline experiences. The Offline App Developer Starter
Kit, which is a publicly available GitHub repository, provides the resources to customize the offline experience. To make the development
and set up process easier, we created a tool called the Offline App Onboarding Wizard. The Offline App Onboarding Wizard guides you
with easy-to-follow prompts to configure the Offline Starter Kit experiences for the Offline App.

IN THIS SECTION:

Prerequisites & Setup Considerations

You need the correct tools installed to use the Offline App Onboarding Wizard. If you haven’t set up your tools yet, see the following
resources for guidance.

Download and Install

After you’ve gotten your development tools up and running, getting started with the Offline App Onboarding Wizard is a breeze.

Configure the Offline Experience

In this section, we provide supplemental information on configuring your offline experience.

Prerequisites & Setup Considerations
You need the correct tools installed to use the Offline App Onboarding Wizard. If you haven’t set up your tools yet, see the following
resources for guidance.

Salesforce DX Setup

• Salesforce CLI

Third-Party Developer Tools

• Visual Studio Code

• Salesforce Extension Pack

• Set up Git (GitHub)

To install and use additional tools specific for mobile and offline development, see Development Tools and Processes.

Download and Install
After you’ve gotten your development tools up and running, getting started with the Offline App Onboarding Wizard is a breeze.

1. Download the Salesforce Offline App Onboarding Wizard Visual Studio Code Extension. Alternatively, if you're in Visual Studio Code,
go to the Extensions (Shift-Command-X on Mac) and search for the Salesforce Offline Starter Kit Wizard and click Install.

2. Open Visual Studio Code editor commands (Shift-Command-P or go to View | Command Palette) and select Offline Starter Kit:
Onboarding Wizard.

3. Select Create New Project if this is your first time installing the Offline Starter Kit. Or select Open Existing Project to connect an
existing project from your local folders.

4. Follow the Onboarding Wizard prompts to authorize an org and to set up your development environment.

218

Prerequisites & Setup ConsiderationsDevelopment Tools and Processes

https://github.com/salesforce/offline-app-developer-starter-kit
https://github.com/salesforce/offline-app-developer-starter-kit
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.get_started_cli
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode
https://docs.github.com/en/get-started/quickstart/set-up-git
https://developer.salesforce.com/docs/atlas.en-us.254.0.mobile_offline.meta/mobile_offline/dx.htm
https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode-mobile

Continue to use the Onboarding Wizard to set up and deploy your offline configurations.

Configure the Offline Experience
In this section, we provide supplemental information on configuring your offline experience.

For more detailed information, see about the Salesforce Offline App Onboarding Wizard Visual Studio Code Extension.

IN THIS SECTION:

1. Build a Briefcase

Briefcase Builder is how you choose which records are available offline for your users. It's important to think about your users and
which records they need access to while offline. The Offline App uses and depends on a Briefcase to use when priming records for
offline use.

2. Select a Landing Page Template

The Landing Page is the Mobile Offline home page for the Salesforce Mobile App. When a user logs into the Salesforce Mobile App
offline experience, the landing page is the first thing they see. This page is intended to give access to the user’s most important
records and allow them to quickly and easily take relevant actions.

3. Generate and Configure LWC Quick Actions

The Onboarding Wizard can generate missing LWC quick actions based on the sObjects that are configured in your landing page
template selection.

4. Deploy Your Configurations

Before you can run a quick action based on a Lightning web component, you need to deploy the relevant code artifacts to your org.
Components and quick actions can be deployed using the Onboarding Wizard or manually with Visual Studio Code.

5. Add LWC Quick Actions to Mobile Layouts

For a quick action to appear in the action bar of a record view, it must be assigned to the main page layout for the record's object
type.

Build a Briefcase
Briefcase Builder is how you choose which records are available offline for your users. It's important to think about your users and which
records they need access to while offline. The Offline App uses and depends on a Briefcase to use when priming records for offline use.

The Onboarding Wizard takes you to the Briefcase Builder page in Salesforce Setup so you can configure a briefcase for your org.

Tips For Briefcase Use With Mobile Offline

• Consider grouping users into specific roles and choosing records that are relevant for that user group.

219

Configure the Offline ExperienceDevelopment Tools and Processes

https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode-mobile

• Keep in mind that records that load on the Landing Page (Mobile Offline’s home page) rely on the Briefcase to populate the record
details.

• Ensure that all records that appear on a users Landing Page are also in their Briefcase.

For more information on building a briefcase, see Configure a Briefcase in the Salesforce Help.

Select a Landing Page Template
The Landing Page is the Mobile Offline home page for the Salesforce Mobile App. When a user logs into the Salesforce Mobile App offline
experience, the landing page is the first thing they see. This page is intended to give access to the user’s most important records and
allow them to quickly and easily take relevant actions.

The landing page can be customized to meet user needs, using both out-of-the-box and custom objects, and Lightning global quick
actions. It’s configured as a static resource file in JSON format.

Note: Only one landing page layout is allowed per org.

220

Configure the Offline ExperienceDevelopment Tools and Processes

https://help.salesforce.com/s/articleView?language=en_US&id=sf.briefcase_builder_create.htm&type=5

Landing Page Templates
You can use the Onboarding Wizard to select a preconfigured landing page template that best fits your use case. The Onboarding Wizard
copies the landing page JSON file (based on the chosen template) into the Offline App Starter Kit staticresources folder. Locate
and update the landing_page.json file to build a customized offline app experience.

Each landing page template has specific objects and quick actions.

• Default

– Accounts

– Contacts

– Opportunities

• Case Management

– New Case action

– 5 most recent Cases

– 5 most recent Accounts

– 5 most recent Contacts

• Healthcare

– BarcodeScanner action

– New Visit action

– New Visitor action

– Visit object

• Retail Execution

– New Opportunity action

– New Lead action

– New Account action

For more information on updating the landing_page.json file, see Customize The Landing Page in the Salesforce Help.

221

Configure the Offline ExperienceDevelopment Tools and Processes

https://help.salesforce.com/s/articleView?language=en_US&id=sf.salesforce_app_plus_offline_landing_page.htm&type=5

Generate and Configure LWC Quick Actions
The Onboarding Wizard can generate missing LWC quick actions based on the sObjects that are configured in your landing page template
selection.

Review the missing LWC quick actions, and click Generate LWC Quick Actions.

The Onboarding Wizard adds the generated quick actions to the Offline App Starter Kit lwc and quickactions folder.

Deploy Your Configurations
Before you can run a quick action based on a Lightning web component, you need to deploy the relevant code artifacts to your org.
Components and quick actions can be deployed using the Onboarding Wizard or manually with Visual Studio Code.

In Visual Studio Code, right-click on a component or quick action and select SFDX Command: Deploy Source to Org. This action
pushes your Offline Starter Kit project configurations for the LWC Quick Actions upstream to the Salesforce org that’s connected via your
Visual Studio Code development environment.

222

Configure the Offline ExperienceDevelopment Tools and Processes

Note: You might need to clear caches, and quit and restart the app before changes to LWCs are active.

Add LWC Quick Actions to Mobile Layouts
For a quick action to appear in the action bar of a record view, it must be assigned to the main page layout for the record's object type.

Here's an example of assigning the Edit quick action for the Account object type:

1. From Setup, open the Object Manager.

2. Enter Account in the Quick Find box, then select Account.

3. From the Account object management settings, go to Page Layouts and click Account Layout.

223

Configure the Offline ExperienceDevelopment Tools and Processes

4. In the Salesforce Mobile and Lightning Experience Actions panel, if you see a link to override the predefined actions, the page
layout is using the default actions. Click the link to enable customizing the actions.

224

Configure the Offline ExperienceDevelopment Tools and Processes

CHAPTER 8 Quick Start Tutorials

These hands-on tutorials get you started with creating custom LWCs for your mobile apps.In this chapter ...

• Develop a Lightning
Web Component
Quick Action

• Debug Lightning Web
Components in the
Field Service Mobile
App

225

Develop a Lightning Web Component Quick Action

Welcome to developing quick actions using Lightning web components (LWCs) in the Salesforce Field Service (SFS) mobile app. With
custom quick actions, you can tailor your Field Service mobile app users’ experience to have easier access to viewing and updating
information relevant to them.

This quick start guides you through the basic steps to create a custom record-specific quick action. It’s a hands-on tutorial, intended to
guide you through the steps, developing your “muscle memory” for a specific development lifecycle. While you can just read it, you’ll
get more out of it if you follow along on your own development system.

IN THIS SECTION:

Prerequisites

Ensure you’re ready for this tutorial by verifying that you have the right software installed and configured, and your org has Lightning
web components enabled for mobile users.

Field Service Org Setup

Create a permission set with the Lightning SDK for Field Service Mobile permission, and assign this permission
set to users who develop for or use Lightning web components in the mobile app.

iOS Simulator Setup

During development it’s convenient to test your code in a virtual device. Use Xcode to create a device simulator, and install the
virtual device build of your mobile app into it.

Android Emulator Setup

During development it’s convenient to test your code in a virtual device. Use Android Studio to create a device emulator, and install
the virtual device build of your mobile app into it.

Workspace Setup

Set up your development environment, create a project to develop your LWC in, and connect your project to Salesforce.

Create and Configure a Lightning Web Component

In this section, you’ll create a basic component named demoLWCAction that displays a “Hello World!” message on the screen.

Prerequisites
Ensure you’re ready for this tutorial by verifying that you have the right software installed and configured, and your org has Lightning
web components enabled for mobile users.

• Salesforce CLI is installed and up-to-date.

• VS Code is installed and up-to-date.

• Salesforce Extension Pack for VS Code is installed and up-to-date.

Note: Ensure all prerequisites listed on the extension pack page are also satisfied.

Field Service Org Setup
Create a permission set with the Lightning SDK for Field Service Mobile permission, and assign this permission set
to users who develop for or use Lightning web components in the mobile app.

Note: This step is required for Field Service orgs. If you’re using LWC Offline in the Salesforce mobile app, skip to the next step.

226

Develop a Lightning Web Component Quick ActionQuick Start Tutorials

https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode

Lightning web components for LWC Offline-enabled mobile apps is an opt-in feature. To enable it for your org, you must create and
assign a permission set for your mobile users that includes enabling the Lightning SDK for Field Service Mobile
permission. This permission set is required to access and run LWCs within the Field Service mobile app. (While not technically required
to develop LWCs, you’ll have a hard time developing components when you can’t run them.)

You can use this one permission set for any number of Lightning web components and mobile users.

IN THIS SECTION:

Define a Permission Set for Your Org

Create a permission set that applies the permissions required to enable Lightning web components to users with the permission
set.

Assign the Permission Set to a Mobile User

Assign the permission set that enables Lightning web components to users who must use or develop LWCs.

Define a Permission Set for Your Org
Create a permission set that applies the permissions required to enable Lightning web components to users with the permission set.

1. From Setup, enter Permission Sets in the Quick Find Box and select Permission Sets.

2. Click New.

• For Label, enter Field Service - LWC Offline.

• For Description, enter Assign to Field Service Mobile users to give them permission to
run LWC actions.

• For License, select Field Service Mobile.

3. Click Save.

4. In the Find Settings box, enter Lightning SDK for Field Service Mobile and click it.

5. Click Edit.

6. Select the Lightning SDK for Field Service Mobile checkbox.

7. Click Save.

Assign the Permission Set to a Mobile User
Assign the permission set that enables Lightning web components to users who must use or develop LWCs.

1. From Setup, enter Permission Sets in the Quick Find Box and select Permission Sets.

2. Select Field Service - LWC Offline, which is the new permission set.

3. Click Manage Assignments.

4. Click Add Assignments.

5. Select your mobile user’s checkbox.

For this quick start, the mobile user is you.

6. Click Assign.

227

Field Service Org SetupQuick Start Tutorials

iOS Simulator Setup
During development it’s convenient to test your code in a virtual device. Use Xcode to create a device simulator, and install the virtual
device build of your mobile app into it.

IN THIS SECTION:

Configure Minimum Required iOS Simulator Settings

Ensure your virtual device meets the minimum device and iOS version requirements to run your mobile app.

Install the Field Service App for iOS

To run the Field Service mobile app in an iOS simulator, download and install a virtual device build of the app. After it’s installed,
open the app and log into your development org.

Configure Minimum Required iOS Simulator Settings
Ensure your virtual device meets the minimum device and iOS version requirements to run your mobile app.

Review the minimum requirements for your mobile app.

• Requirements for the Salesforce Mobile App

• Field Service Mobile App Requirements

1. Download and install the latest version of Xcode. If you already have Xcode installed, there’s no need to reinstall it.

2. Launch Xcode.

3. In the menu bar, select Xcode > Open Developer Tool > Simulator.
A new program called Simulator opens, displaying a mobile screen.

4. Go to File > Open Simulator to choose your preferred device.

If you want to create a simulator, go to File > New Simulator and follow the prompts.

After the device simulator launches you can close Xcode, but keep the Simulator app’s window open to install the Field Service app in
the next section.

Install the Field Service App for iOS
To run the Field Service mobile app in an iOS simulator, download and install a virtual device build of the app. After it’s installed, open
the app and log into your development org.

1. Download the latest iOS virtual device build of the Salesforce Field Service mobile app zip file.

2. Double-click the downloaded zip file to extract the app file.

3. Drag the downloaded .app file into the Simulator window.

4. In Simulator, click (a simulated tap in this case) the newly installed Field Service app to open it.

If you don’t see the app on the first page, it’s probably installed on a different app page. You can swipe the page with your mouse
to see additional pages to find the app.

5. Click (simulator tap, you get the idea) the Field Service app. Click Get Started.

6. Click the screen to run through the tutorial or click Skip.

7. Click Log In.

8. Click I Agree to agree to the Order Form Supplement agreement.

228

iOS Simulator SetupQuick Start Tutorials

https://help.salesforce.com/s/articleView?id=sf.salesforce_app_requirements.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.mfs_requirements.htm&type=5&language=en_US
https://developer.apple.com/xcode/
https://sfdc.co/fieldservice-mobile-app-ios-simulator

9.
Click and select a connection.

Warning: If you’re logging in as a community user for the first time, click to add a new connection.

• For Host, enter your org’s URL in the following format: https://[yourURL].my.salesforce.com.

• For Label, enter a nickname for your connection.

10. Click Done.

11. Enter your username and password for your org.

12. Click Log In.

13. Click Allow to allow the app to access your Salesforce information.

14. Click through the various permissions screens and allow them the appropriate access.
When finished, you arrive at the app’s home screen.

Android Emulator Setup
During development it’s convenient to test your code in a virtual device. Use Android Studio to create a device emulator, and install the
virtual device build of your mobile app into it.

IN THIS SECTION:

Configure Minimum Required Android Emulator Settings

Ensure your virtual device meets the minimum device and Android API version requirements to run your mobile app.

Install the Field Service App for Android

To run the Field Service mobile app in an Android emulator, download and install a virtual device build of the app. After it’s installed,
open the app and log into your development org.

Configure Minimum Required Android Emulator Settings
Ensure your virtual device meets the minimum device and Android API version requirements to run your mobile app.

Review the minimum requirements for your mobile app.

• Requirements for the Salesforce Mobile App

• Field Service Mobile App Requirements

1. Download and install the latest version of Android Studio.

If you already have Android Studio installed, there’s no need to reinstall it.

2. Launch Android Studio.

3.
Click More Actions or in the top left, depending on your version of Android Studio, and then select Virtual Device Manager
from the dropdown.

4.
Click the in the Actions column of the device you’d like to edit.

Or, if you want to create an emulator, click Create Device and follow the prompts.

5. Click Change in the line that displays the version number.

229

Android Emulator SetupQuick Start Tutorials

https://help.salesforce.com/s/articleView?id=sf.salesforce_app_requirements.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.mfs_requirements.htm&type=5&language=en_US
https://developer.android.com/studio

6. In the pop-up window, select API 30 version or later.

7. Click OK.

8. Scroll down in the window to the Memory and Storage section.

230

Android Emulator SetupQuick Start Tutorials

9. Click in the RAM field and enter 4096.

If you can’t change the RAM value, use a newer device for the emulator.

10. Click Finish.

11.
Click in the Actions column of the device to launch the Android Emulator.

After the device emulator launches you can close Android Studio, but keep the Android Emulator app window open to install the Field
Service app in the next section.

Install the Field Service App for Android
To run the Field Service mobile app in an Android emulator, download and install a virtual device build of the app. After it’s installed,
open the app and log into your development org.

1. Download the latest Android virtual device build of the Salesforce Field Service mobile app APK file.

2. Drag the downloaded .apk file into the Android Emulator window.

3. Click a blank space on the Android Emulator’s screen and drag up to view the installed apps.

4. Click the newly installed Field Service app.

5. Click I Agree to accept the Order Form Supplement agreement.

6. Click the vertical dots button on the top right and select Change Server.

231

Android Emulator SetupQuick Start Tutorials

https://sfdc.co/fieldservice-mobile-app-android-simulator

7. Select a connection.

Warning: If you’re logging in as a community user for the first time, click Add New Connection, fill in the form as indicated
in the following bullet list, and then click Apply to save the changes.

• For Name, enter a nickname for your connection.

• For URL, enter your org’s URL. It must be in the following format: https://[yourURL].my.salesforce.com

8. Click the arrow in the top left to go back to the login screen.

9. Enter your username and password for your org.

10. Click Log In.

11. Click Allow to allow the app to access your Salesforce information.

12. Click through the various permissions screens and allow them the appropriate access.
When finished, you arrive at the app’s home screen.

Workspace Setup
Set up your development environment, create a project to develop your LWC in, and connect your project to Salesforce.

1. Launch VS Code.

2. Select File > Open and open a project to use with your org.

Note: If you don’t have a project created, you can open the VS Code Command Palette by clicking View > Command Palette,
enter SFDX, and select SFDX: Create a Project. Then follow the prompts.

3. In the menu bar, select View > Terminal to open VS Code’s integrated terminal if it’s not already visible.

232

Workspace SetupQuick Start Tutorials

4. Run the following command to install the Salesforce Extension Plugins for mobile.

sf plugins install @salesforce/lwc-dev-mobile

5. In the menu bar, select View > Command Palette to open the VS Code Command Palette.

6. Enter SFDX and select SFDX: Authorize an Org.

7. Select the org you want to use and press Enter.
A web page opens for the org login.

8. Verify your org authorization by checking the bottom left in VS Code.
You should see your username in the VS Code status bar.

If you have difficulty authorizing SFDX for access to your org, see SFDX Authorization.

Create and Configure a Lightning Web Component
In this section, you’ll create a basic component named demoLWCAction that displays a “Hello World!” message on the screen.

If this is your first Lightning web component ever, you might be tempted to rush through this. Take your time, and make sure you
understand what each of these steps accomplishes.

IN THIS SECTION:

Create and Deploy a Lightning Web Component to Salesforce

Create a simple Lightning web component, configure its metadata, and then deploy the component to your Salesforce org—all
from within VS Code.

Verify the Component Was Deployed to Your Org

The simplest way to verify that a Lightning web component is available in your org is to view the list of components in Setup in
Salesforce.

Create a Quick Action in Salesforce

To access your Lightning web component, you must assign your component to a new Quick Action, and then assign the Quick
Action to a page layout in Salesforce. This configuration makes it visible in the Actions launcher in the mobile app.

Add the Quick Action to a Page Layout in Salesforce

Make a Lightning web component quick action available in the mobile app by adding it to the mobile actions section of a page
layout.

Clear Cached Metadata

To see changes to a Lightning web component as you develop, cached metadata must be cleared in the mobile app. Clear cached
metadata every time new code is deployed to the org to see your changes.

Run the Quick Action in the Mobile App

Let’s finally see that Lightning web component working in the Field Service mobile app.

233

Create and Configure a Lightning Web ComponentQuick Start Tutorials

https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth.htm

Create and Deploy a Lightning Web Component to Salesforce
Create a simple Lightning web component, configure its metadata, and then deploy the component to your Salesforce org—all from
within VS Code.

1. In the VS Code explorer, right-click the force-app/main/default/lwc folder and select SFDX: Create Lightning Web
Component.

2. Enter demoLWCAction as the name for the component and press Enter, and then press Enter again to save it to the default
location.

3. In the newly created demoLWCAction.html, replace the default code with the following, and then save the file:

<template>
<p>Hello World!</p>

</template>

4. In the newly created demoLWCAction.js-meta.xml, replace the default code with the following and save the file:

<?xml version="1.0" encoding="UTF-8"?>
<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata">

<apiVersion>56.0</apiVersion>
<isExposed>true</isExposed>
<targets>

<target>lightning__RecordAction</target>
</targets>
<targetConfigs>

<targetConfig targets="lightning__RecordAction">
<actionType>ScreenAction</actionType>

</targetConfig>
</targetConfigs>

</LightningComponentBundle>

5. In the VS Code explorer, right-click the force-app/main/default/lwc/demoLWCAction folder and select SFDX:
Deploy Source to Org.

Verify the Component Was Deployed to Your Org
The simplest way to verify that a Lightning web component is available in your org is to view the list of components in Setup in Salesforce.

1. From Setup, enter Lightning Components in the Quick Find Box and select Lightning Components.

2. Scroll through the list of components to see demoLWCAction.

234

Create and Configure a Lightning Web ComponentQuick Start Tutorials

Create a Quick Action in Salesforce
To access your Lightning web component, you must assign your component to a new Quick Action, and then assign the Quick Action
to a page layout in Salesforce. This configuration makes it visible in the Actions launcher in the mobile app.

For this example, the action is added to the Service Appointment object.

1. From Setup, click Object Manager.

2. In the Quick Find box, enter Service Appointment, and click Service Appointment.

3. Click Buttons, Links, Actions.

4. Click New Action.

• For Action Type, select Lightning Web Component.

• For Lightning Web Components, select c:demoLWCAction.

• For Label, enter My New Action. This label is how the action is displayed in the Actions launcher in the Field Service mobile
app.

235

Create and Configure a Lightning Web ComponentQuick Start Tutorials

5. Click Save.

6. Click Service Appointment next to Object Name to return to the Service Appointment object page.

Add the Quick Action to a Page Layout in Salesforce
Make a Lightning web component quick action available in the mobile app by adding it to the mobile actions section of a page layout.

1. From the Service Appointment object page, select Page Layouts.

2. Click the layout assigned to your mobile user.

3. Select Mobile & Lightning Actions.

4. Drag My New Action to the Salesforce Mobile and Lightning Experience Actions section.

5. Click Save.

Note: Mobile quick actions are only added to the mobile layout. You can’t verify that mobile quick actions were successfully
added to the correct page layout using the desktop experience.

Clear Cached Metadata
To see changes to a Lightning web component as you develop, cached metadata must be cleared in the mobile app. Clear cached
metadata every time new code is deployed to the org to see your changes.

1. Launch the iOS Simulator or Android Emulator.

2. Open the Field Service mobile app.

3. Select the Profile tab in the navigation bar.

4. Click , then Advanced Settings, and then Clear Cached Metadata.

5. On iOS devices, click OK in the confirmation dialog and then click OK again.

6. On iOS, swipe away the app in the app switcher to close it, then reopen the app.

7. To close and reopen on Android, in Field Service app settings click Force Quit, then reopen the app.

236

Create and Configure a Lightning Web ComponentQuick Start Tutorials

Run the Quick Action in the Mobile App
Let’s finally see that Lightning web component working in the Field Service mobile app.

1. Click the Schedule tab.

2. Click any Service Appointment.

If none are listed, create one and assign it to your mobile user as an example.

3. Click the Actions drawer and drag it up.
Your action is listed as an option.

Android

237

Create and Configure a Lightning Web ComponentQuick Start Tutorials

iOS

4. Click My New Action.
This opens the screen to your new custom Lightning web component.

Android

238

Create and Configure a Lightning Web ComponentQuick Start Tutorials

iOS

Debug Lightning Web Components in the Field Service Mobile App

The best way to develop and debug your Lightning web components is the same way you develop and debug anything built with HTML,
CSS, and JavaScript: with the debugging tools built into your web browser.

• For debugging on Android, use Chrome DevTools

• For debugging on iOS, use Safari Web Inspector

The rest of this tutorial guides you through connecting your desktop browser’s developer tools to the WebView within the Field Service
mobile app. From there, debugging an LWC running on a mobile device is like any other web app debugging session.

IN THIS SECTION:

Install Local Development Server Plugin

Whether you’re debugging your component for iOS or Android, you must first install the LWC Development Server for mobile.

Debug in iOS

Connect Safari Web Inspector on your desktop to the WebView in the Field Service mobile app where your LWC is running.

Debug in Android

Connect Chrome DevTools on your desktop to the WebView in the Field Service mobile app where your LWC is running.

Install Local Development Server Plugin
Whether you’re debugging your component for iOS or Android, you must first install the LWC Development Server for mobile.

1. In a terminal window in VS Code or Terminal, run the following command to ensure you’re using the latest version of Salesforce CLI.

sf update

239

Debug Lightning Web Components in the Field Service Mobile
App

Quick Start Tutorials

https://developer.chrome.com/docs/devtools/
https://developer.apple.com/safari/tools/

Note: If you encounter an error when updating Salesforce CLI, see Update Salesforce CLI for troubleshooting instructions.

2. In the same terminal window, run the following command to install the LWC Development Server for mobile.

sf plugins install @salesforce/lwc-dev-server

Debug in iOS
Connect Safari Web Inspector on your desktop to the WebView in the Field Service mobile app where your LWC is running.

Note: Debugging in iOS currently only works with Big Sur or later, and requires using the Safari Technology Preview browser.

1. Launch Safari on your desktop.

2. Select Safari > Preferences.

3. Select Advanced.

4. Enable Show Develop menu in menu bar. Close the Preferences panel.

5. Select Develop > Simulator - device - version, where the Simulator is the one that you’ve opened with the Field Service
app for testing your new Lightning web component.

A window appears that shows the Safari Web Inspector developer tools connected to your simulator. You can use these tools and
standard web development techniques to refine and improve your component.

See Apple Web Development Tools for additional information about the Web Inspector and how to use it.

240

Debug in iOSQuick Start Tutorials

https://developer.salesforce.com/docs/atlas.en-us.254.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_update_cli.htm
https://developer.apple.com/safari/tools/

Debug in Android
Connect Chrome DevTools on your desktop to the WebView in the Field Service mobile app where your LWC is running.

To run the Field Service mobile app in an Android emulator, download and install the Salesforce Field Service mobile app APK file.

1. On your emulated Android device, open the Settings app.

2. Enter About emulated device into the search bar and click it.

3. Scroll to the bottom of the page and click Build number seven times.
The message “You are now a developer!” appears when you click it enough, indicating that developer mode is enabled for the
emulator.

4. Launch Chrome on your desktop.

5. In the location bar, enter chrome://inspect/#devices.

6. Click Inspect for the WebView under the Remote Target emulator you’re using.

A window appears containing your emulator with Chrome DevTools connected to it. You can use Chrome DevTools to inspect the LWC
element, set breakpoints, and see the console output. As with iOS, you can use the standard web development techniques for working
with HTML, JavaScript, and CSS to run, test, debug, and improve your LWC.

241

Debug in AndroidQuick Start Tutorials

https://sfdc.co/fieldservice-mobile-app-android-simulator

See Remote debugging WebViews for additional basics, and Debugging embedded JavaScript in an Android app using Chrome DevTools
for a deep dive on debugging JavaScript in an embedded WebView of an Android mobile app.

242

Debug in AndroidQuick Start Tutorials

https://developer.chrome.com/docs/devtools/remote-debugging/webviews/
https://engineering.salesforce.com/debugging-embedded-javascript-in-an-android-app-using-chrome-devtools-8553864ee09c

	Mobile App Development with Lightning Web Components and LWC Offline
	About This Developer Guide
	LWC Offline Enabled Apps
	Learn Lightning Web Components
	Learn Lightning Web Components with Trailhead
	Learn Lightning Web Components with Documentation

	Create Mobile-Ready Components
	Understand Mobile Development
	Use Built-In Mobile Tools and Features
	Validate Your Base Component References
	Use Mobile Validation with Salesforce Lightning Design System

	Minimize Bandwidth Usage
	Create Responsive Layouts
	Follow Accessible Mobile Design Guidelines
	Disable Pull-to-Refresh in the Salesforce Mobile App

	Use Mobile Device Features in Mobile Apps
	Request App Review
	AppReviewService User Experience
	Use the AppReviewService API
	AppReviewService Example
	Compatibility and Requirements
	Considerations and Limitations

	Scan Barcodes
	Barcode Scanning User Experience
	Use the BarcodeScanner API
	Understand BarcodeScanner Modern and Legacy APIs
	Understand the BarcodeScanner Scanning Lifecycle

	BarcodeScanner Example–Modern Scanning API
	BarcodeScanner Example—Single Scan (Legacy)
	Scan Multiple Barcodes (Legacy)
	BarcodeScanner Example—Continuous Scanning (Legacy)
	Create a Self-Service Kiosk Application
	BarcodeScanner Example—Self-Service Kiosk (Legacy)
	Customize the BarcodeScanner User Interface
	Compatibility and Requirements
	Considerations and Limitations

	Access Device Biometrics
	BiometricsService User Experience
	Use the BiometricsService API
	BiometricsService Example
	Compatibility and Requirements
	Considerations and Limitations

	Manage Calendar Events
	CalendarService User Experience
	Use the CalendarService API
	CalendarService Example
	Compatibility and Requirements
	Considerations and Limitations

	Access Contacts
	ContactsService User Experience
	Use the ContactsService API
	ContactsService Example
	Compatibility and Requirements
	Considerations and Limitations

	Scan Documents on a Mobile Device
	Use the DocumentScanner API
	DocumentScanner Example
	Compatibility and Requirements
	Considerations and Limitations

	Monitor Geofence Regions on a Mobile Device
	GeofencingService User Experience
	Use the GeofencingService API
	GeofencingService Example
	Compatibility and Requirements
	Considerations and Limitations

	Use Location
	LocationService User Experience
	Location Basics
	Use the LocationService API
	LocationService Example
	Compatibility and Requirements
	Considerations and Limitations

	Interact with NFC Tags on a Mobile Device
	NFCService User Experience
	Use the NFCService API
	NFCService Example
	Compatibility and Requirements
	Considerations and Limitations

	Accept On-Site Payments with Tap-to-Pay
	PaymentsService User Experience
	Use the PaymentsService API
	PaymentsService Example
	Compatibility and Requirements
	Considerations and Limitations

	Offline Considerations and Limitations
	General Considerations
	Considerations for Field Service Mobile App
	Base Components Support
	Modules Support
	Wire Adapters Support
	Entity Support
	Metadata and Custom Metadata Types Support

	Offline Environment Details
	What Happens When Something Isn’t Primed (Preloaded)
	Create Components with Offline Analysis In Mind
	Determine Online or Offline Status

	Use Salesforce Features While Offline
	Use GraphQL While Mobile and Offline
	Understand Salesforce GraphQL Implementations
	Feature Limitations of Offline GraphQL
	Best Practices for Using GraphQL in LWC Offline

	Use Apex While Mobile and Offline
	Use Apex in Lightning Web Components While Online
	Reactive Apex Wires
	Imperative Apex

	Enable Caching of Apex Results
	Apex Results Are Separate from Other Primed Data
	Understand Apex Behavior While Offline
	Apex Wires While Offline
	Imperative Apex While Offline
	Refresh Records Cached in Durable Store While Offline

	Additional Considerations for Apex in an Offline-Enabled Mobile App
	Additional Documentation for Apex in Lightning Web Components

	Use Images in an LWC Offline-Enabled Component
	Use Images Uploaded as Files (ContentDocument) in an LWC
	Use Images Uploaded as Asset Files
	Use Images Uploaded as Static Resources
	Image Priming and Offline Considerations

	Upload Images While Offline
	Understand File Uploads in Salesforce
	Image Upload Basics
	Image Upload Example

	Use Third-Party JavaScript in an LWC Offline-Enabled Component
	Navigation
	Navigation User Experience
	Base Components with Built-In Navigation Actions
	Programmatic Navigation Actions
	Navigation Actions in the Salesforce Mobile App
	Navigation Actions in the Field Service Mobile App
	Common Navigation Actions

	Development Tools and Processes
	Understand the Mobile Development Cycle
	Set Up Your Development Environment
	Set Up Xcode
	Set Up Android Studio
	Install Mobile Extensions

	Preview Components on Mobile
	Mobile Development Preview Environments
	Preview from the Command Line
	Preview from VS Code
	Preview in the Salesforce Mobile App
	Preview in Custom Mobile Apps

	Validate Lightning Web Components for Offline Use
	Install the Komaci Static Analyzer
	Troubleshoot Installation Problems
	Validate Components During Development
	Static Analyzer Validation Rules
	Install ESLint Rules for Mobile Lightning Web Components
	Use ESLint Rules in Visual Studio Code

	Develop Offline-Ready LWCs with the LWC Offline Test Harness
	Test Harness Overview
	Test Harness Home Tab
	Test Harness Debug Tab
	Test Harness SObjects Tab
	Test Harness Drafts Tab

	Install the Test Harness App
	Test Harness Prerequisites
	Test Harness Compatibility
	Download and Install — Android
	Download and Install — iOS

	Use the Test Harness App
	Create a Quick Action with an LWC
	Display and Run an LWC from a Quick Action

	Debug Lightning Web Components
	Enable Debugging for LWC Developers
	Debug in Android
	Debug in iOS

	Debug Mobile Components
	Customize the Offline Experience for the Salesforce Mobile App
	Prerequisites & Setup Considerations
	Download and Install
	Configure the Offline Experience
	Build a Briefcase
	Select a Landing Page Template
	Generate and Configure LWC Quick Actions
	Deploy Your Configurations
	Add LWC Quick Actions to Mobile Layouts

	Quick Start Tutorials
	Develop a Lightning Web Component Quick Action
	Prerequisites
	Field Service Org Setup
	Define a Permission Set for Your Org
	Assign the Permission Set to a Mobile User

	iOS Simulator Setup
	Configure Minimum Required iOS Simulator Settings
	Install the Field Service App for iOS

	Android Emulator Setup
	Configure Minimum Required Android Emulator Settings
	Install the Field Service App for Android

	Workspace Setup
	Create and Configure a Lightning Web Component
	Create and Deploy a Lightning Web Component to Salesforce
	Verify the Component Was Deployed to Your Org
	Create a Quick Action in Salesforce
	Add the Quick Action to a Page Layout in Salesforce
	Clear Cached Metadata
	Run the Quick Action in the Mobile App

	Debug Lightning Web Components in the Field Service Mobile App
	Install Local Development Server Plugin
	Debug in iOS
	Debug in Android

