
Analytics SAQL Developer Guide
Salesforce, Winter ’25

Last updated: September 20, 2024

© Copyright 2000–2024 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

OVERVIEW . 1
Introduction . 1
Use SAQL in the CRM Analytics Dashboard . 2
SAQL Null Measures and Dimensions . 4
Release Notes . 4

QUICK START . 5
Write Your First Query . 5
Create a Derived Measure . 6
Create a Derived Dimension . 7

EXAMPLES . 8
Analyze Your Data Over Time . 8
Calculate How Long Activities Take . 9
Display the Opportunities Closed This Month . 10
Forecast Future Data Points with timeseries . 11
Combine Data from Multiple Data Streams with cogroup . 12
Replace Null Values with coalesce() . 14
Dynamically Display Your Top Five Reps with Windowing . 15
Append Datasets using union . 16
Calculate the Slope of the Regression Line . 17
Show the Top and Bottom Quartile . 18
Calculate Grand Totals and Subtotals with the rollup Modifier and grouping() Function 19

SAQL REFERENCE . 22
SAQL Basic Elements . 22
SAQL Operators . 27
SAQL Statements . 36
SAQL Functions . 72

QUERY PERFORMANCE . 142
Speed Up Queries with Dataflow Transformations . 142
Limit Multivalue Fields . 143
Use Group and Filter Pre-projection . 145
Remove Redundant Projections . 146
Check for Redundant Filters . 147
Limit the Use of unique() . 147
arimax Show Parameters Query Tool . 147

OVERVIEW

Use SAQL (Salesforce Analytics Query Language) to access data in CRM Analytics dataset. CRM Analytics uses SAQL behind the scenes
in lenses, dashboards, and explorer to gather data for visualizations.

Developers can write SAQL to directly access CRM Analytics data via:

• CRM Analytics REST API

Build your own app to access and analyze CRM Analytics data or integrate data with existing apps.

• Dashboard JSON

Create advanced dashboards. A dashboard is a curated set of charts, metrics, and tables.

• Compare Table

Use SAQL to perform calculations on data in your tables and add the results to a new column.

• Transformations During Data Flow

Use SAQL to perform manipulations or calculations on data when bringing it in to CRM Analytics.

Introduction

Most actions you take in Analytics result in one or more SAQL queries. Every lens, dashboard, and explorer action generates and
executes a SAQL query to build the data needed for the visualization.

Use SAQL in the CRM Analytics Dashboard

Use the CRM Analytics Studio user interface to modify existing SAQL queries or write new ones. Writing SAQL queries in the user
interface is the easiest way to get started.

SAQL Null Measures and Dimensions

With CRM Analytics, you can use null measure handling to add null as the default value for numeric columns in datasets. Use null
dimensions to return grouped null values from your SAQL queries.

Analytics SAQL Release Notes

Use the Salesforce Release Notes to learn about the most recent updates and changes to Analytics SAQL.

SEE ALSO:

Analytics REST API Developer Guide

Analytics Dashboard JSON Developer Guide

Introduction

Most actions you take in Analytics result in one or more SAQL queries. Every lens, dashboard, and explorer action generates and executes
a SAQL query to build the data needed for the visualization.

Analytics evaluates queries, widgets, and layouts to render a dashboard. Behind every widget is a SAQL query which is sent the query
engine for execution. The resulting data is passed to the charting library, which renders it using corresponding widget definitions. SAQL
is influenced by the Apache Pig Latin (pigql) syntax, but their implementations differ, and they are not compatible.

1

https://developer.salesforce.com/docs/atlas.en-us.252.0.bi_dev_guide_rest.meta/bi_dev_guide_rest/
https://developer.salesforce.com/docs/atlas.en-us.252.0.bi_dev_guide_json.meta/bi_dev_guide_json/

How the components fit together

Developers can write SAQL to access Analytics data, either via the Analytics REST API, or by creating and editing SAQL queries contained
in the dashboard JSON.

A SAQL query loads an input dataset, operates on it, and outputs a results dataset. Each SAQL statement has an input stream, an operation,
and an output stream. Statements can span multiple lines and must end with a semicolon. Each query line is assigned to a named stream.
A named stream can be used as input to any subsequent statement in the same query. The only exception to this rule is the last line in
a query, which you don’t need to assign explicitly.

Use SAQL in the CRM Analytics Dashboard

Use the CRM Analytics Studio user interface to modify existing SAQL queries or write new ones. Writing SAQL queries in the user interface
is the easiest way to get started.

Every component in CRM Analytics uses SAQL behind the scenes. You can build a widget in a dashboard, then switch to the SAQL view
to see the SAQL query for the widget. Or, you can create a lens while exploring a dataset, then switch to the SAQL view to see the SAQL
query for the lens.

Let’s look at the query generated by a widget in a dashboard.

Note: After you edit the SAQL for a widget, you may not be able to go back to the dashboard view, depending on how complex
the SAQL query is. For more information about working with SAQL queries, see Tips for Working with SAQL Queries in the Query
Editor.

1. In your Salesforce org, open CRM Analytics Studio, then open a dashboard. For example, open Opportunity Details.

2. Click Edit.

2

Use SAQL in the CRM Analytics DashboardOverview

https://help.salesforce.com/s/articleView?id=sf.bi_dashboard_step_saql_limitations.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.bi_dashboard_step_saql_limitations.htm&type=5&language=en_US

3. Click a query to edit, for example Amount_1, then click Edit in the dropdown list.

4. Click SAQL Mode to display the SAQL query.

5. View the SAQL query.

Here is the SAQL query for our example:

q = load "DTC_Opportunity_SAMPLE";
q = filter q by 'Closed' == "false";
q = group q by all;

3

Use SAQL in the CRM Analytics DashboardOverview

q = foreach q generate sum('Amount') as 'sum_Amount';
q = limit q 2000;

6. Edit the query, then click Run Query to run the new query. For example, you could change the sum to average.

SAQL Null Measures and Dimensions

With CRM Analytics, you can use null measure handling to add null as the default value for numeric columns in datasets. Use null
dimensions to return grouped null values from your SAQL queries.

Measures
With null measure handling, you can specify null as the default value for numeric columns in recipes, dataflows, and CSV uploads. When
another default value isn’t specified for a numeric column, null measure handling allows CRM Analytics to replace a blank value with a
null value. Null support in measures doesn’t require extra indexing.

To enable this setting, from Setup, in the Quick Find box, enter Analytics, select Settings, and then select Allow null measure
handling in datasets. If CRM Analytics was initially set up in your org after the Spring ’17 release, this setting is enabled by default and
you can’t disable it.

Dimensions
You can include null dimensions in your datasets. When a record’s dimension or date field is left blank, it appears as a hyphen in explorer
and dashboard designer charts and tables. Previously, SAQL queries were limited to non-null values. For non-grouping queries we return
null keys regardless of whether the setting is enabled. This feature is distinct from the null handling for measures preference.

To enable this setting, from Setup, in the Quick Find box, enter Analytics, select Settings, and then select Include null values in
CRM Analytics queries. Then, refresh your datasets. To return grouped null values in your queries, select the null handling for dimensions
preference in Setup.

Here’s an example of using the SAQL group-by function with the null handling preference enabled.

q = load "Superstore";
q = group q by 'Sub_Category';
q = foreach q generate 'Sub_Category' as 'Sub_Category', count() as 'count';
q = order q by 'Sub_Category' asc nulls first;
q = limit q 2000;

Analytics SAQL Release Notes

Use the Salesforce Release Notes to learn about the most recent updates and changes to Analytics SAQL.

For a list of all current developer changes, including Analytics SAQL, see CRM Analytics in the Salesforce Release Notes.

Note: If the Analytics Development section in the Salesforce Release Notes isn’t present, there aren’t any updates for that release.

4

SAQL Null Measures and DimensionsOverview

https://help.salesforce.com/s/articleView?id=release-notes.rn_bi_analytics_cloud.htm&language=en_US

QUICK START

Get up to speed quickly with these easy SAQL examples.

Write Your First Query

Let's walk through each part of a simple SAQL query.

Create a Derived Measure

Perform calculations on existing measures and use the result to create a new, or derived, measure.

Create a Derived Dimension

Perform string manipulations on existing dimensions to create a new, or derived, dimension.

Write Your First Query

Let's walk through each part of a simple SAQL query.

We’ll create a new dashboard in a CRM Analytics org. Then we’ll add a simple chart and look at the resulting SAQL.

Note: These instructions assume you are using the sample Salesforce Developer org, which includes sample datasets. If you are
using a different org, you can still follow the same general instructions with your own dataset.

1. In your CRM Analytics org, create a new dashboard:

a. Click Create.

b. Click Dashboard.

2. In the window Choose a dashboard template, click Blank Dashboard, then click Continue.

3. Drag a chart widget to the dashboard canvas.

4. In the chart widget, click Chart, then select DTC Opportunity dataset.

5. Click the SAQL Mode button to launch the SAQL editor.

The SAQL editor displays the SAQL query used to fetch the data and render the chart:

1 q = load "DTC_Opportunity_SAMPLE";
2 q = group q by all;
3 q = foreach q generate count() as 'count';
4 q = limit q 2000;

Let’s take a look at each line in the query.

DescriptionLine Number

q = load "DTC_Opportunity_SAMPLE";1

This loads the dataset that you chose when you created the chart widget. You can use the variable q to access
the dataset in the rest of your SAQL statements.

5

DescriptionLine Number

q = group q by all;

In some queries, you want to group by a certain field, for example Account ID. In our case we didn’t specify a
grouping when we created the chart. Use group by all when you don’t want to group data.

2

q = foreach q generate count() as 'count';

This generates the output for our query. In this simple example, we just count the number of lines in the DTC
Opportunity dataset.

3

q = limit q 2000

This limits the number of results that are returned to 2000. Limiting the number of results can improve performance.
However if you want q to contain more than 2000 results, you can increase this number.

4

You can click Back to go back to the chart. You can use the UI to make modifications to the chart, then view the resulting SAQL.

Create a Derived Measure

Perform calculations on existing measures and use the result to create a new, or derived, measure.

CRM Analytics calculates the value of derived measures at run time using the values from other fields.

Note: You can also create a derived measure in a dataflow rather than at runtime using SAQL. Measures created during a dataflow
are calculated when the data is imported and may result in better performance.

Example - Calculate the Time to Win
Suppose that you have an Opportunities dataset with the Close Date and Open Date fields. You want to see the number of days it took
to win the opportunity. Use CloseDate_day_epoch and CreatedDate_day_epoch to create a derived measure called Time to Win:
('CloseDate_day_epoch'- 'CreatedDate_day_epoch') as 'Time to Win'.

The field Time to Win is calculated at run time:

q = load "Opportunities";
q = foreach q generate 'CloseDate_day_epoch' as 'CloseDate_day_epoch',
'CreatedDate_day_epoch' as 'CreatedDate_day_epoch', 'Opportunity_Name' as 'Opportunity_Name',
('CloseDate_day_epoch'- 'CreatedDate_day_epoch') as 'Time to Win';

The resulting table contains the number of days to win each opportunity:

6

Create a Derived MeasureQuick Start

Create a Derived Dimension

Perform string manipulations on existing dimensions to create a new, or derived, dimension.

CRM Analytics creates derived dimensions at run time.

Note: You can also create a derived dimension in a dataflow rather than at runtime.

Example - Create a Field with City and State
Suppose that you have an Opportunities dataset with a City and a State field. You want to create a single field containing both city and
state. Use SAQL to create a derived dimension.

q = load "Ops";
q = foreach q generate 'Account' as 'Account', 'Amount' as 'Amount', 'City' + "-" + 'State'
as 'City - State';

The resulting table contains city and state in the same field.

7

Create a Derived DimensionQuick Start

EXAMPLES

These hands-on SAQL examples walk you through writing a query to retrieve data

Analyze Your Data Over Time

Use SAQL date functions for advanced time-based analysis.

Calculate How Long Activities Take

Use daysBetween() and date_diff() to calculate the difference between two dates or times.

Display the Opportunities Closed This Month

Use relative date ranges to filter opportunities closed in the current month.

Forecast Future Data Points with timeseries

Use existing data to predict what might happen in the future.

Combine Data from Multiple Data Streams with cogroup

You can combine data from two or more data streams into a single data stream using cogroup. The data streams must have at
least one common field.

Replace Null Values with coalesce()

When you use a left outer or full outer cogroup, unmatched data comes through as null. Use coalesce() to replace null
values with the value of your choice.

Dynamically Display Your Top Five Reps with Windowing

Windowing functions perform calculations over a dynamic range.

Append Datasets using union

You can append data from two or more data streams into a single data stream using union. The data streams must have the same
field names and structure.

Calculate the Slope of the Regression Line

Use SAQL to perform linear analysis on your data to find the line that best fits the data. Then use .regr_slope to return the slope
of this line.

Show the Top and Bottom Quartile

Use SAQL to calculate percentiles, like the top and bottom quartile of your data.

Calculate Grand Totals and Subtotals with the rollup Modifier and grouping() Function

Calculate subtotals of grouped data in your SAQL query using the rollup modifier on the group by statement, then work
with subtotaled data using grouping(). For example, to see the subtotaled value of opportunities by type and lead source, roll
up the type and lead source groups. Then, label the subtotals with the grouping function.

Analyze Your Data Over Time

Use SAQL date functions for advanced time-based analysis.

Note: You can use date filters in the dashboard for basic time-based analysis, for example to calculate month-to-date amounts.
You can also use window functions in the dashboard for basic date range calculations, such as calculating the change in
year-over-year earnings

8

Example - on Which Weekday Do Customers Send the Most Emails?
Suppose that you want to see which day of the week your customers are most active on email. This information allows you to better
target your email campaigns. Use day_in_week() on the Mail_sent_sec_epoch field to calculate the day of the week, then
count the number of records for each day.

q = load "DTC_Opportunity_SAMPLE";
q = foreach q generate day_in_week(toDate(’Mail_sent_sec_epoch’)) as 'Day in Week';
q = group q by 'Day in Week';
q = foreach q generate 'Day in Week', count() as 'count';

In this case, email traffic is slightly higher on day 4 (Wednesday) and day 7 (Sunday).

SEE ALSO:

Date Functions

Calculate How Long Activities Take

Use daysBetween() and date_diff() to calculate the difference between two dates or times.

Example: Display the Number of Days Since an Opportunity Opened
Suppose that you have an opportunity dataset with the account name and the epoch seconds fields:

You want to see how many days ago an opportunity was opened. Use daysBetween() and now(). Use toDate() to convert
the order date epoch seconds to a date format that can be passed to daysBetween().

q = load "OpsDates1";

q = foreach q generate Account, daysBetween(toDate(OrderDate_sec_epoch), now()) as
'daysOpened';

The resulting data stream displays the number of days since the opportunity was opened.

9

Calculate How Long Activities TakeExamples

Example - How Many Weeks Did Each Opportunity Take to Close?
Use date_diff() with datepart = week to calculate how long, in weeks, it took to close each opportunity.

q = load "DTC_Opportunity";
q = foreach q generate date_diff("week", toDate(CreatedDate_sec_epoch),
toDate(CloseDate_sec_epoch)) as 'Weeks to Close';
q = order q by 'Weeks to Close';

SEE ALSO:

daysBetween()

date_diff()

Display the Opportunities Closed This Month

Use relative date ranges to filter opportunities closed in the current month.

Example: Display Opportunities Closed This Month
Suppose that you want to see which opportunities closed this month. Your data includes the account name, the close date fields, and
the epoch seconds field.

Use date() to generate the close date in date format. Then use relative date ranges to filter opportunities closed in the current month.

q = load "OpsDates1";
q = filter q by date(’CloseDate_Year’, ‘CloseDate_Month’, ‘CloseDate_Day’) in ["current
month" .. "current month"];
q = foreach q generate Account;

If the query is run in May 2018, the resulting data stream contains one entry:

10

Display the Opportunities Closed This MonthExamples

To add the close date in a readable format, use toDate().

q = load "OpsDates1";
q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["current
month" .. "current month"];
q = foreach q generate Account, toDate('CloseDate_sec_epoch') as 'Close Date';

The resulting data stream includes the full date and time of the close date.

You can also display just the month and day of the close date.

q = load "OpsDates1";
q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["current
month" .. "current month"];
q = foreach q generate Account, 'CloseDate_Month' + "/" + 'CloseDate_Day' as 'Close Date';

The resulting data stream contains the month and day of the close date.

SEE ALSO:

Time-Based Filtering

Forecast Future Data Points with timeseries

Use existing data to predict what might happen in the future.

Example - How Many Tourists Will Visit Next Year?
Suppose that you run a chain of retail stores, and the number of tourists in your city affect your sales. Use timeseries to predict
how many tourists will come to your city next year:

q = load "TouristData";
q = group q by ('Visit_Year', 'Visit_Month');
q = foreach q generate 'Visit_Year', 'Visit_Month', sum('NumTourist') as 'sum_NumTourist';

-- If your data is missing some dates, use fill() before using timeseries()
-- Make sure that the dateCols parameter in fill() matches the dateCols parameter in
timerseries()
q = fill q by (dateCols=('Visit_Year','Visit_Month', "Y-M"));

11

Forecast Future Data Points with timeseriesExamples

-- Use timeseries() to predict the number of tourists.
q = timeseries q generate 'sum_NumTourist' as Tourists with (length=12,
dateCols=('Visit_Year','Visit_Month', "Y-M"));

q = foreach q generate 'Visit_Year' + "~~~" + 'Visit_Month' as 'Visit_Year~~~Visit_Month',
Tourists;

Use a timeline chart and set a predictive line to see the calculated future data. The resulting graph shows the likely number of tourists
in the future.

SEE ALSO:

timeseries

Combine Data from Multiple Data Streams with cogroup

You can combine data from two or more data streams into a single data stream using cogroup. The data streams must have at least
one common field.

Example - Inner cogroup
Suppose that you want to understand how much time your reps spend meeting with each account. Is there a relationship between
spending more time and winning an account? Are some reps spending much more or much less time than average? To answer these
questions, first combine meeting data with account data using cogroup.

Suppose that you have a dataset of meeting information from the Salesforce Event object. In this example, your reps have had six
meetings with four different companies. The Meetings dataset has a MeetingDuration column, which contains the meeting duration in
hours.

12

Combine Data from Multiple Data Streams with cogroupExamples

The account data exists in the Salesforce Opportunity object. The Ops dataset has an Account, Won, and Amount column. The Amount
column contains the dollar value of the opportunity, in millions.

To see the effect of meeting duration on opportunities, you start by combining these two datasets into a single data stream using
cogroup.

q = cogroup ops by 'Account', meetings by 'Company';

Internally (you cannot see these results yet), the resulting cogrouped data stream contains the following data. Note how the data streams
are rolled up on one or more dimensions.

(1,{(Shoes2Go,2),(Shoes2Go,5)},{(Shoes2Go,1,1.5),(Shoes2Go,0,3})

(2,{(FreshMeals,3),(FreshMeals, 1)},{(FreshMeals,1,2) (FreshMeals,1,1.4)})

(3,{(ZipBikeShare,4)},{(ZipBikeShare,1,1.1)})

(4,{(ZenRetreats,6)},{(ZenRetreats,0,2)})

Now the datasets are combined. To see the data, you create a projection using foreach:

ops = load "Ops";
meetings = load "Meetings";
q = cogroup ops by 'Account', meetings by 'Company';
q = foreach q generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum_Amount',
sum(meetings.'MeetingDuration') as 'TimeSpent';

The resulting data stream contains the sum of amount and total meeting time for each company. The sum of amount is the sum of the
dollar value for every opportunity for the company.

13

Combine Data from Multiple Data Streams with cogroupExamples

Now that you have combined the data into a single data stream, you can analyze the effects that total meeting time has on your
opportunities.

SEE ALSO:

cogroup

Replace Null Values with coalesce()

When you use a left outer or full outer cogroup, unmatched data comes through as null. Use coalesce() to replace null values
with the value of your choice.

For information about how to use the coalesce() function, see coalesce on page 140

Example: Left Outer Cogroup with coalesce()
A left outer cogroup combines the right data stream with the left data stream. If a record on the left stream does not have a match on
the right stream, the missing right value comes through as null. To replace null values with a different value, use coalesce().

For example, suppose that you have a dataset of meeting information from the Salesforce Event object, and you join it with data from
the Salesforce Opportunity object. This shows amount won with the total time spent in meetings.

ops = load "Ops";
meetings = load "Meetings";
q = cogroup ops by 'Account' left, meetings by 'Company' ;
q = foreach q generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum_Amount',
sum(meetings.'MeetingDuration') as 'TimeSpent';

It looks like we had no meetings with Zen Retreats.

Let’s use coalesce() to change that null value to a zero.

ops = load "Ops";
meetings = load "Meetings";
q = cogroup ops by 'Account' left, meetings by 'Company' ;

–-use coalesce() to replace null values with zero
q = foreach q generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum_Amount',
coalesce(sum(meetings.'MeetingDuration'), 0) as 'TimeSpent';

14

Replace Null Values with coalesce()Examples

SEE ALSO:

cogroup

Dynamically Display Your Top Five Reps with Windowing

Windowing functions perform calculations over a dynamic range.

Example - Dynamically Display Your Top Five Reps
Use windowing to create a chart that dynamically displays your top-five reps for each country. The chart updates continuously as
opportunities are won. The example uses windowing to calculate:

• Percentage contribution that each rep made to the total amount, partitioned by country

• Ranking of the rep’s contribution, partitioned by country

These calculations let us display the top-five reps in each country.

q = load "DTC_Opportunity_SAMPLE";
q = group q by ('Billing_Country', 'Account_Owner');

q = foreach q generate 'Billing_Country', 'Account_Owner',

-- sum(Amount) is the total amount for a single rep in the current country
-- sum(sum('Amount') is the total amount for ALL reps in the current country
-- sum(Amount) / sum(sum('Amount') calculates the percentage that each rep contributed
-- to the total amount in the current country
((sum('Amount')/sum(sum('Amount'))

-- [..] means "include all records in the partition"
-- "by Billing_Country" means partition, or group, by country
over ([..] partition by 'Billing_Country')) * 100) as 'Percent_AmountContribution',

-- rank the percent contribution and partition by the country
rank() over ([..] partition by ('Billing_Country') order by sum('Amount') desc) as
'Rep_Rank';

-- filter to include only the top 5 reps
q = filter q by 'Rep_Rank' <=5;

The resulting graph shows the top-five reps in each country and displays each rep’s ranking.

15

Dynamically Display Your Top Five Reps with WindowingExamples

Append Datasets using union

You can append data from two or more data streams into a single data stream using union. The data streams must have the same
field names and structure.

To use union, first load the dataset and then use foreach to do the projection. Repeat the process with another dataset. If the two
resulting data streams have an identical structure, you can append them using union.

Let’s say that you have two opportunity datasets from different regions that you brought together using the Salesforce mulit-org
connector. You want to add these datasets together to look at your pipeline as a whole.

The OppsRegion1 data stream contains these fields.

The OppsRegion2 data stream contains these fields.

16

Append Datasets using unionExamples

Use union to combine the two data streams.

ops1 = load "OppsRegion1";

ops1 = foreach ops1 generate 'Account_Owner', 'Account_Type', 'Amount';

ops2 = load "OppsRegion2";
ops2 = foreach ops2 generate 'Account_Owner', 'Account_Type', 'Amount';

-- ops1 and ops2 have the same structure, so we can use union
opps_total = union ops1, ops2;

The resulting data stream contains both sets of data.

SEE ALSO:

union

Calculate the Slope of the Regression Line

Use SAQL to perform linear analysis on your data to find the line that best fits the data. Then use .regr_slope to return the slope of
this line.

17

Calculate the Slope of the Regression LineExamples

Example - Calculate the Relationship Between Number of Activities and
Deal Amount
Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

How much bigger will the deal size be for each extra activity? regr_slope performs a linear analysis on your data then calculates
the slope (that is, the increased amount you win for each extra activity).

q = load "data/sales";
q = group q by all;

--trunc() truncates the result to two decimal places
q = foreach q generate trunc(regr_slope('Amount', 'NumActivities'),2) as 'Gain per Activity';

Based on your existing data, every extra activity that you have tends to increase the deal size by $1.45 million, on average.

SEE ALSO:

regr_slope()

Show the Top and Bottom Quartile

Use SAQL to calculate percentiles, like the top and bottom quartile of your data.

18

Show the Top and Bottom QuartileExamples

Example - Show Top Quartile and Bottom Quartile Deal Size by Country
Suppose that you want to see the top and bottom quartile deal size, by country. You want to see the size of the actual deal, not the
interpolated (or 'average') deal size. Use percentile_disc(.25) and percentile_disc(.75).

q = load "Data";
q = group q by 'Billing_Country';
q = foreach q generate 'Billing_Country' as 'Billing_Country', percentile_disc(0.25) within
group (order by 'Amount' desc) as '25th Percentile', percentile_disc(0.75) within group
(order by 'Amount' desc) as '75th Percentile';
q = order q by '25th Percentile' asc;

Use a bar chart and select Axis Mode > Single Axis to show the top and bottom quartiles together.

SEE ALSO:

percentile_disc()

Calculate Grand Totals and Subtotals with the rollup Modifier and
grouping() Function

Calculate subtotals of grouped data in your SAQL query using the rollup modifier on the group by statement, then work with
subtotaled data using grouping(). For example, to see the subtotaled value of opportunities by type and lead source, roll up the
type and lead source groups. Then, label the subtotals with the grouping function.

Invoking rollup adds rows to your query results with null values for dimensions and subtotaled results for measures. Invoking
grouping() returns 1 if null dimension values are due to higher-level aggregates (which usually means the row is a subtotal),
otherwise it returns 0.

Using grouping() alongside rollup lets you work with subtotaled data. After subtotaling data, common next steps include
logically evaluating subtotaled data with a case statement. Or filtering on subtotaled data with a filter statement.

19

Calculate Grand Totals and Subtotals with the rollup Modifier
and grouping() Function

Examples

Suppose that you have an opportunity dataset, and want to see the value of deals by lead source and type. Plus, you want to see the
total value of all lead sources and all types. Write a query that returns the sum of opportunity amount grouped by type and lead source.
To see the value of all lead sources and all types, use rollup to subtotal opportunities, then use grouping() to label the subtotaled
rows.

Note: All query results for rollup and grouping() display only in the format as shown in the examples below.

Example: rollup
Open the SAQL editor in the dashboard. Instead of grouping data by a field, specify the rollup modifier as the group and pass the
fields you want subtotaled - Type and Lead Source - as parameters. Set q = group q by rollup('Type',
'LeadSource');. Here's the full query.

q = load "opportunityData";
q = group q by rollup('Type', 'LeadSource');
q = order q by ('Type', 'LeadSource');
q = foreach q generate

'Type' as 'Type',
'LeadSource' as 'LeadSource',
sum('Amount') as 'sum_Amount';

The query results show sum of amount by opportunity type and then by lead source. Subtotaled and grand totaled rows have null values
for dimensions.

20

Calculate Grand Totals and Subtotals with the rollup Modifier
and grouping() Function

Examples

Example: grouping()
Null values in place of labeled totals can confuse query results. Avoid this confusion by labeling totals as All Types or All Lead
Sources using case statements with grouping() functions.

q = load "opportunityData";
q = group q by rollup('Type', 'LeadSource');
q = order q by ('Type', 'LeadSource');
q = foreach q generate

(case
when grouping('Type') == 1 then "All Types"
else 'Type'

end) as 'Type',
(case

when grouping('LeadSource') == 1 then "All Lead Sources"
else 'LeadSource'

end) as 'LeadSource',
sum('Amount') as 'sum_Amount';

Now the query results include labeled totals.

To have multiple grouping levels but only display subtotals for one group, add a filter to the end of your query that resembles the
following example: q = filter q by grouping('LeadSource') == 0 OR 'Type' == "Existing
Business";

21

Calculate Grand Totals and Subtotals with the rollup Modifier
and grouping() Function

Examples

SAQL REFERENCE

These hands-on SAQL examples walk you through writing a query to retrieve data

SAQL Basic Elements

Basic elements are the building blocks of your SAQL query.

SAQL Operators

Use operators to perform mathematical calculations or comparisons.

SAQL Statements

A query is made up of statements. Each SAQL statement has an input stream, an operation, and an output stream.

SAQL Functions

Use functions to perform complex operations on your data.

SAQL Basic Elements

Basic elements are the building blocks of your SAQL query.

Statements

A SAQL query loads input data, operates on it, and outputs the result data. A query is made up of statements. Each SAQL statement
has an input stream, an operation, and an output stream.

Keywords

Keywords are case-sensitive and must be lowercase.

Identifiers

SAQL identifiers are case-sensitive and must be enclosed in single quotation marks (').

Number Literals

A number literal represents a number in your script.

String Literals

A string is a set of characters inside double quotes (").

Boolean Literals

A boolean literal represents true or false (yes or no) in your script.

Multivalue Field

A multivalue field contains more than one value.

Quoted String Escape Sequences

Strings can be escaped with the backslash character.

Special Characters

Certain characters have special meanings in SAQL.

22

Comments

To add a single-line comment in SAQL, preface your comment with two hyphens (--). To add a multi-line comment, start your
comment with a forward slash and asterisk (/*) and end it with an asterisk and forward slash (*/).

Statements
A SAQL query loads input data, operates on it, and outputs the result data. A query is made up of statements. Each SAQL statement has
an input stream, an operation, and an output stream.

A statement is made up of keywords (such as filter, group, and order), identifiers, literals, and special characters. Statements
can span multiple lines and must end with a semicolon.

Assign each query line to an identifier called a stream. The only exception is the last line in a query, which doesn't have to be assigned
explicitly.

The output stream is on the left side of the = operator and the input stream is on the right side of the = operator.

Example
Each line in this SAQL query is a SAQL statement.

q = load "Dataset1";
q = group q by all;
q = foreach q generate sum('Amount') as 'sum_Amount';

SEE ALSO:

filter

foreach

limit

offset

order

Keywords
Keywords are case-sensitive and must be lowercase.

For a list of SAQL statements that are keywords, see SAQL Statements on page 36.

SEE ALSO:

sample

Identifiers
SAQL identifiers are case-sensitive and must be enclosed in single quotation marks (').

Identifiers that are enclosed in quotation marks can contain any character that a string can contain.

23

StatementsSAQL Reference

This example uses valid syntax:

q = load "Opportunity";

--'Stage' is enclosed in single quotes because it is a field. "08 - Closed Won" is enclosed
in double quotes because it is a string.
q = filter q by 'Stage' == "08 - Closed Won";
q = group q by 'Account_Owner';
q = foreach q generate 'Account_Owner' as 'Account_Owner', count() as 'count';

This example is not valid because you can't use double quotes for an identifier.

--this should be 'Account_Owner' in single quotes
q = group q by "Account_Owner";

Number Literals
A number literal represents a number in your script.

Some examples of number literals are 16 and 3.14159. You can’t explicitly assign a type (for example, integer or floating point) to a
number literal. Scientific E notation isn’t supported.

The responses to queries are in JSON. Therefore, the returned numeric field is a “number” class.

String Literals
A string is a set of characters inside double quotes (").

Example: "This is a string."

This example uses valid syntax:

accounts = load "Data";
opps = load "0Fcyy000000002qCAA/0Fcyy000000002WCAQ";
c = group accounts by 'Year', opps by 'Year';
d = foreach c generate opps.Year as 'Year';
e = filter d by Year == "2002";

Note: Identifiers are either unquoted or enclosed in single quotation marks.

Boolean Literals
A boolean literal represents true or false (yes or no) in your script.

Boolean literals true and false are supported in SAQL.

Multivalue Field
A multivalue field contains more than one value.

24

Number LiteralsSAQL Reference

Example: One typical use case for multivalue fields is security. For example, you can have a dataset that contains various accounts,
and each account has multiple owner IDs. We’ve created a sample dataset called OppRoles where OwnerId is a multivalue field.

StageOwner IDOpportunity IDOwner.NameAmountAccount ID

Closed Won005R0000000VU9bIAG,
005R0000000VU9bIAH,
005R0000000VU9bIAI

006R0000002OF6eIAGEmily Dickinson1,900,013001R00000046CHdIAM

Closed Won005R0000000VU9UIAW,
005R0000000VU9bIAG,

006R0000002OF6eIAGAlbert Einstein70,449001R00000046CV6IAM

005R0000000VU9UIAX
005R0000000VU9UIAY

Closed Won006R0000002OF6gIAG,
005R0000000VU9RIAW,
005R0000000VU9SIAW

006R0000002OF6eIAGIndiana Jones4,206,995001R00000046CI6IAM

This query filters on an OwnerId to display only the accounts that it can access.

q = load "OppRoles";
q = filter q by 'OwnerId' in ["005R0000000VU9bIAG"];
q = foreach q generate 'AccountId' as 'AccountId', 'Amount' as 'Amount', 'Id' as 'Id',
'Owner.Name' as 'Owner.Name', 'OwnerId' as 'OwnerId', 'StageName' as 'StageName';

Warning: When using comparison operators in the filter, use in and not in to return the correct values. Using ==
and != returns unexpected values when null handling is enabled. See Group-by with Null Values for more information.

StageOwner IDOpportunity IDOwner.NameAmountAccount ID

Closed Won005R0000000VU9bIAG006R0000002OF6eIAGEmily Dickinson1,900,013001R00000046CHdIAM

Closed Won005R0000000VU9bIAG006R0000002OF6eIAGAlbert Einstein70,449001R00000046CV6IAM

The OwnerID value 005R0000000VU9bIAG has access to two of the three accounts, so two of the accounts are displayed.

Important: Limit multivalue field use to filtering only. Multivalue fields can behave unpredictably with group and
foreach.

SEE ALSO:

mv_to_string()

Comparison Operators

Limit Multivalue Fields

Quoted String Escape Sequences
Strings can be escaped with the backslash character.

You can use the following string escape sequences:

25

Quoted String Escape SequencesSAQL Reference

MeaningSequence

New line\n

Carriage return\r

Tab\t

One single-quote character\'

One double-quote character\"

One backslash character\\

Special Characters
Certain characters have special meanings in SAQL.

DescriptionNameCharacter

Used to terminate statements.Semicolon;

Used to quote identifiers.Single quote'

Used to quote strings.Double quote"

Used for function calls, to enforce precedence, for order clauses, and to group
expressions. Parentheses are mandatory when you’re defining more than one group or
order field.

Parentheses()

Used to denote arrays. For example, this is an array of strings:Brackets[]

["this", "is", "a", "string", "array"]

Also used for referencing a particular member of an object. For example,
em['miles'], which is the same as em.miles.

Used for referencing a particular member of an object. For example, em.miles, which
is the same as em['miles'].

Period.

Used to explicitly specify the dataset that a measure or dimension belongs to, by placing
it between a dataset name and a column name. Using two colons is the same as using
a period (.) between names. For example:

Two colons::

data = foreach data generate left::airline as airline

Used to separate a range of values. For example:Two periods..

c = filter b by "the_date" in
["2011-01-01".."2011-01-31"];

26

Special CharactersSAQL Reference

Comments
To add a single-line comment in SAQL, preface your comment with two hyphens (--). To add a multi-line comment, start your comment
with a forward slash and asterisk (/*) and end it with an asterisk and forward slash (*/).

Single-Line Comments
Here’s an example of a single-line comment on its own line.

--Load a data stream.
a = load "myData";

You can put a comment at the end of a line of SAQL code.

a = load "myData"; --Load a data stream.

To comment a line of SAQL code, add two hyphens at the beginning of the line.

--The following line is commented out:
--a = load "myData";

Multi-Line Comments
Here’s an example of a multi-line comment.

q = load "campaign_data";
q = group q by Owner;
q = foreach q generate count() as 'count';
/*
q = limit q 5;
*/

SAQL Operators

Use operators to perform mathematical calculations or comparisons.

Arithmetic Operators

Use arithmetic operators to perform addition, subtraction, multiplication, division, and modulo operations.

Comparison Operators

Use comparison operators to compare values of the same type. For example, you can compare strings with strings and numbers
with numbers.

String Operators

To concatenate strings, use the plus sign (+).

Logical Operators

Use logical operators to perform AND, OR, and NOT operations.

Simple case Operator

Use case in a foreach statement to assign different field values in different situations. case supports two syntax forms:
searched case and simple case. This section explains simple case.

27

CommentsSAQL Reference

Searched case Operator

Use case in a foreach statement to assign different field values in different situations. case supports two syntax forms:
searched case and simple case. This section shows searched case.

Null Operators

Use is null and is not null to check whether a value is or is not null. is null returns True when a value is null.
is not null returns True when a value is not null.

Arithmetic Operators
Use arithmetic operators to perform addition, subtraction, multiplication, division, and modulo operations.

DescriptionOperator

Plus+

Minus-

Multiplication*

Division/

Modulo%

Example
You want to charge each of your accounts 5% of their opportunities as a fee. Create a query that multiplies the Amount field by .05.
This query will resemble the following:

q = load "opportunity";
q = group q by 'Account.Name';
q = foreach q generate 'Account.Name' as 'Account.Name', sum('Amount') * 0.05 as 'Fee';
q = order q by 'Fee' desc;
q = limit q 2000;

Comparison Operators
Use comparison operators to compare values of the same type. For example, you can compare strings with strings and numbers with
numbers.

DescriptionNameOperator

Returns True if the operands are equal. String comparisons that use the equals operator
are case-sensitive.

Equals==

Note: For multivalue fields, use in to identify rows that contain some value.

Returns True if the operands aren’t equal.Not equals!=

Note: For multivalue fields, use not in to identify rows that don't contain
some value.

28

Arithmetic OperatorsSAQL Reference

DescriptionNameOperator

Returns True if the left operand is less than the right operand.Less than<

Returns True if the left operand is less than or equal to the right operand.Less or equal<=

Returns True if the left operand is greater than the right operand.Greater than>

Returns True if the left operand is greater than or equal to the right operand.Greater or equal>=

Returns True if the left operand contains the string on the right. Wildcards and regular
expressions aren’t supported. This operator is case-sensitive.

To match any single character in the string, include an underscore (_). To match any
pattern of zero or more characters include a percent sign (%).

Likelike

Starting a pattern with a percent sign returns all words that are either the pattern itself
or that end with it. Ending a pattern with a percent sign returns all the words that are
either the pattern itself or that begin with it. To match a pattern anywhere in a string,
the pattern must start and end with a percent sign.

To include a literal percent sign or underscore in a pattern, you must escape them with
a backwards slash (\).

This query matches names such as Anita Boyle, Annie Booth, Derek Jernigan, and Hazel
Jennings.

q = filter q by Customer_Name like "%ni%";

This query matches names that end with "ne" or contain "ne." These names include
Andrew Levine, Annette Boone, Annette Cline, and Annie Horne.

q = filter q by Customer_Name like "%ne";

Use with ! to exclude records. For example, the following query shows all customer
names that don’t contain "po."

q = filter q by !(Customer_Name like "%po%");

Returns True if the left operand contains the string on the right. Wildcards and regular
expressions aren’t supported. This operator isn’t case-sensitive. Single-character matches
aren’t supported.

For example, the following query matches airport codes such as LAX, LAS, ALA, and
BLA.

my_matches = filter a by origin matches "LA";

Matchesmatches

Use with ! to exclude records. For example, the following query shows all opportunities
where Stage isn’t equal to Closed Lost or Closed Won:

q = filter q by !('Stage' matches "Closed");

Returns True if the left operand contains one or more of the values in the array on
the right. For example:

a1 = filter a by origin in ["ORD", "LAX", "LGA"];

Inin

29

Comparison OperatorsSAQL Reference

DescriptionNameOperator

If the left operand is a measure, the query returns True if the left operand is in the
array on the right.

Use the date() function to filter by date ranges.

If you search for values in an empty array, in returns False.

Ranges that are out of order evaluate to False. For example, ["Z" .. "A"]
evaluates to False.

Returns True if the left operand isn’t equal to any of the values in an array on the right.Not innot in

Note: If you use matches or like with multivalue fields, make sure to use mv_to_string() to match all relevant values.
If any of the values in the array satisfies the condition, the query returns the first value. The query returns array values in numerical
or alphabetical order. The first value it returns in this case isn’t necessarily the value that satisfied the condition.

SEE ALSO:

filter

Multivalue Field

Multivalue Field

String Operators
To concatenate strings, use the plus sign (+).

DescriptionOperator

Concatenate+

Example: To combine the year, month, and day into a value that’s called CreatedDate:

q = foreach q generate Id as Id, Year + "-" + Month + "-" + Day as CreatedDate;

Logical Operators
Use logical operators to perform AND, OR, and NOT operations.

Logical operators can return true, false, or null.

DescriptionNameOperator

See table.Logical AND&& (and)

See table.Logical OR|| (or)

See table.Logical NOT! (not)

30

String OperatorsSAQL Reference

The following tables show how nulls are handled in logical operations.

x || yx && yyx

TrueTrueTrueTrue

TrueFalseFalseTrue

TrueNullNullTrue

TrueFalseTrueFalse

FalseFalseFalseFalse

NullFalseNullFalse

TrueNullTrueNull

NullFalseFalseNull

NullNullNullNull

!xx

FalseTrue

TrueFalse

NullNull

Simple case Operator
Use case in a foreach statement to assign different field values in different situations. case supports two syntax forms: searched
case and simple case. This section explains simple case.

Syntax

case
primary_expr
when test_expr then result_expr
[when test_expr2 then result_expr2]
[else default_expr]

end

case...end opens and closes the case operator.

primary_expr is any expression that takes a single input value and returns a single output value. May contain values, identifiers,
and scalar functions (including date and math functions). The expression can return a number, string, or date.

when...then defines a conditional statement. A case expression can contain one or more conditional statements.

test_expr is any expression that takes a single input value and returns a single output value. May contain values, identifiers, and
scalar functions (including date and math functions). The expression must return the same data type as primary_expr.

31

Simple case OperatorSAQL Reference

result_expr is any expression that takes a single input value and returns a single output value. May contain values, identifiers, and
scalar functions (including date and math functions). The expression must return the same data type as primary_expr.

else default_expr (optional) is any expression that takes a single input value and returns a single output value. May contain
values, identifiers, and scalar functions (including date and math functions). The expression can return a number, string, or date.

Usage
Statements are evaluated in the order that they are given. If test_expr returns true, the corresponding result_expr is
returned. You can specify any number of when/then statements.

You can use else to specify a default expression. For example, if no industry is specified then use the string "No Industry Specified". If
you don't specify a default statement then null is returned.

You can use case expressions in foreach statements. You cannot use case in order, group, or filter statements.

Example
Suppose that you want to create a dimension that displays the meaning of industry codes. Use case to parse the Industry_Code field
and specify the corresponding string.

q = foreach q generate Amount as 'Amount', 'Industry_Code' as 'Industry_Code', (case
'Industry_Code'

when 541611 then "Consulting services"
when 541800 then "Advertising"
when 561400 then "Support services"
else "Unspecified"

end) as 'Industry';

The resulting data displays the meaning of industry codes:

32

Simple case OperatorSAQL Reference

Handling Null Values
In general, null values can’t be compared. When primary_expr or test_expr evaluates to null, the default_expr
is returned. If no default expression is specified, null is returned.

SEE ALSO:

Speed Up Queries with Dataflow Transformations

Searched case Operator
Use case in a foreach statement to assign different field values in different situations. case supports two syntax forms: searched
case and simple case. This section shows searched case.

Syntax

case
when search_condition then result_expr
[when search_condition2 then result_expr2]
[else default_expr]

end

case...end opens and closes the case operator.

when...then defines a conditional statement. A case expression can contain one or more conditional statements.

search_condition can be any scalar expression that returns a boolean value. It can be a complex boolean expression or a nested
case, as long as the result is boolean. For a list of supported operators, see Comparison Operators on page 28.

result_expr is any expression that takes a single input value and returns a single output value. Can contain values, identifiers, and
scalar functions (including date and math functions). The expression must return the same data type as specified in the search condition.

else default_expr (optional) is any expression that takes a single input value and returns a single output value. Can contain
values, identifiers, and scalar functions (including date and math functions). The expression can return a number, string, or date.

Usage
Statements are evaluated in the order that they are given. If the condition is primary_expr == test_expr, then the corresponding
result_expr is returned. You can specify any number of when/then statements.

You can use else to specify a default expression. For example, if no industry is specified, you can use the string "No Industry Specified".
If you don't specify a default statement, then null is returned.

You can use case expressions in foreach statements. You cannot use case in order, group, or filter statements.

Example
Suppose that you want to see the median deal size for each of your reps. You want to bin their median deal size into the buckets "Small",
"Medium", and "Large". Use case to assign values to the median deal size.

q = load "data";
q = group q by 'Account_Owner';
q = foreach q generate 'Account_Owner' as 'Account_Owner', median('Amount') as 'Median

33

Searched case OperatorSAQL Reference

Amount', (case

when median('Amount') < 1000000 then "Small"
when median('Amount') > 1600000 then "Large"
else "Medium"

end) as 'Category';

The resulting data shows the median deal size for each rep, along with the appropriate bin label.

If you want to group the data by the field assigned by the case statement, add a group by statement to the end of the query. For
example, to group the data by the Category field, add the following line to the end of the above example:

q = group q by 'Category';

Handling Null Values
In general, null values can’t be compared. When the search condition evaluates to null, the default_expr is returned. If no
default expression is specified, null is returned.

Null Operators
Use is null and is not null to check whether a value is or is not null. is null returns True when a value is null. is
not null returns True when a value is not null.

This example returns rows that contain Sub_Category fields that are not null and the counts of rows that contain each field.

q = load "Superstore";
q = filter q by 'Sub_Category' is not null;
q = group q by 'Sub_Category';
q = foreach q generate 'Sub_Category' as 'Sub_Category', count() as 'count';
q = limit q 2000;

Count of RowsSub-Category

775Accessories

34

Null OperatorsSAQL Reference

Count of RowsSub-Category

466Appliances

796Art

1,523Binders

228Bookcases

617Chairs

68Copiers

254Envelopes

217Fasteners

957Furnishings

364Labels

115Machines

1,370Paper

889Phones

846Storage

190Supplies

319Tables

Replace Null Values with case
Use case to replace null values with a value of your choice. This example labels the null Sub-Category field "Empty."

q = load "Superstore";
q = group q by 'Sub_Category';
q = foreach q generate case when 'Sub_Category' is null then "Empty" else 'Sub_Category'
end as 'Sub_Category', count() as 'count';
q = limit q 2000;

Count of RowsSub-Category

775Accessories

466Appliances

796Art

1,523Binders

228Bookcases

617Chairs

35

Null OperatorsSAQL Reference

Count of RowsSub-Category

68Copiers

254Envelopes

217Fasteners

957Furnishings

364Labels

115Machines

1,370Paper

889Phones

846Storage

190Supplies

319Tables

4Empty

SEE ALSO:

filter

group-by rollup

group-by

SAQL Statements

A query is made up of statements. Each SAQL statement has an input stream, an operation, and an output stream.

arimax

Uses existing data to predict future data points. The arimax statement must follow a projection statement in your query. Perform
any filtering pre-projection or after the arimax statement.

cogroup

Use cogroup to combine data from two or more data streams into a single data stream. The data streams must have at least one
common field.

fill

Use fill() to fill in any gaps in date fields. You most often use fill() before using the timeseries statement. By specifying
the date fields to check, fill() creates a row that contains the missing month, day, week, quarter, or year and includes a null
value. To include values outside the bounds of your data’s date range, specify a start date and end date to override existing limits.
The function returns the missing date rows with null values.

filter

Selects rows from a dataset based on a filter predicate.

36

SAQL StatementsSAQL Reference

foreach

Applies a set of expressions to every row in a dataset. This action is often referred to as projection.

group-by

Organizes the rows returned from a query into groups. Within each group, you can apply an aggregate function, such as count()
or sum() to get the number of items or sum, respectively.

group-by rollup

rollup is a subclause of group-by that creates and displays aggregations of grouped data. The output of rollup is based
on column order in your query.

join semi and anti

Use the join statement with the join_type to create semi-join or anti-join results.

limit

Limits the number of results that are returned. If you don’t set a limit, queries return a maximum of 10,000 rows.

load

Loads a dataset. All SAQL queries start with a load statement.

offset

Use offset to page through the results of your query.

order

Sorts in ascending or descending order on one or more fields.

sample

Returns a random sample from a large dataset, where each data point has an equal probability of being selected. This keyword uses
the Bernoulli distribution.

timeseries

Uses existing data to predict future data points. The timeseries statement must follow a projection statement in your query.
Perform any filtering pre-projection or after the timeseries statement.

union

Combines multiple result sets into one result set. The result sets must have the same field names and structure. You can use a different
dataset to create each result set, or you can use the same dataset.

arimax
Uses existing data to predict future data points. The arimax statement must follow a projection statement in your query. Perform any
filtering pre-projection or after the arimax statement.

Note: The arimax statement requires a CRM Analytics Growth or CRM Analytics Plus license to return a full set of results.

Usage
arimax is a variant of the timeseries statement that provides a different algorithm to predict data points. Use arimax when
you want predictions performed with a more general model that can take multiple variables.

Syntax
result = arimax resultSet generate measure1 as fmeasure1 with (parameters);

37

arimaxSAQL Reference

parameters can have these values:

• arimaOrder (required if seasonalOrder isn’t specified) Specify the order for the ARIMA model. For example,
arimaOrder=(p,d,q), where p, d, and q are integers. The integer values must be between 0 and 5.

Note: p is the AR order, d is the degree of differencing, and q is the MA order.

• seasonalOrder (required if arimaOrder isn’t specified) Specify the seasonal order for the ARIMA model. For example,
seasonalOrder=(P,D,Q,s), where P, D, Q are integers and s is the period. The integer values must be between 0 and
5. The s value must be 0 or between 2 and 24. s can only be 0 when P, D, and Q are also all 0.

Note: P is the seasonal AR order, D is the degree of seasonal differencing, Q is the seasonal MA order, and s is the seasonal
periodicity.

• xreg (optional) External regressors or co-factors. For example, xreg=('col1','col2',...). The values for xreg must
be measures. The maximum number of xreg fields allowed is 10.

• xregFutures (optional) Future scenario data for the xreg parameter as a map of values arrays. The number of values in each
array must match the value for the length parameter. The key for each array value is the name of an xreg measure.

Note: If seasonalOrder and dateType aren’t specified in the query, the algorithm runs an auto-param search on a few
popular seasonalities to find the best fit.

arimax also supports the following timeseries parameters, with the same meaning and behavior.

• length (required) Number of points to predict. For example, if length is 6 and the dateCols type string is Y-M, arimax
predicts data for 6 months.

Note: If you want to use dateCols but your data stream has missing dates, use fill before using arimax.

• dateCols (optional) Date fields to use for grouping the data, plus the date column type string. For example,
dateCols=(CloseDate_Year, CloseDate_Month, "Y-M"). Date columns are projected automatically. Allowed
values are:

– YearField, MonthField, "Y-M"

– YearField, QuarterField, "Y-Q"

– YearField, "Y"

– YearField, MonthField, DayField "Y-M-D"

– YearField, WeekField "Y-W"

• ignoreLast (optional) If true, arimax doesn't use the last time period in the calculations. The default is false.

Set this parameter to true to improve the accuracy of the forecast if the last time period contains incomplete data. For example,
if you’re partway through the quarter, arimax forecasts more accurately if you set this parameter to true.

• order (optional) Specify the field to use for ordering the data. Mandatory if dateCols isn’t used. By default, this field is sorted
in ascending order. Use desc to specify descending order, for example order=('Type' desc). You can also order by
multiple fields, for example order=('Type' desc, 'Group' asc).

For example, suppose that your data has no date columns, but it has a measure column called Week. Use order='Week'.

Note: Specify either dateCols or order.

38

arimaxSAQL Reference

• partition (optional) Specify the column used to partition the data. The column must be a dimension. The arimax calculation
is done separately for each partition to ensure that each partition uses the most accurate algorithm. For example, data in one partition
can have a seasonal variation while data in another partition doesn't. The partition columns are projected automatically.

For example, suppose that your sales data for raw materials contains the date sold, type of raw material, and the weight sold. To
predict the future weight sold for each type of raw material, use partition='Type'.

• predictionInterval (optional) Specify the uncertainty, or confidence interval, to display at each point. Allowed values are
80 and 95. The upper and lower bounds of the confidence interval are projected in columns named column_name_low_95
and column_name_high_95.

Note: arimax doesn’t support missing data values in the forecast or xreg measures. You must pre-process your data to
replace missing values in the query before calling arimax

.

Syntax Examples
• Use arimax with the arimaOrder parameter.

q = arimax q generate 'Value' as 'fValue' with (length=10, dataCols=('Year', 'Month',
'Day', "Y-M-D"), arimaOrder=(1,0,1));

• Use arimax with the arimaOrder, xreg, and ignoreLast parameters.

q = arimax q generate 'Value' as 'fValue' with (length=10, dataCols=('Year', 'Month',
'Day', "Y-M-D"), arimaOrder=(1,0,1), xreg=('Price', 'Cost'), ignoreLast=true);

• Use multiple columns in the arimax forecast. If xreg is specified, multiple columns aren’t allowed. = arimax q generate
'Value' as 'fValue', 'Value2' as 'fValue2' with (length=10, dataCols=('Year', 'Month',
'Day', "Y-M-D"), arimaOrder=(1,0,1));

• Use arimax with the arimaOrder, seasonalOrder, and xreg parameters.

q = arimax q generate 'Value' as 'fValue' with (length=10, dataCols=('Year', 'Month',
'Day', "Y-M-D"), arimaOrder=(1,0,1), seasonalOrder=(1,0,1,4), xreg=('Price', 'Cost'));

Type of SeasonalitydateColsseasonality

Yearly seasonality, because there are 4
quarters in a year.

dateCols=('Year','Quarter',"Y-Q")seasonalOrder=(1,0,1,4)

Yearly seasonality, because there are 12
months in a year.

dateCols=('Year','Month',"Y-M")seasonalOrder=(1,0,1,12)

Weekly seasonality, because there are 7 days
in a week.

dateCols=('Year','Month','Day',"Y-M-D")seasonalOrder=(1,0,1,7)

Note: When the date type in the dateCols value doesn’t match the seasonal periodicity in seasonalOrder, the seasonal
periodicity takes precedence. For example, if dateCols=('Year','Month',"Y-M") and
seasonalOrder=(1,0,1,4) are in the same arimax statement, the seasonal period used for predictions is 4 or "Y-Q",
not "Y-M".

39

arimaxSAQL Reference

Use Case Examples
Suppose you have a dataset with 5 years of monthly power usage for a city, along with the corresponding average temperature and
precipitation for each month.

You can use a seasonal arimax query to predict the next 12 months of power usage, refining each prediction by adding more
parameters to your query. Start with a single variable prediction, then make it multivariate by adding xreg, and finally, create a what-if
analysis by adding xregFutures. For each visualization, a timeline chart is used, with Axis Mode set to Single Axis, Show Value As
set to Compact Number, and a predictive line added to the X-Axis.

Example: Seasonal QueryUse a seasonal arimax query to predict how much power the city will use in the upcoming year.

q = load "nyc_power_dates3";
q = group q by (CurrentDate_Year, CurrentDate_Month);
q = foreach q generate CurrentDate_Year, CurrentDate_Month, sum(power) as power;
q = arimax q generate power as fPower with (length=12, dateCols=(CurrentDate_Year,
CurrentDate_Month, "Y-M"), arimaOrder=(0,1,1), seasonalOrder=(0,1,1,12));
q = foreach q generate 'CurrentDate_Year' + "~~~" + 'CurrentDate_Month' as
'CurrentDate_Year~~~CurrentDate_Month', fPower;

40

arimaxSAQL Reference

Example: Multivariate Seasonal Query

Use a seasonal multivariate arimax query to predict how much power the city will use, using the temperature and
precipitation measures in the calculation of the predicted values.

q = load "nyc_power_dates3";
q = group q by (CurrentDate_Year, CurrentDate_Month);
q = foreach q generate CurrentDate_Year, CurrentDate_Month, sum(power) as power,
sum(temperature) as temperature, sum(precipitation) as precipitation;
q = arimax q generate power as fPower with (length=12, dateCols=(CurrentDate_Year,
CurrentDate_Month, "Y-M"), xreg=(temperature, precipitation), arimaOrder=(0,1,1),
seasonalOrder=(0,1,1,12));
q = foreach q generate 'CurrentDate_Year' + "~~~" + 'CurrentDate_Month' as
'CurrentDate_Year~~~CurrentDate_Month', fPower, temperature, precipitation;

Example: Multivariate Seasonal Query with Prediction Interval

Use a seasonal multivariate arimax query to predict how much power the city will use, using the temperature and
precipitation measures in the calculation of the predicted values. Then, add a predictionInterval to show the
prediction with 95% accuracy

q = load "nyc_power_dates3";
q = group q by (CurrentDate_Year, CurrentDate_Month);
q = foreach q generate CurrentDate_Year, CurrentDate_Month, sum(power) as power,
sum(temperature) as temperature, sum(precipitation) as precipitation;
q = arimax q generate power as fPower with (length=12, predictionInterval=95
dateCols=(CurrentDate_Year, CurrentDate_Month, "Y-M"), xreg=(temperature, precipitation),
arimaOrder=(0,1,1), seasonalOrder=(0,1,1,12));
q = foreach q generate 'CurrentDate_Year' + "~~~" + 'CurrentDate_Month' as
'CurrentDate_Year~~~CurrentDate_Month', fPower, fPower_high_95, fPower_low_95;

41

arimaxSAQL Reference

Example: What-If Analysis Query

Use the xregFutures parameter to provide possible future values for xreg fields to see what the effects are on the forecasted
fields for different sets of values

q = arimax q generate 'Value' as 'fValue' with (length=6, dateCols=('Year','Month','Day',
"Y-M-D"),
arimaOrder=(1,0,1), xreg=('col1', 'col2'), xregFutures=(col1: [1.0, 2.0, 3.0, 4.0,
5.0, 6.0], col2: [1.1, 2.2 3.3, 4.4, 5.5, 6.6]));

The user can pass in values for xreg fields that they want to do the what-if analysis on.

Add xregFutures to the seasonal multivariate arimax query to predict how much power the city will use with
future temperature and precipitation values. In this query, the final 6 temperature future values have been
increased by 10 degrees each to alter the calculated values in the visualization.

q = load "nyc_power_dates3";
q = group q by (CurrentDate_Year, CurrentDate_Month);
q = foreach q generate CurrentDate_Year, CurrentDate_Month, sum(power) as power,
sum(temperature) as temperature, sum(precipitation) as precipitation;
q = arimax q generate power as fPower with (length=12, dateCols=(CurrentDate_Year,
CurrentDate_Month, "Y-M"),
xreg=(temperature, precipitation), arimaOrder=(0,1,1), seasonalOrder=(0,1,1,12),
xregFutures=(temperature: [67.09, 58.49, 44.91, 41.89, 34.75, 34.20, 39.18, 61.51,
70.59, 82.13, 89.54, 84.12],
precipitation: [0.0081, 0.0049, 0.0036, 0.0067, 0.0031, 0.0060, 0.0053, 0.0015, 0.0050,
0.0079, 0.0028, 0.0034]));
q = foreach q generate 'CurrentDate_Year' + "~~~" + 'CurrentDate_Month' as
'CurrentDate_Year~~~CurrentDate_Month', fPower, temperature, precipitation;

SEE ALSO:

arimax Show Parameters Query Tool

timeseries

Use Show Parameters with No Seasonality to Model BIC Values

cogroup
Use cogroup to combine data from two or more data streams into a single data stream. The data streams must have at least one
common field.

cogroup is similar to relational database joins, but with some important differences. Unlike a relational database join, in a cogroup
the datasets are grouped first, and then the groups are joined. You can use cogroup in these ways:

• inner cogroup

42

cogroupSAQL Reference

• left outer cogroup

• right outer cogroup

• full outer cogroup

Note: The statements cogroup and group are interchangeable. For clarity, we use group for statements involving one
data stream and cogroup for statements involving two or more data streams.

Inner cogroup
Inner cogroup combines data from two or more data streams into a resulting data stream. The resulting data stream only contains
values that exist in both data streams. That is, unmatched records are dropped.

Syntax

result = cogroup data_stream_1 by field1, data_stream_2 by field2;

field1 and field2 must be the same type, but can have different names. For example, q=group ops by 'Owner',
quota by 'Name';

Example - Inner cogroup
Suppose that you want to understand how much time your reps spend meeting with each account. Is there a relationship between
spending more time and winning an account? Are some reps spending much more or much less time than average? To answer these
questions, first combine meeting data with account data using cogroup.

Suppose that you have a dataset of meeting information from the Salesforce Event object. In this example, your reps have had six
meetings with four different companies. The Meetings dataset has a MeetingDuration column, which contains the meeting duration in
hours.

The account data exists in the Salesforce Opportunity object. The Ops dataset has an Account, Won, and Amount column. The Amount
column contains the dollar value of the opportunity, in millions.

43

cogroupSAQL Reference

To see the effect of meeting duration on opportunities, you start by combining these two datasets into a single data stream using
cogroup.

q = cogroup ops by 'Account', meetings by 'Company';

Internally (you cannot see these results yet), the resulting cogrouped data stream contains the following data. Note how the data streams
are rolled up on one or more dimensions.

(1,{(Shoes2Go,2),(Shoes2Go,5)},{(Shoes2Go,1,1.5),(Shoes2Go,0,3})

(2,{(FreshMeals,3),(FreshMeals, 1)},{(FreshMeals,1,2) (FreshMeals,1,1.4)})

(3,{(ZipBikeShare,4)},{(ZipBikeShare,1,1.1)})

(4,{(ZenRetreats,6)},{(ZenRetreats,0,2)})

Now the datasets are combined. To see the data, you create a projection using foreach:

ops = load "Ops";
meetings = load "Meetings";
q = cogroup ops by 'Account', meetings by 'Company';
q = foreach q generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum_Amount',
sum(meetings.'MeetingDuration') as 'TimeSpent';

The resulting data stream contains the sum of amount and total meeting time for each company. The sum of amount is the sum of the
dollar value for every opportunity for the company.

Now that you have combined the data into a single data stream, you can analyze the effects that total meeting time has on your
opportunities.

44

cogroupSAQL Reference

Left Outer cogroup
Left outer cogroup combines data from the right data stream with the left data stream. The resulting data stream only contains values
that exist in the left data stream. If the left data stream has a value that the right data stream does not, the missing value is null in the
resulting data stream.

Tip: Use coalesce to replace a null value with the value of your choice.

Syntax

result = cogroup data_stream_1 by field1 left, data_stream_2 by field2;

field1 and field2 must be the same type, but can have different names. For example, q=group ops by 'Owner' left,
quota by 'Name';

Example - Left Outer cogroup With coalesce
Suppose that you want to see what percentage of quota that your reps have obtained. Your quota dataset shows each employee's quota
(notice that Farah does not have a quota):

Your opportunities data shows the opportunity amount that each employee has won (notice that Jonathan does not have a won
opportunity).

Use a left outer cogroup to show only employees that have quotas. Also show the percentage of quota attained.

quota = load "Quota";
opp = load "Opportunity";
q = group quota by 'Employee' left, opp by 'Employee';
q = foreach q generate quota.'Employee' as 'Employee',
trunc(sum(opp.'Amount')/sum(quota.'Quota')*100, 2) as 'Percent Attained';

45

cogroupSAQL Reference

Jonathan has not won any opportunities yet, so his percent attained is null.

Use coalesce to replace the null opportunities with a zero.

quota = load "Quota";
opp = load "Opportunity";
q = group quota by 'Employee' left, opp by 'Employee';
q = foreach q generate quota.'Employee' as 'Employee',
trunc(coalesce(sum(opp.'Amount'),0)/sum(quota.'Quota')*100, 2) as 'Percent Attained';

Now Jonathan's percent attained is displayed as zero.

Right Outer cogroup
Right outer cogroup combines data from the left data stream with the right data stream. The resulting data stream only contains
values that exist in the right data stream. If the right data stream has a value that the left data stream does not, the missing value is null
in the resulting data stream.

Tip: Use coalesce to replace a null value with the value of your choice.

Syntax

result = cogroup data_stream_1 by field1 right, data_stream_2 by field2;

field1 and field2 must be the same type, but can have different names. For example, q=group ops by 'Owner'
right, quota by 'Name';

Full Outer cogroup
Full outer cogroup combines data from the left and right data streams. The resulting data stream contains all values. If one data stream
has a value that the other data stream does not, the missing value is null in the resulting data stream.

Tip: Use coalesce to replace a null value with the value of your choice.

46

cogroupSAQL Reference

Syntax

result = cogroup data_stream_1 by field1 full, data_stream_2 by field2;

field1 and field2 must be the same type, but can have different names. For example, q=group ops by 'Owner' full,
quota by 'Name';

SEE ALSO:

union

join semi and anti

join semi and anti

Combine Data from Multiple Data Streams with cogroup

Replace Null Values with coalesce()

group-by

fill
Use fill() to fill in any gaps in date fields. You most often use fill() before using the timeseries statement. By specifying
the date fields to check, fill() creates a row that contains the missing month, day, week, quarter, or year and includes a null value.
To include values outside the bounds of your data’s date range, specify a start date and end date to override existing limits. The function
returns the missing date rows with null values.

Syntax

results = fill resultSet by (dateCols=(dateField1, dateField2, "<date format>"),
startDate=startDate, endDate=endDate, [partition])

DescriptionName

Required. The results of a query that serve as input to the fill()
function. This resultSet must have non-null input, or the
timeseries() statement fails when run.

resultSet

Required.

date_fields—The date fields in which to check for gaps.

dateCols

The date format string accepts these values.

• 'yearField', ‘'monthField', 'Y-M'

• 'yearField', 'quarterField', 'Y-Q'

• 'yearField', 'Y'

• 'yearField', 'weekField', 'Y-W'

• 'yearField', 'monthField', 'dayField',
'Y-M-D'

startDate—The starting date value beyond the scope of your
data's date range.

47

fillSAQL Reference

DescriptionName

endDate—The ending date value beyond the scope of your
data's date range.

• You can use startDate and endDate together or one
and not the other.

• If you leave out startDate, then the start date is the earliest
date in your dataset.

• If you leave out endDate, then the end date is the latest date
in your dataset.

• If startDate and endDate are within the bounds of
your dataset, fill() ignores them.

Optional. A named parameter used to split query results into smaller
parts. The fill() function resets when the named parameter

partition

value changes. After each group of rows is completed for a given
partition, fill() runs on the next partition.

Example
This example uses fill() to add missing quarter and year values to tourist data.

q = load "TouristsData";
q = foreach q generate date_Year, date_Quarter, tourists;
q = fill q by (dateCols=(date_Year, date_Quarter, "Y-Q"));
q = limit q 15;

The query first returns the year, quarter, and number of tourists for each quarter. Based on the results from the first three years represented
in the dataset, the only date data available is for the first quarter.

These are the results from q = load "TouristsData"; q = foreach q generate date_Year, date_Quarter,
tourists;.

touristsquarteryear

412712001

417312002

462112003

fill() specifies in the date_cols array to group the input data by the quarter and year. To have a complete dataset of years and
quarters, fill() adds the 2nd, 3rd, and 4th quarters for each year and a null value for the number of tourists.

touristsquarteryear

412712001

-22001

-32001

48

fillSAQL Reference

touristsquarteryear

-42001

417312002

-22002

-32002

-42002

462112003

-22003

-32003

-42003

Example with Extended Date Range
This query returns null values for tourists where date_Month and date_Year come before or after the date values in the dataset
or there are gaps within the data provided.

q = load "TouristsData";
q = foreach q generate date_Year, date_Month, tourists;
q = fill q by (dateCols=(date_Year, date_Month, "Y-M"), startDate="2000-10",
endDate="2001-07");
q = limit q 10;

touristsdate_Yeardate_Month

-200010

-200011

-200012

41,735200101

-200102

-200103

26,665200104

-200105

-200106

-200107

filter
Selects rows from a dataset based on a filter predicate.

49

filterSAQL Reference

Syntax

result = filter rows by predicate;

Usage
A predicate is a Boolean expression that uses comparison or logical operators. The predicate is evaluated for every row. If the predicate
is true, the row is included in the result. Comparisons on dimensions are lexicographic, and comparisons on measures are numerical.

When a filter is applied to grouped data, the filter is applied to the rows in the group. If all member rows are filtered out, groups are
eliminated. You can run a filter statement before or after group to filter out members of the groups.

Note: With results binding, an error may occur if the results from a previous query exceed the values supported by SAQL. For
example, if something like filter q by dim1 in {{results(Query_1)}}; produces a filter tree with a depth
greater than 10,000 values, SAQL will fail with an error.

Example: The following example returns only rows where the origin is ORD, LAX, or LGA:

a1 = filter a by origin in ["ORD", "LAX", "LGA"];

Example: The following example returns only rows where the destination is LAX or the number of miles is greater than 1,500:

y = filter x by dest == "LAX" || miles > 1500;

Example: When in operates on an empty array in a filter operation, everything is filtered and the results are empty. The
second statement filters everything and returns empty results:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
a = filter a by Year in [];
c = group a by ('Year', 'Name');
d = foreach c generate 'Name' as 'group::AName', 'Year' as 'group::Year',
sum(accounts::Revenue) as 'sRev';

SEE ALSO:

Comparison Operators

Logical Operators

Statements

Null Operators

Use Group and Filter Pre-projection

foreach
Applies a set of expressions to every row in a dataset. This action is often referred to as projection.

Syntax

q = foreach q generate expression as alias[, expression as alias ...];

The output column names are specified with the as keyword. The output data is ungrouped.

50

foreachSAQL Reference

Using foreach with Ungrouped Data
When used with ungrouped data, the foreach statement maps the input rows to output rows. The number of rows remains the
same.

Example: a2 = foreach a1 generate carrier as carrier, miles as miles;

Using foreach with Grouped Data
When used with grouped data, the foreach statement behaves differently than it does with ungrouped data.

Fields can be directly accessed only when the value is the same for all group members. For example, the fields that were used as the
grouping keys have the same value for all group members. Otherwise, use aggregate functions to access the members of a group. The
type of the column determines which aggregate functions you can use. For example, if the column type is numeric, you can use the
sum() function.

Example: z = foreach y generate day as day, unique(origin) as uorg, count() as n;

Using foreach with a case Expression
To create logic in a foreach statement that chooses between conditional statements, use a case expression.

Projected Field Names
Each field name in a projection must be unique and not have the name 'none'. Invalid field names throw an error.

For example, the last line in this query is invalid because the same name is used for multiple projected fields:

l = load "0Fabb000000002qCAA/0Fabb000000002WCAQ";
r = load "0Fcyy000000002qCAA/0Fcyy000000002WCAQ";
l = foreach l generate 'value'/'divisor' as 'value' , category as category;
r = foreach r generate 'value'/'divisor' as 'value' , category as category;
cg = cogroup l by category right, r by category;
cg = foreach cg generate r.category as 'category', sum(r.value) as sumrval, sum(l.value)
as sumrval;

The following query is also invalid because the projected field name can't be 'none'.

q = load "Products";
q = group q by all;
q = foreach q generate count() as 'none';
q = limit q 2000;

Examples
For examples of projections, see Calculate Grand Totals and Subtotals with the rollup Modifier and grouping() Function .

SEE ALSO:

Statements

51

foreachSAQL Reference

group-by
Organizes the rows returned from a query into groups. Within each group, you can apply an aggregate function, such as count() or
sum() to get the number of items or sum, respectively.

Syntax
group-by takes this syntax.

group data_stream by fields;

data_stream
Data input to group.

fields
Fields by which data is grouped.

Group-by One Field
In this example, the query counts the number of rows for each Category field and groups the counts by category.

q = load "Superstore";
q = group q by 'Category';
q = foreach q generate 'Category' as 'Category', count() as 'count';
q = limit q 2000;

Count of RowsCategory

2,121Furniture

6,026Office Supplies

1,847Technology

Note: cogroup and group-by are interchangeable. For clarity, we use group-by for statements that involve one data
stream and cogroup for statements that involve two or more data streams.

Group-by with Null Values
To return grouped null values in your queries, you must select the preference to include null values in Setup. Otherwise, queries ignore
null values.

1. In Setup, enter Analytics in the Quick Find box.

2. Select Settings from the list of Analytics options.

3. In Settings, click the checkbox for Include null values in Analytics queries.

52

group-bySAQL Reference

Here’s an example of a query that returns null values. It orders the results by the Sub_Category field and specifies that the results
display in ascending order, with nulls first.

q = load "Superstore";
q = group q by 'Sub_Category';
q = foreach q generate 'Sub_Category' as 'Sub_Category', count() as 'count';
q = order q by 'Sub_Category' asc nulls first;
q = limit q 2000;

Count of RowsSub-Category

4-

775Accessories

466Appliances

796Art

1,523Binders

228Bookcases

617Chairs

68Copiers

254Envelopes

217Fasteners

957Furnishings

364Labels

115Machines

1,370Paper

889Phones

846Storage

190Supplies

319Tables

Group-by all

In this example, the query counts all of the rows and returns the number of different industries that you have opportunities with.

q = load "DTC_Opportunity_SAMPLE";
q = group q by all;
q = foreach q generate unique('Industry') as 'unique_Industry';

53

group-bySAQL Reference

Unique of Industry#

201

SEE ALSO:

Aggregate Functions

Null Operators

cogroup

Use Group and Filter Pre-projection

group-by rollup
rollup is a subclause of group-by that creates and displays aggregations of grouped data. The output of rollup is based on
column order in your query.

Syntax
group-by rollup takes this syntax.

group data_stream by rollup(fields);

data_stream
Data input to group.

fields
Fields by which data is grouped.

Note: rollup works with group-by only. You cannot use it with cogroup.

rollup supports the following aggregate functions.

• average()

• count()

• min()

• max()

• sum()

• unique()

This example first groups the results by Category and Sub-Category, and runs sum('Sales'), an aggregate function on
each resulting row. By modifying the group-by clause with rollup, the query "rolls up" the results into subtotals and a grand total.

q = load "Superstore";
q = group q by rollup('Category', 'Sub_Category');
q = order q by ('Category');
q = foreach q generate 'Category' as 'Category', 'Sub_Category' as 'Sub_Category',
sum('Sales') as 'sum_sales';

sum_salesSub-CategoryCategory

114,348BookcasesFurniture

54

group-by rollupSAQL Reference

sum_salesSub-CategoryCategory

328,237Chairs

91,514Furnishings

206,966Tables

741,064-

107,532AppliancesOffice Supplies

27,119Art

203,413Binders

16,363Envelopes

3,024Fasteners

12,486Labels

78,479Paper

223,844Storage

46,674Supplies

718,934-

167,380AccessoriesTechnology

149,528Copiers

189,239Machines

329,636Phones

835,783-

2,295,781-

The query first groups the total sales for each sub-category of a given category. Next, it groups the total sales for a single category. After
each category's total sales is accounted for, the query generates the total sales for all categories.

rollup with Null Values

Note: To return grouped null values in your queries, you must select the null handling for dimensions preference in Setup. See
group-by for more information.

This example shows how null values display in query results. The query is the same as the one in the first example.

q = load "Superstore";
q = group q by rollup('Category', 'Sub_Category');
q = foreach q generate 'Category' as 'Category', 'Sub_Category' as 'Sub_Category',
sum('Sales') as 'sum_sales';
q = order q by ('Category', 'Sub_Category');

55

group-by rollupSAQL Reference

sum_salesSub-CategoryCategory

114,348BookcasesFurniture

328,237Chairs

91,514Furnishings

206,966Tables

92-

741,156-

107,532AppliancesOffice Supplies

27,119Art

203,413Binders

16,363Envelopes

3,024Fasteners

12,486Labels

78,479Paper

223,844Storage

46,674Supplies

273-

719,206-

167,380AccessoriesTechnology

149,528Copiers

189,239Machines

329,636Phones

259-

836,041-

113Computers-

744Projectors

562-

1,420

2,297,824

The query first groups the total sales for each sub-category of a given category. In this example, each category contains a null sub-category.
The value of the null sub-category is also included in the total sales for each sub-category.

56

group-by rollupSAQL Reference

After the query accounts for all of the named categories—categories that have a value—it displays the sub-categories and total sales
for null categories. Finally, the query generates the total sales for all categories.

rollup with Null Values and case Statements
Use the grouping function and case statements together to label the subtotal and grand total categories. In this example, the first
case checks for a null value generated by the rollup in the Category field. If true, then the query labels the field All Categories.
The second case checks whether a Sub-Category field is similarly null. If true, then the query labels the field All
Sub-Categories.

q = load "Superstore";
q = group q by rollup ('Category', 'Sub_Category');
q = foreach q generate
(case

when grouping('Category') == 1 then "All Categories"
else 'Category'

end) as 'Category',
(case

when grouping('Sub_Category') == 1 then "All Sub-Categories"
else 'Sub_Category'

end) as 'SubCategory', sum('Sales') as 'sum_sales';

sum_salesSub-CategoryCategory

114,348BookcasesFurniture

328,237Chairs

91,514Furnishings

206,966Tables

92-

741,156All Sub-Categories

107,532AppliancesOffice Supplies

27,119Art

203,413Binders

16,363Envelopes

3,024Fasteners

12,486Labels

78,479Paper

223,844Storage

46,674Supplies

273-

719,206All Sub-Categories

57

group-by rollupSAQL Reference

sum_salesSub-CategoryCategory

167,380AccessoriesTechnology

149,528Copiers

189,239Machines

329,636Phones

259-

836,041All Sub-Categories

113Computers-

744Projectors

562-

1,420All Sub-Categories

2,297,824All Sub-CategoriesAll Categories

SEE ALSO:

Null Operators

Simple case Operator

Aggregate Functions

grouping()

join semi and anti
Use the join statement with the join_type to create semi-join or anti-join results.

Usage
A semi-join returns the rows from one data stream if one or more matching rows are found in the second data stream. Each matched
row is returned one time. The row data types must match for the specified data streams.

An anti-join returns the rows in the first data stream that don’t match any rows in the second data stream.

Syntax
results = join alias1 by (field1, ... fieldK) join_type, alias2 by (field1, ... fieldK)

DescriptionName

Required. The data stream to report semi-join or anti-join results
for.

alias1

Required. The data stream to look for matches or no matches in.alias2

58

join semi and antiSAQL Reference

DescriptionName

Required. The field name as it appears in the data stream. The field
data type must be the same in alias1 and alias2 to match.

field1

Multi-value fields aren’t allowed. At least 1 field is requires, with a
maximum of 5 fields allowed. Duplicate field names aren’t allowed
in either data stream.

Required. The type of join to run. Valid values are semi and anti.join_type

The result stream contains the matched or unmatched rows from the alias1 data stream only. For a semi-join, a row from alias1 is
only present if it satisfies the join criteria. The syntax supports equijoin (equality) criteria only. There isn't a guarantee that the rows
in the result stream are in the same order as in alias1.

The parenthesis used to specify the fields are optional if there’s only 1 field.

The input data stream aliases must be unique. These streams can't be unprojected group or cogroup results, either directly or
indirectly. The group or cogroup statement is made after the join statement.

Note: The join alias field must be a dimension or a date. If you use a measure field as an alias, the query returns an
error stating Error in join: non-dimension field: {field1} is not allowed in pre-projection
alias: {alias1} at join keys list position: 1. This restriction is only for pre-projection alias. All data
types are allowed in the post-projection alias.

For example, to use a measure in a join, project the measure field first. This query joins Number_of_Employees, a measure,
by projecting it before running the join.

c = load \"cases\";
c = foreach c generate ID, Industry, Name, Year, Number_of_Employees;
a = load \"accounts\";
a = foreach a generate ID, Industry, Name, Year, Number_of_Employees;
a = join a by Number_of_Employees semi, c by Number_of_Employees;
a = order a by (ID);

Example: Semi-Join Syntax

a = join a by (id) semi, b by (id);

Example: Anti-Join Syntax

a = join a by (id) anti, b by (id);

Example: Multiway Semi-Join Syntax

join statements can be combined to form a multiway semi-join. A maximum of 3 join statements are allowed in a query.
These statements combine into a conjunctive predicate.

a = join a by (id) semi, b by (id);
a = join a by (id) anti, c by (id);

59

join semi and antiSAQL Reference

join Use Cases
Use a join statement to query for accounts with at least 1 opportunity

account = load \"accounts\";
opp = load \"opportunities\";
q = join account by (id) semi, opp by (accountId);

Use a join statement to query for accounts with opportunity amount more than 10K.

account = load \"accounts\";
opp = load \"opportunities\";
opp = filter opp by amount > 10000;
q = join account by (id) semi, opp by (accountId);

Use a join statement to query for accounts with more than 10 opportunities.

account = load \"accounts\";
opp = load \"opportunities\";
opp = group opp by accountId;
opp = foreach opp generate accountId, count() as count;
opp = filter opp by count > 10;
q = join account by (id) semi, opp by (accountId);

Use a join statement to query for accounts with no opportunities.

account = load \"accounts\";
opp = load \"opportunities\";
q = join account by (id) anti, opp by (accountId);

Use a join statement to query for accounts with opportunities, but no orders.

account = load \"accounts\";
opp = load \"opportunities\";
orders = load \"orders\";
q = join account by (id) semi, opp by (accountId);
q = join q by (id) anti, orders by (accountId)

Example: Null Handling

Running the join query with null fields is a special case. For the SAQL anti-join statement, null isn't equal to null, which differs
from the cogroup statement. The behavior of the statement is the same as NOT EXISTS in SQL.

In this example, imagine you’re joining the accounts and the opportunities data streams, which contain these rows:

opportunitiesaccounts

account_idid

11

NULL2

NULL

60

join semi and antiSAQL Reference

For SAQL, this statement:

a = load \"accounts\";
opp = load \"opportunities\";
q = join a by (id) anti, opp by (account_id);
q = foreach q generate id, name;

has the same behavior as this SQL statement:

select id, name from accounts a where not EXISTS (select 1 from opportunities opp where
opp.account_id = a.id);

The SAQL anti-join query returns two rows:

[
{ id : null },
{ id : 2 }

]

SEE ALSO:

cogroup

cogroup

limit
Limits the number of results that are returned. If you don’t set a limit, queries return a maximum of 10,000 rows.

Syntax

result = limit rows number;

Usage
Use this statement only on data that has been ordered with the order statement. The results of a limit operation aren’t automatically
ordered, and their order can change each time that statement is called.

You can use the limit statement with ungrouped data.

You can use the limit statement to limit grouped data by an aggregated value. For example, to find the top 10 regions by revenue:
group by region, call sum(revenue) to aggregate the data, order by sum(revenue) in descending order, and limit the
number of results to the first 10.

Note: The limit statement isn’t a top() or sample() function.

Example: This example limits the number of returned results to 10:

b = limit a 10;

61

limitSAQL Reference

The expression can’t contain any columns from the input. For example, this query is not valid:

b = limit OrderDate 10;

SEE ALSO:

Statements

order

load
Loads a dataset. All SAQL queries start with a load statement.

Syntax

result = load dataset;

If you’re working in Dashboard JSON, dataset must be the dataset name from the UI. Use of the dataset name (also called an alias)
means the app can substitute it with the correct version of the dataset.

If you’re working in the Analytics REST API, dataset must be the containerId/versionId.

Usage
After being loaded, the data is not grouped. The columns are the columns of the loaded dataset.

Example: Load the Accounts dataset to the stream 'b'. b = load "Accounts";

offset
Use offset to page through the results of your query.

Syntax

result = offset rows number;

Usage
Skips over the specified number of rows when returning the results of a query. You typically use offset to paginate the query results.

When using offset in your SAQL statements, be aware of these rules:

• The order of filter and order can be swapped because it doesn't change the results

• offset must be after order

• offset must be before limit

• There can be no more than one offset statement after a foreach statement

62

loadSAQL Reference

Example - Return Rows 51–101
This example loads the opportunity dataset, sorts the rows in alphabetical order by account owner, and returns rows 51–101:

q = load "DTC_Opportunity";
q = order q by 'Account_Owner';
q = foreach q generate 'Account_Owner' as 'Account_Owner', 'Account_Type' as 'Account_Type',
'Amount' as 'Amount';
q = offset q 50;
q = limit q 50;

SEE ALSO:

Statements

order
Sorts in ascending or descending order on one or more fields.

Syntax

result = order rows by field [asc | desc];
result = order rows by (field [asc | desc], field [asc | desc]);
result = order rows by field [asc | desc] nulls [first | last];

asc or desc specifies whether the results are ordered in ascending (asc) or descending (desc) order. The default order is ascending.

Usage
Use order to sort the results in a data stream for display. You can use order with ungrouped data. You can also use order to
sort grouped data by an aggregated value.

Do not use order to specify the order that another SAQL statement or function will process records in. For example, do not use order
before timeseries to change the order of processing. Instead, use timeseries parameters.

By default, nulls are sorted last when sorting in ascending order and first when sorting in descending order. You can change the ordering
of nulls using nulls [first | last].

Note: Applying labels to dimension values in the XMD changes the displayed values, but doesn’t change the sort order.

Example: q = order q by 'count' desc;

Example: To order a stream by multiple fields, use this syntax:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = group a by (year, month);
c = foreach b generate year as year, month as month;
d = order c by (year desc, month desc);

Example: You can order a cogrouped stream before a foreach statement:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = load "0Fayy000000002qCAA/0Fbyy000000002WCAQ";

63

orderSAQL Reference

c = cogroup a by year, b by year;
c = order c by a.airlineName;
c = foreach c generate year as year;

Example: By default, nulls are sorted first when sorting in descending order. To change the null sort order to last, use this syntax:

q = order q by last_shipping_cost desc nulls last;

Example: You can’t reference a preprojection ID in a postprojection order operation. (Projection is another term for a foreach
operation.) This code throws an error:

q = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";

q = group q by 'FirstName';

q = foreach q generate sum('mea_mm10M') as 'sum_mm10M';

q = order q by 'FirstName' desc;

This code is valid:

q = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";

q = group q by 'FirstName';

q = foreach q generate 'FirstName' as 'User_FirstName', sum('mea_mm10M') as 'sum_mm10M';

q = order q by 'User_FirstName' desc;

SEE ALSO:

Statements

sample
Returns a random sample from a large dataset, where each data point has an equal probability of being selected. This keyword uses the
Bernoulli distribution.

Syntax

sample(percentage-size-of-dataset) repeatable(seed)

sample
Required. Specifies the percentage of the dataset that is returned as a random sample. The percentage size value can be any positive
decimal.

repeatable
Optional. To create a random sample deterministically, specify a seed. sample returns the same subset of data each time you pass
repeatable the same seed value. The seed value can be any positive integer.

Usage
Use sample to project a query on a representative sample from your dataset, where each data point has an equal probability of being
selected. sample runs pre-projection.

64

sampleSAQL Reference

Add sample and repeatable after the load statement. Any operation performed on the query after the load statement
affects only the random sample of data. Let’s look at an example.

q = load "Opportunity" sample(10) repeatable(1);
q = group q by all;
q = foreach q generate count() as 'count';
q = limit q 2000;

Count of Rows

453

Here, the query returns the row count of the sample, 453—around 10% of the dataset's 4.6k rows. The repeatable keyword
guarantees that the query always returns the same result. Without the repeatable keyword, the query returns a sample of a slightly
different size each time you run it. If you modify your dataset and add more data, then repeatable doesn’t return the same result.

group-by Example
This query returns the counts of opportunities for each stage. Since the query operates on 10% of the dataset, the counts for each stage
are approximately 1/10 of the original count.

q = load "Opportunity" sample(10) repeatable(1);
q = group q by 'StageName';
q = foreach q generate 'StageName', count() as 'count';
q = limit q 2000;

Count of RowsStage

89Closed Lost

254Closed Won

13Id. Decision Makers

15Needs Analysis

6Negotiation/Review

13Perception Analysis

9Proposal/Price Quote

10Prospecting

25Qualification

19Value Proposition

65

sampleSAQL Reference

filter Example
This query returns only the won opportunities for each stage. Since the query operates on 10% of the dataset, the count for each stage
is approximately 1/10 of the original count.

q = load "Opportunity" sample(10);
q = filter q by 'IsWon' == "true";
q = group q by 'StageName';
q = foreach q generate 'StageName', count() as 'count';
q = limit q 2000;

Count of RowsStage

275Closed Won

SEE ALSO:

Keywords

timeseries
Uses existing data to predict future data points. The timeseries statement must follow a projection statement in your query. Perform
any filtering pre-projection or after the timeseries statement.

Note: The timeseries statement requires a CRM Analytics Growth or CRM Analytics Plus license to return the full set of
results. Without one of these licenses, the timeseries statement doesn’t fail, but it only returns 1 period of forecasted data.

Usage
timeseries crunches your data and selects the forecasting model that gives the best fit. You can let timeseries select the best
model or specify the model you want. timeseries detects seasonality in your data. It considers periodic cycles when predicting
what your data will look like in the future. You can specify the type of seasonality or let timeseries choose the best fit.

The amount of data required to make a prediction depends on how your data is filtered and grouped. For example, for a non-seasonal
monthly model, 2 data points are sufficient, whereas for a seasonal monthly model, at least 24 data points (two seasonal cycles) are
required. If you don't have enough data to make a good prediction, timeseries returns nulls in the data. If no data is passed to
timeseries, an empty dataset is returned.

Syntax

result = timeseries resultSet generate (measure1 as fmeasure1 [, measure2 as
fmeasure2...]) with (parameters);

measure1, measure2, and so on, are the measures that you want to predict future values for. You can predict measures from
grouping queries or from simple values queries. The predicted values and the original values are projected together. The columns from
the previous foreach statement are also projected.

parameters can have the following values:

• length (required) Number of points to predict. For example, if length is 6 and the dateCols type string is Y-M, timeseries
predicts data for 6 months.

66

timeseriesSAQL Reference

Note: If you want to use dateCols but your data stream has missing dates, use fill before using timeseries.

timeseries makes the most accurate prediction possible by choosing the best algorithm for your data. Predictive algorithms
are more accurate for shorter time periods.

• dateCols (optional) Date fields to use for grouping the data, plus the date column type string. For example,
dateCols=(CloseDate_Year, CloseDate_Month, "Y-M"). Date columns are projected automatically. Allowed
values are:

– YearField, MonthField, "Y-M"

– YearField, QuarterField, "Y-Q"

– YearField, "Y"

– YearField, MonthField, DayField "Y-M-D"

– YearField, WeekField "Y-W"

• ignoreLast (optional) If true, timeseries doesn't use the last time period in the calculations. The default is false.

Set this parameter to true to improve the accuracy of the forecast if the last time period contains incomplete data. For example,
if you’re partway through the quarter, timeseries forecasts more accurately if you set this parameter to true.

• order (optional) Specify the field to use for ordering the data. Mandatory if dateCols isn’t used. By default, this field is sorted
in ascending order. Use desc to specify descending order, for example order=('Type' desc). You can also order by
multiple fields, for example order=('Type' desc, 'Group' asc).

For example, suppose that your data has no date columns, but it has a measure column called Week. Use order='Week'.

Note: Specify either dateCols or order.

• partition (optional) Specify the column used to partition the data. The column must be a dimension. The timeseries
calculation is done separately for each partition to ensure that each partition uses the most accurate algorithm. For example, data
in one partition can have a seasonal variation while data in another partition doesn't. The partition columns are projected automatically.

For example, suppose that your sales data for raw materials contains the date sold, type of raw material, and the weight sold. To
predict the future weight sold for each type of raw material, use partition='Type'.

• predictionInterval (optional) Specify the uncertainty, or confidence interval, to display at each point. Allowed values are
80 and 95. The upper and lower bounds of the confidence interval are projected in columns named column_name_low_95
and column_name_high_95.

• model (optional) Specify which prediction model to use. If unspecified, timeseries calculates the prediction for each model
and selects the best model using Bayesian information criterion (BIC).

Allowed values are:

– None timeseries selects the best algorithm for the data

– Additive uses Holt's Linear Trend or Holt-Winters method with additive components.

– Multiplicative uses Holt's Linear Trend or Holt-Winters method with multiplicative components

• seasonality (optional) Use with dateCols to specify the seasonality for your prediction. Allowed values are:

– 0 No seasonality

– any integer between 2 and 24

If unspecified, timeseries calculates the prediction for each type of seasonality and selects the results with the smallest error.

Example

67

timeseriesSAQL Reference

Type of SeasonalitydateColsseasonality

Yearly seasonality, because there are four
quarters in a year.

dateCols="Y-Q"seasonality=4

Yearly seasonality, because there are 12
months in a year.

dateCols="Y-M"seasonality=12

Weekly seasonality, because there are
seven days in a week.

dateCols="Y-M-D"seasonality=7

Tips
Here's how you can make the most of using timeseries:

• Are you currently part way through the month, quarter, or year? Consider setting ignoreLast to true so that timeseries
doesn't use the partial data in the current time period, leading to a more accurate prediction.

• Is timeseries not returning any data? If there aren't enough data points to make a good prediction, timeseries returns
null. Try increasing the number of data points.

• Is timeseries returning an error? You could have gaps in your dates or times. Like all good forecasting algorithms, timeseries
needs a continuous set of dates with no gaps, including in each partition. If you think your data has date gaps, try using fill on
page 47 first.

Example - How Many Tourists Will Visit Next Year?
Suppose that you run a chain of retail stores, and the number of tourists in your city affect your sales. Use timeseries to predict
how many tourists will come to your city next year:

q = load "TouristData";
q = group q by ('Visit_Year', 'Visit_Month');
q = foreach q generate 'Visit_Year', 'Visit_Month', sum('NumTourist') as 'sum_NumTourist';

-- If your data is missing some dates, use fill() before using timeseries()
-- Make sure that the dateCols parameter in fill() matches the dateCols parameter in
timerseries()
q = fill q by (dateCols=('Visit_Year','Visit_Month', "Y-M"));

-- Use timeseries() to predict the number of tourists.
q = timeseries q generate 'sum_NumTourist' as Tourists with (length=12,
dateCols=('Visit_Year','Visit_Month', "Y-M"));

q = foreach q generate 'Visit_Year' + "~~~" + 'Visit_Month' as 'Visit_Year~~~Visit_Month',
Tourists;

Use a timeline chart and set a predictive line to see the calculated future data. The resulting graph shows the likely number of tourists
in the future.

68

timeseriesSAQL Reference

Example - Predict a Range with 95% Accuracy
Suppose that you wanted to predict the number of tourists in your city next year with 95% accuracy. Use predictionInterval=95
to set a 95% confidence interval for the number of tourists. The upper and lower bounds are projected as the fields
Tourists_high_95 and Tourists_low_95.

q = load "TouristData";
q = group q by ('Visit_Year', 'Visit_Month');
q = foreach q generate 'Visit_Year', 'Visit_Month', sum('NumTourist') as 'sum_NumTourist';

-- If your data is missing some dates, use fill() before using timeseries()
-- Make sure that the dateCols parameter in fill() matches the dateCols parameter in
timerseries()
q = fill q by (dateCols=('Visit_Year','Visit_Month', "Y-M"));

-- use timeseries() to predict the number of tourists
q = timeseries q generate 'sum_NumTourist' as 'fTourists' with (length=12,
predictionInterval=95, dateCols=('Visit_Year','Visit_Month', "Y-M"));
q = foreach q generate 'Visit_Year' + "~~~" + 'Visit_Month' as 'Visit_Year~~~Visit_Month',
coalesce(sum_NumTourist,fTourists) as 'Tourists', fTourists_high_95, fTourists_low_95;

Use a timeline chart and set a predictive line to see the calculated future data. In the timeline chart options, select Single Axis for the
Axis Mode, fTourists_high_95 for Measure 1, and fTourists_low_95 for Measure 2. The resulting graph shows the likely number of
tourists in the future and the 95% confidence interval.

69

timeseriesSAQL Reference

Example - Predict Seasonal Data
Suppose that you want to predict the revenue for each type of account. You know that your account revenue has yearly seasonality and
that you want to group dates by quarter, so you specify dateCols=('Date_Sold_Year','Date_Sold_Quarter',
"Y-Q") and seasonality = 4. To see the predicted values over the next year, use length=4 to specify four quarters.

q = load "Account";
q = group q by ('Date_Sold_Year', 'Date_Sold_Quarter', 'Type');
q = foreach q generate 'Date_Sold_Year', 'Date_Sold_Quarter', 'Type', sum('Amount') as
'sum_Amount';

-- If your data is missing some dates, use fill() before using timeseries()
-- Make sure that the dateCols parameter in fill() matches the dateCols parameter in
timerseries()
q = fill q by (dateCols=('Date_Sold_Year','Date_Sold_Quarter', "Y-Q"), partition='Type');

-- use timeseries() to predict the amount sold
q = timeseries q generate 'sum_Amount' as Amount with (partition='Type',length=4,
dateCols=('Date_Sold_Year','Date_Sold_Quarter', "Y-Q"), seasonality = 4);
q = foreach q generate 'Date_Sold_Year' + "~~~" + 'Date_Sold_Quarter' as
'Date_Sold_Year~~~Date_Sold_Quarter','Type', Amount ;

Use a timeline chart and set a predictive line to see the calculated future data. The resulting graph shows the likely sum of revenue for
each account, taking into account the quarterly seasonal variation.

SEE ALSO:

Forecast Future Data Points with timeseries

arimax

union
Combines multiple result sets into one result set. The result sets must have the same field names and structure. You can use a different
dataset to create each result set, or you can use the same dataset.

Syntax

result = union resultSetA, resultSetB [, resultSetC ...];

Example
q = union q1, q2, q3;

70

unionSAQL Reference

Example
You want to see how each rep compares to the average for deals won. You can make this comparison by appending these two result
sets together:Then use union to append the two result sets.

• Total amount of opportunities won for each rep

• Average amount of opportunities won for all reps

First, show the total amount of won opportunities for each rep.

opt = load "DTC_Opportunity_SAMPLE";
opt = filter opt by 'Won' == "true";

-- group by owner
rep = group opt by 'Account_Owner';

-- project the sum of amount for each rep
rep = foreach rep generate 'Account_Owner' as 'Account_Owner', sum('Amount') as 'sum_Amount';

rep = order rep by 'sum_Amount' desc;

The resulting graph shows the sum of amount for each rep.

Next, calculate the average of the sum of the amounts for each rep using the average function.

-- grouping rep by all returns all the data in a single row.
avg_rep = group rep by all;

-- Calculate the average of the Sum of Amount column.
-- Use the text ‘Average Deal Size’ in the ‘Account Owner’ column
avg_rep = foreach avg_rep generate "Average deal size" as 'Account_Owner', avg('sum_Amount')
as 'sum_Amount';

Because the two data streams have the same field names and structure, you can use union to combine them.

q = union rep, avg_rep;

The resulting graph contains the sum of amounts by each rep together with the average amount per rep.

71

unionSAQL Reference

Combine the SAQL fragments to get the complete SAQL statement.

opt = load "DTC_Opportunity_SAMPLE";
opt = filter opt by 'Won' == "true";

-- group by owner
rep = group opt by 'Account_Owner';

-- project the sum of amount for each rep
rep = foreach rep generate 'Account_Owner' as 'Account_Owner', sum('Amount') as 'sum_Amount';

rep = order rep by 'sum_Amount' desc;

-- grouping rep by all returns all the data in a single row.
avg_rep = group rep by all;

-- Calculate the average of the Sum of Amount column.
-- Use the text ‘Average Deal Size’ in the ‘Account Owner’ column
avg_rep = foreach avg_rep generate "Average deal size" as 'Account_Owner', avg('sum_Amount')
as 'sum_Amount';

q = union rep, avg_rep;

SEE ALSO:

cogroup

Append Datasets using union

SAQL Functions

Use functions to perform complex operations on your data.

Aggregate Functions

Aggregate functions perform computations across all values of a grouped field.

72

SAQL FunctionsSAQL Reference

Date Functions

Use SAQL date functions to perform time-based analysis.

Time Zone Date Functions

When you enable the time zone feature, you can use the fields of the DateTime and DateOnly type to access date information
in the specified time zone. For example, if a user in New York runs a SAQL query, they see date information displayed in Eastern
Standard time.

Work with Custom Fiscal Year Data

After inheriting custom fiscal years, SAQL queries support custom fiscal year data.

String Functions

Use SAQL string functions to format your measure and dimension fields.

Math Functions

To perform numeric operations in a SAQL query, use math functions.

Windowing Functions

Use SAQL windowing functionality to calculate common business cases such as percent of grand total, moving average, year and
quarter growth, and ranking.

coalesce

Use coalesce() to get the first non-null value from a list of parameters, or to replace nulls with a different value.

Aggregate Functions
Aggregate functions perform computations across all values of a grouped field.

If you don't precede an aggregate function by a group by statement, it treats each line as its own group. Using an aggregate function
on an empty set returns null.

avg() or average()

Returns the average of the values of a measure field.

count()

Returns the number of rows that match the query criteria.

first()

Returns the first value for the specified field.

last()

Returns the last value in the tuple for the specified field.

max()

Returns the maximum value of a dimension or measure field.

median()

Returns the median value of a measure field.

min()

Returns the minimum value of a dimension or measure field.

sum()

Returns the sum of a numeric field.

unique()

Returns the count of unique values.

73

Aggregate FunctionsSAQL Reference

stddev()

Returns the standard deviation of the values in a field. Accepts measure fields (but not expressions) as input.

stddevp()

Returns the population standard deviation of the values in a field. Accepts measure fields as input but not expressions.

var()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

varp()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

percentile_cont()

Calculates a percentile based on a continuous distribution of the column value.

percentile_disc()

Returns the value corresponding to the specified percentile.

regr_intercept()

Uses two numerical fields to calculate a trend line, then returns the y-intercept value. Use this function to find out the likely value of
field_y when field_x is zero.

regr_slope()

Uses two numerical fields to calculate a trend line, then returns the slope. Use this function to learn more about the relationship
between two numerical fields.

regr_r2()

Uses two numerical fields to calculate R-squared, or goodness of fit. Use regr_r2() to understand how well the trend line fits
your data.

grouping()

Returns 1 if null dimension values are due to higher-level aggregates (which usually means the row is a subtotal or grand total),
otherwise returns 0.

SEE ALSO:

group-by

avg() or average()
Returns the average of the values of a measure field.

Example - Calculate the Average Amount of an Opportunity Grouped by Type
Use avg() to compare the average size of opportunities for each account type.

q = load "DTC_Opportunity";
q = group q by 'Account_Type';
q = foreach q generate 'Account_Type' as 'Account_Type', avg('Amount') as 'avg_Amount';

SEE ALSO:

median()

74

Aggregate FunctionsSAQL Reference

count()

Returns the number of rows that match the query criteria.

For example, to calculate the number of carriers:

q = foreach q generate 'carrier' as 'carrier', count() as 'count';

count() operates on the stream that is input to the group or cogroup statement. It doesn’t operate on the newly grouped
stream or on an ungrouped stream.

q = load "Carriers";
q = group q by (Year);
q = foreach a1 generate count(q) as countYear, count() as count, Year as year;

first()

Returns the first value for the specified field.

Use first() to return the first value of a measure or dimension. You can also use first() used to return the value of a field
without grouping by that field.

Note: If the values are not sorted, the 'first' value could be any value in the tuple.

Example - Return the First Industry for an Account Owner
Your reps own opportunities in several industries. You need a list of rep names with their first industry, where industry is sorted
alphabetically. Group by account owner and industry, sort by industry, then use first() to get the first industry.

q = load "DTC_Opportunity_SAMPLE";
q = group q by ('Account_Owner', 'Industry');
q = foreach q generate 'Account_Owner' as 'Account_Owner', 'Industry' as 'Industry';
q = order q by 'Industry';

q = foreach q generate 'Account_Owner' as 'Account_Owner', first('Industry') as 'One
Industry';

75

Aggregate FunctionsSAQL Reference

Example - Return Any Industry for an Account Owner
Your reps own opportunities in several industries. You need a list of rep names with any one of a rep's industry - it doesn't matter which
one. In this case. Group by account owner then use first() to get the first industry from an unsorted collection.

q = load "DTC_Opportunity_SAMPLE";
q = group q by 'Account_Owner';
q = foreach q generate 'Account_Owner' as 'Account_Owner', first('Industry') as 'One
Industry';

The resulting table displays each rep along with one of their industries (basically the first industry from an unsorted collection).

SEE ALSO:

last()

last()

Returns the last value in the tuple for the specified field.

Use last() to return the last value of a measure or dimension. You can also use last() to return the value of a field without
grouping by that field.

Note: If the values are not sorted, the 'last' value could be any value in the tuple.

Example - Return the Last Industry for an Account Owner
Your reps own opportunities in several industries. You need a list of rep names with their last industry, where industry is sorted
alphabetically. Group by account owner and industry, sort by industry, then use first() to get the last industry.

q = load "DTC_Opportunity_SAMPLE";
q = group q by ('Account_Owner', 'Industry');
q = foreach q generate 'Account_Owner' as 'Account_Owner', 'Industry' as 'Industry';
q = order q by 'Industry';

q = foreach q generate 'Account_Owner' as 'Account_Owner', last('Industry') as 'One
Industry';

76

Aggregate FunctionsSAQL Reference

SEE ALSO:

first()

max()

Returns the maximum value of a dimension or measure field.

Example - Find the Largest Opportunity for Each Account

q = load "Ops";
q = group q by 'Account_Name';
q = foreach q generate 'Company' as 'Company', max('Amount') as 'Largest Deal';

Example - Find the Last Value in List of Airline Destinations per Origin
For dimensions, max() sorts the values alphabetically and the last value is returned.

q = load "Airlines";
q = group q by 'origin';
q = foreach q generate 'origin' as 'Origin', max('dest') as 'Max Destination';

SEE ALSO:

min()

median()

Returns the median value of a measure field.

Example - Find the Median Time to Close a Case
Use median() to find the median amount of time it takes to resolve a case, grouped by company.

q = load "Case";
q = group q by 'Account_Name';
q = foreach q generate 'Account_Name' as 'Account_Name', median('CallDuration') as

77

Aggregate FunctionsSAQL Reference

'median_CallDuration';
q = order q by 'Account_Name' asc;

SEE ALSO:

avg() or average()

min()

Returns the minimum value of a dimension or measure field.

Example - Find the Smallest Opportunity For Each Account

q = load "Ops";
q = group q by 'Account_Name';
q = foreach q generate 'Company' as 'Company', min('Amount') as 'Smallest Deal';

Example - Find the First Value in List of Airline Destinations per Origin
For dimensions, min() sorts the values alphabetically and the first value is returned.

q = load "Airlines";
q = group q by 'origin';
q = foreach q generate 'origin' as 'Origin', min('dest') as 'Min Destination';

SEE ALSO:

max()

sum()

Returns the sum of a numeric field.

Example - Calculate the Total Meeting Time
Suppose that you have a database of meeting information. Use sum() to see that the total time spent meeting with each account.

q = load "Meetings";
q = group q by 'Company';
q = foreach q generate 'Company' as 'Company', sum('MeetingDuration') as 'sum_meetings';

unique()

Returns the count of unique values.

78

Aggregate FunctionsSAQL Reference

Example - Count the Number of Industries
Use unique() to count the number of different industries that you have opportunities with.

q = load "DTC_Opportunity_SAMPLE";
q = group q by all;
q = foreach q generate unique('Industry') as 'unique_Industry';

stddev()

Returns the standard deviation of the values in a field. Accepts measure fields (but not expressions) as input.

Example - Look at Variability in Amount
Use stddev() to get a feel for the amount of spread, or dispersion, in the size of your deals.

q = load "DTCOpps";
q = group q by all;
q = foreach q generate stddev('Amount') as 'stddev_Amount';

Should I Use stddev() or stddevp()?

Use stddev() when the values in your field are a partial sample of the entire set of values (that is, a partial sampling of the whole
population). Use stddevp() when your field contains the complete set of values (that is, the entire population of values).

SEE ALSO:

stddevp()

stddevp()

Returns the population standard deviation of the values in a field. Accepts measure fields as input but not expressions.

Example - Calculate the Population Standard Deviation of Amount
Use stddevp() to calculate the population standard deviation of the amount of each opportunity. Group by product family to see
which type of product has the greatest variability in deal size.

q = load "DTC_Opportunity_SAMPLE";
q = group q by 'Product_Family';
q = foreach q generate 'Product_Family' as 'Product_Family', stddevp('Amount') as
'stddevp_Amount';

SEE ALSO:

stddev()

var()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

79

Aggregate FunctionsSAQL Reference

Example - Calculate the Variance of Deal Amount

q = load "DTC_Opportunity_SAMPLE";
q = group q by all;
q = foreach q generate var('Amount') as 'var_Amount';

SEE ALSO:

varp()

varp()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

Example - Calculate the Population Variance of Deal Amount

q = load "DTC_Opportunity_SAMPLE";
q = group q by all;
q = foreach q generate varp('Amount') as 'var_Amount';

SEE ALSO:

var()

percentile_cont()

Calculates a percentile based on a continuous distribution of the column value.

percentile_cont(p) within group (order by expr [asc | desc])

percentile_cont() accepts a numeric grouped expression expr and sorts it in the specified order. If order is not specified, the
default order is ascending. It returns the value behind which (100*p)% of values in the group fall in the sorted order, ignoring null values.

p can be any real numeric value between 0 and 1. expr can be any identifier, such as 'xInt' or 'price', but cannot be a complex expression,
such as price/100 or ceil(distance), or a literal, such as 2.5.

If expr contains no value that falls exactly at the 100*p-th percentile mark, percentile_cont() returns a value interpolated
from the two closest values in expr.

For example, if Mea1 contains the values [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] then:

percentile_cont(0.25) within group (order by Mea1 asc) = 3.25
percentile_cont(0.25) within group (order by Mea1 desc) = 9.75
percentile_cont(0) within group (order by Mea1 asc) = 0
percentile_cont(1) within group (order by Mea1 asc) = 13

Example - Display the Interpolated Value of the Bottom 15% of Deals
Suppose that you want to see the bottom 15% of deals for each rep. You don't need to see the actual deal size - just the 'average' size
of the bottom 15%. Use percentile_cont(.15).

80

Aggregate FunctionsSAQL Reference

SEE ALSO:

percentile_disc()

percentile_disc()

Returns the value corresponding to the specified percentile.

percentile_disc(p) within group (order by expr [asc | desc])

percentile_disc() accepts a numeric grouped expression expr and sorts it in the specified order. If order is not specified, the
default order is ascending. It returns the value behind which (100*p)% of values in the group fall in the sorted order, ignoring null values.

p can be any real numeric value between 0 and 1, and is accurate to 8 decimal places of precision. expr can be any identifier, such
as 'xInt' or 'price', but cannot be a complex expression, such as price/100 or ceil(distance), or a literal, such as 2.5.

If expr contains no value that falls exactly at the 100*p-th percentile mark, percentile_disc() returns the next value from
expr in the sort order.

For example, if Mea1 contains the values [54, 35, 15, 15, 76, 87, 78] then:

percentile_disc(0.5) within group (order by Mea1) == 54
percentile_disc(0.72) within group (order by Mea1) == 78

Example - Rank Your Reps by Top Quartile of Deal Size
Suppose that you want to see which reps close the biggest deals. (The result may be different than the sum of deal amount, if some
reps close a lot of smaller deals). You also want the chart to display the size of actual deals, not an average of deal size. Use
percentile_disc(.25) to look at the top quarter of the deal size for each rep.

q = load "DTC_Opportunity_SAMPLE";
q = group q by 'Account_Owner';
q = foreach q generate 'Account_Owner' as 'Account_Owner', percentile_disc(0.25) within
group (order by 'Amount' desc) as 'Amount';
q = order q by 'Amount' desc;

You can see that 25% of Julie Chavez's deals are bigger than $2.4 million, and 25% of Kelly Frazier's deals are bigger than $2.2 million.
You also know that Julie closed a deal worth$2.4 million, and that number isn't an average.

81

Aggregate FunctionsSAQL Reference

SEE ALSO:

percentile_cont()

Show the Top and Bottom Quartile

regr_intercept()

Uses two numerical fields to calculate a trend line, then returns the y-intercept value. Use this function to find out the likely value of
field_y when field_x is zero.

regr_intercept(field_y, field_x)

field_y is a grouped dependent numeric expression and field_x is a grouped independent numeric expression.
regr_intercept(field_y, field_x) uses simple linear regression to calculate the trend line. The input fields (field_y,
field_x) must contain at least two pairs of non-null values. This function works with simple grouped values but not with cogroups.

Example - What Is the Likely Amount Won If the Number of Activities Is Zero?
Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

82

Aggregate FunctionsSAQL Reference

What size of deal can you expect to win if you don't have any activities with an account? regr_intercept performs a linear analysis
on your data then calculates the y-intercept (that is, the value of Amount Won when Number of Activities is zero).

q = load "Data";
q = group q by all;

--trunc() truncates the result to two decimal places
q = foreach q generate trunc(regr_intercept('Amount', 'NumActivities'),2) as intercept;

The projected deal size with no activities is $15.04 million dollars.

SEE ALSO:

regr_slope()

regr_slope()

Uses two numerical fields to calculate a trend line, then returns the slope. Use this function to learn more about the relationship between
two numerical fields.

regr_slope(field_y, field_x)

field_y is a grouped dependent numeric expression and field_x is a grouped independent numeric expression.
regr_slope(field_y, field_x) uses simple linear regression to calculate the trend line. The input fields (field_y,
field_x) must contain at least two pairs of non-null values. This function works with simple grouped values but not with cogroups.

Example - Calculate the Relationship Between Number of Activities and Deal Amount
Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

83

Aggregate FunctionsSAQL Reference

How much bigger will the deal size be for each extra activity? regr_slope performs a linear analysis on your data then calculates
the slope (that is, the increased amount you win for each extra activity).

q = load "data/sales";
q = group q by all;

--trunc() truncates the result to two decimal places
q = foreach q generate trunc(regr_slope('Amount', 'NumActivities'),2) as 'Gain per Activity';

Based on your existing data, every extra activity that you have tends to increase the deal size by $1.45 million, on average.

SEE ALSO:

regr_intercept()

Calculate the Slope of the Regression Line

regr_r2()

Uses two numerical fields to calculate R-squared, or goodness of fit. Use regr_r2() to understand how well the trend line fits your
data.

regr_r2(field_y, field_x)

field_y is a grouped dependent numeric expression and field_x is a grouped independent numeric expression.
regr_r2(field_y, field_x) uses simple linear regression to calculate a trend line, then calculates R-squared. If the returned
value is small, then functions like regr_slope() and regr_intercept() are likely to return accurate results.

The input fields (field_y, field_x) must contain at least two pairs of non-null values. This function works with simple grouped
values but not with cogroups.

84

Aggregate FunctionsSAQL Reference

Example - How Well Does the Calculated Trend Line Fit My Data
Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

You want to check the calculated trend line for 'goodness of fit' to see how accurate the results from other statistical functions are.

q = load "regression";
q = group q by all;

q = foreach q generate trunc(regr_r2('Amount', 'NumActivities'),2) as 'R Squared';

The value of R squared is 0.95.

grouping()

Returns 1 if null dimension values are due to higher-level aggregates (which usually means the row is a subtotal or grand total), otherwise
returns 0.

The grouping() function is most useful when paired with the rollup modifier on the group statement. Invoking grouping()
lets work with subtotaled data.

Example - Label Subtotaled Data
Suppose that you have a dataset of opportunity information with amounts totaled by lead source and type. Calculate totals with rollup.
Then use grouping() with a case statement to check whether a row is a total and if it is then label it as "all" values.

q = load "opportunityData";

--Modify the group statement with rollup to calculate subtotals of grouped measures
q = group q by rollup('Type', 'LeadSource');

q = order q by ('Type', 'LeadSource');

85

Aggregate FunctionsSAQL Reference

--Determine which rows are totals with grouping(), which returns 1 if a row is a total
q = foreach q generate

(case
when grouping('Type') == 1 then "All Types"
else 'Type'

end) as 'Type',
(case

when grouping('LeadSource') == 1 then "All Lead Sources"
else 'LeadSource'

end) as 'LeadSource',
sum('Amount') as 'sum_Amount';

Date Functions
Use SAQL date functions to perform time-based analysis.

Understanding How Date Information is Uploaded to Analytics
When you upload a date field to Analytics, it creates dimension and measure fields to contain the date and time information. You can
use SAQL date functions to convert the dimensions and measures to dates. You can then use the dates to sort, filter, and group data in
your SAQL queries.

For example, suppose that you upload a dataset that contains the CloseDate date field.

86

Date FunctionsSAQL Reference

During the dataflow processing, Analytics creates these fields. All the fields are dimensions, except for the epoch fields, which are
measures.

DescriptionField

A dimension containing the date and time. For example, 2018-02-25T00:00:03.000Z. You can’t use this
string in a date filter. Instead, ‘cast’ it to a date type using toDate().

CloseDate

Dimension containing the day in the month, for example 30.CloseDate (Day)

Dimension containing the hour, for example, 11. If the original date did not contain the hour, this field
contains 00.

CloseDate (Hour)

Dimension containing the minute, for example, 59. If the original date did not contain the minute, this
field contains 00

CloseDate (Minute)

Dimension containing the month, for example, 12.CloseDate (Month)

Dimension containing the quarter, for example, 4.CloseDate(Quarter)

Dimension containing the second, for example, 59. If the original date did not contain the second, this
field contains 00.

CloseDate (Second)

Dimension containing the week, for example, 52.CloseDate (Week)

Measure containing the UNIX epoch time, which is the number of days that have elapsed since 00:00:00,
Thursday, 1 January 1970.

CloseDate_day_epoch

Measure containing the Unix epoch time in seconds. Seconds epoch time is the number of seconds
that have elapsed since 00:00:00, Thursday, 1 January 1970.

CloseDate_sec_epoch

87

Date FunctionsSAQL Reference

Analytics creates fields ending in _Fiscal for dates associated with a custom fiscal year. Querying dates with this field works the
same way as it does for standard fiscal years.

daysBetween()

Returns the number of days between two dates. This function is only valid in a foreach statement.

date_diff()

Returns the amount of time between two dates. This function is only valid in a foreach statement.

now()

Returns the current datetime in UTC. This function is only valid in a foreach statement.

date()

Returns a date that can be used in a filter. This function takes a year, a month, and a day dimension as input.

toDate()

Converts a string or Unix epoch seconds to a date. Returns a date that can be used in another function such as daysBetween(
). The returned date cannot be used in a filter.

date_to_epoch()

Converts a date to Unix epoch seconds.

date_to_string()

Converts a date to a string.

toString()

Converts a date to a string.

Time-Based Filtering

SAQL gives you many ways to specify the range of dates that you want to look at, such as "all ops from the last fiscal quarter" or "all
cases from the last seven days".

Day in the Week, Month, Quarter, or Year

Returns the day in the specified time period for a given date. These functions answer questions like "do we close more deals at the
beginning or end of a quarter?".

First Day in the Week, Month, Quarter, or Year

Returns the date of the first day in the specified week, month, quarter, or year.

Last Day in the Week, Month, Quarter, or Year

Returns the date of the last day in the specified week, month, quarter, or year.

Number of Days in the Month, Quarter, or Year

Returns the number of days in the month, quarter, or year for the specified date.

Date Formats

For Date fields, specify the format of the date by using one of the following supported formats. Dates must match the format exactly
and can't have any extra text.

SEE ALSO:

Analyze Your Data Over Time

daysBetween()

Returns the number of days between two dates. This function is only valid in a foreach statement.

88

Date FunctionsSAQL Reference

Syntax
daysBetween(date1, date2)

date1 specifies the start date.

date2 specifies the end date.

Usage
If date1 is after date2, the number of days returned is a negative number.

You must use daysBetween() in a foreach() statement. You cannot use this function in group by, order by, or filter
statements.

Example
How many days did it take to close each opportunity? Use daysBetween().

q = load "DTC_Opportunity";
q = foreach q generate daysBetween(toDate(CreatedDate_sec_epoch), toDate(CloseDate_sec_epoch)
) as 'Days to Close';
q = order q by 'Days to Close';

Example
How long has each opportunity been open for, in days? Use daysBetween() and now().

q = load "DTC_Opportunity";
q = filter q by 'Closed' == "false";
q = foreach q generate daysBetween(toDate(CreatedDate_sec_epoch), now()) as 'Days to
Close';
q = order q by 'Days to Close';

SEE ALSO:

date_diff()

Calculate How Long Activities Take

daysBetween(date1, date2)

date_diff()

Returns the amount of time between two dates. This function is only valid in a foreach statement.

Syntax
date_diff(datepart,startdate,enddate)

datepart specifies how you want to measure the time interval:

• year

• month

• quarter

89

Date FunctionsSAQL Reference

• day

• week

• hour

• minute

• second

startdate specifies the start date.

enddate specifies the end date.

Usage
Returns the time difference between two dates in years, months, or days. For example,

date_diff("year", toDate("31-12-2015", "dd-MM-yyyy"), toDate("1-1-2016", "dd-MM-yyyy"))
returns 1.

If startdate is after enddate, the difference is returned as a negative number.

You must use date_diff() in a foreach() statement. You cannot use this function in group by, order by, or filter
statements.

The maximum amount of time returned is 9,223,372,036,854,775,807 nanoseconds. This maximum amount of time can be measured
in any supported datepart value (nanoseconds aren't supported). For example, in days, the maximum amount of time returned is
106,751.99 days (excluding leap seconds).

Example - How Many Weeks Did Each Opportunity Take to Close?
Use date_diff() with datepart = week to calculate how long, in weeks, it took to close each opportunity.

q = load "DTC_Opportunity";
q = foreach q generate date_diff("week", toDate(CreatedDate_sec_epoch),
toDate(CloseDate_sec_epoch)) as 'Weeks to Close';
q = order q by 'Weeks to Close';

Example - How Long Ago Was an Opportunity Closed?
Use date_diff() with datepart = month to calculate how many months have passed since each opportunity closed. Use
now() as the end date.

q = load "DTC_Opportunity";
q = foreach q generate date_diff("month", toDate(CloseDate_sec_epoch), now()) as 'Months
Since Close';
q = order q by 'Months Since Close';

SEE ALSO:

daysBetween()

now()

Calculate How Long Activities Take

date_diff(datepart, startdate, enddate)

90

Date FunctionsSAQL Reference

now()

Returns the current datetime in UTC. This function is only valid in a foreach statement.

Syntax
now()

Usage
This function is commonly used with daysBetween(), date_diff(), and date_to_string().

Example
How long ago was each opportunity created, in weeks? Use date_diff(), datepart = week, and now().

q = load "DTC_Opportunity";
q = foreach q generate date_diff("week", toDate(CreatedDate_sec_epoch), now()) as 'Weeks
to Close';
q = order q by 'Weeks to Close';

Example
What is the date today? Use now() inside date_to_string().

q = load "DTC_Opportunity";

-- Notice how the ' character is escaped with the \ character in 'Today\'s
q = foreach q generate date_to_string(now(), "yyyy-MM-dd") as 'Today\'s Date';

SEE ALSO:

date_diff()

now()

date()

Returns a date that can be used in a filter. This function takes a year, a month, and a day dimension as input.

Syntax
date(year, month, day)

Usage
Specify the year, month, and day. Each input value must be a date dimension type.

date('OrderDate_Year', 'OrderDate_Month', 'OrderDate_Day')

91

Date FunctionsSAQL Reference

Example
Which opportunities have your reps closed in the past 30 days? Use date() to select records with a close date in the past 30 days.

q = load "DTC_Opportunity";

-- use date() to create a date that you can use in a filter
-- 'CloseDate_Year', 'CloseDate_Month', and 'CloseDate_Day' are date fields in the
DTC_Opportunity data set

q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["30 days
ago".."current day"];
q = group q by 'Account_Owner';
q = foreach q generate 'Account_Owner' as 'Account_Owner', sum('Amount') as 'sum_Amount';
q = order q by 'Account_Owner' asc;

SEE ALSO:

toDate()

Time-Based Filtering

toDate()

Converts a string or Unix epoch seconds to a date. Returns a date that can be used in another function such as daysBetween().
The returned date cannot be used in a filter.

Syntax
toDate(string, [”format"])

If a format argument isn’t provided, the function uses the format yyyy-MM-dd HH:mm:ss. format is only valid for converting
date string values.

For the allowed formats, see Date Formats.

toDate(epoch_seconds)

The format argument is not valid for converting epoch_seconds numerical values.

Note: Be sure to use the sec_epoch field and not the day_epoch field.

Example: Display the Exact Date an Opportunity Opened
Suppose that you want to see the exact day that an opportunity opened. Use toDate() with CreatedDate_Year,
CreatedDate_Month, CreatedDate_Day, and an accepted date format. This query will resemble the example below:

q = load "oppty";
q = foreach q generate toDate(CreatedDate_Year + "/" + CreatedDate_Month + "/" +
CreatedDate_Day, "yyyy/MM/dd") as CreatedDate;
q = order q by 'CreatedDate';

Example: Display the Number of Days Since an Opportunity Opened
Suppose that you have an opportunity dataset with the account name and the epoch seconds fields:

92

Date FunctionsSAQL Reference

You want to see how many days ago an opportunity was opened. Use daysBetween() and now(). Use toDate() to convert
the order date epoch seconds to a date format that can be passed to daysBetween().

q = load "OpsDates1";

q = foreach q generate Account, daysBetween(toDate(OrderDate_sec_epoch), now()) as
'daysOpened';

The resulting data stream displays the number of days since the opportunity was opened.

Note: Because dates are sorted lexicographically, changing the date format also changes the sort order.

SEE ALSO:

date()

date_to_epoch()

Converts a date to Unix epoch seconds.

Syntax
date_to_epoch(date)

Usage
This function must take a toDate() or now() function as its first argument.

Example

q = foreach q generate date_to_epoch(toDate(”yyyy-mm-dd hh:mm:ss”)) as ds1;

date_to_string()

Converts a date to a string.

93

Date FunctionsSAQL Reference

Syntax
date_to_string(date, formatString)

For the allowed formats, see Date Formats.

Note: This function is identical to toString().

Usage
This function must take a toDate() or now() function as its first argument.

Example

q = foreach q generate date_to_string(now(), "yyyy-MM-dd HH:mm:ss") as ds1;

toString()

Converts a date to a string.

Syntax
toString(date, formatString)

For the allowed formats, see Date Formats.

Note: This function is identical to date_to_string().

Usage
This function must take a toDate() or now() function as its first argument.

Example

q = foreach q generate toString(now(), "yyyy-MM-dd HH:mm:ss") as ds1;

Time-Based Filtering
SAQL gives you many ways to specify the range of dates that you want to look at, such as "all ops from the last fiscal quarter" or "all cases
from the last seven days".

Using Date Ranges in Filters
Use these filters to specify the date range you want to look at:

• Fixed date range, for example between August 1, 2018 and June 2, 2017

• Relative date range, for example between two years ago and last month

• Open-ended ranges, for example before 04/2/2018

• Add and subtract dates, for example all records from three months before yesterday

94

Date FunctionsSAQL Reference

Example: Display Opportunities Closed This Month
Suppose that you want to see which opportunities closed this month. Your data includes the account name, the close date fields, and
the epoch seconds field.

Use date() to generate the close date in date format. Then use relative date ranges to filter opportunities closed in the current month.

q = load "OpsDates1";
q = filter q by date(’CloseDate_Year’, ‘CloseDate_Month’, ‘CloseDate_Day’) in ["current
month" .. "current month"];
q = foreach q generate Account;

If the query is run in May 2018, the resulting data stream contains one entry:

To add the close date in a readable format, use toDate().

q = load "OpsDates1";
q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["current
month" .. "current month"];
q = foreach q generate Account, toDate('CloseDate_sec_epoch') as 'Close Date';

The resulting data stream includes the full date and time of the close date.

You can also display just the month and day of the close date.

q = load "OpsDates1";
q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["current
month" .. "current month"];
q = foreach q generate Account, 'CloseDate_Month' + "/" + 'CloseDate_Day' as 'Close Date';

The resulting data stream contains the month and day of the close date.

95

Date FunctionsSAQL Reference

Fixed Date Ranges
Use dateRange() to specify a fixed range of dates in a filter:

dateRange(startArray_y_m_d, endArray_y_m_d)

startArray_y_m_d is an array that specifies the start date

endArray_y_m_d is an array that specifies the end date

For example, return all records between October 2, 2014 and August 16, 2016:

q = filter q by date('CreatedDate_Year', 'CreatedDate_Month', 'CreatedDate_Day') in
[dateRange([2014,10,2], [2016,8,16])];

Relative Date Ranges
Use relative date ranges to answer questions such as "how many opportunities did each rep close in the past fiscal quarter"? To specify
a relative date range, use the in operator on an array with relative date keywords:

in ["relative_date_keyword_1".."relative_date_keyword_2"]

For example, return all records from one year ago up to and including the current year.

q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["1 year
ago".."current year"];

Return all records from two quarters ago, up to and including two quarters from now.

q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["2 quarters
ago".."2 quarters ahead"];

Return all records from the last two fiscal years, up to and including today.

q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["2
fiscal_years ago".."current day"];

Use these relative date keywords:

• current day

• n day(s) ago

• n day(s) ahead

• current week

• n week(s) ago

• n week(s) ahead

• current month

• n month(s) ago

• n month(s) ahead

• current quarter

• n quarter(s) ago

• n quarter(s) ahead

• current fiscal_quarter

• n fiscal_quarter(s) ago

96

Date FunctionsSAQL Reference

• n fiscal_quarter(s) ahead

• current year

• n year(s) ago

• n year(s) ahead

• current fiscal_year

• n fiscal_year(s) ago

• n fiscal_year(s) ahead

Note: Only standard fiscal periods are supported. See "About Fiscal Years" in Salesforce Help.

Open-Ended Date Ranges
Use open-ended date ranges for queries such as "List all opportunities closed after 12/23/2014". To specify an open-ended date range,
use the in operator on an array with a relative date keyword and a notation for up to or including:

• in [.."relative_date_keyword"] (up to)

• in ["relative_date_keyword"..] (up to and including)

For example, return all records up to and including the current month.

q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in [.."1 year
ago"];

You can also specify a closed relative date range. For example, return all records from up to and including one year ago.

q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["3 years
ago"..];

Add and Subtract Dates
You can add and subtract dates using the relative date keywords. To specify the date range, use the in operator on an array with a
relative date keyword, a notation for up to, including, or a range, and the addition or subtraction operators with a time period:

• in [.."relative_date_keyword +/- time_period"] (up to)

• in ["relative_date_keyword +/- time_period"..] (up to and including)

• in ["relative_date_keyword_1".."relative_date_keyword_2 +/- time_period"] (range)

For example, return all records from one year ago, up to and including today.

q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["current
day - 1 year"..];

Return all records from today up to two years and three months from now.

q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["current
day".."2 years ahead + 3 months"];

SEE ALSO:

date()

Display the Opportunities Closed This Month

97

Date FunctionsSAQL Reference

Day in the Week, Month, Quarter, or Year
Returns the day in the specified time period for a given date. These functions answer questions like "do we close more deals at the
beginning or end of a quarter?".

Example
Suppose that you want to see on which day of the week most deals are closed. Use day_in_week(date).

q = load "Data";

q = foreach q generate day_in_week(toDate('CloseDate_sec_epoch')) as 'Day In Week Closed';

q = group q by 'Day In Week Closed';
q = foreach q generate 'Day In Week Closed' as 'Day In Week Closed', count() as 'count';
q = order q by 'count' desc;

The resulting data displays the number of opportunities closed, grouped by the day of the week that the opportunities were closed on.

It looks like most opportunities are closed on Thursday (day 5).

day_in_week(date)

Returns an integer representing the day of the week for a specific date, where 1 = Sunday, 2 = Monday, etc.

q = foreach q generate day_in_week(toDate('CloseDate_sec_epoch')) as 'Day In Week Closed';

day_in_month(date)

Returns an integer representing the day of the month for a specific date.

q = foreach q generate day_in_month(toDate('CloseDate_sec_epoch')) as 'Day in Month Closed';

98

Date FunctionsSAQL Reference

day_in_quarter(date)

Returns an integer representing the day of the quarter for a specific date.

q = foreach q generate day_in_quarter(toDate('CloseDate_sec_epoch')) as 'Day in Quarter
Closed';

day_in_year(date)

Returns an integer representing the day of the year for a specific date.

q = foreach q generate day_in_year(toDate('CloseDate_sec_epoch')) as 'Day in Year Closed';

First Day in the Week, Month, Quarter, or Year
Returns the date of the first day in the specified week, month, quarter, or year.

Usage
Use these functions in a foreach() statement. You cannot use them in group by, order by, or filter statements.

Use the functions whose names begin with week, month, quarter, and year with standard calendar year dates. Use the functions
whose names begin with fiscal with fiscal year dates.

Note: You can't use fiscal date functions in recipes and dataflow transformations.

week_first_day(date)

Returns the date of the first day of the week for the specified date.

q = foreach q generate week_first_day(toDate('CloseDate_sec_epoch')) as 'Week First Day';

Note: This function always counts the firstDayOfWeek as 0 (Sunday). It overrides the firstDayOfWeek parameter
for sfdcDigestTransformation and CSV uploads.

fiscal_week_first_day(date)

Returns the fiscal date of the first day of the week for the specified date.

q = foreach q generate fiscal_week_first_day(toDate('CloseDate_sec_epoch')) as 'Fiscal
Week First Day';

Note: This function respects the firstDayOfWeek parameter for sfdcDigestTransformation and CSV uploads.
The default value is 0 (Sunday).

month_first_day(date)

Returns the date of the first day of the month for the specified date.

q = foreach q generate month_first_day(toDate('CloseDate_sec_epoch')) as 'Month First Day';

99

Date FunctionsSAQL Reference

fiscal_month_first_day(date)

Returns the fiscal date of the first day of the month for the specified date.

q = foreach q generate fiscal_month_first_day(toDate('CloseDate_sec_epoch')) as 'Fiscal
Month First Day';

quarter_first_day(date)

Returns the date of the first day of the quarter for the specified date.

q = foreach q generate quarter_first_day(toDate('CloseDate_sec_epoch')) as 'Quarter First
Day';

fiscal_quarter_first_day(date)

Returns the fiscal date of the first day of the quarter for the specified date.

q = foreach q generate fiscal_quarter_first_day(toDate('CloseDate_sec_epoch')) as 'Fiscal
Quarter First Day';

year_first_day(date)

Returns the date of the first day of the year for the specified date.

q = foreach q generate year_first_day(toDate('CloseDate_sec_epoch')) as 'Year First day';

Note: This function always returns 1st January.

fiscal_year_first_day(date)

Returns the fiscal date of the first day of the year for the specified date.

q = foreach q generate fiscal_year_first_day(toDate('CloseDate_sec_epoch')) as 'Fiscal
Year First Day';

SEE ALSO:

https://help.salesforce.com/s/articleView?id=bi_integrate_date_formats_and_fiscal_dates.htm

Last Day in the Week, Month, Quarter, or Year
Returns the date of the last day in the specified week, month, quarter, or year.

Usage
Use these functions in a foreach() statement. You cannot use them in group by, order by, or filter statements.

Use the functions whose names begin with week, month, quarter, and year with standard calendar year dates. Use the functions
whose names begin with fiscal with fiscal year dates.

Note: You can't use fiscal date functions in recipes and dataflow transformations.

100

Date FunctionsSAQL Reference

https://help.salesforce.com/s/articleView?id=bi_integrate_date_formats_and_fiscal_dates.htm&language=en_US

week_last_day(date)

Returns the date of the last day of the week for the specified date.

Note: This function always counts the firstDayOfWeek as 0 (Sunday). It overrides the firstDayOfWeek parameter
for sfdcDigestTransformation and CSV uploads.

q = foreach q generate week_last_day(toDate('CloseDate_sec_epoch')) as 'Week Last Day';

fiscal_week_last_day(date)

Returns the fiscal date of the last day of the week for the specified date.

Note: This function respects the firstDayOfWeek parameter for sfdcDigestTransformation and CSV uploads.
The default value is 0 (Sunday).

q = foreach q generate fiscal_week_last_day(toDate('CloseDate_sec_epoch')) as 'Fiscal Week
Last Day';

month_last_day(date)

Returns the date of the last day of the month for the specified date.

q = foreach q generate month_last_day(toDate('CloseDate_sec_epoch')) as 'Month Last Day';

fiscal_month_last_day(date)

Returns the fiscal date of the last day of the month for the specified date.

q = foreach q generate fiscal_month_last_day(toDate('CloseDate_sec_epoch')) as 'Fiscal
Month Last Day';

quarter_last_day(date)

Returns the date of the last day of the quarter for the specified date.

q = foreach q generate quarter_last_day(toDate('CloseDate_sec_epoch')) as 'Quarter Last
Day';

fiscal_quarter_last_day(date)

Returns the fiscal date of the last day of the quarter for the specified date.

q = foreach q generate fiscal_quarter_last_day(toDate('CloseDate_sec_epoch')) as 'Fiscal
Quarter Last Day';

year_last_day(date)

Returns the date of the last day of the year for the specified date.

q = foreach q generate year_last_day(toDate('CloseDate_sec_epoch')) as 'Year Last Day';

Note: This function always returns 31st December. You can use it to find the number of days to the year end.

101

Date FunctionsSAQL Reference

fiscal_year_last_day(date)

Returns the fiscal date of the last day of the year for the specified date.

q = foreach q generate fiscal_year_last_day(toDate('CloseDate_sec_epoch')) as 'Fiscal Year
Last Day';

SEE ALSO:

https://help.salesforce.com/s/articleView?id=bi_integrate_date_formats_and_fiscal_dates.htm

Number of Days in the Month, Quarter, or Year
Returns the number of days in the month, quarter, or year for the specified date.

month_days(date)

Returns the number of days in the month for the specified date.

q = foreach q generate month_days(toDate('CloseDate_sec_epoch')) as 'Billing Days In Month';

quarter_days(date)

Returns the number of days in the quarter for the specified date.

q = foreach q generate quarter_days(toDate('CloseDate_sec_epoch')) as 'Billing Days In
Quarter;

year_days(date)

Returns the number of days in the year for the specified date.

q = foreach q generate year_days(toDate('CloseDate_sec_epoch')) as 'Billing Days In Year;

Date Formats
For Date fields, specify the format of the date by using one of the following supported formats. Dates must match the format exactly
and can't have any extra text.

Note: The date formats listed here are the two-digit versions for date fields that use leading zeros; for example, 03/06/14 09:01:06
AM. If a date field doesn't have leading zeros, use the one-digit version of the format. For example, use the format M/d/yy
h:m:s a for date values such as 3/6/14 9:1:26 AM. If you use a two-digit format for a field, rows containing values with one-digit
date parts will fail.

The timestamp part of each date format is optional.

The Quarter date format isn’t supported.

Sample ValueFormat

2014-04-29T16:53:34.000Zyyyy-MM-dd'T'HH:mm:ss.SSS'Z'

14-04-29T16:53:34.000Zyy-MM-dd'T'HH:mm:ss.SSS'Z'

102

Date FunctionsSAQL Reference

https://help.salesforce.com/s/articleView?id=bi_integrate_date_formats_and_fiscal_dates.htm&language=en_US

Sample ValueFormat

2014-04-29T16:53:34Zyyyy-MM-dd'T'HH:mm:ss'Z'

14-04-29T16:53:34Zyy-MM-dd'T'HH:mm:ss'Z'

2014-06-03 11:31:45yyyy-MM-dd HH:mm:ss

14-06-03 11:31:45yy-MM-dd HH:mm:ss

03.06.2014 11:31:45dd.MM.yyyy HH:mm:ss

03.06.14 11:31:45dd.MM.yy HH:mm:ss

03/06/2014 11:31:45dd/MM/yyyy HH:mm:ss

03/06/14 11:31:45dd/MM/yy HH:mm:ss

03/06/2014 11:31:45 AMdd/MM/yyyy hh:mm:ss a

03/06/14 11:31:45 AMdd/MM/yy hh:mm:ss a

03-06-2014 11:31:45dd-MM-yyyy HH:mm:ss

03-06-14 11:31:45dd-MM-yy HH:mm:ss

03-06-2014 11:31:45 AMdd-MM-yyyy hh:mm:ss a

03-06-14 11:31:45 AMdd-MM-yy hh:mm:ss a

06/03/2014 11:31:45 AMMM/dd/yyyy hh:mm:ss a

06/03/14 11:31:45 AMMM/dd/yy hh:mm:ss a

06-03-2014 11:31:45 AMMM-dd-yyyy hh:mm:ss a

06-03-14 11:31:45 AMMM-dd-yy hh:mm:ss a

11:31:45 03/06/2014HH:mm:ss dd/MM/yyyy

11:31:45 03/06/14HH:mm:ss dd/MM/yy

These formats use the following symbols:

MeaningSymbol

Four-digit year (yyyy) or two-digit year (yy)yyyy or yy

Two-digit month (01–12)MM

One-digit month when month less than 10 (1–12)M

Two-digit day (01–31)dd

One-digit day when day less than 10 (1–31)d

A separator that indicates that time of day follows'T'

Two-digit hour (00–23)HH

103

Date FunctionsSAQL Reference

MeaningSymbol

One-digit hour when hour less than 10 (0–23)H

Two-digit minute (00–59)mm

One-digit minute when minute less than 10 (0–59)m

Two-digit second (00–59)ss

One-digit second when second less than 10 (0–59)s

Optional three-digit milliseconds (000–999)SSS

The reference UTC time zone'Z'

Time Zone Date Functions
When you enable the time zone feature, you can use the fields of the DateTime and DateOnly type to access date information
in the specified time zone. For example, if a user in New York runs a SAQL query, they see date information displayed in Eastern Standard
time.

Note: In SAQL, the DateOnly type displays the date with an empty timestamp, for example, “2014-12-31 00:00:00.” The
inclusion of the timestamp is a limitation of the beta release.

Use Time Zone-Enabled Dates in SAQL Projections

You can project an exact date such as 2017-3-31 23:59:59 or part of a date such as year, month, or day.

Access Date Functions with Time Zone Enabled

Use these functions to get the day, week, year, and other parts of DateTime or DateOnly fields. The return values are numbers.

Group By Date

You can group the result of your SAQL query by DateTime and DateOnly fields.

Order By Date

You can order the result of your SAQL queries by DateTime or DateOnly.

Filter By Date

You can filter results by DateTime and DateOnly fields. Filters can include exact dates, specific date ranges, or relative date
ranges.

Calculate the Time Between Two Dates

Use date_diff() and daysBetween() to calculate the time between two dates.

Convert Dates to and from Strings

You can convert dates to strings.

Handle Null Dates

Use is not null to filter out null dates.

Determine the Day in the Week, Month, Quarter, or Year

These functions return the day of the week, month, quarter, or year, the date of the last day of the week, month, quarter, or year,
and the number of days in the quarter or year.

104

Time Zone Date FunctionsSAQL Reference

Use Time Zone-Enabled Dates in SAQL Projections
You can project an exact date such as 2017-3-31 23:59:59 or part of a date such as year, month, or day.

Project the entire CloseDate field to see the CloseDate field for a record. CloseDate can be a DateTime or DateOnly
type.

q = foreach q generate CloseDate as 'Close Date';

Project the year, month, day, and epoch date for a record.

q = foreach q generate year('CloseDate') as 'Year', month('CloseDate') as 'Month',
day('CloseDate') as 'Day', epochSecond('CloseDate') as 'Seconds Epoch';

Access Date Functions with Time Zone Enabled
Use these functions to get the day, week, year, and other parts of DateTime or DateOnly fields. The return values are numbers.

To enable Time Zone for your org, follow the directions in Enable Custom Time Zones.

For the allowed formats, see Date Formats.

• year (DateTime | DateOnly)

• quarter (DateTime | DateOnly)

• month (DateTime | DateOnly)

• week (DateTime | DateOnly)

• day (DateTime | DateOnly)

• hour (DateTime)

• minute (DateTime)

• second (DateTime)

• fiscalYear (DateTime | DateOnly)

• fiscalQuarter (DateTime | DateOnly)

• fiscalMonth (DateTime | DateOnly)

• fiscalWeek (DateTime | DateOnly)

• epochDay (DateTime | DateOnly)

• epochSecond(DateTime | DateOnly)

Examples
Use year(), month(), and day() to project the year, month, and day for each record. CloseDate can be a DateTime or
DateOnly type.

q = foreach q generate year('CloseDate') as "Year", month('CloseDate') as "Month",
day('CloseDate') as "Day";

Use month() to find results that closed in December.

q = filter q by month('CloseDate') == 12;

105

Time Zone Date FunctionsSAQL Reference

https://help.salesforce.com/s/articleView?id=sf.bi_setup_time_zone_support.htm&language=en_US

Use month() to order opportunities by month of close date.

q = order q by month('CloseDate');

For even more granularity, add hour(), minute(), and second() to project the time for each record. These functions can only
be used with a DateTime type.

q = foreach q generate year('CloseDate') as "Year", month('CloseDate') as "Month",
day('CloseDate') as "Day",

hour('CloseDate') as "Hour", minute('CloseDate') as "Minute", second('CloseDate')
as "Second";

Use hour() to order opportunities by hour of close date.

q = order q by hour('CloseDate');

Group By Date
You can group the result of your SAQL query by DateTime and DateOnly fields.

q = group q by 'CloseDate';

CloseDate can be DateTime or DateOnly. You can also group by date parts. For example, you can group orders by year and
then month.

q = group q by year('OrderDate'), month('OrderDate');

You can use the DateTime or DateOnly field to cogroup two datasets. For example, you can group two datasets by year.

a = load dataset1;
b = load dataset2;
c = group a by year('CloseDate'), b by year('CloseDate');
e = foreach c generate year(a.'CloseDate') as 'CloseDate A', year(b.'CloseDate') as
'Close Date B', sum(a.Amount) as 'Sum of Amount';

Order By Date
You can order the result of your SAQL queries by DateTime or DateOnly.

Use the date part to order by date before the projection. For example, you can order results by the year that they closed.

q = order q by year('CloseDate');

To order by date after the projection, use the field you created by projecting a date part. For example, you can order results by the year
that they closed.

q = foreach q generate year('CloseDate') as "Year Closed";
q = order q by 'Year Closed';

Filter By Date
You can filter results by DateTime and DateOnly fields. Filters can include exact dates, specific date ranges, or relative date ranges.

106

Time Zone Date FunctionsSAQL Reference

ExampleType of Filter

q = filter q by year('CloseDate')=='2018';
exact date range

q = filter q by year('CloseDate') in
[2017..2018];

specific date range

q = filter q by CloseDate in ["last 2

relative date range

years"];
q = filter CloseDate in ["current
fiscal_year".."current day"];
q = filter CloseDate in ["2 fiscal_years
ago".."current day"];

Note: Filter with binary comparison operators ==, !=, <, >, <=, and >= only after your query’s foreach statement,
post-projection. For example, include the filter q = filter q by CloseDate >= "2014-01-01" post-projection.
If you include it pre-projection, the query throws an error. The inability to include filters that use these comparison operators
pre-projection is a limitation of the beta release.

You can filter pre- and post-projection with the IN comparison operator. The like and matches operators are not supported
for time zone-enabled DateTime and DateOnly fields.

You can use these relative date keywords:

• current day

• n day(s) ago

• n day(s) ahead

• current week

• n week(s) ago

• n week(s) ahead

• current month

• n month(s) ago

• n month(s) ahead

• current quarter

• n quarter(s) ago

• n quarter(s) ahead

• current fiscal_quarter

• n fiscal_quarter(s) ago

• n fiscal_quarter(s) ahead

• current year

• n year(s) ago

• n year(s) ahead

107

Time Zone Date FunctionsSAQL Reference

• current fiscal_year

• n fiscal_year(s) ago

• n fiscal_year(s) ago

SEE ALSO:

filter

Comparison Operators

Calculate the Time Between Two Dates
Use date_diff() and daysBetween() to calculate the time between two dates.

Use now() to get the current time. You can use these functions with DateTime, DateOnly, or Date types.

date_diff(datepart, startdate, enddate)

Returns an integer representing the interval that has elapsed between two dates.

daysBetween(date1, date2)

Returns the number of days between two dates as an integer.

now()

Returns current datetime in the specified time zone. This function is valid only in a foreach statement.

date_diff(datepart, startdate, enddate)

Returns an integer representing the interval that has elapsed between two dates.

The part of the date to use when calculating the difference. Allowed
values are:

datepart

• year

• month

• quarter

• day

• week

• hour

• minute

• second

The start date of the interval.startdate

The end date of the interval.enddate

The difference between two dates is calculated based on the difference in the indicated date parts. For example, the year difference
between two dates is calculated by subtracting the year part of startdate from the year part of enddate.

Suppose OrderDate and ShipDate are DateOnly types. The order date is 31-1-2017 and the ship date is 1-2-2018.

108

Time Zone Date FunctionsSAQL Reference

The year difference between the order date and ship date is 1.

date_diff("year", 'OrderDate' 'ShipDate');

The month difference between the order date and ship date is 2.

date_diff("month", 'OrderDate' 'ShipDate');

If startdate is after enddate, the result is a negative integer.

SEE ALSO:

date_diff()

daysBetween(date1, date2)

Returns the number of days between two dates as an integer.

For example, display the number of days to close a deal. OpenDate and CloseDate fields can be DateTime or DateOnly.

q = foreach q generate daysBetween('OpenDate','CloseDate') as "Days to Close";

SEE ALSO:

daysBetween()

now()

Returns current datetime in the specified time zone. This function is valid only in a foreach statement.

Display the number of days an account is opened.

q = foreach q generate Account, daysBetween('OrderDate', now()) as "daysOpened";

SEE ALSO:

now()

Convert Dates to and from Strings
You can convert dates to strings.

date_to_string(DateTime | DateOnly, format)

Converts a date to a string.

toDateTime(epoch)

Converts an epoch day to a DateTime type.

toDateTime(string, format)

Converts a date in string format to a DateTime type. “format” specifies the date format and can be any valid date format.

toDateOnly(epoch)

Converts an epoch to a DateOnly type.

toDateOnly(string, format)

Converts a date in string format to a DateOnly type. format specifies the date format and can be any valid date format.

109

Time Zone Date FunctionsSAQL Reference

date_to_string(DateTime | DateOnly, format)

Converts a date to a string.

This function takes a DateTime, DateOnly, or now() as its first argument. For the allowed formats, see the Date Formats section
in Date Formats.

Use date_to_string() to display the close date for your opportunities in the format yyyy-MM-dd.. CloseDate must be
a DateTime or DateOnly type.

q = foreach q generate date_to_string('CloseDate', "yyyy-MM-dd") as 'Close Date';

If CloseDate is a Date type, convert it to a DateOnly type with toDate().

q = foreach q generate date_to_string(toDate('CloseDate', "yyyy-MM-dd"), "yyyy-MM-dd") as
'Close Date';

toDateTime(epoch)

Converts an epoch day to a DateTime type.

Note: You can only use this function when the time zone feature is enabled. If the time zone feature is disabled, use the toDate()
function.

q = foreach q generate toDateTime(epoch) as "DateTime";

The format argument isn’t valid for converting epoch numerical values. It’s only valid for converting date string values.

toDateTime(string, format)

Converts a date in string format to a DateTime type. “format” specifies the date format and can be any valid date format.

q = foreach q generate toDateTime('CloseDate',"yyyy/MM/dd") as DateTime;

For the allowed formats, see Date Formats.

If a format argument isn’t provided, the function uses the format yyyy-MM-dd HH:mm:ss. format is only valid for converting
date string values. It isn’t valid for converting epoch numerical values.

toDateOnly(epoch)

Converts an epoch to a DateOnly type.

q = foreach q generate toDateOnly(epoch) as "DateTime";

toDateOnly(string, format)

Converts a date in string format to a DateOnly type. format specifies the date format and can be any valid date format.

Note: You can only use this function when the time zone feature is enabled. If the time zone feature is disabled, use the toDate()
function.

q = foreach q generate toDateOnly('CloseDate',"yyyy/MM/dd") as DateTime;

110

Time Zone Date FunctionsSAQL Reference

Handle Null Dates
Use is not null to filter out null dates.

q = filter q by 'CloseDate' is not null;
q = foreach q generate 'CloseDate';

Projecting null values does not cause an error. For example, this Date Closed field is empty, but no error occurs.

q = filter q by year('CloseDate') is null;
q = foreach q generate year('CloseDate') as "Date Closed";

Determine the Day in the Week, Month, Quarter, or Year
These functions return the day of the week, month, quarter, or year, the date of the last day of the week, month, quarter, or year, and
the number of days in the quarter or year.

day_in_week(date)

Returns an integer representing the day of the week for a specific date. 1 = Sunday, 2 = Monday and so on.

day_in_month(date)

Returns an integer representing the day of the month for a specific date.

day_in_quarter(date)

Returns an integer representing the day of the quarter for a specific date.

day_in_year(date)

Returns an integer representing the day of the year for a specific date.

week_last_day(date)

Returns the date of the last day of the week for a specific date.

year_last_day(date)

Returns the date of the last day of the year for a specific date.

quarter_last_day(date)

Returns the date of the last day of the quarter for a specific date.

month_days(date)

Returns the number of days in the month for a specific date.

quarter_days(date)

Returns the number of days in the quarter for a specific date.

year_days(date)

Returns the number of days in the year for a specific date.

day_in_week(date)

Returns an integer representing the day of the week for a specific date. 1 = Sunday, 2 = Monday and so on.

q = foreach q generate day_in_week('OrderDate') as "Day in Week";

111

Time Zone Date FunctionsSAQL Reference

day_in_month(date)

Returns an integer representing the day of the month for a specific date.

q = foreach q generate day_in_month('OrderDate') as "Day in Month";

day_in_quarter(date)

Returns an integer representing the day of the quarter for a specific date.

q = foreach q generate day_in_quarter('OrderDate') as "Day in Quarter";

day_in_year(date)

Returns an integer representing the day of the year for a specific date.

q = foreach q generate day_in_year('OrderDate') as "Day in Year";

week_last_day(date)

Returns the date of the last day of the week for a specific date.

q = foreach q generate week_last_day('BillDate') as "Week Last Day";

year_last_day(date)

Returns the date of the last day of the year for a specific date.

q = foreach q generate year_last_day('BillDate') as "Year Last Day";

Note: This function always returns December 31. It’s included for uses such as finding the number of days to the year end and
for use in a specific locale.

quarter_last_day(date)

Returns the date of the last day of the quarter for a specific date.

q = foreach q generate quarter_last_day('BillDate') as "Quarter Last Day";

month_days(date)

Returns the number of days in the month for a specific date.

q = foreach q generate month_days(BillDate) as "Days in Billing Month";

quarter_days(date)

Returns the number of days in the quarter for a specific date.

q = foreach q generate quarter_days(BillDate) as "Days in Billing Quarter";

112

Time Zone Date FunctionsSAQL Reference

year_days(date)

Returns the number of days in the year for a specific date.

q = foreach q generate year_days(BillDate) as "Days in Billing Year";

Work with Custom Fiscal Year Data
After inheriting custom fiscal years, SAQL queries support custom fiscal year data.

Analytics supports custom fiscal year data by generating new fields that describe the custom fiscal year. Each of these new fields is
named with the _Fiscal suffix. By working with these fields, SAQL supports custom fiscal year data.

Make sure that a dataset’s dataflow has run after inheriting custom fiscal years and before writing SAQL based on custom fiscal year data.

Each of the queries in the examples is based off the following dataset. These examples presume that Analytics inherited custom fiscal
years that begin on February 1 and end on January 31. Custom fiscal years are defined from 2017 until 2022.

Note: You can’t use custom fiscal year data with the fill or timeseries statements.

AmountCreated DateOpportunity Name

1002/15/2017Widgets

2001/25/2018Widgets

1003/30/2018Widgets

1003/30/2019Widgets

1003/30/2020Widgets

1003/30/2021Widgets

1003/30/2022Widgets

Group by a Custom Fiscal Year

Here’s how to group by a custom fiscal year.

Filter by a Custom Fiscal Year

Here’s how to filter by a custom fiscal year date.

Dates Outside Ranges Defined by Custom Fiscal Year

If your query includes a date that falls outside of a range defined by an inherited fiscal year, SAQL does not return data for that date.

SEE ALSO:

https://help.salesforce.com/s/articleView?id=bi_integrate_date_formats_and_fiscal_dates.htm

Group by a Custom Fiscal Year
Here’s how to group by a custom fiscal year.

113

Work with Custom Fiscal Year DataSAQL Reference

https://help.salesforce.com/s/articleView?id=bi_integrate_date_formats_and_fiscal_dates.htm&language=en_US

Example:

q = load "opportunities";
q = group q by 'CreatedDate_Year_Fiscal';
q = foreach q generate

'CreatedDate_Year_Fiscal' as 'Fiscal Year',
count() as 'count';

q = order q by 'CreatedDate_Year_Fiscal' asc;
q = limit q 2000;

The query returns:

CountFiscal Year

22017

12018

12019

12020

12021

12022

Filter by a Custom Fiscal Year
Here’s how to filter by a custom fiscal year date.

Example:

q = load "opportunities";
q = filter q by date('CreatedDate_Year', 'CreatedDate_Month', 'CreatedDate_Day') in
["current fiscal_year".."current_fiscal_year"];
q = group q by 'CreatedDate_Year_Fiscal';
q = foreach q generate

'CreatedDate_Year_Fiscal' as 'Fiscal Year',
count() as 'count';

q = order q by 'CreatedDate_Year_Fiscal' asc;
q = limit q 2000;

Here’s the query output.

CountFiscal Year

12020

Dates Outside Ranges Defined by Custom Fiscal Year
If your query includes a date that falls outside of a range defined by an inherited fiscal year, SAQL does not return data for that date.

114

Work with Custom Fiscal Year DataSAQL Reference

If a date falls outside of a range defined by an inherited custom fiscal year from Salesforce, then SAQL returns null for that date. When
grouping by a date field that includes dates outside a range defined by an inherited custom fiscal year, no group is returned for undefined
dates. If you group data based on non-fiscal periods, dates that aren’t included in a custom fiscal year return data as expected.

Example: If your fiscal year ends in March 2021, and a date field, CreatedDate, is in April 2021, grouping by
CreatedDate_Month_Fiscal returns null or no group for April 2021. Grouping by CreatedDate_Month returns
data as expected.

Consider this example dataset.

AmountCreated DateOpportunity Name

1002/1/2017Widgets

1002/1/2018Widgets

1002/1/2019Widgets

1002/1/2020Widgets

1002/1/2021Widgets

1002/1/2022Widgets

1002/1/2023Widgets

In Salesforce, you have custom fiscal years defined as January 1 to December 31 for each year from 2018 through 2022. Inherit them in
Analytics by using the Start Date setting.

When running a query like this:

q = load "opportunities";
q = foreach q generate 'CreatedDate' as 'Created Date', CreatedDate_Year_Fiscal as 'Fiscal
Year';
q = limit q 2000;

SAQL returns these results:

Fiscal YearCreated Date

-2/1/2017

20182/1/2018

20192/1/2019

20202/1/2020

20212/1/2021

20222/1/2022

-2/1/2023

Because a custom fiscal year definition doesn’t include 2/1/2017 or 2/1/2023, SAQL returns null.

115

Work with Custom Fiscal Year DataSAQL Reference

Now, let’s group the dataset.

q = load "opportunities";
q = group q by 'CreatedDate_Year_Fiscal';
q = foreach q generate 'CreatedDate_Year_Fiscal' as 'Fiscal Year', count() as 'Count';
q = order q by 'CreatedDate_Year_Fiscal';
q = limit q 2000;

SAQL returns these results:

CountFiscal Year

12018

12019

12020

12021

12022

Since the custom fiscal year definition doesn’t include 2/1/2017 or 2/1/2023, the query excludes these dates from the results.

String Functions
Use SAQL string functions to format your measure and dimension fields.

ascii()

Returns the UTF-8 code value of a character n.

chr()

Returns the UTF-8 character of integer n.

ends_with()

Returns true if the string ends with the specified characters.

index_of()

Returns the location (index) of the specified characters.

len()

Returns the number of characters in the string.

lower()

Returns a copy of the string with all characters in lower case.

ltrim()

Removes the specified characters from the beginning of a string.

mv_to_string()

Converts multivalue fields to string fields.

number_to_string

Converts a number literal to a string literal.

116

String FunctionsSAQL Reference

replace()

Replaces a substring with the specified characters.

rtrim()

Removes the specified characters from the end of a string.

starts_with()

Returns true if the string starts with the specified characters.

string_to_number

Converts a string literal to a number literal.

substr()

Returns a substring that starts at the specified position. You can also specify the length of the substring to return.

trim()

Removes the specified substring from the beginning and the end of a string.

upper()

Returns a copy of the string with all characters in upper case.

ascii()

Returns the UTF-8 code value of a character n.

Syntax
ascii(n)

Usage
Returns null if n is null. The null character (0) is not allowed.

Example

q = foreach q generate ascii("a") as int_value;
- -int_value == 97

chr()

Returns the UTF-8 character of integer n.

Syntax
chr(n)

Usage
Returns null if n is null.

117

String FunctionsSAQL Reference

Example

q = foreach q generate chr(97) as char_value;
- -char_value == a

ends_with()

Returns true if the string ends with the specified characters.

Syntax
ends_with(string, suffix)

Usage
Returns true if ends with suffix, otherwise returns false. String comparison is case-sensitive. If any of the parameters are null,
then the function returns null. If suffix is an empty string, then the function returns null.

Example

ends_with("FIT", "T") == true
ends_with("FIT", "BIT") == false

index_of()

Returns the location (index) of the specified characters.

Syntax
index_of(string, searchStr [,position [, occurence]])

Usage
This function returns the index of searchStr in string, beginning at the specified position. The function returns 0 if
searchStr is not found. This function is case-sensitive. If any of the parameters are null, then the function returns null.

The default value of position is 1, which means that the function begins searching at the first character of string. An error results
if position is negative or zero.

occurrence is an optional integer, with a default value of 1 . You can use this parameter to specify which occurrence of searchStr
to search for. For example, if there is more than one occurrence of searchStr, and occurence is 2, the index of the second
occurrence is returned.

Constant values are supported for position and occurrence, not arbitrary expressions.

If searchStr is an empty string, then the function returns null.

Example

q = load "Opportunity Details";
q = group q by all;

118

String FunctionsSAQL Reference

-- return the first occurrence of "a", starting at the beginning.
-- The result is 2.
q = foreach q generate index_of("Hawaii", "a") as 'Index';

-- return the second occurrence of "a", starting at the beginning
-- the result is 4
q = foreach q generate index_of("Hawaii", "a",1, 2) as 'Index';

-- return the first occurrence of "a", starting at the third position
-- the result is 4
q = foreach q generate index_of("Hawaii", "a",3) as 'Index';

len()

Returns the number of characters in the string.

Syntax
len(string)

Usage
Leading and trailing whitespace characters are included in the length returned. Returns null if string is null.

Example

len("starfox") == 7
len(" rocket ") == 8
len("�") == 1
len("") == 0

lower()

Returns a copy of the string with all characters in lower case.

Syntax
lower(string)

Usage
Returns null if string is null.

Example

lower("JAVA") == "java"

119

String FunctionsSAQL Reference

ltrim()

Removes the specified characters from the beginning of a string.

Syntax
ltrim(string,substr)

Usage
Removes every instance of each character in substr from the beginning of string. This function is case-sensitive. To remove
leading spaces, do not specify a value for substr.

Example
This example shows that ltrim removes the specified characters from the beginning of a string. This function is case-sensitive.

q = load "test";
q = foreach q generate 'Company' as 'Company', ltrim('Company',"abc") as 'ltrim abc',

ltrim('Company',"cba") as 'ltrim cba', ltrim('Company',"ab") as 'ltrim ab',
ltrim('Company',"bc") as 'ltrim bc';

mv_to_string()

Converts multivalue fields to string fields.

Syntax
mv_to_string(multivalue_column_name, delimeter)

multivalue_column_name
Name of the multivalue field to be converted to a string.

delimiter
Optional. The characters used to delimit values in the converted string. Maximum length is 2 characters.

Usage
Returns an alphabetically-sorted, delimited string representation of a multivalue field. The default delimiter is a comma followed by a
space (,).

mv_to_string() applies to non-grouped streams only. You can run filtering or grouping on a multivalue field post-projection.

120

String FunctionsSAQL Reference

Note: To enable multivalue fields, you must select the Enable indexing of multivalue fields in Analytics preference in Setup.
If you run mv_to_string() without the preference selected, the function returns the first value in the first field only.

1. From Setup, enter Analytics in the Quick Find box.

2. Select Settings from the list of Analytics options.

3. In Settings, click the checkbox for Enable indexing of multivalue fields in CRM Analytics.

Example
This query returns values of the Accounts Team as a string delimited by a comma and space, in alphabetical order.

q = load "account;
q = foreach q generate 'Name' as 'Account', mv_to_string('Account_Team') as 'Account Team';

Account TeamAccount

Fred Williamson, Hank Chen, Sarah VasquezAcme

Brian Alison, Tessa McNaleyDTC Electronics

Nadia SmithSalesforce

Example
This query returns the values of Accounts Team as a string delimited by two semicolons (;;) in alphabetical order.

q = load "account";
q = foreach q generate 'Name' as 'Account', mv_to_string('Account_Team', ";;") as 'Account
Team';

Account TeamAccount

Fred Williamson;;Hank Chen;;Sarah VasquezAcme

Brian Alison;;Tessa McNaleyDTC Electronics

Nadia SmithSalesforce

SEE ALSO:

Multivalue Field

number_to_string

Converts a number literal to a string literal.

Syntax
number_to_string(number, number_format)

121

String FunctionsSAQL Reference

Usage
Returns the string representation of number. Use number_format to specify the format of the string, for example as currency or
with two decimal places. number_format can specify seperate formats for positive and negative numbers:

• number_to_string(number, number_format)

The format specified by number_format is used for both positive and negative numbers.

• number_to_string(number, <POSITIVE>;<NEGATIVE>)

If number is positive, the number format specified by <POSITIVE> is used. If number is negative, the number format specified
by <NEGATIVE> is used. Note the semicolon separating the two specified formats.

You can specify the format with these characters:

• 0, #, decimal point (.)

• Thousands separator (,)

• Percentage (%)

• Leading and trailing characters: $, +, -, (,), :, !, ^,&,’,~,{,}

Example
Display the number amount as a string, formatted as currency:

q = foreach q generate 'Amount' as 'Amount', number_to_string('Amount',"$#,###.00") as
'NumberAmount';

Example
Suppose that you have a measure field with the format shown in Number You Start With. Use the format shown in number_format
to display this number as a shown in Resulting String.

Resulting Stringnumber_formatInitial Number

1234.6####.#1234.56

8.900#.0008.9

0.60.#.631

12.0#.0#12

1234.57#.0#1234.568

12,000#,###12000

12#,12000

12.20.0,,12200000

000120000012

122

String FunctionsSAQL Reference

Resulting Stringnumber_formatInitial Number

3.46%#.00%0.03457

12.30#.00;($#.00)12.3

($12.30)$#.00;($#.00)-12.3

++;-32

-+;--32

replace()

Replaces a substring with the specified characters.

Syntax
replace(string, searchStr, replaceStr)

Usage
This function replaces searchStr with replaceStr, then returns the modified string. If any of the parameters are null, then
the function returns null. If searchStr is an empty string, the function returns null. This function is case-sensitive.

Example

replace("Watson, come quickly.", "quickly", "slowly") == "Watson, come slowly."
replace("Watson, come quickly.", "o", "a") == "Watsan, came quickly."
replace("Watson, come quickly.", "", "Mr.") == null

rtrim()

Removes the specified characters from the end of a string.

Syntax
rtrim(string,substr)

Usage
Removes every instance of each character in substr from the end of string. This function is case-sensitive. To remove trailing
spaces, do not specify a value for substr.

Example
This example shows that rtrim removes the specified characters from the end of a string. This function is case-sensitive.

q = load "test";
q = foreach q generate 'Company' as 'Company', rtrim('Company',"abc") as 'rtrim abc',

123

String FunctionsSAQL Reference

rtrim('Company',"cba") as 'rtrim cba', rtrim('Company',"ab") as 'rtrim ab',
rtrim('Company',"ac") as 'rtrim ac';

starts_with()

Returns true if the string starts with the specified characters.

Syntax
starts_with(string, prefix)

Usage
Returns true if string starts with prefix, otherwise returns false. String comparison is case-sensitive. If any of the parameters
are null, then the function returns null. If prefix is an empty string, then the function returns null.

Example
Suppose that you want to count the opportunities where the owner role starts with "Sales". Use starts_with() in a case
statement.

q = load "DTC_Opportunity";

-- Select rows where the owner roles starts with "Sales"
q = foreach q generate count() as 'count', (case
when starts_with('Owner_Role', "Sales") then 'Owner_Role'
end) as 'Owner_Role';

q = group q by 'Owner_Role';
q = foreach q generate count() as 'count', 'Owner_Role' as 'Owner_Role';

The resulting chart shows the number of opportunities where the owner role starts with "Sales", grouped by owner role.

string_to_number

Converts a string literal to a number literal.

124

String FunctionsSAQL Reference

Syntax
string_to_number(string)

Usage
If the string can't be parsed as a number or contains a separator, such as a comma, the query fails.

Example

-- creates a field called "Number" that contains the number 12345

q = foreach q generate string_to_number("12345") as 'Number';

substr()

Returns a substring that starts at the specified position. You can also specify the length of the substring to return.

Syntax
substr(string,position[, length])

Usage
substr returns the characters in string, starting at position position. If you specify length, this function returns length
number of characters. If any of the parameters are null, then the function returns null. length is optional.

The first character in string is at position 1. If position is negative then the position is relative to the end of the string. So a
position of -1 denotes the last character.

If length is negative, then the function returns null. If position > len (string) or position < -len(string) or
position = 0, then the empty string is returned.

Example

-- we want a substring that is one character long, starting at position 1.
-- The character "C" is returned.
substr("CRM", 1, 1)

-- we want a substring that is 2 characters long, starting at position 1
-- The string "CR" is returned
substr("CRM", 1, 2) == "CR"

-- we want a substring that is two characters long, starting from the *end* of the string
-- The string "RM" is returned
substr("CRM", -2, 2) == "RM"

-- we want to get the first 10 characters from this string
-- the string "2018-03-16" is returned
substr("2018-03-16T00:00:03.000Z",10)

125

String FunctionsSAQL Reference

Example
Suppose that you want to display the current time, but not the current date. Use substr() to return the last 11 characters from
date_to_string() .

q = foreach q generate substr(date_to_string(now(), "yyyy-MM-dd HH:mm:ss"), -11) as 'Time
Now';

trim()

Removes the specified substring from the beginning and the end of a string.

Syntax
trim(string,substr)

Usage
This function removes substr from the beginning and end of string, then returns the result. To remove leading and trailing spaces,
do not specify a value for substr.

Example

–- the resulting string in both cases is 'MyString';
q = foreach q generate trim("abcMyStringabc","abc") as 'Trimmed String';
q = foreach q generate trim(" MyString ") as 'Trimmed String';

upper()

Returns a copy of the string with all characters in upper case.

Syntax
upper(string)

Usage
Returns null if string is null.

Example

upper("java") == "JAVA"

Math Functions
To perform numeric operations in a SAQL query, use math functions.

You can use SAQL math functions in foreach statements and in the filter by clause after a foreach statement.

126

Math FunctionsSAQL Reference

You can't use math functions in a group by clause or in an order by clause. You also can't use math functions in the filter
by clause before a foreach statement.

abs(n)

Returns the absolute number of n as a numeric value. n can be any real numeric value in the range of -1e308 <= n <= 1e308.
This function can only be used in a foreach statement.

acos(n)

Returns the arccosine value of radians value n. n can be any real numeric value in the range of -1 <= n <= 1. If null is passed
as an argument, acos() returns null. This function can only be used in a foreach statement.

asin(n)

Returns the arcsine value of radians value n. n can be any real numeric value in the range of -1 <= n <= 1. If null is passed as
an argument, asin() returns null.This function can only be used in a foreach statement.

atan(n)

Returns the arctangent value of radians value n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. If null
is passed as an argument, atan() returns null. This function can only be used in a foreach statement.

ceil(n)

Returns the nearest integer of equal or greater value to n. n can be any real numeric value in the range of -1e308 <= n <= 1e308.
This function can only be used in a foreach statement.

cos(n)

Returns the cosine value of radians value n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. If null is
passed as an argument, cos() returns null. This function can only be used in a foreach statement.

degrees(n)

Returns the degrees value of a radians value n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. If null
is passed as an argument, degrees() returns null. This function can only be used in a foreach statement.

exp(n)

Returns the value of Euler's number e raised to the power of n, where e = 2.71828183… The smallest value for n that doesn’t
result in 0 is 3e-324. n can be any real numeric value in the range of -1e308 <= n <= 700. This function can only be used in a
foreach statement.

floor(n)

Returns the nearest integer of equal or lesser value to n. n can be any real numeric value in the range of -1e308 <= n <= 1e308.
This function can only be used in a foreach statement.

log(m, n)

Returns the natural logarithm (base m) of a number n. The values m and n can be any positive, non-zero numeric value in the
range 0 < m, n <= 1e308 and m ≠ 1. The smallest value for m or n that will not produce 0 is log(10, 0.3e-323). This function can
only be used in a foreach statement.

pi()

Returns the value of π, where π=3.14139265. This function can only be used in a foreach statement.

power(m, n)

Returns m raised to the nth power. m, n can be any numeric value in the range of -1e308 <= m, n <= 1e308. Returns null if m
= 0 and n < 0. This function can only be used in a foreach statement.

radians(n)

Returns the radians value of a degrees value n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. If null
is passed as an argument, radians() returns null. This function can only be used in a foreach statement.

127

Math FunctionsSAQL Reference

round(n[, m])

Returns the value of n rounded to m decimal places. m can be negative, in which case the function returns n rounded to -m places
to the left of the decimal point. If m is omitted, it returns n rounded to the nearest integer. For tie-breaking, it follows round half
way from zero convention. n can be any real numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value
between -15 and 15, inclusive. This function can only be used in a foreach statement.

sign(n)

Returns 1 if the numeric value, n is positive. It returns -1 if the n is negative, and 0 if n is 0. n can be any real numeric value in the
range of -1e308 <= n <= 1e308. If null is passed as an argument, sign() returns null. This function can only be used in a
foreach statement.

sin(n)

Returns the sine value of radians value n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. If null is
passed as an argument, sin() returns null. This function can only be used in a foreach statement.

sqrt(n)

Returns the square root of a number n. The value n can be any non-negative numeric value in the range of 0 <= n <= 1e308. This
function can only be used in a foreach statement.

tan(n)

Returns the tangent value of radians value n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. If null is
passed as an argument, tan() returns null. This function can only be used in a foreach statement.

trunc(n[, m])

Returns the value of the numeric expression n truncated to m decimal places. m can be negative, in which case the function returns
n truncated to -m places to the left of the decimal point. If m is omitted, it returns n truncated to the integer place. n can be any
real numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value between -15 and 15 inclusive. This function
can only be used in a foreach statement.

abs(n)

Returns the absolute number of n as a numeric value. n can be any real numeric value in the range of -1e308 <= n <= 1e308. This
function can only be used in a foreach statement.

Example:

q = foreach q generate abs(pct_change) as pct_magnitude;

acos(n)

Returns the arccosine value of radians value n. n can be any real numeric value in the range of -1 <= n <= 1. If null is passed as an
argument, acos() returns null. This function can only be used in a foreach statement.

Example:

q = foreach q generate acos(radians) as arccosine;

asin(n)

Returns the arcsine value of radians value n. n can be any real numeric value in the range of -1 <= n <= 1. If null is passed as an
argument, asin() returns null.This function can only be used in a foreach statement.

128

Math FunctionsSAQL Reference

Example:

q = foreach q generate asin(radians) as arcsine;

atan(n)

Returns the arctangent value of radians value n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. If null is
passed as an argument, atan() returns null. This function can only be used in a foreach statement.

Example:

q = foreach q generate atan(radians) as arctangent;

ceil(n)

Returns the nearest integer of equal or greater value to n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. This
function can only be used in a foreach statement.

Example:

q = foreach q generate ceil(miles) as distance;

cos(n)

Returns the cosine value of radians value n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. If null is passed
as an argument, cos() returns null. This function can only be used in a foreach statement.

Example:

q = foreach q generate cos(radians) as cosine;

degrees(n)

Returns the degrees value of a radians value n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. If null is
passed as an argument, degrees() returns null. This function can only be used in a foreach statement.

Example:

q = foreach q generate degrees(radians) as degrees;

exp(n)

Returns the value of Euler's number e raised to the power of n, where e = 2.71828183… The smallest value for n that doesn’t result
in 0 is 3e-324. n can be any real numeric value in the range of -1e308 <= n <= 700. This function can only be used in a foreach
statement.

Example:

q = foreach q generate exp(value) as value;
q = filter q by exp(value) < 5;

129

Math FunctionsSAQL Reference

floor(n)

Returns the nearest integer of equal or lesser value to n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. This
function can only be used in a foreach statement.

Example:

q = foreach q generate floor(miles) as distance;

log(m, n)

Returns the natural logarithm (base m) of a number n. The values m and n can be any positive, non-zero numeric value in the range
0 < m, n <= 1e308 and m ≠ 1. The smallest value for m or n that will not produce 0 is log(10, 0.3e-323). This function can only be used
in a foreach statement.

Example:

q = foreach q generate log(10, Population) as Population;
q = filter q by log(10, Population) < 15;

pi()

Returns the value of π, where π=3.14139265. This function can only be used in a foreach statement.

Example:

q = foreach q generate pi() as pi;

power(m, n)

Returns m raised to the nth power. m, n can be any numeric value in the range of -1e308 <= m, n <= 1e308. Returns null if m =
0 and n < 0. This function can only be used in a foreach statement.

• If m = 0, n must be a non-negative value.

• If m < 0, n must be an integer value.

• The result of power(m, n) must be within the range expressed by a float64 number.

Example:

q = foreach q generate power(length, 2) as area, length;
q = filter q by power(length, 2) > 10;

radians(n)

Returns the radians value of a degrees value n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. If null is
passed as an argument, radians() returns null. This function can only be used in a foreach statement.

Example:

q = foreach q generate radians(degrees) as radians;

130

Math FunctionsSAQL Reference

round(n[, m])

Returns the value of n rounded to m decimal places. m can be negative, in which case the function returns n rounded to -m places to
the left of the decimal point. If m is omitted, it returns n rounded to the nearest integer. For tie-breaking, it follows round half way from
zero convention. n can be any real numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value between -15 and
15, inclusive. This function can only be used in a foreach statement.

Example:

q = foreach q generate round(Price, 2) as Price;

sign(n)

Returns 1 if the numeric value, n is positive. It returns -1 if the n is negative, and 0 if n is 0. n can be any real numeric value in the
range of -1e308 <= n <= 1e308. If null is passed as an argument, sign() returns null. This function can only be used in a
foreach statement.

Example:

q = foreach q generate sign(value) as value;

sin(n)

Returns the sine value of radians value n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. If null is passed
as an argument, sin() returns null. This function can only be used in a foreach statement.

Example:

q = foreach q generate sin(radians) as sine;

sqrt(n)

Returns the square root of a number n. The value n can be any non-negative numeric value in the range of 0 <= n <= 1e308. This
function can only be used in a foreach statement.

Example:

q = foreach q generate sqrt(value) as value;
q = filter q by sqrt(value) < 10;

tan(n)

Returns the tangent value of radians value n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. If null is passed
as an argument, tan() returns null. This function can only be used in a foreach statement.

Example:

q = foreach q generate tan(radians) as tangent;

131

Math FunctionsSAQL Reference

trunc(n[, m])

Returns the value of the numeric expression n truncated to m decimal places. m can be negative, in which case the function returns
n truncated to -m places to the left of the decimal point. If m is omitted, it returns n truncated to the integer place. n can be any real
numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value between -15 and 15 inclusive. This function can only
be used in a foreach statement.

Example:

q = foreach q generate trunc(Price, 2) as Price;

Windowing Functions
Use SAQL windowing functionality to calculate common business cases such as percent of grand total, moving average, year and quarter
growth, and ranking.

Windowing functions allow you to calculate data for a single group using aggregated data from adjacent groups. Windowing doesn’t
change the number of rows returned by the query. Windowing aggregates across groups rather than within groups and accepts any
valid numerical projection on which to aggregate.

Windowing with an aggregate function uses the following syntax:

<windowfunction>(<projection expression>) over (<row range> partition by <reset groups>
order by <order clause>) as <label>

When using ranking functions, use the following syntax:

<rankfunction> over([..] partition by <reset groups> order by <order clause>) as <label>

Where:

windowfunction
An aggregate function that supports windowing. Currently supported functions are avg, sum, min, max, count, median,
percentile_disc, and percentile_cont.

rankfunction
Returns a rank value for each row in a partition. The following ranking functions are supported: rank(), dense_rank(),
cume_dist(), and row_number(). Refer to the Ranking Functions section for examples.

projection expression

The expression used to generate a projection from the values of specified columns.

row range

Row ranges are specified using the following syntax.

MeaningRange

From beginning to current row in the reset group.[.. 0]

From current row to the last row in the reset group.[0 ..]

From two rows before the current row. Window covers 3 rows.[-2 .. 0]

From current row to 2 rows ahead of current row. Windows covers 3 rows.[0 .. 2]

One row before the current row. Window includes a single row.[-1 .. -1]

132

Windowing FunctionsSAQL Reference

MeaningRange

From beginning of reset group to 2 rows before the current row.[.. -2]

Aggregates the entire reset group.[..]

reset groups
The columns that reset windowing aggregation when their values change. A reset group of all indicates no reset boundaries for
the window aggregation.

order clause
Specify columns by which to sort. This action orders the rows before the window function gets evaluated.

Note: The order clause is not allowed on expressions where the row range is [..] and the window function is sum, avg,
min, or max. For example, sum(sum(Sales)) over([..] partition by Year order by Quarter)
is invalid.

label
The output column name.

Notes
Grouped Queries

Windowing functionality is enabled only for grouped queries. The following is not valid:

a = load "dataset";
b = foreach a generate sum(sum(sales)) over([.. 0] partition by all order by all);

Multiple Resets and Multiple Orders

Multiple resets and multiple orders are valid. For example:

sum(sum(Sales)) over([-2 .. 0] partition by (OrderDate_Year, OrderDate_Quarter) order
by OrderDate_Year)

sum(sum(Sales)) over([-2 .. 0] partition by (Year, Quarter) order by (Year asc, sum(Sales)
desc))

Cogroups

Windowing functions can be used with cogroup queries. For example:

sum(sum(a[Sales])) over([-2 .. 0] partition by (a[Year], a[Quarter]) order by (a[Year]
asc, sum(a[Sales]) desc))

Note: Each Windowing function can be used with only 1 cogroup stream. The following is not valid:

a = load "dataset1";
b = load "dataset2";
c = cogroup a by column1, b by column2;
d = foreach c generate sum(sum(a[sales])) over([.. 0] partition by b[column2] order
by all)

To validate the statement, remove the second stream from the cogroup line, b by column2.

Refer to the Aggregate Functions topic for details on function usage.

133

Windowing FunctionsSAQL Reference

Example - Dynamically Display Your Top Five Reps
Use windowing to create a chart that dynamically displays your top-five reps for each country. The chart updates continuously as
opportunities are won. The example uses windowing to calculate:

• Percentage contribution that each rep made to the total amount, partitioned by country

• Ranking of the rep’s contribution, partitioned by country

These calculations let us display the top-five reps in each country.

q = load "DTC_Opportunity_SAMPLE";
q = group q by ('Billing_Country', 'Account_Owner');

q = foreach q generate 'Billing_Country', 'Account_Owner',

-- sum(Amount) is the total amount for a single rep in the current country
-- sum(sum('Amount') is the total amount for ALL reps in the current country
-- sum(Amount) / sum(sum('Amount') calculates the percentage that each rep contributed
-- to the total amount in the current country
((sum('Amount')/sum(sum('Amount'))

-- [..] means "include all records in the partition"
-- "by Billing_Country" means partition, or group, by country
over ([..] partition by 'Billing_Country')) * 100) as 'Percent_AmountContribution',

-- rank the percent contribution and partition by the country
rank() over ([..] partition by ('Billing_Country') order by sum('Amount') desc) as
'Rep_Rank';

-- filter to include only the top 5 reps
q = filter q by 'Rep_Rank' <=5;

The resulting graph shows the top-five reps in each country and displays each rep’s ranking.

134

Windowing FunctionsSAQL Reference

Examples
Running Total (No Reset)

The following query calculates the running total of sum of sales every quarter, with "partition by all" denoting that the sum isn’t reset
by any column.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sum_amt, sum(sum(Sales)) over([.. 0] partition by all order by (OrderDate_Year,
OrderDate_Quarter)) as r_sum;

r_sumsum_amtQuarterYear

1000100012013

3000200022013

6000300032013

8000200042013

9000100012014

950050022014

18500900032014

135

Windowing FunctionsSAQL Reference

r_sumsum_amtQuarterYear

21500300042014

2200050012015

2250050022015

2270020032015

2310040042015

Running Totals By Year

Running total resets on every year.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sum_amt, sum(sum(Sales)) over([.. 0] partition by OrderDate_Year order by (OrderDate_Year,
OrderDate_Quarter)) as r_sum;

r_sumsum_amtQuarterYear

1000100012013

3000200022013

6000300032013

8000200042013

1000100012014

150050022014

10500900032014

13500300042014

50050012015

10050022015

120020032015

160040042015

Min Sales Trailing 3 Quarters (Moving Min)

Finds the moving minimum values in the window of last two rows to current row.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sumSales, min(sum(Sales)) over([-2 .. 0] partition by OrderDate_Year order by
(OrderDate_Year, OrderDate_Quarter)) as m_min;

136

Windowing FunctionsSAQL Reference

m_minsumSalesQuarterYear

1000100012013

1000200022013

1000300032013

2000200042013

1000100012014

50050022014

500900032014

500300042014

4000400012015

50050022015

20020032015

20040042015

Percentage Total

This query calculates the percentage of the quarter’s sales for the year. Row range [..] calculates the subtotals of each year, which is used
in the formula to calculate the percentage.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sumSales, (sum(Sales) * 100) / sum(sum(Sales)) over([..] partition by OrderDate_Year)
as p_tot;

p_totsumSalesQuarterYear

12.5%100012013

25%200022013

37.5%300032013

25%200042013

7.41%100012014

3.70%50022014

66.67%900032014

22.22%300042014

31.25%50012015

31.25%50022015

137

Windowing FunctionsSAQL Reference

p_totsumSalesQuarterYear

12.50%20032015

25%40042015

Differences Along Year

This query calculates the growth of sales compared with the previous quarter, with [-1 .. -1] referring to the quarter before the quarter
on the row. The blank spaces in the result table represent null values.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sumSales, sum(Sales) - sum(sum(Sales)) over([-1 .. -1] partition by OrderDate_Quarter
order by (OrderDate_Year, OrderDate_Quarter)) as diff;

diffsumSalesQuarterYear

100012013

1000200022013

1000300032013

-1000200042013

100012014

-50050022014

8500900032014

-6000300042014

50012015

050022015

-30020032015

20040042015

Ranking Functions

rank()
Assigns rank based on order. Repeats rank when the value is the same, and skips as many on the next non-match.

dense_rank()
Same as rank() but doesn’t skip values on previous repetitions.

cume_dist()
Calculates the cumulative distribution (relative position) of the data in the reset group.

row_number()
Assigns a number incremented by 1 for every row in the reset group.

138

Windowing FunctionsSAQL Reference

Examples

q = load "dataset";
q = group q by (Year, Quarter);
q = foreach q generate Year, Quarter, sum(Sales) as sum_amt, rank() over([..] partition
by Year order by sum(Sales)) as rank;

The following table also shows result columns as if the dense_rank(), cume_dist(), and row_number() functions were
substituted for rank() in the previous code.

row_numbercume_distdense_rankranksum_amtQuarterYear

10.2511100012013

20.7522200022013

30.7522200042013

4134300032013

10.251150022014

20.522100012014

30.7533300042014

4144900032014

10.51150012015

20.51150022015

30.752360042015

413470032015

This query shows the top 3 performing quarters in a year.

q = load "dataset";
q = group q by (Year, Quarter);
q = foreach q generate Year, Quarter, sum(Sales) as sum_amt, rank() over([..] partition
by Year order by sum(Sales)) as rank;
q = filter q by rank <= 3;

ranksumSalesQuarterYear

1100012013

2200022013

2200042013

150022014

2100012014

3300042014

139

Windowing FunctionsSAQL Reference

ranksumSalesQuarterYear

150012015

160022015

360042015

This query shows the 95th percentile.

q = load "Oppty_Products_Scored";
q = group q by (ProductName);
q = foreach q generate ProductName, sum(TotalPrice) as sum_Price, percentile_cont(0.95)
within group (order by 'TotalPrice') as 'sum_95Percentile';
q = limit q 5;

Refer to the Aggregate Functions topic for details on function usage.

SEE ALSO:

Windowing Functions

Windowing Functions

coalesce
Use coalesce() to get the first non-null value from a list of parameters, or to replace nulls with a different value.

coalesce(value1 , value2 , value3 , ...)

The arguments must all be convertible to a common data type, which will be the type of the result.

This function is often used to substitute a default value for null values when data is retrieved for display. For example:

SELECT COALESCE(description, short_description, '(none)') ...

The above example returns description if it is not null, otherwise short_description if it is not null, otherwise (none).

140

coalesceSAQL Reference

Example: Left Outer Cogroup with coalesce()
A left outer cogroup combines the right data stream with the left data stream. If a record on the left stream does not have a match on
the right stream, the missing right value comes through as null. To replace null values with a different value, use coalesce().

For example, suppose that you have a dataset of meeting information from the Salesforce Event object, and you join it with data from
the Salesforce Opportunity object. This shows amount won with the total time spent in meetings.

ops = load "Ops";
meetings = load "Meetings";
q = cogroup ops by 'Account' left, meetings by 'Company' ;
q = foreach q generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum_Amount',
sum(meetings.'MeetingDuration') as 'TimeSpent';

It looks like we had no meetings with Zen Retreats.

Let’s use coalesce() to change that null value to a zero.

ops = load "Ops";
meetings = load "Meetings";
q = cogroup ops by 'Account' left, meetings by 'Company' ;

–-use coalesce() to replace null values with zero
q = foreach q generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum_Amount',
coalesce(sum(meetings.'MeetingDuration'), 0) as 'TimeSpent';

141

coalesceSAQL Reference

QUERY PERFORMANCE

Here are some guidelines for structuring your queries to improve performance.

Speed Up Queries with Dataflow Transformations

To speed up your queries and reduce the number of network round trips, perform data transformations in the ELT process instead
of in the query.

Limit Multivalue Fields

Multivalue fields can cause poor performance. The behavior of these fields is undefined for group-by and foreach statements.
If possible, write your query so that the fields are referenced only in filters.

Use Group and Filter Pre-projection

Improve query performance by moving group and filter operations on simple fields before the foreach statement. A simple field
is projected as-is and doesn't have additional expressions.

Remove Redundant Projections

To improve memory usage and performance costs, remove unnecessary projections from your queries and load only the data
required. If you have to perform an operation, include pre-projection statements as needed.

Check for Redundant Filters

Binding and faceting in your dashboard design can generate redundant filters. Check the SAQL queries that your dashboard produces
to remove unnecessary filters. Consider how a filter in your dashboard UI interacts with one in your query and vice versa.

Limit the Use of unique()

unique() can affect query performance for large datasets that have over 100 million rows and include more than one million
unique values. For large datasets, unique() is faster for measures than for dimensions. If counting the number of unique string
values causes performance issues, convert the string to a number. For example, use a hash of the string value or refer to the index
of the string in a sorted list of string values.

arimax Show Parameters Query Tool

The showParams parameter is provided for you as a query developer tool. It allows you to run an arimax query and review the
model parameters and Bayesian Information Criteria (BIC) to understand the data better and improve query efficiency.

Speed Up Queries with Dataflow Transformations

To speed up your queries and reduce the number of network round trips, perform data transformations in the ELT process instead of in
the query.

Example: GEO Field
Let’s say you have a dataset with the GEO field that contains the value JP, and you want to replace this value with Japan. One solution
is to add a case statement to your query.

q = foreach q1 generate (case when 'GEO' == \"JP\" then \"Japan\" else 'GEO' end) as 'GEO;'

142

Running this query on each row in a dataset is time-consuming. A faster approach is to add the case statement to the
saqlExpression field in the dataflow’s computeExpression transformation. Moving the case statement from the query
to the ELT process reduces the query’s network round trips.

"parameters": {
"source": "Opportunity_Data",
"mergeWithSource": true,
"computedFields": [{

"name": "GEO",
"type": "Text",
"label": "GEO"
"saqlExpression": "case when 'GEO' == \"JP" then \"Japan\" else 'GEO' end"}

]}

Tip: You can also improve query performance by shortening decimal values in your dataflow. For example, if the numbers in your
dataset have a single decimal digit, such as 9.1 or 924.3, set scale to 1 rather than 4 in the computeExpression
transformation. Restricting the decimal value only impacts storage only. SAQL performs query calculations with all decimal values
intact.

Example: Date Format
To change the date format, you can add an intermediate query to filter the stream based on the list selector values. Adding an extra filter
creates another network trip. Instead, transform the values in the computeExpression transformation, which you can use with
SAQL date functions.

"parameters":{
"source":"Opportunity_Data",
"mergeWithSource":true,
"computedFields":[{

"name":"UIFormattedDate",
"type": "Text",
"saqlExpression":"date_to_string(toDate(Date_sec_epoch), "yyyy-MM-dd")" }] }}

SEE ALSO:

Simple case Operator

https://help.salesforce.com/s/articleView?id=bi_integrate_saql_transformation.htm

Limit Multivalue Fields

Multivalue fields can cause poor performance. The behavior of these fields is undefined for group-by and foreach statements. If
possible, write your query so that the fields are referenced only in filters.

Note: To work with multivalue fields, from Setup, in the Quick Find box, enter Analytics, and then select Settings. In Settings,
click the checkbox for Enable indexing of multivalue fields in CRM Analytics. If you don’t select this preference, the
mv_to_string() function returns only the first value in the field. See mv_to_string() on page 120 for more information.

Even with indexing enabled, multivalue fields in multilevel grouping, such as group by(Year, Region), can cause poor
performance.

Here’s FlightsMV, a sample dataset of flight information.

143

Limit Multivalue FieldsQuery Performance

https://help.salesforce.com/s/articleView?id=bi_integrate_saql_transformation.htm&language=en_US

num_passengersdistanceflight_attendantsflight_classesairplanepilotdestoriginflight_numairline

1001000mark;sara;kate;maria;martinbusiness;economyboeing
737-700

johnsfolaxsw301southwest

2001000jen;sophia;emma;alicefirst;business;economyboeing
737-900

marksfolaxu321united

1001000mark;leila;bradbusiness;economyairbus A320timsfolaxas400alaska

1001000sarah;mariabusiness;economyairbus A321martinsfolaxd301delta

1001000-business;economy-laxsfosw302southwest

2001000sarah;martinfirst;business;economyboeing
737-700

johnlaxsfou322united

1001000maria;mark;sara;kate;martinbusiness;economyboeing
737-900

marklaxsfoas401alaska

1001000emma;jen;sophia;alicebusiness;economyairbus A320timlaxsfod302delta

1001000leila;mark;bradbusiness;economyairbus A321robertjfklaxsw303southwest

2001000-first;business;economymariajfklaxu323united

1001000-business;economyboeing
737-700

markjfklaxas403alaska

1001000maria;sarahbusiness;economyboeing
737-900

timjfklaxd303delta

1001000martin;sarahbusiness;economyairbus A320robertlaxjfksw304southwest

2001000kate;mark;sara;maria;martinfirst;business;economyairbus A321-laxjfku324united

1001000sophia;jen;emma;alicebusiness;economyjohnlaxjfkas404alaska

1001000-business;economyboeing
737-700

marklaxjfkd304delta

1001000-business;economyboeing
737-900

martinordlaxsw303southwest

2001000first;business;economyairbus A320robertordlaxu323united

1001000brad;mark;leilabusiness;economyairbus A321-ordlaxas403alaska

1001000sarah;mariabusiness;economy-johnordlaxd303delta

The flight_attendants column contains multivalue fields. Let’s write a query to filter on the rows where maria is listed as a
flight attendant.

q = load "FlightsMV";
q = filter q by 'flight_attendants' in ["maria"];
q = foreach q generate 'airplane' as 'airplane', 'distance' as 'distance',

144

Limit Multivalue FieldsQuery Performance

'flight_attendants' as 'flight_attendants', 'flight_num' as 'flight_num', 'id' as 'id',
'num_passengers' as 'num_passengers', 'origin' as 'origin', 'pilot' as 'pilot';

pilotoriginnum_passengersidflight_numflight_attendantsdistanceairplane

johnlax1001sw301kate1000boeing
737-700

martinlax1004d301maria1000airbus A321

marksfo1007as401kate1000boeing
737-900

timlax10012d303maria1000boeing
737-900

-jfk20014u324kate1000airbus A321

johnlax10020d303maria1000-

The results display the rows that include maria. The flight_attendants field displays only one flight attendant name when
the field is multivalue. To return all the names, use the mv_to_string() function.

q = load "FlightsMV";
q = filter q by 'flight_attendants' in ["maria"];
q = foreach q generate 'airplane' as 'airplane', 'distance' as 'distance',
mv_to_string('flight_attendants') as 'flight_attendants', 'flight_num' as 'flight_num',
'id' as 'id', 'num_passengers' as 'num_passengers', 'origin' as 'origin', 'pilot' as
'pilot';

Warning: When using comparison operators in the filter, use in and not in to return the correct values. Using == and !=
returns unexpected values when null handling is enabled. See Group-by with Null Values for more information.

SEE ALSO:

Multivalue Field

Use Group and Filter Pre-projection

Improve query performance by moving group and filter operations on simple fields before the foreach statement. A simple field is
projected as-is and doesn't have additional expressions.

Projection refers to the subset of columns that your query returns. In SAQL, projection occurs in the foreach statement, where the
query performs an operation on each row in the dataset.

Note: SAQL supports only pre-projection filters that follow this format: fieldName operatorName constant. For
example, you can include q = filter q by Category;, but not q = filter q by Discount > 1;. The
same applies to grouping. For example, you can include q = group q by Category;, but not q = group q by
Discount > 1;.

145

Use Group and Filter Pre-projectionQuery Performance

Example: Filter
In this query, the filter statement occurs post-projection.

q = load "Superstore";
q = foreach q generate 'Category' as 'Store_Category', 'Sub_Category' as
'Store_Sub_Category';
q = filter q by 'Store_Category'=="Furniture";

Here, we move the filter to pre-projection. Because the Category field occurs before the foreach statement, it doesn't have an
alias.

q = load "Superstore";
q = filter q by 'Category'=="Furniture";
q = foreach q generate 'Category' as 'Store_Category', 'Sub_Category' as
'Store_Sub_Category';

Example: Group
In this example, the query first creates two new fields: Detailed_Category, a combination of the Category and
Sub_Category fields, and Adjusted_Discount. After grouping the results by Detailed_Category, the second foreach
statement takes the average of Adjusted_Discount for each Detailed_Category.

q = load "Superstore";
q = foreach q generate 'Category'+ "-" + 'Sub_Category' as 'Detailed_Category', 2*'Discount'
as 'Adjusted_Discount';
q = group q by 'Detailed_Category';
q = foreach q generate 'Detailed_Category', avg('Adjusted_Discount') as
'Avg_Adjusted_Discount';

Instead of using two foreach statements, group by Sub_Category pre-projection, and add its alias in the foreach statement.

q = load "Superstore";
q = group q by ('Category', 'Sub_Category');
q = foreach q generate 'Category'+ "-" + 'Sub_Category' as 'Detailed_Category',
2*avg('Discount') as 'Avg_Adjusted_Discount';

SEE ALSO:

group-by

filter

Remove Redundant Projections

To improve memory usage and performance costs, remove unnecessary projections from your queries and load only the data required.
If you have to perform an operation, include pre-projection statements as needed.

Here's an example of a query with an unnecessary projection.

q = load "Superstore";
q = foreach q generate 'Category';
q = group q by 'Category';
q = foreach q generate 'Category', count() as 'count';

146

Remove Redundant ProjectionsQuery Performance

The first foreach statement projects the Category field, which is already included in the dataset. Since we're not performing any
operation on the field, we can remove it.

q = load "Superstore";
q = group q by 'Category';
q = foreach q generate 'Category', count() as 'count';

Here's an example with an implicit cogroup.

a = load "Customer_Data";
a = foreach a generate 'Customer_Name';
b = load "Superstore";
b = foreach b generate 'Customer_Name';
a = group a by 'Customer_Name' full, b by 'Customer_Name';
a = foreach a generate coalesce(a.'Customer_Name', b.'Customer_Name') as 'Customer_Name',
count('a') as 'Superstore', count('b') as 'Customer_data';

In this example, the foreach statements that follow loading the “Customer_Data” and the “Superstore” datasets are unnecessary,
since they’re projecting the Customer_Name fields without any additional action. You can group the fields pre-projection.

a = load “Customer_Data”;
b = load “Superstore”;
a = group a by ‘Customer_Name’ full, b by 'Customer_Name';
a = foreach a generate coalesce(a.'Customer_Name', b.'Customer_Name') as 'Customer_Name',
count('a') as 'Superstore', count('b') as 'Customer_data';

Check for Redundant Filters

Binding and faceting in your dashboard design can generate redundant filters. Check the SAQL queries that your dashboard produces
to remove unnecessary filters. Consider how a filter in your dashboard UI interacts with one in your query and vice versa.

Limit the Use of unique()

unique() can affect query performance for large datasets that have over 100 million rows and include more than one million unique
values. For large datasets, unique() is faster for measures than for dimensions. If counting the number of unique string values causes
performance issues, convert the string to a number. For example, use a hash of the string value or refer to the index of the string in a
sorted list of string values.

Note: Counting unique values can impact performance, but counting the total number of rows in a dataset doesn’t.

arimax Show Parameters Query Tool

The showParams parameter is provided for you as a query developer tool. It allows you to run an arimax query and review the
model parameters and Bayesian Information Criteria (BIC) to understand the data better and improve query efficiency.

When running an arimax query with the showParams specified, no statements after the arimax statement are allowed. During
development, splitting your query can make testing easier.

The query result isn't the queried data, it’s debugging information that shows the model parameters and the Bayesian Information
Criteria (BIC) value. Use the result with the lowest BIC in your final query.

147

Check for Redundant FiltersQuery Performance

Description
Valid values are top and multi.

Specifying top returns the final Arimax model and BIC for each partition and each forecasted measure. For example, the results
for showParams="top" are:

BICSeasonalOrderArimaOrderMeasure

123.45(1,2,0,4)(1,1,1)Revenue

Specifying multi returns the top 3 Arimax models and BIC for each partition and each forecasted measure. A lower BIC score denotes
a better model fit. For example, the results for showParams="multi" are:

BICSeasonalOrderArimaOrderMeasure

100.248204(1,1,0,4)(2,1,1)Revenue

107.434348(2,0,1,12)(2,1,1)Revenue

112.206876(0,1,2,4)(2,1,1)Revenue

If both arimaxOrder and seasonalOrder are defined in the query, only the specified Arimax model and BIC are returned.

Warning: It's best practice to always provide a dateType with the dateCols parameter to ensure more accurate predictions
and better query performance. Omitting dateType results in a long-running query.

SEE ALSO:

arimax

Syntax - No Partition
Syntax examples for show parameters queries with no partition.

Single Forecast Measure, showParams="top"
The query uses showParams="top" and a single forecast measure. The results return the lowest BIC value.

q = arimax q generate Revenue as fRevenue
with (length=10, order='ldx', predictionInterval=[80,95],
seasonalOrder=(0,1,1,3), showParams="top");

Query results are:

BICSeasonalOrderArimaOrderMeasure

459.50558(0,1,1,3)(1,1,0)Revenue

148

Syntax - No PartitionQuery Performance

Single Forecast Measure, showParams="multi"
The query uses showParams="multi" and a single forecast measure. The results return the top 3 parameter combinations with
the lowest BIC.

q = arimax q generate Revenue as fRevenue
with (length=10, order='ldx', predictionInterval=[80,95],
seasonalOrder=(0,1,1,3), showParams="multi");

Query results are:

BICSeasonalOrderArimaOrderMeasure

459.50558(0,1,1,3)(1,1,0)Revenue

478.15679(0,1,1,3)(0,1,0)Revenue

512.45935(0,1,1,3)(2,1,0)Revenue

Multiple Forecast Measures, showParams="top"
The query uses showParams="top" and a multiple forecast measures. The results return the lowest BIC value for each measure.

q = arimax q generate Revenue as fRevenue, ShippingCost as fShippingCost
with (length=10, order='ldx', predictionInterval=[80,95],
seasonalOrder=(0,1,1,3), showParams="top");

Query results are:

BICSeasonalOrderArimaOrderMeasure

459.50558(0,1,1,3)(1,1,0)Revenue

1017.855(0,1,1,3)(2,0,1)Shipping Cost

Multiple Forecast Measures, showParams="multi"
The query uses showParams="multi" and multiple forecast measures. The results return the top 3 parameter combinations with
the lowest BIC for each measure.

q = arimax q generate Revenue as fRevenue, ShippingCost as fShippingCost
with (length=10, order='ldx', predictionInterval=[80,95],
seasonalOrder=(0,1,1,3), showParams="multi");

Query results are:

BICSeasonalOrderArimaOrderMeasure

459.50558(0,1,1,3)(1,1,0)Revenue

478.15679(0,1,1,3)(0,1,0)Revenue

512.45935(0,1,1,3)(2,1,0)Revenue

1017.855(0,1,1,3)(2,0,1)Shipping Cost

149

Syntax - No PartitionQuery Performance

BICSeasonalOrderArimaOrderMeasure

1025.45699(0,1,1,3)(2,0,0)Shipping Cost

1131.45972(0,1,1,3)(2,0,2)Shipping Cost

Syntax - With Partition
Syntax examples for show parameters queries with a partition.

Single Forecast Measure, showParams="top"
The query uses showParams="top", a single forecast measure, and a partition. The results return the lowest BIC value for the
measure in each partition.

q = arimax q generate Revenue as fRevenue
with (length=10, order='ldx', predictionInterval=[80,95],
seasonalOrder=(0,1,1,3), partition='Region', showParams="top");

Query results are:

BICSeasonalOrderArimaOrderMeasurePartition

53.78475(0,1,1,3)(1,1,0)RevenueAMER

56.0938(0,1,1,3)(0,1,0)RevenueAPAC

58.3398(0,1,1,3)(2,1,2)RevenueEU

Single Forecast Measure, showParams="multi"
The query uses showParams="multi", a single forecast measure, and a partition. The results return the top 3 parameter
combinations with the lowest BIC value for the measure in each partition.

q = arimax q generate Revenue as fRevenue
with (length=10, order='ldx', predictionInterval=[80,95],
seasonalOrder=(0,1,1,3), partition='Region', showParams="multi");

Query results are:

BICSeasonalOrderArimaOrderMeasurePartition

53.78475(0,1,1,3)(1,1,0)RevenueAMER

57.15645(0,1,1,3)(1,1,1)RevenueAMER

62.14569(0,1,1,3)(0,1,0)RevenueAMER

56.0938(0,1,1,3)(0,1,0)RevenueAPAC

57.19587(0,1,1,3)(0,1,1)RevenueAPAC

58.45987(0,1,1,3)(1,1,0)RevenueAPAC

150

Syntax - With PartitionQuery Performance

BICSeasonalOrderArimaOrderMeasurePartition

58.3398(0,1,1,3)(2,1,2)RevenueEU

64.01597(0,1,1,3)(1,1,1)RevenueEU

71.48946(0,1,1,3)(2,1,0)RevenueEU

Multiple Forecast Measures, showParams="top"
The query uses showParams="top", multiple forecast measures, and a partition. The results return the lowest BIC value for
each measure in each partition.

q = arimax q generate Revenue as fRevenue, ShippingCost as fShippingCost
with (length=10, order='ldx', predictionInterval=[80,95],
seasonalOrder=(0,1,1,3), partition='Region', showParams="top");

Query results are:

BICSeasonalOrderArimaOrderMeasurePartition

53.78475(0,1,1,3)(1,1,0)RevenueAMER

122.04503(0,1,1,3)(0,1,0)Shipping CostAMER

56.0938(0,1,1,3)(0,1,0)RevenueAPAC

138.1605(0,1,1,3)(2,1,0)Shipping CostAPAC

58.3398(0,1,1,3)(2,1,2)RevenueEU

130.74353(0,1,1,3)(2,1,1)Shipping CostEU

Multiple Forecast Measures, showParams="multi"
The query uses showParams="multi", multiple forecast measures, and a partition. The results return the top 3 parameter
combinations with the lowest BIC value for each measure in each partition.

q = arimax q generate Revenue as fRevenue, ShippingCost as fShippingCost
with (length=10, order='ldx', predictionInterval=[80,95],
seasonalOrder=(0,1,1,3), partition='Region', showParams="multi");

Query results are:

BICSeasonalOrderArimaOrderMeasurePartition

53.78475(0,1,1,3)(1,1,0)RevenueAMER

57.15645(0,1,1,3)(1,1,1)RevenueAMER

62.14569(0,1,1,3)(0,1,0)RevenueAMER

122.04503(0,1,1,3)(0,1,0)Shipping CostAMER

127.48979(0,1,1,3)(2,0,1)Shipping CostAMER

151

Syntax - With PartitionQuery Performance

BICSeasonalOrderArimaOrderMeasurePartition

139.48975(0,1,1,3)(0,1,1)Shipping CostAMER

56.0938(0,1,1,3)(0,1,0)RevenueAPAC

57.19587(0,1,1,3)(0,1,1)RevenueAPAC

58.459878(0,1,1,3)(1,1,0)RevenueAPAC

138.1605(0,1,1,3)(2,1,0)Shipping CostAPAC

141.1567(0,1,1,3)(1,1,1)Shipping CostAPAC

143.15756(0,1,1,3)(0,1,0)Shipping CostAPAC

58.3398(0,1,1,3)(2,1,2)RevenueEU

64.01597(0,1,1,3)(1,1,1)RevenueEU

71.48946(0,1,1,3)(2,1,0)RevenueEU

130.74353(0,1,1,3)(2,1,1)Shipping CostEU

137.1567(0,1,1,3)(1,0,1)Shipping CostEU

146.49865(0,1,1,3)(0,1,2)Shipping CostEU

Use Show Parameters with No Seasonality to Model BIC Values
To understand your data, run the arimax query without seasonalOrder and with showParams="multi".

q = load "em/coffee";
q = filter q by Type in ["Hot Coffee", "Bulk Coffee"];
q = group q by ('ClosedDate_Year', 'ClosedDate_Quarter', "Type");
q = foreach q generate 'ClosedDate_Year', 'ClosedDate_Quarter', 'Type', sum(Weight) as
sum_Weight;
q = arimax q generate 'sum_Weight' as fSumWeight,
with (length=4, showParams="multi", partition='Type', ignoreLast=true,
dateCols=('ClosedDate_Year', 'ClosedDate_Quarter', "Y-Q"), arimaOrder=(2,1,2));"

The results show multiple seasonalOrder values with the lowest BICs for each forecast measure. You can select the
seasonalOrder that works best for your final query.

BICSeasonalOrderArimaOrderMeasurePartition

207.8193821(2,0,2,4)(2,1,2)sum_WeightCold Coffee

270.4199107(0,1,0,4)(2,1,2)sum_WeightCold Coffee

283.68998334(1,1,0,4)(2,1,2)sum_WeightCold Coffee

329.0235125(0,1,0,4)(2,1,2)sum_WeightHot Coffee

320.3612713(0,1,2,4)(2,1,2)sum_WeightHot Coffee

152

Use Show Parameters with No Seasonality to Model BIC
Values

Query Performance

BICSeasonalOrderArimaOrderMeasurePartition

365.6449188(1,1,0,4)(2,1,2)sum_WeightHot Coffee

SEE ALSO:

arimax

153

Use Show Parameters with No Seasonality to Model BIC
Values

Query Performance

	Overview
	Introduction
	Use SAQL in the CRM Analytics Dashboard
	SAQL Null Measures and Dimensions
	Release Notes

	Quick Start
	Write Your First Query
	Create a Derived Measure
	Create a Derived Dimension

	Examples
	Analyze Your Data Over Time
	Calculate How Long Activities Take
	Display the Opportunities Closed This Month
	Forecast Future Data Points with timeseries
	Combine Data from Multiple Data Streams with cogroup
	Replace Null Values with coalesce()
	Dynamically Display Your Top Five Reps with Windowing
	Append Datasets using union
	Calculate the Slope of the Regression Line
	Show the Top and Bottom Quartile
	Calculate Grand Totals and Subtotals with the rollup Modifier and grouping() Function

	SAQL Reference
	SAQL Basic Elements
	Statements
	Keywords
	Identifiers
	Number Literals
	String Literals
	Boolean Literals
	Multivalue Field
	Quoted String Escape Sequences
	Special Characters
	Comments

	SAQL Operators
	Arithmetic Operators
	Comparison Operators
	String Operators
	Logical Operators
	Simple case Operator
	Searched case Operator
	Null Operators

	SAQL Statements
	arimax
	cogroup
	fill
	filter
	foreach
	group-by
	group-by rollup
	join semi and anti
	limit
	load
	offset
	order
	sample
	timeseries
	union

	SAQL Functions
	Aggregate Functions
	avg() or average()
	count()
	first()
	last()
	max()
	median()
	min()
	sum()
	unique()
	stddev()
	stddevp()
	var()
	varp()
	percentile_cont()
	percentile_disc()
	regr_intercept()
	regr_slope()
	regr_r2()
	grouping()

	Date Functions
	daysBetween()
	date_diff()
	now()
	date()
	toDate()
	date_to_epoch()
	date_to_string()
	toString()
	Time-Based Filtering
	Day in the Week, Month, Quarter, or Year
	First Day in the Week, Month, Quarter, or Year
	Last Day in the Week, Month, Quarter, or Year
	Number of Days in the Month, Quarter, or Year
	Date Formats

	Time Zone Date Functions
	Use Time Zone-Enabled Dates in SAQL Projections
	Access Date Functions with Time Zone Enabled
	Group By Date
	Order By Date
	Filter By Date
	Calculate the Time Between Two Dates
	date_diff(datepart, startdate, enddate)
	daysBetween(date1, date2)
	now()

	Convert Dates to and from Strings
	date_to_string(DateTime | DateOnly, format)
	toDateTime(epoch)
	toDateTime(string, format)
	toDateOnly(epoch)
	toDateOnly(string, format)

	Handle Null Dates
	Determine the Day in the Week, Month, Quarter, or Year
	day_in_week(date)
	day_in_month(date)
	day_in_quarter(date)
	day_in_year(date)
	week_last_day(date)
	year_last_day(date)
	quarter_last_day(date)
	month_days(date)
	quarter_days(date)
	year_days(date)

	Work with Custom Fiscal Year Data
	Group by a Custom Fiscal Year
	Filter by a Custom Fiscal Year
	Dates Outside Ranges Defined by Custom Fiscal Year

	String Functions
	ascii()
	chr()
	ends_with()
	index_of()
	len()
	lower()
	ltrim()
	mv_to_string()
	number_to_string
	replace()
	rtrim()
	starts_with()
	string_to_number
	substr()
	trim()
	upper()

	Math Functions
	abs(n)
	acos(n)
	asin(n)
	atan(n)
	ceil(n)
	cos(n)
	degrees(n)
	exp(n)
	floor(n)
	log(m, n)
	pi()
	power(m, n)
	radians(n)
	round(n[, m])
	sign(n)
	sin(n)
	sqrt(n)
	tan(n)
	trunc(n[, m])

	Windowing Functions
	coalesce

	Query Performance
	Speed Up Queries with Dataflow Transformations
	Limit Multivalue Fields
	Use Group and Filter Pre-projection
	Remove Redundant Projections
	Check for Redundant Filters
	Limit the Use of unique()
	arimax Show Parameters Query Tool

