
Bulk API 2.0 and Bulk API
Developer Guide

Version 62.0, Winter ’25

Last updated: January 3, 2025

© Copyright 2000–2024 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Introduction to Bulk API 2.0 and Bulk API . 1

What’s the Difference Between Bulk API 2.0 and Bulk API? . 2

Chapter 2: Bulk API 2.0 . 5

How Requests Are Processed . 6
Job States . 6

Quick Start: Bulk API 2.0 . 6
Using cURL . 7
Step 1: Set Up a Salesforce Developer Edition Org . 8
Step 2: Authentication . 8
Step 3: Bulk Insert . 10
Step 4: Bulk Insert with a Multipart Request . 14
Step 5: Bulk Upsert . 17
Step 6: Query Jobs . 20

Bulk API 2.0 Ingest . 22
Understanding Bulk API 2.0 Ingest . 23
Prepare Data to Ingest . 23
Create a Job . 29
Upload Job Data . 33
Upload Complete . 33
Get Information About an Ingest Job . 35
Get Job Successful Record Results . 39
Get Job Failed Record Results . 40
Get Job Unprocessed Record Results . 41
Delete a Job . 41
Abort a Job . 42
Get Information About All Ingest Jobs . 44
Upsert Records . 46
Use Compression for Bulk API 2.0 Ingest Responses . 49
Troubleshooting Ingest Timeouts . 49
Errors . 51

Bulk API 2.0 Query . 52
Understanding Bulk API 2.0 Query . 53
Create a Query Job . 54
Get Information About a Query Job . 58
Get Results for a Query Job . 61
Get Parallel Results for a Query Job . 65
Delete a Query Job . 67
Abort a Query Job . 68

Get Information About All Query Jobs . 71
Use Compression for Bulk API 2.0 Query Responses . 75
Troubleshooting Query Timeouts . 76

Headers . 76
Sforce Call Options Header . 76
Warnings Header . 77
Content Type Header . 78
Line Ending Header . 78

Limits . 78
Bulk API 2.0 Older Documentation . 79
Bulk API 2.0 End-of-Life Policy . 80

Chapter 3: Bulk API . 81

How Bulk API Works . 82
Quick Start: Bulk API . 82

Step One: Create a Job . 83
Step Two: Monitor a Job . 85
Step Three: Close a Job . 85
Step Four: Get Job Details . 87
Step Five: Abort a Job . 88

Bulk API Ingest . 90
Plan Bulk Data Loads . 90
Install cURL . 92
Walkthrough Sending HTTP Requests with cURL . 93
Prepare Data Files . 98
Load Binary Attachments . 108
Request Basics . 112
Work with Batches . 113

Bulk API Query . 124
How Bulk Queries Are Processed . 125
Use Bulk Query . 126
PK Chunking . 132
Walk Through a Bulk Query Sample . 136
Walk Through a Bulk Query Sample Using PK Chunking . 140

Headers . 146
Content Type Header . 147
Batch Retry Header . 147
Line Ending Header . 147
Warning Header . 148
Sforce Call Options Header . 148

Limits . 148
Bulk API Reference . 150

Schema . 150
JobInfo . 150

Contents

BatchInfo . 154
Errors . 157

Sample Client Application Using Java . 158
Set Up Your Client Application . 158
Walk Through the Sample Code . 159

Map Data Fields . 171
Bulk API End-of-Life Policy . 173

INDEX . 174

Contents

CHAPTER 1 Introduction to Bulk API 2.0 and Bulk API

Both Salesforce Bulk APIs are based on REST principles and are optimized for working with large sets of
data. Use them to insert, update, upsert, or delete many records asynchronously. You submit a request
and come back for the results later. Salesforce processes the request in the background.

In this chapter ...

• What’s the Difference
Between Bulk API 2.0
and Bulk API? Any data operation that includes more than 2,000 records is a good candidate for Bulk API 2.0 to

successfully prepare, execute, and manage an asynchronous workflow that uses the Bulk framework.
Jobs with fewer than 2,000 records should involve “bulkified” synchronous calls in REST (for example,
Composite) or SOAP.

Using Bulk API 2.0 or Bulk API requires basic familiarity with software development, web services, and
the Salesforce user interface. Because both Bulk APIs are asynchronous, Salesforce doesn’t guarantee a
service level agreement.

1

What’s the Difference Between Bulk API 2.0 and Bulk API?

Although Bulk API 2.0's predecessor, “Bulk API”, is available, use Bulk API 2.0 instead of Bulk API if you want a more streamlined workflow.
Bulk API 2.0 provides a simple interface to load large amounts of data into your Salesforce org and to perform bulk queries on your org
data. Its design is more consistent and better integrated with other Salesforce APIs. Bulk API 2.0 also has the advantage of future innovation.

Bulk API 2.0 allows for:

• Less client-side code writing.

• Easy-to-monitor job status.

• Automatic retry of failed records.

• Support for parallel processing.

• Fewer calls are required to complete ingest or query workflows.

• Easier batch management.

Here's an example of the Bulk API 2.0 query workflow:

Bulk API's query workflow is more complex - requiring the creation of batches and iterating through the retrieval of result sets:

2

What’s the Difference Between Bulk API 2.0 and Bulk API?Introduction to Bulk API 2.0 and Bulk API

Bulk API 2.0's ingest workflow is the same for insert, update, delete, hard delete, and upsert operations. You:

1. Create a job

2. Upload job data

3. Set job state to UploadComplete

4. Get results

If the feature set and limits are a unique match to your project requirements, use Bulk API.

3

What’s the Difference Between Bulk API 2.0 and Bulk API?Introduction to Bulk API 2.0 and Bulk API

This table shows a basic feature set comparison between Bulk API 2.0 and Bulk API.

Bulk APIBulk API 2.0Feature

16.0 and later41.0 and laterIngest Availability

21.0 and later47.0 and laterQuery Availability

None. Requires a special X-SFDC-Session
header fetched with SOAP API's login()
call.

Supports all OAuth 2.0 flows supported by
other Salesforce REST APIs.

Authentication

CSV, XML, JSON, and binary attachment
processing

CSVIngest Data Format

Large files must be batched manually, either
with custom code or by hand.

Simplifies uploading large amounts of data
by breaking the data into batches and
providing parallelism automatically. Upload

Large File Batching

a CSV file with your record data and check
back when the results are ready. All results
are returned from one endpoint.

Support for big objects • Ingest• Ingest

• •Query Query

PK chunking is manually invoked and
configured.

Automatically performs PK chunking.Query Job Optimization

Iterate through the retrieval of individual
result sets.

All in a single endpoint.Query Results Retrieval

Limits by quantity of batches per dayLimits by total records uploaded per day.
Available to clients via REST API /limits
endpoint.

Daily Upload Limits

YesYesData Loader Compatibility

For a detailed comparison of Bulk API 2.0 and Bulk API limits, see Bulk API and Bulk API 2.0 Limits and Allocations.

SEE ALSO:

Bulk API 2.0 Older Documentation

4

What’s the Difference Between Bulk API 2.0 and Bulk API?Introduction to Bulk API 2.0 and Bulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm
https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

CHAPTER 2 Bulk API 2.0

Perform ingest and query operations with Salesforce Bulk API 2.0. The REST-based Bulk API 2.0 provides
a programmatic option to asynchronously insert, upsert, query, or delete large datasets in your Salesforce
org. This API is enabled by default for Performance, Unlimited, Enterprise, and Developer Editions. The
API Enabled permission must be enabled on the profile assigned to users accessing an org or data via
the API.

In this chapter ...

• How Requests Are
Processed

• Quick Start: Bulk API
2.0

• Bulk API 2.0 Ingest

• Bulk API 2.0 Query

• Headers

• Limits

• Bulk API 2.0 Older
Documentation

• Bulk API 2.0
End-of-Life Policy

5

How Requests Are Processed

Bulk API 2.0 ingest jobs allow you to upload records to your org by using a CSV file representation. Bulk API 2.0 query jobs return records
based on the specified query. A Bulk API 2.0 job specifies which object is being processed (for example, Account or Opportunity) and
what type of action is being used (insert, upsert, update, or delete). You process a set of records by creating a job that contains one or
more batches.

Job States

When you create job requests with Bulk API 2.0, Salesforce provides a job “state” to describe the progress or outcome of the job.
Learn how to check and interpret each status.

SEE ALSO:

Bulk API 2.0 Older Documentation

Limits

Set Up and Maintain Your Salesforce Organization: Manage Bulk Data Load Jobs

Job States
When you create job requests with Bulk API 2.0, Salesforce provides a job “state” to describe the progress or outcome of the job. Learn
how to check and interpret each status.

You can manually Check the status of the job, or you can view job state from within the Salesforce UI. From Setup, in the Quick Find box,
enter Bulk Data Load Jobs, and then select Bulk Data Load Jobs. The following table summarizes Bulk API 2.0 job states
during job creation and processing.

DescriptionStateJob Phase

An ingest job was created and is open for data uploads.OpenCreation

(Ingest) All job data has been uploaded and the job is ready to be processed.UploadCompleteCreation

(Query) The job is ready to be processed.

The job is being processed by Salesforce. Operations include automatic, optimized
batching or chunking of job data, and processing of job operations.

InProgressProcessing

The job was processed.JobCompleteOutcome

The job couldn’t be processed successfully.FailedOutcome

The job was canceled by the job creator, or by a user with the “Manage Data
Integrations” permission.

AbortedOutcome

Quick Start: Bulk API 2.0

Get up and running with Bulk API 2.0 by sending a few requests to Salesforce. This Quick Start takes you from setting up a basic environment
to inserting, upserting, and querying records using Bulk API 2.0. Experience how to use Bulk API 2.0 via cURL in a free Salesforce Developer
Edition org by authenticating and following the examples.

6

How Requests Are ProcessedBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm
https://help.salesforce.com/s/articleView?id=sf.monitoring_async_api_jobs_overview.htm&type=5&language=en_US

Using cURL

Get to know the formatting used with cURL to place calls to Salesforce orgs. This Quick Start uses cURL examples to issue Bulk API
2.0 calls, but you can use any tool or development environment that can make REST requests.

Step 1: Set Up a Salesforce Developer Edition Org

This Quick Start suggests using a Developer Edition org. Sign up for a Salesforce Developer Edition org before trying Bulk API 2.0
with this Quick Start.

Step 2: Authentication

The first action in an API-based integration is authenticating requests with your Salesforce org. Bulk API 2.0 and Bulk API use different
authentication methods.

Step 3: Bulk Insert

This Bulk API 2.0 example guides you through creating a job, uploading data for the job, notifying Salesforce servers that your
upload(s) are complete, checking the status of the processing job, and retrieving the results.

Step 4: Bulk Insert with a Multipart Request

This Bulk API 2.0 example guides you through creating a job, uploading data for the job, checking the status, and retrieving the
results. This example uses a single, multipart request to create the job and upload the data.

Step 5: Bulk Upsert

This Bulk API 2.0 example guides you through creating a job, uploading data for the job, notifying Salesforce servers that your
upload(s) are complete, checking the status, and retrieving the results. Some of the records exist (update), and some are new records
(insert).

Step 6: Query Jobs

This Bulk API 2.0 example shows you how to create a query job, monitor its progress, and get the job results.

Using cURL
Get to know the formatting used with cURL to place calls to Salesforce orgs. This Quick Start uses cURL examples to issue Bulk API 2.0
calls, but you can use any tool or development environment that can make REST requests.

Familiarize yourself with cURL enough to be able to understand the examples in this guide and translate them into the tool that you’re
using. You’ll be attaching files containing the body of the request and must properly format the access token. For more information
about cURL, see the documentation at curl.se.

Attach Request Bodies

Many examples include request bodies—JSON or XML files that contain data for the request. When using cURL, save these files to your
local system and attach them to the request using the —data-binary or -d option.

This example attaches the new-account.json file.

curl https://MyDomainName.my.salesforce.com/services/data/v62.0/sobjects/Account/ -H
'Authorization Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Content-Type: application/json" —d @new-account.json -X POST

Handle Exclamation Marks in Access Tokens

When you run cURL examples, you can get an error on macOS and Linux systems due to the presence of the exclamation mark (!) in
OAuth access tokens. To avoid getting this error, either escape the exclamation mark or use single quotes. To escape the exclamation
mark in the access token, insert a backslash before it when the access token is enclosed within double quotes.

\!

7

Using cURLBulk API 2.0

https://curl.se/

For example, the access token string in this cURL command has the exclamation mark (!) escaped.

curl https://MyDomainName.my.salesforce.com/services/data/v62.0/ -H "Authorization: Bearer

00DE0X0A0M0PeLE\!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE"

Or, you can enclose the access token within single quotes to not escape the exclamation mark.

curl https://MyDomainName.my.salesforce.com/services/data/v62.0/ -H 'Authorization: Bearer

00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'

Important: All quotes, whether single or double, must be straight quotes, not curly quotes.

Step 1: Set Up a Salesforce Developer Edition Org
This Quick Start suggests using a Developer Edition org. Sign up for a Salesforce Developer Edition org before trying Bulk API 2.0 with
this Quick Start.

If you’re not already a member of the developer community, go to developer.salesforce.com/signup, and follow the
instructions for signing up for a Developer Edition account.

You can also use a scratch org or sandbox to follow along with these examples.

Note: Developer Edition orgs have a data storage maximum of 5 MB. This limit doesn’t prevent you from working with these
examples.

Step 2: Authentication
The first action in an API-based integration is authenticating requests with your Salesforce org. Bulk API 2.0 and Bulk API use different
authentication methods.

Bulk API 2.0 is a REST-based API that supports all OAuth 2.0 flows supported by other Salesforce REST APIs. Bulk API 2.0 requires an access
token (also known as a “bearer token”) for authentication. This topic, and the remainder of this Quick Start, describe getting an access
token and using it to make Bulk API 2.0 requests with cURL.

In contrast, Bulk API uses a session ID obtained with an X-SFDC-Session header fetched with SOAP API’s login() call. For an example,
see Step 1: Log In Using the SOAP API on page 94.

Note: These examples use an access token. Any API call that requires a session ID doesn’t work with these instructions.

While it’s possible to create and authenticate against your own connected app, Salesforce CLI is used in these Quick Start examples for
convenience. Effectively, Salesforce CLI is a connected app with which you can authenticate and requires no work to configure.

The examples in this Quick Start use the cURL tool to send HTTP requests that access, create, and manipulate resources in Salesforce. If
you use a different tool to send requests, you can use the same elements from the cURL examples to send requests. Although these
instructions describe a scenario with a Developer org, they work in the same way with any type of Salesforce org. The cURL tool is
pre-installed on many Linux and macOS systems. Windows users can download a version at curl.se. When using HTTPS on Windows,
ensure that your system meets the cURL requirements for SSL.

Note: cURL is an open-source tool and isn’t supported by Salesforce.

8

Step 1: Set Up a Salesforce Developer Edition OrgBulk API 2.0

https://developer.salesforce.com/signup
https://help.salesforce.com/s/articleView?id=sf.connected_app_create.htm&type=5&language=en_US
https://curl.se/

Get an Access Token with Salesforce CLI
Use the access token (also known as a “bearer token”) that you get from Salesforce CLI to authenticate cURL requests.

1. Install or update Salesforce CLI. .

a. If you already have Salesforce CLI installed, update it using the instructions in Update Salesforce CLI.

b. If you need to Install Salesforce CLI, install the latest version for your operating system.

c. Verify Your Installation.

2. Log in to your Developer org with Salesforce CLI.

sf org login web

A browser opens to https://login.salesforce.com.

3. In the browser, log in to your Developer org with your user’s credentials.

4. In the browser, click Allow to allow access.

At the command line, you see a similar confirmation message.

Successfully authorized juliet.capulet@empathetic-wolf-g5qddtr.com with org ID
00D5fORGIDEXAMPLE

5. At the command line, get the access token by viewing authentication information about your org.

sf org display --target-org <username>

For example:

sf org display --target-org juliet.capulet@empathetic-wolf-g5qddtr.com

Example command output:

=== Org Description

KEY VALUE

───────────────
──

Access Token
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE

Api Version 59.0
Client Id PlatformCLI
Created By jules@sf.com
Created Date 2023-11-16T20:35:21.000+0000
Dev Hub Id jules@sf.com
Edition Developer
Expiration Date 2023-11-23
Id 00D5fORGIDEXAMPLE
Instance Url https://MyDomainName.my.salesforce.com
Org Name Dreamhouse
Signup Username juliet.capulet@empathetic-wolf-g5qddtr.com
Status Active
Username juliet.capulet@empathetic-wolf-g5qddtr.com

9

Step 2: AuthenticationBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_update_cli.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm#sfdx_setup_install_cli_verify

In the command output, make note of the long Access Token string and the Instance Url string. You need both to make cURL requests.

Note: To get a new token after your access token expires, repeat this step of viewing your authentication information.

Optional Salesforce CLI Shortcuts
After you’ve authenticated successfully, try out these optional shortcuts in your cURL workflow to streamline future authentication with
the Salesforce CLI.

List My Orgs

sf org list

Lists all the orgs that you’ve created or authenticated to.

Open My Org

sf org open --target-org <username>

Opens the specified org (identified by username or alias) in your browser. Because you’ve successfully authenticated with this org
previously using the org login web Salesforce CLI command, it’s not required to provide your credentials again.

Display the Access Token for My Org

sf org display --target-org <username>

Output includes your access token, client ID, connected status, org ID, instance URL, username, and alias, if applicable.

Set an Alias for My Username

For convenience, create an alias for your username so that you don’t have to enter the entire Salesforce string. For example, instead of

juliet.capulet@empathetic-wolf-g5qddtr.com

Create an alias like

dev

To set the alias in this example, run

sf alias set dev juliet.capulet@empathetic-wolf-g5qddtr.com

Use These Commands in a Script

Use the CLI’s JSON output by invoking the --json flag. Requesting JSON output provides a consistent output format, which is ideal
for running scripts. Without the --json flag, the CLI can change the output format.

See Also

• Salesforce CLI Setup Guide

• Salesforce CLI Command Reference

Step 3: Bulk Insert
This Bulk API 2.0 example guides you through creating a job, uploading data for the job, notifying Salesforce servers that your upload(s)
are complete, checking the status of the processing job, and retrieving the results.

10

Step 3: Bulk InsertBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_unified.htm

To do any Bulk API 2.0 task, such as inserting or updating records, you first create a Bulk API 2.0 job. The job specifies the type of object
that you’re loading, such as Account, and the operation that you’re performing, such as insert or delete. After you create the job, you
use the resulting job ID in subsequent Bulk API 2.0 requests to upload job data or abort (cancel) the job.

1. Copy this CSV formatted list of accounts into a file named bulkinsert.csv. You use this file to upload data after creating the
job.

Note: Save all files in this example in your terminal’s current working directory.

The first row of the CSV file lists the field names for the object that you’re working with. Each subsequent row corresponds to a record
that you want to insert.

Name,ShippingCity,NumberOfEmployees,AnnualRevenue,Website,Description
Lorem Ipsum,Milano,2676,912260031,https://ft.com/lacus/at.jsp,"Lorem ipsum dolor sit
amet"
Posuere
Inc,Bodø,141603,896852810,http://webs.com/in/faucibus/orci/luctus/et/ultrices/posuere.json,"consectetur
adipiscing elit"
Angeles Urban,Aykol,197724,257060529,http://odnoklassniki.ru/sapien.aspx,"sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua"
Madaline Neubert
Shoes,Xukou,190305,71664061,https://blogs.com/faucibus/orci/luctus/et/ultrices/posuere/cubilia.json,"Ut
enim ad minim veniam"
Times Online UK,Varadero,121802,58284123,http://timesonline.co.uk/eu/magna.html,"quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat"
The Washington
Post,Hengdaohezi,190944,164329406,http://washingtonpost.com/vestibulum/proin/eu/mi/nulla/ac/enim.png,"Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur"
Amazon,Quintães,80285,684173825,http://amazon.co.uk/potenti/cras/in/purus/eu.png,"Excepteur
sint occaecat cupidatat non proident"

2. Create a job.

a. Create a file named newinsertjob.json.

b. Copy this content into the file.

{
"object" : "Account",
"contentType" : "CSV",
"operation" : "insert",
"lineEnding" : "LF"

}

When you create a Bulk API 2.0 job, specify a line ending that matches the line ending used to create the CSV file using the
lineEnding request field. Bulk API 2.0 supports two line-ending formats: linefeed (LF), and carriage-return plus linefeed
(CRLF). The default line ending, if not specified, is LF. Different operating systems use different characters to mark the end of
a line.

Unix / Linux / OS X uses LF (line feed, '\n', 0x0A).

Windows / DOS uses CRLF (carriage return followed by line feed, '\r\n', 0x0D0A).

It’s also possible that the text editor used to create the CSV file is configured for a specific line-ending format that supersedes
the default operating system format.

11

Step 3: Bulk InsertBulk API 2.0

URI

/services/data/v62.0/jobs/ingest/

Example for creating a bulk insert job

curl https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/ingest/ -H
'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Content-Type: application/json" -H "Accept: application/json" -H "X-PrettyPrint:1"
-d @newinsertjob.json -X POST

Example response body

The response includes the job id, with a job state of Open.

{ "id" : "7505fEXAMPLE4C2AAM",
"operation" : "insert",
"object" : "Account",
"createdById" : "0055fEXAMPLEtG4AAM",
"createdDate" : "2022-01-02T21:33:43.000+0000",
"systemModstamp" : "2022-01-02T21:33:43.000+0000",
"state" : "Open",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 62.0,
"contentUrl" : "services/data/62.0/jobs/ingest/7505fEXAMPLE4C2AAM/batches",
"lineEnding" : "LF", "columnDelimiter" : "COMMA" }

You use the job id from this response in the next steps. You can also use the URI in the contentUrl field in the next step
when you upload your data.

3. Upload your CSV data using the URI in the contentUrl field of the response.

You can upload up to 150 MB per job (after base64 encoding).

The URI is similar to

/services/data/v62.0/jobs/ingest/jobId/batches/

Example for uploading data

curl
https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/ingest/7505fEXAMPLE4C2AAM/batches/
-H 'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Content-Type: text/csv" -H "Accept: application/json" -H "X-PrettyPrint:1"
--data-binary @bulkinsert.csv -X PUT

Example response body

No response body.

4. Set job state to UploadComplete.

After you’re done submitting data, notify Salesforce servers that the upload of job data is complete and is ready for processing.

URI

/services/data/v62.0/jobs/ingest/jobId/

12

Step 3: Bulk InsertBulk API 2.0

Example of setting state to UploadComplete

curl
https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/ingest/7505fEXAMPLE4C2AAM/
-H 'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Content-Type: application/json; charset=UTF-8" -H "Accept: application/json" -H
"X-PrettyPrint:1" --data-raw '{ "state" : "UploadComplete" }' -X PATCH

Example response body

{ "id" : "7505fEXAMPLE4C2AAM",
"operation" : "insert",
"object" : "Account",
"createdById" : "0055fEXAMPLEtG4AAM",
"createdDate" : "2022-01-02T21:33:43.000+0000",
"systemModstamp" : "2022-01-02T21:33:43.000+0000",
"state" : "UploadComplete",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 62.0 }

5. Check the job status and results.

URI

/services/data/v62.0/jobs/ingest/jobId/

Example of checking job status

curl
https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/ingest/7505fEXAMPLE4C2AAM/
-H 'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Accept: application/json" -H "X-PrettyPrint:1" -X GET

Example response body

{ "id" : "7505fEXAMPLE4C2AAM",
"operation" : "insert",
"object" : "Account",
"createdById" : "0055fEXAMPLEtG4AAM",
"createdDate" : "2022-01-02T21:33:43.000+0000",
"systemModstamp" : "2022-01-02T21:38:31.000+0000",
"state" : "JobComplete",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 62.0,
"jobType" : "V2Ingest",
"lineEnding" : "LF",
"columnDelimiter" : "COMMA",
"numberRecordsProcessed" : 7,
"numberRecordsFailed" : 0,
"retries" : 0,
"totalProcessingTime" : 886,
"apiActiveProcessingTime" : 813,
"apexProcessingTime" : 619 }

13

Step 3: Bulk InsertBulk API 2.0

6. Get successful results.

After a job is in the JobComplete or Failed state, you can get details about which records were successfully processed.

URI

/services/data/v62.0/jobs/ingest/jobId/successfulResults/

Example of getting successful results

curl
https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/ingest/7505fEXAMPLE4C2AAM/successfulResults/
-H 'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Content-Type: application/json" -H "Accept: text/csv" -H "X-PrettyPrint:1" -X GET

The response contains CSV formatted data, with each row containing a record ID (sf__Id) and information on whether that record
was successfully processed or not (sf__Created).

Example response body

"sf__Id","sf__Created",Name,ShippingCity,NumberOfEmployees,AnnualRevenue,Website,Description
"0018c00002FInboAAD","true","Lorem
Ipsum","Milano","2676","9.12260031E8","https://ft.com/lacus/at.jsp","Lorem ipsum dolor
sit amet"
"0018c00002FInbpAAD","true","Posuere
Inc","Bodø","141603","8.9685281E8","http://webs.com/in/faucibus/orci/luctus/et/ultrices/posuere.json","consectetur
adipiscing elit"
"0018c00002FInbqAAD","true","Angeles
Urban","Aykol","197724","2.57060529E8","http://odnoklassniki.ru/sapien.aspx","sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua"
"0018c00002FInbrAAD","true","Madaline Neubert
Shoes","Xukou","190305","7.1664061E7","https://blogs.com/faucibus/orci/luctus/et/ultrices/posuere/cubilia.json","Ut
enim ad minim veniam"
"0018c00002FInbsAAD","true","Times Online
UK","Varadero","121802","5.8284123E7","http://timesonline.co.uk/eu/magna.html","quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat"
"0018c00002FInbtAAD","true","The Washington
Post","Hengdaohezi","190944","1.64329406E8","http://washingtonpost.com/vestibulum/proin/eu/mi/nulla/ac/enim.png","Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur"
"0018c00002FInbuAAD","true","Amazon","Quintães","80285","6.84173825E8","http://amazon.co.uk/potenti/cras/in/purus/eu.png","Excepteur
sint occaecat cupidatat non proident"

To get details about records that encountered an error during processing, use a GET request using the failedResults resource.
To make sure that you’re looking at the complete result set, look at unprocessed records by using the unprocessedRecords
resource. See Get Job Unprocessed Record Results.

Step 4: Bulk Insert with a Multipart Request
This Bulk API 2.0 example guides you through creating a job, uploading data for the job, checking the status, and retrieving the results.
This example uses a single, multipart request to create the job and upload the data.

In this example, BOUNDARY is used at the start, middle, and end of the file to mark the request body boundaries between the job’s
details and its CSV data.

1. Copy this multipart, JSON-formatted content into a file named newmultipartjob.json.

14

Step 4: Bulk Insert with a Multipart RequestBulk API 2.0

Note: Save all files in this example in your terminal’s current working directory.

--BOUNDARY
Content-Type: application/json
Content-Disposition: form-data; name="job"

{
"object":"Contact",
"contentType":"CSV",
"operation": "insert",
"lineEnding" : "LF"

}

--BOUNDARY
Content-Type: text/csv
Content-Disposition: form-data; name="content"; filename="content"

FirstName,LastName,MailingCity
Astro,Nomical,San Francisco
Hootie,McOwl,San Francisco
Appy,Camper,San Francisco
Earnie,Badger,San Francisco
--BOUNDARY--

2. Create a job.

URI

/services/data/v62.0/jobs/ingest/

Example of creating a job

curl https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/ingest/ -H
'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Content-Type: multipart/form-data; boundary=\"BOUNDARY\"" -H "Accept:
application/json" -H "X-PrettyPrint:1" --data-binary @newmultipartjob.json -X POST

The response includes the job id, with a job state of UploadComplete. You use the job id in the next steps.

Example response body

{
"id" : "7303gEXAMPLE4X2QAN",
"operation" : "insert",
"object" : "Contact",
"createdById" : "0055fEXAMPLEtG4AAM",
"createdDate" : "2022-01-02T19:26:52.000+0000",
"systemModstamp" : "2022-01-02T19:26:52.000+0000",
"state" : "UploadComplete",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 62.0,
"lineEnding" : "LF",
"columnDelimiter" : "COMMA"

}

15

Step 4: Bulk Insert with a Multipart RequestBulk API 2.0

After you create a multipart job, the upload is completed for you automatically. You don’t need to manually set the job state to
UploadComplete for a multipart job.

3. Check the job status and results with this URI.

URI

/services/data/v62.0/jobs/ingest/jobId/

Example of checking job status and results

curl
https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/ingest/7303gEXAMPLE4X2QAN/
-H 'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Accept: application/json" -H "X-PrettyPrint:1" -X GET

Example response body

{
"id" : "7303gEXAMPLE4X2QAN",
"operation" : "insert",
"object" : "Contact",
"createdById" : "0055fEXAMPLEtG4AAM",
"createdDate" : "2022-01-02T19:54:04.000+0000",
"systemModstamp" : "2022-01-02T19:54:05.000+0000",
"state" : "JobComplete",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 62.0,
"jobType" : "V2Ingest",
"lineEnding" : "LF",
"columnDelimiter" : "COMMA",
"numberRecordsProcessed" : 4,
"numberRecordsFailed" : 0,
"retries" : 0,
"totalProcessingTime" : 50,
"apiActiveProcessingTime" : 6,
"apexProcessingTime" : 0

}

4. Get successful results.

After a job is in the JobComplete or Failed state, you can get details about which records were successfully processed.

URI

/services/data/v62.0/jobs/ingest/jobId/successfulResults/

Example of getting successful results

curl
https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/ingest/7303gEXAMPLE4X2QAN/successfulResults/
-H 'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Content-Type: application/json" -H "Accept: text/csv" -H "X-PrettyPrint:1" -X GET

16

Step 4: Bulk Insert with a Multipart RequestBulk API 2.0

Example response body

"sf__Id","sf__Created",FirstName,LastName,MailingCity
"0038c00002hMS4kAAG","true","Astro","Nomical","San Francisco"
"0038c00002hMS4lAAG","true","Hootie","McOwl","San Francisco"
"0038c00002hMS4mAAG","true","Appy","Camper","San Francisco"
"0038c00002hMS4nAAG","true","Earnie","Badger","San Francisco"

To get details about records that encountered an error during processing, use a GET request with the failedResults resource.
To make sure that you’re looking at the complete result set, look at unprocessed records by using the unprocessedRecords
resource. See Get Job Unprocessed Record Results.

Step 5: Bulk Upsert
This Bulk API 2.0 example guides you through creating a job, uploading data for the job, notifying Salesforce servers that your upload(s)
are complete, checking the status, and retrieving the results. Some of the records exist (update), and some are new records (insert).

1. Confirm that your object is using an external ID field.

Upserting records requires an external ID field on the object involved in the job. Bulk API 2.0 uses the external ID field to determine
whether a record is used to update an existing record or create a record.

This example assumes that the external ID field customExtIdField__c has been added to the Account object.

To add this custom field in your org with Object Manager, use these properties.

• Data Type—text

• Field Label—customExtIdField

• Select External ID

For more information, see Custom Fields in Salesforce Help.

2. Create a CSV file containing the records that you want to upsert.

Note: Save all files in this example in your terminal’s current working directory.

The first row of the CSV file lists the field names for the object that you’re working with. Each subsequent row corresponds to a record
that you want to insert.

One column in the CSV file must correspond to the external ID field customExtIdField__c.

For information on preparing CSV files, such as delimiter options and valid date and time formats, see Bulk API 2.0 Ingest on page
22.

For this example, copy this information into a file named accountupsert.csv.

customExtIdField__c,name,NumberOfEmployees
123,GenePoint,800
234,"United Oil & Gas, UK",1467
345,"United Oil & Gas, Singapore",348
456,Edge Communications,10045
567,Burlington Textiles Corp of America,5876
678,Dickenson plc,67
789,Grand Hotels & Resorts Ltd,409
890,Express Logistics and Transport,243
901,University of Arizona,9506
1350,United Oil & Gas Corp.,5467

17

Step 5: Bulk UpsertBulk API 2.0

https://help.salesforce.com/s/articleView?id=sf.adding_fields.htm&type=5&language=en_US

1579,sForce,40000
2690,University of The Terrific,1257

3. Create a job that includes the external ID field.

Copy this information into a file named newupsertjob.json.

{
"object" : "Account",
"externalIdFieldName" : "customExtIdField__c",
"contentType" : "CSV",
"operation" : "upsert",
"lineEnding" : "LF"

}

URI

/services/data/v62.0/jobs/ingest/

Example for creating a bulk upsert job

curl https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/ingest/ -H
'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Content-Type: application/json" -H "X-PrettyPrint:1" -d @newupsertjob.json -X POST

Example response body

The response includes the job ID, with a job state of Open. Use the job ID and the URL in the contentUrl field in the next step when
you upload your data.

{
"id" : "7476gEXAMPLE4X2ZWO",
"operation" : "upsert",
"object" : "Account",
"createdById" : "0055fEXAMPLEtG4AAM",
"createdDate" : "2022-01-02T21:57:03.000+0000",
"systemModstamp" : "2022-01-02T21:57:03.000+0000",
"state" : "Open",
"externalIdFieldName" : "customExtIdField__c",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 62.0,
"contentUrl" : "services/data/62.0/jobs/ingest/7476gEXAMPLE4X2ZWO/batches",
"lineEnding" : "LF",
"columnDelimiter" : "COMMA"

}

4. Upload the CSV data file that you created.

URI

For convenience, use the URI in the contentUrl field of the response from step 1. The URI is similar to:

/services/data/v62.0/jobs/ingest/jobId/batches/

18

Step 5: Bulk UpsertBulk API 2.0

Example for uploading data

curl
https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/ingest/7476gEXAMPLE4X2ZWO/batches/
-H 'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Content-Type: text/csv" --data-binary @accountupsert.csv -X PUT

Example response body

No response body is returned.

5. Set state to UploadComplete.

After you’re done submitting data, notify Salesforce servers that the upload of job data is complete and is ready for processing.

Create a JSON file named upload_complete.json with the contents:

{"state":"UploadComplete"}

URI

/services/data/v62.0/jobs/ingest/jobId/

Example of setting state to UploadComplete

curl
https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/ingest/7476gEXAMPLE4X2ZWO/
-H 'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Content-Type: application/json" -H "X-PrettyPrint:1" -d @upload_complete.json -X
PATCH

Example response body

{
"id" : "7476gEXAMPLE4X2ZWO",
"operation" : "upsert",
"object" : "Account",
"createdById" : "0055fEXAMPLEtG4AAM",
"createdDate" : "2022-01-02T21:28:22.000+0000",
"systemModstamp" : "2022-01-02T21:28:22.000+0000",
"state" : "UploadComplete",
"externalIdFieldName" : "customExtIdField__c",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 62.0

}

6. Get successful results.

After a job is in the JobComplete or Failed state, you can get details about which job data records were successfully processed.

URI

/services/data/v62.0/jobs/ingest/jobId/successfulResults/

Example of getting successful results

curl
https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/ingest/7476gEXAMPLE4X2ZWO/successfulResults/

19

Step 5: Bulk UpsertBulk API 2.0

-H 'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Content-Type: application/json" -H "Accept: text/csv" -H "X-PrettyPrint:1" -X GET

The response contains CSV formatted data, with each row containing a record ID of successfully processed records.

Example response body

"sf__Id","sf__Created",customExtIdField__c,name,NumberOfEmployees
"0018c00002DJIpJAAX","true","123","GenePoint","800"
"0018c00002DJIpKAAX","true","234","United Oil & Gas, UK","1467"
"0018c00002DJIpLAAX","true","345","United Oil & Gas, Singapore","348"
"0018c00002DJIpMAAX","true","456","Edge Communications","10045"
"0018c00002DJIpNAAX","true","567","Burlington Textiles Corp of America","5876"
"0018c00002DJIpOAAX","true","678","Dickenson plc","67"
"0018c00002DJIpPAAX","true","789","Grand Hotels & Resorts Ltd","409"
"0018c00002DJIpQAAX","true","890","Express Logistics and Transport","243"
"0018c00002DJIpRAAX","true","901","University of Arizona","9506"
"0018c00002DJIpSAAX","true","1350","United Oil & Gas Corp.","5467"
"0018c00002DJIpTAAX","true","1579","sForce","40000"
"0018c00002DJIpUAAX","true","2690","University of The Terrific","1257"

To get details about records that encountered an error, use the failedResults resource. To make sure that you’re looking at
the complete result set, use the unprocessedRecords resource. See Get Job Unprocessed Record Results.

Step 6: Query Jobs
This Bulk API 2.0 example shows you how to create a query job, monitor its progress, and get the job results.

1. Create the job.

URI

/services/data/v62.0/jobs/query

Example of creating a bulk query job

curl https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/query -H
'Content-Type: application/json' -H 'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "X-PrettyPrint:1" --data-raw '{ "operation" : "query", "query" : "SELECT Id, Name
FROM Account" } ' -X POST

The response includes the job id and shows the job’s state as UploadComplete. (You use the job id to monitor the job or
get its results.)

Example response body

{
"id" : "7986gEXAMPLE4X2OPT",
"operation" : "query",
"object" : "Account",
"createdById" : "0055fEXAMPLEtG4AAM",
"createdDate" : "2022-01-02T17:38:59.000+0000",
"systemModstamp" : "2022-01-02T17:38:59.000+0000",
"state" : "UploadComplete",
"concurrencyMode" : "Parallel",

20

Step 6: Query JobsBulk API 2.0

"contentType" : "CSV",
"apiVersion" : 62.0,
"lineEnding" : "LF",
"columnDelimiter" : "COMMA"

}

2. Monitor the job’s state using the returned job id.

URI

/services/data/v62.0/jobs/query/queryJobId

Example of monitoring the state of the query job

curl
https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/query/7986gEXAMPLE4X2OPT
-H 'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "X-PrettyPrint:1" -X GET

Example response body

The response shows the current state of the job. Repeat this step until the state is JobComplete.

{
"id" : "7986gEXAMPLE4X2OPT",
"operation" : "query",
"object" : "Account",
"createdById" : "0055fEXAMPLEtG4AAM",
"createdDate" : "2022-01-02T17:38:59.000+0000",
"systemModstamp" : "2022-01-02T17:39:00.000+0000",
"state" : "JobComplete",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 62.0,
"jobType" : "V2Query",
"lineEnding" : "LF",
"columnDelimiter" : "COMMA",
"numberRecordsProcessed" : 28,
"retries" : 0,
"totalProcessingTime" : 153,
"isPkChunkingSupported": true

}

3. Get the results of the job.

URI

/services/data/v62.0/jobs/query/queryJobId/results

Example of getting the results of the job

curl
https://MyDomainName.my.salesforce.com/services/data/v62.0/jobs/query/7986gEXAMPLE4X2OPT/results/
-H 'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Content-Type: application/json; charset=UTF-8" -H "Accept: text/csv" -H
"X-PrettyPrint:1" -X GET

21

Step 6: Query JobsBulk API 2.0

The response shows the results of the SOQL query when you created the query job.

Example response body

"Id","Name"
"0015f00000BCvReAAL","Sample Account for Entitlements"
"0015f00000BFjNuAAL","University of The Terrific"
"0015f00000C6beUAAR","Edge Communications"
"0015f00000C6beVAAR","Burlington Textiles Corp of America"
"0015f00000C6beWAAR","Pyramid Construction Inc."
"0015f00000C6beXAAR","Dickenson plc"
"0015f00000C6beYAAR","Grand Hotels & Resorts Ltd"
"0015f00000C6beZAAR","United Oil & Gas Corp."
"0015f00000C6beaAAB","Express Logistics and Transport"
"0015f00000C6bebAAB","University of Arizona"
"0015f00000C6becAAB","United Oil & Gas, UK"
"0015f00000C6bedAAB","United Oil & Gas, Singapore"
"0015f00000C6beeAAB","GenePoint"

This example returns a small result set, and it’s easy to see the complete results. Queries that return larger results spread them across
a sequence of result sets. To see the other result sets, use the locator to fetch the next set of results. For more information, see Get
Results for a Query Job.

Bulk API 2.0 Ingest

With Bulk API 2.0, you can insert, update, upsert, or delete large data sets. Prepare a comma-separated value (CSV) file representation of
the data you want to upload, create a job, upload job data, and let Salesforce take care of the rest within your org.

Use CSV data when submitting data rows for Bulk API 2.0 jobs. Bulk API 2.0 supports several formatting options with CSV data, such as
multiple field delimiter characters and line ending characters. Bulk API 2.0 ingest limits are described in Bulk API and Bulk API 2.0 Limits
and Allocations in the Salesforce Developer Limits and Allocations Quick Reference.

Understanding Bulk API 2.0 Ingest

Learn about Bulk API 2.0 availability, supported methods, and SOQL considerations.

Prepare Data to Ingest

Format and organize your CSV files for upload.

Create a Job

Creates a job representing a bulk operation and its associated data that is sent to Salesforce for asynchronous processing. Provide
job data via an Upload Job Data request or as part of a multipart create job request.

Upload Job Data

Uploads data for a job using CSV data you provide.

Upload Complete

Notifies Salesforce servers that the upload of job data is complete and is ready for processing. You can’t add any more job data. This
request is required for every Bulk API 2.0 ingest job. If you don't make this request, processing of your data does not start.

Get Information About an Ingest Job

Retrieves detailed information about a job.

Get Job Successful Record Results

Retrieves a list of successfully processed records for a completed job.

22

Bulk API 2.0 IngestBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm

Get Job Failed Record Results

Retrieves a list of failed records for a completed insert, delete, update, or upsert job.

Get Job Unprocessed Record Results

Retrieves a list of unprocessed records for failed or aborted jobs.

Delete a Job

Deletes a job. To be deleted, a job must have a state of UploadComplete, JobComplete, Aborted, or Failed.

Abort a Job

If you abort a job, Salesforce doesn’t process the job.

Get Information About All Ingest Jobs

Retrieves detailed information about all jobs in the org.

Upsert Records

Create records or update existing records (upsert) based on an ID, or the value of a specified external ID field.

Use Compression for Bulk API 2.0 Ingest Responses

For ingest jobs, Bulk API 2.0 can compress the response body, which reduces network traffic and improves response time.

Troubleshooting Ingest Timeouts

Solve issues encountered with Bulk API 2.0 ingest operations.

Errors

Operations that you perform with Bulk API 2.0 can trigger error codes. This list shows the most common error codes and the Bulk
API 2.0 action that possibly triggered them.

Understanding Bulk API 2.0 Ingest
Learn about Bulk API 2.0 availability, supported methods, and SOQL considerations.

While processing ingest jobs, Salesforce Bulk API 2.0 automatically divides your job’s data into multiple "batches" to improve performance.
There is always an empty “parent” batch which is related to the initial upload, followed by sub-batches for processing the upload in
parallel.

Salesforce creates a separate batch for every 10,000 records in your job data, up to a daily maximum of 150,000,000 records. If the limit
is exceeded while processing your job data, the remaining data isn’t processed. The ingest job is marked as having failed.

Just as a job can fail, so can an individual batch. If Salesforce can’t process all the records in a batch within 5 minutes, the batch fails.
Salesforce automatically retries failed batches up to a maximum of 20 times. If the batch still can’t be processed after 20 retries, the entire
ingest job is moved to the Failed state and remaining job data isn’t processed.

If there’s a failure, create a new ingest job to process the records that weren’t processed.

To determine what records weren’t processed and what errors occurred, use the Failed Record Results and Get Job Unprocessed Record
Results resources.

Prepare Data to Ingest
Format and organize your CSV files for upload.

Prepare CSV Files

The first row in a CSV file lists the field names for the object that you're processing. Each subsequent row corresponds to a record in
Salesforce.

23

Understanding Bulk API 2.0 IngestBulk API 2.0

Sample CSV Files

These examples demonstrate different ways to use CSV data with Bulk API 2.0.

Valid Date Format in Records (2.0)

Specify the right format for dateTime and date fields.

Relationship Fields in a Header Row (2.0)

Many objects in Salesforce are related to other objects. For example, Account is a parent of Contact. You can add a reference to a
related object in a CSV file by representing the relationship in a column header. When you're processing records in the Bulk API, you
use RelationshipName.IndexedFieldName syntax in a CSV column header to describe the relationship between an
object and its parent, where RelationshipName is the relationship name of the field and IndexedFieldName is the
indexed field name that uniquely identifies the parent record. Use the describeSObjects() call in the API to get the
relationshipName property value for a field.

Prepare CSV Files
The first row in a CSV file lists the field names for the object that you're processing. Each subsequent row corresponds to a record in
Salesforce.

All the records in a CSV file must be for the same object. You specify this object in the job associated with the batch.

Note the following when working with CSV files with Bulk API 2.0:

• You must include all the required fields when you create a record. You can optionally include any other field for the object.

• Each field-name header in the file must be the same as the field’s Field Name (for standard fields) or API Name (for custom fields).
Results only include columns that are a match.

• If you're updating a record, any fields that aren't defined in the CSV file are ignored during the update.

• Files must be in UTF-8 format. Files are converted to base64 when received by Salesforce. This conversion can increase the data size
by approximately 50%. To account for the base64 conversion increase, upload data that doesn’t exceed 100 MB.

• Bulk API 2.0 supports several field delimiter characters: back quote (`), caret (^), comma, pipe (|), semicolon, and tab. The default
delimiter is a comma. Specify the delimiter to use when you create your job, using the columnDelimiter request field.

• When you create a Bulk API 2.0 job, specify a line ending that matches the line ending used to create the CSV file using the
lineEnding request field. Bulk API 2.0 supports two line-ending formats: linefeed (LF), and carriage-return plus linefeed (CRLF).
The default line ending, if not specified, is LF. Different operating systems use different characters to mark the end of a line:

– Unix / Linux / OS X uses LF (line feed, '\n', 0x0A)

– Windows / DOS uses CRLF (carriage return followed by line feed, '\r\n', 0x0D0A)

It’s also possible that the text editor used to create the CSV file is configured for a specific line-ending format that supersedes the
default operating system format.

• Use double-quotes to escape characters in field values that would otherwise get interpreted as field delimiters or line endings. For
example, if a field value includes a comma, and a comma is the current column delimiter for the job, you must wrap the field value
in double-quotes in the CSV data, like “Director, Marketing”.

• Field values aren't trimmed. A space before or after a delimiter is included in the field value. A space before or after a double quote
generates an error for the row. For example, John,Smith is valid; John, Smith is valid, but the second value is " Smith";
."John", "Smith" isn’t valid.

• Empty field values are ignored when you update records. To set a field value to null, use a field value of #N/A.

• Fields with a double data type can include fractional values. Values can be stored in scientific notation if the number is large
enough (or, for negative numbers, small enough), as indicated by the W3C XML Schema Part 2: Datatypes Second Edition specification.

Note: The header row can contain up to 32,000 characters.

24

Prepare Data to IngestBulk API 2.0

http://www.w3.org/TR/xmlschema-2/#double

To find the name of a field, you can:

• Use the describeSObjects() call in the SOAP API Developer Guide, or the sObject Describe resource in the REST API
Developer Guide.

• Use Salesforce Setup.

• Look up the object in Object Reference, which lists the field names, types, and descriptions by object.

Use Salesforce Setup to Find Field names
To find an object’s field name in Salesforce Setup:

1. From Setup, in the Quick Find box, enter Object Manager. Click Object Manager.

2. Click on the object in the list.

3. From the object’s management settings, click on Fields & Relationships.

4. Click the field under Field Label to find the field name.

For a standard field, use the Field Name value as the field column header in your CSV file.

For a custom field, use the API Name value as the field column header in a CSV file or the field name identifier in an XML or JSON file.
(To find the API Name, click the field name.)

SEE ALSO:

Bulk API 2.0 Older Documentation

Sample CSV Files
These examples demonstrate different ways to use CSV data with Bulk API 2.0.

Simple CSV
This example contains three Account records and specifies the Name, Description, and NumberOfEmployees fields for each record.

Name,Description,NumberOfEmployees
TestAccount1,Description of TestAccount1,30
TestAccount2,Another description,40
TestAccount3,Yet another description,50

A job that uses this CSV data might be defined with the following job properties.

{
"object" : "Account",
"contentType" : "CSV",
"operation" : "insert"

}

25

Prepare Data to IngestBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_describesobjects.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.api_rest.meta/api_rest/resources_sobject_describe.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.object_reference.meta/object_reference/sforce_api_objects_list.htm
https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

CSV with Alternate Line Ending
This example contains two Contact records and specifies three fields for each record. The data was created on a Windows platform, and
each line ends with a carriage return and line feed. The carriage return is displayed as “^M” in this example.

FirstName,LastName,Description^M
Tom,Jones,Branding guru^M
Ian,Dury,Fuzzy logic expert^M

A job that uses this CSV data and specifies that carriage return + line feed is used as the line ending sequence would use the following
job properties.

{
"object" : "Contact",
"contentType" : "CSV",
"operation" : "insert",
"lineEnding" : "CRLF"

}

CSV with Semicolon Delimiter and Escaped Fields
This example contains two Contact records and specifies five fields for each record. The field delimiter is a semicolon instead of a comma.
The Description fields contain characters that must be escaped using double quotes, including a line break in the second record.

FirstName;LastName;Title;Birthdate;Description
Tom;Jones;Senior Director;1940-06-07Z;"Self-described as ""the top"" branding guru"
Ian;Dury;Chief Imagineer;1965-12-11Z;"Expert in fuzzy logic design; Knowledgeable in AI
Influential in technology purchases."

A job that uses this CSV data and specifies that semicolon is used as the column delimiter would use the following job properties.

{
"object" : "Contact",
"contentType" : "CSV",
"operation" : "insert",
"columnDelimiter" : "SEMICOLON"

}

CSV with Relationship Field
This example contains two Contact records and specifies FirstName, LastName, and Owner.Email fields for each record. This example
assumes a unique User record exists that has an Email value of “mfellow@salesforce.com”, and creates a relationship with this record
and the Contact records. If the User record doesn’t exist, or if there are multiple User records with an Email value of
“mfellow@salesforce.com”, the relationship can’t be created and the job fails.

FirstName,LastName,Owner.Email
Joe,User,mfellow@salesforce.com
Jane,User,mfellow@salesforce.com

A job that uses this CSV data might be defined with the following job properties.

{
"object" : "Contact",
"contentType" : "CSV",

26

Prepare Data to IngestBulk API 2.0

"operation" : "insert"
}

CSV for Upsert Using External IDs
This example contains three Contact records and specifies FirstName, LastName, Phone, and ExternalId__c for each record. This example
assumes the custom ExternalId__c external ID field has been added to Contact.

FirstName,LastName,Phone,ExternalId__c
Mark,Brown,4155558787,"1001"
Dave,Stillman,4155552212,"1002"
Joe,Smith,2125556363,"5001"

A job that uses this CSV data might be an upsert job defined with the following properties.

{
"object" : "Contact",
"externalIdFieldName" : "ExternalId__c",
"contentType" : "CSV",
"operation" : "upsert"

}

You can also associate records using external IDs. For more information, see Upserting Records and Associating with an External ID.

SEE ALSO:

Bulk API 2.0 Older Documentation

Valid Date Format in Records (2.0)
Specify the right format for dateTime and date fields.

dateTime
Use the yyyy-MM-ddTHH:mm:ss.SSS+/-HH:mm or yyyy-MM-ddTHH:mm:ss.SSSZ formats to specify dateTime
fields.

• yyyy is the four-digit year

• MM is the two-digit month (01-12)

• dd is the two-digit day (01-31)

• 'T' is a separator indicating that time-of-day follows

• HH is the two-digit hour (00-23)

• mm is the two-digit minute (00-59)

• ss is the two-digit seconds (00-59)

• SSS is the optional three-digit milliseconds (000-999)

• +/-HH:mm is the Zulu (UTC) time zone offset

• 'Z' is the reference UTC timezone

When a timezone is added to a UTC dateTime, the result is the date and time in that timezone. For example, 2002-10-10T12:00:00+05:00
is 2002-10-10T07:00:00Z and 2002-10-10T00:00:00+05:00 is 2002-10-09T19:00:00Z. See W3C XML Schema Part 2: DateTime Datatype.

27

Prepare Data to IngestBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.api_rest.meta/api_rest/dome_upsert.htm
https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm
http://www.w3.org/TR/xmlschema-2/#dateTime

date
Use the yyyy-MM-dd format to specify date fields.

Note: Specifying an offset for date is not supported.

SEE ALSO:

Bulk API 2.0 Older Documentation

Relationship Fields in a Header Row (2.0)
Many objects in Salesforce are related to other objects. For example, Account is a parent of Contact. You can add a reference to a related
object in a CSV file by representing the relationship in a column header. When you're processing records in the Bulk API, you use
RelationshipName.IndexedFieldName syntax in a CSV column header to describe the relationship between an object and
its parent, where RelationshipName is the relationship name of the field and IndexedFieldName is the indexed field name
that uniquely identifies the parent record. Use the describeSObjects() call in the API to get the relationshipName
property value for a field.

Some objects also have relationships to themselves. For example, the ReportsTo field for a contact is a reference to another contact.
If you're inserting a contact, you could use a ReportsTo.Email column header to indicate that you're using a contact's Email
field to uniquely identify the ReportsTo field for a contact. The ReportsTo portion of the column header is the
relationshipName property value for the ReportsTo field. The following CSV file uses a relationship:

FirstName,LastName,ReportsTo.Email
Tom,Jones,buyer@salesforcesample.com

Note the following when referencing relationships in CSV header rows:

• You can use a child-to-parent relationship, but you can't use a parent-to-child relationship.

• You can use a child-to-parent relationship, but you can't extend it to use a child-to-parent-grandparent relationship.

• You can only use indexed fields on the parent object. A custom field is indexed if its External ID field is selected. A standard
field is indexed if its idLookup property is set to true. See the Field Properties column in the field table for each standard object.

Relationship Fields for Custom Objects
Custom objects use custom fields to track relationships between objects. Use the relationship name, which ends in __r
(underscore-underscore-r), to represent a relationship between two custom objects. You can add a reference to a related object by
representing the relationship in a column header.

If the child object has a custom field with an API Name of Mother_Of_Child__c that points to a parent custom object and
the parent object has a field with an API Name of External_ID__c, use the column header
Mother_Of_Child__r.External_ID__c to indicate that you're using the parent object's External ID field to uniquely
identify the Mother Of Child field. To use a relationship name in a column header, replace the __c in the child object's custom
field with __r. For more information about relationships, see Understanding Relationship Names in the Salesforce SOQL and SOSL
Reference Guide at www.salesforce.com/us/developer/docs/soql_sosl/index.htm.

The following CSV file uses a relationship:

Name,Mother_Of_Child__r.External_ID__c
CustomObject1,123456

28

Prepare Data to IngestBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.object_reference.meta/object_reference/sforce_api_objects_list.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.soql_sosl.meta/soql_sosl/

Relationships for Polymorphic Fields
A polymorphic field can refer to more than one type of object as a parent. For example, either a contact or a lead can be the parent of
a task. In other words, the WhoId field of a task can contain the ID of either a contact or a lead. Because a polymorphic field is more
flexible, the syntax for the column header has an extra element to define the type of the parent object. The syntax is:

ObjectType:RelationshipName.IndexedFieldName.

Important: Starting with version 57.0 of the API, for ObjectType use apiName, which should include namespace, if any,
and should include __c if the object is a custom object.

The following sample includes two reference fields:

1. The WhoId field is polymorphic and has a relationshipName of Who. It refers to a lead and the indexed Email field
uniquely identifies the parent record.

2. The OwnerId field is not polymorphic and has a relationshipName of Owner. It refers to a user and the indexed Id field
uniquely identifies the parent record.

Subject,Priority,Status,Lead:Who.Email,Owner.Id
Test Bulk API polymorphic reference field,Normal,Not
Started,lead@salesforcesample.com,005D0000001AXYz

Warning: The ObjectType: portion of a field column header is only required for a polymorphic field. You get an error if you
omit this syntax for a polymorphic field. You also get an error if you include this syntax for a field that is not polymorphic.

SEE ALSO:

Bulk API 2.0 Older Documentation

Create a Job
Creates a job representing a bulk operation and its associated data that is sent to Salesforce for asynchronous processing. Provide job
data via an Upload Job Data request or as part of a multipart create job request.

URI
/services/data/vXX.X/jobs/ingest

Availability
This resource is available in API version 41.0 and later.

Formats
JSON

HTTP Method
POST

Authentication
Authorization: Bearer token

Parameters
None.

Headers
Optionally, use the Sforce-Call-Options header to specify a default namespace.

29

Create a JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.api_rest.meta/api_rest/headers_calloptions.htm

Request Body

Required or
Optional

DescriptionTypeProperty

OptionalThe ID of an assignment rule to run for a Case or a Lead.
The assignment rule can be active or inactive. The ID can

stringassignmentRuleId

be retrieved by using the Lightning Platform SOAP API or
the Lightning Platform REST API to query the
AssignmentRule object.

This property is available in API version 49.0 and later.

OptionalThe column delimiter used for CSV job data. The default
value is COMMA. Valid values are:

ColumnDelimiterEnumcolumnDelimiter

• BACKQUOTE—backquote character (`)

• CARET—caret character (^)

• COMMA—comma character (,) which is the default
delimiter

• PIPE—pipe character (|)

• SEMICOLON—semicolon character (;)

• TAB—tab character

OptionalThe content type for the job. The only valid value (and the
default) is CSV.

ContentTypecontentType

Required for
upsert
operations

The external ID field in the object being updated. Only
needed for upsert operations. Field values must also exist
in CSV job data.

stringexternalIdFieldName

OptionalThe line ending used for CSV job data, marking the end of
a data row. The default is LF. Valid values are:

LineEndingEnumlineEnding

• LF—linefeed character

• CRLF—carriage return character followed by a
linefeed character

RequiredThe object type for the data being processed. Use only a
single object type per job.

stringobject

RequiredThe processing operation for the job. Valid values are:OperationEnumoperation

• insert

• delete

• hardDelete

• update

• upsert

Note: When the hardDelete value is specified,
the deleted records aren't stored in the Recycle Bin.

30

Create a JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.object_reference.meta/object_reference/sforce_api_objects_assignmentrule.htm

Required or
Optional

DescriptionTypeProperty

Instead, they become immediately eligible for
deletion. The permission for this operation, “Bulk
API Hard Delete,” is disabled by default and must
be enabled by an administrator. A Salesforce user
license is required for hard delete.

For multipart requests, the request body can also include CSV record data. See Usage Notes on page 32 for more details.

Response Body

DescriptionTypeProperty

The API version that the job was created in.stringapiVersion

The ID of the assignment rule. This property is only shown if an assignment
rule is specified when the job is created.

idassignmentRuleId

The column delimiter used for CSV job data. Values include:ColumnDelimiterEnumcolumnDelimiter

• BACKQUOTE—backquote character (`)

• CARET—caret character (^)

• COMMA—comma character (,) which is the default delimiter

• PIPE—pipe character (|)

• SEMICOLON—semicolon character (;)

• TAB—tab character

For future use. How the request was processed. Currently only parallel
mode is supported. (When other modes are added, the mode will be
chosen automatically by the API and will not be user configurable.)

ConcurrencyModeEnumconcurrencyMode

The format of the data being processed. Only CSV is supported.ContentTypecontentType

The URL to use for Upload Job Data on page 33 requests for this job. Only
valid if the job is in Open state.

URLcontentUrl

The ID of the user who created the job.stringcreatedById

The date and time in the UTC time zone when the job was created.dateTimecreatedDate

The name of the external ID field for an upsert.stringexternalIdFieldName

Unique ID for this job.stringid

The job’s type. Values include:JobTypeEnumjobType

• BigObjectIngest—BigObjects job

• Classic—Bulk API 1.0 job

• V2Ingest—Bulk API 2.0 job

31

Create a JobBulk API 2.0

DescriptionTypeProperty

The line ending used for CSV job data. Values include:LineEndingEnumlineEnding

• LF—linefeed character

• CRLF—carriage return character followed by a linefeed character

The object type for the data being processed.stringobject

The processing operation for the job. Values include:operation

• insert

• delete

• hardDelete

• update

• upsert

The current state of processing for the job. Values include:JobStateEnumstate

• Open—The job has been created, and data can be added to the job.

• UploadComplete—No new data can be added to this job. You
can’t edit or save this job, as Salesforce is processing it.

• Aborted—The job has been aborted. You can abort a job if you
created it or if you have the “Manage Data Integrations” permission.

• JobComplete—The job was processed by Salesforce.

• Failed—Some records in the job failed. Job data that was
successfully processed isn’t rolled back.

Date and time in the UTC time zone when the job finished.dateTimesystemModstamp

Usage Notes
For small amounts of job data (100,000 characters or less), you can create a job and upload all the data for a job using a multipart
request. The following example request header and body uses a multipart format to contain both job information and job data.

Content-Type: multipart/form-data; boundary=BOUNDARY

--BOUNDARY
Content-Type: application/json
Content-Disposition: form-data; name="job"

{
"object":"Contact",
"contentType":"CSV",
"operation":"insert"

}

--BOUNDARY
Content-Type: text/csv
Content-Disposition: form-data; name="content"; filename="content"

32

Create a JobBulk API 2.0

(Content of your CSV file)
--BOUNDARY--

SEE ALSO:

Bulk API 2.0 Older Documentation

Upload Job Data
Uploads data for a job using CSV data you provide.

URI
/services/data/vXX.X/jobs/ingest/jobID/batches

Availability
This resource is available in API version 41.0 and later.

Formats
text/csv

HTTP Method
PUT

Authentication
Authorization: Bearer token

Parameters
None.

Request Body
CSV file with record data.

Response Body
None. Returns a status code of 201 (Created), which indicates that the job data was successfully received by Salesforce.

Usage Notes

The resource URL is provided in the contentUrl field in the response from Create a Job, or the response from a Job Info request
on an open job.

A request can provide CSV data that does not in total exceed 150 MB of base64 encoded content. When job data is uploaded, it is
converted to base64. This conversion can increase the data size by approximately 50%. To account for the base64 conversion increase,
upload data that does not exceed 100 MB.

Don’t delete your local CSV data until you’ve confirmed that all records were successfully processed by Salesforce. If a job fails, use
the successful results, failed results, and unprocessed records resources to determine what records from your CSV data you need to
resubmit.

SEE ALSO:

Bulk API 2.0 Older Documentation

Upload Complete
Notifies Salesforce servers that the upload of job data is complete and is ready for processing. You can’t add any more job data. This
request is required for every Bulk API 2.0 ingest job. If you don't make this request, processing of your data does not start.

33

Upload Job DataBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm
https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

URI
/services/data/vXX.X/jobs/ingest/jobID

Availability
This resource is available in API version 41.0 and later.

Formats
JSON

HTTP Method
PATCH

Authentication
Authorization: Bearer token

Parameters
None.

Request Body

Required or
Optional

DescriptionTypeProperty

RequiredThe state to update the job to. Use UploadComplete to
tell Salesforce servers that the job is ready for processing.

JobStateEnumstate

Response Body

DescriptionTypeProperty

The API version that the job was created in.stringapiVersion

The ID of the assignment rule. This property is only shown if an assignment
rule is specified when the job is created.

idassignmentRuleId

The column delimiter used for CSV job data. Values include:ColumnDelimiterEnumcolumnDelimiter

• BACKQUOTE—backquote character (`)

• CARET—caret character (^)

• COMMA—comma character (,) which is the default delimiter

• PIPE—pipe character (|)

• SEMICOLON—semicolon character (;)

• TAB—tab character

For future use. How the request was processed. Currently only parallel
mode is supported. (When other modes are added, the mode will be
chosen automatically by the API and will not be user configurable.)

ConcurrencyModeEnumconcurrencyMode

The format of the data being processed. Only CSV is supported.ContentTypecontentType

The URL to use for Upload Job Data on page 33 requests for this job. Only
valid if the job is in Open state.

URLcontentUrl

The ID of the user who created the job.stringcreatedById

34

Upload CompleteBulk API 2.0

DescriptionTypeProperty

The date and time in the UTC time zone when the job was created.dateTimecreatedDate

The name of the external ID field for an upsert.stringexternalIdFieldName

Unique ID for this job.stringid

The job’s type. Values include:JobTypeEnumjobType

• BigObjectIngest—BigObjects job

• Classic—Bulk API 1.0 job

• V2Ingest—Bulk API 2.0 job

The line ending used for CSV job data. Values include:LineEndingEnumlineEnding

• LF—linefeed character

• CRLF—carriage return character followed by a linefeed character

The object type for the data being processed.stringobject

The processing operation for the job. Values include:operation

• insert

• delete

• hardDelete

• update

• upsert

The current state of processing for the job. Values include:JobStateEnumstate

• Open—The job has been created, and data can be added to the job.

• UploadComplete—No new data can be added to this job. You
can’t edit or save this job, as Salesforce is processing it.

• Aborted—The job has been aborted. You can abort a job if you
created it or if you have the “Manage Data Integrations” permission.

• JobComplete—The job was processed by Salesforce.

• Failed—Some records in the job failed. Job data that was
successfully processed isn’t rolled back.

Date and time in the UTC time zone when the job finished.dateTimesystemModstamp

SEE ALSO:

Bulk API 2.0 Older Documentation

Get Information About an Ingest Job
Retrieves detailed information about a job.

35

Get Information About an Ingest JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

URI
/services/data/vXX.X/jobs/ingest/jobID

Availability
This resource is available in API version 41.0 and later.

Formats
JSON

HTTP Method
GET

Authentication
Authorization: Bearer token

Request parameters

Required or
Optional

DescriptionParameter

RequiredThe ID of the job.jobId

Request Body
None required.

Response Body

DescriptionTypeProperty

The number of milliseconds taken to process triggers and other
processes related to the job data. This doesn't include the time used

longapexProcessingTime

for processing asynchronous and batch Apex operations. If there are
no triggers, the value is 0.

The number of milliseconds taken to actively process the job and
includes apexProcessingTime, but doesn't include the time
the job waited to be processed.

longapiActiveProcessingTime

The API version that the job was created in.stringapiVersion

The ID of an assignment rule to run for a Case or a Lead.stringassignmentRuleId

The column delimiter used for CSV job data. Values include:ColumnDelimiterEnumcolumnDelimiter

• BACKQUOTE—backquote character (`)

• CARET—caret character (^)

• COMMA—comma character (,) which is the default delimiter

• PIPE—pipe character (|)

• SEMICOLON—semicolon character (;)

• TAB—tab character

For future use. How the request was processed. Currently only parallel
mode is supported. (When other modes are added, the mode will be
chosen automatically by the API and will not be user configurable.)

ConcurrencyModeEnumconcurrencyMode

36

Get Information About an Ingest JobBulk API 2.0

DescriptionTypeProperty

The format of the data being processed. Only CSV is supported.ContentTypecontentType

The URL to use for Upload Job Data requests for this job. Only valid if
the job is in Open state.

URLcontentUrl

The ID of the user who created the job.stringcreatedById

The date and time in the UTC time zone when the job was created.dateTimecreatedDate

The error message shown for jobs with errors. For more details, see
Errors and Status Codes and Error Responses.

stringerrorMessage

The name of the external ID field for an upsert.stringexternalIdFieldName

Unique ID for this job.stringid

The job’s type. Values include:JobTypeEnumjobType

• BigObjectIngest: BigObjects job

• Classic: Bulk API 1.0 job

• V2Ingest: Bulk API 2.0 job

The line ending used for CSV job data. Values include:LineEndingEnumlineEnding

• LF—linefeed character

• CRLF—carriage return character followed by a linefeed character

The number of records that were not processed successfully in this
job.

This property is of type int in API version 46.0 and earlier.

longnumberRecordsFailed

The number of records already processed.

This property is of type int in API version 46.0 and earlier.

longnumberRecordsProcessed

The object type for the data being processed.stringobject

The processing operation for the job. Values include:OperationEnumoperation

• insert

• delete

• hardDelete

• update

• upsert

The number of times that Salesforce attempted to save the results of
an operation. The repeated attempts are due to a problem, such as a
lock contention.

intretries

The current state of processing for the job. Values include:JobStateEnumstate

• Open: The job has been created, and job data can be uploaded
to the job.

37

Get Information About an Ingest JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.api_rest.meta/api_rest/errorcodes.htm

DescriptionTypeProperty

• UploadComplete: No new data can be added to this job. You
can’t edit or save this job, as Salesforce is processing it.

• InProgress: The job is being processed by Salesforce. This
includes automatically optimized chunking of job data and
processing of job operations.

• JobComplete: The job was processed by Salesforce.

• Aborted: The job has been aborted. You can abort a job if you
created it or if you have the “Manage Data Integrations” permission.

• Failed: Some records in the job failed. Job data that was
successfully processed isn’t rolled back.

Date and time in the UTC time zone when the job finished.dateTimesystemModstamp

The number of milliseconds taken to process the job.longtotalProcessingTime

Response Body - For an Unsuccessful Request
If the request fails, the server returns a non-200 status, and the request body shows details of the error. For example, if the job has
been deleted the status is 404 (Not Found) and the response body is:

[{
"errorCode": "NOT_FOUND",
"message": "The requested resource does not exist"
}]

For details about error codes and messages, see Errors.

Example
This example gets information about the job with ID 7506g00000DhRA2AAN:

curl --include --request GET \
--header "Authorization: Bearer token" \
"https://instance.salesforce.com/services/data/vXX.X/jobs/query/7506g00000DhRA2AAN

The response is:

{
"id" : "7506g00000DhRA2AAN",
"operation" : "insert",
"object" : "Account",
"createdById" : "0056g000005HQPyAAO",
"createdDate" : "2018-12-18T22:51:36.000+0000",
"systemModstamp" : "2018-12-18T22:51:58.000+0000",
"state" : "Open",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 62.0,
"jobType" : "V2Ingest",
"contentUrl" : "services/data/v62.0/jobs/ingest/7506g00000DhRA2AAN/batches",

38

Get Information About an Ingest JobBulk API 2.0

"lineEnding" : "LF",
"columnDelimiter" : "COMMA",
"retries" : 0,
"totalProcessingTime" : 0,
"apiActiveProcessingTime" : 0,
"apexProcessingTime" : 0

}

SEE ALSO:

Bulk API 2.0 Older Documentation

Get Job Successful Record Results
Retrieves a list of successfully processed records for a completed job.

URI
/services/data/vXX.X/jobs/ingest/jobID/successfulResults/

Availability
This resource is available in API version 41.0 and later.

Formats
CSV

HTTP Method
GET

Authentication
Authorization: Bearer token

Parameters
None.

Request Body
None required.

Response Body
The response body is a CSV file that all the records that the job successfully processed. Each row corresponds to a successfully
processed record and contains the following information.

DescriptionTypeProperty

Indicates if the record was created.booleansf__Created

ID of the record that was successfully processed.stringsf__Id

Field data for the row that was provided in the original job data upload request.variousFields from the
original CSV
request data

Usage Notes

• The order of records in the response is not guaranteed to match the ordering of records in the original job data.

39

Get Job Successful Record ResultsBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

• Results are not recorded for batches that exceed the daily batch allocation.

SEE ALSO:

Bulk API 2.0 Older Documentation

Get Job Failed Record Results
Retrieves a list of failed records for a completed insert, delete, update, or upsert job.

URI
/services/data/vXX.X/jobs/ingest/jobID/failedResults/

Availability
This resource is available in API version 41.0 and later.

Formats
CSV

HTTP Method
GET

Authentication
Authorization: Bearer token

Parameters
None.

Request Body
None required.

Response Body
The response body is a CSV file that all the records that encountered an error while being processed by the job. Each row corresponds
to a failed record and contains the following information.

DescriptionTypeProperty

Error code and message.Errorsf__Error

ID of the record that had an error during processing. Available in API version 53
and later.

stringsf__Id

Field data for the row that was provided in the original job data upload request.variousFields from the
original CSV
request data

Usage Notes

• The order of records in the response is not guaranteed to match the ordering of records in the original job data.

• Results are not recorded for batches that exceed the daily batch allocation.

SEE ALSO:

Bulk API 2.0 Older Documentation

40

Get Job Failed Record ResultsBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm
https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

Get Job Unprocessed Record Results
Retrieves a list of unprocessed records for failed or aborted jobs.

URI
/services/data/vXX.X/jobs/ingest/jobID/unprocessedrecords/

Availability
This resource is available in API version 41.0 and later.

Formats
CSV

HTTP Method
GET

Authentication
Authorization: Bearer token

Parameters
None.

Request Body
None required.

Response Body

The response body is a CSV file that contains all the records that were not processed by the job.

A job that is interrupted or otherwise fails to complete can result in rows that aren’t processed. Unprocessed rows are not the same
as failed rows. Failed rows are processed but encounter an error during processing.

Each row corresponds to an unprocessed record and contains this information.

DescriptionTypeProperty

Field data for the row that was provided in the original job data upload request.variousFields from the
original CSV
request data

Usage Notes

• The order of records in the response is not guaranteed to match the ordering of records in the original job data.

• Results are not recorded for batches that exceed the daily batch allocation.

SEE ALSO:

Bulk API 2.0 Older Documentation

Delete a Job
Deletes a job. To be deleted, a job must have a state of UploadComplete, JobComplete, Aborted, or Failed.

URI
/services/data/vXX.X/jobs/ingest/jobID

41

Get Job Unprocessed Record ResultsBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

Availability
This resource is available in API version 41.0 and later.

Formats
JSON

HTTP Method
DELETE

Authentication
Authorization: Bearer token

Parameters
None.

Request Body
None required.

Response Body
None. Returns a status code of 204 (No Content), which indicates that the job was successfully deleted.

Usage Notes
When a job is deleted, job data stored by Salesforce is also deleted and job metadata information is removed. The job will no longer
display in the Bulk Data Load Jobs page in Salesforce.

SEE ALSO:

Bulk API 2.0 Older Documentation

Abort a Job
If you abort a job, Salesforce doesn’t process the job.

URI
/services/data/vXX.X/jobs/ingest/jobID

Availability
This resource is available in API version 41.0 and later.

Formats
JSON

HTTP Method
PATCH

Authentication
Authorization: Bearer token

Parameters
None.

Request Body

Required or
Optional

DescriptionTypeProperty

RequiredThe state to update the job to. Use Aborted to abort a job.JobStateEnumstate

42

Abort a JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

Response Body

DescriptionTypeProperty

The API version that the job was created in.stringapiVersion

The ID of the assignment rule. This property is only shown if an assignment
rule is specified when the job is created.

idassignmentRuleId

The column delimiter used for CSV job data. Values include:ColumnDelimiterEnumcolumnDelimiter

• BACKQUOTE—backquote character (`)

• CARET—caret character (^)

• COMMA—comma character (,) which is the default delimiter

• PIPE—pipe character (|)

• SEMICOLON—semicolon character (;)

• TAB—tab character

For future use. How the request was processed. Currently only parallel
mode is supported. (When other modes are added, the mode will be
chosen automatically by the API and will not be user configurable.)

ConcurrencyModeEnumconcurrencyMode

The format of the data being processed. Only CSV is supported.ContentTypecontentType

The URL to use for Upload Job Data on page 33 requests for this job. Only
valid if the job is in Open state.

URLcontentUrl

The ID of the user who created the job.stringcreatedById

The date and time in the UTC time zone when the job was created.dateTimecreatedDate

The name of the external ID field for an upsert.stringexternalIdFieldName

Unique ID for this job.stringid

The job’s type. Values include:JobTypeEnumjobType

• BigObjectIngest—BigObjects job

• Classic—Bulk API 1.0 job

• V2Ingest—Bulk API 2.0 job

The line ending used for CSV job data. Values include:LineEndingEnumlineEnding

• LF—linefeed character

• CRLF—carriage return character followed by a linefeed character

The object type for the data being processed.stringobject

The processing operation for the job. Values include:operation

• insert

• delete

• hardDelete

• update

43

Abort a JobBulk API 2.0

DescriptionTypeProperty

• upsert

The current state of processing for the job. Values include:JobStateEnumstate

• Open—The job has been created, and data can be added to the job.

• UploadComplete—No new data can be added to this job. You
can’t edit or save this job, as Salesforce is processing it.

• Aborted—The job has been aborted. You can abort a job if you
created it or if you have the “Manage Data Integrations” permission.

• JobComplete—The job was processed by Salesforce.

• Failed—Some records in the job failed. Job data that was
successfully processed isn’t rolled back.

Date and time in the UTC time zone when the job finished.dateTimesystemModstamp

Get Information About All Ingest Jobs
Retrieves detailed information about all jobs in the org.

URI
/services/data/vXX.X/jobs/ingest

Availability
This resource is available in API version 41.0 and later.

Formats
JSON

HTTP Method
GET

Authentication
Authorization: Bearer token

Parameters

DescriptionParameter

If set to true, filters jobs with PK chunking enabled.isPkChunkingEnabled

Filters jobs based on job type. Valid values include:jobType

• BigObjectIngest—BigObjects job

• Classic—Bulk API 1.0 job

• V2Ingest—Bulk API 2.0 job

Use queryLocator with a locator value to get a specific set of job results. Get All Jobs
returns up to 1000 result rows per request, along with a nextRecordsUrl value that
contains the locator value used to get the next set of results.

queryLocator

44

Get Information About All Ingest JobsBulk API 2.0

Request Body
None required.

Response Body

DescriptionTypeProperty

Indicates whether there are more jobs to get. If false, use the
nextRecordsUrl value to retrieve the next group of jobs.

booleandone

Contains information for each retrieved job.JobInfo[]records

A URL that contains a query locator used to get the next set of results in a
subsequent request if done isn’t true.

URLnextRecordsUrl

JobInfo

DescriptionTypeProperty

The API version that the job was created in.stringapiVersion

The column delimiter used for CSV job data. Values include:ColumnDelimiterEnumcolumnDelimiter

• BACKQUOTE—backquote character (`)

• CARET—caret character (^)

• COMMA—comma character (,) which is the default delimiter

• PIPE—pipe character (|)

• SEMICOLON—semicolon character (;)

• TAB—tab character

For future use. How the request was processed. Currently only parallel
mode is supported. (When other modes are added, the mode will be
chosen automatically by the API and will not be user configurable.)

ConcurrencyModeEnumconcurrencyMode

The format of the data being processed. Only CSV is supported.ContentTypecontentType

The URL to use for Upload Job Data requests for this job. Only valid if
the job is in Open state.

URLcontentUrl

The ID of the user who created the job. Create the batch with the same
user.

stringcreatedById

The date and time in the UTC time zone when the job was created.dateTimecreatedDate

Unique ID for this job.stringid

The job’s type. Values include:JobTypeEnumjobType

• BigObjectIngest: BigObjects job

• Classic: Bulk API 1.0 job

• V2Ingest: Bulk API 2.0 job

45

Get Information About All Ingest JobsBulk API 2.0

DescriptionTypeProperty

The line ending used for CSV job data. Values include:LineEndingEnumlineEnding

• LF—linefeed character

• CRLF—carriage return character followed by a linefeed character

The object type for the data being processed.stringobject

The processing operation for the job. Values include:operation

• insert

• delete

• hardDelete

• update

• upsert

The current state of processing for the job. Values include:JobStateEnumstate

• Open—The job has been created, and data can be added to the
job.

• UploadComplete—No new data can be added to this job.
You can’t edit or save this job, as Salesforce is processing it.

• Aborted—The job has been aborted. You can abort a job if you
created it or if you have the “Manage Data Integrations” permission.

• JobComplete—The job was processed by Salesforce.

• Failed—Some records in the job failed. Job data that was
successfully processed isn’t rolled back.

Date and time in the UTC time zone when the job finished.dateTimesystemModstamp

SEE ALSO:

Bulk API 2.0 Older Documentation

Upsert Records
Create records or update existing records (upsert) based on an ID, or the value of a specified external ID field.

• If the external ID isn’t matched, then a new record is created according to the request body.

• If the external ID is matched one time, then the record is updated according to the request body.

• If the external ID is matched multiple times, then a 300 error is reported, and the record isn’t created or updated.

The following sections show you how to work with the external ID resource to retrieve records by external ID and upsert records.

Upserting New Records with an External ID
This example uses the PATCH method to insert a new record. It assumes that an external ID field, “customExtIdField__c,” has been added
to Account. It also assumes that an Account record with a customExtIdField value of 11999 doesn’t already exist.

Note that in this example, we're able to create the job and upload the record data in a single call.

46

Upsert RecordsBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

Example for upserting a record that doesn’t yet exist

curl
https://MyDomainName.my.salesforce.com/services/data/v62.0/sobjects/Account/customExtIdField__c/11999
-H 'Authorization: Bearer
00DE0X0A0M0PeLE!AQcAQH0dMHEXAMPLEzmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1EXAMPLEDUkWe6H34r1AAwOR8B8fLEz6nEXAMPLE'
-H "Content-Type: application/json" -H "X-PrettyPrint:1" -d @newrecord.json -X POST

Example JSON request body newrecord.json file

{
"Name" : "California Wheat Corporation",
"Type" : "New Customer"

}

Example JSON response
The successful response is:

{
"id":"0018a00001rBqb8AAC",
"success":true,
"errors":[],
"created":true
}

The HTTP status code is 201 (Created).

Note: The created parameter is present in the response in API version 46.0 and later. It doesn't appear in earlier versions.

Error responses
Incorrect external ID field:

{
"message" : "The requested resource does not exist",
"errorCode" : "NOT_FOUND"

}

Upserting Existing Records with an External ID
This example uses the PATCH method to update an existing record. It assumes that an external ID field, “customExtIdField__c,” has been
added to Account and an Account record with a customExtIdField value of 11999 exists. The request uses updates.json to specify
the updated field values.

Example of upserting an existing record

curl
https://MyDomainName.my.salesforce.com/services/data/v62.0/sobjects/Account/customExtIdField__c/11999
-H "Authorization: Bearer token" -H "Content-Type: application/json" -d @updates.json
-X PATCH

Example JSON request body updates.json file

{
"BillingCity" : "San Francisco"

}

47

Upsert RecordsBulk API 2.0

Example JSON response
In API version 46.0 and later, the HTTP status code is 200 (OK) and the successful response is:

{
"id" : "001D000000Kv3g5IAB",
"success" : true,
"errors" : [],
"created": false

}

In API version 45.0 and earlier, the HTTP status code is 204 (No Content) and there isn’t a response body.

Error responses
If the external ID value isn't unique, an HTTP status code 300 is returned, plus a list of the records that matched the query.

If the external ID field doesn't exist, an error message and code is returned:

{
"message" : "The requested resource does not exist",
"errorCode" : "NOT_FOUND"

}

Inserting New Records Using Id as the External ID
This example uses the POST method as a special case to insert a record where the Id field is treated as the external ID. Because the
value of Id is null, it’s omitted from the request. This pattern is useful when you’re writing code to upsert multiple records by different
external IDs and you don’t want to request a separate resource. POST using Id is available in API version 37.0 and later.

Example of inserting a record that doesn’t yet exist

curl https://MyDomainName.my.salesforce.com/services/data/v62.0/sobjects/Account/Id -H
"Authorization: Bearer token" -H "Content-Type: application/json" -d @newrecord.json
-X POST

Example JSON request body newrecord.json file

{
"Name" : "California Wheat Corporation",
"Industry" : "Agriculture"

}

Example JSON response
The successful response is:

{
"id" : "001D000000Kv3g5IAB",
"success" : true,
"errors" : [],
"created": true

}

The HTTP status code is 201 (Created).

Note: The created parameter is present in the response in API version 46.0 and later. It doesn't appear in earlier versions.

48

Upsert RecordsBulk API 2.0

Use Compression for Bulk API 2.0 Ingest Responses
For ingest jobs, Bulk API 2.0 can compress the response body, which reduces network traffic and improves response time.

Responses are compressed if the client makes a request using the Accept-Encoding header, with a value of gzip. Bulk API 2.0
compresses the response in gzip format and sends the response to the client with a Content-Encoding: gzip response header.
If a request is made using the Accept-Encoding header with a value other than gzip, the encoding type is ignored, and the
response isn’t compressed.

As an example, if a Get Job Successful Record Results on page 39 request is made with the Accept-Encoding: gzip header,
the response looks something like:

HTTP/1.1 200 OK
Date: Tue, 09 Oct 2012 18:36:45 GMT
Content-Type: text/csv; charset=UTF-8
Content-Encoding: gzip
Transfer-Encoding: chunked

...compressed response body...

Bulk API 2.0 follows the HTTP 1.1 standards for response compression, as described in Using Compression. Most clients automatically
support compressed responses. Even though you request a compressed response, the REST framework sometimes doesn’t send back
the response in a compressed format. Visit https://developer.salesforce.com/page/Tools for more information on
particular clients.

Troubleshooting Ingest Timeouts
Solve issues encountered with Bulk API 2.0 ingest operations.

To troubleshoot an ingest timeout error, try the following suggestions:

1. Check your payload.

• Check CSV formatting. Prepare CSV Files on page 24

• Check Date formatting. Valid Date Format in Records (2.0) on page 27

• Check Relationship fields. Relationship Fields in a Header Row (2.0) on page 28

• Check that compression is gzip format. Use Compression for Bulk API 2.0 Ingest Responses on page 49

• Check that your data is organized to prevent lock contenttion. Organize Data to Minimize Lock Contention

2. Create a new ingest job with only the failed and unprocessed records.

• To get the failed records, use Get Job Failed Record Results on page 40.

• To get the unprocessed records, use Get Job Unprocessed Record Results on page 41.

3. Divide the job into smaller jobs.

• Creating smaller requests may help to isolate problems in one or more jobs.

4. Review your custom logic, such as triggers or flows.

• Non-optimized custom logic can contribute to timeouts. In order to speed up insert, update, or delete operations, make sure
triggers or flows are optimized. Consider temporarily disabling triggers or flows that are non-essential.

49

Use Compression for Bulk API 2.0 Ingest ResponsesBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.api_rest.meta/api_rest/intro_rest_compression.htm
https://developer.salesforce.com/page/Tools

Organize Data to Minimize Lock Contention

To minimize the potential for lock contention, consider pre-organizing your data when planning your Bulk API 2.0 data loads.

SEE ALSO:

Errors

Organize Data to Minimize Lock Contention
To minimize the potential for lock contention, consider pre-organizing your data when planning your Bulk API 2.0 data loads.

The Salesforce Platform uses locks to ensure referential integrity of its data — similar to any application built on a relational database.
Most transactional database operations only hold these locks for a short time, and the volume isn’t significant enough to cause contention.
However, when dealing with large data volume objects or processing large jobs, record locks and contention can become an issue.

Although Bulk API 2.0 conceals the notion of a “batch”, Bulk API 2.0 jobs are still technically composed of batches. Batches are managed
tacitly by Bulk API 2.0’s automated batch management functionality.

Tip: Always test your data loads in a sandbox organization first. Processing times can be different in a production organization.

Be Aware of Operations that Increase Lock Contention with Bulk API 2.0

These operations are likely to cause lock contention:

• Creating users

• Updating ownership for records with private sharing

• Updating user roles

• Updating territory hierarchies

Organize Bulk API 2.0 Data to Minimize Lock Contention

For large data loads, sort main records based on their parent record to avoid having different child records (with the same parent) in
different jobs.

• Example: When an AccountTeamMember record is created or updated, the corresponding Account for this record is locked
during the transaction. If you upload different jobs that include AccountTeamMember records, and they all contain references
to the same account, they all try to lock the same account, and it's likely that you experience a lock timeout. When working with
AccountTeamMember records, organize your CSV data files by AccountId.

Note: Because your data model is unique to your organization, Salesforce can't predict exactly when you experience lock contention
problems.

Bulk API 2.0 Automatic Record Lock Handling (PILOT)

Based on a popular suggestion in the Salesforce Idea Exchange, we're now offering a pilot feature that automatically checks for Bulk API
2.0 locking errors and handles them to increase the likelihood of successful job completion.

If you’re interested in a pilot to help you automatically minimize lock contention, contact your account team and ask to be nominated for
the "Bulk API 2.0 Automatic Record Lock Handling Pilot".

Note: This feature is not generally available and is being piloted with certain Customers subject to additional terms and conditions.
It is not part of your purchased Services. This feature is subject to change, may be discontinued with no notice at any time in SFDC’s
sole discretion, and SFDC may never make this feature generally available. Make your purchase decisions only on the basis of
generally available products and features. This feature is made available on an AS IS basis and use of this feature is at your sole risk.

50

Troubleshooting Ingest TimeoutsBulk API 2.0

https://ideas.salesforce.com/s/idea/a0B8W00000GdYOBUA3/bulk-api-v2-support-for-serial-concurrencymode

Errors
Operations that you perform with Bulk API 2.0 can trigger error codes. This list shows the most common error codes and the Bulk API
2.0 action that possibly triggered them.

Tip: For HTTP response codes, see Status Codes and Error Responses.

ClientInputError
The operation failed with an unknown client-side error.

For binary attachments, the request content is provided both as an input stream and an attachment.

ExceededQuota
The job or batch you tried to create exceeds the allowed number for the past 24-hour period.

FeatureNotEnabled
Bulk API 2.0 isn’t enabled for this organization.

InvalidBatch
The batch ID specified in a batch update or query is invalid.

This error code is returned for binary attachments when the zip content is malformed or these conditions occur:

• The request.txt file can't be found, can't be read, is a directory, or contains invalid content.

• The decompressed size of a binary attachment is too large.

• The size of the zip file is too large.

• The total decompressed size of all the binary attachments is too large.

Note: A StatusCode of INVALID_FIELD is returned for the following conditions:

• A binary file referenced in the batch data is missing or is a directory.

• A binary file referenced in the batch data doesn't start with #.

For more information about binary attachment limits, see the “General Limits” section in Bulk API and Bulk API 2.0 Limits and
Allocations.

InvalidJob
The job ID specified in a query or update for a job, or a create, update, or query for batches is invalid.

The user attempted to create a job using a zip content type in API version 19.0 or earlier.

InvalidJobState
The job state specified in a job update operation is invalid.

InvalidOperation
The operation specified in a URI for a job is invalid. Check the spelling of “job” in the URI.

InvalidSessionId
The session ID specified is invalid.

InvalidUrl
The URI specified is invalid.

InvalidUser
Either the user sending a Bulk API 2.0 request doesn't have the correct permission, or the job or batch specified was created by
another user.

InvalidXML
XML contained in the request body is invalid.

51

ErrorsBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.api_rest.meta/api_rest/errorcodes.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm

MethodNotAllowed
HTTP Method '<displays incorrect method>' not allowed. Allowed are <displays correct method(s)>.

NotFound
The requested resource does not exist. Check the job id, api version, and URI.

Timeout
The connection timed out. This error is thrown if Salesforce takes too long to process a batch. To resolve timeouts, see

• Troubleshooting Ingest Timeouts on page 49

• Troubleshooting Query Timeouts on page 76

TooManyLockFailure
Too many lock failures while processing the current batch. This error may be returned during processing of a batch. To resolve, see
General Guidelines for Data Loads on page 90.

Unknown
Exception with unknown cause occurred.

In addition, Bulk API 2.0 uses the same status codes and exception codes as SOAP API. For more information on these codes, see
“ExceptionCode” in the SOAP API Developer Guide.

Bulk API 2.0 Query

Bulk query jobs enable asynchronous processing of SOQL queries. They’re designed to handle queries that return large amounts of data
(2,000 records or more).

Bulk API 2.0 query limits are described in Bulk API and Bulk API 2.0 Limits and Allocations in the Salesforce Developer Limits and Allocations
Quick Reference.

Understanding Bulk API 2.0 Query

Learn about Bulk API 2.0 query availability, supported methods, and SOQL considerations.

Create a Query Job

Creates a query job.

Get Information About a Query Job

Gets information about one query job.

Get Results for a Query Job

Gets the results for a query job. The job must have the state JobComplete.

Get Parallel Results for a Query Job

Returns up to five URIs in one response to use to get results for a query job. The job must have the state jobComplete.

Delete a Query Job

Deletes a query job. When a job is deleted, job data stored by Salesforce is deleted and job metadata information is removed. The
job no longer displays in the Bulk Data Load Jobs page in Salesforce.

Abort a Query Job

Aborts a query job.

Get Information About All Query Jobs

Gets information about all query jobs in the org. The information includes Bulk API 2.0 query jobs and all Bulk API jobs.

52

Bulk API 2.0 QueryBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_concepts_core_data_objects.htm#exception_code_topic
https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm

Use Compression for Bulk API 2.0 Query Responses

For query jobs, Bulk API 2.0 can compress the response body, which reduces network traffic and improves response time.

Troubleshooting Query Timeouts

To troubleshoot timeout errors in Bulk API 2.0 query operations, apply additional filter criteria.

Understanding Bulk API 2.0 Query
Learn about Bulk API 2.0 query availability, supported methods, and SOQL considerations.

Bulk API 2.0 query jobs enable asynchronous processing of SOQL queries. There is always an empty “parent” batch which is related to
the initial upload, followed by sub-batches for processing the upload in parallel. The API automatically handles retries. If you receive a
message that the API retried more than 15 times, apply a filter criteria and try again. When you get the results of a query job, the response
body is always compressed.

Availability
Query jobs in Bulk API 2.0 are available in API version 47.0 and later.

Supported URIs and Methods
This table lists the URIs and methods supported by queries in Bulk API 2.0.

DescriptionHTTP MethodURI

Creates a query job.POST/services/data/vXX.X/jobs/query

Gets information about all query
jobs in the org.

GET/services/data/vXX.X/jobs/query

Gets information about one query
job.

GET/services/data/vXX.X/jobs/query/queryJobId

Gets the results for a query job.GET/services/data/vXX.X/jobs/query/queryJobId/results

Aborts a query job.PATCH/services/data/vXX.X/jobs/query/queryJobId

Deletes a query job.DELETE/services/data/vXX.X/jobs/query/queryJobId

Chunking Query Jobs
Bulk API 2.0 is optimized to chunk large query jobs if the object being queried supports chunking. This optimization includes custom
objects, and any Sharing and History tables that support standard objects. Instead of manually configuring batches, Bulk API 2.0 query
jobs automatically determine the best way to divide your query job into smaller chunks, helping to avoid failures or timeouts.

To determine whether an object supports PK chunking, refer to the isPkChunkingSupported field in the response body of the
Get Information About a Query Job query.

53

Understanding Bulk API 2.0 QueryBulk API 2.0

SOQL Considerations
Bulk API 2.0 doesn’t support SOQL queries that include any of these items:

• GROUP BY, LIMIT, ORDER BY, OFFSET, or TYPEOF clauses.

Don’t use ORDER BY or LIMIT, as they disable PKChunking for the query. With PKChunking disabled, the query takes longer to execute,
and potentially results in query timeouts. If ORDER BY or LIMIT is used, and you experience query time outs, then remove the ORDER
BY or LIMIT clause before any subsequent troubleshooting.

• Aggregate Functions such as COUNT().

• Date functions in GROUP BY clauses. (Date functions in WHERE clauses are supported.)

• Compound address fields or compound geolocation fields. (Instead, query the individual components of compound fields.)

• Parent-to-child relationship queries. (Child-to-parent relationship queries are supported.)

SEE ALSO:

Bulk API 2.0 Older Documentation

Create a Query Job
Creates a query job.

Syntax
URI

/services/data/vXX.X/jobs/query

Available since release

This resource is available in API version 47.0 and later.

Format
application/json

HTTP method
POST

Authentication
Authorization:Bearer token

Headers
Optionally, use the Sforce-Call-Options header to specify a default namespace.

Request body
The request body specifies the query to be performed.

{
"operation": "query",
"query": "SELECT Id FROM Account"

}

Note: Bulk API 2.0 doesn’t support SOQL queries that include any of these items:

• GROUP BY, LIMIT, ORDER BY, OFFSET, or TYPEOF clauses.

54

Create a Query JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_relationships_understanding.htm
https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.api_rest.meta/api_rest/headers_calloptions.htm

Don’t use ORDER BY or LIMIT, as they disable PKChunking for the query. With PKChunking disabled, the query takes longer
to execute, and potentially results in query timeouts. If ORDER BY or LIMIT is used, and you experience query time outs,
then remove the ORDER BY or LIMIT clause before any subsequent troubleshooting.

• Aggregate Functions such as COUNT().

• Date functions in GROUP BY clauses. (Date functions in WHERE clauses are supported.)

• Compound address fields or compound geolocation fields. (Instead, query the individual components of compound fields.)

• Parent-to-child relationship queries. (Child-to-parent relationship queries are supported.)

You can also specify some optional parameters. For example:

{
"operation" : "query",
"query" : "SELECT Id FROM Account",
"contentType" : "CSV",
"columnDelimiter" : "CARET",
"lineEnding" : "CRLF"

}

Request parameters

Required or
Optional

DescriptionParameter

RequiredThe type of query. Possible values are:operation

• query—Returns data that hasn’t been deleted or archived. For
more information, see query() in SOAP API Developer Guide.

• queryAll—Returns records that have been deleted because
of a merge or delete, and returns information about archived Task
and Event records. For more information, see queryAll() in SOAP
API Developer Guide.

RequiredThe query to be performed.query

OptionalThe format to be used for the results. Currently the only supported
value is CSV (comma-separated variables). Defaults to CSV.

contentType

Note: The actual separator can be a character other than a
comma. The columnDelimiter parameter specifies what
character to use.

OptionalThe column delimiter used for CSV job data. The default value is
COMMA. Possible values are:

columnDelimiter

• BACKQUOTE—back quote character (`)

• CARET—caret character (^)

• COMMA—comma character (,)

• PIPE—pipe character (|)

• SEMICOLON—semicolon character (;)

• TAB—tab character

55

Create a Query JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_relationships_understanding.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_query.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_queryall.htm

Required or
Optional

DescriptionParameter

OptionalThe line ending used for CSV job data, marking the end of a data row.
The default is LF. Possible values are:

lineEnding

• LF—linefeed character

• CRLF—carriage return character followed by a linefeed character

Response Body

{
"id" : "750R0000000zlh9IAA",
"operation" : "query",
"object" : "Account",
"createdById" : "005R0000000GiwjIAC",
"createdDate" : "2018-12-10T17:50:19.000+0000",
"systemModstamp" : "2018-12-10T17:50:19.000+0000",
"state" : "UploadComplete",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 46.0,
"lineEnding" : "LF",
"columnDelimiter" : "COMMA"

}

Response Parameters

DescriptionParameter

The unique ID for this job.id

The type of query.operation

The object type being queried.object

The ID of the user who created the job.createdById

The UTC date and time when the job was created.createdDate

The UTC date and time when the API last updated the job
information.

systemModstamp

The current state of processing for the job. Possible values are:state

• UploadComplete—The job is ready to be processed
and Salesforce has put the job in the queue.

• InProgress—Salesforce is processing the job.

• Aborted—The job has been aborted. See Abort a Query
Job.

• JobComplete—Salesforce has finished processing the
job.

• Failed—The job failed.

56

Create a Query JobBulk API 2.0

DescriptionParameter

Reserved for future use. How the request is processed. Currently
only parallel mode is supported. (When other modes are added,

concurrencyMode

the API chooses the mode automatically. The mode isn’t user
configurable.)

The format to be used for the results. Currently the only
supported value is CSV.

contentType

Note: JunctionIdList fields and embedded lists
can't be returned.

The API version that the job was created in.apiVersion

The line ending used for CSV job data, marking the end of a data
row.

lineEnding

The column delimiter used for CSV job data.columnDelimiter

Example
This example creates a job that queries Accounts.

curl --include --request POST \
--header "Authorization: Bearer token" \
--header "Accept: application/json " \
--header "Content-Type: application/json" \
--data '{
"operation": "query",
"query": "SELECT Id, Name FROM Account"

}' \
https://instance.salesforce.com/services/data/vXX.X/jobs/query

The response is:

HTTP/1.1 200 OK
{

"id" : "750R0000000zw4yIAA",
"operation" : "query",
"object" : "Account",
"createdById" : "005R0000000GiwjIAC",
"createdDate" : "2018-12-17T21:00:17.000+0000",
"systemModstamp" : "2018-12-17T21:00:17.000+0000",
"state" : "UploadComplete",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 46.0,
"lineEnding" : "LF",

57

Create a Query JobBulk API 2.0

"columnDelimiter" : "COMMA"
}

SEE ALSO:

Bulk API 2.0 Older Documentation

Get Information About a Query Job
Gets information about one query job.

Syntax
URI

/services/data/vXX.X/jobs/query/queryJobId

Available since release

This resource is available in API version 47.0 and later.

Formats
JSON

HTTP methods
GET

Authentication
Authorization: Bearer token

Request parameters

Required or
Optional

DescriptionParameter

RequiredThe ID of the query job.queryJobId

Response Body

{
"id" : "750R0000000zlh9IAA",
"operation" : "query",
"object" : "Account",
"createdById" : "005R0000000GiwjIAC",
"createdDate" : "2018-12-10T17:50:19.000+0000",
"systemModstamp" : "2018-12-10T17:51:27.000+0000",
"state" : "JobComplete",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 46.0,
"jobType" : "V2Query",
"lineEnding" : "LF",
"columnDelimiter" : "COMMA",
"numberRecordsProcessed" : 500,
"retries" : 0,

58

Get Information About a Query JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

"totalProcessingTime" : 334,
"isPkChunkingSupported": true

}

Response Parameters

DescriptionTypeParameter

The unique ID for this job.stringid

The type of query. Possible values are:OperationEnumoperation

• query—Returns data that hasn’t
been deleted or archived. For more
information, see query() in SOAP API
Developer Guide.

• queryAll—Returns records that
have been deleted because of a merge
or delete, and returns information
about archived Task and Event records.
For more information, see queryAll()
in SOAP API Developer Guide.

The object type being queried.stringobject

The ID of the user who created the job.stringcreatedById

The UTC date and time when the job was
created.

dateTimecreatedDate

The UTC date and time when the API last
updated the job information.

dateTimesystemModstamp

The current state of processing for the job.
Possible values are:

JobStateEnumstate

• UploadComplete—The job is
ready to be processed and Salesforce
has put the job in the queue.

• InProgress—Salesforce is
processing the job.

• Aborted—The job has been
aborted. See Abort a Query Job.

• JobComplete—Salesforce has
finished processing the job.

• Failed—The job failed.

Reserved for future use. How the request
is processed. Currently only parallel mode

ConcurrencyModeEnumconcurrencyMode

is supported. (When other modes are
added, the API chooses the mode

59

Get Information About a Query JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_query.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_queryall.htm

DescriptionTypeParameter

automatically. The mode isn’t user
configurable.)

The format that is used for the results.
Currently the only supported value is CSV.

ContentTypecontentType

The API version that the job was created
in.

stringapiVersion

The job’s type. For a query job, the type is
always V2Query.

JobTypeEnumjobType

The line ending used for CSV job data,
marking the end of a data row. The default
is LF. Possible values are:

LineEndingEnumlineEnding

• LF—linefeed character

• CRLF—carriage return character
followed by a linefeed character

The column delimiter used for CSV job
data. The default value is COMMA. Possible
values are:

ColumnDelimiterEnumcolumnDelimiter

• BACKQUOTE—back quote character
(`)

• CARET—caret character (^)

• COMMA—comma character (,)

• PIPE—pipe character (|)

• SEMICOLON—semicolon character
(;)

• TAB—tab character

The number of records processed in this
job.

longnumberRecordsProcessed

The number of times that Salesforce
attempted to save the results of an

intretries

operation. Repeated attempts indicate a
problem such as a lock contention.

The number of milliseconds taken to
process the job.

longtotalProcessingTime

Whether PK chunking is supported for the
queried object (true), or isn't supported
(false).

booleanisPkChunkingSupported

60

Get Information About a Query JobBulk API 2.0

Response Body - For an Unsuccessful Request
If the request fails, the server returns a non-200 status, and the request body shows details of the error. For example, if the job has
been deleted the status is 404 (Not Found) and the response body is:

[{
"errorCode": "NOT_FOUND",
"message": "The requested resource does not exist"
}]

For details about error codes and messages, see Errors.

Example
This example gets information about the job with ID 750R0000000zxikIAA:

curl --include --request GET \
--header "Authorization: Bearer token" \
"https://instance.salesforce.com/services/data/vXX.X/jobs/query/750R0000000zxikIAA

The response is:

{
"id" : "750R0000000zxikIAA",
"operation" : "query",
"object" : "Account",
"createdById" : "005R0000000GiwjIAC",
"createdDate" : "2018-12-18T22:51:36.000+0000",
"systemModstamp" : "2018-12-18T22:51:58.000+0000",
"state" : "JobComplete",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 46.0,
"jobType" : "V2Query",
"lineEnding" : "LF",
"columnDelimiter" : "COMMA",
"numberRecordsProcessed" : 740003,
"retries" : 0,
"totalProcessingTime" : 21046,
"isPkChunkingSupported": true

}

SEE ALSO:

Bulk API 2.0 Older Documentation

Get Results for a Query Job
Gets the results for a query job. The job must have the state JobComplete.

Tip: If encoding is enabled for Bulk API 2.0 Query job responses, there is a significant improvement in performance of query result
downloads. This not the total query time, but a reduction in the time to download the results. See Use Compression for Bulk API
2.0 Query Responses.

61

Get Results for a Query JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

Syntax
URI

/services/data/vXX.X/jobs/query/queryJobId/results

or

/services/data/vXX.X/jobs/query/queryJobId/results
?locator=locator
&maxRecords=maxRecords

Note: Use the same API version to get query results that you used to create the query. Otherwise, the call returns a 409 error.

Available since release

This resource is available in API version 47.0 and later.

Formats
CSV

HTTP methods
GET

Authentication
Authorization: Bearer token

Request parameters

Required or
Optional

DescriptionParameter

RequiredThe ID of the query job.queryJobId

OptionalA string that identifies a specific set of query results. Providing a value
for this parameter returns only that set of results.

Omitting this parameter returns the first set of results.

locator

You can find the locator string for the next set of results in the response
of each request. See Example and Rules and Guidelines.

As long as the associated job exists, the locator string for a set of results
does not change. You can use the locator to retrieve a set of results
multiple times.

OptionalThe maximum number of records to retrieve per set of results for the
query. The request is still subject to the size limits.

If you are working with a very large number of query results, you may
experience a timeout before receiving all the data from Salesforce. To

maxRecords

prevent a timeout, specify the maximum number of records your client
is expecting to receive in the maxRecords parameter. This splits the
results into smaller sets with this value as the maximum size.

If you don’t provide a value for this parameter, the server uses a default
value based on the service.

62

Get Results for a Query JobBulk API 2.0

Response Body
If the request is successful, the status code is 200 (OK) and the request body contains the results of the job’s query. For example:

"Id","Name"
"005R0000000UyrWIAS","Jane Dunn"
"005R0000000GiwjIAC","George Wright"
"005R0000000GiwoIAC","Pat Wilson"
...

Note: In API version 50.0 and later, the order of the columns returned by the query is the same as the order you requested them.
In version 49.0 and earlier, the order of the columns is returned alphabetically.

Response Headers

DescriptionHeader

The number of records in this set.Sforce-NumberOfRecords

The locator for the next set of results (if there are any). Use this
value in other GET request to retrieve the next set of query
results.

This value is a pseudo random string (for example, MTAwMDA).
The length of this string varies depending on how many sets of
results there are.

Sforce-Locator

If there are no more sets of query results, this value is the string
‘null’.

See Example and Rules and Guidelines.

Example
This example retrieves the results for the job with ID 750R0000000zxr8IAA. It also shows how to use the locator and
maxRecords query parameters. (In this example, we use them both, but they are independent. You don’t have to use them together.)
For an example on how to download data in parallel, see Get Parallel Results for a Query Job on page 65.

We start by sending an initial request to retrieve the first set of query results. We don’t use the locator parameter because we want
to get the first set of results.

curl --include --request GET \
--header "Authorization: Bearer token" \
--header "Accept: text/csv" \
https://instance.salesforce.com/services/data/vXX.X/jobs/query/750R0000000zxr8IAA/results
?maxRecords=50000

Note: The Accept header must match what was specified when the job was created. Currently, only text/csv is supported.

The response body is:

HTTP/1.1 200 OK
...
Sforce-Locator: MTAwMDA
Sforce-NumberOfRecords: 50000
...

63

Get Results for a Query JobBulk API 2.0

"Id","Name"
"005R0000000UyrWIAS","Jane Dunn"
"005R0000000GiwjIAC","George Wright"
"005R0000000GiwoIAC","Pat Wilson"
...

The response includes MTAwMDA as a value for the Sforce-Locator header. This value is not ‘null’, which means that there are
more query results that we can retrieve.

To retrieve the next set of query results, we send another request, using the locator parameter and the locator string, MTAwMDA.

curl --include --request GET \
--header "Accept: text/csv" \
https://instance.salesforce.com/services/data/vXX.X/jobs/query/750R0000000zxr8IAA/results
?locator=MTAwMDA&maxRecords=50000

The response body is:

HTTP/1.1 200 OK
...
Sforce-Locator: MjAwMDAw
Sforce-NumberOfRecords: 50000
...

"Id","Name"
"005R0000000UyrWIAv","James Wu"
"005R0000000GiwjIxx","Samantha Jones"
"005R0000000GiwoIAB","Doug West"
...

Notice that the locator value has changed. This means that there is another set of query results that we can retrieve. We use the new
locator string, MjAwMDAw, in another request.

curl --include --request GET \
--header "Accept: text/csv" \
https://instance.salesforce.com/services/data/vXX.X/jobs/query/750R0000000zxr8IAA/results
?locator=MjAwMDAw&maxRecords=50000

We repeat this process until the value of the Sforce-Locator header is ‘null’, which indicates that there are no more results to
retrieve.

HTTP/1.1 200 OK

Sforce-Locator: null
Sforce-NumberOfRecords: 6155
...

"Id","Name"
...

Rules and Guidelines
To retrieve your full set of query results, follow these rules and guidelines.

1. Use /services/data/vXX.X/jobs/query/queryJobId/results to get the first set of results for the job.

64

Get Results for a Query JobBulk API 2.0

2. If there are no more results, the Sforce-Locator header’s value is the string ‘null’. Otherwise, set the locator query
parameter to that value to get the next set of results.

Note: For locator, use only the value from the Sforce-Locator header. Don’t try to guess what it is. How this
parameter is evaluated is subject to change.

3. Repeat this process until the Sforce-Locator header’s value is the string ‘null’. That set is the last set of results.

SEE ALSO:

Bulk API 2.0 Older Documentation

Get Parallel Results for a Query Job
Returns up to five URIs in one response to use to get results for a query job. The job must have the state jobComplete.

Syntax
URI

/services/data/vXX.X/jobs/query/queryJobId/resultPages

Important: To get query results, use the same API version that you used to create the query. Otherwise, the call returns a 409
error.

Available since release

This resource is available in API version 58.0 and later.

Formats
JSON

HTTP Methods
GET

Authentication
Authorization: Bearer token

Request Parameters

Required
or
Optional

DescriptionParameter

RequiredThe ID of the query job. The ID is retrieved when you create the query job.queryJobId

Response Body with Request Parameters
The JSON response body contains multiple request URIs that you use to request data in parallel.

DescriptionElement

Contains the resultLink URIs.resultChunks

The request URI with the locator for getting data.resultLink

65

Get Parallel Results for a Query JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

DescriptionElement

The URI used to get a response body with the next resultChunks element.nextRecordUrl

A Boolean value that indicates whether more resultLink URIs are available.done

Example
This example retrieves the results for a job with the ID 750R0000000zxr8IAA. We start by sending an initial request to retrieve the first
set of result links.

Example Request

curl --include --request GET \
--header "Authorization: Bearer token" \
--header "Accept: application/json" \
https://MyDomainName.my.salesforce.com\
/services/data/vXX.X/jobs/query/750R0000000zxr8IAA/resultPages

Example Response Body

{
"resultChunks": [

{
"resultLink": "/jobs/query/750R0000000zxr8IAA/results?locator=aBcDeFg4N"

},
{

"resultLink": "/jobs/query/750R0000000zxr8IAA/results?locator=HiJkLmN4N"
},
{

"resultLink": "/jobs/query/750R0000000zxr8IAA/results?locator=oPQrStU4N"
},
{

"resultLink": "/jobs/query/750R0000000zxr8IAA/results?locator=vWxYzz4N"
},
{

"resultLink": "/jobs/query/750R0000000zxr8IAA/results?locator=NiKmABC4N"
}

],
"nextRecordsUrl": "/jobs/query/750R0000000zxr8IAA/resultpages?locator=YcApWm4N",
"done": false

}

The value of nextRecordsUrl is the URI for getting the next set of resultLink URIs. The value of done is true if there are no
more resultLink URIs. The value of each resultLink is a URI that you send as a request to get a set of results.

SEE ALSO:

Get Results for a Query Job

66

Get Parallel Results for a Query JobBulk API 2.0

Delete a Query Job
Deletes a query job. When a job is deleted, job data stored by Salesforce is deleted and job metadata information is removed. The job
no longer displays in the Bulk Data Load Jobs page in Salesforce.

Note: You can only delete a job if its state is JobComplete, Aborted, or Failed.

Syntax
URI

/services/data/vXX.X/jobs/query/queryJobId

Available since release

This resource is available in API version 47.0 and later.

Formats
None

HTTP methods
DELETE

Authentication
Authorization: Bearer token

Request parameters

Required or
Optional

DescriptionParameter

RequiredThe ID of the query job to be deleted.queryJobId

Response Body
If the method is successful, the status code is 204 (No Content) and there is no response body.

Response Body - For an Unsuccessful Request
If the request fails, the server returns a 400 (Bad Request) status, and the request body shows details of the error. For example:

HTTP/1.1 400 Bad Request
[{
"errorCode": "API_ERROR",
"message": "Error encountered when deleting the job because the job is not terminated"
}]

Example
This example deletes the job with ID 750R0000000zxnaIAA.

curl --include --request DELETE \
--header "Authorization: Bearer token \
--header "Content-Type: " \
https://instance.salesforce.com/services/data/vXX.X/jobs/query/750R0000000zxnaIAA

67

Delete a Query JobBulk API 2.0

The response status is

204 No Content

SEE ALSO:

Bulk API 2.0 Older Documentation

Abort a Query Job
Aborts a query job.

Note:

• To abort a job, you must be the job’s creator or have the Manage Data Integrations permission.

• You can only abort jobs that are in the following states:

– UploadComplete

– InProgress

Syntax
URI

/services/data/vXX.X/jobs/query/queryJobId

Available since release

This resource is available in API version 47.0 and later.

Formats
JSON

HTTP methods
PATCH

Authentication
Authorization: Bearer token

Request body
The request body must be the following:

{
"state": "Aborted"

}

Request parameters

Required or
Optional

DescriptionParameter

RequiredThe ID of the query job to be deleted.queryJobId

68

Abort a Query JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

Response Body
If the request is successful, the response is similar to that for Get Results for a Query Job but the state is Aborted. For example:

{
"id" : "750R000000146UvIAI",
"operation" : "query",
"object" : "Account",
"createdById" : "005R0000000GiwjIAC",
"createdDate" : "2018-12-18T16:15:31.000+0000",
"systemModstamp" : "2018-12-18T16:15:32.000+0000",
"state" : "Aborted",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 46.0

}

Response Parameters

DescriptionParameter

The unique ID for this job.id

The type of query. Possible values are:operation

• query—Returns data that hasn’t been deleted or archived.
For more information, see query() in SOAP API Developer
Guide.

• queryAll—Returns records that have been deleted
because of a merge or delete, and returns information about
archived Task and Event records. For more information, see
queryAll() in SOAP API Developer Guide.

The object type being queried.object

The ID of the user who created the job.createdById

The UTC date and time when the job was created.createdDate

The UTC date and time when the API last updated the job
information.

systemModstamp

The current state of processing for the job. Possible values are:state

• UploadComplete—The job is ready to be processed
and Salesforce has put the job in the queue.

• InProgress—Salesforce is processing the job.

• Aborted—The job has been aborted. See Abort a Query
Job.

• JobComplete—Salesforce has finished processing the
job.

• Failed—The job failed.

69

Abort a Query JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_query.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_queryall.htm

DescriptionParameter

Reserved for future use. How the request is processed. Currently
only parallel mode is supported. (When other modes are added,

concurrencyMode

the API chooses the mode automatically. The mode isn’t user
configurable.)

The format that is used for the results. Currently the only
supported value is CSV.

contentType

The API version that the job was created in.apiVersion

Response Body - For an Unsuccessful Request
If the request fails, the server returns a non-200 status, and the request body shows details of the error. For example:

HTTP/1.1 400 Bad Request
[{
"errorCode": "INVALIDJOBSTATE",
"message": "Aborting already Completed Job not allowed"
}]

Example
This example aborts the job with ID 750R000000146UvIAI:

curl --request PATCH \
--header "Authorization: Bearer token" \
--header "Content-Type: application/json" \
--data '{
"state": "Aborted"

}' \
https://instance.salesforce.com/services/data/vXX.X/jobs/query/750R000000146UvIAI

The response is:

{
"id": "750R000000146UvIAI",
"operation": "query",
"object": "Account",
"createdById": "005R0000000GiwjIAC",
"createdDate": "2018-12-18T20:51:39.000+0000",
"systemModstamp": "2018-12-18T20:51:41.000+0000",
"state": "Aborted",
"concurrencyMode": "Parallel",
"contentType": "CSV",
"apiVersion": 46.0

}

SEE ALSO:

Bulk API 2.0 Older Documentation

70

Abort a Query JobBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

Get Information About All Query Jobs
Gets information about all query jobs in the org. The information includes Bulk API 2.0 query jobs and all Bulk API jobs.

Syntax
URI

/services/data/vXX.X/jobs/query

/services/data/vXX.X/jobs/query/
?isPkChunkingEnabled=isPkChunkingEnabled
&jobType=jobType
&concurrencyMode=concurrencyMode
&queryLocator=queryLocator

Available since release

This resource is available in API version 47.0 and later.

Formats
JSON

HTTP methods
GET

Authentication
Authorization: Bearer token

Request parameters

Required or
Optional

DescriptionParameter

OptionalIf set to true, the request only returns information about jobs where
PK Chunking is enabled. This only applies to Bulk API (not Bulk API 2.0)
jobs.

For more information on PK Chunking, see Use PK Chunking to Extract
Large Data Sets from Salesforce.

isPkChunkingEnabled

OptionalGets information only about jobs matching the specified job type.
Possible values are:

jobType

• Classic—Bulk API jobs. This includes both query jobs and
ingest jobs.

• V2Query—Bulk API 2.0 query jobs.

• V2Ingest—Bulk API 2.0 ingest (upload and upsert) jobs.

OptionalFor future use. Gets information only about jobs matching the specified
concurrency mode. Possible values are serial and parallel.

concurrencyMode

Note: Currently only parallel mode is supported.

71

Get Information About All Query JobsBulk API 2.0

https://developer.salesforce.com/blogs/engineering/2015/03/use-pk-chunking-extract-large-data-sets-salesforce.html
https://developer.salesforce.com/blogs/engineering/2015/03/use-pk-chunking-extract-large-data-sets-salesforce.html

Required or
Optional

DescriptionParameter

OptionalGets information about jobs starting with that locator value.queryLocator

Note: Do not enter your own value here. Always use the value
from the nextRecordsUrl from the previous set.

See Example and Rules and Guidelines.

Response Body
The response contains a completion flag, an array of records, and a locator value to be used to obtain more records. For example:

{
"done" : false,
"records" : [

{
"id" : "750R0000000zhfdIAA",
"operation" : "query",
"object" : "Account",
"createdById" : "005R0000000GiwjIAC",
"createdDate" : "2018-12-07T19:58:09.000+0000",
"systemModstamp" : "2018-12-07T19:59:14.000+0000",
"state" : "JobComplete",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 62.0,
"jobType" : "V2Query",
"lineEnding" : "LF",
"columnDelimiter" : "COMMA"

},
{

"id" : "750R0000000zhjzIAA",
"operation" : "query",
"object" : "Account",
"createdById" : "005R0000000GiwjIAC",
"createdDate" : "2018-12-07T20:52:28.000+0000",
"systemModstamp" : "2018-12-07T20:53:15.000+0000",
"state" : "JobComplete",
"concurrencyMode" : "Parallel",
"contentType" : "CSV",
"apiVersion" : 62.0,
"jobType" : "V2Query",
"lineEnding" : "LF",
"columnDelimiter" : "COMMA"

},
...
],
"nextRecordsUrl" :

"/services/data/v62.0/jobs/ingest?queryLocator=01gR0000000opRTIAY-2000"
}

72

Get Information About All Query JobsBulk API 2.0

Response Parameters

DescriptionParameter

This is true if this is the last (or only) set of results. It is false
if there are more records to fetch. See Example and Rules and
Guidelines.

done

An array of record objects.records

The URI to get the next set of records (if there are any).nextRecordsUrl

This method returns up to 1,000 result rows per request. If there
are more than 1,000 records, use the nextRecordsUrl to
get the next set of records. See Example and Rules and Guidelines.

This parameter is null if there are no more records to fetch.

Record Objects

DescriptionParameter

The unique ID for this job.id

The type of query. Possible values are:operation

• query—Returns data that hasn’t been deleted or archived.
For more information, see query() in SOAP API Developer
Guide.

• queryAll—Returns records that have been deleted
because of a merge or delete, and returns information about
archived Task and Event records. For more information, see
queryAll() in SOAP API Developer Guide.

The object type being queried.object

The ID of the user who created the job.createdById

The UTC date and time when the job was created.createdDate

The UTC date and time when the API last updated the job
information.

systemModstamp

The current state of processing for the job. Possible values are:state

• UploadComplete—The job is ready to be processed
and Salesforce has put the job in the queue.

• InProgress—Salesforce is processing the job.

• Aborted—The job has been aborted. See Abort a Query
Job.

• JobComplete—Salesforce has finished processing the
job.

73

Get Information About All Query JobsBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_query.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_queryall.htm

DescriptionParameter

• Failed—The job failed.

Reserved for future use. How the request is processed. Currently
only parallel mode is supported. (When other modes are added,

concurrencyMode

the API chooses the mode automatically. The mode isn’t user
configurable.)

The format to be used for the results. Currently the only
supported value is CSV (comma-separated variables). Defaults
to CSV.

contentType

Note: The actual separator can be a character other than
a comma. The columnDelimiter parameter specifies
what character to use.

The API version that the job was created in.apiVersion

The line ending used for CSV job data, marking the end of a data
row. The default is LF. Possible values are:

lineEnding

• LF—linefeed character

• CRLF—carriage return character followed by a linefeed
character

The column delimiter used for CSV job data. The default value is
COMMA. Possible values are:

columnDelimiter

• BACKQUOTE—back quote character (`)

• CARET—caret character (^)

• COMMA—comma character (,)

• PIPE—pipe character (|)

• SEMICOLON—semicolon character (;)

• TAB—tab character

Example
This example shows how to use the nextRecordsUrl query parameter.

The first request doesn’t use nextRecordsUrl, because we don’t know what value to use yet.

curl --request GET \
--header "Authorization: Bearer token"
https://instance.salesforce.com/services/data/vXX.X/jobs/query

The response body is:

{
"done": false,
"nextRecordsUrl":

74

Get Information About All Query JobsBulk API 2.0

"/services/data/vXX.X/jobs/ingest?queryLocator=01gRM000000NS1vYAG-1000",
"records": [

{
...

}
]

}

Because there are more records than can be returned in a single response, the value of done in the response isn’t true. We use the
value of nextRecordsUrl,
/services/data/vXX.X/jobs/ingest?queryLocator=01gRM000000NS1vYAG-1000, as the URI to get the next
set of records:

curl --request GET \
--header "Authorization: Bearer token"
https://instance.salesforce.com/services/data/vXX.X/jobs/query?queryLocator=01gRM000000NS1vYAG-1000

Repeat this process until done is true, indicating that there are no more results to fetch.

Rules and Guidelines
To use this URI, follow these rules and guidelines.

1. Use /services/data/vXX.X/jobs/query to get the first set of records.

2. If there are more records than can be listed, the response body has done set to false. Use the value of nextRecordsUrl
to get the next set of records.

3. Repeat this process until done is true. That set is the last set of records.

SEE ALSO:

Bulk API 2.0 Older Documentation

Use Compression for Bulk API 2.0 Query Responses
For query jobs, Bulk API 2.0 can compress the response body, which reduces network traffic and improves response time.

Tip: If encoding is enabled for Bulk API 2.0 Query job responses, there is a significant improvement in performance of query result
downloads. This not the total query time, but a reduction in the time to download the results.

Responses are compressed if the client makes a request using the Accept-Encoding header, with a value of gzip. Bulk API 2.0
compresses the response in gzip format and sends the response to the client with a Content-Encoding: gzip response header.
If a request is made using the Accept-Encoding header with a value other than gzip, the encoding type is ignored, and the
response isn’t compressed.

As an example, if a Get Results for a Query Job request is made with the Accept-Encoding: gzip header, the response looks
something like:

HTTP/1.1 200 OK
Date: Tue, 09 Oct 2012 18:36:45 GMT
Content-Type: text/csv; charset=UTF-8
Content-Encoding: gzip
Transfer-Encoding: chunked

75

Use Compression for Bulk API 2.0 Query ResponsesBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

...compressed response body...

Bulk API 2.0 follows the HTTP 1.1 standards for response compression, as described in Using Compression. Most clients automatically
support compressed responses. Even though you request a compressed response, the REST framework sometimes doesn’t send back
the response in a compressed format. Visit https://developer.salesforce.com/page/Tools for more information on
particular clients.

Troubleshooting Query Timeouts
To troubleshoot timeout errors in Bulk API 2.0 query operations, apply additional filter criteria.

If you use a SOQL query with the ORDER BY clause, and you experience query time outs, then remove the ORDER BY clause before
any subsequent troubleshooting. Use of ORDER BY in a Bulk 2.0 query disables PKChunking for the query. With PKChunking disabled,
the query takes longer to execute, and potentially results in query timeouts.

SEE ALSO:

Salesforce Object Query Language (SOQL) Reference

Errors

Headers

These are custom HTTP request and response headers that are used for Bulk API 2.0.

Sforce Call Options Header

Use the Sforce-Call-Options header to specify client-specific options when accessing Bulk API 2.0 resources.

Warnings Header

Use the Warning header to return warnings, such as the use of a deprecated version of the API.

Content Type Header

Use the Content-Type header to specify the format for your Bulk API 2.0 request. Set the value of this header to match the
contentType of the body of your request.

Line Ending Header

Use the Sforce-Line-Ending header to specify how line endings are formatted.

SEE ALSO:

Bulk API 2.0 Older Documentation

Sforce Call Options Header
Use the Sforce-Call-Options header to specify client-specific options when accessing Bulk API 2.0 resources.

Header Field Name and Values
Field name

Sforce-Call-Options

76

Troubleshooting Query TimeoutsBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.api_rest.meta/api_rest/intro_rest_compression.htm
https://developer.salesforce.com/page/Tools
https://developer.salesforce.com/docs/atlas.en-us.252.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql.htm
https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

Field values

• client—A string that identifies a client, for use, for example, in event log files.

• defaultNamespace—A string that identifies a developer namespace prefix. Resolve field names in managed packages
without having to specify the namespace everywhere.

Example

If the developer namespace prefix is battle, and you have a custom field called botId in a package, set the default namespace
with the call options header:

Sforce-Call-Options: client=CaseSensitiveToken, defaultNamespace=battle

Then queries such as the following succeed:

/services/data/vXX.X/query/?q=SELECT+Id+botID__c+FROM+Account

In this case, the actual field queried is the battle__botId__c field.

Using this header allows you to write client code without having to specify the namespace prefix. In the previous example, without
the header you must write battle__botId__c.

If this field is set, and the query also specifies the namespace, the response doesn’t include the prefix. For example, if you set this
header to battle, and issue a query like SELECT+Id+battle__botID__c+FROM+Account, the response uses a
botId__c element, not a battle_botId__c element.

The defaultNamespace field is ignored when retrieving describe information, which avoids ambiguity between namespace
prefixes and customer fields of the same name.

SEE ALSO:

Bulk API 2.0 Older Documentation

Warnings Header
Use the Warning header to return warnings, such as the use of a deprecated version of the API.

Header Field Name and Values
Field name

Warning

Field values

• warningCode

• warningMessage

For warnings about deprecated API versions, the warningCode is 299.

Example
Warning: 299 - "This API is deprecated and will be removed by Summer '22. Please see
https://help.salesforce.com/articleView?id=000351312 for details."

SEE ALSO:

Bulk API 2.0 Older Documentation

77

Warnings HeaderBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm
https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm

Content Type Header
Use the Content-Type header to specify the format for your Bulk API 2.0 request. Set the value of this header to match the
contentType of the body of your request.

Header Field Name and Values
Field name

Content-Type

Field values

• text/csv

• application/json

• application/xml

Example
Content-Type: application/json

Line Ending Header
Use the Sforce-Line-Ending header to specify how line endings are formatted.

When you create a Bulk API 2.0 job, specify a line ending that matches the line ending used to create the CSV file using the lineEnding
request field. Bulk API 2.0 supports two line-ending formats:

• LF linefeed

• CRLF carriage-return plus linefeed

The default line ending, if not specified, is LF. Different operating systems use different characters to mark the end of a line.

Unix / Linux / OS X uses LF (line feed, '\n', 0x0A).

Windows / DOS uses CRLF (carriage return followed by line feed, '\r\n', 0x0D0A).

For example,

{
"object" : "Account",
"contentType" : "CSV",
"operation" : "insert",
"lineEnding" : "LF"

}

Note that it’s possible that the text editor used to create the CSV file is configured for a specific line-ending format and might supersede
the default operating system format.

Limits

Learn about the importance of limits, and compare the limits and allocations of Bulk API 2.0 and Bulk API. For Bulk API 2.0, we simplified
limits, which are available to clients via the REST API /limits endpoint.

78

Content Type HeaderBulk API 2.0

Considering Limits
Limits are in place to ensure optimal performance for all customers and to provide fair access to system resources. Each org is only able
to handle a certain number of API requests within a 24-hour period. Budget your overall API consumption to account for what each
integration does against the org.

Questions that might help to plan for limits:

• How many other integrations are making API requests into your org?

• How close does your org come to reaching its entitled request limit each day?

• How many API requests per day would be required in order to address your use cases and data volume?

• Of the APIs that could do the job you’re planning, what are their limits characteristics?

So consider both what your new implementation is attempting to do as well as what existing integrations are doing to make sure your
workloads won’t be interrupted.

Most limits for Bulk API 2.0, such as

• Batch allocations

• General limits

• Ingest limits

• Query limits

are described in Bulk API and Bulk API 2.0 Limits and Allocations. Additional limits specific to Bulk API 2.0 are called out in this topic.

Per-Transaction Apex Limits
For Bulk API and Bulk API 2.0 transactions, the effective limit is the higher of the synchronous and asynchronous limits. Limits are detailed
in Per-Transaction Apex Limits in Apex Developer Guide. For example, the maximum number of Bulk Apex jobs added to the queue with
System.enqueueJob is the synchronous limit (50), which is higher than the asynchronous limit (1).

Maximum CPU Time Limit

Bulk API and Bulk API 2.0 processes consume a unique governor limit for CPU time on Salesforce Servers, isolated from the generic
per-transaction Apex limit for maximum CPU time.

ValueDescription

60,000 millisecondsMaximum CPU time on the Salesforce servers for Bulk API and Bulk
API 2.0

SEE ALSO:

Bulk API 2.0 Older Documentation

Bulk API 2.0 Older Documentation

Find versions of the Bulk API 2.0 documentation released prior to Summer ’21 (API version 52.0).

LocationDocument

https://resources.docs.salesforce.com/230/latest/en-us/sfdc/pdf/api_bulk_v2.pdfSpring ’21 (API version 51.0)

79

Bulk API 2.0 Older DocumentationBulk API 2.0

https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.apexcode.meta/apexcode/apex_gov_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.api_bulk_v2.meta/api_bulk_v2/introduction_bulk_api_2.htm
https://resources.docs.salesforce.com/230/latest/en-us/sfdc/pdf/api_bulk_v2.pdf

LocationDocument

https://resources.docs.salesforce.com/228/latest/en-us/sfdc/pdf/api_bulk_v2.pdfWinter ’21 (API version 50.0)

https://resources.docs.salesforce.com/226/latest/en-us/sfdc/pdf/api_bulk_v2.pdfSummer ’20 (API version 49.0)

https://resources.docs.salesforce.com/224/latest/en-us/sfdc/pdf/api_bulk_v2.pdfSpring ’20 (API version 48.0)

https://resources.docs.salesforce.com/222/latest/en-us/sfdc/pdf/api_bulk_v2.pdfWinter ’20 (API version 47.0)

https://resources.docs.salesforce.com/220/latest/en-us/sfdc/pdf/api_bulk_v2.pdfSummer ’19 (API version 46.0)

https://resources.docs.salesforce.com/218/latest/en-us/sfdc/pdf/api_bulk_v2.pdfSpring ’19 (API version 45.0)

https://resources.docs.salesforce.com/216/latest/en-us/sfdc/pdf/api_bulk_v2.pdfWinter ’19 (API version 44.0)

https://resources.docs.salesforce.com/214/latest/en-us/sfdc/pdf/api_bulk_v2.pdfSummer ’18 (API version 43.0)

https://resources.docs.salesforce.com/212/latest/en-us/sfdc/pdf/api_bulk_v2.pdfSpring ’18 (API version 42.0)

https://resources.docs.salesforce.com/210/latest/en-us/sfdc/pdf/api_bulk_v2.pdfWinter ’18 (API version 41.0)

Bulk API 2.0 End-of-Life Policy

See which Bulk API 2.0 versions are supported, unsupported, or unavailable.

Salesforce is committed to supporting each API version for a minimum of 3 years from the date of first release. To improve the quality
and performance of the API, versions that are over 3 years old sometimes are no longer supported.

Salesforce notifies customers who use an API version scheduled for deprecation at least 1 year before support for the version ends.

Version Retirement InfoVersion Support StatusSalesforce API Versions

Supported.Versions 31.0 through 62.0

Salesforce Platform API Versions 21.0 through 30.0
Retirement

As of Summer ’22, these versions have been
deprecated and no longer supported by
Salesforce.

Starting Summer ’25, these versions will be
retired and unavailable.

Versions 21.0 through 30.0

Salesforce Platform API Versions 7.0 through 20.0
Retirement

As of Summer ’22, these versions are retired
and unavailable.

Versions 7.0 through 20.0

If you request any resource or use an operation from a retired API version, REST API returns the 410:GONE error code.

To identify requests made from old or unsupported API versions, use the API Total Usage event type.

80

Bulk API 2.0 End-of-Life PolicyBulk API 2.0

https://resources.docs.salesforce.com/228/latest/en-us/sfdc/pdf/api_bulk_v2.pdf
https://resources.docs.salesforce.com/226/latest/en-us/sfdc/pdf/api_bulk_v2.pdf
https://resources.docs.salesforce.com/224/latest/en-us/sfdc/pdf/api_bulk_v2.pdf
https://resources.docs.salesforce.com/222/latest/en-us/sfdc/pdf/api_bulk_v2.pdf
https://resources.docs.salesforce.com/220/latest/en-us/sfdc/pdf/api_bulk_v2.pdf
https://resources.docs.salesforce.com/218/latest/en-us/sfdc/pdf/api_bulk_v2.pdf
https://resources.docs.salesforce.com/216/latest/en-us/sfdc/pdf/api_bulk_v2.pdf
https://resources.docs.salesforce.com/214/latest/en-us/sfdc/pdf/api_bulk_v2.pdf
https://resources.docs.salesforce.com/212/latest/en-us/sfdc/pdf/api_bulk_v2.pdf
https://resources.docs.salesforce.com/210/latest/en-us/sfdc/pdf/api_bulk_v2.pdf
https://help.salesforce.com/s/articleView?id=000389618&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000389618&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000380623&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000380623&type=1&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.252.0.object_reference.meta/object_reference/sforce_api_objects_eventlogfile_apitotalusage.htm

CHAPTER 3 Bulk API

Bulk API is the predecessor to the current Bulk API 2.0. Although Bulk API gives you more fine-grained
control over the specifics of jobs and batches, its work-flow is more complex than Bulk API 2.0. If the
feature set and limits are a unique match to your project requirements, use Bulk API.

In this chapter ...

• How Bulk API Works

• Quick Start: Bulk API

• Bulk API Ingest

• Bulk API Query

• Headers

• Limits

• Bulk API Reference

• Sample Client
Application Using
Java

• Map Data Fields

• Bulk API End-of-Life
Policy

81

How Bulk API Works

You process a set of records by creating a job that contains one or more batches.

The job specifies which object is being processed and what type of operation is being used. A batch is a set of records sent to the server
in an HTTP POST request. Each batch is processed independently by the server, not necessarily in the order it’s received. Batches can be
processed in parallel. It's up to the client to decide how to divide the entire data set into a suitable number of batches.

A job is represented by the JobInfo resource. This resource is used to create a new job, get status for an existing job, and change status
for a job. A batch is created by submitting a CSV, XML, or JSON representation of a set of records and any references to binary attachments
in an HTTP POST request. When created, the status of a batch is represented by a BatchInfo resource. When a batch is complete, the
result for each record is available in a result set resource.

Processing data typically consists of these steps.

1. Create a new job that specifies the object and action.

2. Send data to the server in a number of batches.

3. After all data has been submitted, close the job. When closed, no more batches can be sent as part of the job.

4. Check status of all batches at a reasonable interval. Each status check returns the state of each batch.

5. When all batches have completed or failed, retrieve the result for each batch.

6. Match the result sets with the original data set to determine which records failed and succeeded, and take appropriate action.

You can abort the job at any point in this process. Aborting a job has the effect of preventing any unprocessed batches from being
processed. It doesn't undo the effects of batches already processed.

Quick Start: Bulk API

You process a set of records by creating a job that contains one or more batches. The job specifies which object is being processed and
what type of operation is being used. Ingest jobs are defined by CSV, XML, JSON, or binary attachments. Query jobs are defined by a
SOQL statement.

A job is represented by the JobInfo resource. This resource is used to create a new job, get status for an existing job, and change status
for a job.

For information about Bulk API job and batch lifespan, batch allocations, and other limits, see Bulk API and Bulk API 2.0 Limits and
Allocations in the Salesforce Developer Limits and Allocations Quick Reference.

Note: Salesforce provides an additional API, Bulk API 2.0, which uses the REST API framework to provide similar capabilities to
Bulk API. Bulk API 2.0 simplifies the job creation and monitoring process. For more information on Bulk API 2.0, see the Bulk API
2.0 Developer Guide.

1. Step One: Create a Job

Create a job by sending a POST request to this URI. The request body identifies the type of object processed in all associated batches.

2. Step Two: Monitor a Job

You can monitor a Bulk API job in Salesforce. The monitoring page tracks jobs and batches created by any client application, including
Data Loader or any client application that you write.

3. Step Three: Close a Job

Close a job by sending a POST request to this URI. The request URI identifies the job to close. When a job is closed, no more batches
can be added.

82

How Bulk API WorksBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.api_asynch.meta/api_bulk_v2
https://developer.salesforce.com/docs/atlas.en-us.252.0.api_asynch.meta/api_bulk_v2

4. Step Four: Get Job Details

Get all details for an existing job by sending a GET request to this URI.

5. Step Five: Abort a Job

Abort an existing job by sending a POST request to this URI. The request URI identifies the job to abort. When a job is aborted, no
more records are processed. If changes to data have been committed, they aren’t rolled back.

Step One: Create a Job
Create a job by sending a POST request to this URI. The request body identifies the type of object processed in all associated batches.

URI
/services/async/APIversion/job

Example XML request body

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<operation>insert</operation>
<object>Account</object>
<contentType>CSV</contentType>
</jobInfo>

Example XML response body

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>750D00000004SkLIAU</id>
<operation>insert</operation>
<object>Account</object>
<createdById>005D0000001b0fFIAQ</createdById>
<createdDate>2015-12-15T21:41:45.000Z</createdDate>
<systemModstamp>2015-12-15T21:41:45.000Z</systemModstamp>
<state>Open</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>CSV</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>
<numberBatchesCompleted>0</numberBatchesCompleted>
<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>0</numberBatchesTotal>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRetries>0</numberRetries>
<apiVersion>36.0</apiVersion>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</jobInfo>

Example JSON request body

{
"operation" : "insert",

83

Step One: Create a JobBulk API

"object" : "Account",
"contentType" : "CSV"

}

Example JSON response body

{
"apexProcessingTime" : 0,
"apiActiveProcessingTime" : 0,
"apiVersion" : 36.0,
"concurrencyMode" : "Parallel",
"contentType" : "JSON",
"createdById" : "005D0000001b0fFIAQ",
"createdDate" : "2015-12-15T20:45:25.000+0000",
"id" : "750D00000004SkGIAU",
"numberBatchesCompleted" : 0,
"numberBatchesFailed" : 0,
"numberBatchesInProgress" : 0,
"numberBatchesQueued" : 0,
"numberBatchesTotal" : 0,
"numberRecordsFailed" : 0,
"numberRecordsProcessed" : 0,
"numberRetries" : 0,
"object" : "Account",
"operation" : "insert",
"state" : "Open",
"systemModstamp" : "2015-12-15T20:45:25.000+0000",
"totalProcessingTime" : 0

}

In these samples, the contentType field indicates that the batches associated with the job are in CSV format. For alternative options,
such as XML or JSON, see JobInfo.

Warning: The operation value must match that shown in JobInfo. For example, you get an error if you use INSERT instead of
insert.

SEE ALSO:

Create a Job for Batches with Binary Attachments

Step Four: Get Job Details

Step Three: Close a Job

Step Five: Abort a Job

Add a Batch to a Job

Limits

About URIs

JobInfo

Quick Start: Bulk API 2.0

84

Step One: Create a JobBulk API

Step Two: Monitor a Job
You can monitor a Bulk API job in Salesforce. The monitoring page tracks jobs and batches created by any client application, including
Data Loader or any client application that you write.

To track the status of bulk data load jobs that are in progress or recently completed, enter Bulk Data Load Jobs in the Quick
Find box, then select Bulk Data Load Jobs. This page allows you to monitor the progress of current jobs and the results of recent
jobs.

For more information, see Manage Bulk Data Load Jobs in the Salesforce online help.

SEE ALSO:

Step One: Create a Job

Step Four: Get Job Details

Step Three: Close a Job

Step Five: Abort a Job

Add a Batch to a Job

Limits

Data Loader Guide

Step Three: Close a Job
Close a job by sending a POST request to this URI. The request URI identifies the job to close. When a job is closed, no more batches can
be added.

URI
/services/async/APIversion/job/jobId

Example XML request body

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<state>Closed</state>
</jobInfo>

Example XML response body

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>750D0000000002lIAA</id>
<operation>insert</operation>
<object>Account</object>
<createdById>005D0000001ALVFIA4</createdById>
<createdDate>2009-04-14T18:15:59.000Z</createdDate>
<systemModstamp>2009-04-14T18:15:59.000Z</systemModstamp>
<state>Closed</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>XML</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>
<numberBatchesCompleted>1</numberBatchesCompleted>

85

Step Two: Monitor a JobBulk API

https://help.salesforce.com/s/articleView?id=sf.monitoring_async_api_jobs_overview.htm&type=5&language=en_US
https://resources.docs.salesforce.com/252/latest/en-us/sfdc/pdf/salesforce_data_loader.pdf

<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>1</numberBatchesTotal>
<numberRecordsProcessed>2</numberRecordsProcessed>
<numberRetries>0</numberRetries>
<apiVersion>36.0</apiVersion>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>3647</totalProcessingTime>
<apiActiveProcessingTime>2136</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</jobInfo>

Example JSON request body

{
"state" : "Closed"

}

Example JSON response body

{
"apexProcessingTime" : 0,
"apiActiveProcessingTime" : 5059,
"apiVersion" : 36.0,
"concurrencyMode" : "Parallel",
"contentType" : "JSON",
"createdById" : "005xx000001SyhGAAS",
"createdDate" : "2015-11-19T01:45:03.000+0000",
"id" : "750xx000000000GAAQ",
"numberBatchesCompleted" : 10,
"numberBatchesFailed" : 0,
"numberBatchesInProgress" : 0,
"numberBatchesQueued" : 0,
"numberBatchesTotal" : 10,
"numberRecordsFailed" : 0,
"numberRecordsProcessed" : 100,
"numberRetries" : 0,
"object" : "Account",
"operation" : "insert",
"state" : "Closed",
"systemModstamp" : "2015-11-19T01:45:03.000+0000",
"totalProcessingTime" : 5759

}

SEE ALSO:

Step One: Create a Job

Step Two: Monitor a Job

Step Four: Get Job Details

Step Five: Abort a Job

Limits

About URIs

JobInfo

Quick Start: Bulk API 2.0

86

Step Three: Close a JobBulk API

Step Four: Get Job Details
Get all details for an existing job by sending a GET request to this URI.

URI
/services/async/APIversion/job/jobId

Example request body
No request body is allowed.

Example XML response body

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>750D00000004SkLIAU</id>
<operation>insert</operation>
<object>Account</object>
<createdById>005D0000001b0fFIAQ</createdById>
<createdDate>2015-12-15T21:41:45.000Z</createdDate>
<systemModstamp>2015-12-15T21:41:45.000Z</systemModstamp>
<state>Open</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>CSV</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>
<numberBatchesCompleted>0</numberBatchesCompleted>
<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>0</numberBatchesTotal>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRetries>0</numberRetries>
<apiVersion>36.0</apiVersion>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</jobInfo>

Example JSON response body

{
"apexProcessingTime" : 0,
"apiActiveProcessingTime" : 0,
"apiVersion" : 36.0,
"concurrencyMode" : "Parallel",
"contentType" : "JSON",
"createdById" : "005D0000001b0fFIAQ",
"createdDate" : "2015-12-15T20:45:25.000+0000",
"id" : "750D00000004SkGIAU",
"numberBatchesCompleted" : 0,
"numberBatchesFailed" : 0,
"numberBatchesInProgress" : 0,
"numberBatchesQueued" : 0,
"numberBatchesTotal" : 0,
"numberRecordsFailed" : 0,
"numberRecordsProcessed" : 0,

87

Step Four: Get Job DetailsBulk API

"numberRetries" : 0,
"object" : "Account",
"operation" : "insert",
"state" : "Open",
"systemModstamp" : "2015-12-15T20:45:25.000+0000",
"totalProcessingTime" : 0

}

SEE ALSO:

Step One: Create a Job

Step Two: Monitor a Job

Step Three: Close a Job

Step Five: Abort a Job

Add a Batch to a Job

Limits

About URIs

JobInfo

Quick Start: Bulk API 2.0

Step Five: Abort a Job
Abort an existing job by sending a POST request to this URI. The request URI identifies the job to abort. When a job is aborted, no more
records are processed. If changes to data have been committed, they aren’t rolled back.

URI
/services/async/APIversion/job/jobId

Example XML request body

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<state>Aborted</state>
</jobInfo>

Example XML response body

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>750D0000000002lIAA</id>
<operation>insert</operation>
<object>Account</object>
<createdById>005D0000001ALVFIA4</createdById>
<createdDate>2009-04-14T18:15:59.000Z</createdDate>
<systemModstamp>2009-04-14T18:16:00.000Z</systemModstamp>
<state>Aborted</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>XML</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>

88

Step Five: Abort a JobBulk API

<numberBatchesCompleted>1</numberBatchesCompleted>
<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>1</numberBatchesTotal>
<numberRecordsProcessed>2</numberRecordsProcessed>
<numberRetries>0</numberRetries>
<apiVersion>36.0</apiVersion>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>3647</totalProcessingTime>
<apiActiveProcessingTime>2136</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</jobInfo>

Example JSON request body

{
"state" : "Aborted"

}

Example JSON response body

{
"apexProcessingTime" : 0,
"apiActiveProcessingTime" : 2166,
"apiVersion" : 36.0,
"concurrencyMode" : "Parallel",
"contentType" : "JSON",
"createdById" : "005D0000001b0fFIAQ",
"createdDate" : "2015-12-15T21:54:29.000+0000",
"id" : "750D00000004SkVIAU",
"numberBatchesCompleted" : 2,
"numberBatchesFailed" : 0,
"numberBatchesInProgress" : 0,
"numberBatchesQueued" : 0,
"numberBatchesTotal" : 2,
"numberRecordsFailed" : 0,
"numberRecordsProcessed" : 2,
"numberRetries" : 0,
"object" : "Account",
"operation" : "insert",
"state" : "Aborted",
"systemModstamp" : "2015-12-15T21:54:29.000+0000",
"totalProcessingTime" : 2870

}

SEE ALSO:

Step Four: Get Job Details

Step One: Create a Job

Step Two: Monitor a Job

Step Three: Close a Job

Limits

About URIs

JobInfo

89

Step Five: Abort a JobBulk API

Bulk API Ingest

With Bulk API, you can insert, update, or upsert large data sets into your Salesforce org. Prepare a CSV, XML, or JSON file representation
of the data you want to upload, create a job, upload job data, and let Salesforce take care of the rest.

Bulk API ingest limits are described in Bulk API and Bulk API 2.0 Limits and Allocations in the Salesforce Developer Limits and Allocations
Quick Reference

Plan Bulk Data Loads

Bulk API performance depends on the type of data that you're loading, as well as any workflow rules and triggers associated with
the objects in your batches. It's useful to understand the factors that determine optimal loading time.

Install cURL

The Bulk API uses HTTP GET and HTTP POST methods to send and receive CSV, XML, and JSON content, so it’s simple to build client
applications using the tool or the language of your choice. This quick start uses a command-line tool called cURL to simplify sending
and receiving HTTP requests and responses.

Walkthrough Sending HTTP Requests with cURL

With cURL now configured, you can start sending HTTP requests to the Bulk API.

Prepare Data Files

The Bulk API processes records in comma-separated values (CSV) files, XML files, or JSON files.

Load Binary Attachments

The Bulk API can load binary attachments, which can be Attachment objects or Salesforce CRM Content.

Request Basics

Here are some Bulk API request basics, including the format of URIs used to perform operations and details on how to authenticate
requests using a session header.

Work with Batches

A batch is a set of records sent to the server in an HTTP POST request. Each batch is processed independently by the server, not
necessarily in the order it’s received.

Plan Bulk Data Loads
Bulk API performance depends on the type of data that you're loading, as well as any workflow rules and triggers associated with the
objects in your batches. It's useful to understand the factors that determine optimal loading time.

General Guidelines for Data Loads

For optimal processing time, consider these tips when planning your data loads. Always test your data loads in a sandbox organization
first. Processing times can be different in a production organization.

Use Compression for Responses

In API version 27.0 and later, Bulk API can compress response data which reduces network traffic and improves response time.

General Guidelines for Data Loads
For optimal processing time, consider these tips when planning your data loads. Always test your data loads in a sandbox organization
first. Processing times can be different in a production organization.

90

Bulk API IngestBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm

Use Parallel Concurrency Mode Whenever Possible
Salesforce Bulk API's concurrency modes determine how many batches of data can be processed simultaneously, and how the
batches are processed. All batches in a Bulk API job are processed in either parallel or serial concurrency mode.

In parallel mode, the default mode, batches are processed in parallel with other batches from the same job and batches from other
parallel mode jobs. To load data faster, process batches in parallel mode. Parallel processing, though, has the potential to cause lock
contention on records. Any failed records must be resubmitted.

In serial mode, batches are processed serially with other batches from the same job and batches from other serial mode jobs, and
each batch must complete before the next batch starts processing. Because batches are processed one at a time, the possibility of
lock contention conditions are minimized. The cost of using serial mode is an increase in processing time.

A serial batch is processed simultaneously in parallel with batches from jobs submitted with parallel mode. However, in this case, a
small chance of record locking occurs.

You set the value for concurrencyMode at the job level using the JobInfo resource.

In summary, the choice of concurrency mode depends on the specific needs of the use case. Avoid processing data in serial mode
unless you know that parallel mode would otherwise result in lock timeouts and you can't reorganize your batches to avoid locks.
Any failed records must be resubmitted.

Organize Batches to Minimize Lock Contention
For example, when an AccountTeamMember record is created or updated, the account for this record is locked during the transaction.
If you load many batches of AccountTeamMember records and they all contain references to the same account, they all try to lock
the same account and it's likely that you experience a lock timeout. Sometimes, lock timeouts can be avoided by organizing data in
batches. If you organize AccountTeamMember records by AccountId so that all records referencing the same account are in a
single batch, you minimize the risk of lock contention by multiple batches.

The Bulk API doesn't generate an error immediately when encountering a lock. It waits a few seconds for its release and, if it doesn't
happen, the record is marked as failed. If there are problems acquiring locks for more than 100 records in a batch, the Bulk API places
the remainder of the batch back in the queue for later processing. When the Bulk API processes the batch again later, records marked
as failed aren’t retried. To process these records, you must submit them again in a separate batch.

If the Bulk API continues to encounter problems processing a batch, it's placed back in the queue and reprocessed up to 10 times
before the batch is permanently marked as failed. Even if the batch failed, some records could have completed successfully. If errors
persist, create a separate job to process the data in serial mode, which ensures that only one batch is processed at a time.

Be Aware of Operations that Increase Lock Contention
These operations are likely to cause lock contention and necessitate using serial mode:

• Creating users

• Updating ownership for records with private sharing

• Updating user roles

• Updating territory hierarchies

If you encounter errors related to these operations, create a separate job to process the data in serial concurrency mode. You set the
concurrencyMode at the job level using the JobInfo resource.

Note: Because your data model is unique to your organization, Salesforce can't predict exactly when you might see lock
contention problems.

Minimize Number of Fields
Processing time is faster if there are fewer fields loaded for each record. Foreign key, lookup relationship, and roll-up summary fields
are more likely to increase processing time. It's not always possible to reduce the number of fields in your records, but if it is, loading
times improve.

91

Plan Bulk Data LoadsBulk API

Minimize Number of Workflow Actions
Workflow actions increase processing time.

Minimize Number of Triggers
You can use parallel mode with objects that have associated triggers if the triggers don't cause side-effects that interfere with other
parallel transactions. However, Salesforce doesn't recommend loading large batches for objects with complex triggers. Instead,
rewrite the trigger logic as a batch Apex job that is executed after all the data has loaded.

Optimize Batch Size
Start with the maximum batch size of 10,000 records. Salesforce processes each batch asynchronously.

Adjust batch sizes based on processing times. If processing a batch takes too long, then the batch times out and an error is returned.
If that happens, reduce the batch size and resubmit. Likewise, if a job only takes a few seconds, increase up the batch size toward
the maximum size. Avoid using smaller batches as this increases the total number of batches, and therefore, increases the risk of
hitting your daily batch limit. For more information, see Limits on page 148.

Note: For Bulk queries, the batch size isn’t applied to the query result set or the retrieved data size. If your bulk query takes
too long to process, filter your query statement to return less data.

For information on monitoring batch processing, see Monitor a Batch on page 116.

Minimize Number of Batches in the Asynchronous Queue
Salesforce uses a queue-based framework to handle asynchronous processes from such sources as future and batch Apex, and Bulk
API batches. This queue is used to balance request workload across organizations. If more than 2,000 unprocessed requests from a
single organization are in the queue, any more requests from the same organization will be delayed while the queue handles requests
from other organizations. Minimize the number of batches submitted at one time to ensure that your batches aren’t delayed in the
queue.

Use Compression for Responses
In API version 27.0 and later, Bulk API can compress response data which reduces network traffic and improves response time.

Responses are compressed if the client makes a request using the Accept-Encoding header, with a value of gzip. Bulk API
compresses the response in gzip format and sends the response to the client with a Content-Encoding: gzip response header.
If a request is made using the Accept-Encoding header with a value other than gzip, the encoding type is ignored, and the
response is not compressed.

As an example, if a Batch Results request is made with the Accept-Encoding: gzip header, the response looks something like:

HTTP/1.1 200 OK
Date: Tue, 09 Oct 2012 18:36:45 GMT
Content-Type: text/csv; charset=UTF-8
Content-Encoding: gzip
Transfer-Encoding: chunked

...compressed response body...

Bulk API follows the HTTP 1.1 standards for response compression. Most clients automatically support compressed responses. Visit
https://developer.salesforce.com/page/Tools for more information on particular clients.

Install cURL
The Bulk API uses HTTP GET and HTTP POST methods to send and receive CSV, XML, and JSON content, so it’s simple to build client
applications using the tool or the language of your choice. This quick start uses a command-line tool called cURL to simplify sending
and receiving HTTP requests and responses.

92

Install cURLBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.apexcode.meta/apexcode/apex_batch.htm
https://developer.salesforce.com/page/Tools

cURL is pre-installed on many Linux, Mac, and Windows systems. If cURL isn’t pre-installed on Windows, users can download a version
at curl.haxx.se/. When using HTTPS on Windows, ensure that your system meets the cURL requirements for SSL.

Note: cURL is an open-source tool and isn’t supported by Salesforce.

Escaping the Session ID or Using Single Quotes on Mac and Linux Systems
When running the cURL examples, you can get an error on Mac and Linux systems due to the presence of the exclamation mark
special character in the session ID argument. To avoid getting this error, use one of these solutions:

• Escape the exclamation mark (!) special character in the session ID by inserting a backslash before it (\!) when the session ID is
enclosed within double quotes. For example, the session ID string in this cURL command has the exclamation mark (!) escaped:

curl https://MyDomainName.my.salesforce.com/services/async/62.0/job
-H "X-SFDC-Session:
00D50000000IehZ\!AQcAQH0dMHZfz972Szmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1E6
LYUfiDUkWe6H34r1AAwOR8B8fLEz6n04NPGRrq0FM"

• Enclose the session ID within single quotes. For example:

curl https://MyDomainName.my.salesforce.com/services/async/62.0/job
-H 'X-SFDC-Session: sessionID'

Walkthrough Sending HTTP Requests with cURL
With cURL now configured, you can start sending HTTP requests to the Bulk API.

You send HTTP requests to a URI to perform operations with Bulk API.The URI where you send HTTP requests has this format:

https://Web_Services_SOAP_endpoint_hostame/services/async/APIversion/Resource_address

The part after the API version (Resource_address) varies depending on the job or batch being processed.

The easiest way to start using the Bulk API is to enable it for processing records in Data Loader using CSV files. If you use Data Loader,
you don't need to craft your own HTTP requests or write your own client application. For an example of writing a client application using
Java, see Sample Client Application Using Java on page 158.

Step 1: Log In Using the SOAP API

The Bulk API doesn't provide a login operation, so you must use SOAP API to log in.

Step 2: Create a Job

Before you can load data, you first create a job. The job specifies the type of object, such as Contact, that you’re loading and the
operation that you’re performing, such as query, queryAll, insert, update, upsert, or delete. A job also grants you some control over
the data load process. For example, you can abort a job that is in progress.

Step 3: Add a Batch to the Job

After creating the job, you’re ready to create a batch of contact records. You send data in batches in separate HTTP POST requests.
The URI for each request is similar to the one you used when creating the job, but you append jobId/batch to the URI.

Step 4: Close the Job

When you're finished submitting batches to Salesforce, close the job. Closing the job tells Salesforce that you're done submitting
batches for the job, which allows the monitoring page in Salesforce to return more meaningful statistics on the progress of the job.

Step 5: Check Batch Status

You can check the status of an individual batch by running this cURL command.

93

Walkthrough Sending HTTP Requests with cURLBulk API

http://curl.haxx.se/

Step 6: Retrieve Batch Results

When a batch is Completed, you must retrieve the batch result to see the status of individual records.

SEE ALSO:

About URIs

Data Loader Guide

Step 1: Log In Using the SOAP API
The Bulk API doesn't provide a login operation, so you must use SOAP API to log in.

To establish a session, you need to use SOAP API’s login() function as described in the SOAP API Developer Guide:

• Step 4: Walk Through the Sample Code.

• login().

The login() function returns an XML response that includes <sessionId> and <serverUrl> elements. Note the values of
the <sessionId> element and the first part of the host name (instance), such as yourInstance-api, from the <serverUrl>
element. Use these values in subsequent requests to the Bulk API.

SEE ALSO:

Set a Session Header

SOAP API Developer Guide

Step 2: Create a Job
Before you can load data, you first create a job. The job specifies the type of object, such as Contact, that you’re loading and the operation
that you’re performing, such as query, queryAll, insert, update, upsert, or delete. A job also grants you some control over the data load
process. For example, you can abort a job that is in progress.

1. Create a text file called job.txt containing this text:

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">

<operation>insert</operation>
<object>Contact</object>
<contentType>CSV</contentType>

</jobInfo>

Warning: The operation value must match that shown here. For example, you get an error if you use INSERT instead of
insert.

2. Using a command-line window, execute the following cURL command:

curl https://instance.salesforce.com/services/async/62.0/job -H "X-SFDC-Session:
sessionId" -H "Content-Type: application/xml; charset=UTF-8" -d @job.txt

instance is the portion of the <serverUrl> element and sessionId is the <sessionId> element that you noted
in the login response.

Note: When running cURL examples, you can get an error on Mac and Linux systems due to the presence of the exclamation
mark special character in the session ID argument. To avoid getting this error, either escape the exclamation mark by inserting
a backslash before it (\!) or enclose the session ID within single quotes.

94

Walkthrough Sending HTTP Requests with cURLBulk API

https://resources.docs.salesforce.com/252/latest/en-us/sfdc/pdf/salesforce_data_loader.pdf
https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_quickstart_steps_walk_through_code.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_login.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/

Salesforce returns an XML response with data such as this:

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>750x0000000005LAAQ</id>
<operation>insert</operation>
<object>Contact</object>
<createdById>005x0000000wPWdAAM</createdById>
<createdDate>2009-09-01T16:42:46.000Z</createdDate>
<systemModstamp>2009-09-01T16:42:46.000Z</systemModstamp>
<state>Open</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>CSV</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>
<numberBatchesCompleted>0</numberBatchesCompleted>
<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>0</numberBatchesTotal>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRetries>0</numberRetries>
<apiVersion>62.0</apiVersion>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</jobInfo>

3. Note the value of the job ID returned in the <id> element. Use this ID in subsequent operations.

SEE ALSO:

Step One: Create a Job

Step 3: Add a Batch to the Job
After creating the job, you’re ready to create a batch of contact records. You send data in batches in separate HTTP POST requests. The
URI for each request is similar to the one you used when creating the job, but you append jobId/batch to the URI.

Format the data as CSV, XML, or JSON if you’re not including binary attachments. For information about binary attachments, see Load
Binary Attachments. For information about batch size limitations, see Bulk API and Bulk API 2.0 Limits and Allocations.

This example shows CSV as this is the recommended format. It's your responsibility to divide up your data set in batches that fit within
the limits. In this example, we keep it very simple with just a few records.

To add a batch to a job:

1. Create a CSV file named data.csv with these two records.

FirstName,LastName,Department,Birthdate,Description
Tom,Jones,Marketing,1940-06-07Z,"Self-described as ""the top"" branding guru on the West
Coast"
Ian,Dury,R&D,,"World-renowned expert in fuzzy logic design.
Influential in technology purchases."

The value for the Description field in the last row spans multiple lines, so it’s wrapped in double quotes.

95

Walkthrough Sending HTTP Requests with cURLBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.api_asynch.meta/api_asynch/binary_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.api_asynch.meta/api_asynch/binary_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm

2. Using a command-line window, execute this cURL command.

curl https://instance.salesforce.com/services/async/62.0/job/jobId/batch -H
"X-SFDC-Session: sessionId" -H "Content-Type: text/csv; charset=UTF-8" --data-binary
@data.csv

instance is the portion of the <serverUrl> element and sessionId is the <sessionId> element that you noted
in the login response. jobId is the job ID that was returned when you created the job.

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<batchInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>751x00000000079AAA</id>
<jobId>750x0000000005LAAQ</jobId>
<state>Queued</state>
<createdDate>2009-09-01T17:44:45.000Z</createdDate>
<systemModstamp>2009-09-01T17:44:45.000Z</systemModstamp>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</batchInfo>

Salesforce doesn’t parse the CSV content or otherwise validate the batch until later. The response only acknowledges that the batch
was received.

3. Note the value of the batch ID returned in the <id> element. You can use this batch ID later to check the status of the batch.

SEE ALSO:

Prepare CSV Files

Add a Batch to a Job

Limits

Step 4: Close the Job
When you're finished submitting batches to Salesforce, close the job. Closing the job tells Salesforce that you're done submitting batches
for the job, which allows the monitoring page in Salesforce to return more meaningful statistics on the progress of the job.

1. Create a text file called close_job.txt containing the following text:

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<state>Closed</state>

</jobInfo>

2. Using a command-line window, execute the following cURL command:

curl https://instance.salesforce.com/services/async/62.0/job/jobId -H "X-SFDC-Session:
sessionId" -H "Content-Type: application/xml; charset=UTF-8" -d @close_job.txt

instance is the portion of the <serverUrl> element and sessionId is the <sessionId> element that you noted
in the login response. jobId is the job ID that was returned when you created the job.

96

Walkthrough Sending HTTP Requests with cURLBulk API

This cURL command updates the job resource state from Open to Closed.

SEE ALSO:

Step Three: Close a Job

Step 5: Check Batch Status
You can check the status of an individual batch by running this cURL command.

curl https://instance.salesforce.com/services/async/62.0/job/jobId/batch/batchId -H
"X-SFDC-Session: sessionId"

instance is the portion of the <serverUrl> element and sessionId is the <sessionId> element that you noted in the
login response. jobId is the job ID that was returned when you created the job. batchId is the batch ID that was returned when
you added a batch to the job.

Salesforce returns an XML response with data such as this:

<?xml version="1.0" encoding="UTF-8"?>
<batchInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>751x00000000079AAA</id>
<jobId>750x0000000005LAAQ</jobId>
<state>Completed</state>
<createdDate>2009-09-01T17:44:45.000Z</createdDate>
<systemModstamp>2009-09-01T17:44:45.000Z</systemModstamp>
<numberRecordsProcessed>2</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>5820</totalProcessingTime>
<apiActiveProcessingTime>2166</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</batchInfo>

If Salesforce can’t read the batch content or if the batch contains errors, such as invalid field names in the CSV header row, the batch
state is Failed. When the batch state is Completed, all records in the batch have been processed. However, individual records
could have failed. To see the status of individual records, retrieve the batch result.

Checking the status of each individual batch isn't necessary. You can check the status for all batches that are part of the job by running
this cURL command:

curl https://instance.salesforce.com/services/async/62.0/job/jobId/batch -H
"X-SFDC-Session: sessionId"

SEE ALSO:

Get Information for a Batch

Get Information for All Batches in a Job

Interpret Batch State

Step 6: Retrieve Batch Results
When a batch is Completed, you must retrieve the batch result to see the status of individual records.

Retrieve the results for an individual batch by running the following cURL command:

97

Walkthrough Sending HTTP Requests with cURLBulk API

curl https://instance.salesforce.com/services/async/62.0/job/jobId/batch/batchId/result
-H "X-SFDC-Session: sessionId"

instance is the portion of the <serverUrl> element and sessionId is the <sessionId> element that you noted in the
login response. jobId is the job ID that was returned when you created the job. batchId is the batch ID that was returned when
you added a batch to the job.

Salesforce returns a response with data such as this:

"Id","Success","Created","Error"
"003x0000004ouM4AAI","true","true",""
"003x0000004ouM5AAI","true","true",""

The response body is a CSV file with a row for each row in the batch request. If a record was created, the ID is contained in the row. If a
record was updated, the value in the Created column is false. If a record failed, the Error column contains an error message.

SEE ALSO:

Get Batch Results

Handle Failed Records in Batches

Prepare Data Files
The Bulk API processes records in comma-separated values (CSV) files, XML files, or JSON files.

Note: For best performance, Salesforce recommends the following order of preference for data files: CSV, JSON, XML.

For information about loading records containing binary attachments, see Load Binary Attachments on page 108.

For information about loading data from third-party sources, see Map Data Fields on page 171.

Find Field Names

After you set up your client, you can build client applications that use the Bulk API. Use the following sample to create a client
application. Each section steps through part of the code. The complete sample is included at the end.

Valid Date Format in Records

Specify the right format for dateTime and date fields.

Prepare CSV Files

The first row in a CSV file lists the field names for the object that you're processing. Each subsequent row corresponds to a record in
Salesforce. A record consists of a series of fields that are delimited by commas. A CSV file can contain multiple records and constitutes
a batch.

Prepare XML and JSON Files

The Bulk API processes records in XML, JSON, or CSV files. An XML or JSON file can contain multiple records and constitutes a batch.
A record in an XML file is defined in an sObjects tag.

SEE ALSO:

Data Loader Guide

98

Prepare Data FilesBulk API

https://resources.docs.salesforce.com/252/latest/en-us/sfdc/pdf/salesforce_data_loader.pdf

Find Field Names
After you set up your client, you can build client applications that use the Bulk API. Use the following sample to create a client application.
Each section steps through part of the code. The complete sample is included at the end.

You can:

• Use the describeSObjects() call in the SOAP API Developer Guide, or the sObject Describe resource in the REST API
Developer Guide.

• Use Salesforce Setup.

• Look up the object in Object Reference, which lists the field names, types, and descriptions by object.

Use Salesforce Setup to Find Field names
To find an object’s field name in Salesforce Setup:

1. From Setup, in the Quick Find box, enter Object Manager. Click Object Manager.

2. Click on the object in the list.

3. From the object’s management settings, click on Fields & Relationships.

4. Click the field under Field Label to find the field name.

For a standard field, use the Field Name value as the field column header in your CSV file.

For a custom field, use the API Name value as the field column header in a CSV file or the field name identifier in an XML or JSON file.
(To find the API Name, click the field name.)

SEE ALSO:

Salesforce Help: Find Object Management Settings

Valid Date Format in Records
Specify the right format for dateTime and date fields.

dateTime
Use the yyyy-MM-ddTHH:mm:ss.SSS+/-HH:mm or yyyy-MM-ddTHH:mm:ss.SSSZ formats to specify dateTime
fields.

• yyyy is the four-digit year

• MM is the two-digit month (01-12)

• dd is the two-digit day (01-31)

• 'T' is a separator indicating that time-of-day follows

• HH is the two-digit hour (00-23)

• mm is the two-digit minute (00-59)

• ss is the two-digit seconds (00-59)

• SSS is the optional three-digit milliseconds (000-999)

• +/-HH:mm is the Zulu (UTC) time zone offset

• 'Z' is the reference UTC timezone

99

Prepare Data FilesBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_describesobjects.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.api_rest.meta/api_rest/resources_sobject_describe.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.object_reference.meta/object_reference/sforce_api_objects_list.htm
https://help.salesforce.com/HTViewHelpDoc?id=extend_click_find_objectmgmt_parent.htm&language=en_US

When a timezone is added to a UTC dateTime, the result is the date and time in that timezone. For example, 2002-10-10T12:00:00+05:00
is 2002-10-10T07:00:00Z and 2002-10-10T00:00:00+05:00 is 2002-10-09T19:00:00Z. See W3C XML Schema Part 2: DateTime Datatype.

date
Use the yyyy-MM-dd format to specify date fields.

Note: Specifying an offset for date is not supported.

Prepare CSV Files
The first row in a CSV file lists the field names for the object that you're processing. Each subsequent row corresponds to a record in
Salesforce. A record consists of a series of fields that are delimited by commas. A CSV file can contain multiple records and constitutes
a batch.

All the records in a CSV file must be for the same object. You specify this object in the job associated with the batch. All batches associated
with a job must contain records for the same object.

Note the following when processing CSV files with the Bulk API:

• The Bulk API doesn't support any delimiter except for a comma.

• The Bulk API is optimized for processing large sets of data and has a strict format for CSV files. See Valid CSV Record Rows on page
102. The easiest way to process CSV files is to enable Bulk API for Data Loader.

• You must include all required fields when you create a record. You can optionally include any other field for the object.

• If you're updating a record, any fields that aren't defined in the CSV file are ignored during the update.

• Files must be in UTF-8 format.

Tip: To import data from CSV files that don’t meet these rules, map the data fields in the CSV file to Salesforce data fields. See Map
Data Fields on page 171.

Relationship Fields in a Header Row

Many objects in Salesforce are related to other objects. For example, Account is a parent of Contact. You can add a reference to a
related object in a CSV file by representing the relationship in a column header. When you're processing records in the Bulk API, you
use RelationshipName.IndexedFieldName syntax in a CSV column header to describe the relationship between an
object and its parent, where RelationshipName is the relationship name of the field and IndexedFieldName is the
indexed field name that uniquely identifies the parent record. Use the describeSObjects() call in the API to get the
relationshipName property value for a field.

Valid CSV Record Rows

The Bulk API uses a strict format for field values to optimize processing for large sets of data.

Sample CSV File

The CSV sample includes two records for the Contact object. Each record contains six fields. You can include any field for an object
that you’re processing. If you use a CSV file to update existing accounts, fields that aren’t defined in the CSV file are ignored during
the update. Include all required fields when you create a record.

SEE ALSO:

Data Loader Guide

100

Prepare Data FilesBulk API

http://www.w3.org/TR/xmlschema-2/#dateTime
https://resources.docs.salesforce.com/252/latest/en-us/sfdc/pdf/salesforce_data_loader.pdf

Relationship Fields in a Header Row
Many objects in Salesforce are related to other objects. For example, Account is a parent of Contact. You can add a reference to a related
object in a CSV file by representing the relationship in a column header. When you're processing records in the Bulk API, you use
RelationshipName.IndexedFieldName syntax in a CSV column header to describe the relationship between an object and
its parent, where RelationshipName is the relationship name of the field and IndexedFieldName is the indexed field name
that uniquely identifies the parent record. Use the describeSObjects() call in the API to get the relationshipName
property value for a field.

Some objects also have relationships to themselves. For example, the ReportsTo field for a contact is a reference to another contact.
If you're inserting a contact, you could use a ReportsTo.Email column header to indicate that you're using a contact's Email
field to uniquely identify the ReportsTo field for a contact. The ReportsTo portion of the column header is the
relationshipName property value for the ReportsTo field. The following CSV file uses a relationship:

FirstName,LastName,ReportsTo.Email
Tom,Jones,buyer@salesforcesample.com

Note the following when referencing relationships in CSV header rows:

• You can use a child-to-parent relationship, but you can't use a parent-to-child relationship.

• You can use a child-to-parent relationship, but you can't extend it to use a child-to-parent-grandparent relationship.

• You can only use indexed fields on the parent object. A custom field is indexed if its External ID field is selected. A standard
field is indexed if its idLookup property is set to true. See the Field Properties column in the field table for each standard object.

Relationship Fields for Custom Objects

Custom objects use custom fields to track relationships between objects. Use the relationship name, which ends in __r
(underscore-underscore-r), to represent a relationship between two custom objects. You can add a reference to a related object by
representing the relationship in a column header.

If the child object has a custom field with an API Name of Mother_Of_Child__c that points to a parent custom object and
the parent object has a field with an API Name of External_ID__c, use the column header
Mother_Of_Child__r.External_ID__c to indicate that you're using the parent object's External ID field to uniquely
identify the Mother Of Child field. To use a relationship name in a column header, replace the __c in the child object's custom
field with __r. For more information about relationships, see Understanding Relationship Names in the Salesforce SOQL and SOSL
Reference Guide at www.salesforce.com/us/developer/docs/soql_sosl/index.htm.

The following CSV file uses a relationship:

Name,Mother_Of_Child__r.External_ID__c
CustomObject1,123456

Relationships for Polymorphic Fields

A polymorphic field can refer to more than one type of object as a parent. For example, either a contact or a lead can be the parent of
a task. In other words, the WhoId field of a task can contain the ID of either a contact or a lead. Because a polymorphic field is more
flexible, the syntax for the column header has an extra element to define the type of the parent object. The syntax is:

ObjectType:RelationshipName.IndexedFieldName.

Important: Starting with version 57.0 of the API, for ObjectType use apiName, which should include namespace, if any,
and should include __c if the object is a custom object.

The following sample includes two reference fields:

101

Prepare Data FilesBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.object_reference.meta/object_reference/sforce_api_objects_list.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.soql_sosl.meta/soql_sosl/

1. The WhoId field is polymorphic and has a relationshipName of Who. It refers to a lead and the indexed Email field
uniquely identifies the parent record.

2. The OwnerId field is not polymorphic and has a relationshipName of Owner. It refers to a user and the indexed Id field
uniquely identifies the parent record.

Subject,Priority,Status,Lead:Who.Email,Owner.Id
Test Bulk API polymorphic reference field,Normal,Not
Started,lead@salesforcesample.com,005D0000001AXYz

Warning: The ObjectType: portion of a field column header is only required for a polymorphic field. You get an error if you
omit this syntax for a polymorphic field. You also get an error if you include this syntax for a field that is not polymorphic.

Valid CSV Record Rows
The Bulk API uses a strict format for field values to optimize processing for large sets of data.

Note the following when generating CSV files that contain Salesforce records:

• The delimiter for field values in a row must be a comma.

• If a field value contains a comma, a new line, or a double quote, the field value must be contained within double quotes: for example,
"Director of Operations, Western Region".

• If a field value contains a double quote, the double quote must be escaped by preceding it with another double quote: for example,
"This is the ""gold"" standard".

• Field values aren't trimmed. A space before or after a delimiting comma is included in the field value. A space before or after a double
quote generates an error for the row. For example, John,Smith is valid; John, Smith is valid, but the second value is "
Smith"; ."John", "Smith" is not valid.

• Empty field values are ignored when you update records. To set a field value to null, use a field value of #N/A.

• Fields with a double data type can include fractional values. Values can be stored in scientific notation if the number is large
enough (or, for negative numbers, small enough), as indicated by theW3C XML Schema Part 2: Datatypes Second Edition specification

Sample CSV File
The CSV sample includes two records for the Contact object. Each record contains six fields. You can include any field for an object that
you’re processing. If you use a CSV file to update existing accounts, fields that aren’t defined in the CSV file are ignored during the update.
Include all required fields when you create a record.

This sample sets a relationship between the records that you’re processing and existing contact records with the email addresses
buyer@salesforcesample.com and cto@salesforcesample.com. If you try to insert the records in this sample into
an org that doesn’t contain contacts with those email addresses, the insertion fails.

To use this sample CSV for testing purposes, either remove ReportsTo.Email and its associated values or pre-insert contacts in
your org that have these email addresses.

FirstName,LastName,Title,ReportsTo.Email,Birthdate,Description
Tom,Jones,Senior Director,buyer@salesforcesample.com,1940-06-07Z,"Self-described as ""the
top"" branding guru on the West Coast"
Ian,Dury,Chief Imagineer,cto@salesforcesample.com,,"World-renowned expert in fuzzy logic
design.
Influential in technology purchases."

102

Prepare Data FilesBulk API

http://www.w3.org/TR/xmlschema-2/#double

The Description field for the last record includes a line break, which is why the field value is enclosed in double quotes.

SEE ALSO:

Sample XML File

Sample JSON File

Data Loader Guide

Prepare XML and JSON Files
The Bulk API processes records in XML, JSON, or CSV files. An XML or JSON file can contain multiple records and constitutes a batch. A
record in an XML file is defined in an sObjects tag.

All records in an XML or JSON file must be for the same object. You specify the object in the job associated with the batch. All batches
associated with a job must contain records for the same object.

When processing XML or JSON files with the Bulk API:

• You must include all required fields when you create a record. You can optionally include any other field for the object.

• If you’re updating a record, fields not defined in the file are ignored during the update.

• Files must be in UTF-8 format.

Relationship Fields in Records

Some objects also have relationships to themselves. For example, the ReportsTo field for a contact is a reference to another
contact.

Valid XML and JSON Records

A batch request in an XML or JSON file contains records for one object type. Each batch in an XML file uses this format, with each
sObject tag representing a record.

Sample XML File

This XML sample includes two records for the Account object. Each record contains three fields. You can include any field for an
object that you're processing. If you use this file to update existing accounts, any fields that aren't defined in the XML file are ignored
during the update. You must include all required fields when you create a record.

Sample JSON File

This JSON sample includes two records for the Account object. Each record contains three fields. You can include any field for an
object that you’re processing. If you use this file to update existing accounts, fields not defined in the JSON file are ignored during
the update. You must include all required fields when you create a record.

Relationship Fields in Records
Some objects also have relationships to themselves. For example, the ReportsTo field for a contact is a reference to another contact.

To add a reference to a related object for a field in a JSON or XML record, use the following syntax to represent the relationship. The
RelationshipName is the relationship name of the field, and IndexedFieldName is the indexed field name that identifies
the parent record.

JSON:

"RelationshipName" : { "IndexedFieldName" : "rwilliams@salesforcesample.com" }

103

Prepare Data FilesBulk API

https://resources.docs.salesforce.com/252/latest/en-us/sfdc/pdf/salesforce_data_loader.pdf

XML:

<RelationshipName>
<sObject>

<IndexedFieldName>rwilliams@salesforcesample.com</IndexedFieldName>
</sObject>

</RelationshipName>

Use the describeSObjects() call in the API to get the relationshipName property value for a field. Use an indexed field
to uniquely identify the parent record for the relationship. A standard field is indexed if its idLookup property is set to true.

These samples include a contact record that includes the ReportsTo field, which is a reference to another contact. ReportsTo is
the relationshipName property value for the ReportsTo field. In this case, the parent object for the ReportsTo field is
also a contact, so we use the Email field to identify the parent record. The idLookup property value for the Email field is true.
To see if there is a idLookup property for a field, go to the Field Properties column in the field table for each standard object.

JSON:

[{
"FirstName" : "Ray",
"LastName" : "Riordan",
"ReportsTo" : { "Email" : "rwilliams@salesforcesample.com" }

}]

XML:

<?xml version="1.0" encoding="UTF-8"?>
<sObjects xmlns="http://www.force.com/2009/06/asyncapi/dataload">

<sObject>
<FirstName>Ray</FirstName>
<LastName>Riordan</LastName>
<ReportsTo>
<sObject>
<Email>rwilliams@salesforcesample.com</Email>

</sObject>
</ReportsTo>

</sObject>
</sObjects>

When using relationships in JSON or XML records:

• You can use a child-to-parent relationship, but you can't use a parent-to-child relationship.

• You can use a child-to-parent relationship, but you can't extend it to use a child-to-parent-grandparent relationship.

Relationship Fields for Custom Objects

Custom objects use custom fields to track relationships between objects. Use the relationship name, which ends in __r
(underscore-underscore-r), to represent a relationship between two custom objects. You can add a reference to a related object by using
an indexed field. A custom field is indexed if its External ID field is selected.

For example, let’s say a child object has a custom field with an API Name of Mother_Of_Child__c that points to a parent
custom object. Let’s assume that the parent object has a field with an API Name of External_ID__c. You can use the
Mother_Of_Child__r relationshipName property to indicate that you’re referencing a relationship to the parent object.
Use the parent object’s External ID field as a unique identifier for the Mother Of Child field. To use a relationship name,
replace the __c in the child object’s custom field with __r. For more information about relationships, see Understanding Relationship

104

Prepare Data FilesBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.object_reference.meta/object_reference/sforce_api_objects_list.htm

Names in the Salesforce SOQL and SOSL Reference Guide at
www.salesforce.com/us/developer/docs/soql_sosl/index.htm.

The following JSON and XML files show usage of the relationship.

JSON:

[{
"Name" : "CustomObject1",
"Mother_Of_Child__r" : { "External_ID__c" : "123456" }

}]

XML:

<?xml version="1.0" encoding="UTF-8"?>
<sObjects xmlns="http://www.force.com/2009/06/asyncapi/dataload">

<sObject>
<Name>CustomObject1</Name>
<Mother_Of_Child__r>
<sObject>
<External_ID__c>123456</External_ID__c>

</sObject>
</Mother_Of_Child__r>

</sObject>
</sObjects>

Relationships for Polymorphic Fields

A polymorphic field can refer to more than one type of object as a parent. For example, either a contact or a lead can be the parent of
a task. In other words, the WhoId field of a task can contain the ID of either a contact or a lead. Since a polymorphic field is more flexible,
the syntax for the relationship field has an extra element to define the type of the parent object. The following JSON and XML samples
show the syntax, where RelationshipName is the relationship name of the field, ObjectTypeName is the object type of the
parent record, and IndexedFieldName is the indexed field name that uniquely identifies the parent record.

JSON:

"RelationshipName" : {
"attributes" : {
"type" : "ObjectTypeName" },

"IndexedFieldName" : "rwilliams@salesforcesample.com"
}

XML:

<RelationshipName>
<sObject>

<type>ObjectTypeName</type>
<IndexedFieldName>rwilliams@salesforcesample.com</IndexedFieldName>

</sObject>
</RelationshipName>

These samples include two reference fields.

1. The WhoId field is polymorphic and has a relationshipName of Who. It refers to a lead and the indexed Email field
uniquely identifies the parent record.

105

Prepare Data FilesBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.soql_sosl.meta/soql_sosl/

2. The OwnerId field is not polymorphic and has a relationshipName of Owner. It refers to a user and the indexed Id field
uniquely identifies the parent record.

JSON:

[{
"Subject" : "Test Bulk API polymorphic reference field",
"Priority" : "Normal",
"Status" : "Not Started",
"Who" : {
"attributes" : {
"type" : "Lead" },
"Email" : "lead@salesforcesample.com" },

"Owner" : { "Id" : "005D0000001AXYz" }
}]

XML:

<?xml version="1.0" encoding="UTF-8"?>
<sObjects xmlns="http://www.force.com/2009/06/asyncapi/dataload">

<sObject>
<Subject>Test Bulk API polymorphic reference field</Subject>
<Priority>Normal</Priority>
<Status>Not Started</Status>
<Who>
<sObject>
<type>Lead</type>
<Email>lead@salesforcesample.com</Email>

</sObject>
</Who>
<Owner>
<sObject>
<Id>005D0000001AXYz</Id>

</sObject>
</Owner>

</sObject>
</sObjects>

Warning: The type element is required only for a polymorphic field. If you omit this element for a polymorphic field or include
it for a non-polymorphic field, you get an error.

Valid XML and JSON Records
A batch request in an XML or JSON file contains records for one object type. Each batch in an XML file uses this format, with each
sObject tag representing a record.

<?xml version="1.0" encoding="UTF-8"?>
<sObjects xmlns="http://www.force.com/2009/06/asyncapi/dataload">

<sObject>
<field_name>field_value</field_name>
...

</sObject>
<sObject>

<field_name>field_value</field_name>
...

106

Prepare Data FilesBulk API

</sObject>
</sObjects>

Each batch in a JSON file uses this format with each JSON object representing a record.

[
{

"field_name" : "field_value"
...

},
{

"field_name" : "field_value"
...

}
]

Note: You must include the type field for a polymorphic field and exclude it for non-polymorphic fields in any batch. If you
don’t the batch fails. A polymorphic field can refer to more than one type of object as a parent. For example, either a contact or a
lead can be the parent of a task. In other words, the WhoId field of a task can contain the ID of either a contact or a lead.

When generating records in XML or JSON files:

• Fields that aren’t defined in the file for a record are ignored when you update records. To set a field value to null in XML, set the
xsi:nil value for the field to true. For example, <description xsi:nil="true"/> sets the description field to
null. Setting xsi:nil to false has no effect. If you define a field value and set xsi:nil to false, the value still gets
assigned. To specify a null value in JSON, set the field value to null. For example, "description" : null.

• Fields with a double data type can include fractional values. Values can be stored in scientific notation if the number is large
enough (or, for negative numbers, small enough), as indicated by theW3C XML Schema Part 2: Datatypes Second Edition specification

SEE ALSO:

Sample XML File

Sample JSON File

Sample XML File
This XML sample includes two records for the Account object. Each record contains three fields. You can include any field for an object
that you're processing. If you use this file to update existing accounts, any fields that aren't defined in the XML file are ignored during
the update. You must include all required fields when you create a record.

<?xml version="1.0" encoding="UTF-8"?>
<sObjects xmlns="http://www.force.com/2009/06/asyncapi/dataload">

<sObject>
<Name>Xytrex Co.</Name>
<Description>Industrial Cleaning Supply Company</Description>
<Account Number>ABC15797531</Account Number>

</sObject>
<sObject>

<Name>Watson and Powell, Inc.</Name>
<Description>Law firm. New York Headquarters</Description>
<Account Number>ABC24689753</Account Number>

107

Prepare Data FilesBulk API

http://www.w3.org/TR/xmlschema-2/#double

</sObject>
</sObjects>

SEE ALSO:

Sample CSV File

Sample JSON File

Sample JSON File
This JSON sample includes two records for the Account object. Each record contains three fields. You can include any field for an object
that you’re processing. If you use this file to update existing accounts, fields not defined in the JSON file are ignored during the update.
You must include all required fields when you create a record.

This JSON sample includes two records for the Account object. Each record contains three fields. You can include any field for an object
that you’re processing. If you use this file to update existing accounts, fields not defined in the JSON file are ignored during the update.
You must include all required fields when you create a record.

[
{

"Name" : "Xytrex Co.",
"Description" : "Industrial Cleaning Supply Company",
"Account Number" : "ABC15797531"

},
{

"Name" : "Watson and Powell, Inc.",
"Description" : "Law firm. New York Headquarters",
"Account Number" : "ABC24689753"

}
]

SEE ALSO:

Sample CSV File

Sample XML File

Load Binary Attachments
The Bulk API can load binary attachments, which can be Attachment objects or Salesforce CRM Content.

Create a request.txt File

A batch is represented by a zip file, which contains a CSV, XML, or JSON file called request.txt that contains references to the
binary attachments and the binary attachments themselves. This differs from CSV, XML, or JSON batch files that don’t include binary
attachments. These batch files don’t need a zip or a request.txt file.

Create a Zip Batch File with Binary Attachments

To submit your binary attachments as a batch, you create a zip batch file .

Create a Job for Batches with Binary Attachments

You can use cURL to create a job for batches containing Attachment records.

108

Load Binary AttachmentsBulk API

Create a Batch with Binary Attachments

After creating the job, you’re ready to create a batch of Attachment records. You send data in batches in separate HTTP POST requests.
In this example, you create and submit one batch.

Create a request.txt File
A batch is represented by a zip file, which contains a CSV, XML, or JSON file called request.txt that contains references to the
binary attachments and the binary attachments themselves. This differs from CSV, XML, or JSON batch files that don’t include binary
attachments. These batch files don’t need a zip or a request.txt file.

The request.txt file is contained in the base directory (at the root) of the zip file. The binary attachments can also be in the base
directory or they can be organized in optional subdirectories.

Note: If you create a zip file on OS X by right-clicking a folder and choosing "Compress" - it won't work. The result is an extra folder
level inside the zip file. You can use zip to create it properly and unzip -l to check it.

The request.txt file is a manifest file for the attachments in the zip file and contains the data for each record that references a
binary file.

Note: The batch data file is named request.txt, whether you’re working with CSV, XML, or JSON data.

For the Attachment object, the notation for these fields is particularly important:

• The Name field is the file name of the binary attachment. The easiest way to get a unique name for each attachment in your batch
is to use the relative path from the base directory to the binary attachment. For example, attachment1.gif or
subdir/attachment2.doc.

• The Body is the relative path to the binary attachment, preceded with a # symbol. For example, #attachment1.gif or
#subdir/attachment2.doc.

• The ParentId field identifies the parent record, such as an account or a case, for the attachment.

The batch file can also include other optional Attachment fields, such as Description. For more information, see Attachment.

Sample CSV request.txt File

This sample CSV file includes two Attachment records. The first record references an attachment1.gif binary file in the base
directory of the zip file. The second record references an attachment2.doc binary file in the subdir subdirectory of the zip file.
In this example, the ParentId field indicates that both attachments are associated with Account parent records. The Account
Id variable should be replaced with the Id of the associated parent account.

Name,ParentId,Body
attachment1.gif,Account Id,#attachment1.gif
subdir/attachment2.doc,Account Id,#subdir/attachment2.doc

Sample XML request.txt File

This sample XML file includes the same two records as the previous CSV sample file.

<?xml version="1.0" encoding="UTF-8"?>
<sObjects

xmlns="http://www.force.com/2009/06/asyncapi/dataload"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<sObject>
<Name>attachment1.gif</Name>

109

Load Binary AttachmentsBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.object_reference.meta/object_reference/sforce_api_objects_attachment.htm

<ParentId>Account Id</ParentId>
<Body>#attachment1.gif</Body>

</sObject>
<sObject>
<Name>subdir/attachment2.doc</Name>
<ParentId>Account Id</ParentId>
<Body>#subdir/attachment2.doc</Body>

</sObject>
</sObjects>

Sample JSON request.txt File

This sample JSON file includes the same two records as the previous examples.

[
{
"Name" : "attachment1.gif",
"ParentId" : "Account Id",
"Body" : "#attachment1.gif"

},
{
"Name" : "subdir/attachment2.doc",
"ParentId" : "Account Id",
"Body" : "#subdir/attachment2.doc"

}
]

Create a Zip Batch File with Binary Attachments
To submit your binary attachments as a batch, you create a zip batch file .

1. Create a base directory that contains the binary attachments. Attachments can be organized in subdirectories.

2. Create the request.txt CSV, XML, or JSON file in the base directory. The request.txt file is a manifest file for the attachments
in the zip file and contains the data for each record that references a binary file.

3. Create a zip file of the base directory and any subdirectories.

Create a Job for Batches with Binary Attachments
You can use cURL to create a job for batches containing Attachment records.

For more information, see Walkthrough Sending HTTP Requests with cURL on page 93.

1. Create a text file called job.txt containing this text.

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">

<operation>insert</operation>
<object>Attachment</object>
<contentType>ZIP_CSV</contentType>

</jobInfo>

Note: The batches for this job contain data in CSV format, so the contentType field is set to ZIP_CSV. For XML or JSON
batches, use ZIP_XML or ZIP_JSON, respectively.

110

Load Binary AttachmentsBulk API

2. Using a command-line window, execute this cURL command

curl https://instance.salesforce.com/services/async/62.0/job -H "X-SFDC-Session:
sessionId" -H "Content-Type: application/xml; charset=UTF-8" -d @job.txt

instance is the portion of the <serverUrl> element and sessionId is the <sessionId> element that you noted
in the login response. For more information about logging in, see Step 1: Log In Using the SOAP API on page 94.

Salesforce returns an XML response with data such as the following.

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>750D000000001SRIAY</id>
<operation>insert</operation>
<object>Attachment</object>
<createdById>005D0000001B0VkIAK</createdById>
<createdDate>2010-08-25T18:52:03.000Z</createdDate>
<systemModstamp>2010-08-25T18:52:03.000Z</systemModstamp>
<state>Open</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>ZIP_CSV</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>
<numberBatchesCompleted>0</numberBatchesCompleted>
<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>0</numberBatchesTotal>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRetries>0</numberRetries>
<apiVersion>62.0</apiVersion>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</jobInfo>

3. Note the value of the job ID returned in the <id> element. Use this ID in subsequent operations.

Create a Batch with Binary Attachments
After creating the job, you’re ready to create a batch of Attachment records. You send data in batches in separate HTTP POST requests.
In this example, you create and submit one batch.

To organize your data in different batches, see General Guidelines for Data Loads on page 90.

1. Create a zip batch file.

2. Name the file, making sure to maintain the ".zip" suffix. For this example, the file is named request.zip.

3. Using a command-line window, execute this cURL command.

curl https://instance.salesforce.com/services/async/62.0/job/jobId/batch -H
"X-SFDC-Session: sessionId" -H "Content-Type:zip/csv" --data-binary @request.zip

instance is the portion of the <serverUrl> element and sessionId is the <sessionId> element that you noted
in the login response.jobId is the job ID that was returned when you created the job.

Note: The Content-type for the POST request is zip/csv. For XML or JSON batches, use zip/xml or zip/json instead.

111

Load Binary AttachmentsBulk API

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<batchInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>751D000000003uwIAA</id>
<jobId>750D000000001TyIAI</jobId>
<state>Queued</state>
<createdDate>2010-08-25T21:29:55.000Z</createdDate>
<systemModstamp>2010-08-25T21:29:55.000Z</systemModstamp>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</batchInfo>

Salesforce doesn’t parse the CSV content or otherwise validate the batch until later. The response only acknowledges that the batch
was received.

4. Note the value of the batch ID returned in the <id> element. You can use this batch ID later to check the status of the batch.

For details on proceeding to close the associated job, check batch status, and retrieve batch results, see the Getting Started.

Request Basics
Here are some Bulk API request basics, including the format of URIs used to perform operations and details on how to authenticate
requests using a session header.

About URIs

You send HTTP requests to a URI to perform operations with Bulk API.

Set a Session Header

All HTTP requests must contain a valid API session ID obtained with the SOAP API login() call. The session ID is returned in the
SessionHeader.

About URIs
You send HTTP requests to a URI to perform operations with Bulk API.

The URI where you send HTTP requests has this format:

https://Web_Services_SOAP_endpoint_hostame/services/async/APIversion/Resource_address

Think of the part of the URI through the API version as a base URI that’s used for all operations. The part after the API version
(Resource_address) varies depending on the job or batch being processed. For example, if you're working with version 62.0 of
Bulk API in a production org, your base URI would be
https://MyDomainName.my.salesforce.com/services/async/62.0.

112

Request BasicsBulk API

You can find the My Domain name and My Domain login URL for your org on the My Domain page in Setup. Or, to get the hostname
of your My Domain login URL in Apex, use the getMyDomainHostname() method of the System.DomainCreator class.

SEE ALSO:

Quick Start: Bulk API

Work with Batches

Set a Session Header
All HTTP requests must contain a valid API session ID obtained with the SOAP API login() call. The session ID is returned in the
SessionHeader.

This example shows how to specify the required information after you obtain it from the login() call.

POST /services/async/62.0/job/ HTTP/1.1
Content-Type: application/xml; charset=UTF-8
Accept: application/xml
User-Agent: Salesforce Web Service Connector For Java/1.0
X-SFDC-Session: sessionId
Host: MyDomainName.my.salesforce.com
Connection: keep-alive
Content-Length: 135

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<operation>insert</operation>
<object>Account</object>
</jobInfo>

SEE ALSO:

Quick Start: Bulk API 2.0

Sample Client Application Using Java

Work with Batches
A batch is a set of records sent to the server in an HTTP POST request. Each batch is processed independently by the server, not necessarily
in the order it’s received.

A batch is created by submitting a CSV, XML, or JSON representation of a set of records and any references to binary attachments in an
HTTP POST request. When created, the status of a batch is represented by a BatchInfo resource. When a batch is complete, the result for
each record is available in a result set resource.

Batches can be processed in parallel. It's up to the client to decide how to divide the entire data set into a suitable number of batches.

Adjust batch sizes based on processing times. Start with 5000 records and adjust the batch size based on processing time. If it takes
more than 5 minutes to process a batch, it can be beneficial to reduce the batch size. If it takes a few seconds, increase the batch size.
If you get a timeout error when processing a batch, split your batch into smaller batches, and try again.

Note: Salesforce provides an additional API, Bulk API 2.0, which uses the REST API framework to provide similar capabilities to
Bulk API. Bulk API 2.0 removes the need for creating and monitoring batches, and it lets you load record data for a job directly. For
more information on Bulk API 2.0, see the Bulk API 2.0 Developer Guide.

113

Work with BatchesBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.api_asynch.meta/api_bulk_v2

1. Add a Batch to a Job

Add a new batch to a job by sending a POST request to this URI. The request body contains a list of records for processing.

2. Monitor a Batch

You can monitor a Bulk API batch in Salesforce.

3. Get Information for a Batch

Get information about an existing batch by sending a GET request to this URI.

4. Get Information for All Batches in a Job

Get information about all batches in a job by sending a GET request to this URI.

5. Interpret Batch State

This list gives you more details about the various states, also known as statuses, of a batch. The batch state informs you whether to
proceed to get the results, or whether you must wait or fix errors related to your request.

6. Get a Batch Request

Get a batch request by sending a GET request to the following URI. This is available in API version 19.0 and later.

7. Get Batch Results

Get results of a batch that completed processing by sending a GET request to this URI. If the batch is a CSV file, the response is in
CSV format. If the batch is an XML or JSON file, the response is in XML or JSON format, respectively.

8. Handle Failed Records in Batches

A batch can have a Completed state even if some or all of the records failed. If a subset of records failed, the successful records
aren't rolled back. Likewise, even if the batch has a Failed state or if a job is aborted, some records could have completed
successfully.

Add a Batch to a Job
Add a new batch to a job by sending a POST request to this URI. The request body contains a list of records for processing.

URI
/services/async/APIversion/job/jobid/batch

Note: The API version in the URI for all batch operations must match the API version for the associated job.

Example XML request body

<?xml version="1.0" encoding="UTF-8"?>
<sObjects xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<sObject>
<description>Created from Bulk API</description>
<name>[Bulk API] Account 0 (batch 0)</name>

</sObject>
<sObject>
<description>Created from Bulk API</description>
<name>[Bulk API] Account 1 (batch 0)</name>

</sObject>
</sObjects>

In this sample, the batch data is in XML format because the contentType field of the associated job was set to XML. For alternative
formats for batch data, such as CSV or JSON, see JobInfo on page 150.

114

Work with BatchesBulk API

Example XML response body

<?xml version="1.0" encoding="UTF-8"?>
<batchInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>751D0000000004rIAA</id>
<jobId>750D0000000002lIAA</jobId>
<state>Queued</state>
<createdDate>2009-04-14T18:15:59.000Z</createdDate>
<systemModstamp>2009-04-14T18:15:59.000Z</systemModstamp>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</batchInfo>

Example JSON request body

[
{

"Name":"[Bulk API] Account 0 (batch 0)",
"description" : "Created from Bulk API"

},
{

"Name":"[Bulk API] Account 1 (batch 0)",
"description" : "Created from Bulk API"

}
]

In this sample, the batch data is in JSON format because the contentType field of the associated job was set to JSON.

Example JSON response body

{
"apexProcessingTime":0,
"apiActiveProcessingTime":0,
"createdDate":"2015-12-15T21:56:43.000+0000",
"id":"751D00000004YGZIA2",
"jobId":"750D00000004SkVIAU",
"numberRecordsFailed":0,
"numberRecordsProcessed":0,
"state":"Queued",
"systemModstamp":"2015-12-15T21:56:43.000+0000",
"totalProcessingTime":0

}

115

Work with BatchesBulk API

Note: You can add batch jobs using non-Bulk API-compliant CSV files. See Map Data Fields on page 171.

SEE ALSO:

Create a Batch with Binary Attachments

Get Information for a Batch

Monitor a Batch

Get Information for All Batches in a Job

Interpret Batch State

Get a Batch Request

Get Batch Results

Quick Start: Bulk API

Limits

About URIs

BatchInfo

Quick Start: Bulk API 2.0

Monitor a Batch
You can monitor a Bulk API batch in Salesforce.

To track the status of bulk data load jobs and their associated batches, from Setup, in the Quick Find box, enter Bulk Data
Load Jobs, then select Bulk Data Load Jobs. Click the Job ID to view the job detail page.

The job detail page includes a related list of all the batches for the job. The related list provides View Request and View Response links
for each batch. If the batch is a CSV file, the links return the request or response in CSV format. If the batch is an XML or JSON file, the
links return the request or response in XML or JSON format, respectively. These links are available for batches created in API version 19.0
and later. For Bulk V2 type jobs, batch information is unavailable.

SEE ALSO:

Get Information for a Batch

Add a Batch to a Job

Get Information for All Batches in a Job

Interpret Batch State

Get a Batch Request

Get Batch Results

Handle Failed Records in Batches

Quick Start: Bulk API

Limits

About URIs

BatchInfo

Quick Start: Bulk API 2.0

116

Work with BatchesBulk API

Get Information for a Batch
Get information about an existing batch by sending a GET request to this URI.

URI
/services/async/APIversion/job/jobid/batch/batchId

Example request body
No request body is allowed.

Example XML response body

<?xml version="1.0" encoding="UTF-8"?>
<batchInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>751D0000000004rIAA</id>
<jobId>750D0000000002lIAA</jobId>
<state>InProgress</state>
<createdDate>2009-04-14T18:15:59.000Z</createdDate>
<systemModstamp>2009-04-14T18:15:59.000Z</systemModstamp>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</batchInfo>

Example JSON response body

{
"apexProcessingTime" : 0,
"apiActiveProcessingTime" : 0,
"createdDate" : "2015-12-15T22:52:49.000+0000",
"id" : "751D00000004YGeIAM",
"jobId" : "750D00000004SkVIAU",
"numberRecordsFailed" : 0,
"numberRecordsProcessed" : 0,
"state" : "InProgress",
"systemModstamp" : "2015-12-15T22:52:49.000+0000",

117

Work with BatchesBulk API

"totalProcessingTime" : 0
}

SEE ALSO:

Add a Batch to a Job

Monitor a Batch

Get Information for All Batches in a Job

Interpret Batch State

Get a Batch Request

Get Batch Results

Limits

BatchInfo

About URIs

Quick Start: Bulk API

Quick Start: Bulk API 2.0

Get Information for All Batches in a Job
Get information about all batches in a job by sending a GET request to this URI.

URI
/services/async/APIversion/job/jobid/batch

Method
GET

Example request body
No request body is allowed.

Example XML response body

<?xml version="1.0" encoding="UTF-8"?>
<batchInfoList

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<batchInfo>
<id>751D0000000004rIAA</id>
<jobId>750D0000000002lIAA</jobId>
<state>InProgress</state>
<createdDate>2009-04-14T18:15:59.000Z</createdDate>
<systemModstamp>2009-04-14T18:16:09.000Z</systemModstamp>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</batchInfo>
<batchInfo>
<id>751D0000000004sIAA</id>
<jobId>750D0000000002lIAA</jobId>
<state>InProgress</state>
<createdDate>2009-04-14T18:16:00.000Z</createdDate>

118

Work with BatchesBulk API

<systemModstamp>2009-04-14T18:16:09.000Z</systemModstamp>
<numberRecordsProcessed>800</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>5870</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>2166</apexProcessingTime>
</batchInfo>
</batchInfoList>

Example JSON response body

{
"batchInfo" : [

{
"apexProcessingTime" : 0,
"apiActiveProcessingTime" : 0,
"createdDate" : "2015-12-15T21:56:43.000+0000",
"id" : "751D00000004YGZIA2",
"jobId" : "750D00000004SkVIAU",
"numberRecordsFailed" : 0,
"numberRecordsProcessed" : 0,
"state" : "Queued",
"systemModstamp" : "2015-12-15T21:57:19.000+0000",
"totalProcessingTime" : 0

},
{

"apexProcessingTime" : 0,
"apiActiveProcessingTime" : 2166,
"createdDate" : "2015-12-15T22:52:49.000+0000",
"id" : "751D00000004YGeIAM",
"jobId" : "750D00000004SkVIAU",
"numberRecordsFailed" : 0,
"numberRecordsProcessed" : 800,
"state" : "Completed",
"systemModstamp" : "2015-12-15T22:54:54.000+0000",
"totalProcessingTime" : 5870

}

119

Work with BatchesBulk API

]
}

SEE ALSO:

Add a Batch to a Job

Monitor a Batch

Get Information for a Batch

Interpret Batch State

Get a Batch Request

Get Batch Results

Limits

BatchInfo

About URIs

Quick Start: Bulk API

Quick Start: Bulk API 2.0

Interpret Batch State
This list gives you more details about the various states, also known as statuses, of a batch. The batch state informs you whether to
proceed to get the results, or whether you must wait or fix errors related to your request.

Queued
Processing of the batch hasn’t started yet. If the job associated with this batch is aborted, the batch isn’t processed and its state is
set to NotProcessed.

InProgress
The batch is being processed. If the job associated with the batch is aborted, the batch is still processed to completion. You must
close the job associated with the batch so that the batch can finish processing.

Completed
The batch has been processed completely, and the result resource is available. The result resource indicates if some records failed.
A batch can be completed even if some or all the records failed. If a subset of records failed, the successful records aren’t rolled back.

Failed
The batch failed to process the full request due to an unexpected error, such as the request is compressed with an unsupported
format, or an internal server error. Even if the batch failed, some records could have completed successfully. If the
numberRecordsProcessed field in the response is greater than zero, you should get the results to see which records were
processed, and if they were successful.

NotProcessed
The batch won’t be processed. This state is assigned when a job is aborted while the batch is queued. For bulk queries, if the job has
PK chunking enabled, this state is assigned to the original batch that contains the query when the subsequent batches are created.

120

Work with BatchesBulk API

After the original batch is changed to this state, you can monitor the subsequent batches and retrieve each batch’s results when it’s
completed.

SEE ALSO:

Add a Batch to a Job

Monitor a Batch

Get Information for All Batches in a Job

Get a Batch Request

Get Batch Results

Handle Failed Records in Batches

Limits

BatchInfo

About URIs

Quick Start: Bulk API

Quick Start: Bulk API 2.0

Get a Batch Request
Get a batch request by sending a GET request to the following URI. This is available in API version 19.0 and later.

Alternatively, you can get a batch request in Salesforce. To track the status of bulk data load jobs and their associated batches, from
Setup, in the Quick Find box, enter Bulk Data Load Jobs, then select Bulk Data Load Jobs. Click the Job ID to view the
job detail page. The job detail page includes a related list of all the batches for the job. The related list provides View Request and View
Response links for each batch. If the batch is a CSV file, the links return the request or response in CSV format. If the batch is an XML or
JSON file, the links return the request or response in XML or JSON format, respectively.

URI
/services/async/APIversion/job/jobid/batch/batchId/request

Example request body
No request body is allowed.

Example XML response body

<?xml version="1.0" encoding="UTF-8"?>
<sObjects xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<sObject>
<description>Created from Bulk API</description>
<name>[Bulk API] Account 0 (batch 0)</name>

</sObject>
<sObject>
<description>Created from Bulk API</description>
<name>[Bulk API] Account 1 (batch 0)</name>

</sObject>
</sObjects>

Example JSON response body

[
{

"Name" : "[Bulk API] Account 0 (batch 0)",

121

Work with BatchesBulk API

"description" : "Created from Bulk API"
},
{

"Name" : "[Bulk API] Account 1 (batch 0)",
"description" : "Created from Bulk API"

}
]

SEE ALSO:

Get Information for a Batch

Monitor a Batch

Get Information for All Batches in a Job

Interpret Batch State

Get Batch Results

Quick Start: Bulk API

Limits

About URIs

BatchInfo

Quick Start: Bulk API 2.0

Get Batch Results
Get results of a batch that completed processing by sending a GET request to this URI. If the batch is a CSV file, the response is in CSV
format. If the batch is an XML or JSON file, the response is in XML or JSON format, respectively.

Alternatively, you can monitor a Bulk API batch in Salesforce. To track the status of bulk data load jobs and their associated batches, from
Setup, in the Quick Find box, enter Bulk Data Load Jobs, then select Bulk Data Load Jobs. Click the Job ID to view the
job detail page.

The job detail page includes a related list of all the batches for the job. The related list provides View Request and View Response links
for each batch. If the batch is a CSV file, the links return the request or response in CSV format. If the batch is an XML or JSON file, the
links return the request or response in XML or JSON format, respectively. These links are available for batches created in API version 19.0
and later. For Bulk V2 type jobs, batch information is unavailable. The View Response link returns the same results as the following URI
resource.

URI
/services/async/APIversion/job/jobid/batch/batchId/result

Example request body
No request body is allowed.

Example response body
For an XML batch

<?xml version="1.0" encoding="UTF-8"?>
<results xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<result>
<id>001D000000ISUr3IAH</id>
<success>true</success>
<created>true</created>

</result>

122

Work with BatchesBulk API

<result>
<id>001D000000ISUr4IAH</id>
<success>true</success>
<created>true</created>

</result>
</results>

For a JSON batch

[
{

"success" : true,
"created" : true,
"id" : "001xx000003DHP0AAO",
"errors" : []

},
{

"success" : true,
"created" : true,
"id" : "001xx000003DHP1AAO",
"errors" : []

}
]

For a CSV batch

"Id","Success","Created","Error"
"003D000000Q89kQIAR","true","true",""
"003D000000Q89kRIAR","true","true",""
"","false","false","REQUIRED_FIELD_MISSING:Required fields are missing:
[LastName]:LastName --"

Note: The batch result indicates that the last record wasn’t processed successfully because the LastName field was missing.
The Error column includes error information. These error messages are exclusive to the Failed state of the job. You
must look at the Success field for each result row to ensure that all rows were processed successfully. For more information,
see Handle Failed Records in Batches on page 124.

SEE ALSO:

Add a Batch to a Job

Monitor a Batch

Get a Batch Request

Get Information for a Batch

Get Information for All Batches in a Job

Interpret Batch State

Limits

BatchInfo

About URIs

Quick Start: Bulk API

Quick Start: Bulk API 2.0

123

Work with BatchesBulk API

Handle Failed Records in Batches
A batch can have a Completed state even if some or all of the records failed. If a subset of records failed, the successful records aren't
rolled back. Likewise, even if the batch has a Failed state or if a job is aborted, some records could have completed successfully.

When you get the batch results, it's important to look at the Success field for each result row to ensure that all rows were processed
successfully. If a record wasn’t processed successfully, the Error column includes more information about the failure.

To identify failed records and log them to an error file:

1. Wait for the batch to finish processing. See Get Information for a Batch on page 117 and Interpret Batch State on page 120.

2. Get the batch results.

This sample CSV batch result shows an error for the last record because the LastName field was missing:

"Id","Success","Created","Error"
"003D000000Q89kQIAR","true","true",""
"003D000000Q89kRIAR","true","true",""
"","false","false","REQUIRED_FIELD_MISSING:Required fields are missing:
[LastName]:LastName --"

3. Parse the results for each record:

a. Track the record number for each result record. Each result record corresponds to a record in the batch. The results are returned
in the same order as the records in the batch request. It's important to track the record number in the results so that you can
identify the associated failed record in the batch request.

b. If the Success field is false, the row wasn’t processed successfully. Otherwise, the record was processed successfully, and
you can proceed to check the result for the next record.

c. Get the contents of the Error column.

d. Write the contents of the corresponding record in the batch request to an error file on your computer. Append the information
from the Error column. If you don't cache the batch request that you submitted, you can retrieve the batch request from
Salesforce.

After you examine each result record, you can manually fix each record in the error file and submit these records in a new batch. To
check that each record processed successfully, repeat the previous steps.

SEE ALSO:

Add a Batch to a Job

Errors

Limits

Bulk API Query

Use bulk query to efficiently query large data sets and reduce the number of API requests. A bulk query can retrieve up to 15 GB of data,
divided into 15 files of 1 GB each. The data formats supported are CSV, XML, and JSON.

Bulk API query limits are described in Bulk API and Bulk API 2.0 Limits and Allocations in the Salesforce Developer Limits and Allocations
Quick Reference

124

Bulk API QueryBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm

How Bulk Queries Are Processed

The bulk query workflow begins when you create a bulk query job and add one or more batches to the query job. When a bulk query
is processed, Salesforce attempts to execute the query. If the query doesn’t execute within the standard 2-minute timeout limit, the
job fails and a QUERY_TIMEOUT error is returned. In this case, rewrite a simpler query, and resubmit the batch.

Use Bulk Query

When you add a batch to a bulk query job, the Content-Type in the header for the request must be text/csv,
application/xml, or application/json, depending on the content type specified when the job was created. The actual
SOQL statement supplied for the batch is in plain text format.

PK Chunking

Use the primary key (PK) chunking request header to enable automatic PK chunking for a bulk query job. PK chunking splits bulk
queries on large tables into chunks based on the record IDs, or primary keys, of the queried records.

Walk Through a Bulk Query Sample

This code sample uses cURL to query several account records.

Walk Through a Bulk Query Sample Using PK Chunking

This code sample uses cURL to perform a bulk query with PK chunking enabled on several account records.

How Bulk Queries Are Processed
The bulk query workflow begins when you create a bulk query job and add one or more batches to the query job. When a bulk query
is processed, Salesforce attempts to execute the query. If the query doesn’t execute within the standard 2-minute timeout limit, the job
fails and a QUERY_TIMEOUT error is returned. In this case, rewrite a simpler query, and resubmit the batch.

If the query succeeds, Salesforce attempts to retrieve the results. If the results exceed the 1GB file size limit or take longer than 5 minutes
to retrieve, the completed results are cached and another attempt is made. After 30 attempts, the job fails and the error message “Retried
more than thirty times” is returned. In this case, consider using the PK Chunking header to split the query results into smaller chunks. If
the attempts succeed, the results are returned and stored for 7 days.

This flowchart depicts how bulk queries are processed.

125

How Bulk Queries Are ProcessedBulk API

SEE ALSO:

Use Bulk Query

PK Chunking

Walk Through a Bulk Query Sample

Use Bulk Query
When you add a batch to a bulk query job, the Content-Type in the header for the request must be text/csv, application/xml,
or application/json, depending on the content type specified when the job was created. The actual SOQL statement supplied
for the batch is in plain text format.

126

Use Bulk QueryBulk API

URI
/services/async/APIversion/job/jobid/batch

Bulk Query Request

POST baseURI/job/750x00000000014/batch
X-SFDC-Session: 4f1a00D30000000K7zB!ARUAQDqAHcM...
Content-Type: [either text/csv, application/xml, or application/json depending on job]

[plain text SOQL statement]

Bulk API query supports both query and queryAll operations. The queryAll operation returns records that have been deleted because
of a merge or delete. The queryAll operation also returns information about archived Task and Event records. For more information,
see queryAll() in the SOAP API Developer Guide.

Relationship queries traverse parent-to-child and child-to-parent relationships between objects to filter and return results. You can
use SOQL relationships in bulk queries. For more information about SOQL relationships, see Using Relationship Queries in the SOQL
and SOSL Reference.

Bulk API doesn’t support queries with any of the following:

• GROUP BY, OFFSET, or TYPEOF clauses

• Aggregate functions such as COUNT()

• Date functions in GROUP BY clauses (date functions in WHERE clauses are supported)

• Compound address fields or compound geolocations fields

Example: Requests, and Responses

These are example Bulk Query requests and responses.

Create Bulk Query Batch HTTP Request

POST baseURI/job/750x00000000014/batch
X-SFDC-Session: 4f1a00D30000000K7zB!ARUAQDqAHcM...
Content-Type: text/csv; charset=UTF-8

SELECT Name, Description__c FROM Merchandise__c

Create Bulk Query Batch HTTP Response Body

<?xmlversion="1.0" encoding="UTF-8"?>
<batchInfo
xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>751x00000000079AAA</id>
<jobId>750x00000000014</jobId>
<state>Queued</state>
<createdDate>2009-09-01T17:44:45.000Z</createdDate>
<systemModstamp>2009-09-01T17:44:45.000Z</systemModstamp>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</batchInfo>

127

Use Bulk QueryBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_queryall.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_relationships_query_using.htm#sforce_api_calls_soql_relationships_query_using

Get Batch Information for All Batches in a Job HTTP Request (used when PK chunking is enabled)

GET baseURI/job/750x00000000014/batch
X-SFDC-Session: 4f1a00D30000000K7zB!ARUAQDqAHcM...

Get Batch Information for All Batches in a Job HTTP Response Body

<?xml version="1.0" encoding="UTF-8"?><batchInfoList
xmlns="http://www.force.com/2009/06/asyncapi/dataload">

<batchInfo>
<id>751D00000004YjwIAE</id>
<jobId>750D00000004T5OIAU</jobId>
<state>NotProcessed</state>
<createdDate>2011-03-10T00:59:47.000Z</createdDate>
<systemModstamp>2011-03-10T01:00:19.000Z</systemModstamp>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</batchInfo>
<batchInfo>
<id>751D00000004Yk1IAE</id>
<jobId>750D00000004T5OIAU</jobId>
<state>Completed</state>
<createdDate>2011-03-10T00:59:47.000Z</createdDate>
<systemModstamp>2011-03-10T01:00:19.000Z</systemModstamp>
<numberRecordsProcessed>100000</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>1000</totalProcessingTime>
<apiActiveProcessingTime>1000</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</batchInfo>
<batchInfo>
<id>751D00000004Yk2IAE</id>
<jobId>750D00000004T5OIAU</jobId>
<state>Completed</state>
<createdDate>2011-03-10T00:59:47.000Z</createdDate>
<systemModstamp>2011-03-10T01:00:19.000Z</systemModstamp>
<numberRecordsProcessed>100000</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>1000</totalProcessingTime>
<apiActiveProcessingTime>1000</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</batchInfo>
<batchInfo>
<id>751D00000004Yk6IAE</id>
<jobId>750D00000004T5OIAU</jobId>
<state>Completed</state>
<createdDate>2011-03-10T00:59:47.000Z</createdDate>
<systemModstamp>2011-03-10T01:00:19.000Z</systemModstamp>
<numberRecordsProcessed>100000</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>1000</totalProcessingTime>
<apiActiveProcessingTime>1000</apiActiveProcessingTime>

128

Use Bulk QueryBulk API

<apexProcessingTime>0</apexProcessingTime>
</batchInfo>
<batchInfo>
<id>751D00000004Yk7IAE</id>
<jobId>750D00000004T5OIAU</jobId>
<state>Completed</state>
<createdDate>2011-03-10T00:59:47.000Z</createdDate>
<systemModstamp>2011-03-10T01:00:19.000Z</systemModstamp>
<numberRecordsProcessed>50000</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>500</totalProcessingTime>
<apiActiveProcessingTime>500</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</batchInfo>
</batchInfoList>

Get Batch Results HTTP Request

GET baseURI/job/750x00000000014/batch/751x00000000030/result
X-SFDC-Session: 4f1a00D30000000K7zB!ARUAQDqAHcM...

Get Batch Results HTTP Response Body

<result-list
xmlns="http://www.force.com/2009/06/asyncapi/dataload"><result>752x000000000F1</result></result-list>

Get Bulk Query Results HTTP Request

GET baseURI/job/750x00000000014/batch/751x00000000030/result/752x000000000F1
X-SFDC-Session: 4f1a00D30000000K7zB!ARUAQDqAHcM...

Get Bulk Query Results HTTP Response Body

"Name", "Description__c"
"Merchandise1", "Description for merchandise 1"
"Merchandise2", "Description for merchandise 2"

XML Responses for Queries that Include ID
If you use XML for the ContentType of a Query Job, then a query that includes ID returns the ID field twice in the XML response
data. Similarly, a query that does not include ID returns a single null ID field in the XML response data. For example, a query
for SELECT ID, FirstName, LastName FROM Contact might return an XML response with records like:

<records xsi:type="sf:sObject" xmlns="urn:partner.soap.sforce.com">
<sf:type>Contact</sf:type>
<sf:Id>0038000000FrjoBQRW</sf:Id>
<sf:Id>0038000000FrjoBQRW</sf:Id>
<sf:FirstName>John</sf:FirstName>
<sf:LastName>Smith</sf:LastName>

</records>

This is expected behavior and something to be aware of if you are accessing the full XML response data and not using WSC
to access the web service response. For more information, see Queries and the Partner WSDL in the SOAP API Developer Guide.

129

Use Bulk QueryBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_partner_queries.htm

Example: Java Example Using WSC

This example logs in to an organization using the Partner API, then instantiates a BulkConnection object using the service
endpoint from the Partner API login.

public boolean login() {
boolean success = false;

String userId = getUserInput("UserID: ");
String passwd = getUserInput("Password: ");
String soapAuthEndPoint = "https://" + loginHost + soapService;
String bulkAuthEndPoint = "https://" + loginHost + bulkService;
try {
ConnectorConfig config = new ConnectorConfig();
config.setUsername(userId);
config.setPassword(passwd);
config.setAuthEndpoint(soapAuthEndPoint);
config.setCompression(true);
config.setTraceFile("traceLogs.txt");
config.setTraceMessage(true);
config.setPrettyPrintXml(true);
System.out.println("AuthEndpoint: " +

config.getRestEndpoint());
PartnerConnection connection = new PartnerConnection(config);
System.out.println("SessionID: " + config.getSessionId());
config.setRestEndpoint(bulkAuthEndPoint);
bulkConnection = new BulkConnection(config);
success = true;

} catch (AsyncApiException aae) {
aae.printStackTrace();

} catch (ConnectionException ce) {
ce.printStackTrace();

} catch (FileNotFoundException fnfe) {
fnfe.printStackTrace();

}
return success;

}

public void doBulkQuery() {
if (! login()) {
return;

}
try {
JobInfo job = new JobInfo();
job.setObject("Merchandise__c");

job.setOperation(OperationEnum.query);
job.setConcurrencyMode(ConcurrencyMode.Parallel);
job.setContentType(ContentType.CSV);

job = bulkConnection.createJob(job);
assert job.getId() != null;

job = bulkConnection.getJobStatus(job.getId());

130

Use Bulk QueryBulk API

String query =
"SELECT Name, Id, Description__c FROM Merchandise__c";

long start = System.currentTimeMillis();

BatchInfo info = null;
ByteArrayInputStream bout =

new ByteArrayInputStream(query.getBytes());
info = bulkConnection.createBatchFromStream(job, bout);

String[] queryResults = null;

for(int i=0; i<10000; i++) {
Thread.sleep(30000); //30 sec
info = bulkConnection.getBatchInfo(job.getId(),

info.getId());

if (info.getState() == BatchStateEnum.Completed) {
QueryResultList list =

bulkConnection.getQueryResultList(job.getId(),
info.getId());

queryResults = list.getResult();
break;

} else if (info.getState() == BatchStateEnum.Failed) {
System.out.println("-------------- failed ----------"

+ info);
break;

} else {
System.out.println("-------------- waiting ----------"

+ info);
}

}

if (queryResults != null) {
for (String resultId : queryResults) {
bulkConnection.getQueryResultStream(job.getId(),

info.getId(), resultId);
}

}
} catch (AsyncApiException aae) {
aae.printStackTrace();

} catch (InterruptedException ie) {
ie.printStackTrace();

}
}

SEE ALSO:

How Bulk Queries Are Processed

PK Chunking

Walk Through a Bulk Query Sample

131

Use Bulk QueryBulk API

PK Chunking
Use the primary key (PK) chunking request header to enable automatic PK chunking for a bulk query job. PK chunking splits bulk queries
on large tables into chunks based on the record IDs, or primary keys, of the queried records.

Each chunk is processed as a separate batch that counts toward your daily batch limit, and you must download each batch’s results
separately. PK chunking works only with queries that don’t include subqueries or conditions other than WHERE.

PK chunking works by adding record ID boundaries to the query with a WHERE clause, limiting the query results to a smaller chunk of
the total results. The remaining results are fetched with extra queries that contain successive boundaries. The number of records within
the ID boundaries of each chunk is referred to as the chunk size. The first query retrieves records between a specified starting ID and the
starting ID plus the chunk size. The next query retrieves the next chunk of records, and so on.

For example, let’s say you enable PK chunking for the following query on an Account table with 10,000,000 records.

SELECT Name FROM Account

Assuming a chunk size of 250,000 and a starting record ID of 001300000000000, the query is split into these 40 queries. Each query
is submitted as a separate batch.

SELECT Name FROM Account WHERE Id >= 001300000000000 AND Id < 00130000000132G
SELECT Name FROM Account WHERE Id >= 00130000000132G AND Id < 00130000000264W
SELECT Name FROM Account WHERE Id >= 00130000000264W AND Id < 00130000000396m
...
SELECT Name FROM Account WHERE Id >= 00130000000euQ4 AND Id < 00130000000fxSK

Each query executes on a chunk of 250,000 records specified by the base-62 ID boundaries.

PK chunking is designed for extracting data from entire tables, but you can also use it for filtered queries. Because records could be
filtered from each query’s results, the number of returned results for each chunk can be less than the chunk size. The IDs of soft-deleted
records are counted when the query is split into chunks, but the records are omitted from the results. Therefore, if soft-deleted records
fall within a given chunk’s ID boundaries, the number of returned results is less than the chunk size. In some scenarios, the net chunk
size can also be greater than what is specified.

The default chunk size is 100,000, and the maximum size is 250,000. The default starting ID is the first record in the table. However, you
can specify a different starting ID to restart a job that failed between chunked batches.

When a query is successfully chunked, the original batch’s status shows as NOT_PROCESSED. If the chunking fails, the original batch’s
status shows as FAILED, but any chunked batches that were successfully queued during the chunking attempt are processed as
normal. When the original batch’s status is changed to NOT_PROCESSED, monitor the subsequent batches. You can retrieve the
results from each subsequent batch after it’s completed. Then you can safely close the job.

Salesforce recommends that you enable PK chunking when querying tables with more than 10 million records or when a bulk query
consistently times out. However, the effectiveness of PK chunking depends on the specifics of the query and the queried data.

Supported Objects
PK chunking only works with the following objects:

• Account

• AccountContactRelation

• AccountTeamMember

• AiVisitSummary

• Asset

• AssignedResource

132

PK ChunkingBulk API

• Campaign

• CampaignMember

• CandidateAnswer

• Case

• CaseArticle

• CaseComment

• CaseRelatedIssue

• ChangeRequest

• ChangeRequestRelatedIssue

• ChangeRequestRelatedItem

• Claim

• ClaimParticipant

• Contact

• ContentDistribution

• ContentDocument

• ContentNote

• ContentVersion

• Contract

• ContractLineItem

• ConversationDefinitionEventLog

• ConversationEntry

• ConversationReason

• ConversationReasonExcerpt

• ConversationReasonGroup

• CustomerProperty

• EinsteinAnswerFeedback

• EmailMessage

• EngagementScore

• Entitlement

• Event

• EventRelation

• FeedItem

• Incident

• IncidentRelatedItem

• Individual

• InsurancePolicy

• InsurancePolicyAsset

• InsurancePolicyParticipant

• Lead

• LeadInsight

133

PK ChunkingBulk API

• LinkedArticle

• LiveChatTranscript

• LoginHistory

• LoyaltyAggrPointExprLedger

• LoyaltyLedger

• LoyaltyMemberCurrency

• LoyaltyMemberTier

• LoyaltyPartnerProduct

• LoyaltyProgramMbrPromotion

• LoyaltyProgramMember

• LoyaltyProgramPartner

• LoyaltyProgramPartnerLedger

• MessagingSession

• MlRetrainingFeedback

• Note

• ObjectTerritory2Association

• Opportunity

• OpportunityContactRole

• OpportunityHistory

• OpportunityLineItem

• OpportunitySplit

• OpportunityTeamMember

• Order

• OrderItem

• Pricebook2

• PricebookEntry

• Problem

• ProblemIncident

• ProblemRelatedItem

• Product2

• ProductConsumed

• ProductRequired

• QuickText

• Quote

• QuoteLineItem

• ReplyText

• ScoreIntelligence

• ServiceAppointment

• ServiceContract

• Task

134

PK ChunkingBulk API

• TaskRelation

• TermDocumentFrequency

• TimeSheetEntry

• TransactionJournal

• User

• UserRole

• VoiceCall

• VoiceCallRecording

• Voucher

• WebCart

• WorkloadUnit

• WorkOrder

• WorkOrderLineItem

• WorkPlan

• WorkPlanTemplate

Support includes custom objects.

Sharing and History Objects
You can use PK chunking with any Sharing and History tables that support standard objects. To enable PK-Chunking for History and
Sharing objects, specify the parent object in the Sforce-Enable-PKChunking header by using the parent header field name.

Filtered Queries
PK chunking is designed for extracting data from entire tables, but you can also use it for filtered queries.

Because records could be filtered from each query’s results, the number of returned results for each chunk can be less than the chunk
size. Also, the IDs of soft-deleted records are counted when the query is split into chunks, but the records are omitted from the results.
Therefore, if soft-deleted records fall within a given chunk’s ID boundaries, the number of returned results is less than the chunk size.

Some query limitations apply that effectively disable PK chunking for the specified bulk query job:

• Filtering on any field with “id” in the field name (ID fields).

• Using an "ORDER BY" clause.

Header Field Name and Values
Field name

Sforce-Enable-PKChunking

Field values

• TRUE—Enables PK chunking with the default chunk size, starting from the first record ID in the queried table.

• FALSE—Disables PK chunking. If the header isn’t provided in the request, the default is FALSE.

• chunkSize—Specifies the number of records within the ID boundaries for each chunk. The default is 100,000, and the
maximum size is 250,000. If the query contains filters or soft-deleted records, the number of returned results for each chunk
could be less than the chunk size. Other factors could return a net chunk size that is greater than the specified chunkSize.

135

PK ChunkingBulk API

To exercise a tighter limit on the number of records in a chunk, add the useSampledData header. In any case, consider
experimenting to determine the optimal chunk size.

• parent—Specifies the parent object when you’re enabling PK chunking for queries on sharing objects. The chunks are based
on the parent object’s records rather than the sharing object’s records. For example, when querying on AccountShare, specify
Account as the parent object. PK chunking is supported for sharing objects as long as the parent object is supported.

Similarly, for CaseHistory, specify Case as the parent object. For example:

Sforce-Enable-PKChunking: parent=Case

• startRow—Specifies the 15-character or 18-character record ID to be used as the lower boundary for the first chunk. Use this
parameter to specify a starting ID when restarting a job that failed between batches.

Example
Sforce-Enable-PKChunking: chunkSize=50000; startRow=00130000000xEftMGH

Walk Through a Bulk Query Sample
This code sample uses cURL to query several account records.

Note: Before you begin building an integration or other client application:

• Install your development platform according to its product documentation.

• Read through all the steps before creating the test client application. Also review the rest of this document to familiarize
yourself with terms and concepts.

Create a Job
1. Create a file called create-job.xml containing this text.

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<operation>query</operation>
<object>Account</object>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>CSV</contentType>

</jobInfo>

2. Using a command-line window, execute this cURL command to create a job.

curl -H "X-SFDC-Session: sessionId" -H "Content-Type: application/xml; charset=UTF-8"
-d @create-job.xml https://instance.salesforce.com/services/async/62.0/job

instance is the portion of the <serverUrl> element and sessionId is the <sessionId> element that you noted
in the login response.

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>750x000000009tvAAA</id>
<operation>query</operation>
<object>Account</object>

136

Walk Through a Bulk Query SampleBulk API

<createdById>005x0000001WR0lAAG</createdById>
<createdDate>2016-01-10T00:53:19.000Z</createdDate>
<systemModstamp>2016-01-10T00:53:19.000Z</systemModstamp>
<state>Open</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>CSV</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>
<numberBatchesCompleted>0</numberBatchesCompleted>
<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>0</numberBatchesTotal>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRetries>0</numberRetries>
<apiVersion>36.0</apiVersion>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</jobInfo>

Add a Batch to the Job
1. Create a file called query.txt to contain the SOQL query statement.

SELECT Id, Name FROM Account LIMIT 10

2. Using a command-line window, execute this cURL command to add a batch to the job:

curl -d @query.txt -H "X-SFDC-Session: sessionId" -H "Content-Type: text/csv;
charset=UTF-8" https://instance.salesforce.com/services/async/62.0/job/jobId/batch

jobId is the job ID returned in the response to the job creation.

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<batchInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>751x000000009vwAAA</id>
<jobId>750x000000009tvAAA</jobId>
<state>Queued</state>
<createdDate>2016-01-10T00:59:47.000Z</createdDate>
<systemModstamp>2016-01-10T00:59:47.000Z</systemModstamp>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</batchInfo>

Note: When you add a batch to a bulk query job, the Content-Type in the header for the request must be text/csv,
application/xml, or application/json, depending on the content type specified when the job was created.
The actual SOQL statement supplied for the batch is in plain text format.

137

Walk Through a Bulk Query SampleBulk API

Close the Job
1. Create a file called close-job.xml containing this text.

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<state>Closed</state>

</jobInfo>

2. Using a command-line window, execute this cURL command to close the job.

curl -H "X-SFDC-Session: sessionId" -H "Content-Type: text/csv; charset=UTF-8" -d
@close-job.xml https://instance.salesforce.com/services/async/62.0/job/jobId

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>750x000000009tvAAA</id>
<operation>query</operation>
<object>Account</object>
<createdById>005x0000001WR0lAAG</createdById>
<createdDate>2016-01-10T00:53:19.000Z</createdDate>
<systemModstamp>2016-01-10T00:53:19.000Z</systemModstamp>
<state>Closed</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>CSV</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>
<numberBatchesCompleted>1</numberBatchesCompleted>
<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>1</numberBatchesTotal>
<numberRecordsProcessed>10</numberRecordsProcessed>
<numberRetries>0</numberRetries>
<apiVersion>36.0</apiVersion>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</jobInfo>

Check the Status of the Job and Batch
1. Using a command-line window, execute this cURL command to check the job status.

curl -H "X-SFDC-Session: sessionId"
https://instance.salesforce.com/services/async/62.0/job/jobId

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>750x000000009tvAAA</id>
<operation>query</operation>

138

Walk Through a Bulk Query SampleBulk API

<object>Account</object>
<createdById>005x0000001WR0lAAG</createdById>
<createdDate>2016-01-10T00:53:19.000Z</createdDate>
<systemModstamp>2016-01-10T00:53:19.000Z</systemModstamp>
<state>Open</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>CSV</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>
<numberBatchesCompleted>1</numberBatchesCompleted>
<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>1</numberBatchesTotal>
<numberRecordsProcessed>10</numberRecordsProcessed>
<numberRetries>0</numberRetries>
<apiVersion>36.0</apiVersion>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</jobInfo>

2. Using a command-line window, execute this cURL command to check the batch status.

curl -H "X-SFDC-Session: sessionId"
https://instance.salesforce.com/services/async/62.0/job/jobId/batch/batchId

batchId is the batch ID in the response to the batch creation.

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<batchInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>751x000000009vwAAA</id>
<jobId>750x000000009tvAAA</jobId>
<state>Completed</state>
<createdDate>2016-01-10T00:59:47.000Z</createdDate>
<systemModstamp>2016-01-10T01:00:19.000Z</systemModstamp>
<numberRecordsProcessed>10</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</batchInfo>

Retrieve the Results
1. Using the command-line window, execute this cURL command to retrieve the batch result list.

curl -H "X-SFDC-Session: sessionId"
https://instance.salesforce.com/services/async/62.0/job/jobId/batch/batchId/result

139

Walk Through a Bulk Query SampleBulk API

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<result-list xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<result>752x00000004CJE</result>

</result-list>

Note: If the batch required retries, there will be more than one <result> element in the output.

2. Using the command-line window, execute this cURL command to retrieve the results of the query.

curl -H "X-SFDC-Session: sessionId"
https://instance.salesforce.com/services/async/62.0/job/jobId/batch/batchId/result/resultId

resultId is the result ID in the response to the batch result list request.

Salesforce returns a CSV response with data such as this.

"Id","Name"
"001x000xxx4TU4JAAW","name161268--1296595660659"
"001x000xxx4TU4KAAW","name161269--1296595660659"
"001x000xxx4TU4LAAW","name161270--1296595660659"
"001x000xxx4TU4MAAW","name161271--1296595660659"
"001x000xxx4TU4NAAW","name161272--1296595660659"
"001x000xxx4TU4OAAW","name161273--1296595660659"
"001x000xxx4TU4PAAW","name161274--1296595660659"
"001x000xxx4TU4QAAW","name161275--1296595660659"
"001x000xxx4TU4RAAW","name161276--1296595660659"
"001x000xxx4TU4SAAW","name161277--1296595660659"

SEE ALSO:

How Bulk Queries Are Processed

Use Bulk Query

Walk Through a Bulk Query Sample Using PK Chunking

Walk Through a Bulk Query Sample Using PK Chunking
This code sample uses cURL to perform a bulk query with PK chunking enabled on several account records.

Note: Before you begin building an integration or other client application:

• Install your development platform according to its product documentation.

• Read through all the steps before creating the test client application. Also review the rest of this document to familiarize
yourself with terms and concepts.

Create a Job with PK Chunking Enabled
1. Create a file called create-job.xml containing this text.

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">

140

Walk Through a Bulk Query Sample Using PK ChunkingBulk API

<operation>query</operation>
<object>Account</object>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>CSV</contentType>

</jobInfo>

2. Using a command-line window, execute this cURL command to create a job with PK chunking enabled.

curl -H "X-SFDC-Session: sessionId" -H "Content-Type: application/xml; charset=UTF-8"
-H "Sforce-Enable-PKChunking: true" -d @create-job.xml
https://instance.salesforce.com/services/async/62.0/job

instance is the portion of the <serverUrl> element, and sessionId is the <sessionId> element that you noted
in the login response.

Note: Salesforce recommends that you enable PK chunking when querying tables with more than 10 million records or when
a bulk query consistently times out. For the purposes of this example, if you’re querying significantly fewer records, set
chunkSize to a number smaller than the number of records you’re querying. For example,
Sforce-Enable-PKChunking: chunkSize=1000. This way, you get to see PK chunking in action, and the query
is split into multiple batches.

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>750x000000009tvAAA</id>
<operation>query</operation>
<object>Account</object>
<createdById>005x0000001WR0lAAG</createdById>
<createdDate>2016-01-10T00:53:19.000Z</createdDate>
<systemModstamp>2016-01-10T00:53:19.000Z</systemModstamp>
<state>Open</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>CSV</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>
<numberBatchesCompleted>0</numberBatchesCompleted>
<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>0</numberBatchesTotal>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRetries>0</numberRetries>
<apiVersion>36.0</apiVersion>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</jobInfo>

Add a Batch to the Job
1. Create a file called query.txt to contain the SOQL query statement.

SELECT Id, Name FROM Account

141

Walk Through a Bulk Query Sample Using PK ChunkingBulk API

2. Using a command-line window, execute this cURL command to add a batch to the job.

curl -d @query.txt -H "X-SFDC-Session: sessionId" -H "Content-Type: text/csv;
charset=UTF-8" https://instance.salesforce.com/services/async/62.0/job/jobId/batch

jobId is the job ID returned in the response to the job creation.

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<batchInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>751x000000009vwAAA</id>
<jobId>750x000000009tvAAA</jobId>
<state>Queued</state>
<createdDate>2016-01-10T00:59:47.000Z</createdDate>
<systemModstamp>2016-01-10T00:59:47.000Z</systemModstamp>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</batchInfo>

Note: When you add a batch to a bulk query job, the Content-Type in the header for the request must be text/csv,
application/xml, or application/json, depending on the content type specified when the job was created.
The actual SOQL statement supplied for the batch is in plain text format.

Check the Status of the Job and Batch
1. Using a command-line window, execute this cURL command to check the job status.

curl -H "X-SFDC-Session: sessionId"
https://instance.salesforce.com/services/async/62.0/job/jobId

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>750x000000009tvAAA</id>
<operation>query</operation>
<object>Account</object>
<createdById>005x0000001WR0lAAG</createdById>
<createdDate>2016-01-10T00:53:19.000Z</createdDate>
<systemModstamp>2016-01-10T00:53:19.000Z</systemModstamp>
<state>Open</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>CSV</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>
<numberBatchesCompleted>4</numberBatchesCompleted>
<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>4</numberBatchesTotal>
<numberRecordsProcessed>350000</numberRecordsProcessed>
<numberRetries>0</numberRetries>

142

Walk Through a Bulk Query Sample Using PK ChunkingBulk API

<apiVersion>36.0</apiVersion>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>3500</totalProcessingTime>
<apiActiveProcessingTime>3500</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</jobInfo>

Because PK chunking is enabled, extra batches are automatically created to process the entire query.

2. Using a command-line window, execute this cURL command to check the status of the original batch.

curl -H "X-SFDC-Session: sessionId"
https://instance.salesforce.com/services/async/62.0/job/jobId/batch/batchId

batchId is the batch ID in the response to the batch creation.

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<batchInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>751x000000009vwAAA</id>
<jobId>750x000000009tvAAA</jobId>
<state>Not Processed</state>
<createdDate>2016-01-10T00:59:47.000Z</createdDate>
<systemModstamp>2016-01-10T01:00:19.000Z</systemModstamp>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>
<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</batchInfo>

Because PK chunking is enabled, the original batch is given a state of Not Processed. The query is processed in the remaining
batches.

Get the IDs of the Remaining Batches
Using the command-line window, execute this cURL command to retrieve the remaining batches.

curl -H "X-SFDC-Session: sessionId"
https://instance.salesforce.com/services/async/62.0/job/jobId/batch

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?><batchInfoList
xmlns="http://www.force.com/2009/06/asyncapi/dataload">

<batchInfo>
<id>751D00000004YjwIAE</id>
<jobId>750D00000004T5OIAU</jobId>
<state>NotProcessed</state>
<createdDate>2016-01-10T00:59:47.000Z</createdDate>
<systemModstamp>2016-01-10T01:00:19.000Z</systemModstamp>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>0</totalProcessingTime>

143

Walk Through a Bulk Query Sample Using PK ChunkingBulk API

<apiActiveProcessingTime>0</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</batchInfo>
<batchInfo>
<id>751D00000004Yk1IAE</id>
<jobId>750D00000004T5OIAU</jobId>
<state>Completed</state>
<createdDate>2016-01-10T00:59:47.000Z</createdDate>
<systemModstamp>2016-01-10T01:00:19.000Z</systemModstamp>
<numberRecordsProcessed>100000</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>1000</totalProcessingTime>
<apiActiveProcessingTime>1000</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</batchInfo>
<batchInfo>
<id>751D00000004Yk2IAE</id>
<jobId>750D00000004T5OIAU</jobId>
<state>Completed</state>
<createdDate>2016-01-10T00:59:47.000Z</createdDate>
<systemModstamp>2016-01-10T01:00:19.000Z</systemModstamp>
<numberRecordsProcessed>100000</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>1000</totalProcessingTime>
<apiActiveProcessingTime>1000</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</batchInfo>
<batchInfo>
<id>751D00000004Yk6IAE</id>
<jobId>750D00000004T5OIAU</jobId>
<state>Completed</state>
<createdDate>2016-01-10T00:59:47.000Z</createdDate>
<systemModstamp>2016-01-10T01:00:19.000Z</systemModstamp>
<numberRecordsProcessed>100000</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>1000</totalProcessingTime>
<apiActiveProcessingTime>1000</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</batchInfo>
<batchInfo>
<id>751D00000004Yk7IAE</id>
<jobId>750D00000004T5OIAU</jobId>
<state>Completed</state>
<createdDate>2016-01-10T00:59:47.000Z</createdDate>
<systemModstamp>2016-01-10T01:00:19.000Z</systemModstamp>
<numberRecordsProcessed>50000</numberRecordsProcessed>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>500</totalProcessingTime>
<apiActiveProcessingTime>500</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>
</batchInfo>
</batchInfoList>

144

Walk Through a Bulk Query Sample Using PK ChunkingBulk API

Retrieve the Results
Perform these steps for each remaining batch.

1. Using the command-line window, execute this cURL command to retrieve the batch result list.

curl -H "X-SFDC-Session: sessionId"
https://instance.salesforce.com/services/async/62.0/job/jobId/batch/batchId/result

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<result-list xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<result>752x00000004CJE</result>

</result-list>

Note: If the batch required retries, there will be more than one <result> element in the output.

2. Using the command-line window, execute this cURL command to retrieve the results of the query.

curl -H "X-SFDC-Session: sessionId"
https://instance.salesforce.com/services/async/62.0/job/jobId/batch/batchId/result/resultId

resultId is the result ID in the response to the batch result list request.

Salesforce returns a CSV response with data such as this.

"Id","Name"
"001x000xxx4TU4JAAW","name161268--1296595660659"
"001x000xxx4TU4KAAW","name161269--1296595660659"
"001x000xxx4TU4LAAW","name161270--1296595660659"
"001x000xxx4TU4MAAW","name161271--1296595660659"
"001x000xxx4TU4NAAW","name161272--1296595660659"
"001x000xxx4TU4OAAW","name161273--1296595660659"
"001x000xxx4TU4PAAW","name161274--1296595660659"
"001x000xxx4TU4QAAW","name161275--1296595660659"
"001x000xxx4TU4RAAW","name161276--1296595660659"
"001x000xxx4TU4SAAW","name161277--1296595660659"
...

Close the Job
1. Create a file called close-job.xml containing this text.

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<state>Closed</state>

</jobInfo>

2. Using a command-line window, execute this cURL command to close the job.

curl -H "X-SFDC-Session: sessionId" -H "Content-Type: text/csv; charset=UTF-8" -d
@close-job.xml https://instance.salesforce.com/services/async/62.0/job/jobId

Salesforce returns an XML response with data such as this.

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

145

Walk Through a Bulk Query Sample Using PK ChunkingBulk API

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>750x000000009tvAAA</id>
<operation>query</operation>
<object>Account</object>
<createdById>005x0000001WR0lAAG</createdById>
<createdDate>2016-01-10T00:53:19.000Z</createdDate>
<systemModstamp>2016-01-10T00:53:19.000Z</systemModstamp>
<state>Closed</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>CSV</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>
<numberBatchesCompleted>4</numberBatchesCompleted>
<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>4</numberBatchesTotal>
<numberRecordsProcessed>350000</numberRecordsProcessed>
<numberRetries>0</numberRetries>
<apiVersion>36.0</apiVersion>
<numberRecordsFailed>0</numberRecordsFailed>
<totalProcessingTime>3500</totalProcessingTime>
<apiActiveProcessingTime>3500</apiActiveProcessingTime>
<apexProcessingTime>0</apexProcessingTime>

</jobInfo>

SEE ALSO:

How Bulk Queries Are Processed

Use Bulk Query

PK Chunking

Walk Through a Bulk Query Sample

Headers

These are the custom HTTP request and response headers that are used for Bulk API.

Content Type Header

Use the Content Type header to specify the format for your request and response. Set the value of this header to match the
contentType of the job you’re working with.

Batch Retry Header

Use Sforce-Disable-Batch-Retry to disable reties on unfinished batches.

Line Ending Header

Use Sforce-Line-Ending to optionally specify line break types.

Warning Header

This header is returned if there are warnings, such as the use of a deprecated version of the API.

Sforce Call Options Header

Use the Sforce Call Options header to specify client-specific options when accessing Bulk API resources.

146

HeadersBulk API

Content Type Header
Use the Content Type header to specify the format for your request and response. Set the value of this header to match the
contentType of the job you’re working with.

For jobs with a contentType of CSV, XML is used as the response format except in the case of bulk query results, which are returned
in CSV. To ensure that you retrieve responses in JSON, create a job with a contentType of JSON and use JSON for your batch payloads.
To ensure that you retrieve responses in XML, create a job with a contentType of XML or CSV, and use the same format for your
batch payloads.

If the job’s contentType is unavailable, for example, when you create a job or when you submit a request with a bad job ID, the
response respects the value of this header. If this header isn’t included, the response defaults to XML.

Header Field Name and Values
Field name

Content-Type

Field values

• application/json (JSON is the preferred format.)

• application/xml (XML is the preferred format.)

• text/csv (CSV is the preferred format. Except for bulk query results, responses are returned in XML.)

Example
Content-Type: application/json

Batch Retry Header
Use Sforce-Disable-Batch-Retry to disable reties on unfinished batches.

When you create a bulk job, the Batch Retry request header lets you disable retries for unfinished batches included in the job. Use this
header to limit the batch processing time for batches that consistently time out.

Header Field Name and Values
Field name

Sforce-Disable-Batch-Retry

Field values

• TRUE. Unfinished batches in this job aren’t retried.

• FALSE. Unfinished batches in this job are retried the standard number of times (15 for bulk queries and 10 for bulk uploads). If
the header isn’t provided in the request, this is the default value.

Example
Sforce-Disable-Batch-Retry: TRUE

Line Ending Header
Use Sforce-Line-Ending to optionally specify line break types.

When you’re creating a bulk upload job, the Line Ending request header lets you specify whether line endings are read as line feeds (LFs)
or as carriage returns and line feeds (CRLFs) for fields of type Text Area and Text Area (Long).

147

Content Type HeaderBulk API

Header Field Name and Values
Field name

Sforce-Line-Ending

Field values

• LF. Line endings are read as LFs.

• CRLF. Line endings are read as CRLFs.

Example
Sforce-Line-Ending: CRLF

Warning Header
This header is returned if there are warnings, such as the use of a deprecated version of the API.

Header Field Name and Values
Field name

Warning

Field values

• warningCode

• warningMessage

For warnings about deprecated API versions, the warningCode is 299.

Example
Warning: 299 - "This API is deprecated and will be removed by Summer '22. Please see
https://help.salesforce.com/articleView?id=000351312 for details."

Sforce Call Options Header
Use the Sforce Call Options header to specify client-specific options when accessing Bulk API resources.

Header Field Name and Values
Field name

Sforce-Call-Options

Field values

• client—A string that identifies a client, for use, for example, in event log files.

For an example of using Sforce-Call-Options, see Call Options Header in the REST API Developer Guide.

Limits

Note the following limits specific to Bulk API.

148

Warning HeaderBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.api_rest.meta/api_rest/headers_calloptions.htm

Batch Allocations, General, Ingest, and Query Limits
Most limits for Bulk API are described in Bulk API and Bulk API 2.0 Limits and Allocations. Additional limits specific to Bulk API are
called out in this topic.

API usage limits
Bulk API use is subject to the standard API usage limits. Each HTTP request counts as one call for the purposes of calculating usage
limits.

Apex transactions
When DML is performed with Bulk API, each chunk of 200 records is processed as a separate transaction. For more information about
Apex limits, see Per-Transaction Apex Limits on page 79.

Batch content
Each batch must contain exactly one CSV, XML, or JSON file containing records for a single object, or the batch isn’t processed and
stateMessage is updated. Use the Enterprise WSDL for the correct format for object records.

Compression
The only valid compression value is gzip. Compression is optional, but recommended. Compression doesn’t affect the character
or batch size limits.

Job abort
Any user with correct permission can abort a job. Only the user who created a job can close it.

Job close
Only the user who created a job can close it. Any user with correct permission can abort a job.

Job content
Each job can specify one operation and one object. Batches associated with this job contain records of one object. Optionally, you
can specify serial processing mode, which is used only when previously submitted asynchronous jobs have accidentally produced
contention because of locks. Use only when advised by Salesforce.

Job external ID
You can't edit the value of an external ID field in JobInfo. When specifying an external ID, the operation must be upsert. If you try to
use it with create or update, an error is generated.

Job status in job history
The job status and batch results sets for completed jobs are available for 7 days, after which the data is deleted permanently.

Job status change
When you submit a POST body with a change in job status, you can only specify the status field value. If operation or
entity field values are specified, an error occurs.

Portal users
Regardless of whether the API Enabled profile permission is granted, portal users (Customer Portal, Self-Service portal, and Partner
Portal) can't access Bulk API.

SOQL

Bulk API doesn’t support queries with any of the following:

• GROUP BY, OFFSET, or TYPEOF clauses

• Aggregate functions such as COUNT()

• Date functions in GROUP BY clauses (date functions in WHERE clauses are supported)

• Compound address fields or compound geolocations fields

149

LimitsBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm

Bulk API Reference

These are the supported resources for the Bulk API, as well as the details on errors and processing limits.

For information about Bulk API job and batch lifespan, batch allocations, and other limits, see Bulk API and Bulk API 2.0 Limits and
Allocations in the Salesforce Developer Limits and Allocations Quick Reference.

Schema

The Bulk API service is described by an XML Schema Document (XSD) file.

JobInfo

A job contains one or more batches of data for you to submit to Salesforce for processing. When a job is created, Salesforce sets the
job state to Open.

BatchInfo

A BatchInfo contains one batch of data for you to submit to Salesforce for processing.

Errors

Operations that you perform with Bulk API can trigger error codes. This list shows the most common error codes and the Bulk API
action that possibly triggered them.

Schema
The Bulk API service is described by an XML Schema Document (XSD) file.

You can download the schema file for an API version by using this URI:

Web_Services_SOAP_endpoint_hostname/services/async/APIversion/AsyncApi.xsd

For example, if you're working with version 62.0 of the Bulk API, the URI for a production org is in this format.

https://MyDomainName.my.salesforce.com/services/async/62.0/AsyncApi.xsd

You can find the My Domain name and My Domain login URL for your org on the My Domain page in Setup. Or, to get the hostname
of your My Domain login URL in Apex, use the getMyDomainHostname() method of the System.DomainCreator class.

Schema and API Versions
The schema file is available for API versions earlier than the current release. You can download the schema file for API version 18.0 and
later. For example, if you want to download the schema file for API version 31.0, use this URI:

https://MyDomainName.my.salesforce.com/services/async/31.0/AsyncApi.xsd

SEE ALSO:

JobInfo

BatchInfo

Errors

JobInfo
A job contains one or more batches of data for you to submit to Salesforce for processing. When a job is created, Salesforce sets the job
state to Open.

150

Bulk API ReferenceBulk API

You can create a job, get information about a job, close a job, or abort a job using the JobInfo resource.

Fields

DescriptionRequestTypeName

The API version of the job set in the URI when the job
was created. The earliest supported version is 17.0.

Read only. Don’t
set for new job.

stringapiVersion

The number of milliseconds taken to process triggers
and other processes related to the job data. This

Don’t specify for
new job.

longapexProcessingTime

number is the sum of the equivalent times in all
batches in the job. This doesn't include the time used
for processing asynchronous and batch Apex
operations. If there are no triggers, the value is 0. See
also apiActiveProcessingTime and
totalProcessingTime.

This field is available in API version 19.0 and later.

The number of milliseconds taken to actively process
the job. It includes apexProcessingTime, but

Don’t specify for
new job.

longapiActiveProcessingTime

doesn't include the time the job waited in the queue
to be processed or the time required for serialization
and deserialization. This is the sum of the equivalent
times in all batches in the job. See also
apexProcessingTime and
totalProcessingTime.

This field is available in API version 19.0 and later.

The ID of a specific assignment rule to run for a case or
a lead. The assignment rule can be active or inactive.

Can't update after
creation.

stringassignmentRuleId

The ID can be retrieved by using the SOAP-based SOAP
API to query the AssignmentRule object.

The concurrency mode for the job. The valid values are:ConcurrencyModeEnumconcurrencyMode

• Parallel: Process batches in Parallel
mode. Default value. Batches from the same job,
and from other jobs submitted with parallel mode,
are processed simultaneously. Parallel processing,
though, has the potential to cause lock contention
on records. When record locking is severe, the job
can fail. Any failed records must be resubmitted.

• Serial: Process batches in Serial mode. If
parallel mode results in too many failed records or
failed jobs, submit the job with Serial
concurrency mode. In this mode, batches from the
job and batches from other serial mode jobs are

151

JobInfoBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.object_reference.meta/object_reference/sforce_api_objects_assignmentrule.htm

DescriptionRequestTypeName

processed one at a time. However, Serial mode
can significantly increase the processing time.

The content type for the job. The valid values are:ContentTypecontentType

• CSV—data in CSV format (default and only
supported content type for Bulk V2 type jobs)

• JSON—data in JSON format

• XML—data in XML format (default option for Bulk
V1 type jobs)

• ZIP_CSV—data in CSV format in a zip file
containing binary attachments

• ZIP_JSON—data in JSON format in a zip file
containing binary attachments

• ZIP_XML—data in XML format in a zip file
containing binary attachments

The ID of the user who created this job. All batches
must be created by this same user.

System fieldstringcreatedById

The date and time in the UTC time zone when the job
was created.

System fielddateTimecreatedDate

The name of the external ID field for an upsert().Required with
upsert

stringexternalIdFieldName

Unique ID for this job.

All GET operations return this value in results.

Don’t specify for
new job.

stringid

The number of batches that have been completed for
this job.

Don’t specify for
new job.

intnumberBatchesCompleted

The number of batches queued for this job.Don’t specify for
new job.

intnumberBatchesQueued

The number of batches that have failed for this job.Don’t specify for
new job.

intnumberBatchesFailed

The number of batches that are in progress for this job.Don’t specify for
new job.

intnumberBatchesInProgress

The number of total batches currently in the job. This
value increases as more batches are added to the job.

Don’t specify for
new job.

intnumberBatchesTotal

When the job state is Closed or Failed, this
number represents the final total.

The job is complete when numberBatchesTotal
equals the sum of numberBatchesCompleted
and numberBatchesFailed.

152

JobInfoBulk API

DescriptionRequestTypeName

The number of records that weren’t processed
successfully in this job.

This field is available in API version 19.0 and later.

Don’t specify for
new job.

intnumberRecordsFailed

The number of records already processed. This number
increases as more batches are processed.

Don’t specify for
new job.

intnumberRecordsProcessed

The number of times that Salesforce attempted to save
the results of an operation. The repeated attempts are
due to a problem, such as a lock contention.

intnumberRetries

The object type for the data being processed. All data
in a job must be of a single object type.

Requiredstringobject

The processing operation for all the batches in the job.
The valid values are:

RequiredOperationEnumoperation

• delete

• hardDelete

• insert

• query

• queryAll

• update

• upsert

Warning: The operation value must match
that shown here. For example, you get an error
if you use INSERT instead of insert.

To ensure referential integrity, the delete operation
supports cascading deletions. If you delete a parent
record, you delete its children automatically, as long
as each child record can be deleted. For example, if
you delete a Case record, the Bulk API automatically
deletes any child records, such as CaseComment,
CaseHistory, and CaseSolution records associated with
that case. However, if a CaseComment isn’t deletable
or is being used, then the delete operation on the
parent Case record fails.

Warning: When the hardDelete value is
specified, the deleted records aren't stored in
the Recycle Bin. Instead, they become
immediately eligible for deletion. The
permission for this operation, “Bulk API Hard
Delete,” is disabled by default and must be
enabled by an administrator. A Salesforce user
license is required for hard delete.

153

JobInfoBulk API

DescriptionRequestTypeName

The current state of processing for the job:Required if
creating, closing,
or aborting a job.

JobStateEnumstate

• Open: The job has been created, and data can be
added to the job.

• Closed: No new data can be added to this job.
Data associated with the job may be processed
after a job is closed. You can’t edit or save a closed
job.

• Aborted: The job has been aborted. You can
abort a job if you created it or if you’ve the “Manage
Data Integrations” permission.

• Failed: The job has failed. Batches that were
successfully processed can't be rolled back. The
BatchInfoList contains a list of all batches for the
job. From the results of BatchInfoList, results can
be retrieved for completed batches. The results
indicate which records have been processed. The
numberRecordsFailed field contains the
number of records that weren’t processed
successfully.

Date and time in the UTC time zone when the job
finished.

System fielddateTimesystemModstamp

The number of milliseconds taken to process the job.
This number is the sum of the total processing times

Don’t specify for
new job.

longtotalProcessingTime

for all batches in the job. See also
apexProcessingTime and
apiActiveProcessingTime.

This field is available in API version 19.0 and later.

SEE ALSO:

Quick Start: Bulk API

Quick Start: Bulk API 2.0

SOAP API Developer Guide

BatchInfo
A BatchInfo contains one batch of data for you to submit to Salesforce for processing.

154

BatchInfoBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/

BatchInfo

DescriptionRequestTypeName

The number of milliseconds taken to process triggers and other
processes related to the batch data. If there are no triggers, the value

System
field

longapexProcessingTime

is 0. This doesn't include the time used for processing asynchronous
and batch Apex operations. See also
apiActiveProcessingTime and
totalProcessingTime.

This field is available in API version 19.0 and later.

The number of milliseconds taken to actively process the batch, and
includes apexProcessingTime. This doesn't include the time

System
field

longapiActiveProcessingTime

the batch waited in the queue to be processed or the time required
for serialization and deserialization. See also
totalProcessingTime.

This field is available in API version 19.0 and later.

The date and time in the UTC time zone when the batch was created.
This is not the time processing began, but the time the batch was
added to the job.

System
field

dateTimecreatedDate

The ID of the batch. May be globally unique, but does not have to
be.

Requiredstringid

The unique, 18–character ID for the job associated with this batch.RequiredstringjobId

The number of records that were not processed successfully in this
batch.

This field is available in API version 19.0 and later.

System
field

intnumberRecordsFailed

The number of records processed in this batch at the time the request
was sent. This number increases as more batches are processed.

System
field

intnumberRecordsProcessed

The current state of processing for the batch:System
field

BatchStateEnumstate

• Queued: Processing of the batch hasn’t started yet. If the job
associated with this batch is aborted, the batch isn’t processed
and its state is set to NotProcessed.

• InProgress: The batch is being processed. If the job
associated with the batch is aborted, the batch is still processed
to completion. You must close the job associated with the batch
so that the batch can finish processing.

• Completed: The batch has been processed completely, and
the result resource is available. The result resource indicates if
some records failed. A batch can be completed even if some or
all the records failed. If a subset of records failed, the successful
records aren’t rolled back.

155

BatchInfoBulk API

DescriptionRequestTypeName

• Failed: The batch failed to process the full request due to an
unexpected error, such as the request is compressed with an
unsupported format, or an internal server error. The
stateMessage element could contain more details about
any failures. Even if the batch failed, some records could have
completed successfully. The numberRecordsProcessed
field tells you how many records were processed. The
numberRecordsFailed field contains the number of
records that were not processed successfully.

• NotProcessed: The batch won’t be processed. This state is
assigned when a job is aborted while the batch is queued. For
bulk queries, if the job has PK chunking enabled, this state is
assigned to the original batch that contains the query when the
subsequent batches are created. After the original batch is
changed to this state, you can monitor the subsequent batches
and retrieve each batch’s results when it’s completed. Then you
can safely close the job.

When the state value is Failed, this field contains the reasons
for failure. If there are multiple failures, the message may be truncated.

System
field

stringstateMessage

If so, fix the known errors and re-submit the batch. Even if the batch
failed, some records could have completed successfully.

The date and time in the UTC time zone that processing ended. This
is only valid when the state is Completed.

System
field

dateTimesystemModstamp

The number of milliseconds taken to process the job. This is the sum
of the total processing times for all batches in the job. See also

System
field

longtotalProcessingTime

apexProcessingTime and
apiActiveProcessingTime.

This field is available in API version 19.0 and later.

HTTP BatchInfoList

DescriptionTypeName

One BatchInfo resource for each batch in the associated job. For the structure
of BatchInfo, see Get Information for a Batch .

BatchInfobatchInfo

SEE ALSO:

Work with Batches

Interpret Batch State

Quick Start: Bulk API 2.0

SOAP API Developer Guide

156

BatchInfoBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/

Errors
Operations that you perform with Bulk API can trigger error codes. This list shows the most common error codes and the Bulk API action
that possibly triggered them.

Tip: For HTTP response codes, see Status Codes and Error Responses.

ClientInputError
The operation failed with an unknown client-side error.

For binary attachments, the request content is provided both as an input stream and an attachment.

ExceededQuota
The job or batch you tried to create exceeds the allowed number for the past 24-hour period.

FeatureNotEnabled
Bulk API isn’t enabled for this organization.

InvalidBatch
The batch ID specified in a batch update or query is invalid.

This error code is returned for binary attachments when the zip content is malformed or these conditions occur:

• The request.txt file can't be found, can't be read, is a directory, or contains invalid content.

• The decompressed size of a binary attachment is too large.

• The size of the zip file is too large.

• The total decompressed size of all the binary attachments is too large.

Note: A StatusCode of INVALID_FIELD is returned for the following conditions:

• A binary file referenced in the batch data is missing or is a directory.

• A binary file referenced in the batch data doesn't start with #.

For more information about binary attachment limits, see "General Limits" in Bulk API and Bulk API 2.0 Limits and Allocations.

InvalidJob
The job ID specified in a query or update for a job, or a create, update, or query for batches is invalid.

The user attempted to create a job using a zip content type in API version 19.0 or earlier.

InvalidJobState
The job state specified in a job update operation is invalid.

InvalidOperation
The operation specified in a URI for a job is invalid. Check the spelling of “job” in the URI.

InvalidSessionId
The session ID specified is invalid.

InvalidUrl
The URI specified is invalid.

InvalidUser
Either the user sending a Bulk API request doesn't have the correct permission, or the job or batch specified was created by another
user.

InvalidXML
XML contained in the request body is invalid.

157

ErrorsBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.api_rest.meta/api_rest/errorcodes.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm

Timeout
The connection timed out. This error is thrown if Salesforce takes too long to process a batch. For more information on timeout
limits, see "Limits Specific to Ingest Jobs" in Bulk API and Bulk API 2.0 Limits and Allocations. If you get a timeout error when processing
a batch, split your batch into smaller batches, and try again.

TooManyLockFailure
Too many lock failures while processing the current batch. This error may be returned during processing of a batch. To resolve,
analyze the batches for lock conflicts. See "General Limits" in Bulk API and Bulk API 2.0 Limits and Allocations.

Unknown
Exception with unknown cause occurred.

In addition, Bulk API uses the same status codes and exception codes as SOAP API. For more information on these codes, see
“ExceptionCode” in the SOAP API Developer Guide.

SEE ALSO:

Handle Failed Records in Batches

Sample Client Application Using Java

Use this code sample to create a test client application that inserts a number of account records using the REST-based Bulk API.

In addition to the step-by-step instructions that follow, the end of this section provides the complete code to make copying and pasting
easier for you.

Note: Before you begin building an integration or other client application:

• Install your development platform according to its product documentation.

• Read through all the steps before creating the test client application. You may also wish to review the rest of this document
to familiarize yourself with terms and concepts.

1. Set Up Your Client Application

The Bulk API uses HTTP GET and HTTP POST methods to send and receive XML or JSON content, so it’s simple to build clients in the
language of your choice. This task uses a Java sample and the Salesforce Web Service Connector (WSC) toolkit provided by Salesforce
to simplify development. WSC is a high-performing web service client stack implemented using a streaming parser. The toolkit has
built-in support for the basic operations and objects used in the Bulk API.

2. Walk Through the Sample Code

After you set up your client, you can build client applications that use the Bulk API. Use the sample to create a client application.
Each section steps through part of the code. The complete sample is included at the end.

Set Up Your Client Application
The Bulk API uses HTTP GET and HTTP POST methods to send and receive XML or JSON content, so it’s simple to build clients in the
language of your choice. This task uses a Java sample and the Salesforce Web Service Connector (WSC) toolkit provided by Salesforce
to simplify development. WSC is a high-performing web service client stack implemented using a streaming parser. The toolkit has
built-in support for the basic operations and objects used in the Bulk API.

Review the library here:

https://github.com/forcedotcom/wsc

158

Sample Client Application Using JavaBulk API

https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_bulkapi.htm
https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_calls_concepts_core_data_objects.htm#exception_code_topic
https://github.com/forcedotcom/wsc

To download the Salesforce WSC toolkit:

1. Browse to http://mvnrepository.com/artifact/com.force.api/force-wsc or
https://repo1.maven.org/maven2/com/force/api/force-wsc/

2. Navigate to the version of WSC that matches the API version you’re using.

3. Click force-wsc-XX.X.X-uber.jar, and save the file to a local directory.

The Bulk API doesn’t provide a login operation, so you must use the SOAP API to login.

To download the partner WSDL and compile it to Java classes with the WSC toolkit:

1. Log in to your Developer Edition Salesforce account. You must log in as an administrator or as a user who has the “Modify All Data”
permission. Logins are checked to ensure they are from a known IP address. For more information, see Security and the API in the
SOAP API Developer Guide.

2. From Setup, in the Quick Find box, enter “API”, then select API.

3. Right-click Partner WSDL to display your browser's save options, and save the partner WSDL to a local directory.

4. Compile the partner API code from the WSDL using the WSC compile tool:

java -classpath pathToJar\force-wsc-XX.X.X-uber.jar com.sforce.ws.tools.wsdlc
pathToWSDL\wsdlFilename .\wsdlGenFiles.jar

For example, if force-wsc-XX.X.X-uber.jar is installed in C:\salesforce\wsc, and the partner WSDL is saved to
C:\salesforce\wsdl\partner:

java -classpath C:\salesforce\wsc\force-wsc-XX.X.X-uber.jar com.sforce.ws.tools.wsdlc
C:\salesforce\wsdl\partner\partner.wsdl .\partner.jar

force-wsc-XX.X.X-uber.jar and the generated partner.jar are the only libraries needed in the classpath for the code examples
in the following sections.

Walk Through the Sample Code
After you set up your client, you can build client applications that use the Bulk API. Use the sample to create a client application. Each
section steps through part of the code. The complete sample is included at the end.

This code sets up the packages and classes in the WSC toolkit and the code generated from the partner WSDL:

import java.io.*;
import java.util.*;

import com.sforce.async.*;
import com.sforce.soap.partner.PartnerConnection;
import com.sforce.ws.ConnectionException;
import com.sforce.ws.ConnectorConfig;

Set Up the main() Method
This code sets up the main() method for the class. It calls the runSample() method, which encompasses the processing logic
for the sample. We look at the methods called in runSample() in subsequent sections.

public static void main(String[] args)

159

Walk Through the Sample CodeBulk API

http://mvnrepository.com/artifact/com.force.api/force-wsc
https://repo1.maven.org/maven2/com/force/api/force-wsc/
https://developer.salesforce.com/docs/atlas.en-us.252.0.api.meta/api/sforce_api_concepts_security.htm

throws AsyncApiException, ConnectionException, IOException {
BulkExample example = new BulkExample();
// Replace arguments below with your credentials and test file name
// The first parameter indicates that we are loading Account records

example.runSample("Account", "myUser@myOrg.com", "myPassword", "mySampleData.csv");

}

/**
* Creates a Bulk API job and uploads batches for a CSV file.
*/
public void runSample(String sobjectType, String userName,

String password, String sampleFileName)
throws AsyncApiException, ConnectionException, IOException {

BulkConnection connection = getBulkConnection(userName, password);
JobInfo job = createJob(sobjectType, connection);
List<BatchInfo> batchInfoList = createBatchesFromCSVFile(connection, job,

sampleFileName);
closeJob(connection, job.getId());
awaitCompletion(connection, job, batchInfoList);
checkResults(connection, job, batchInfoList);

}

Login and Configure BulkConnection
This code logs in using a partner connection (PartnerConnection) and then reuses the session to create a Bulk API connection
(BulkConnection).

/**
* Create the BulkConnection used to call Bulk API operations.
*/
private BulkConnection getBulkConnection(String userName, String password)

throws ConnectionException, AsyncApiException {
ConnectorConfig partnerConfig = new ConnectorConfig();
partnerConfig.setUsername(userName);
partnerConfig.setPassword(password);

partnerConfig.setAuthEndpoint("https://login.salesforce.com/services/Soap/u/62.0");

// Creating the connection automatically handles login and stores
// the session in partnerConfig
new PartnerConnection(partnerConfig);
// When PartnerConnection is instantiated, a login is implicitly
// executed and, if successful,
// a valid session is stored in the ConnectorConfig instance.
// Use this key to initialize a BulkConnection:
ConnectorConfig config = new ConnectorConfig();
config.setSessionId(partnerConfig.getSessionId());
// The endpoint for the Bulk API service is the same as for the normal
// SOAP uri until the /Soap/ part. From here it's '/async/versionNumber'
String soapEndpoint = partnerConfig.getServiceEndpoint();
String apiVersion = "62.0";
String restEndpoint = soapEndpoint.substring(0, soapEndpoint.indexOf("Soap/"))

+ "async/" + apiVersion;

160

Walk Through the Sample CodeBulk API

config.setRestEndpoint(restEndpoint);
// This should only be false when doing debugging.
config.setCompression(true);
// Set this to true to see HTTP requests and responses on stdout
config.setTraceMessage(false);
BulkConnection connection = new BulkConnection(config);
return connection;

}

This BulkConnection instance is the base for using the Bulk API. The instance can be reused for the rest of the application lifespan.

Create a Job
After creating the connection, create a job. Data is always processed in the context of a job. The job specifies the details about the data
being processed: which operation is being executed (insert, update, upsert, or delete) and the object type. This code creates a new insert
job on the Account object.

/**
* Create a new job using the Bulk API.
*
* @param sobjectType
* The object type being loaded, such as "Account"
* @param connection
* BulkConnection used to create the new job.
* @return The JobInfo for the new job.
* @throws AsyncApiException
*/
private JobInfo createJob(String sobjectType, BulkConnection connection)

throws AsyncApiException {
JobInfo job = new JobInfo();
job.setObject(sobjectType);
job.setOperation(OperationEnum.insert);
job.setContentType(ContentType.CSV);
job = connection.createJob(job);
System.out.println(job);
return job;

}

When a job is created, it’s in the Open state. In this state, new batches can be added to the job. When a job is Closed, batches can
no longer be added.

Add Batches to the Job
Data is processed in a series of batch requests. Each request is an HTTP POST containing the data set in XML format in the body. Your
client application determines how many batches are used to process the whole data set as long as the batch size and total number of
batches per day are within the limits specified in Limits on page 148.

The processing of each batch comes with an overhead. Make batch sizes large enough to minimize the overhead processing cost, and
small enough to be handled and transferred easily. Batch sizes between 1,000 and 10,000 records are considered reasonable.

This code splits a CSV file into smaller batch files and uploads them to Salesforce.

/**

161

Walk Through the Sample CodeBulk API

* Create and upload batches using a CSV file.
* The file into the appropriate size batch files.
*
* @param connection
* Connection to use for creating batches
* @param jobInfo
* Job associated with new batches
* @param csvFileName
* The source file for batch data
*/
private List<BatchInfo> createBatchesFromCSVFile(BulkConnection connection,

JobInfo jobInfo, String csvFileName)
throws IOException, AsyncApiException {

List<BatchInfo> batchInfos = new ArrayList<BatchInfo>();
BufferedReader rdr = new BufferedReader(

new InputStreamReader(new FileInputStream(csvFileName))
);
// read the CSV header row
byte[] headerBytes = (rdr.readLine() + "\n").getBytes("UTF-8");
int headerBytesLength = headerBytes.length;
File tmpFile = File.createTempFile("bulkAPIInsert", ".csv");

// Split the CSV file into multiple batches
try {

FileOutputStream tmpOut = new FileOutputStream(tmpFile);
int maxBytesPerBatch = 10000000; // 10 million bytes per batch
int maxRowsPerBatch = 10000; // 10 thousand rows per batch
int currentBytes = 0;
int currentLines = 0;
String nextLine;
while ((nextLine = rdr.readLine()) != null) {

byte[] bytes = (nextLine + "\n").getBytes("UTF-8");
// Create a new batch when our batch size limit is reached
if (currentBytes + bytes.length > maxBytesPerBatch
|| currentLines > maxRowsPerBatch) {
createBatch(tmpOut, tmpFile, batchInfos, connection, jobInfo);
currentBytes = 0;
currentLines = 0;

}
if (currentBytes == 0) {

tmpOut = new FileOutputStream(tmpFile);
tmpOut.write(headerBytes);
currentBytes = headerBytesLength;
currentLines = 1;

}
tmpOut.write(bytes);
currentBytes += bytes.length;
currentLines++;

}
// Finished processing all rows
// Create a final batch for any remaining data
if (currentLines > 1) {

createBatch(tmpOut, tmpFile, batchInfos, connection, jobInfo);
}

162

Walk Through the Sample CodeBulk API

} finally {
tmpFile.delete();

}
return batchInfos;

}

/**
* Create a batch by uploading the contents of the file.
* This closes the output stream.
*
* @param tmpOut
* The output stream used to write the CSV data for a single batch.
* @param tmpFile
* The file associated with the above stream.
* @param batchInfos
* The batch info for the newly created batch is added to this list.
* @param connection
* The BulkConnection used to create the new batch.
* @param jobInfo
* The JobInfo associated with the new batch.
*/
private void createBatch(FileOutputStream tmpOut, File tmpFile,
List<BatchInfo> batchInfos, BulkConnection connection, JobInfo jobInfo)

throws IOException, AsyncApiException {
tmpOut.flush();
tmpOut.close();
FileInputStream tmpInputStream = new FileInputStream(tmpFile);
try {

BatchInfo batchInfo =
connection.createBatchFromStream(jobInfo, tmpInputStream);

System.out.println(batchInfo);
batchInfos.add(batchInfo);

} finally {
tmpInputStream.close();

}
}

When the server receives a batch, it’s immediately queued for processing. Errors in formatting aren’t reported when sending the batch.
These errors are reported in the result data when the batch is processed.

Tip: To import binary attachments, use the following methods. Specify the CSV, XML, or JSON content for the batch in the
batchContent parameter, or include request.txt in the attached files and pass null to the batchContent
parameter. These methods are contained within the com.async.BulkConnection class:

• createBatchFromDir()

• createBatchWithFileAttachments()

• createBatchWithInputStreamAttachments()

• createBatchFromZipStream()

163

Walk Through the Sample CodeBulk API

Close the Job
After all batches are added to a job, close the job. Closing the job ensures that processing of all batches can finish.

private void closeJob(BulkConnection connection, String jobId)
throws AsyncApiException {

JobInfo job = new JobInfo();
job.setId(jobId);
job.setState(JobStateEnum.Closed);
connection.updateJob(job);

}

Check Status on Batches
Batches are processed in the background. The size of the data set determines how long processing takes. During processing, you can
retrieve and check the status of all batches, and you can see when processing is complete.

/**
* Wait for a job to complete by polling the Bulk API.
*
* @param connection
* BulkConnection used to check results.
* @param job
* The job awaiting completion.
* @param batchInfoList
* List of batches for this job.
* @throws AsyncApiException
*/
private void awaitCompletion(BulkConnection connection, JobInfo job,

List<BatchInfo> batchInfoList)
throws AsyncApiException {

long sleepTime = 0L;
Set<String> incomplete = new HashSet<String>();
for (BatchInfo bi : batchInfoList) {

incomplete.add(bi.getId());
}
while (!incomplete.isEmpty()) {

try {
Thread.sleep(sleepTime);

} catch (InterruptedException e) {}
System.out.println("Awaiting results..." + incomplete.size());
sleepTime = 10000L;
BatchInfo[] statusList =
connection.getBatchInfoList(job.getId()).getBatchInfo();

for (BatchInfo b : statusList) {
if (b.getState() == BatchStateEnum.Completed
|| b.getState() == BatchStateEnum.Failed) {
if (incomplete.remove(b.getId())) {

System.out.println("BATCH STATUS:\n" + b);
}

}
}

164

Walk Through the Sample CodeBulk API

}
}

A batch is done when it's either failed or completed. This code loops infinitely until all the batches for the job have either failed or
completed.

Get Results For a Job
You can retrieve the results of each batch when all batches are processed. Retrieve results whether the batch succeeded or failed, or
even if the job was aborted, because only the result sets indicate the status of individual records. To properly pair a result with its
corresponding record, the code must not lose track of how the batches correspond to the original data set. So keep the original list of
batches from when they were created and use this list to retrieve results, as shown in this example:

/**
* Gets the results of the operation and checks for errors.
*/
private void checkResults(BulkConnection connection, JobInfo job,

List<BatchInfo> batchInfoList)
throws AsyncApiException, IOException {

// batchInfoList was populated when batches were created and submitted
for (BatchInfo b : batchInfoList) {

CSVReader rdr =
new CSVReader(connection.getBatchResultStream(job.getId(), b.getId()));

List<String> resultHeader = rdr.nextRecord();
int resultCols = resultHeader.size();

List<String> row;
while ((row = rdr.nextRecord()) != null) {

Map<String, String> resultInfo = new HashMap<String, String>();
for (int i = 0; i < resultCols; i++) {

resultInfo.put(resultHeader.get(i), row.get(i));
}
boolean success = Boolean.valueOf(resultInfo.get("Success"));
boolean created = Boolean.valueOf(resultInfo.get("Created"));
String id = resultInfo.get("Id");
String error = resultInfo.get("Error");
if (success && created) {

System.out.println("Created row with id " + id);
} else if (!success) {

System.out.println("Failed with error: " + error);
}

}
}

}

This code retrieves the results for each record and reports whether the operation succeeded or failed. If an error occurred for a record,
the code prints out the error.

165

Walk Through the Sample CodeBulk API

Complete Quick Start Sample
Now that you're more familiar with jobs and batches, you can copy and paste the entire quick start sample and use it:

import java.io.*;
import java.util.*;

import com.sforce.async.*;
import com.sforce.soap.partner.PartnerConnection;
import com.sforce.ws.ConnectionException;
import com.sforce.ws.ConnectorConfig;

public class BulkExample {

public static void main(String[] args)
throws AsyncApiException, ConnectionException, IOException {
BulkExample example = new BulkExample();
// Replace arguments below with your credentials and test file name
// The first parameter indicates that we are loading Account records

example.runSample("Account", "myUser@myOrg.com", "myPassword", "mySampleData.csv");

}

/**
* Creates a Bulk API job and uploads batches for a CSV file.
*/
public void runSample(String sobjectType, String userName,

String password, String sampleFileName)
throws AsyncApiException, ConnectionException, IOException {

BulkConnection connection = getBulkConnection(userName, password);
JobInfo job = createJob(sobjectType, connection);
List<BatchInfo> batchInfoList = createBatchesFromCSVFile(connection, job,

sampleFileName);
closeJob(connection, job.getId());
awaitCompletion(connection, job, batchInfoList);
checkResults(connection, job, batchInfoList);

}

/**
* Gets the results of the operation and checks for errors.
*/
private void checkResults(BulkConnection connection, JobInfo job,

List<BatchInfo> batchInfoList)
throws AsyncApiException, IOException {

// batchInfoList was populated when batches were created and submitted
for (BatchInfo b : batchInfoList) {

CSVReader rdr =
new CSVReader(connection.getBatchResultStream(job.getId(), b.getId()));

List<String> resultHeader = rdr.nextRecord();
int resultCols = resultHeader.size();

166

Walk Through the Sample CodeBulk API

List<String> row;
while ((row = rdr.nextRecord()) != null) {

Map<String, String> resultInfo = new HashMap<String, String>();
for (int i = 0; i < resultCols; i++) {

resultInfo.put(resultHeader.get(i), row.get(i));
}
boolean success = Boolean.valueOf(resultInfo.get("Success"));
boolean created = Boolean.valueOf(resultInfo.get("Created"));
String id = resultInfo.get("Id");
String error = resultInfo.get("Error");
if (success && created) {

System.out.println("Created row with id " + id);
} else if (!success) {

System.out.println("Failed with error: " + error);
}

}
}

}

private void closeJob(BulkConnection connection, String jobId)
throws AsyncApiException {

JobInfo job = new JobInfo();
job.setId(jobId);
job.setState(JobStateEnum.Closed);
connection.updateJob(job);

}

/**
* Wait for a job to complete by polling the Bulk API.
*
* @param connection
* BulkConnection used to check results.
* @param job
* The job awaiting completion.
* @param batchInfoList
* List of batches for this job.
* @throws AsyncApiException
*/
private void awaitCompletion(BulkConnection connection, JobInfo job,

List<BatchInfo> batchInfoList)
throws AsyncApiException {

long sleepTime = 0L;
Set<String> incomplete = new HashSet<String>();
for (BatchInfo bi : batchInfoList) {

incomplete.add(bi.getId());
}
while (!incomplete.isEmpty()) {

try {
Thread.sleep(sleepTime);

167

Walk Through the Sample CodeBulk API

} catch (InterruptedException e) {}
System.out.println("Awaiting results..." + incomplete.size());
sleepTime = 10000L;
BatchInfo[] statusList =
connection.getBatchInfoList(job.getId()).getBatchInfo();

for (BatchInfo b : statusList) {
if (b.getState() == BatchStateEnum.Completed
|| b.getState() == BatchStateEnum.Failed) {
if (incomplete.remove(b.getId())) {

System.out.println("BATCH STATUS:\n" + b);
}

}
}

}
}

/**
* Create a new job using the Bulk API.
*
* @param sobjectType
* The object type being loaded, such as "Account"
* @param connection
* BulkConnection used to create the new job.
* @return The JobInfo for the new job.
* @throws AsyncApiException
*/
private JobInfo createJob(String sobjectType, BulkConnection connection)

throws AsyncApiException {
JobInfo job = new JobInfo();
job.setObject(sobjectType);
job.setOperation(OperationEnum.insert);
job.setContentType(ContentType.CSV);
job = connection.createJob(job);
System.out.println(job);
return job;

}

/**
* Create the BulkConnection used to call Bulk API operations.
*/
private BulkConnection getBulkConnection(String userName, String password)

throws ConnectionException, AsyncApiException {
ConnectorConfig partnerConfig = new ConnectorConfig();
partnerConfig.setUsername(userName);
partnerConfig.setPassword(password);

partnerConfig.setAuthEndpoint("https://login.salesforce.com/services/Soap/u/62.0");

// Creating the connection automatically handles login and stores
// the session in partnerConfig
new PartnerConnection(partnerConfig);

168

Walk Through the Sample CodeBulk API

// When PartnerConnection is instantiated, a login is implicitly
// executed and, if successful,
// a valid session is stored in the ConnectorConfig instance.
// Use this key to initialize a BulkConnection:
ConnectorConfig config = new ConnectorConfig();
config.setSessionId(partnerConfig.getSessionId());
// The endpoint for the Bulk API service is the same as for the normal
// SOAP uri until the /Soap/ part. From here it's '/async/versionNumber'
String soapEndpoint = partnerConfig.getServiceEndpoint();
String apiVersion = "62.0";
String restEndpoint = soapEndpoint.substring(0, soapEndpoint.indexOf("Soap/"))

+ "async/" + apiVersion;
config.setRestEndpoint(restEndpoint);
// This should only be false when doing debugging.
config.setCompression(true);
// Set this to true to see HTTP requests and responses on stdout
config.setTraceMessage(false);
BulkConnection connection = new BulkConnection(config);
return connection;

}

/**
* Create and upload batches using a CSV file.
* The file into the appropriate size batch files.
*
* @param connection
* Connection to use for creating batches
* @param jobInfo
* Job associated with new batches
* @param csvFileName
* The source file for batch data
*/
private List<BatchInfo> createBatchesFromCSVFile(BulkConnection connection,

JobInfo jobInfo, String csvFileName)
throws IOException, AsyncApiException {

List<BatchInfo> batchInfos = new ArrayList<BatchInfo>();
BufferedReader rdr = new BufferedReader(

new InputStreamReader(new FileInputStream(csvFileName))
);
// read the CSV header row
byte[] headerBytes = (rdr.readLine() + "\n").getBytes("UTF-8");
int headerBytesLength = headerBytes.length;
File tmpFile = File.createTempFile("bulkAPIInsert", ".csv");

// Split the CSV file into multiple batches
try {

FileOutputStream tmpOut = new FileOutputStream(tmpFile);
int maxBytesPerBatch = 10000000; // 10 million bytes per batch
int maxRowsPerBatch = 10000; // 10 thousand rows per batch
int currentBytes = 0;
int currentLines = 0;
String nextLine;

169

Walk Through the Sample CodeBulk API

while ((nextLine = rdr.readLine()) != null) {
byte[] bytes = (nextLine + "\n").getBytes("UTF-8");
// Create a new batch when our batch size limit is reached
if (currentBytes + bytes.length > maxBytesPerBatch
|| currentLines > maxRowsPerBatch) {
createBatch(tmpOut, tmpFile, batchInfos, connection, jobInfo);
currentBytes = 0;
currentLines = 0;

}
if (currentBytes == 0) {

tmpOut = new FileOutputStream(tmpFile);
tmpOut.write(headerBytes);
currentBytes = headerBytesLength;
currentLines = 1;

}
tmpOut.write(bytes);
currentBytes += bytes.length;
currentLines++;

}
// Finished processing all rows
// Create a final batch for any remaining data
if (currentLines > 1) {

createBatch(tmpOut, tmpFile, batchInfos, connection, jobInfo);
}

} finally {
tmpFile.delete();

}
return batchInfos;

}

/**
* Create a batch by uploading the contents of the file.
* This closes the output stream.
*
* @param tmpOut
* The output stream used to write the CSV data for a single batch.
* @param tmpFile
* The file associated with the above stream.
* @param batchInfos
* The batch info for the newly created batch is added to this list.
* @param connection
* The BulkConnection used to create the new batch.
* @param jobInfo
* The JobInfo associated with the new batch.
*/
private void createBatch(FileOutputStream tmpOut, File tmpFile,
List<BatchInfo> batchInfos, BulkConnection connection, JobInfo jobInfo)

throws IOException, AsyncApiException {
tmpOut.flush();
tmpOut.close();
FileInputStream tmpInputStream = new FileInputStream(tmpFile);
try {

BatchInfo batchInfo =
connection.createBatchFromStream(jobInfo, tmpInputStream);

170

Walk Through the Sample CodeBulk API

System.out.println(batchInfo);
batchInfos.add(batchInfo);

} finally {
tmpInputStream.close();

}
}

}

Map Data Fields

To use Bulk API to import data that was exported directly from Microsoft Outlook, Google Contacts, and other third-party sources, map
data fields in any CSV import file to Salesforce data fields. It's not necessary for the CSV import file to be Bulk API-compatible.

For example, say you have a CSV import file that includes a field called Number that you want to map to the standard Salesforce field
AccountNumber. When you add a batch job using Bulk API, data from your Number field is imported into (or updates) the
AccountNumber field in Salesforce.

To add a batch job that maps data fields to Salesforce data fields:

1. Create a transformation spec (spec.csv) that defines data field mappings. (This file is different from the CSV import file that contains
your data.)

2. Create a job that specifies an object and action, just as you would for any other Bulk API job.

3. Upload the transformation spec.

4. Send data to the server in batches.

Considerations
• Transformation specs must be CSV files. XML and JSON files aren’t supported.

• Transformation specs must have a file size less than 8192 characters.

• Transformation specs (spec.csv files) must use UTF-8 encoding. CSV import files don’t need to use UTF-8 encoding. (You can specify
the encoding in the Content-Type header.)

• Transformation specs aren’t persistent; their scopes are limited to the current job.

Create a Transformation Spec That Defines Mappings
The transformation spec (spec.csv) provides the instructions for how to map the data in your import file to Salesforce data fields.

The spec.csv file contains four fields:

DescriptionField

The Salesforce field you want to map to.Salesforce Field

The field in your import file you want to map.Csv Header

171

Map Data FieldsBulk API

DescriptionField

A default value.

Bulk API uses this value in two instances:

Value

• When there’s no value present in the import file for the field
specified in the Csv Header field

• When there’s no value defined for the Csv Header field in the
spec.csv file

This field is optional.

Tells Bulk API how to interpret data in the import file.

Bulk API can use this value to do two things:

Hint

• Interpret Java format strings for date and time fields

• Define what is true using regular expressions for boolean fields

This field is optional.

Here’s a sample spec.csv file:

Salesforce Field,Csv Header,Value,Hint
Name,Full Name,,
Title,Job Title,,
LeadSource,Lead Source,Import,
Description,,Imported from XYZ.csv,
Birthdate,Date of Birth,,dd MM yy

This spec.csv file tells Bulk API to:

• Map the Full Name field in the import file to the LastName and FirstName fields in Salesforce.

• Map the Job Title field in the import file to the Title field in Salesforce.

• Map the Lead Source field in the import file to the LeadSource field in Salesforce, and use Import as the default
value when no values are present are in the import file.

• Use Imported from XYZ.csv as the default value for the Description field in Salesforce.

• Map the Date of Birth field in the import file to the Birthdate field in Salesforce, and use the dd MM yy format to
convert Date of Birth field formats into an acceptable format for Bulk API.

The corresponding contents of the import file can look like this:

Full Name,Job Title,Lead Source,Date of Birth,Comment
"Cat, Tom",DSH,Interview,10 Feb 40,likes Jerry
Jerry Mouse,House Mouse,,10 Feb 40,likes Tom

The corresponding request body after transformation looks like this:

LastName,FirstName,Title,LeadSource,Description,Birthdate
Cat,Tom,DSH,Interview,Imported from XYZ.csv,1940-02-10Z
Mouse,Jerry,House Mouse,Import,Imported from XYZ.csv,1940-02-10Z

172

Map Data FieldsBulk API

Upload the Transformation Spec
To upload the transformation spec, send a POST request to this URI:

https://MyDomainName.my.salesforce.com/services/async/APIversion/job/jobid/spec

You can find the My Domain name and My Domain login URL for your org on the My Domain page in Setup.

Bulk API End-of-Life Policy

See which Bulk API versions are supported, unsupported, or unavailable.

Salesforce is committed to supporting each API version for a minimum of 3 years from the date of first release. To improve the quality
and performance of the API, versions that are over 3 years old sometimes are no longer supported.

Salesforce notifies customers who use an API version scheduled for deprecation at least 1 year before support for the version ends.

Version Retirement InfoVersion Support StatusSalesforce API Versions

Supported.Versions 31.0 through 62.0

Salesforce Platform API Versions 21.0 through 30.0
Retirement

As of Summer ’22, these versions have been
deprecated and no longer supported by
Salesforce.

Starting Summer ’25, these versions will be
retired and unavailable.

Versions 21.0 through 30.0

Salesforce Platform API Versions 7.0 through 20.0
Retirement

As of Summer ’22, these versions are retired
and unavailable.

Versions 7.0 through 20.0

If you request any resource or use an operation from a retired API version, REST API returns the 410:GONE error code.

If you request any resource or use an operation from a retired API version, SOAP API returns 500:UNSUPPORTED_API_VERSION error
code.

To identify requests made from old or unsupported API versions, use the API Total Usage event type.

173

Bulk API End-of-Life PolicyBulk API

https://help.salesforce.com/s/articleView?id=000389618&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000389618&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000380623&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000380623&type=1&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.252.0.object_reference.meta/object_reference/sforce_api_objects_eventlogfile_apitotalusage.htm

INDEX

A
Abort a job 42

C
Close a job 33, 42
Create a job 29

D
Data files

CSV files 23–24
Sample CSV file 25

Delete a job 41

G
Get all jobs 44
Get job failed record results 40
Get job info 35
Get job results

Failed results 40
Successful results 39

Get job results (continued)
Unprocessed results 41, 46

Get job successful record results 39
Get job unprocessed record results 41, 46

H
How requests are processed 6

P
ploadComplete 33

R
Reference, Bulk API 150

U
Upload job data 33
UploadComplete 42
Upserting data 17

W
Walkthrough 17

174

	Introduction to Bulk API 2.0 and Bulk API
	What’s the Difference Between Bulk API 2.0 and Bulk API?

	Bulk API 2.0
	How Requests Are Processed
	Job States

	Quick Start: Bulk API 2.0
	Using cURL
	Step 1: Set Up a Salesforce Developer Edition Org
	Step 2: Authentication
	Step 3: Bulk Insert
	Step 4: Bulk Insert with a Multipart Request
	Step 5: Bulk Upsert
	Step 6: Query Jobs

	Bulk API 2.0 Ingest
	Understanding Bulk API 2.0 Ingest
	Prepare Data to Ingest
	Prepare CSV Files
	Sample CSV Files
	Valid Date Format in Records (2.0)
	Relationship Fields in a Header Row (2.0)

	Create a Job
	Upload Job Data
	Upload Complete
	Get Information About an Ingest Job
	Get Job Successful Record Results
	Get Job Failed Record Results
	Get Job Unprocessed Record Results
	Delete a Job
	Abort a Job
	Get Information About All Ingest Jobs
	Upsert Records
	Use Compression for Bulk API 2.0 Ingest Responses
	Troubleshooting Ingest Timeouts
	Organize Data to Minimize Lock Contention

	Errors

	Bulk API 2.0 Query
	Understanding Bulk API 2.0 Query
	Create a Query Job
	Get Information About a Query Job
	Get Results for a Query Job
	Get Parallel Results for a Query Job
	Delete a Query Job
	Abort a Query Job
	Get Information About All Query Jobs
	Use Compression for Bulk API 2.0 Query Responses
	Troubleshooting Query Timeouts

	Headers
	Sforce Call Options Header
	Warnings Header
	Content Type Header
	Line Ending Header

	Limits
	Bulk API 2.0 Older Documentation
	Bulk API 2.0 End-of-Life Policy

	Bulk API
	How Bulk API Works
	Quick Start: Bulk API
	Step One: Create a Job
	Step Two: Monitor a Job
	Step Three: Close a Job
	Step Four: Get Job Details
	Step Five: Abort a Job

	Bulk API Ingest
	Plan Bulk Data Loads
	General Guidelines for Data Loads
	Use Compression for Responses

	Install cURL
	Walkthrough Sending HTTP Requests with cURL
	Step 1: Log In Using the SOAP API
	Step 2: Create a Job
	Step 3: Add a Batch to the Job
	Step 4: Close the Job
	Step 5: Check Batch Status
	Step 6: Retrieve Batch Results

	Prepare Data Files
	Find Field Names
	Valid Date Format in Records
	Prepare CSV Files
	Relationship Fields in a Header Row
	Valid CSV Record Rows
	Sample CSV File

	Prepare XML and JSON Files
	Relationship Fields in Records
	Valid XML and JSON Records
	Sample XML File
	Sample JSON File

	Load Binary Attachments
	Create a request.txt File
	Create a Zip Batch File with Binary Attachments
	Create a Job for Batches with Binary Attachments
	Create a Batch with Binary Attachments

	Request Basics
	About URIs
	Set a Session Header

	Work with Batches
	Add a Batch to a Job
	Monitor a Batch
	Get Information for a Batch
	Get Information for All Batches in a Job
	Interpret Batch State
	Get a Batch Request
	Get Batch Results
	Handle Failed Records in Batches

	Bulk API Query
	How Bulk Queries Are Processed
	Use Bulk Query
	PK Chunking
	Walk Through a Bulk Query Sample
	Walk Through a Bulk Query Sample Using PK Chunking

	Headers
	Content Type Header
	Batch Retry Header
	Line Ending Header
	Warning Header
	Sforce Call Options Header

	Limits
	Bulk API Reference
	Schema
	JobInfo
	BatchInfo
	Errors

	Sample Client Application Using Java
	Set Up Your Client Application
	Walk Through the Sample Code

	Map Data Fields
	Bulk API End-of-Life Policy

	Index

