
Salesforce Console Developer
Guide

Version 56.0, Spring ’23

 @salesforcedocs
Last updated: March 27, 2023

https://twitter.com/salesforcedocs

© Copyright 2000–2023 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Salesforce Console Developer Guide . 1

Get to Know Lightning Console . 1
Get to Know the Utility Bar . 3

Chapter 2: Lightning Console API . 4

How are the Classic and Lightning Console APIs Different? . 4
Console API Method Parity . 5
Salesforce Classic Methods Supported in Lightning Experience 9

Lightning Console JavaScript API . 15
Lightning Console JavaScript API Syntax . 16
Using Background Utility Items . 18
Using Pop-Out Utilities . 19
Using Events with the Lightning Console JavaScript API . 23
Using Page Context in the Utility Bar API . 24
Using Page References to Open Console Workspace Tabs and Subtabs 25
Debugging . 27
Methods for Lightning Console JavaScript API . 27
Events for Lightning Console JavaScript API . 93

Chapter 3: Salesforce Classic API . 113

When to Use the Salesforce Console Integration Toolkit . 114
Salesforce Console Integration Toolkit Support Policy . 115

Backward Compatibility . 115
End-of-Life . 115

Sample Visualforce Page Using the Salesforce Console Integration Toolkit 116
Working with the Salesforce Console Integration Toolkit . 117

Connecting to the Toolkit . 118
Asynchronous Calls with the Salesforce Console Integration Toolkit 119
Working with Lightning Platform Canvas . 119
Best Practices . 120

Methods for Salesforce Classic . 120
Methods for Primary Tabs and Subtabs . 121
Methods for Navigation Tabs . 176
Methods for Computer-Telephony Integration (CTI) . 181
Methods for Application-Level Custom Console Components 194
Methods for Push Notifications . 215
Methods for Console Events . 218
Methods for Chat . 225
Methods for Omni-Channel . 267

Chapter 4: Other Resources . 282

Console API Typographical Conventions . 282

INDEX . 284

Contents

CHAPTER 1 Salesforce Console Developer Guide

The Lightning Console JavaScript API and the Salesforce Console Integration Toolkit both interact with Salesforce console apps. This
guide provides reference material for both.

Starting with API version 42.0 of the Salesforce Console Integration Toolkit, many of the methods used in existing Visualforce pages and
third-party web tabs now work in Lightning Experience. Just point to the latest version of the toolkit script in your Visualforce pages or
third-party web tabs. Third-party content must be allowlisted in the CSP Trusted Sites list to be used in Lightning Experience. See
Salesforce Console Integration Toolkit Methods Supported in Lightning Console JavaScript API for a list of supported methods.

To use this guide, it helps if you have a basic familiarity with:

• JavaScript

• Visualforce

• Web services

• Software development

• Salesforce console

• Lightning

• Lightning console apps

Note: As of Spring ’19 (API version 45.0), you can build Lightning components using two programming models: the Lightning
Web Components model, and the original Aura Components model. Lightning web components are custom HTML elements built
using HTML and modern JavaScript. Lightning web components and Aura components can coexist and interoperate on a page.
This developer guide covers Aura components only.

IN THIS SECTION:

Get to Know Lightning Console

Get started with the Salesforce console in Lightning Experience.

Get to Know the Utility Bar

The utility bar is a specialized type of Lightning page that gives your users quick access to common productivity tools.

SEE ALSO:

How are the Classic and Lightning Console APIs Different?

Lightning Console JavaScript API

Salesforce Console Integration Toolkit for Salesforce Classic

Get to Know Lightning Console

Get started with the Salesforce console in Lightning Experience.

1

Use workspace API methods from Lightning pages either in the utility bar or in a Lightning console app. Here’s how a Lightning console
app works:

Lightning Console App User Interface

• The App Launcher (1) lets you switch between apps. To switch to another console app or back to a standard app, use the App
Launcher. The name of the app you’re currently in is displayed next to the App Launcher.

• The navigation menu (2) displays the navigation item you currently have selected. To open the navigation menu, click . From
there, you can view or edit your navigation items. Selecting a navigation item opens the navigation item’s home page. Objects open
in table view . Opening a record changes the view to split view . Once in split view, click the navigation item again to switch
back to table view, or use the Display as dropdown.

• Records open in workspace tabs, and related records opened from inside a workspace tab open in subtabs (3). You can refresh, pin,
customize, and close a tab using the tab menu . You can also open navigation items in a new workspace tab by using Ctrl+click
or Cmd+click.

• The split view panel (4) can be hidden with . Records opened from the split view panel open in new workspace tabs.

• The utility bar (5) lets you access common processes and tools like History and Notes.

2

Get to Know Lightning ConsoleSalesforce Console Developer Guide

Get to Know the Utility Bar

The utility bar is a specialized type of Lightning page that gives your users quick access to common productivity tools.

A utility is broadly defined as a single-column Lightning page. Salesforce provides you with several ready-to-use utilities, such as Recent
Items, History, and Notes. You can also make your own, and customize the utility bar in Setup. From Setup, enter App Manager in
the Quick Find box, then select App Manager. Either click New Lightning App to create an app, or click Edit next to an existing
Lightning app to add a utility bar or edit the existing one. The utility bar API includes a set of methods for working with utilities and the
utility bar.

To add a utility bar, add at least one utility item that isn’t a background utility item. To remove a utility bar, remove all non-background
utility items from your app.

1. The utility bar. This utility bar includes four utilities: Chatter Feed, Quip, History, and Notes. Each utility has an icon and label.

2. The selected utility.The selected utility opens in a panel

3. The panel header, showing the panel icon and label

SEE ALSO:

Salesforce Help: Add a Utility Bar to Lightning Apps

Methods for the Utility Bar in Lightning Experience

Using Background Utility Items

3

Get to Know the Utility BarSalesforce Console Developer Guide

https://help.salesforce.com/articleView?id=apps_lightning_utilities.htm&language=en_US

CHAPTER 2 Lightning Console API

EDITIONS

Available in: Lightning
Experience

Available in: Essentials,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Lightning console apps are
available for an extra cost to
users with Salesforce
Platform user licenses for
certain products. Some
restrictions apply. For pricing
details, contact your
Salesforce account
executive.

Lightning console apps allow users to quickly find the information they need, and make edits while
viewing multiple records on one screen. The Lightning Console JavaScript API gives you
programmatic access to Lightning console apps, so you can fully integrate Lightning console apps
with Aura components and extend them to meet your business needs.

The Lightning Console JavaScript API includes three libraries, the navigation item API, the utility
bar API, and the workspace API. The navigation item API provides methods for interacting with the
console’s navigation menu. The utility bar API provides methods that can be used from Aura
components in the utility bar to open, resize, or minimize a utility. The workspace API provides
methods for opening, closing, and getting information about workspace tabs and subtabs. The
utility bar API is used in Lightning apps with standard or console navigation, while the navigation
item API and workspace API are used only in Lightning console apps.

For a full list of methods in each API, see Methods for Lightning Console JavaScript API.

Note: As of Spring ’19 (API version 45.0), you can build Lightning components using two
programming models: the Lightning Web Components model, and the original Aura
Components model. Lightning web components are custom HTML elements built using
HTML and modern JavaScript. Lightning web components and Aura components can coexist
and interoperate on a page. This developer guide covers Aura components only.

IN THIS SECTION:

How are the Classic and Lightning Console APIs Different?

The user interface of your org dictates which development tools you can use with the Salesforce console.

Lightning Console JavaScript API

Lightning console apps allow users to quickly find the information they need, and make edits while viewing multiple records on
one screen. The Lightning Console JavaScript API gives you programmatic access to Lightning console apps, so you can fully integrate
Lightning console apps with Aura components and extend them to meet your business needs.

How are the Classic and Lightning Console APIs Different?

The user interface of your org dictates which development tools you can use with the Salesforce console.

Console Integration Toolkit versus Lightning Console JavaScript API
Both the Lightning Console JavaScript API and the Salesforce Console Integration Toolkit are JavaScript APIs that allow you to interact
with Classic or Lightning console apps. Methods are implemented differently in each API, however.

Here’s what’s different between the Lightning Console JavaScript API and the Salesforce Console Integration Toolkit.

4

You Use the Methods in Different Places

• In Aura components, use the Lightning Console JavaScript API methods in the JavaScript controller of a Lightning component.

• Visualforce or iframed, third-party pages work in both Lightning Experience and Salesforce Classic. For Visualforce and iframe
pages, use the Classic methods from the Salesforce Console Integration Toolkit. However, there are limitations regarding which
methods you can use. Classic Console API Methods Supported in the Lightning Console API, provides details on the supported
methods.

When you are using the Salesforce Console Integration Toolkit in Salesforce Classic, you use methods within <script> tags
for Visualforce pages or iframed, third-party pages.

The Input Syntax for Methods is Different

Methods in the Lightning Console JavaScript API take a JSON array of arguments:

workspace.openTab({
url: '#https://salesforce.com',
focus: true,
label: 'Salesforce',

});

Methods in the Salesforce Console Integration Toolkit don’t:

sforce.console.openPrimaryTab(null, 'https://salesforce.com', false,
'salesforce', openSuccess, 'salesforceTab');

The APIs Provide Different Methods

Although some of the methods in the Lightning Experience methods are similar to the Salesforce Classic methods, they have different
names and provide different functionality.

The Lightning Console JavaScript API also provides methods for use with the utility bar, which is available in Lightning Experience
only.

IN THIS SECTION:

Console API Method Parity—What’s Different Between Lightning Experience and Salesforce Classic?

The Lightning Console JavaScript API provides methods similar to those methods in the Salesforce Console Integration Toolkit.

Classic Console API Methods Supported in the Lightning Console API

Visualforce pages and third-party web tabs that use some Salesforce Console Integration Toolkit methods work in Lightning Experience
as-is. Just point to the latest version of the toolkit script in your Visualforce pages or third-party web tabs. Third-party content must
be allowlisted in the CSP Trusted Sites. This table lists the Salesforce Console Integration Toolkit methods that you can use in Lightning
Console JavaScript API starting with API version 42.0.

SEE ALSO:

Lightning Console JavaScript API

Salesforce Console Integration Toolkit for Salesforce Classic

Console API Method Parity—What’s Different Between Lightning Experience
and Salesforce Classic?
The Lightning Console JavaScript API provides methods similar to those methods in the Salesforce Console Integration Toolkit.

5

Console API Method Parity—What’s Different Between
Lightning Experience and Salesforce Classic?

Lightning Console API

This table shows which Salesforce Console Integration Toolkit (Salesforce Classic) methods map to Lightning Console JavaScript API
(Lightning Experience) methods and events. Not every Salesforce Console Integration Toolkit has a Lightning analog. You can replicate
some Classic methods using Lightning events, combining Lightning Experience methods, or using iterative and conditional logic with
methods and events.

Important: Only Salesforce Console Integration Toolkit methods with a Lightning Console JavaScript API or workaround appear
in this table. Methods without alternatives or workarounds are not listed.

Methods for Primary Tabs and Subtabs

Lightning Console JavaScript API Method (Lightning Experience)Salesforce Console Integration Toolkit
(Salesforce Classic)

closeTab()closeTab()

focusTab()focusPrimaryTabById()

focusTab()focusSubtabById()

Use the Lightning method getEnclosingTabId(). If the calling
component is within a subtab, then the subtab ID is returned. If the calling
component is within a workspace tab, then the workspace ID is returned.

getEnclosingPrimaryTabId()

Use getEnclosingTabId() to get the tab ID. Then, use the tab ID to call
getTabInfo(tabId), which includes the object ID in the response payload (if
applicable).

getEnclosingPrimaryTabObjectId()

Use the Lightning method getEnclosingTabId(). If the calling
component is within a subtab, then the subtab ID is returned. If the calling
component is within a workspace tab, then the workspace ID is returned.

getEnclosingTabId()

getFocusedTabInfo()getFocusedPrimaryTabId()

getFocusedTabInfo()getFocusedPrimaryTabObjectId()

getFocusedTabInfo()getFocusedSubtabId()

getTabInfo()getPageInfo()

Not supported.

Workaround: Call getAllTabInfo().

getPrimaryTabIds()

Not supported.

Workaround: Call getAllTabInfo() to get a list of all workspace tab
objects. Iterate through each workspace tab object, collecting subtab IDs where
applicable

getSubtabIds()

getTabURL()getTabLink()

Use lightning:tabRefreshed with getEnclosingTabId().onEnclosingTabRefresh()

lightning:tabFocusedonFocusedPrimaryTab()

6

Console API Method Parity—What’s Different Between
Lightning Experience and Salesforce Classic?

Lightning Console API

Lightning Console JavaScript API Method (Lightning Experience)Salesforce Console Integration Toolkit
(Salesforce Classic)

lightning:tabFocusedonFocusedSubtab()

Not supported.onTabSave()

openConsoleUrl()openConsoleUrl()

openTab()openPrimaryTab()

openSubtab()openSubtab()

Use refreshTab() and specify a workspace tab ID.

The activate argument isn’t supported in the Lightning API. Use
refreshTab() with focusTab(). instead.

refreshPrimaryTabById()

Use refreshTab() and specify a subtab ID.

The activate argument isn’t supported in the Lightning API. Use
refreshTab() with focusTab(). instead.

refreshSubtabById()

setTabIcon()setTabIcon()

setTabLabel()setTabTitle()

Use the lightning:unsavedChanges component.setTabUnsavedChanges()

Methods for Navigation Tabs
The force:navigateToObjectHome Lightning event allows you to complete actions for many navigation tab methods in
Salesforce Classic.

Lightning Console JavaScript API Method (Lightning Experience)Salesforce Console Integration Toolkit
(Salesforce Classic)

focusNavigationItem()focusNavigationTab()

getNavigationItems()getNavigationTabs()

getSelectedNavigationItem()getSelectedNavigationTab()

refreshNavigationItem()refreshNavigationTab()

force:navigateToObjectHomesetSelectedNavigationTab()

Methods for Application-Level Custom Console Components

Lightning Console JavaScript API Method (Lightning
Experience)

Salesforce Console Integration Toolkit (Salesforce
Classic)

Not supported.

Workaround: Use setUtilityLabel.

blinkCustomConsoleComponentButtonText()

7

Console API Method Parity—What’s Different Between
Lightning Experience and Salesforce Classic?

Lightning Console API

https://developer.salesforce.com/docs/component-library/bundle/lightning:unsavedChanges/documentation
https://developer.salesforce.com/docs/atlas.en-us.242.0.lightning.meta/lightning/ref_force_navigateToObjectHome.htm

Lightning Console JavaScript API Method (Lightning
Experience)

Salesforce Console Integration Toolkit (Salesforce
Classic)

getUtilityInfo()isCustomConsoleComponentWindowHidden()

onUtilityClick()onCustomConsoleComponentButtonClicked()

setUtilityIcon()setCustomConsoleComponentButtonIconUrl()

setPanelHeaderIcon()

setUtilityHighlightedsetCustomConsoleComponentButtonStyle()

setUtilityLabelsetCustomConsoleComponentButtonText()

setPanelHeight()setCustomConsoleComponentHeight()

openUtility()setCustomConsoleComponentVisible()

minimizeUtility()

setPanelWidth()setCustomConsoleComponentWidth()

Methods for Live Agent

Lightning Console JavaScript API Method (Lightning
Experience)

Salesforce Console Integration Toolkit (Salesforce
Classic)

endChat()endChat()

getChatLog()getChatLog()

sendCustomEvent()sendCustomEvent()

sendMessage()sendMessage()

Methods for Omni-Channel

Lightning Console JavaScript API Method (Lightning
Experience)

Salesforce Console Integration Toolkit (Salesforce
Classic)

acceptAgentWork()acceptAgentWork()

closeAgentWork()closeAgentWork()

declineAgentWork()declineAgentWork()

getAgentWorkload()getAgentWorkload()

getAgentWorks()getAgentWorks()

getServicePresenceStatusChannels()getServicePresenceStatusChannels()

getServicePresenceStatusIdgetServicePresenceStatusId()

8

Console API Method Parity—What’s Different Between
Lightning Experience and Salesforce Classic?

Lightning Console API

Lightning Console JavaScript API Method (Lightning
Experience)

Salesforce Console Integration Toolkit (Salesforce
Classic)

login()login()

logout()logout()

setServicePresenceStatus()sertServicePresenceStatus()

Methods for Computer-Telephony Integration (CTI)

Lightning Console JavaScript API Method (Lightning
Experience)

Salesforce Console Integration Toolkit (Salesforce
Classic)

Not supported.onCallBegin()

Not supported.onCallEnd()

Not supported.onCallLogSaved()

Classic Console API Methods Supported in the Lightning Console API
Visualforce pages and third-party web tabs that use some Salesforce Console Integration Toolkit methods work in Lightning Experience
as-is. Just point to the latest version of the toolkit script in your Visualforce pages or third-party web tabs. Third-party content must be
allowlisted in the CSP Trusted Sites. This table lists the Salesforce Console Integration Toolkit methods that you can use in Lightning
Console JavaScript API starting with API version 42.0.

Important: Only API versions 42.0 and above of the Salesforce Console Integration Toolkit are supported in the Lightning Console
JavaScript API. Only API versions 43.0 and above are supported in Open CTI.

Salesforce Console Integration Toolkit methods that aren’t supported in Lightning Experience result in a failure error message.

Methods for Primary Tabs and Subtabs

Note: Methods using objectId return 18-character, case-insensitive record IDs when invoked from within a Lightning console.
When invoked from within a Salesforce Classic console, they return 15-character, case-sensitive record IDs.

Workspace tab and subtab IDs in a Lightning console use a different format from Salesforce Classic console primary tab and subtab
IDs. Any code that validates the format of tab IDs must be updated or removed to account for the change. A Salesforce Classic
console tab ID can look like scc-pt-1 or scc-st-1. A Lightning console tab ID looks like ctab1 or ctab1_3.

Notes About Use in Lightning ConsoleSupported in
Lightning Console

Salesforce Classic Method

closeTab()

disableTabClose()

focusPrimaryTabById()

focusPrimaryTabByName()

9

Classic Console API Methods Supported in the Lightning
Console API

Lightning Console API

Notes About Use in Lightning ConsoleSupported in
Lightning Console

Salesforce Classic Method

focusSidebarComponent()

focusSubtabById()

focusSubtabByNameAndPrimaryTabId()

focusSubtabByNameAndPrimaryTabName()

generateConsoleUrl()

getEnclosingPrimaryTabId()

getEnclosingTabId()

getFocusedPrimaryTabId()

getFocusedPrimaryTabObjectId()

getFocusedSubtabId()

getFocusedSubtabObjectId()

These fields aren’t supported and aren’t returned in the
response:

See notesgetPageInfo()

• object

• displayName

• accountId

• contactId

• personAccount

getPrimaryTabIds()

getSubtabIds()

The level argument
sforce.console.TabLink.PARENT_AND_CHILDREN
isn’t supported.

See notesgetTabLink()

isInConsole()

onEnclosingTabRefresh()

onFocusedPrimaryTab()

Utility items aren’t supported in the Lightning API.onFocusedSubtab()

onTabSave()

openConsoleUrl()

See notesopenPrimaryTab()
Note: Make sure to add third-party domains to
the CSP Trusted Sites list.

10

Classic Console API Methods Supported in the Lightning
Console API

Lightning Console API

https://help.salesforce.com/articleView?id=csp_trusted_sites.htm&language=en_US

Notes About Use in Lightning ConsoleSupported in
Lightning Console

Salesforce Classic Method

The following aren’t supported in the Lightning API:

• id argument

• name argument. As an alternative, save the tabId
that’s returned and use it in your API calls.

See notesopenSubtab()
Note: Make sure to add third-party domains to
the CSP Trusted Sites list.

The following aren’t supported in the Lightning API:

• id argument

• name argument. As an alternative, save the tabId
that’s returned and use it in your API calls.

openSubtabByPrimaryTabName()

The fullRefresh argument isn’t supported in the
Lightning API.

See notesrefreshPrimaryTabById()

refreshPrimaryTabByName()

The fullRefresh argument isn’t supported in the
Lightning API.

See notesrefreshSubtabById()

refreshSubtabByNameAndPrimaryTabId()

refreshSubtabByNameAndPrimaryTabName()

reopenLastClosedTab()

resetSessionTimeOut()

setTabUnsavedChanges()

Only Salesforce Lightning Design System icons are
supported for iconUrl. URLs and custom icons aren’t
supported.

Sample supported values:

See notessetTabIcon()

• sforce.console.setTabIcon(“standard:email”)

• sforce.console.setTabIcon(“action:new”)

• sforce.console.setTabIcon(“custom:custom1”)

setTabLink()

setTabStyle()

setTabTextStyle()

setTabTitle()

11

Classic Console API Methods Supported in the Lightning
Console API

Lightning Console API

https://help.salesforce.com/articleView?id=csp_trusted_sites.htm&language=en_US
https://www.lightningdesignsystem.com/icons/#utility

Methods for Application-Level Custom Console Components
The following methods must be called from within a Lightning utility.

Notes About Use in Lightning ConsoleSupported in
Lightning Console

Salesforce Classic Method

addToBrowserTitleQueue()

blinkCustomConsoleComponentButtonText()

isCustomConsoleComponentPoppedOut()

isCustomConsoleComponentHidden()

isInCustomConsoleComponent()

onCustomConsoleComponentButtonClicked()

removeFromBrowserTitleQueue()

runSelectedMacro()

scrollCustomConsoleComponentButtonText()

selectMacro()

In Lightning Console, URL values for icons aren’t supported
in utility bar utilities. Only Salesforce Lightning Design
System are supported.

Sample supported iconUrl values:

See notessetCustomConsoleComponentButtonIconUrl()

• setCustomConsoleComponentButtonIconUrl("clock");

• setCustomConsoleComponentButtonIconUrl("utility:clock");

setCustomConsoleComponentButtonStyle()

setCustomConsoleComponentButtonText()

setCustomConsoleComponentHeight()

setCustomConsoleComponentVisible()

setCustomConsoleComponentWidth()

setCustomConsoleComponentPopoutable()

setCustomConsoleComponentWindowVisible()

setSidebarVisible()

12

Classic Console API Methods Supported in the Lightning
Console API

Lightning Console API

https://www.lightningdesignsystem.com/icons/#utility
https://www.lightningdesignsystem.com/icons/#utility

Methods for Navigation Tabs

Notes About Use in Lightning ConsoleSupported in
Lightning Console

Salesforce Classic Method

focusNavigationTab()

getNavigationTabs()

getSelectedNavigationTab()

refreshNavigationTab()

setSelectedNavigationTab()

Methods for Live Agent

Notes About Use in Lightning ConsoleSupported in
Lightning Console

Salesforce Classic Method

acceptChat()

cancelFileTransferByAgent()

declineChat()

endChat()

getAgentInput()

getAgentState()

getChatLog()

getChatRequests()

getDetailsByChatKey()

getDetailsByPrimaryTabId()

getEngagedChats()

getMaxCapacity()

initFileTransfer()

onAgentSend()

onAgentStateChanged()

onChatCanceled()

onChatCriticalWaitState()

onChatDeclined()

onChatEnded()

13

Classic Console API Methods Supported in the Lightning
Console API

Lightning Console API

Notes About Use in Lightning ConsoleSupported in
Lightning Console

Salesforce Classic Method

onChatRequested()

onChatStarted()

onChatTransferredOut()

onCurrentCapacityChanged()

onCustomEvent()

onFileTransferCompleted()

onNewMessage()

onTypingUpdate()

sendCustomEvent()

sendMessage()

setAgentInput()

setAgentState()

Methods for Omni-Channel

Notes About Use in Lightning ConsoleSupported in
Lightning Console

Salesforce Classic Method

acceptAgentWork()

closeAgentWork()

declineAgentWork()

getAgentWorkload()

getAgentWorks()

getServicePresenceStatusChannels()

getServicePresenceStatusId()

login()

logout()

setServicePresenceStatus()

14

Classic Console API Methods Supported in the Lightning
Console API

Lightning Console API

Methods for Console Events

Notes About Use in Lightning ConsoleSupported in
Lightning Console

Salesforce Classic Method

sforce.console.ConsoleEvent.CONSOLE_LOGOUT
isn’t supported in the Lightning API.

sforce.console.ConsoleEvent.CLOSE_TAB
returns the ID of the closed tab only. The Lightning API
doesn’t return the objectId or the tabObjectId.

addEventListener()

The Lightning API doesn’t return special message
responses from custom keyboard shortcuts. However, if
the response is from a console event, the message includes
payload details.

fireEvent() returns success true even when
eventListeners for the given eventType are removed.

See notesfireEvent()

removeEventListener()

Lightning Console JavaScript API

EDITIONS

Available in: Lightning
Experience

Available in: Essentials,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Lightning console apps are
available for an extra cost to
users with Salesforce
Platform user licenses for
certain products. Some
restrictions apply. For pricing
details, contact your
Salesforce account
executive.

Lightning console apps allow users to quickly find the information they need, and make edits while
viewing multiple records on one screen. The Lightning Console JavaScript API gives you
programmatic access to Lightning console apps, so you can fully integrate Lightning console apps
with Aura components and extend them to meet your business needs.

The Lightning Console JavaScript API includes three libraries, the navigation item API, the utility
bar API, and the workspace API. The navigation item API provides methods for interacting with the
console’s navigation menu. The utility bar API provides methods that can be used from Aura
components in the utility bar to open, resize, or minimize a utility. The workspace API provides
methods for opening, closing, and getting information about workspace tabs and subtabs. The
utility bar API is used in Lightning apps with standard or console navigation, while the navigation
item API and workspace API are used only in Lightning console apps.

For a full list of methods in each API, see Methods for Lightning Console JavaScript API.

Note: As of Spring ’19 (API version 45.0), you can build Lightning components using two
programming models: the Lightning Web Components model, and the original Aura
Components model. Lightning web components are custom HTML elements built using
HTML and modern JavaScript. Lightning web components and Aura components can coexist
and interoperate on a page. This developer guide covers Aura components only.

IN THIS SECTION:

Lightning Console JavaScript API Syntax

Use Lightning Console JavaScript API methods in the JavaScript controller of an Aura component.

15

Lightning Console JavaScript APILightning Console API

Using Background Utility Items

Implement the lightning:backgroundUtilityItem interface to create a component that fires and responds to events
without rendering in the utility bar.

Using Pop-Out Utilities

Utilities that support pop-out can be “popped out” of the utility bar and into their own separate child windows. To pop a utility out,
click the icon. From there, you can pop the utility back into the utility bar with the icon, or close the utility. Pop-out utilities
are the Lightning equivalent to multi-monitor components in Classic.

Using Events with the Lightning Console JavaScript API

The Lightning framework uses event-driven programming, which allows you to create handlers to respond to interface events as
they occur. The Lightning Console JavaScript API provides several events specific to Lightning console apps.

Using Page Context in the Utility Bar API

In both Lightning console apps and standard navigation apps, utilities can respond to the context of the current page. Set
implements="force:hasRecordId" on an Aura component used in the utility bar to access the recordId of the
record a user is viewing.

Using Page References to Open Console Workspace Tabs and Subtabs

Use openTab() and openSubtab() with a lightning:isUrlAddressible component to open custom Aura
components in Lightning console apps.

Debugging

Use your browser’s console and JavaScript error messages generated within Salesforce to debug Lightning pages built with the
Lightning Console JavaScript API. The methods in the Lightning Console JavaScript APIs are asynchronous and return their results
using promises.

Methods for Lightning Console JavaScript API

If your org is using Lightning Experience, use Lightning Console JavaScript API methods.

Events for Lightning Console JavaScript API

Use events and handlers in your Aura components and controllers to respond to events like workspace tabs opening, closing, or
gaining focus.

SEE ALSO:

Methods for Lightning Console JavaScript API

Lightning Console JavaScript API Syntax
Use Lightning Console JavaScript API methods in the JavaScript controller of an Aura component.

To use the Lightning Console JavaScript API, include lightning:navigationItemAPI, lightning:workspaceAPI, or
lightning:utilityBarAPI in your Aura component.

The lightning:navigationItemAPI, lightning:workspaceAPI, andlightning:utilityBarAPI components
give you access to their coordinating APIs. Give each component an aura:id so that you can reference it from the component’s
controller.

The follow example shows a simple Aura component that uses the API libraries:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:navigationItemAPI aura:id="navigationItem" />
<lightning:workspaceAPI aura:id="workspace" />
<lightning:utilityBarAPI aura:id="utilityBar" />

16

Lightning Console JavaScript API SyntaxLightning Console API

<lightning:button label="Focus Navigation Item" onclick="{!c.focusNavigationItem }"
/>

<lightning:button label="Open Utility" onclick="{!c.openUtilityBar }"/>
<lightning:button label="Open Tab" onclick="{!c.openTab }" />

</aura:component>

This component implements flexipage:availableForAllPageTypes so that it can be accessed in the Lightning App
Builder.

This is the component’s JavaScript controller:

({
openUtilityBar : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.openUtility();

},

openTab: function(component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.openTab({

pageReference: {
"type": "standard__recordPage",
"attributes": {

"recordId":"500xx000000Ykt2AAC",
"actionName":"view"

},
"state": {}

},
focus: true

}).then(function(response) {
workspaceAPI.getTabInfo({
tabId: response

}).then(function(tabInfo) {
console.log("The recordId for this tab is: " + tabInfo.recordId);

});
}).catch(function(error) {

console.log(error);
});

},

focusNavigationItem : function(component, event, helper) {
var navigationItemAPI = component.find("navigationItem");
navigationItemAPI.focusNavigationItem().then(function(response) {

console.log(response);
})
.catch(function(error) {

console.log(error);
});

}
})

The controller has three functions, each of which uses an API method. To use a method in a controller, use component.find with
the aura:id you gave to the lightning:navigationItemAPI, lightning:workspaceAPI, or
lightning:utilityBarAPI.

17

Lightning Console JavaScript API SyntaxLightning Console API

Methods in the Workspace API and the Utility Bar API take a JSON object as an argument. The values included in the object depend on
the method. openTab, for example, takes an object that includes the url and focus (whether the new tab has focus). Check the
reference section of this guide before using a method so that you know which arguments to pass to it.

IN THIS SECTION:

JavaScript Promises

Methods in the Lightning Console JavaScript API return results using promises.

Error Handling with Promises

Promises can simplify code that handles the success or failure of asynchronous calls. To use error handling with promises, use the
catch() method on the promise that is returned from calling an API method.

JavaScript Promises
Methods in the Lightning Console JavaScript API return results using promises.

Note: Examples in this guide don’t include the $A.getCallback() wrapper because the Lightning Console JavaScript API
returns promises that already include the $A.getCallback() wrapper around callback functions. This is reflected in the
sample code throughout this guide.

This example uses the Workspace API’s openTab() function to get the tab ID of the focused tab. Then the function calls focusTab()
with the tabId returned by the openTab() method.

({
focusNewTab : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.openTab({

url: '#/sObject/001R0000003HgssIAC/view',
label: 'Global Media'

}).then(function(response) {
workspaceAPI.focusTab({tabId : response});

})
.catch(function(error) {

console.log(error);
});

}
})

Error Handling with Promises
Promises can simplify code that handles the success or failure of asynchronous calls. To use error handling with promises, use the
catch() method on the promise that is returned from calling an API method.

The catch() method returns a promise and accepts a single function parameter that’s called if the promise is rejected. This function
has one argument that shows the reason for the rejection. The promise returned by catch() is rejected if the function that is passed
in either throws an error or returns a promise that’s rejected. Otherwise, the promise is resolved.

Using Background Utility Items
Implement the lightning:backgroundUtilityItem interface to create a component that fires and responds to events
without rendering in the utility bar.

18

Using Background Utility ItemsLightning Console API

This component implements lightning:backgroundUtilityItem and listens for lightning:tabCreated events
when the app loads. The component prevents more than 5 tabs from opening.

<aura:component implements="lightning:backgroundUtilityItem">
<aura:attribute name="limit" default="5" type="Integer" />
<aura:handler event="lightning:tabCreated" action="{!c.onTabCreated}" />
<lightning:workspaceAPI aura:id="workspace" />

</aura:component>

When a tab is created, the event handler calls onTabCreated in the component’s controller and checks how many tabs are open.
If the number of tabs is more than 5, the leftmost tab automatically closes.

({
onTabCreated: function(cmp) {

var workspace = cmp.find("workspace");
var limit = cmp.get("v.limit");
workspace.getAllTabInfo().then(function (tabInfo) {

if (tabInfo.length > limit) {
workspace.closeTab({

tabId: tabInfo[0].tabId
});

}
});

}
})

Background utility items are added to an app the same way normal utility items are, but they don’t appear in the utility bar. The icon
appears next to background utility items on the utility item list. If you have only background utility items in your utility bar, the utility
bar doesn’t appear in your app. You need at least one non-background utility item in your utility bar for it to appear.

SEE ALSO:

Salesforce Help: Add a Utility Bar to Lightning Apps

Using Pop-Out Utilities
Utilities that support pop-out can be “popped out” of the utility bar and into their own separate child windows. To pop a utility out, click
the icon. From there, you can pop the utility back into the utility bar with the icon, or close the utility. Pop-out utilities are the
Lightning equivalent to multi-monitor components in Classic.

Note: Popping-out docked utility bar items isn't supported in Lightning Experience on iPad Safari.

Standard Utilities
Pop-out is supported for these standard utilities. Standard utilities are utilities that are included with Salesforce.

• Open CTI Softphone

• History

• Rich Text

• Report Chart

• Visualforce

• Flow

19

Using Pop-Out UtilitiesLightning Console API

https://help.salesforce.com/articleView?id=apps_lightning_utilities.htm&language=en_US

• List View

• Recent Items

• Chatter Feed

• Chatter Publisher

• Notes

Custom Utilities
Pop-out is available for custom utilities. To enable pop-out for custom utilities, activate the Utility Bar: Enable Pop-Out for Custom
Utilities critical update. The critical update enables pop-out for all utilities in the “Custom” and “Custom – Managed” categories. Test
your custom utilities in a sandbox environment before you enable the update.

Disabling Pop-Out
If you don’t want your custom utility to be popped out, you can disable pop-out in two ways.

Disabling Pop-Out within the Component

Use the lightning:utilityItem interface in your component and set the supportsPopOut attribute to false to disable
pop-out.

<aura:component implements="lightning:utilityItem">
<aura:attribute name="supportsPopOut" type="Boolean" default="false" />

</aura:component>

Disabling pop-out within the component itself is a useful and simple way to ensure that the component can never be popped out.

Disabling Pop-Out with the Lightning Console JavaScript API

Use the disableUtilityPopOut() method and set the disabled argument to true to disable utility pop-out.

If you’re migrating from a Classic console app and using a Visualforce page for your utility, we automatically respect if
setCustomConsoleComponentPopoutable is set to false.

Disabling pop-out with the Lightning Console JavaScript API allows you to enable and disable pop-out in real time.

IN THIS SECTION:

Supported APIs

A list of methods and events that support utility pop-out.

SEE ALSO:

disableUtilityPopOut() for Lightning Experience

Supported APIs
A list of methods and events that support utility pop-out.

Note: Custom events aren’t supported while a utility is popped out. If custom events are critical to your utility’s functionality, we
recommend disabling pop-out for your utility.

Lightning Console JavaScript API Methods for Navigation Items

20

Using Pop-Out UtilitiesLightning Console API

NotesSupports Pop-OutMethods

focusNavigationItem() for
Lightning Experience

getNavigationItems() for
Lightning Experience

getSelectedNavigationItem()
for Lightning Experience

refreshNavigationItem() for
Lightning Experience

setSelectedNavigationItem()
for Lightning Experience

Lightning Console JavaScript API Methods for Workspace Tabs and Subtabs

NotesSupports Pop-OutMethods

closeTab() for Lightning Experience

disableTabClose() for Lightning
Experience

focusTab() for Lightning Experience

generateConsoleUrl() for
Lightning Experience

getAllTabInfo() for Lightning
Experience

getEnclosingTabId() for Lightning
Experience

getFocusedTabInfo() for Lightning
Experience

getTabInfo() for Lightning Experience

getTabURL() for Lightning Experience

isConsoleNavigation() for
Lightning Experience

isSubtab() for Lightning Experience

openConsoleUrl() for Lightning
Experience

openSubtab() for Lightning Experience

openTab() for Lightning Experience

21

Using Pop-Out UtilitiesLightning Console API

NotesSupports Pop-OutMethods

refreshTab() for Lightning Experience

setTabHighlighted() for Lightning
Experience

setTabIcon() for Lightning Experience

setTabLabel() for Lightning
Experience

Lightning Console JavaScript API Methods for the Utility Bar

NotesSupports Pop-OutMethods

getAllUtilityInfo() for Lightning
Experience

getEnclosingUtilityId() for
Lightning Experience

getUtilityInfo() for Lightning
Experience

Returns false when popped outminimizeUtility() for Lightning
Experience

onUtilityClick() for Lightning
Experience

openUtility() for Lightning
Experience

setPanelHeaderIcon() for
Lightning Experience

setPanelHeaderLabel() for
Lightning Experience

setPanelHeight() for Lightning
Experience

setPanelWidth() for Lightning
Experience

setUtilityHighlighted() for
Lightning Experience

setUtilityIcon() for Lightning
Experience

setUtilityLabel() for Lightning
Experience

22

Using Pop-Out UtilitiesLightning Console API

NotesSupports Pop-OutMethods

toggleModalMode() for Lightning
Experience

Lightning Console JavaScript API Events

NotesSupports Pop-OutEvents

lightning:tabClosed

lightning:tabCreated

lightning:tabFocused

lightning:tabRefreshed

lightning:tabReplaced

lightning:tabUpdated

Salesforce Classic Console API Methods for Primary Tabs and Subtabs

NotesSupports Pop-OutMethods

isInConsole()

Salesforce Classic Console API Events

NotesSupports Pop-OutEvents

removeEventListener()

fireEvent() returns success
true even when eventListeners for the
given eventType are removed.

fireEvent()

addEventListener()

Using Events with the Lightning Console JavaScript API
The Lightning framework uses event-driven programming, which allows you to create handlers to respond to interface events as they
occur. The Lightning Console JavaScript API provides several events specific to Lightning console apps.

Events are fired from JavaScript controller actions. Events can contain attributes that can be set before the event is fired and read when
the event is handled. Each event that works with Lightning console apps returns attributes that can be read once the event is fired. See
the reference section of this guide for a list of attributes returned by each event.

23

Using Events with the Lightning Console JavaScript APILightning Console API

To use console events, set up a handler in your Aura component. The following handler, for example, listens for the
lightning:tabCreated event, and calls the onTabCreated function in the component’s controller when the event occurs.

<aura:handler event="lightning:tabCreated" action="{! c.onTabCreated }"/>

Let’s look at a more fleshed out example. The following component uses the lightning:tabClosed event.

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<aura:handler event="lightning:tabClosed" action="{! c.onTabClosed }"/>
</aura:component>

When a tab is closed, the event handler calls onTabClosed in the component’s controller, which logs the tabId of the closed tab.

({
onTabClosed : function(component, event, helper) {
var tabId = event.getParam("tabId");
alert(“Tab with tabId of “ + tabId + “ was just closed.”);

}
})

You can use Lightning console events with the Workspace API and Utility Bar API to customize your users’ experience. You can, for
example, give a tab focus when it’s refreshed, or notify the user with a modal dialogue when a tab is replaced.

SEE ALSO:

Events for Lightning Console JavaScript API

Trailhead: Connect Components with Events

Lightning Aura Components Developer Guide: Communicating with Events

Using Page Context in the Utility Bar API
In both Lightning console apps and standard navigation apps, utilities can respond to the context of the current page. Set
implements="force:hasRecordId" on an Aura component used in the utility bar to access the recordId of the record
a user is viewing.

This simple component implements force:hasRecordId and listens for changes to the record being viewed. When this component
is added to a utility bar, it displays the recordId of the record currently being viewed.

<aura:component implements="force:hasRecordId,flexipage:availableForAllPageTypes"
access="global">

<aura:handler name="change" value="{!v.recordId}" action="{!c.onRecordIdChange}"/>
<div>

<p>The current recordId is {!v.recordId}.</p>
</div>

</aura:component>

The component’s controller listens for changes to the recordId, and prints the new recordId to the developer console upon a
change.

({
onRecordIdChange : function(component, event, helper) {

var newRecordId = component.get("v.recordId");
console.log(newRecordId);

}

24

Using Page Context in the Utility Bar APILightning Console API

https://trailhead.salesforce.com/modules/lex_dev_lc_basics/units/lex_dev_lc_basics_events
https://developer.salesforce.com/docs/atlas.en-us.242.0.lightning.meta/lightning/events_intro.htm

})

This image shows what the component looks like in the utility bar of a Lightning console app.

Using Page References to Open Console Workspace Tabs and Subtabs
Use openTab() and openSubtab() with a lightning:isUrlAddressible component to open custom Aura components
in Lightning console apps.

lightning:isUrlAddressable provides the following benefits over force:navigateToComponent for console apps:

• Future-proofs your apps from changes in URL formats.

• Generates a user-friendly URL for your tabs.

• Opens an Aura component as a subtab, even if called from a utility, a hover, or another page.

• Allows a mechanism to conditionally open a given component more than once or redirect to an already open workspace or subtab
using the uid parameter.

Warning: Other uses for the uid parameter that are not explicitly outlined in this document are not supported.

To create a page reference we can use to open workspace tabs and subtabs, let’s create greetings.cmp, and implement
lightning:isUrlAddressible. This component displays “Hello, <name>” where a URL parameter, c__name, provides the
name when the component is opened. The component also defines a pageReference that we can use to navigate to it.

<aura:component implements="lightning:isUrlAddressable">
<aura:attribute name="name" type="String" description="The person that will be greeted"

/>
<aura:handler name="init" value="{!this}" action="{!c.init}" />
<aura:handler name="change" value="{!v.pageReference}" action="{!c.handlePageChange}"

/>
<h1>Greeting Page</h1>

25

Using Page References to Open Console Workspace Tabs
and Subtabs

Lightning Console API

<div>Hello, {!v.name}</div>
</aura:component>

The JavaScript controller greetingsController.js handles URL parameters in the init method and assigns the name
attribute using that URL parameter.

({
init: function(cmp, evt, hlp) {

var myPageRef = cmp.get("v.pageReference");
var name = myPageRef && myPageRef.state ? myPageRef.state.c__name : "World";
cmp.set("v.name", name);

},
handlePageChange: function(cmp, evt, hlp) {

var myPageRef = cmp.get("v.pageReference");
var name = myPageRef && myPageRef.state ? myPageRef.state.c__name : "World";
cmp.set("v.name", name);

}
})

Now let’s create openGreetings.cmp, which includes an input field to set the c__name URL parameter when we open
greetings.cmp.

<aura:component>
<aura:attribute name="pageReference" type="Object"/>
<lightning:workspaceAPI aura:id="workspace"/>
<lightning:button label="Open Greeting in Subtab" onclick="{!c.openSubtab}"/>
<lightning:input label="Name" name="myname"/>

</aura:component>

The controller openGreetingsController.js uses openSubtab() and sets c__name to the value of the myname
input field. You can use the uid parameter to conditionally dedupe tabs and subtabs. Omit the uid to open a new tab or subtab
every time.

({
openSubtab: function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.getEnclosingTabId().then(function(enclosingTabId) {

workspaceAPI.openSubtab({
parentTabId: enclosingTabId,
pageReference: {

"type": "standard__component",
"attributes": {

"componentName": "c__greetings"
},
"state": {

"uid": "1",
"c__name": component.get("v.myName")

}
}

}).then(function(subtabId) {
console.log("The new subtab ID is:" + subtabId);

}).catch(function(error) {
console.log("error");

});
});

26

Using Page References to Open Console Workspace Tabs
and Subtabs

Lightning Console API

}
})

Now that we have everything set up, we can test our components by creating a custom tab in Setup for openGreetings.cmp.
Add the custom tab to a console app and open the console app. Select the custom tab from the nav menu to open
openGreetings.cmp. Enter a name and click “Open Greeting in Subtab.” greetings.cmp opens as a subtab and displays its
greeting with the provided name.

SEE ALSO:

Navigate Across Your Apps with Page References

pageReference Types

openSubtab() for Lightning Experience

openTab() for Lightning Experience

Debugging
Use your browser’s console and JavaScript error messages generated within Salesforce to debug Lightning pages built with the Lightning
Console JavaScript API. The methods in the Lightning Console JavaScript APIs are asynchronous and return their results using promises.

To print messages to your browser’s console, use console.log() in your component controller code.

Salesforce also displays JavaScript errors at runtime, which provide the stack trace when there’s a bug.

Methods for Lightning Console JavaScript API
If your org is using Lightning Experience, use Lightning Console JavaScript API methods.

IN THIS SECTION:

Methods for Navigation Items in Lightning Experience

Lightning console apps display an item menu that lets users select navigation items, such as cases, contacts, and accounts. Salesforce
admins choose which navigation items to display in the navigation menu.

Methods for Workspace Tabs and Subtabs in Lightning Experience

A Lightning console app displays Salesforce pages as workspace tabs or subtabs. A workspace tab displays the main work item or
record, such as an account. A subtab displays related records, such as an account’s contacts or opportunities.

Methods for the Utility Bar in Lightning Experience

The utility bar houses Aura components, and gives your users quick access to tools they use often. The utility bar is available in
Lightning Experience only.

Methods for Chat in Lightning Experience

Let customers chat with your agents on your web page.

Methods for Omni-Channel in Lightning Experience

Omni-Channel lets your call center route any type of incoming work item to the most qualified, available agents.

Methods for Navigation Items in Lightning Experience
Lightning console apps display an item menu that lets users select navigation items, such as cases, contacts, and accounts. Salesforce
admins choose which navigation items to display in the navigation menu.

27

DebuggingLightning Console API

https://developer.salesforce.com/docs/atlas.en-us.242.0.lightning.meta/lightning/components_navigation.htm
https://developer.salesforce.com/docs/atlas.en-us.242.0.lightning.meta/lightning/components_navigation_page_definitions.htm

These methods work with navigation items in Lightning console apps.

IN THIS SECTION:

focusNavigationItem() for Lightning Experience

Focuses on the selected navigation object and opens the object's home page. Typically, standard and custom objects open the
object's list view. If split view is open, focus remains on the selected navigation object. This method works only in Lightning console
apps.

getNavigationItems() for Lightning Experience

Returns information about all the items in the navigation menu. This method works only in Lightning console apps.

getSelectedNavigationItem() for Lightning Experience

Returns information about the selected navigation item. This method works only in Lightning console apps.

refreshNavigationItem() for Lightning Experience

Refreshes the selected navigation object's home page. Typically, standard and custom objects open the object's list view. If split
view is open, it's refreshed. This method works only in Lightning console apps.

setSelectedNavigationItem() for Lightning Experience

Sets the selected navigation item to a specific ID. This method works only in Lightning console apps.

focusNavigationItem() for Lightning Experience

Focuses on the selected navigation object and opens the object's home page. Typically, standard and custom objects open the object's
list view. If split view is open, focus remains on the selected navigation object. This method works only in Lightning console apps.

Keep these things in mind when working with this method.

• If a tab is already open for the navigation item, the focus is set on the tab.

• If split view is open, the focus is set on the navigation tab.

• If split view is collapsed, the navigation item’s tab is opened and focus is set on the tab.

Arguments

None

Sample Code

This component has a button that, when pressed, focuses on the navigation item and opens the navigation item’s home page. For most
objects, the home page is the object’s list view.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:navigationItemAPI aura:id="navigationItemAPI"/>
<lightning:button label="Focus navigation item" onclick="{!c.focusNavigationItem}"/>

</aura:component>

Controller code:

({
focusNavigationItem : function(component, event, helper) {

var navigationItemAPI = component.find("navigationItemAPI");
navigationItemAPI.focusNavigationItem().then(function(response) {

28

Methods for Lightning Console JavaScript APILightning Console API

console.log(response);
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to true. The promise is rejected on error.

getNavigationItems() for Lightning Experience

Returns information about all the items in the navigation menu. This method works only in Lightning console apps.

Arguments

None

Sample Code

This component has a button that, when pressed, returns information about the navigation items in a console app.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:navigationItemAPI aura:id="navigationItemAPI"/>
<lightning:button label="Get navigation item" onclick="{!c.getNavigationItems}"/>

</aura:component>

Controller code:

({
getNavigationItems : function(component, event, helper) {

var navigationItemAPI = component.find("navigationItemAPI");
navigationItemAPI.getNavigationItems().then(function(response) {

console.log(response);
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to an array of navigationItemInfo objects. The promise is rejected
on error.

The navigationItemInfo object contains the following fields.

29

Methods for Lightning Console JavaScript APILightning Console API

DescriptionTypeName

The navigation item’s label, such as Account or Case.stringlabel

The navigation item’s developer name that uniquely
identifies the item. For example,
Salesforce_Account or Your_VF_Page_Name.

stringdeveloperName

True if the tab is currently selected, false otherwise.booleanselected

The representation of the current page. The object returns
information such as: page type (for example

objectpageReference

standard__objectPage or
standard__navItemPage), object API name, and
state information for the page.

Here’s the structure of a navigationItemInfo object.

{
developerName : string,
label : string,
pageReference: object,
selected : boolean

}

getSelectedNavigationItem() for Lightning Experience

Returns information about the selected navigation item. This method works only in Lightning console apps.

Arguments

None

Sample Code

This component has a button that, when pressed, returns information about the selected navigation item.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:navigationItemAPI aura:id="navigationItemAPI"/>
<lightning:button label="Get selected navigation item"

onclick="{!c.getSelectedNavigationItem}"/>
</aura:component>

Controller code:

({
getSelectedNavigationItem : function(component, event, helper) {

var navigationItemAPI = component.find("navigationItemAPI");
navigationItemAPI.getSelectedNavigationItem().then(function(response) {

console.log(response);
})

30

Methods for Lightning Console JavaScript APILightning Console API

.catch(function(error) {
console.log(error);

});
}

})

Response

This method returns a promise that, upon success, resolves to a navigationItemInfo object. The promise is rejected on error.

The navigationItemInfo object has the following fields.

DescriptionTypeName

The navigation item’s label, such as Account or Case.stringlabel

The navigation item’s developer name that uniquely
identifies the item. For example,
Salesforce_Account or Your_VF_Page_Name.

stringdeveloperName

True if the tab is currently selected, false otherwise.booleanselected

The representation of the current page. The object returns
information such as: page type (for example

objectpageReference

standard__objectPage or
standard__navItemPage), object API name, and
state information for the page.

Here’s the structure of a navigationItemInfo object.

{
developerName : string,
label : string,
pageReference: object,
selected : boolean

}

refreshNavigationItem() for Lightning Experience

Refreshes the selected navigation object's home page. Typically, standard and custom objects open the object's list view. If split view is
open, it's refreshed. This method works only in Lightning console apps.

This method refreshes in the background. If the list view has unsaved changes, the method returns false and doesn’t refresh the navigation
item. The method doesn’t set focus on the navigation tab.

The following navigation items aren’t supported:

• Custom Visualforce tabs

• Custom Aura component tabs

• Custom web tabs

• Dashboards

• Reports

31

Methods for Lightning Console JavaScript APILightning Console API

Arguments

None

Sample Code

This Aura component has a button that, when pressed, refreshes the navigation item.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:navigationItemAPI aura:id="navigationItemAPI"/>
<lightning:button label="Refresh navigation item" onclick="{!c.refreshNavigationItem}"/>

</aura:component>

Controller code:

({
refreshNavigationItem : function(component, event, helper) {

var navigationItemAPI = component.find("navigationItemAPI");
navigationItemAPI.refreshNavigationItem().then(function(response) {

console.log(response);
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to true. The promise is rejected on error.

setSelectedNavigationItem() for Lightning Experience

Sets the selected navigation item to a specific ID. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

The ID of the navigation item.stringdeveloperName

Sample Code

This Aura component has a button that, when pressed, sets the specified ID as the selected navigation item.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" description="My Lightning
Component">

<lightning:navigationItemAPI aura:id="navigationItemAPI" />
<lightning:button label="Set Navigation Item" onclick="{! c.setSelectedNavigationItem

32

Methods for Lightning Console JavaScript APILightning Console API

}" />
</aura:component>

Controller code:

({
setSelectedNavigationItem : function(component, event, helper) {

var navigationItemAPI = component.find("navigationItemAPI");
navigationItemAPI.setSelectedNavigationItem({

"developerName": "standard-Account"
}).then(function(response) {

console.log(response);
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to true.

Methods for Workspace Tabs and Subtabs in Lightning Experience
A Lightning console app displays Salesforce pages as workspace tabs or subtabs. A workspace tab displays the main work item or record,
such as an account. A subtab displays related records, such as an account’s contacts or opportunities.

These methods work with workspace tabs and subtabs in Lightning console apps.

Note: Keep in mind that tabIds are case sensitive.

IN THIS SECTION:

addToBrowserTitleQueue() for Lightning Experience

Adds a string to a list of titles that rotate in the browser title bar every three seconds.This method works only in Lightning console
apps.

closeTab() for Lightning Experience

Closes a workspace tab or subtab. This method works only in Lightning console apps.

disableTabClose() for Lightning Experience

Prevents a workspace tab or subtab from closing. This method removes the close button from a tab or subtab, and disables the
keyboard shortcuts that close tabs and subtabs. This method works only in Lightning console apps.

focusTab() for Lightning Experience

Focuses a workspace tab or subtab. This method works only in Lightning console apps.

generateConsoleUrl() for Lightning Experience

Generates a URL for a workspace tab and its subtabs.. This method works only in Lightning console apps.

getAllTabInfo() for Lightning Experience

Returns information about all open tabs. This method works only in Lightning console apps.

33

Methods for Lightning Console JavaScript APILightning Console API

getEnclosingTabId() for Lightning Experience

Returns the ID of the enclosing tab. This method works only in Lightning console apps.

getFocusedTabInfo() for Lightning Experience

Returns information about the focused workspace tab or subtab. This method works only in Lightning console apps.

getTabInfo() for Lightning Experience

Returns information about the specified tab. This method works only in Lightning console apps.

getTabURL() for Lightning Experience

Returns the URL of the specified tab. This method works only in Lightning console apps.

isConsoleNavigation() for Lightning Experience

Determines whether the app it’s used within uses console navigation.

isSubtab() for Lightning Experience

Checks whether a tab is a subtab. This method works only in Lightning console apps.

openConsoleUrl() for Lightning Experience

Opens a URL generated by generateConsoleUrl(). This method works only in Lightning console apps.

openSubtab() for Lightning Experience

Opens a subtab within a workspace tab. If the subtab is already open, the subtab is focused. This method works only in Lightning
console apps.

openTab() for Lightning Experience

Opens a new workspace tab. If the tab is already open, the tab is focused. This method works only in Lightning console apps.

refreshTab() for Lightning Experience

Refreshes a workspace tab or a subtab specified by tabId. Keep in mind that the first subtab has the same tabId as the workspace
tab. This method works only in Lightning console apps.

removeFromBrowserTitleQueue() for Lightning Experience

Removes a string from a list of titles that rotate in the browser title bar every three seconds. This method works only in Lightning
console apps.

setTabHighlighted() for Lightning Experience

Highlights the specified tab with a different background color and a badge. Tab highlights don’t persist after reloading a Lightning
console app.This method works only in Lightning console apps.

setTabIcon() for Lightning Experience

Sets the icon and alternative text of the specified tab. This method works only in Lightning console apps.

setTabLabel() for Lightning Experience

Sets the label of the specified tab. This method works only in Lightning console apps.

addToBrowserTitleQueue() for Lightning Experience

Adds a string to a list of titles that rotate in the browser title bar every three seconds.This method works only in Lightning console apps.

Note: Accurate browser tab titles help improve accessibility. Screen readers announce page titles when a page is first loaded,
and don’t announce dynamic updates to the title. Use the root node of the document, like document.title, to announce
the updated browser tab title instead.

34

Methods for Lightning Console JavaScript APILightning Console API

Arguments

DescriptionTypeName

The browser tab title to add.stringtitle

Sample Code

This component has a button that, when pressed, adds a string to a list of titles that rotate in the browser title bar every three seconds.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Add to Browser Title Queue" onclick="{! c.addToBrowserTitleQueue

}" />
</aura:component>

Controller code:

({
addToBrowserTitleQueue : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.addToBrowserTitleQueue({

title: "New Browser Title"
})
.then(function(result){

console.log(result);
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to true.

closeTab() for Lightning Experience

Closes a workspace tab or subtab. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

ID of the workspace tab or subtab to close.stringtabId

Sample Code

This component has a button that, when pressed, closes the currently focused tab.

35

Methods for Lightning Console JavaScript APILightning Console API

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:workspaceAPI aura:id="workspace"/>
<lightning:button label="Close Focused Tab" onclick="{!c.closeFocusedTab}"/>

</aura:component>

Controller code:

({
closeFocusedTab : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo().then(function(response) {

var focusedTabId = response.tabId;
workspaceAPI.closeTab({tabId: focusedTabId});

})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to true.

disableTabClose() for Lightning Experience

Prevents a workspace tab or subtab from closing. This method removes the close button from a tab or subtab, and disables the keyboard
shortcuts that close tabs and subtabs. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

The ID of the workspace tab or subtab to
disable tab close for.

stringtabId

Specifies whether to disable tab close.booleandisabled

Note: disableTabClose() doesn’t prevent the browser from refreshing or closing the browser tab.

Sample Code

This component has a button that, when pressed, disables the ability to close the currently focused tab.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Disable Close Focused Tab" onclick="{! c.disableCloseFocusedTab

36

Methods for Lightning Console JavaScript APILightning Console API

}" />
</aura:component>

Controller code:

({
disableCloseFocusedTab : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo().then(function(response) {

var focusedTabId = response.tabId;
workspaceAPI.disableTabClose({

tabId: focusedTabId,
disabled: true

})
.then(function(tabInfo) {

console.log(tabInfo);
})
.catch(function(error) {

console.log(error);
});

})
.catch(function(error) {

console.log(error);
});
}

})

Response

This method returns a promise that, upon success, resolves to a tabInfo object representing the focused tab. A tabInfo object
is a JSON array of information about a workspace tab, with nested arrays of information on each subtab. This is the structure of a tabInfo
object.

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
subtabs: [

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,

37

Methods for Lightning Console JavaScript APILightning Console API

title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
focused: boolean,
recordId: string,

},
...

],
focused: boolean,
recordId: string

}

focusTab() for Lightning Experience

Focuses a workspace tab or subtab. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

ID of the workspace tab or subtab on which
to focus.

stringtabId

Sample Code

This component has a button that, when pressed, opens a new tab and focuses it.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Focus New Tab" onclick="{! c.focusNewTab }" />

</aura:component>

Controller code:

({
focusNewTab : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.openTab({

url: '/lightning/r/Account/001xx000003DI05AAG/view',
}).then(function(response) {

workspaceAPI.focusTab({tabId : response});
})
.catch(function(error) {

console.log(error);

38

Methods for Lightning Console JavaScript APILightning Console API

});
}

})

Note: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from
your org.

Response

This method returns a promise that, upon success, resolves to true.

generateConsoleUrl() for Lightning Experience

Generates a URL for a workspace tab and its subtabs.. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

An array of page references. The first page
reference is the workspace tab. Any

pageReference[]pageReferences

following page references are subtabs. The
last page reference is the focused subtab.

Sample Code

This component has a button that, when pressed, uses the generateConsoleUrl() method to create a URL for the provided
page references.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspaceAPI" />
<lightning:button label="Get Console URL" onclick="{! c.generateConsoleUrl }" />

</aura:component>

Controller code:

({
generateConsoleUrl : function(component, event, helper) {

var workspaceAPI = cmp.find("workspaceAPI");
workspaceAPI.generateConsoleURL({

"pageReferences": [
{

"type": "standard__recordPage",
"attributes": {

"objectApiName": "Account",
"actionName": "view",
"recordId": "001xx000003DGQXAA4"

},
"state": {}

},
{

39

Methods for Lightning Console JavaScript APILightning Console API

"type": "standard__recordPage",
"attributes": {

"objectApiName": "Account",
"actionName": "view",
"recordId": "001xx000003DGQWAA4"

},
"state": {}

},
{

"type": "standard__recordPage",
"attributes": {

"objectApiName": "Account",
"actionName": "view",
"recordId": "001xx000003DGQYAA4"

},
"state": {}

}
]

}).then(function(url) {
console.log(url);

})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves with the generated URL.

DescriptionTypeName

A console URL that represents the array of
URLs passed into Salesforce.

stringurl

getAllTabInfo() for Lightning Experience

Returns information about all open tabs. This method works only in Lightning console apps.

Arguments

None.

Sample Code

This component has a button that, when pressed, gets the info of all open tabs and prints the resulting tabInfo object.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />

40

Methods for Lightning Console JavaScript APILightning Console API

<lightning:button label="Get All Tab Info" onclick="{! c.getAllTabInfo }" />
</aura:component>

Controller code:

({
getAllTabInfo : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.getAllTabInfo().then(function(response) {

console.log(response);
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to an array of tabInfo objects. A tabInfo object is a JSON array of
information about a workspace tab, with nested arrays of information on each subtab. This is the structure of a tabInfo object.

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
subtabs: [

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
focused: boolean,

41

Methods for Lightning Console JavaScript APILightning Console API

recordId: string,
},
...

],
focused: boolean,
recordId: string

}

getEnclosingTabId() for Lightning Experience

Returns the ID of the enclosing tab. This method works only in Lightning console apps.

Arguments

None.

Sample Code

This component has a button that, when pressed, retrieves the enclosing tab ID.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Get Enclosing Tab Id" onclick="{! c.getEnclosingTabId }" />

</aura:component>

Controller code:

({
getEnclosingTabId : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.getEnclosingTabId().then(function(tabId) {

console.log(tabId);
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to the tabId of the enclosing tab, if within a tab, or false if not within
a tab.

getFocusedTabInfo() for Lightning Experience

Returns information about the focused workspace tab or subtab. This method works only in Lightning console apps.

Arguments

None.

42

Methods for Lightning Console JavaScript APILightning Console API

Sample Code

This component has a button that, when pressed, closes the currently focused tab.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Close Focused Tab" onclick="{! c.closeFocusedTab }" />

</aura:component>

Controller code:

({
closeFocusedTab : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo().then(function(response) {

var focusedTabId = response.tabId;
workspaceAPI.closeTab({tabId: focusedTabId});

})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to a tabInfo object representing the focused tab. A tabInfo object
is a JSON array of information about a workspace tab, with nested arrays of information on each subtab. This is the structure of a tabInfo
object.

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
subtabs: [

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,

43

Methods for Lightning Console JavaScript APILightning Console API

customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
focused: boolean,
recordId: string,

},
...

],
focused: boolean,
recordId: string

}

getTabInfo() for Lightning Experience

Returns information about the specified tab. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

ID of the tab for which to retrieve the
information.

stringtabId

Sample Code

This component has a button that, when pressed, opens a tab and uses the getTabInfo() method to print the new tab’s tabInfo
to the developer console.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Get Opened Tab Info" onclick="{! c.getOpenedTabInfo }" />

</aura:component>

Controller code:

({
getOpenedTabInfo : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.openTab({

url: '/lightning/r/Account/001xx000003DI05AAG/view',
focus: true

}).then(function(response) {
workspaceAPI.getTabInfo({

tabId: response
}).then(function(response) {

console.log(response);
});

44

Methods for Lightning Console JavaScript APILightning Console API

})
.catch(function(error) {

console.log(error);
});

}
})

Note: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from
your org.

Response

This method returns a promise that, upon success, resolves to a tabInfo object representing the specified tab. A tabInfo object
is a JSON array of information about a workspace tab, with nested arrays of information on each subtab. This is the structure of a tabInfo
object.

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
subtabs: [

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
focused: boolean,
recordId: string,

},
...

],
focused: boolean,

45

Methods for Lightning Console JavaScript APILightning Console API

recordId: string
}

getTabURL() for Lightning Experience

Returns the URL of the specified tab. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

ID of the tab for which to retrieve the URL.stringtabId

Sample Code

This component has a button that, when pressed, opens a tab and uses the getTabURL() method to print the new tab’s URL to the
developer console.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Get Opened Tab URL" onclick="{! c.getOpenedTabURL }" />

</aura:component>

Controller code:

({
getOpenedTabURL : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.openTab({

url: '/lightning/r/Account/001xx000003DI05AAG/view',
focus: true

}).then(function(response) {
workspaceAPI.getTabURL({

tabId: response
}).then(function(response) {

console.log(response);
});

})
.catch(function(error) {

console.log(error);
});

}
})

Note: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from
your org.

Response

This method returns a promise that, upon success, resolves to the URL of the specified tab.

46

Methods for Lightning Console JavaScript APILightning Console API

isConsoleNavigation() for Lightning Experience

Determines whether the app it’s used within uses console navigation.

Arguments

None.

Sample Code

This component has a button that, when pressed, prints whether the current app is using console navigation.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Is Console Navigation?" onclick="{! c.isConsoleNavigation }"

/>
</aura:component>

Controller code:

({
isConsoleNavigation : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.isConsoleNavigation().then(function(response) {

console.log(response);
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to true if the current app uses console navigation, and false otherwise.

isSubtab() for Lightning Experience

Checks whether a tab is a subtab. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

ID of the tab.stringtabId

Sample Code

This component has a button that checks whether the foucsed tab is a subtab and opens a modal with the answer.

47

Methods for Lightning Console JavaScript APILightning Console API

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Is the Focused Tab a Subtab?" onclick="{! c.isFocusedTabSubtab

}" />
</aura:component>

Controller code:

({
isFocusedTabSubtab : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo().then(function(response) {

workspaceAPI.isSubtab({
tabId: response.tabId

}).then(function(response) {
if (response) {

confirm("This tab is a subtab.");
}
else {

confirm("This tab is not a subtab.");
}

});
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to true if the tab is a subtab, and false otherwise.

openConsoleUrl() for Lightning Experience

Opens a URL generated by generateConsoleUrl(). This method works only in Lightning console apps.

Arguments

DescriptionTypeName

Console URL representing the array of URLs
passed into Salesforce.

stringurl

Optional. If true, the workspace tab opens
and displays immediately. If false, the
workspace tab opens in the background.

booleanfocus

Optional. An array of labels for the opened
tabs. The order that the tabs appear in the

string[]labels

URL should match the order in the array.

48

Methods for Lightning Console JavaScript APILightning Console API

DescriptionTypeName

Use an emptry string if you don’t want to
set any labels.

Sample Code

This component has a button that, when pressed, opens a workspace using the openConsoleUrl()method.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspaceAPI" />
<lightning:button label="Open Console URL" onclick="{! c.openConsoleUrl }" />

</aura:component>

Controller code:

// Assume URL generated by generateConsoleUrl() API
// E.g.
/lightning/r/Account/001xx000003DGQYAA4/view?ws=%2Flightning%2Fr%2FAccount%2F001xx000003DGQXAA4%2Fview&ctabs=%2Flightning%2Fr%2FAccount%2F001xx000003DGQWAA4%2Fview&activectab=2
var url = generateConsoleUrl();
var workspaceAPI = cmp.find("workspaceAPI");
workspaceAPI.openConsoleURL({

"url": url,
"focus": true,
"labels": ["Workspace Label", "First Subtab Label", "Second Subtab Label"]

}).then(function(activeTabId) {
console.log(activeTabId);

})
.catch(function(error) {

console.log(error);
});

Response

This method returns a promise that, upon success, resolves to the tabId of the active tab..

openSubtab() for Lightning Experience

Opens a subtab within a workspace tab. If the subtab is already open, the subtab is focused. This method works only in Lightning console
apps.

Arguments

DescriptionTypeName

The ID of the workspace tab within which
the new subtab opens.

stringparentTabId

Specifies the pageReference to open.
pageReference is optional.

objectpageReference

49

Methods for Lightning Console JavaScript APILightning Console API

DescriptionTypeName

Specifies the record to open. recordId
is optional.

IDrecordId

The URL representing the content of the
new workspace tab. url is optional.

stringurl

The URL can be either relative or absolute.
To use a third-party domain, add the site as
a CSP Trusted Site.

Specifies whether the new subtab has focus.
To display the subtab immediately, set

booleanfocus

focus to true. To open the subtab in
the background, set focus to false.

Note: pageReference, recordId, and url are prioritized in that order. Providing arguments with a higher priority means
the others will be ignored.

Sample Code

This component has a button that, when pressed, opens a subtab within a workspace tab.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Open Tab with Subtab" onclick="{! c.openTabWithSubtab }" />

</aura:component>

Controller code:

({
openTabWithSubtab : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.openTab({

url: '/lightning/r/Account/001xx000003DI05AAG/view',
focus: true

}).then(function(response) {
workspaceAPI.openSubtab({

parentTabId: response,
url: '/lightning/r/Contact/003xx000004Ts30AAC/view',
focus: true

});
})
.catch(function(error) {

console.log(error);
});

}
})

50

Methods for Lightning Console JavaScript APILightning Console API

Note: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from
your org.

Response

This method returns a promise that, upon success, resolves to the ID of the new subtab.

openTab() for Lightning Experience

Opens a new workspace tab. If the tab is already open, the tab is focused. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

Specifies the pageReference to open.
pageReference is optional.

objectpageReference

Specifies the record to open. recordId
is optional.

IDrecordId

The URL representing the content of the
new workspace tab. url is optional.

URLurl

The URL can be either relative or absolute.
To use a third-party domain, add the site as
a CSP Trusted Site.

Specifies whether the new tab has focus. To
display the tab immediately, set focus to

booleanfocus

true. To open the tab in the background,
set focus to false.

Optional. Specifies whether the open tab
respects existing navigation rules. This

booleanoverrideNavRules

argument has no effect on records that have
no navigation rules configured and URLs
that do not point to a record.

Note: pageReference, recordId, and url are prioritized in that order. Providing an argument with a higher priority
means the others are ignored.

Sample Code

This component has a button that when pressed, opens a tab.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:workspaceAPI aura:id="workspace"/>

51

Methods for Lightning Console JavaScript APILightning Console API

<lightning:button label="Open Tab" onclick="{!c.openTab}"/>
</aura:component>

Controller code (pageReference):

({
openTab: function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.openTab({

pageReference: {
"type": "standard__recordPage",
"attributes": {

"recordId":"500xx000000Ykt2AAC",
"actionName":"view"

},
"state": {}

},
focus: true

}).then(function(response) {
workspaceAPI.getTabInfo({

tabId: response
}).then(function(tabInfo) {

console.log("The recordId for this tab is: " + tabInfo.recordId);
});
}).catch(function(error) {

console.log(error);
});

}
)}

Controller code (recordId):

({
openTab : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.openTab({

recordId: '001xx000003DIkeAAG',
focus: true

}).then(function(response) {
workspaceAPI.getTabInfo({

tabId: response
}).then(function(tabInfo) {
console.log("The url for this tab is: " + tabInfo.url);
});

})
.catch(function(error) {

console.log(error);
});

}
})

Controller code (url):

({
openTab : function(component, event, helper) {

var workspaceAPI = component.find("workspace");

52

Methods for Lightning Console JavaScript APILightning Console API

workspaceAPI.openTab({
url: '/lightning/r/Account/001xx000003DI05AAG/view',
focus: true

}).then(function(response) {
workspaceAPI.getTabInfo({

tabId: response
}).then(function(tabInfo) {
console.log("The recordId for this tab is: " + tabInfo.recordId);
});

}).catch(function(error) {
console.log(error);

});
}

})

Note: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from
your org.

Response

This method returns a promise that, upon success, resolves to the tabId of the new tab.

refreshTab() for Lightning Experience

Refreshes a workspace tab or a subtab specified by tabId. Keep in mind that the first subtab has the same tabId as the workspace
tab. This method works only in Lightning console apps.

If this method is invoked for a workspace tab with unsaved changes, a confirmation window opens for the user.

• Continue editing: Changes are preserved and the tab or workspace isn’t refreshed.

• Discard changes: Changes are discarded and the tab or workspace is refreshed.

• Save: Changes are saved and then the tab or workspace is refreshed.

Arguments

DescriptionTypeName

ID of the workspace tab or subtab to refresh.stringtabId

Optional. If the tabId corresponds to a workspace tab, all subtabs
within that workspace are refreshed. The default is true. Keep in

booleanincludeAllSubtabs

mind that the first subtab has the same tabId as the workspace
tab.

Sample Code

This component has a button that, when pressed, refreshes the focused workspace tab and all its open subtabs.

53

Methods for Lightning Console JavaScript APILightning Console API

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:workspaceAPI aura:id="workspace"/>
<lightning:button label="Refresh Focused Tab" onclick="{!c.refreshFocusedTab}"/>

</aura:component>

Controller code:

({
refreshFocusedTab : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo().then(function(response) {

var focusedTabId = response.tabId;
workspaceAPI.refreshTab({

tabId: focusedTabId,
includeAllSubtabs: true

});
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to true. If there was an error, the promise is rejected.

Note: true doesn’t necessarily mean that the refresh was successful. For example, if the tab has unsaved changes when this
method was called, the user has a choice to save or discard their changes. The refresh is canceled depending on user’s choice.

removeFromBrowserTitleQueue() for Lightning Experience

Removes a string from a list of titles that rotate in the browser title bar every three seconds. This method works only in Lightning console
apps.

Note: Accurate browser tab titles help improve accessibility. Screen readers announce page titles when a page is first loaded,
and don’t announce dynamic updates to the title. Use the root node of the document, like document.title, to announce
the updated browser tab title instead.

Arguments

DescriptionTypeName

The browser tab title to remove.stringtitle

Sample Code

This component has a button that, when pressed, removes a string from a list of titles that rotate in the browser title bar every three
seconds.

54

Methods for Lightning Console JavaScript APILightning Console API

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Remove from Browser Title Queue" onclick="{!

c.removeFromBrowserTitleQueue }" />
</aura:component>

Controller code:

({
removeFromBrowserTitleQueue : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.removeFromBrowserTitleQueue({

title: "New Browser Title"
})
.then(function(result){

console.log(result);
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, open success, resolves to true.

setTabHighlighted() for Lightning Experience

Highlights the specified tab with a different background color and a badge. Tab highlights don’t persist after reloading a Lightning
console app.This method works only in Lightning console apps.

Arguments

DescriptionTypeName

The ID of the tab to be highlighted.stringtabId

Whether the tab is highlighted. Makes a
utility more prominent by giving it a
different background color.

booleanhighlighted

Optional. Additional options that modify the
appearance of the highlighted tab. Available
options are:

objectoptions

• pulse: If true, causes two colors to
alternate in a smooth animation.

• state: Changes the tab color.

Available types are success (),

warning (), and error ().

55

Methods for Lightning Console JavaScript APILightning Console API

Sample Code

This component has a button that, when pressed, sets the focused tab as highlighted.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Set Focused Tab Highlighted" onclick="{!

c.setFocusedTabHighlighted }" />
</aura:component>

Controller code:

({
setFocusedTabHighlighted : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo().then(function(response) {

var focusedTabId = response.tabId;
workspaceAPI.setTabHighlighted({

tabId: focusedTabId,
highlighted: true,
options: {

pulse: true,
state: "success"

}
});

})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, returns a tabInfo object representing the modified tab. A tabInfo object is
a JSON array of information about a workspace tab, with nested arrays of information on each subtab. This is the structure of a tabInfo
object.

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
subtabs: [

56

Methods for Lightning Console JavaScript APILightning Console API

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
focused: boolean,
recordId: string,

},
...

],
focused: boolean,
recordId: string

}

setTabIcon() for Lightning Experience

Sets the icon and alternative text of the specified tab. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

The ID of the tab for which to set the icon.stringtabId

An SLDS icon key. See a full list of icon keys
on the SLDS reference site.

stringicon

Optional. Alternative text for the icon.stringiconAlt

Sample Code

This component has a button that, when pressed, sets the icon of the focused tab to the SLDS “Approval” action icon.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Set Focused Tab Icon" onclick="{! c.setFocusedTabIcon }" />

</aura:component>

Controller code:

({
setFocusedTabIcon : function(component, event, helper) {

57

Methods for Lightning Console JavaScript APILightning Console API

https://www.lightningdesignsystem.com/icons/

var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo().then(function(response) {

var focusedTabId = response.tabId;
workspaceAPI.setTabIcon({
tabId: focusedTabId,
icon: "action:approval",
iconAlt: "Approval"

});
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to a tabInfo object representing the modified tab. A tabInfo object
is a JSON array of information about a workspace tab, with nested arrays of information on each subtab. This is the structure of a tabInfo
object.

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
subtabs: [

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
focused: boolean,
recordId: string,

58

Methods for Lightning Console JavaScript APILightning Console API

},
...

],
focused: boolean,
recordId: string

}

setTabLabel() for Lightning Experience

Sets the label of the specified tab. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

The ID of the tab for which to set the label.stringtabId

The label of the workspace tab or subtab.stringlabel

Sample Code

This component has a button that, when pressed, sets the label of the focused tab to “Focused Tab”.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Set Focused Tab with Label" onclick="{! c.setFocusedTabLabel

}" />
</aura:component>

Controller code:

({
setFocusedTabLabel : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo().then(function(response) {

var focusedTabId = response.tabId;
workspaceAPI.setTabLabel({

tabId: focusedTabId,
label: "Focused Tab"

});
})
.catch(function(error) {

console.log(error);
});

}
})

59

Methods for Lightning Console JavaScript APILightning Console API

Response

This method returns a promise that, upon success, resolves to a tabInfo object representing the modified tab. A tabInfo object
is a JSON array of information about a workspace tab, with nested arrays of information on each subtab. This is the structure of a tabInfo
object.

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
subtabs: [

{
tabId: string,
url: string (URL),
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
customTitle: string (optional),
customIcon: string (optional),
customIconAlt: string (optional),
highlighted: boolean,
pageReference: object,
isSubtab: boolean,
parentTabId: string,
focused: boolean,
recordId: string,

},
...

],
focused: boolean,
recordId: string

}

Methods for the Utility Bar in Lightning Experience
The utility bar houses Aura components, and gives your users quick access to tools they use often. The utility bar is available in Lightning
Experience only.

These methods work in the utility bar.

60

Methods for Lightning Console JavaScript APILightning Console API

IN THIS SECTION:

disableUtilityPopOut() for Lightning Experience

Disables pop-out for a utility.

getAllUtilityInfo() for Lightning Experience

Returns the state of all utilities as an array of utilityInfo objects.

getEnclosingUtilityId() for Lightning Experience

Returns the ID of the enclosing utility, or false if not within a utility.

getUtilityInfo() for Lightning Experience

Returns the state of the current utility as a utilityInfo object.

isUtilityPoppedOut() for Lightning Experience

Determines whether the utility is in a popped-out state.

minimizeUtility() for Lightning Experience

Minimizes a utility.

onUtilityClick() for Lightning Experience

Registers an eventHandler for the utility. This eventHandler is called when the utility is clicked.

openUtility() for Lightning Experience

Opens a utility. If the utility is already open, this method has no effect. Only one utility can be open at a time. If another utility is
already open, it is minimized.

setPanelHeaderIcon() for Lightning Experience

Sets the icon of a utility’s panel. This icon is displayed in the utility panel header.

setPanelHeaderLabel() for Lightning Experience

Sets the label of a utility’s panel. This label is displayed in the utility panel header.

setPanelHeight() for Lightning Experience

Sets a utility panel’s height.

setPanelWidth() for Lightning Experience

Sets a utility panel’s width.

setUtilityHighlighted() for Lightning Experience

Sets a utility as highlighted, giving it a badge and a more prominent background color.

setUtilityIcon() for Lightning Experience

Sets the icon of a utility. This icon is displayed in the utility bar.

setUtilityLabel() for Lightning Experience

Sets the label of a utility. This text is displayed in the utility bar.

toggleModalMode() for Lightning Experience

Toggles modal mode for a utility. While in modal mode, an overlay blocks users from using the console while the utility panel is
visible.

disableUtilityPopOut() for Lightning Experience

Disables pop-out for a utility.

61

Methods for Lightning Console JavaScript APILightning Console API

Arguments

DescriptionTypeName

The ID of the utility to disable pop-out for.
Optional when called within a utility.

stringutilityId

If true, disables pop-out and removes the
pop-out icon for a utility that isn’t popped

booleandisabled

out. If the utility is already popped out, the
pop-out icon is disabled.

If disabledText is provided, the
pop-out icon isn’t removed, but it’s disabled.

Hover text for the pop-out and pop-in icons
if disabled is set to true. Optional.

stringdisabledText

Sample Code

This component has a button that, when pressed, disables utility pop-out.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Disable Utility Pop-Out" onclick="{! c.disableUtilityPopOut

}" />
</aura:component>

Controller code:

({
disableUtilityPopOut : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.disableUtilityPopOut({

disabled: true,
disabledText: "Pop-out is disabled"

});
}

})

Response

This method returns a promise that, upon success, resolves to true.

getAllUtilityInfo() for Lightning Experience

Returns the state of all utilities as an array of utilityInfo objects.

Arguments

None.

62

Methods for Lightning Console JavaScript APILightning Console API

Sample Code

This component has a button that, when pressed, retrieves all utilityInfo objects and opens the first utility, ordered by ID.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Get All Utility Info" onclick="{! c.getAllUtilityInfo }" />

</aura:component>

Controller code:

({
getAllUtilityInfo : function(component, event, helper) {

var utilityBarAPI = component.find("utilitybar");
utilityBarAPI.getAllUtilityInfo().then(function(response) {

var myUtilityInfo = response[0];
utilityBarAPI.openUtility({

utilityId: myUtilityInfo.id
});

})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to an array of utilityInfo objects, containing the following fields.

DescriptionTypeName

The ID of the utility.stringid

Whether the utility is loaded.booleanisLoaded

The label of the utility.stringutilityLabel

The SLDS icon ID of the utility’s icon.stringutilityIcon

The SLDS icon variant of the utility’s icon.stringutilityIconVariant

Whether the utility is highlighted.booleanutilityHighlighted

Whether the utility is visible.booleanutilityVisible

Whether the utility is popped out.booleanutilityPoppedOut

The label of the utility panel.stringpanelHeaderLabel

The SLDS icon ID of the utility panel’s icon.stringpanelHeaderIcon

The SLDS icon variant of the utility panel’s
icon.

stringpanelHeaderIconVariant

The height of the utility panel in pixels.integerpanelHeight

63

Methods for Lightning Console JavaScript APILightning Console API

DescriptionTypeName

The width of the utility panel in pixelsintegerpanelWidth

getEnclosingUtilityId() for Lightning Experience

Returns the ID of the enclosing utility, or false if not within a utility.

Arguments

None.

Sample Code

This component has a button that, when pressed, retrieves the enclosing utility’s ID.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Get Enclosing Utility ID" onclick="{! c.getEnclosingUtilityId

}" />
</aura:component>

Controller code:

({
getEnclosingUtilityId : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.getEnclosingUtilityId().then(function(utilityId) {

console.log(utilityId);
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to the utilityId of the enclosing utility or false if not within a utility.

getUtilityInfo() for Lightning Experience

Returns the state of the current utility as a utilityInfo object.

Arguments

DescriptionTypeName

The ID of the utility for which to retrieve the
state. Optional when called within a utility.

stringutilityId

64

Methods for Lightning Console JavaScript APILightning Console API

Sample Code

This component has a button that, when pressed, retrieves the enclosing utility’s info and opens it if it’s not currently visible, and closes
it otherwise.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Get Utility Info" onclick="{! c.getUtilityInfo }" />

</aura:component>

Controller code:

({
getUtilityInfo : function(component, event, helper) {

var utilityBarAPI = component.find("utilitybar");
utilityBarAPI.getUtilityInfo().then(function(response) {

if (response.utilityVisible) {
utilityBarAPI.minimizeUtility();

}
else {

utilityBarAPI.openUtility();
}

})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to a utilityInfo object representing the enclosing utility, containing
the following fields.

DescriptionTypeName

The ID of the utility.stringid

Whether the utility is loaded.booleanisLoaded

The label of the utility.stringutilityLabel

The SLDS icon ID of the utility’s icon.stringutilityIcon

The SLDS icon variant of the utility’s icon.stringutilityIconVariant

Whether the utility is highlighted.booleanutilityHighlighted

Whether the utility is visible.booleanutilityVisible

Whether the utility is popped out.booleanutilityPoppedOut

The label of the utility panel.stringpanelHeaderLabel

The SLDS icon ID of the utility panel’s icon.stringpanelHeaderIcon

65

Methods for Lightning Console JavaScript APILightning Console API

DescriptionTypeName

The SLDS icon variant of the utility panel’s
icon.

stringpanelHeaderIconVariant

The height of the utility panel in pixels.integerpanelHeight

The width of the utility panel in pixelsintegerpanelWidth

isUtilityPoppedOut() for Lightning Experience

Determines whether the utility is in a popped-out state.

Arguments

None

Sample Code

This component has a button that, when pressed, states whether the current utility is popped out or not.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Is Utility popped out?" onclick="{! c.isUtilityPoppedOut }"

/>
<ui:inputTextArea aura:id="isUtilityPoppedOut" />

</aura:component>

Controller code:

({
isUtilityPoppedOut : function(component, event, helper) {

var utilityBarAPI = component.find("utilitybar");
utilityBarAPI.isUtilityPoppedOut().then(function(response) {

component.find('isUtilityPoppedOut').set('v.value', response);
})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to true if the utility is popped out, and false otherwise.

minimizeUtility() for Lightning Experience

Minimizes a utility.

66

Methods for Lightning Console JavaScript APILightning Console API

Arguments

DescriptionTypeName

The ID of the utility to minimize. Optional
when called within a utility.

stringutilityId

Sample Code

This component minimizes the utility when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Minimize Utility" onclick="{! c.minimizeUtility }" />

</aura:component>

Controller code:

({
minimizeUtility : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.minimizeUtility();

}
})

Response

This method returns a promise that, upon success, resolves to true.

onUtilityClick() for Lightning Experience

Registers an eventHandler for the utility. This eventHandler is called when the utility is clicked.

Keep the following things in mind when working with this method.

• The method is supported in Lightning apps with standard and console navigation.

• You can use this method to register multiple callbacks per utilityItem when executed sequentially.

• You can’t remove registered callbacks.

Arguments

DescriptionTypeName

The ID of the utility for which to register the
callback. Optional when called within a
utility.

stringutilityId

The JavaScript function that's called when
the utility is clicked.

functioneventHandler

67

Methods for Lightning Console JavaScript APILightning Console API

Sample Code

This component has a button that, when pressed, registers an eventHandler function for the enclosing utility.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Register Event Handler"

onclick="{!c.registerUtilityClickHandler}"/>
</aura:component>

Controller code:

({
registerUtilityClickHandler: function(component, event, helper){

var utilityBarAPI = component.find("utilitybar");
var eventHandler = function(response){

console.log(response);
};

utilityBarAPI.onUtilityClick({
eventHandler: eventHandler

}).then(function(result){
console.log(result);

}).catch(function(error){
console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to true, and is rejected on error. The eventHandler expects a response
JSON object containing the following fields.

DescriptionTypeName

The ID of the utilityBar item button that was
clicked.

stringutilityId

False if the utility item panel is hidden after
the button is clicked. True if the utility item
panel is visible after the button is clicked.

booleanpanelVisible

openUtility() for Lightning Experience

Opens a utility. If the utility is already open, this method has no effect. Only one utility can be open at a time. If another utility is already
open, it is minimized.

68

Methods for Lightning Console JavaScript APILightning Console API

Arguments

DescriptionTypeName

The ID of the utility to open. Optional when
called within a utility.

stringutilityId

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, opens the utility when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Open Utility" onclick="{! c.openUtility }" />

</aura:component>

Controller code:

({
openUtility : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.openUtility();

}
})

This example opens a utility from outside of the utility, using the utilityId field.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Open First Utility" onclick="{! c.openFirstUtility }" />

</aura:component>

Controller code:

({
openFirstUtility : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.getAllUtilityInfo().then(function(response) {

var myUtilityInfo = response[0];
utilityAPI.openUtility({

utilityId: myUtilityInfo.id
});

})
.catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to true.

69

Methods for Lightning Console JavaScript APILightning Console API

setPanelHeaderIcon() for Lightning Experience

Sets the icon of a utility’s panel. This icon is displayed in the utility panel header.

Arguments

DescriptionTypeName

The ID of the utility to set the panel header
icon on. Optional when called within a
utility.

stringutilityId

An SLDS utility icon key. This is displayed in
the utility bar. See a full list of utility icon
keys on the SLDS reference site.

stringicon

Optional. Additional options that modify the
appearance of the utility panel icon.

objectoptions

• iconVariant—Changes the utility
panel icon color. Available types are
success (), warning (), and

error ().

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the icon of the utility panel to a yellow SLDS
“frozen” icon when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Panel Header Icon" onclick="{! c.setPanelHeaderIcon }"

/>
</aura:component>

Controller code:

({
setPanelHeaderIcon : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.setPanelHeaderIcon({

icon: “frozen”
options:{

iconVariant:"warning"
}

});
}

})

70

Methods for Lightning Console JavaScript APILightning Console API

https://www.lightningdesignsystem.com/icons/

Response

This method returns a promise that, upon success, resolves to true.

setPanelHeaderLabel() for Lightning Experience

Sets the label of a utility’s panel. This label is displayed in the utility panel header.

Arguments

DescriptionTypeName

The ID of the utility to set the panel header
label on. Optional when called within a
utility.

stringutilityId

The label of the utility displayed in the panel
header.

stringlabel

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the label of the utility panel to “My Utility”
when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Panel Header Label" onclick="{! c.setPanelHeaderLabel }"

/>
</aura:component>

Controller code:

({
setPanelHeaderLabel : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.setPanelHeaderLabel({

label: "My Utility"
});

}
})

Response

This method returns a promise that, upon success, resolves to true.

setPanelHeight() for Lightning Experience

Sets a utility panel’s height.

71

Methods for Lightning Console JavaScript APILightning Console API

Arguments

DescriptionTypeName

The ID of the utility of which to set the
height. Optional when called within a utility.

stringutilityId

The height of the utility panel in pixels.integerheightPX

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the height of the utility to 500 pixels when
the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Panel Height" onclick="{! c.setPanelHeight }" />

</aura:component>

Controller code:

({
setPanelHeight : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.setPanelHeight({

heightPX: 500
});

}
})

Response

This method returns a promise that, upon success, resolves to true.

setPanelWidth() for Lightning Experience

Sets a utility panel’s width.

Arguments

DescriptionTypeName

The ID of the utility of which to set the
width. Optional when called within a utility.

stringutilityId

The width of the utility panel in pixels.integerwidthPX

72

Methods for Lightning Console JavaScript APILightning Console API

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the width of the utility panel to 800 pixels
when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Panel Width" onclick="{! c.setPanelWidth }" />

</aura:component>

Controller code:

({
setPanelWidth : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.setPanelWidth({

widthPX: 800
});

}
})

Response

This method returns a promise that, upon success, resolves to true.

setUtilityHighlighted() for Lightning Experience

Sets a utility as highlighted, giving it a badge and a more prominent background color.

Arguments

DescriptionTypeName

The ID of the utility to highlight. Optional
when called within a utility.

stringutilityId

Whether the utility is highlighted. Makes a
utility more prominent by giving it a
different background color.

booleanhighlighted

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets a utility as highlighted when the button is
pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Utility Highlighted" onclick="{! c.setUtilityHighlighted}"

/>
</aura:component>

73

Methods for Lightning Console JavaScript APILightning Console API

Controller code:

({
setUtilityHighlighted : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.setUtilityHighlighted({

highlighted: true
});

}
})

Response

This method returns a promise that, upon success, resolves to true.

setUtilityIcon() for Lightning Experience

Sets the icon of a utility. This icon is displayed in the utility bar.

Arguments

DescriptionTypeName

The ID of the utility on which to set the icon.
Optional when called within a utility.

stringutilityId

An SLDS utility icon key that is displayed in
the utility bar. See a full list of utility icon
keys on the SLDS reference site.

stringicon

Optional. Additional options that modify the
appearance of the utility icon.

objectoptions

• iconVariant—Changes the utility
icon color. Available types are
success (), warning (), and

error ().

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the icon of the utility to a green SLDS
“insert_tag_field” icon when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Utility Icon" onclick="{! c.setUtilityIcon }" />

</aura:component>

74

Methods for Lightning Console JavaScript APILightning Console API

https://www.lightningdesignsystem.com/icons/

Controller code:

({
setUtilityIcon : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.setUtilityIcon({

icon: “insert_tag_field”
options:{

iconVariant:"success"
}

});
}

})

Response

This method returns a promise that, upon success, resolves to true.

setUtilityLabel() for Lightning Experience

Sets the label of a utility. This text is displayed in the utility bar.

Arguments

DescriptionTypeName

The ID of the utility of which to set the label.
Optional when called within a utility.

stringutilityId

The label of the utility displayed in the utility
bar.

stringlabel

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the label of the utility to “My Favorite Utility”
when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Utility Label" onclick="{! c.setUtilityLabel }" />

</aura:component>

Controller code:

({
setUtilityLabel : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.setUtilityLabel({

label: "My Favorite Utility"
});

75

Methods for Lightning Console JavaScript APILightning Console API

}
})

Response

This method returns a promise that, upon success, resolves to true.

toggleModalMode() for Lightning Experience

Toggles modal mode for a utility. While in modal mode, an overlay blocks users from using the console while the utility panel is visible.

Arguments

DescriptionTypeName

The ID of the utlity to open. Optional when
called within a utility.

stringutilityId

Whether to enable modal mode.booleanenableModalMode

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, has a button that, when pressed, toggles modal
mode.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Toggle Modal Mode" onclick="{! c.toggleModalMode }" />

</aura:component>

Controller code:

({
toggleModalMode : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.toggleModalMode({

enableModalMode: true
});

}
})

Response

This method returns a promise that, upon success, resolves to true.

Methods for Chat in Lightning Experience
Let customers chat with your agents on your web page.

Connect with customers or website visitors in real time through Web-based chat.

76

Methods for Lightning Console JavaScript APILightning Console API

IN THIS SECTION:

endChat() for Lightning Experience

Ends a chat in which an agent is currently engaged. This method works only in Lightning console apps.

getChatLog() for Lightning Experience

Returns the chat log of a chat associated with a specific recordId. This method works only in Lightning console apps.

sendCustomEvent() for Lightning Experience

Sends a custom event to the client-side chat window for a chat with a specific chat key. This method works only in Lightning console
apps.

sendMessage() for Lightning Experience

Sends a new chat message from the agent to a chat with a specific chat key. This method works only in Lightning console apps.

endChat() for Lightning Experience

Ends a chat in which an agent is currently engaged. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

An object containing all the arguments to be passed into this method.ObjectargumentObj

argumentObj

DescriptionTypeName

The ID of the chat that you want to end.StringrecordId

Sample Code

This example ends the chat and logs the result.

Component Code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<aura:attribute name="recordId" type="String" />
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<ui:button label="endChat" press="{!c.endChat}" />

</aura:component>

Controller Code:

({
endChat: function(cmp, evt, helper) {

var conversationKit = cmp.find("conversationKit");
var recordId = cmp.get("v.recordId");
conversationKit.endChat({

recordId: recordId
})

77

Methods for Lightning Console JavaScript APILightning Console API

.then(function(result){
if (result) {

console.log("Successfully ended chat");
} else {

console.log("Failed to end chat");
}

});
}

})

Response

Returns a Promise. Success resolves to true. The Promise is rejected if there's an error.

getChatLog() for Lightning Experience

Returns the chat log of a chat associated with a specific recordId. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

An object containing all the arguments to be passed into this method.ObjectargumentObj

argumentObj

DescriptionTypeName

The ID of the work associated with the current chat.StringrecordId

Sample Code

This example retrieves the chat log for the given chat, logs the result, and if successful, saves the result to a variable.

Component Code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<aura:attribute name="recordId" type="String" />
<aura:attribute name="chatLog" type="Object" />
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<ui:button label="getChatLog" press="{!c.getChatLog}" />

</aura:component>

Controller Code:

({
getChatLog: function(cmp, evt, helper) {

var conversationKit = cmp.find("conversationKit");
var recordId = cmp.get("v.recordId");
conversationKit.getChatLog({

recordId: recordId

78

Methods for Lightning Console JavaScript APILightning Console API

})
.then(function(result){

if (result) {
console.log("Successfully retrieved chat log");
cmp.set("v.chatLog", result);

} else {
console.log("Failed to retrieve chat log");

}
});

}
})

Response

Returns a Promise. Success resolves to a response object containing the messages and customEvents properties. The Promise
is rejected if there's an error.

DescriptionTypeName

An array of custom event objects representing the custom events that occurred
during a chat.

Array of
customEvent
objects.

customEvents

An array of chat message objects containing all of the chat messages from the chat
log.

Array of
message
objects.

messages

true if getting the chat log was successful; false if getting the chat log wasn’t
successful.

Booleansuccess

customEvent

The customEvent object contains a single event from the chat log and the following properties:

DescriptionTypeProperty

The person who initiated the custom event, either the chat visitor or the agent.Stringsource

The type of custom event that occurred.Stringtype

The data of the custom event that was sent to the chat; corresponds to the data
argument of the liveagent.chasitor.sendCustomEvent() method
used to send this event from the chat window.

Stringdata

The date and time a custom event was received.Date/Timetimestamp

message

The message object contains a single chat message from the chat log and the following properties:

79

Methods for Lightning Console JavaScript APILightning Console API

DescriptionTypeProperty

The text content of a message in the chat log.Stringcontent

The name of the user who sent the message in the chat log. This name appears
exactly as it is displayed in the chat log.

Stringname

The type of message that was received, such as Agent or Visitor.Stringtype

The date and time the chat message was received.Date/Timetimestamp

sendCustomEvent() for Lightning Experience

Sends a custom event to the client-side chat window for a chat with a specific chat key. This method works only in Lightning console
apps.

Arguments

DescriptionTypeName

An object containing all the arguments to be passed into this method.ObjectargumentObj

argumentObj

DescriptionTypeName

The ID of the event that you want to customize.StringrecordId

The name of the custom event type.Stringtype

The data attached to the custom event.Stringdata

Sample Code

This example publishes a custom event and logs the result.

Component Code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<aura:attribute name="recordId" type="String" />
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<ui:button label="sendCustomEvent" press="{!c.sendCustomEvent}" />

</aura:component>

Controller Code:

({
sendCustomEvent: function(cmp, evt, helper) {

var conversationKit = cmp.find("conversationKit");
var recordId = cmp.get("v.recordId");
var type = "myCustomEventType";

80

Methods for Lightning Console JavaScript APILightning Console API

var data = "myCustomEventData";
conversationKit.sendCustomEvent({

recordId: recordId,
type:type,
data: data

})
.then(function(result){

if (result) {
console.log("Successfully sent custom event");

} else {
console.log("Failed to send custom event");

}
});

}
})

Response

Returns a Promise. Success is indicated if the promise is fulfilled. Failure is indicated if the catch clause is invoked.

sendMessage() for Lightning Experience

Sends a new chat message from the agent to a chat with a specific chat key. This method works only in Lightning console apps.

Arguments

DescriptionTypeName

An object containing all the arguments to be passed into this method.ObjectargumentObj

argumentObj

DescriptionTypeName

The ID of the chat that you want to end.StringrecordId

An object containing the data to send in the message.Objectmessage

message

DescriptionTypeName

The text to be sent in the message.Stringtext

Sample Code

This example sends a message to the visitor and logs the result.

81

Methods for Lightning Console JavaScript APILightning Console API

Component Code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<aura:attribute name="recordId" type="String" />
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<ui:button label="sendMessage" press="{!c.sendMessage}" />

</aura:component>

Controller Code:

({
sendMessage: function(cmp, evt, helper) {

var conversationKit = cmp.find("conversationKit");
var recordId = cmp.get("v.recordId");
conversationKit.sendMessage({

recordId: recordId,
message: {

text:"Hi, this was sent using the sendMessage API!"
}

})
.then(function(result){

if (result) {
console.log("Successfully sent message");

} else {
console.log("Failed to send message");

}
});

}
})

Response

Returns a Promise. Success resolves to true. The Promise is rejected if there's an error.

Methods for Omni-Channel in Lightning Experience
Omni-Channel lets your call center route any type of incoming work item to the most qualified, available agents.

For more information about Omni-Channel, see Omni-Channel for Administrators in Salesforce Help.

IN THIS SECTION:

acceptAgentWork for Lightning Experience

Accepts a work item that’s assigned to an agent.

closeAgentWork for Lightning Experience

Changes the status of a work item to Closed and removes it from the list of work items in the Omni-Channel utility.

declineAgentWork for Lightning Experience

Declines a work item that’s assigned to an agent.

getAgentWorkload for Lightning Experience

Retrieves an agent’s currently assigned workload. Use this method to reroute work to available agents.

82

Methods for Lightning Console JavaScript APILightning Console API

getAgentWorks for Lightning Experience

Returns a list of work items that are assigned to an agent and open in the agent’s workspace.

getServicePresenceStatusChannels for Lightning Experience

Retrieves the service channels that are associated with an Omni-Channel user’s current presence status.

getServicePresenceStatusId for Lightning Experience

Retrieves an agent’s current presence status.

login for Lightning Experience

Logs an agent in to Omni-Channel with a specific presence status.

logout for Lightning Experience

Logs an agent out of Omni-Channel.

lowerAgentWorkFlag for Lightning Experience

Lowers a flag for this agent work item.

raiseAgentWorkFlag for Lightning Experience

Raises a flag for this agent work item.

setServicePresenceStatus for Lightning Experience

Sets an agent's presence status to a status with a particular ID. If the specified agent is not already logged in, we log in the agent
with the presence status. This method removes the need for you to make more calls.

acceptAgentWork for Lightning Experience

Accepts a work item that’s assigned to an agent.

Arguments

DescriptionTypeName

The ID of the work item the agent accepts.stringworkId

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Accept" onclick="{! c.acceptWork }" />

</aura:component>

Controller code:

({
acceptWork: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks().then(function(result) {

var works = JSON.parse(result.works);
var work = works[0];
omniAPI.acceptAgentWork({workId: work.workId}).then(function(res) {

if (res) {
console.log("Accepted work successfully");

83

Methods for Lightning Console JavaScript APILightning Console API

} else {
console.log("Accept work failed");

}
}).catch(function(error) {

console.log(error);
});

});
}

})

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

closeAgentWork for Lightning Experience

Changes the status of a work item to Closed and removes it from the list of work items in the Omni-Channel utility.

Arguments

DescriptionTypeName

The ID of the work item that’s closed.stringworkId

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Close" onclick="{! c.closeWork }" />

</aura:component>

Controller code:

({
closeWork: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks().then(function(result) {

var works = JSON.parse(result.works);
var work = works[0];
omniAPI.closeAgentWork({workId: work.workId}).then(function(res) {

if (res) {
console.log("Closed work successfully");

} else {
console.log("Close work failed");

}
}).catch(function(error) {

console.log(error);
});

});

84

Methods for Lightning Console JavaScript APILightning Console API

}
})

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

declineAgentWork for Lightning Experience

Declines a work item that’s assigned to an agent.

Arguments

DescriptionTypeName

The ID of the work item that the agent declines.stringworkId

The reason that the agent declined the work request.stringdeclineReason

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Decline" onclick="{! c.declineWork }" />

</aura:component>

Controller code:

({
declineWork: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks().then(function(result) {

var works = JSON.parse(result.works);
var work = works[0];
omniAPI.declineAgentWork({workId: work.workId}).then(function(res) {

if (res) {
console.log("Declined work successfully");

} else {
console.log("Decline work failed");

}
}).catch(function(error) {

console.log(error);
});

});
}

})

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

85

Methods for Lightning Console JavaScript APILightning Console API

getAgentWorkload for Lightning Experience

Retrieves an agent’s currently assigned workload. Use this method to reroute work to available agents.

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Get workload" onclick="{! c.getAgentWorkload }" />

</aura:component>

Controller code:

({
getAgentWorkload: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorkload().then(function(result) {

console.log('Retrieved Agent Configured Capacity and Current Workload
successfully');

console.log('Agent\'s configured capacity is: ' + result.configuredCapacity);

console.log('Agent\'s currently assigned workload is: ' +
result.currentWorkload);

}).catch(function(error) {
console.log(error);

});
}

})

Response

This method returns a promise that, upon success, resolves to an object, containing the following fields.

DescriptionTypeName

The agent’s configured capacity (work that’s assigned to the current user) through
Presence Configuration.

numberconfiguredCapacity

The agent’s currently assigned workload.numbercurrentWorkload

getAgentWorks for Lightning Experience

Returns a list of work items that are assigned to an agent and open in the agent’s workspace.

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Get Agent works" onclick="{! c.getAgentWorks }" />

</aura:component>

86

Methods for Lightning Console JavaScript APILightning Console API

Controller code:

({
getAgentWorks: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks().then(function(result) {

var works = JSON.parse(result.works);
console.log('First Agent Work ID is: ' + works[0].workId);
console.log('Assigned Entity Id of the first Agent Work is: ' +

works[0].workItemId);
console.log('Is first Agent Work Engaged: ' + works[0].isEngaged);

}).catch(function(error) {
console.log(error);

});
}

})

Response

This method returns a promise that, upon success, resolves to an array of work objects, containing the following fields.

DescriptionTypeName

The ID of the object that’s routed through Omni-Channel. This object becomes a
work assignment with a workId when it’s assigned to an agent.

StringworkItemId

The ID of a work assignment that’s routed to an agent.StringworkId

Indicates whether an agent is working on a work item that’s been assigned to them
(true) or not (false).

BooleanisEngaged

getServicePresenceStatusChannels for Lightning Experience

Retrieves the service channels that are associated with an Omni-Channel user’s current presence status.

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Get Status Channels" onclick="{! c.getStatusChannels }" />

</aura:component>

Controller code:

({
getStatusChannels: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.getServicePresenceStatusChannels().then(function(result) {

var channels = JSON.parse(result.channels);
//For example purposes, just retrieve the first channel
console.log('First channel ID is: ' + channels[0].channelId);
console.log('First channel developer name is: ' + channels[0].developerName);

87

Methods for Lightning Console JavaScript APILightning Console API

}).catch(function(error) {
console.log(error);

});
}

})

Response

This method returns a promise that, upon success, resolves to an array of channel objects, containing the following fields.

DescriptionTypeName

The ID of the channel.StringchannelId

The name of the channel.StringdeveloperName

getServicePresenceStatusId for Lightning Experience

Retrieves an agent’s current presence status.

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Get Status" onclick="{! c.getStatus }" />

</aura:component>

Controller code:

({
getStatus: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.getServicePresenceStatusId().then(function(result) {

console.log('Status Id is: ' + result.statusId);
}).catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to an object, containing the following fields.

DescriptionTypeName

The name of the agent’s current presence status.stringstatusName

The API name of the agent’s current presence status.stringstatusApiName

The ID of the agent’s current presence status.stringstatusId

88

Methods for Lightning Console JavaScript APILightning Console API

login for Lightning Experience

Logs an agent in to Omni-Channel with a specific presence status.

Arguments

DescriptionTypeName

The ID of the presence status. Agents must be given access to this presence status
through their associated profile or permission set.

stringstatusId

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Login" onclick="{! c.login }" />

</aura:component>

Controller code:

({
login: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.login({statusId: "0N5xx0000000001"}).then(function(result) {

if (result) {
console.log("Login successful");

} else {
console.log("Login failed");

}
}).catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

logout for Lightning Experience

Logs an agent out of Omni-Channel.

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Logout" onclick="{! c.logout }" />

</aura:component>

89

Methods for Lightning Console JavaScript APILightning Console API

Controller code:

({
logout: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.logout().then(function(result) {

if (result) {
console.log("Logout successful");

} else {
console.log("Logout failed");

}
}).catch(function(error) {

console.log(error);
});

}
})

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

lowerAgentWorkFlag for Lightning Experience

Lowers a flag for this agent work item.

Arguments

DescriptionTypeName

The ID of the work item to lower the flag on.stringworkId

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Lower Flag" onclick="{! c.lowerFlag }" />

</aura:component>

Controller code:

({
lowerFlag: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks().then(function(result) {

var works = JSON.parse(result.works);
var work = works[0];
omniAPI.lowerAgentWorkFlag({workId: work.workId}).then(function(res) {

if (res) {
console.log("Flag lowered successfully");

} else {
console.log("Flag lower failed");

90

Methods for Lightning Console JavaScript APILightning Console API

}
}).catch(function(error) {

console.log(error);
});

});
}
})

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

raiseAgentWorkFlag for Lightning Experience

Raises a flag for this agent work item.

Arguments

DescriptionTypeName

The ID of the work item to raise the flag on.stringworkId

Optional. The message associated with this flag.stringmessage

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Raise Flag" onclick="{! c.raiseFlag }" />

</aura:component>

Controller code:

({
raiseFlag: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks().then(function(result) {

var works = JSON.parse(result.works);
var work = works[0];
omniAPI.raiseAgentWorkFlag({workId: work.workId, message: "Raise Flag

Message"}).then(function(res) {
if (res) {

console.log("Flag raised successfully");
} else {

console.log("Flag raise failed");
}

}).catch(function(error) {
console.log(error);

});
});

91

Methods for Lightning Console JavaScript APILightning Console API

}
})

Response

This method returns a promise that, upon success, resolves to true and is rejected on error.

setServicePresenceStatus for Lightning Experience

Sets an agent's presence status to a status with a particular ID. If the specified agent is not already logged in, we log in the agent with
the presence status. This method removes the need for you to make more calls.

Arguments

DescriptionTypeName

The ID of the presence status to which you want to set the agent. Agents must be
given access to this presence status through their associated profile or permission
set.

stringstatusId

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Set Status" onclick="{! c.setStatus }" />

</aura:component>

Controller code:

({
setStatus: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.setServicePresenceStatus({statusId: "0N5xx0000000002"}).then(function(result)

{
console.log('Current statusId is: ' + result.statusId);
console.log('Channel list attached to this status is: ' + result.channels);

}).catch(function(error) {
console.log(error);

});
}

})

Response

This method returns a promise that, upon success, resolves to an object containing the following fields.

DescriptionTypeName

The name of the agent’s current presence status.stringstatusName

92

Methods for Lightning Console JavaScript APILightning Console API

DescriptionTypeName

The API name of the agent’s current presence status.stringstatusApiName

The ID of the agent’s current presence status.stringstatusId

Returns the IDs and API names of the channels associated with the presence status.JSON string of
channel
objects

channels

Events for Lightning Console JavaScript API
Use events and handlers in your Aura components and controllers to respond to events like workspace tabs opening, closing, or gaining
focus.

IN THIS SECTION:

lightning:tabClosed

Indicates that a tab has been closed.

lightning:tabCreated

Indicates that a tab has been created successfully.

lightning:tabFocused

Indicates a tab was focused.

lightning:tabRefreshed

Indicates that a tab has been refreshed.

lightning:tabReplaced

Indicates that a tab has been replaced successfully.

lightning:tabUpdated

Indicates that a tab has been updated successfully.

Events for Chat

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. A few events are
specific to Chat. These events apply to Lightning Experience only.

Events for Messaging

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. A few events are
specific to Messaging. These events apply to Lightning Experience only.

Events for Omni-Channel

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. There are a few events
that are specific to Omni-Channel. These events apply to Lightning Experience only.

lightning:tabClosed

Indicates that a tab has been closed.

93

Events for Lightning Console JavaScript APILightning Console API

Response

DescriptionTypeName

The ID of the closed tab.stringtabId

Example: This example prints a line to the browser’s developer console when a tab is closed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<aura:handler event="lightning:tabClosed" action="{! c.onTabClosed }"/>

</aura:component>

Controller code:

({
onTabClosed : function(component, event, helper) {

var tabId = event.getParam('tabId');
console.log("Tab closed: " +tabId");

}
})

lightning:tabCreated

Indicates that a tab has been created successfully.

Response

DescriptionTypeName

The ID of the new tab.stringtabId

Example: This example prints a line to the browser’s developer console when a tab is created, and sets the label of the tab to
"New Tab" using the setTabLabel() method.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabCreated" action="{! c.onTabCreated }"/>

</aura:component>

Controller code:

({
onTabCreated : function(component, event, helper) {

console.log("Tab created.");
var newTabId = event.getParam('tabId');
var workspaceAPI = component.find("workspace");
workspaceAPI.setTabLabel({

94

Events for Lightning Console JavaScript APILightning Console API

tabId: newTabId,
label: 'New Tab'

});
},

})

lightning:tabFocused

Indicates a tab was focused.

lightning:tabFocused fires whenever a user selects a workspace tab or subtab, so console navigation users frequently trigger
this application event in typical use. This event also fires when going from a tab to a navigation item, or going from a navigation item
to a tab. Aura application events notify all listeners registered in the default phase, including listeners in background tabs. Multiple
listeners responding at the same time can impact performance. To minimize performance impact, use a utility item as the only listener,
or use a custom component event instead

Response

DescriptionTypeName

The ID of the previously focused tab.stringpreviousTabId

The ID of the currently focused tab.stringcurrentTabId

Example: This example prints a line to the browser’s developer console when a tab is focused, and then returns that tab’s
tabInfo object using the getTabInfo() method.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabFocused" action="{! c.onTabFocused }"/>

</aura:component>

Controller code:

({
onTabFocused : function(component, event, helper) {

console.log("Tab Focused");
var focusedTabId = event.getParam('currentTabId');
var workspaceAPI = component.find("workspace");
workspaceAPI.getTabInfo({

tabId : focusedTabId
}).then(function(response) {

console.log(response);
});

}
})

95

Events for Lightning Console JavaScript APILightning Console API

lightning:tabRefreshed

Indicates that a tab has been refreshed.

Response

DescriptionTypeName

The ID of the refreshed tab.stringtabId

Example: This example prints a line to the browser’s developer console when a tab is refreshed, and then returns that tab’s
tabInfo object using the getTabInfo() method.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabRefreshed" action="{! c.onTabRefreshed }"/>

</aura:component>

Controller code:

({
onTabRefreshed : function(component, event, helper) {

console.log("Tab Refreshed");
var refreshedTabId = event.getParam("tabId");
var workspaceAPI = component.find("workspace");
workspaceAPI.getTabInfo({

tabId : refreshedTabId
}).then(function(response) {

console.log(response);
});

}
})

lightning:tabReplaced

Indicates that a tab has been replaced successfully.

Response

DescriptionTypeName

The ID of the replaced tab.stringtabId

96

Events for Lightning Console JavaScript APILightning Console API

Example: This example prints a line to the browser’s developer console when a tab is replaced, and then returns that tab’s URL
using the getTabURL() method.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabReplaced" action="{! c.onTabReplaced }"/>

</aura:component>

Controller code:

({
onTabReplaced : function(component, event, helper) {

console.log("Tab Replaced");
var replacedTabId = event.getParam("tabId");
var workspaceAPI = component.find("workspace");
workspaceAPI.getTabURL({

tabId : replacedTabId
}).then(function(response) {

console.log(response);
});

}
})

lightning:tabUpdated

Indicates that a tab has been updated successfully.

Response

DescriptionTypeName

The ID of the updated tab.stringtabId

Example: This example prints a line to the browser’s developer console when a tab is updated, and then prints that tab’s tabId.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabUpdated" action="{! c.onTabUpdated }"/>

</aura:component>

Controller code:

({
onTabUpdated : function(component, event, helper) {

console.log("Tab Updated");
var updatedTabId = event.getParam("tabId");
console.log(updatedTabId);

},
})

97

Events for Lightning Console JavaScript APILightning Console API

Events for Chat
JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. A few events are specific
to Chat. These events apply to Lightning Experience only.

IN THIS SECTION:

lightning:conversationAgentSend

Event triggered when an agent sends a chat message through the Salesforce console. This method does not intercept the message
before it’s sent to the chat visitor. This event is also triggered when using Enhanced Messaging channels.

lightning:conversationChatEnded

Event triggered when an active chat ends or an agent leaves a chat conference. This event is also triggered when using Enhanced
Messaging channels.

lightning:conversationCustomEvent

Event triggered when a custom event occurs during a chat.

lightning:conversationNewMessage

Event triggered when the customer, agent, or supervisor sends a new message. This event is also triggered when using Enhanced
Messaging channels.

SEE ALSO:

Set Up Chat in Lightning Experience

lightning:conversationAgentSend

Event triggered when an agent sends a chat message through the Salesforce console. This method does not intercept the message
before it’s sent to the chat visitor. This event is also triggered when using Enhanced Messaging channels.

Response

DescriptionTypeName

The ID of the work record that’s associated
with the current chat.

StringrecordId

The text of the message in the chat log.Stringcontent

The name of the agent who is attempting
to send the message. This name matches
the agent name displayed in the chat log.

Stringname

The type of message that was received—for
example, agent.

Stringtype

The date and time that the agent attempted
to send the chat message.

Date/Timetimestamp

98

Events for Lightning Console JavaScript APILightning Console API

https://help.salesforce.com/apex/HTViewHelpDoc?id=live_agent_intro_lightning.htm&language=en_US#live_agent_intro_lightning

Example: Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<aura:handler event="lightning:conversationAgentSend" action="{! c.onAgentSend}" />

</aura:component>

Controller code:

({
onAgentSend: function(cmp, evt, helper) {

var recordId = evt.getParam("recordId");
var content = evt.getParam("content");
var name = evt.getParam("name");
var type = evt.getParam("type");
var timestamp = evt.getParam("timestamp");

console.log("recordId:" + recordId + " content:" + content + " name:" + name
+ " timestamp:" + timestamp);

}
})

lightning:conversationChatEnded

Event triggered when an active chat ends or an agent leaves a chat conference. This event is also triggered when using Enhanced
Messaging channels.

Response

DescriptionTypeName

The ID of the work record that’s associated
with the current chat.

StringrecordId

Example: Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<aura:handler event="lightning:conversationChatEnded" action="{!c.onChatEnded}" />

</aura:component>

Controller code:

({
onChatEnded: function(cmp, evt, helper) {

var conversation = cmp.find("conversationKit");
var recordId = evt.getParam("recordId");

console.log("recordId:" + recordId);

99

Events for Lightning Console JavaScript APILightning Console API

}
})

lightning:conversationCustomEvent

Event triggered when a custom event occurs during a chat.

Response

DescriptionTypeName

The ID of the work record that’s associated
with the current chat.

StringrecordId

The type of the custom event that was sent
to this chat; corresponds to the type

Stringtype

argument of the
liveagent.chasitor.sendCustomEvent()
method used to send this event from the
chat window.

The data of the custom event that was sent
to this chat; corresponds to the data

Stringdata

argument of the
liveagent.chasitor.sendCustomEvent()
method used to send this event from the
chat window.

Example: Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<aura:handler event="lightning:conversationCustomEvent" action="{!c.onCustomEvent}"
/>
</aura:component>

Controller code:

({
onCustomEvent: function(cmp, evt, helper) {

var conversation = cmp.find("conversationKit");
var data = evt.getParam("data");
var type = evt.getParam("type");

console.log("type:" + type + " data:" + data);
}

})

100

Events for Lightning Console JavaScript APILightning Console API

lightning:conversationNewMessage

Event triggered when the customer, agent, or supervisor sends a new message. This event is also triggered when using Enhanced
Messaging channels.

Response

DescriptionTypeName

The ID of the work record that’s associated
with the current chat.

StringrecordId

The text sent by the agent.Stringcontent

The name of the user who sent the
message. This name matches the username
displayed in the chat log.

Stringname

The type of message that was received, such
as an Agent or Visitor message.

Stringtype

The date and time the message was
received.

Date/Timetimestamp

Example: Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<aura:handler event="lightning:conversationNewMessage" action="{!c.onNewMessage}"

/>
</aura:component>

Controller code:

({
onNewMessage: function(cmp, evt, helper) {

var recordId = evt.getParam('recordId');
var content = evt.getParam('content');
var name = evt.getParam('name');
var type = evt.getParam('type');
var timestamp = evt.getParam('timestamp');

console.log("recordId:" + recordId + " content:" + content + " name:" + name
+ " timestamp:" + timestamp);

}
})

Events for Messaging
JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. A few events are specific
to Messaging. These events apply to Lightning Experience only.

101

Events for Lightning Console JavaScript APILightning Console API

IN THIS SECTION:

lightning:conversationAgentSend

Messaging event triggered when an agent sends a message through the Salesforce console. This method intercepts the message
before it’s sent to the chat visitor. This event is also triggered when using Enhanced Messaging channels.

lightning:conversationNewMessage

Messaging event triggered when the customer, agent, or supervisor sends a new message. This event is also triggered when using
Enhanced Messaging channels.

lightning:conversationAgentSend

Messaging event triggered when an agent sends a message through the Salesforce console. This method intercepts the message before
it’s sent to the chat visitor. This event is also triggered when using Enhanced Messaging channels.

Response

DescriptionTypeName

The ID of the work record that’s associated
with the current conversation.

StringrecordId

The text of the message in the conversation
log.

Stringcontent

The name of the agent who is attempting
to send the message. This name matches

Stringname

the agent name displayed in the
conversation log.

The type of message that was received, such
as an Agent or EndUser message.

Stringtype

The date and time that the agent attempted
to send the message.

Date/Timetimestamp

Example: Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<aura:handler event="lightning:conversationAgentSend" action="{! c.onAgentSend}" />

</aura:component>

Controller code:

({
onAgentSend: function(cmp, evt, helper) {

var recordId = evt.getParam("recordId");
var content = evt.getParam("content");
var name = evt.getParam("name");
var type = evt.getParam("type");
var timestamp = evt.getParam("timestamp");

102

Events for Lightning Console JavaScript APILightning Console API

console.log("recordId:" + recordId + " content:" + content + " name:" + name
+ " timestamp:" + timestamp);

}
})

lightning:conversationNewMessage

Messaging event triggered when the customer, agent, or supervisor sends a new message. This event is also triggered when using
Enhanced Messaging channels.

Response

DescriptionTypeName

The ID of the work record that’s associated
with the current conversation.

StringrecordId

The message sent by the agent.Stringcontent

The name of the user who sent the
message. This name matches the username
displayed in the conversation log.

Stringname

The type of message that was received, such
as an Agent or Visitor message.

Stringtype

The date and time the message was
received.

Date/Timetimestamp

Example: Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global"
description="Conversation toolkit api sample">
<lightning:conversationToolkitAPI aura:id="conversationKit" />
<aura:handler event="lightning:conversationNewMessage" action="{!c.onNewMessage}"

/>
</aura:component>

Controller code:

({
onNewMessage: function(cmp, evt, helper) {

var recordId = evt.getParam('recordId');
var content = evt.getParam('content');
var name = evt.getParam('name');
var type = evt.getParam('type');
var timestamp = evt.getParam('timestamp');

console.log("recordId:" + recordId + " content:" + content + " name:" + name
+ " timestamp:" + timestamp);

103

Events for Lightning Console JavaScript APILightning Console API

}
})

Events for Omni-Channel
JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. There are a few events
that are specific to Omni-Channel. These events apply to Lightning Experience only.

IN THIS SECTION:

lightning:omniChannelConnectionError

Indicates that a network connection issue occurred.

lightning:omniChannelLoginSuccess

Indicates that an agent has been logged into Omni-Channel successfully.

lightning:omniChannelStatusChanged

Indicates that an agent has changed his or her presence status in Omni-Channel.

lightning:omniChannelLogout

Indicates that an agent has logged out of Omni-Channel.

lightning:omniChannelWorkAssigned

Indicates that an agent has been assigned a new work item.

lightning:omniChannelWorkAccepted

Indicates that an agent has accepted a work assignment, or that a work assignment has been automatically accepted.

lightning:omniChannelWorkDeclined

Indicates that an agent has declined a work assignment.

lightning:omniChannelWorkClosed

Indicates that the status of an AgentWork object is changed to Closed.

lightning:omniChannelWorkFlagUpdated

Indicates that an agent’s work item flag has been raised or lowered.

lightning:omniChannelWorkloadChanged

Indicates that an agent’s workload has changed. This includes receiving new work items, declining work items, and closing items in
the console. It also indicates that there has been a change to an agent’s capacity or presence configuration, or that the agent has
gone offline in the Omni-Channel utility.

lightning:omniChannelConnectionError

Indicates that a network connection issue occurred.

Response

DescriptionTypeName

The network connection error message.objecterror

104

Events for Lightning Console JavaScript APILightning Console API

Example: This example prints a line to the browser’s developer console when a network connection error occurs.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelConnectionError" action="{!

c.onConnectionError }"/>
</aura:component>

Controller code:

({
onConnectionError : function(component, event, helper) {

console.log("Network Connection Error.");
var error = event.getParam('error');
console.log(error);

},
})

lightning:omniChannelLoginSuccess

Indicates that an agent has been logged into Omni-Channel successfully.

Response

DescriptionTypeName

The ID of the agent’s current presence
status.

stringstatusId

Example: This example prints a line to the browser’s developer console when an Omni-Channel user logs into Omni-Channel
successfully.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelLoginSuccess" action="{! c.onLoginSuccess

}"/>
</aura:component>

Controller code:

({
onLoginSuccess : function(component, event, helper) {

console.log("Login success.");
var statusId = event.getParam('statusId');
console.log(statusId);

},
})

105

Events for Lightning Console JavaScript APILightning Console API

lightning:omniChannelStatusChanged

Indicates that an agent has changed his or her presence status in Omni-Channel.

Response

DescriptionTypeName

The ID of the agent’s current presence
status.

stringstatusId

JSON string of channel objects.stringchannels

The name of the agent’s current presence
status.

stringstatusName

The API name of the agent’s current
presence status.

stringstatusApiName

Example: This example prints status details to the browser’s developer console when an Omni-Channel user's presence status
is changed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelStatusChanged" action="{! c.onStatusChanged

}"/>
</aura:component>

Controller code:

({
onStatusChanged : function(component, event, helper) {

console.log("Status changed.");
var statusId = event.getParam('statusId');
var channels = event.getParam('channels');
var statusName = event.getParam('statusName');
var statusApiName = event.getParam('statusApiName');
console.log(statusId);
console.log(channels);
console.log(statusName);
console.log(statusApiName);

},
})

channel

The channel object contains the following properties:

106

Events for Lightning Console JavaScript APILightning Console API

DescriptionTypeName

Retrieves the ID of the service channel that’s
associated with a presence status.

stringchannelId

Retrieves the developer name of the service
channel that’s associated with the
channelId.

stringdeveloperName

lightning:omniChannelLogout

Indicates that an agent has logged out of Omni-Channel.

Response

None

Example: This example prints a line to the browser’s developer console when an Omni-Channel user logs out of Omni-Channel.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelLogout" action="{! c.onLogout }"/>

</aura:component>

Controller code:

({
onLogout : function(component, event, helper) {

console.log("Logout success.");
},

})

lightning:omniChannelWorkAssigned

Indicates that an agent has been assigned a new work item.

Response

DescriptionTypeName

The ID of the object that’s routed through
Omni-Channel. This object becomes a work

stringworkItemId

assignment with a workId when it’s
assigned to an agent.

The ID of a work assignment that’s routed
to an agent.

stringworkId

107

Events for Lightning Console JavaScript APILightning Console API

Example: This example prints work details to the browser’s developer console when an Omni-Channel user is assigned a new
work item.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelWorkAssigned" action="{! c.onWorkAssigned

}"/>
</aura:component>

Controller code:

({
onWorkAssigned : function(component, event, helper) {

console.log("Work assigned.");
var workItemId = event.getParam('workItemId');
var workId = event.getParam('workId');
console.log(workItemId);
console.log(workId);

},
})

lightning:omniChannelWorkAccepted

Indicates that an agent has accepted a work assignment, or that a work assignment has been automatically accepted.

Response

DescriptionTypeName

The ID of the object that’s routed through
Omni-Channel. This object becomes a work

stringworkItemId

assignment with a workId when it’s
assigned to an agent.

The ID of a work assignment that’s routed
to an agent.

stringworkId

Example: This example prints work details to the browser’s developer console when an Omni-Channel user accepts a work
assignment, or when a work assignment is automatically accepted.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelWorkAccepted" action="{! c.onWorkAccepted

}"/>
</aura:component>

108

Events for Lightning Console JavaScript APILightning Console API

Controller code:

({
onWorkAccepted : function(component, event, helper) {

console.log("Work accepted.");
var workItemId = event.getParam('workItemId');
var workId = event.getParam('workId');
console.log(workItemId);
console.log(workId);

},
})

lightning:omniChannelWorkDeclined

Indicates that an agent has declined a work assignment.

Response

DescriptionTypeName

The ID of the object that’s routed through
Omni-Channel. This object becomes a work

stringworkItemId

assignment with a workId when it’s
assigned to an agent.

The ID of a work assignment that’s routed
to an agent.

stringworkId

Example: This example prints work details to the browser’s developer console when an Omni-Channel user declines a work
assignment.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelWorkDeclined" action="{! c.onWorkDeclined

}"/>
</aura:component>

Controller code:

({
onWorkDeclined : function(component, event, helper) {

console.log("Work declined.");
var workItemId = event.getParam('workItemId');
var workId = event.getParam('workId');
console.log(workItemId);
console.log(workId);

},
})

109

Events for Lightning Console JavaScript APILightning Console API

lightning:omniChannelWorkClosed

Indicates that the status of an AgentWork object is changed to Closed.

Response

DescriptionTypeName

The ID of the object that’s routed through
Omni-Channel. This object becomes a work

stringworkItemId

assignment with a workId when it’s
assigned to an agent.

The ID of a work assignment that’s routed
to an agent.

stringworkId

Example: This example prints work details to the browser’s developer console when an Omni-Channel user closes a tab in the
console that’s associated with a work item.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelWorkClosed" action="{! c.onWorkClosed

}"/>
</aura:component>

Controller code:

({
onWorkClosed : function(component, event, helper) {

console.log("Work closed.");
var workItemId = event.getParam('workItemId');
var workId = event.getParam('workId');
console.log(workItemId);
console.log(workId);

},
})

lightning:omniChannelWorkFlagUpdated

Indicates that an agent’s work item flag has been raised or lowered.

Response

DescriptionTypeName

The ID of a work item with the updated flag.stringworkId

Specifies whether the flag is raised or not.BooleanisFlagged

110

Events for Lightning Console JavaScript APILightning Console API

DescriptionTypeName

Optional. A message associated with
changing the flag.

stringmessage

The role of the user who triggered this flag
change. The value is AGENT or
SUPERVISOR.

stringroleUpdatedBy

The ID of the user who triggered this flag
change.

stringupdatedBy

Example: This example prints a line to the browser’s developer console when an agent's work item flag is raised or lowered.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelWorkFlagUpdated" action="{!

c.onChannelWorkFlagUpdated }"/>
</aura:component>

Controller code:

({
onChannelWorkFlagUpdated : function(cmp, evt, hlp) {

var workId = evt.getParam('workId');
var message = evt.getParam('message');
var isFlagged = evt.getParam('isFlagged');
console.log("WorkFlag event");
console.log(" workId : "+ workId);
console.log(" isFlagged : "+ isFlagged);
console.log(" message : "+ message);

}
})

lightning:omniChannelWorkloadChanged

Indicates that an agent’s workload has changed. This includes receiving new work items, declining work items, and closing items in the
console. It also indicates that there has been a change to an agent’s capacity or presence configuration, or that the agent has gone
offline in the Omni-Channel utility.

Response

DescriptionTypeName

The configured capacity for the agent.numberconfiguredCapacity

The agent’s workload before the change.numberpreviousWorkload

The agent’s new workload after the change.numbernewWorkload

111

Events for Lightning Console JavaScript APILightning Console API

Example: This example prints workload details to the browser’s developer console when an agent’s workload changes.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<aura:handler event="lightning:omniChannelWorkloadChanged" action="{!

c.onWorkloadChanged }"/>
</aura:component>

Controller code:

({
onWorkloadChanged : function(component, event, helper) {

console.log("Workload changed.");
var configuredCapacity = event.getParam('configuredCapacity');
var previousWorkload = event.getParam('previousWorkload');
var newWorkload = event.getParam('newWorkload');
console.log(configuredCapacity);
console.log(previousWorkload);
console.log(newWorkload);

},
})

112

Events for Lightning Console JavaScript APILightning Console API

CHAPTER 3 Salesforce Console Integration Toolkit for Salesforce
Classic

EDITIONS

Available in: Salesforce
Classic (not available in all
orgs)

Available in: Professional,
Enterprise, Performance,
Unlimited, and Developer
Editions

The Salesforce Console Integration Toolkit is a browser-based JavaScript API that provides you with
programmatic access to the console in Salesforce Classic. The Salesforce Console Integration Toolkit
uses browsers as clients to display pages as tabs in the console. For example, the toolkit lets you
integrate third-party systems with the console, opening up an external application in the same
window, in a tab.

This guide explains how to use the Salesforce Console Integration Toolkit in JavaScript to embed
API calls and processes. The toolkit is available for use with third-party domains, such as
www.yourdomain.com; however, the examples in this guide are in Visualforce. The functionality
it describes is available to your organization if you have:

• Enterprise, Unlimited, Performance, or Developer Edition with the Service Cloud

• Salesforce console

The Salesforce Console Integration Toolkit supports any browser that the Salesforce console supports.

Note: To enable the toolkit for third-party domains, add the domains to the allowlist of the Salesforce console.

IN THIS SECTION:

When to Use the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit helps advanced administrators and developers implement custom functionality for the
Salesforce console. For example, you can use the Salesforce Console Integration Toolkit to display Visualforce pages or third-party
content as tabs in the Salesforce console. The Salesforce Console Integration Toolkit is an API that uses browsers as clients to display
pages in the console.

Salesforce Console Integration Toolkit Support Policy

The current release of the Salesforce Console Integration Toolkit is the only version that receives enhancements.

Sample Visualforce Page Using the Salesforce Console Integration Toolkit

Each implementation of Salesforce Console Integration Toolkit can look different. This example shows how to change the Salesforce
console user interface using the Salesforce Console Integration Toolkit.

Working with the Salesforce Console Integration Toolkit

You can use Salesforce Console Integration Toolkit to streamline a business process.

113

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US

Methods for Salesforce Classic

If your org is using Salesforce Classic, use Salesforce Console Integration Toolkit methods.

SEE ALSO:

Salesforce Help: Allow Domains for a Salesforce Console in Salesforce Classic

Salesforce Help: Supported Browsers and Devices

Methods for Salesforce Classic

When to Use the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit helps advanced administrators and developers implement custom functionality for the
Salesforce console. For example, you can use the Salesforce Console Integration Toolkit to display Visualforce pages or third-party content
as tabs in the Salesforce console. The Salesforce Console Integration Toolkit is an API that uses browsers as clients to display pages in
the console.

Your organization may have complex business processes that are unsupported by Salesforce Console Integration Toolkit functionality.
Not to worry. When this is the case, the Lightning Platform offers advanced administrators and developers several ways to implement
custom functionality.

The following table lists additional features that developers can use to implement custom functionality for Salesforce organizations.

DescriptionFeature

Use standard SOAP API calls if you want to add functionality to a composite application that processes
only one type of record at a time and does not require any transactional control (such as setting a
Savepoint or rolling back changes).

SOAP API

For more information, see the SOAP API Developer Guide.

Visualforce consists of a tag-based markup language that gives developers a more powerful way of
building applications and customizing the Salesforce user interface. With Visualforce you can:

Visualforce

• Build wizards and other multistep processes.

• Create your own custom flow control through an application.

• Define navigation patterns and data-specific rules for optimal, efficient application interaction.

For more information, see the Visualforce Developer's Guide.

Use Apex if you want to:Apex

• Create Web services.

• Create email services.

• Perform complex validation over multiple objects.

• Create complex business processes that are not supported by workflow.

• Create custom transactional logic (logic that occurs over the entire transaction, not just with a
single record or object).

• Attach custom logic to another operation, such as saving a record, so that it occurs whenever
the operation is executed, regardless of whether it originates in the user interface, a Visualforce
page, or from SOAP API.

114

When to Use the Salesforce Console Integration ToolkitSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_allowed_domains.htm&language=en_US
https://help.salesforce.com/articleView?id=getstart_browser_overview.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.242.0.api.meta/api/
https://developer.salesforce.com/docs/atlas.en-us.242.0.pages.meta/pages/

DescriptionFeature

For more information, see the Apex Developer Guide.

Salesforce Console Integration Toolkit Support Policy

The current release of the Salesforce Console Integration Toolkit is the only version that receives enhancements.

Previous versions may or may not receive fixes. When a new version is released, the previous version remains available.

IN THIS SECTION:

Backward Compatibility

Salesforce strives to make backward compatibility easy when using the Salesforce Console Integration Toolkit.

End-of-Life

Salesforce is committed to supporting each Salesforce Console Integration Toolkit version for a minimum of three years from the
date of its first release. To improve the quality and performance of the Salesforce Console Integration Toolkit, versions that are more
than three years old may not be supported.

Backward Compatibility
Salesforce strives to make backward compatibility easy when using the Salesforce Console Integration Toolkit.

Each new Salesforce release consists of two components:

• A new release of platform software that resides on Salesforce systems

• A new version of the API

The Salesforce Console Integration Toolkit matches the API version for any given release. For example, if the current version of SOAP API
is 57.0, then there’s also a version 57.0 of Salesforce Console Integration Toolkit.

We maintain support for each Salesforce Console Integration Toolkit version across releases of the platform. The Salesforce Console
Integration Toolkit is backward compatible in that an application created to work with a given Salesforce Console Integration Toolkit
version will continue to work with that same Salesforce Console Integration Toolkit version in future platform releases.

Salesforce doesn't guarantee that an application written against one Salesforce Console Integration Toolkit version will work with future
Salesforce Console Integration Toolkit versions: Changes in method signatures and data representations are often required as we continue
to enhance the Salesforce Console Integration Toolkit. However, we strive to keep the Salesforce Console Integration Toolkit consistent
from version to version with minimal changes required to port applications to newer Salesforce Console Integration Toolkit versions.

For example, an application written using Salesforce Console Integration Toolkit version 37.0, which shipped with the Summer ’16 release,
will continue to work with Salesforce Console Integration Toolkit version 37.0 on the Winter ’17 release and on future releases. However,
that same application may not work with Salesforce Console Integration Toolkit version 38.0 without modifications to the application.

End-of-Life
Salesforce is committed to supporting each Salesforce Console Integration Toolkit version for a minimum of three years from the date
of its first release. To improve the quality and performance of the Salesforce Console Integration Toolkit, versions that are more than
three years old may not be supported.

115

Salesforce Console Integration Toolkit Support PolicySalesforce Console Integration Toolkit for Salesforce Classic

https://developer.salesforce.com/docs/atlas.en-us.242.0.apexcode.meta/apexcode/

When a Salesforce Console Integration Toolkit version is scheduled to be unsupported, an advance end-of-life notice will be given at
least one year before support for the version ends. Salesforce will directly notify customers using Salesforce Console Integration Toolkit
versions scheduled for end of life.

Sample Visualforce Page Using the Salesforce Console Integration
Toolkit

Each implementation of Salesforce Console Integration Toolkit can look different. This example shows how to change the Salesforce
console user interface using the Salesforce Console Integration Toolkit.

1. Create a Visualforce page.

2. Cut and paste the following sample code into your Visualforce page.

This code demonstrates various functions of the Salesforce Console Integration Toolkit:

<apex:page standardController="Case">

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function openPrimaryTab() {
sforce.console.openPrimaryTab(undefined,

'https://www.example.com', true, 'example');
}

//The callback function that openSubtab will call once it has the ID for its
primary tab

var callOpenSubtab=function callOpenSubtab(result) {
sforce.console.openSubtab(result.id,

'https://www.example.com', true, 'example');
};

function openSubtab() {
sforce.console.getEnclosingPrimaryTabId(callOpenSubtab);

}

//Sets the title of the current tab to "Example"
function setTitle() {

sforce.console.setTabTitle('Example');
}

//The callback function that closeTab will call once it has the ID for its tab
var callCloseTab= function callCloseTab(result) {

sforce.console.closeTab(result.id);
}

function closeTab() {
sforce.console.getEnclosingTabId(callCloseTab);

}
</script>

Open A Primary Tab
<p/>Open A Subtab
<p/>Set Title to Example

116

Sample Visualforce Page Using the Salesforce Console
Integration Toolkit

Salesforce Console Integration Toolkit for Salesforce Classic

<p/>Close This Tab

</apex:page>

3. Create a custom link for cases that uses your Visualforce page.

4. Edit the page layout for cases and add your custom link.

5. Add any domains to the console’s allowlist.

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Here’s what your sample Visualforce page looks like in the console:

SEE ALSO:

Visualforce Developer Guide

Salesforce Help: Create and Edit Page Layouts

Salesforce Help: Allow Domains for a Salesforce Console in Salesforce

Working with the Salesforce Console Integration Toolkit

You can use Salesforce Console Integration Toolkit to streamline a business process.

With Salesforce Console Integration Toolkit, you can:

• Open a new primary tab or subtab that displays a specified URL

• Set the title of a primary tab or a subtab

• Return the ID of a primary tab or subtab

• Close a specified primary tab or subtab

Before developing an Salesforce Console Integration Toolkit implementation, learn how to connect to Salesforce Console Integration
Toolkit and review the best practices.

117

Working with the Salesforce Console Integration ToolkitSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.242.0.pages.meta/pages/
https://help.salesforce.com/apex/HTViewHelpDoc?id=customize_layoutcreate.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_allowed_domains.htm&language=en_US

IN THIS SECTION:

Connecting to the Toolkit

The first portion of any JavaScript code that uses the Salesforce Console Integration Toolkit must make the toolkit available to the
JavaScript code. The syntax for this is different depending on whether you are embedding JavaScript in a Visualforce page, or a
third-party domain.

Asynchronous Calls with the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit lets you issue asynchronous calls. Asynchronous calls allow the client-side process to
continue instead of waiting for a callback from the server. To issue an asynchronous call, you must include an additional parameter
with the API call, which is referred to as a callback function. Once the result is ready, the server invokes the callback method with
the result.

Working with Lightning Platform Canvas

To integrate the Salesforce Console with external applications that require authentication methods, such as signed requests or OAuth
2.0 protocols, Salesforce recommends you use Lightning Platform Canvas.

Best Practices

Salesforce recommends that you adhere to a few best practices as you use the Salesforce Console Integration Toolkit.

Connecting to the Toolkit
The first portion of any JavaScript code that uses the Salesforce Console Integration Toolkit must make the toolkit available to the
JavaScript code. The syntax for this is different depending on whether you are embedding JavaScript in a Visualforce page, or a third-party
domain.

• For Visualforce pages or any source other than a custom onclick JavaScript button, specify a <script> tag that points to the
toolkit file:

<apex:page>
<script src="/support/console/57.0/integration.js"

type="text/javascript"></script>
...

</apex:page>

For Visualforce, a relative path is sufficient to include integration.js, and is recommended.

• For a third-party domain:

<script
src="https://MyDomainName--PackageName.vf.force.com/support/console/57.0/integration.js"
type="text/javascript"></script>

Note: If enhanced domains aren’t enabled in your org, your URL format is different. For details, see My Domain URL Formats
in Salesforce Help.

The version of the Salesforce Console Integration Toolkit is in the URL.

SEE ALSO:

My Domain URL Formats

118

Connecting to the ToolkitSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=domain_name_app_url_changes.htm&language=en_US#domain_name_app_url_changes

Asynchronous Calls with the Salesforce Console Integration Toolkit
The Salesforce Console Integration Toolkit lets you issue asynchronous calls. Asynchronous calls allow the client-side process to continue
instead of waiting for a callback from the server. To issue an asynchronous call, you must include an additional parameter with the API
call, which is referred to as a callback function. Once the result is ready, the server invokes the callback method with the result.

Asynchronous syntax:

method('arg1','arg2', ..., callback_method);

For example:

//Open a new primary tab with the Salesforce home page in it
sforce.console.openPrimaryTab(null, 'https://salesforce.com',

false, 'Salesforce', callback);

Working with Lightning Platform Canvas
To integrate the Salesforce Console with external applications that require authentication methods, such as signed requests or OAuth
2.0 protocols, Salesforce recommends you use Lightning Platform Canvas.

Lightning Platform Canvas and the Salesforce Console Integration Toolkit are similar—they’re a set of tools and JavaScript APIs that
developers can use to add third-party systems to Salesforce. However, one of the benefits of Lightning Platform Canvas, is the ability to
choose authentication methods. For more information, see the Lightning Platform Canvas Developer’s Guide.

Note: For a canvas app to appear in a console, you must add it to the console as a custom console component.

When developing a canvas app, and you want to include functionality from the Salesforce Console Integration Toolkit, do the following:

1. Include the console integration toolkit API in index.jsp.

2. If your console has an allowlist for domains, add the domain of your canvas app to the allowlist.

3. Call Sfdc.canvas.client.signedrequest() to store the signed request needed by the console integration toolkit
API. For example, if the Lightning Platform Canvas method of authentication is a signed request, do the following:

Sfdc.canvas.client.signedrequest('<%=signedRequest%>')

If the Lightning Platform Canvas method of authentication is OAuth, do the following in the callback function used to get the context
as shown in “Getting Context in Your Canvas App” in the Lightning Platform Canvas Developer’s Guide:

Sfdc.canvas.client.signedrequest(msg)

Consider the following when working with the Salesforce Console Integration Toolkit and canvas apps:

• The console integration toolkit API script depends on the signed request and should be added after the call to
Sfdc.canvas.client.signedrequest() has executed. We recommend that you load the scripts dynamically.

• To retrieve the entity ID of the record that is associated with the canvas sidebar component, do the following:

// Get signedRequest
var signedRequest = Sfdc.canvas.client.signedrequest();
var parsedRequest = JSON.parse(signedRequest);
// get the entity Id that is associated with this canvas sidebar component.
var entityId = parsedRequest.context.environment.parameters.entityId;

119

Asynchronous Calls with the Salesforce Console Integration
Toolkit

Salesforce Console Integration Toolkit for Salesforce Classic

• To retrieve the entityId for OAuth, do the following:

var entityId = msg.payload.environment.parameters.entityId;

To see an example on how to retrieve msg.payload, see the Lightning Platform Canvas Developer’s Guide.

SEE ALSO:

Salesforce Canvas Developer Guide: Getting Context in Your Canvas App

Salesforce Help: Add Console Components to Apps in Salesforce Classic

Salesforce Help: Allow Domains for a Salesforce Console in Salesforce

Best Practices
Salesforce recommends that you adhere to a few best practices as you use the Salesforce Console Integration Toolkit.

• Many of the methods in the Salesforce Console Integration Toolkit are asynchronous and return their results using a callback method.
We recommend that you refer to the documentation for each method to understand the information for each response.

• Errors generated by the Salesforce Console Integration Toolkit are typically emitted in a way that doesn't halt JavaScript processing.
Therefore, we recommend that you use a tool such as Firebug for Firefox to monitor the JavaScript console and to help you debug
your code.

• To display Visualforce pages properly in the Salesforce Console, we recommend you:

– Accept the default setting showHeader="true" and set sidebar="false" on the apex:page tag.

– Set Behavior on custom buttons and links that include methods from the toolkit to display in an existing window without
a sidebar or header. For more information, see Define Custom Buttons and Links” in the Salesforce online help.

• When using Firefox, we recommend that you don't call closeTab() on a tab with an active alert box because the browser may
not load properly.

• Duplicate tabs might open when users initiate methods with invalid URLs. We recommend that you check URLs for validity before
you include them in methods.

• To prevent External Page from displaying as a tab name, we recommend that you specify the tabLabel argument on
methods such as openPrimaryTab() and openSubtab().

• For information on how you can customize, extend, or integrate the sidebars of the Salesforce console using Visualforce, see “Customize
a Console with Custom Components in Salesforce Classic” in the Salesforce online help.

• To enable the toolkit for third-party domains, add the domains to the allowlist of the Salesforce console.

• The Salesforce Console Integration Toolkit methods don't work in nested iFrames. For example, when you embed a Visualforce page
into a page layout or use a custom quick action in a feed, the API method works as expected. However, if Development Mode is
enabled in your org, the API method doesn't work because an iFrame is automatically added.

Methods for Salesforce Classic

If your org is using Salesforce Classic, use Salesforce Console Integration Toolkit methods.

IN THIS SECTION:

Methods for Primary Tabs and Subtabs

Methods for Navigation Tabs

120

Best PracticesSalesforce Console Integration Toolkit for Salesforce Classic

https://developer.salesforce.com/docs/atlas.en-us.242.0.platform_connect.meta/platform_connect/canvas_app_getting_context_code_example.htm
https://help.salesforce.com/HTViewHelpDoc?id=console2_components_create_app.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_allow_domains.htm&language=en_US
https://addons.mozilla.org/en-US/firefox/addon/firebug/?src=ss

Methods for Computer-Telephony Integration (CTI)

Methods for Application-Level Custom Console Components

Methods for Push Notifications

Methods for Console Events

Methods for Chat

Methods for Omni-Channel

Methods for Primary Tabs and Subtabs
A Salesforce console displays Salesforce pages as primary tabs or subtabs. A primary tab displays the main item to work on, such as an
account. A subtab displays related items, such as an account’s contacts or opportunities.

IN THIS SECTION:

closeTab()

Closes a specified primary tab or subtab. Keep in mind that closing the first tab in a primary tab closes the primary tab itself. This
method is only available in API version 20.0 or later.

disableTabClose()

Prevents a user from closing a tab or a subtab. If the ID parameter doesn’t specify a tab, the enclosing tab is used. You can also use
this method to re-enable a tab that has been disabled. Available in API version 36.0 or later.

focusPrimaryTabById()

Focuses the browser on a primary tab that is already open with the specified ID. This method is only available in API version 22.0 or
later.

focusPrimaryTabByName()

Focuses the browser on a primary tab that is already open with the specified name. This method is only available in API version 22.0
or later.

focusSidebarComponent()

Focuses the browser on a sidebar component. Use this method to focus on a component with the tab or accordion sidebar style.
For more information, see “Sidebar Styles for Console Components in Salesforce Classic” in the Salesforce Help. This method is only
available in API version 34.0 or later.

focusSubtabById()

Focuses the browser on a subtab that is already open with the specified ID. This method is only available in API version 22.0 or later.

focusSubtabByNameAndPrimaryTabId()

Focuses the browser on a subtab that is already open with the specified name and primary tab ID. This method is only available in
API version 22.0 or later.

focusSubtabByNameAndPrimaryTabName()

Focuses the browser on a subtab that is already open with the specified name and primary tab name. This method is only available
in API version 22.0 or later.

generateConsoleUrl()

Generates a URL to a tab, or group of related tabs, in the Salesforce console. If any tabs include external URLs, then add the external
URLs to the console’s allowlist so that they can display correctly. For more information, see “Allow Domains for a Salesforce Console
in Salesforce Classic” in the online help. This method is only available in API version 28.0 or later.

121

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

getEnclosingPrimaryTabId()

Returns the ID of the current primary tab. This method works within a primary tab or subtab, not within the navigation tab or custom
console components. This method is only available in API version 20.0 or later.

getEnclosingPrimaryTabObjectId()

Returns the object ID of the current primary tab, which contains a subtab. For example, a case ID or account ID. This method works
within a primary tab or subtab. This method is only available in API version 24.0 or later.

getEnclosingTabId()

Returns the ID of the tab that contains the current Visualforce page, which may be a primary tab or subtab. This method will work
if the call is made within a component enclosed within a subtab. This method is only available in API version 20.0 or later.

getFocusedPrimaryTabId()

Returns the ID of the primary tab on which the browser is focused. This method is only available in API version 25.0 or later.

getFocusedPrimaryTabObjectId()

Returns the object ID of the primary tab on which the browser is focused. This method is only available in API version 25.0 or later.

getFocusedSubtabId()

Returns the ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only available in
API version 25.0 or later.

getFocusedSubtabObjectId()

Returns the object ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only
available in API version 24.0 or later.

getPageInfo()

Returns page information for the specified tab after its content has loaded. If the tab ID is null, it returns page information for the
enclosing primary tab or subtab. Note that to get the page information from a custom console component, a tabId must be
passed as the first parameter to this method.This method is only available in API version 26.0 or later.

getPrimaryTabIds()

Returns all of the IDs of open primary tabs. This method is only available in API version 26.0 or later.

getSubtabIds()

Returns all of the IDs of the subtabs on the primary tab specified by a primary tab ID. If the primary tab ID is null, it returns the IDs of
the subtabs on the current primary tab. This method can only be called from a custom console component or a detail page overwritten
by a Visualforce page. This method is only available in API version 26.0 or later.

getTabLink()

Retrieves the URL to a tab, or group of related tabs, from the Salesforce console. This method is only available in API version 28.0 or
later.

isInConsole()

Determines if the page is in the Salesforce console. This method is only available in API version 22.0 or later.

onEnclosingTabRefresh()

Registers a function to call when the enclosing tab refreshes. This method is only available in API version 24.0 or later.

onFocusedPrimaryTab()

Registers a function to call when the focus of the browser changes to a different primary tab. This method is only available in API
version 25.0 or later.

onFocusedSubtab()

Registers a function to call when the focus of the browser changes to a different subtab. This method is only available in API version
24.0 or later.

122

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

onTabSave()

Registers and calls a callback method when a user clicks Save in a subtab’s Unsaved Changes dialog box. When using this method,
call setTabUnsavedChanges() in the callback method. This notifies the console that the custom save operation completed.
In the call to setTabUnsavedChanges(), pass the first parameter as false to indicate a successful save or true to indicate
an unsuccessful save. This method is only available in API version 28.0 or later.

openConsoleUrl()

Opens a URL created by the generateConsoleUrl() method (a URL to a tab, or group of related tabs, in the Salesforce
console). This method is only available in API version 28.0 or later.

openPrimaryTab()

Opens a new primary tab to display the content of the specified URL, which can be relative or absolute. You can also override an
existing tab. This method is only available in API version 20.0 or later.

openSubtab()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can
also override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's ID. This method is only available
in API version 20.0 or later.

openSubtabByPrimaryTabName()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can
also override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's name. This method is only available
in API version 22.0 or later.

refreshPrimaryTabById()

Refreshes a primary tab specified by ID, including its subtabs. This method can't refresh subtabs with URLs to external pages or
Visualforce pages. This method is only available in API version 22.0 or later.

refreshPrimaryTabByName()

Refreshes a primary tab specified by name, including its subtabs. This method can't refresh subtabs with URLs to external pages or
Visualforce pages. This method is only available in API version 22.0 or later.

refreshSubtabById()

Refreshes a subtab with the last known URL with a specified ID. This method can't refresh a subtab if the last known URL is an external
page or a Visualforce page. This method is only available in API version 22.0 or later.

refreshSubtabByNameAndPrimaryTabId()

Refreshes a subtab with the last known URL with the specified name and primary tab ID. This method can't refresh a subtab if the
last known URL is an external page or a Visualforce page. This method is only available in API version 22.0 or later.

refreshSubtabByNameAndPrimaryTabName()

Refreshes a subtab with the last known URL with the specified name and primary tab name. This method can't refresh a subtab if
the last known URL is an external page or a Visualforce page. This method is only available in API version 22.0 or later.

reopenLastClosedTab()

Reopens the last closed primary tab, and any of its subtabs that were open, the moment it was closed. This method is only available
in API version 35.0 or later.

resetSessionTimeOut()

Resets a session timeout for a console app. This method ensures that users can continue working on Visualforce pages without being
prompted to log back in to the console when they return to a console tab or console component. This method is only available in
API version 24.0 or later.

setTabUnsavedChanges()

Sets the unsaved changes icon () on subtabs to indicate unsaved data. This method is only available in API version 23.0 or later.

123

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

setTabIcon()

Sets an icon on the specified tab. If a tab is not specified, the icon is set on the enclosing tab. Use this method to customize a tab’s
icon. This method is only available in API version 28.0 or later.

setTabLink()

Sets a console tab’s URL attribute to the location of the tab’s content. Use this method to generate secure console URLs when users
navigate to tabs displaying content outside of the Salesforce domain.This method is only available in API version 28.0 or later.

setTabStyle()

Sets a cascading style sheet (CSS) on the specified tab. If a tab is not specified, the CSS is set on the enclosing tab. Use this method
to customize a tab’s look and feel. This method is only available in API version 28.0 or later.

setTabTextStyle()

Sets a cascading style sheet (CSS) on a specified tab’s text. If a tab is not specified, the CSS is set on the enclosing tab’s text. Use this
method to customize a tab’s text style. This method is only available in API version 28.0 or later.

setTabTitle()

Sets the title of a primary tab or subtab. This method is only available in API version 20.0 or later.

closeTab()

Closes a specified primary tab or subtab. Keep in mind that closing the first tab in a primary tab closes the primary tab itself. This method
is only available in API version 20.0 or later.

Note: The user interface and API behave different for pinned primary tabs. In the UI, when a primary tab is pinned, you can close
subtabs using your mouse. However, in the API, if the primary tab is pinned, you can't close its subtabs.

Syntax

sforce.console.closeTab(id:String, (optional) callback:Function)

Arguments

DescriptionTypeName

ID of the primary tab or subtab to close.stringid

For API version 35.0 or later, the JavaScript method that’s called upon completion
of the method.

functioncallback

Sample Code API 20.0 or Later–Visualforce

<apex:page standardController="Case">

Click here to close this tab

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testCloseTab() {
//First find the ID of the current tab to close it
sforce.console.getEnclosingTabId(closeSubtab);

124

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

}

var closeSubtab = function closeSubtab(result) {
//Now that we have the tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab(tabId);

};
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
None

Sample Code API Version 35.0 or Later–Visualforce

<apex:page standardController="Case">

Click here to close this tab

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var callback = function () {
if (result.error) {

alert("Error message is " + result.error);
}

};
function testCloseTab() {

//First find the ID of the current tab to close it
sforce.console.getEnclosingTabId(closeSubtab);

}

var closeSubtab = function closeSubtab(result) {
//Now that we have the tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab(tabId, callback);

};
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
fields:

125

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

DescriptionTypeName

true if the tab was re-opened, false otherwise.booleansuccess

Error message if the tab couldn’t be closed.stringerror

Tip: When using Firefox, we recommend that you don't call closeTab() on a tab with an active alert box because the browser
may not load properly.

disableTabClose()

Prevents a user from closing a tab or a subtab. If the ID parameter doesn’t specify a tab, the enclosing tab is used. You can also use this
method to re-enable a tab that has been disabled. Available in API version 36.0 or later.

Note:

• If you disable subtabs from closing, the primary tab is also disabled from closing.

• If a record is deleted whose primary tab is disabled, the tab is forcibly closed.

• If a record is deleted whose subtab is disabled, the subtab is not closed.

Syntax

sforce.console.disableTabClose(disable:boolean, (optional) tabId:String, (optional)
callback:Function)

Arguments

DescriptionTypeName

Specifies whether to disable the tab. If true, the user can’t close the tab. If false,
the user can close the tab.

booleandisable

The tabId for the tab to enable or disable. Use false to automatically select the
enclosing tab or subtab without needing to specify a tabId. The enclosing tabId can’t

stringtabId

be inferred when this call is made from outside a sidebar component. For example,
if you call this method from a footer widget, specify the tabId. If the tabId is for a
“Details” subtab of a primary tab, the primary tabId is used instead.

JavaScript method that’s called upon completion of the method. The callback is
passed a response object. See response information below.

functioncallback

Sample Code–Visualforce

<apex:page >
<html>
<head>
<title>Disable close Tab on Load</title>

126

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

<!-- Service Console integration API library -->
<script src="/support/console/57.0/integration.js"></script>

<!-- Callback functions to handle tab events -->
<script type="text/javascript">

function displayResultsCallback(result){
var resDiv = document.getElementById("eventResults");
resDiv.innerHTML = JSON.stringify(result);

}

// For use within a tab's sidebar (you don't need tab ID)

function testDisableTabCloseTrueWithoutId() {
sforce.console.disableTabClose(true, false, displayResultsCallback);

}

function testDisableTabCloseFalseWithoutId() {
sforce.console.disableTabClose(false, false, displayResultsCallback);

}

// For use anywhere (you need the tab ID)

// Note: Your tab ID might be different than the one used here.
// You can get the tab ID many different ways,
// including sforce.console.getEnclosingTabId().
// See the documentation for details.
function testDisableTabCloseTrueWithId() {
var tabId = window.prompt("Enter the tab ID","scc-pt-0");
sforce.console.disableTabClose(true, tabId, displayResultsCallback);

}

function testDisableTabCloseFalseWithId() {
var tabId = window.prompt("Enter the tab ID","scc-pt-0");
sforce.console.disableTabClose(false, tabId, displayResultsCallback);

}

</script>
</head>

<body>
<h1>Disable Tab Close Examples</h1>

<h2>API Callback Result</h2>

<code><div id="eventResults" /></code>

<h2>With No Tab ID</h2>
<p>The tab ID will be auto-detected by context, or the event will fail.</p>

127

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

Disable closing for the enclosing tab

Re-enable closing for the enclosing tab

<h2>With Tab ID Provided</h2>
<p>When the event context doesn't have a detectable tab ID, you can
supply it yourself.</p>

Disable closing for a specific tab (via tab ID)

Re-enable closing for a specific tab (via tab ID)

</body>
</html>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

true if the action completed successfully, false otherwise.booleansuccess

If the action completed successfully, message contains the affected tabId. If the
action failed, message contains the error message.

stringmessage

focusPrimaryTabById()

Focuses the browser on a primary tab that is already open with the specified ID. This method is only available in API version 22.0 or later.

Syntax

sforce.console.focusPrimaryTabById(id:String, (optional)callback:Function)

Arguments

DescriptionTypeName

ID of the primary tab to go to.stringid

JavaScript method that’s called upon completion of the method.functioncallback

128

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to go to an open primary tab by id

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testFocusPrimaryTabById() {
//Get the value for 'scc-pt-0' from the openPrimaryTab method
//This value is for example purposes only
var primaryTabId = 'scc-pt-0';
sforce.console.focusPrimaryTabById(primaryTabId, focusSuccess);

}

var focusSuccess = function focusSuccess(result) {
//Report whether going to the open primary tab was successful
if (result.success == true) {

alert('Going to the primary tab was successful');
} else {

alert('Going to the primary tab was not successful');
}

};

</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if going to the primary tab was successful; false if going to the primary
tab wasn't successful.

booleansuccess

focusPrimaryTabByName()

Focuses the browser on a primary tab that is already open with the specified name. This method is only available in API version 22.0 or
later.

Syntax

sforce.console.focusPrimaryTabByName(name:String, (optional)callback:Function)

129

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Arguments

DescriptionTypeName

Name of the primary tab to go to.stringname

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to go to a primary tab by name

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testFocusPrimaryTabByName() {
//Get the value for 'myPrimaryTab' from the openPrimaryTab method
//This value is for example purposes only
var primaryTabName = 'myPrimaryTab';
sforce.console.focusPrimaryTabByName(primaryTabName, focusSuccess);

}

var focusSuccess = function focusSuccess(result) {
//Report whether going to the primary tab was successful
if (result.success == true) {

alert('Going to the primary tab was successful');
} else {

alert('Going to the Primary tab was not successful');
}

};

</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if going to the primary tab was successful; false if going to the primary
tab wasn't successful.

booleansuccess

130

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

focusSidebarComponent()

Focuses the browser on a sidebar component. Use this method to focus on a component with the tab or accordion sidebar style. For
more information, see “Sidebar Styles for Console Components in Salesforce Classic” in the Salesforce Help. This method is only available
in API version 34.0 or later.

Syntax

sforce.console.focusSidebarComponent(componentInfo:string (optional)tabId:string,
callback:Function)

Arguments

DescriptionTypeName

The JSON object that represents the component to focus on. This argument must
include one of the following forms:

Unambiguous types:

stringcomponentInfo

• {componentType: 'CASE_EXPERT_WIDGET' }

• {componentType: 'FILES_WIDGET' }

• {componentType: 'HIGHLIGHTS_PANEL' }

• {componentType: 'KNOWLEDGE_ONE'}

• {componentType: 'MILESTONE_WIDGET' }

• {componentType: 'TOPICS_WIDGET' }

• {componentType: 'VISUALFORCE' }

Types that require additional parameters:

• {componentType: 'CANVAS', canvasAppId:
'09Hxx0000000001'}

• {componentType: 'RELATED_LIST', listName:
'Solution'}

• {componentType: 'LOOKUP', fieldName: 'Account'}

• {componentType: 'VISUALFORCE', pageName: 'VF1'}

The ID of the tab on which to focus the browser.stringtabId

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {}
if(result.success){

131

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

alert('Congratulations!');
}else{

alert('Something is wrong!');
}

};
function focusKnowledgeComponent() {

sforce.console.focusSidebarComponent(JSON.stringify({componentType:
'KNOWLEDGE_ONE'}),"scc-st-2", callback);

}
</script>
Focus Knowledge Component

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if focusing the sidebar component was successful; false otherwise.booleansuccess

focusSubtabById()

Focuses the browser on a subtab that is already open with the specified ID. This method is only available in API version 22.0 or later.

Syntax

sforce.console.focusSubtabById(id:String, (optional)callback:Function)

Arguments

DescriptionTypeName

ID of the subtab to go to.stringid

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to go to a subtab by id

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testFocusSubtabById() {
//Get the value for 'scc-st-0' from the openSubtab method

132

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

//This value is for example purposes only
var subtabId = 'scc-st-0';
sforce.console.focusSubtabById(subtabId, focusSuccess);

}

var focusSuccess = function focusSuccess(result) {
//Report whether going to the subtab was successful
if (result.success == true) {

alert('Going to the subtab was successful');
} else {

alert('Going to the subtab was not successful');
}

};

</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if going to the subtab was successful; false if going to the subtab wasn't
successful.

booleansuccess

focusSubtabByNameAndPrimaryTabId()

Focuses the browser on a subtab that is already open with the specified name and primary tab ID. This method is only available in API
version 22.0 or later.

Syntax

sforce.console.focusSubtabByNameAndPrimaryTabId(name:String,
primaryTabId:String,(optional)callback:Function)

Arguments

DescriptionTypeName

Name of the subtab to go to.stringname

ID of the primary tab in which the subtab opened.stringprimaryTabId

JavaScript method that’s called upon completion of the method.functioncallback

133

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to go to a subtab by name and primary tab ID

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testFocusSubtabByNameAndPrimaryTabId() {
//Get the values for 'mySubtab' and 'scc-pt-0' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabId = 'scc-pt-0';
sforce.console.focusSubtabByNameAndPrimaryTabId(subtabName, primaryTabId,

focusSuccess);
}

var focusSuccess = function focusSuccess(result) {
//Report whether going to the subtab was successful
if (result.success == true) {

alert('Going to the subtab was successful');
} else {

alert('Going to the subtab was not successful');
}

};

</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if going to the subtab was successful; false if going to the subtab wasn't
successful.

booleansuccess

focusSubtabByNameAndPrimaryTabName()

Focuses the browser on a subtab that is already open with the specified name and primary tab name. This method is only available in
API version 22.0 or later.

134

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Syntax

sforce.console.focusSubtabByNameAndPrimaryTabName(name:String,
primaryTabName:String,(optional)callback:Function)

Arguments

DescriptionTypeName

Name of the subtab to go to.stringname

Name of the primary tab in which the subtab opened.stringprimaryTabName

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to go to a subtab by name and primary tab name

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testFocusSubtabByNameAndPrimaryTabName() {
//Get the value for 'mySubtab' and 'myPrimaryTab' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabName = 'myPrimaryTab';
sforce.console.focusSubtabByNameAndPrimaryTabName(subtabName, primaryTabName,

focusSuccess);
}

var focusSuccess = function focusSuccess(result) {
//Report whether going to the subtab was successful
if (result.success == true) {

alert('Going to the subtab was successful');
} else {

alert('Going to the subtab was not successful');
}

};

</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

135

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if going to the subtab was successful; false if going to the subtab wasn't
successful.

booleansuccess

generateConsoleUrl()

Generates a URL to a tab, or group of related tabs, in the Salesforce console. If any tabs include external URLs, then add the external URLs
to the console’s allowlist so that they can display correctly. For more information, see “Allow Domains for a Salesforce Console in Salesforce
Classic” in the online help. This method is only available in API version 28.0 or later.

Syntax

sforce.console.generateConsoleUrl(urls:String, (optional)callback:Function)

Arguments

DescriptionTypeName

An array of URLs. The first URL is a primary tab and subsequent URLs are subtabs.
Note that the last URL is the subtab on which the console is focused. These URLs
can be standard Salesforce URLs or relative URLs.

stringurls

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>

Click here to generate a console URL

<script type="text/javascript">
function showConsoleUrl(result) {

alert(result.consoleUrl);
}
function testGenerateConsoleURL() {

sforce.console.generateConsoleUrl([/apex/pagename, /entityId,
www.externalUrl.com, Standard Salesforce Url/entityId], showConsoleUrl); }

</script>
</apex:page>

136

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

Console URL that represents the array of URLs passed into Salesforce.stringconsoleUrl

true if the URL was generated successfully, false if otherwise.booleansuccess

JavaScript method that’s called upon completion of the method.functioncallback

getEnclosingPrimaryTabId()

Returns the ID of the current primary tab. This method works within a primary tab or subtab, not within the navigation tab or custom
console components. This method is only available in API version 20.0 or later.

Syntax

sforce.console.getEnclosingPrimaryTabId((optional)callback:function)

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to close this primary tab

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testCloseTab() {
//First find the ID of the current primary tab to close it
sforce.console.getEnclosingPrimaryTabId(closeSubtab);

}

var closeSubtab = function closeSubtab(result) {
//Now that we have the primary tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab(tabId);

};
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

137

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

The ID of the current primary tab that contains this tab.stringid

getEnclosingPrimaryTabObjectId()

Returns the object ID of the current primary tab, which contains a subtab. For example, a case ID or account ID. This method works within
a primary tab or subtab. This method is only available in API version 24.0 or later.

Syntax

sforce.console.getEnclosingPrimaryTabObjectId((optional)callback:Function)

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to get enclosing primary tab object ID

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testGetEnclosingPrimaryTabObjectId() {
sforce.console.getEnclosingPrimaryTabObjectId(showObjectId);

}
var showObjectId = function showObjectId(result) {

// Display the object ID
alert ('Object ID: ' + result.id);

};
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

138

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

DescriptionTypeName

The ID of the current primary tab that contains this subtab.stringid

true if returning the enclosing primary tab was successful; false if returning
the enclosing primary tab wasn't successful.

booleansuccess

getEnclosingTabId()

Returns the ID of the tab that contains the current Visualforce page, which may be a primary tab or subtab. This method will work if the
call is made within a component enclosed within a subtab. This method is only available in API version 20.0 or later.

Syntax

sforce.console.getEnclosingTabId()

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to close this tab

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testCloseTab() {
//First find the ID of the current tab to close it
sforce.console.getEnclosingTabId(closeSubtab);

}

var closeSubtab = function closeSubtab(result) {
//Now that we have the tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab(tabId);

};
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

139

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

DescriptionTypeName

The ID of the current primary tab or subtab.stringid

getFocusedPrimaryTabId()

Returns the ID of the primary tab on which the browser is focused. This method is only available in API version 25.0 or later.

Syntax

sforce.console.getFocusedPrimaryTabId((optional) callback:Function)

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to get the focused primary tab ID

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testGetFocusedPrimaryTabId() {
sforce.console.getFocusedPrimaryTabId(showTabId);

}
var showTabId = function showTabId(result) {

//Display the tab ID
alert('Tab ID: ' + result.id);

};

</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

The ID of the primary tab on which the browser is focused. If no primary tab is open,
the ID is null.

stringid

140

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

true if returning the primary tab ID on which the browser is focused was successful;
false if returning the primary tab ID on which the browser is focused wasn't
successful.

booleansuccess

getFocusedPrimaryTabObjectId()

Returns the object ID of the primary tab on which the browser is focused. This method is only available in API version 25.0 or later.

Syntax

sforce.console.getFocusedPrimaryTabObjectId((optional) callback:Function)

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to get the focused primary tab object ID

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testGetFocusedPrimaryTabObjectId() {
sforce.console.getFocusedPrimaryTabObjectId(showObjectId);

}
var showObjectId = function showObjectId(result) {

//Display the object ID
alert('Object ID: ' + result.id);

};

</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

141

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

The object ID of the primary tab on which the browser is focused. If there is no
primary tab open, the ID is null.

stringid

true if returning the primary tab object ID on which the browser is focused was
successful; false if returning the primary tab object ID on which the browser is
focused wasn't successful.

booleansuccess

getFocusedSubtabId()

Returns the ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only available in API
version 25.0 or later.

Syntax

sforce.console.getFocusedSubtabId((optional)callback:Function)

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to get the ID of the focused subtab

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testGetFocusedSubtabId() {
sforce.console.getFocusedSubtabId(showTabId);

}
var showTabId = function showTabId(result) {

// Display the tab ID
alert ('Tab ID: ' + result.id);

};
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

142

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

The ID of the subtab on which the browser is focused. If no subtab is open, the ID is
null.

stringid

true if returning the ID of the focused subtab was successful; false if returning
the ID of the focused subtab wasn't successful.

booleansuccess

getFocusedSubtabObjectId()

Returns the object ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only available
in API version 24.0 or later.

Syntax

sforce.console.getFocusedSubtabObjectId((optional)callback:Function)

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to get the object ID of the focused subtab

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testGetFocusedSubtabObjectId() {
sforce.console.getFocusedSubtabObjectId(showObjectId);

}
var showObjectId = function showObjectId(result) {

// Display the object ID
alert ('Object ID: ' + result.id);

};
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

143

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

DescriptionTypeName

The object ID of the subtab on which the browser is focused. If no subtab is open,
the ID is null.

stringid

true if returning the object ID of the focused subtab was successful; false if
returning the object ID of the focused subtab wasn't successful.

booleansuccess

getPageInfo()

Returns page information for the specified tab after its content has loaded. If the tab ID is null, it returns page information for the enclosing
primary tab or subtab. Note that to get the page information from a custom console component, a tabId must be passed as the first
parameter to this method.This method is only available in API version 26.0 or later.

Syntax

sforce.console.getPageInfo(tabId:String, (optional)callback:Function)

Arguments

DescriptionTypeName

ID of the tab from which page information is returned.stringtabId

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to get page information

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testGetPageInfo() {
//Get the page information of 'scc-pt-1'
//This value is for example purposes only
var tabId = 'scc-pt-1';
sforce.console.getPageInfo(tabId , showPageInfo);

}

var showPageInfo = function showPageInfo(result) {
alert('Page Info: ' + result.pageInfo);
};

</script>
</apex:page>

144

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

Returns the URL of the current page as a JSON string, and includes any applicable object ID, object
name, object type, and for API version 33.0 or later, the object tab name. For example:

{"url":"https://MyDomainNamemy.salesforce.com/001x0000003DGQR",
"objectId":"001x0000003DGQR","objectName":"Acme","object":"Account","displayName":"Company"

stringpageInfo

For API version 31.0 and later, invoking this API method on a PersonAccount object returns the following
additional information.

• accountId or contactId, the associated account or contact ID

• personAccount, which is true if the object is a PersonAccount and false otherwise

For example:

{"url":"https://MyDomainNamemy.salesforce.com/001x0000003DGQR",
"objectId":"001x0000003DGQR","objectName":"Acme Person Account",
"object":"Account", "contactId":"003D000000QOMqg",
"personAccount":true}

JavaScript method that’s called upon completion of the method.functioncallback

getPrimaryTabIds()

Returns all of the IDs of open primary tabs. This method is only available in API version 26.0 or later.

Syntax

sforce.console.getPrimaryTabIds((optional) callback:Function)

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to get the primary tab IDs

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testGetPrimaryTabIds() {

145

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

sforce.console.getPrimaryTabIds(showTabId);
}

var showTabId = function showTabId(result) {
//Display the primary tab IDs
alert('Primary Tab IDs: ' + result.ids);
};

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

An array of open primary tab IDs , in order of appearance.stringids

true if returning the IDs of open primary tabs was successful; false if returning
the IDs of open primary tabs wasn't successful.

booleansuccess

getSubtabIds()

Returns all of the IDs of the subtabs on the primary tab specified by a primary tab ID. If the primary tab ID is null, it returns the IDs of the
subtabs on the current primary tab. This method can only be called from a custom console component or a detail page overwritten by
a Visualforce page. This method is only available in API version 26.0 or later.

Syntax

sforce.console.getSubtabIds((optional) primaryTabId:String, (optional) callback:Function)

Arguments

DescriptionTypeName

ID of the primary tab from which the subtab IDs are returned.stringprimaryTabId

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to get the subtab IDs

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testGetSubtabIds() {

146

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

//Get the subtabs of the primary tab 'scc-pt-0'
//This value is for example purposes only
var primaryTabId = 'scc-pt-0';
sforce.console.getSubtabIds(primaryTabId , showTabId);

}

var showTabId = function showTabId(result) {
//Display the subtab IDs
alert('Subtab IDs: ' + result.ids);
};

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

An array of open subtab IDs.stringids

true if firing the event was successful; false if firing the event wasn't successful.booleansuccess

getTabLink()

Retrieves the URL to a tab, or group of related tabs, from the Salesforce console. This method is only available in API version 28.0 or later.

Syntax

sforce.console.getTabLink(level:String, (optional)tabId:String,
(optional)callback:Function)

Arguments

DescriptionTypeName

Level that matches one of the Link to Share options in the Salesforce console user
interface. The options are:

stringlevel

• All primary tabs and subtabs —
sforce.console.TabLink.PARENT_AND_CHILDREN.

• Only the specified tab — sforce.console.TabLink.TAB_ONLY

• A standard Salesforce URL —
sforce.console.TabLink.SALESFORCE_URL

For more information, see “Tabs and Navigation in the Salesforce Classic Console”
in the online help.

147

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

Optional tab ID of the tab from which you’re retrieving the URL. If you do not pass
a tab ID, the URL to the current tab is returned.

stringtabId

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>

Click here to get tab link

<script type="text/javascript">
var getEnclosingPrimaryTabId = function getEnclosingPrimaryTabId() {

sforce.console.getEnclosingPrimaryTabId(getTabLink);
}
var getTabLink = function getTabLink(result) {

sforce.console.getTabLink(sforce.console.TabLink.PARENT_AND_CHILDREN, result.id,
showTabLink);

}
var showTabLink = function showTabLink(result) {

var link = result.tabLink;
};

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

The retrieved URL.stringtabLink

true if the link was retrieved successfully, false if retrieving was unsuccessful.booleansuccess

JavaScript method that’s called upon completion of the method.functioncallback

isInConsole()

Determines if the page is in the Salesforce console. This method is only available in API version 22.0 or later.

Syntax

sforce.console.isInConsole()

148

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

Arguments
None

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to check if the page is in the Service Cloud console

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testIsInConsole() {
if (sforce.console.isInConsole()) {

alert('in console');
} else {

alert('not in console');
}

}
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
Returns true if the page is in the Salesforce console; false if the page is not in the Salesforce console.

onEnclosingTabRefresh()

Registers a function to call when the enclosing tab refreshes. This method is only available in API version 24.0 or later.

Syntax

sforce.console.onEnclosingTabRefresh(eventHandler:Function)

Arguments

DescriptionTypeName

JavaScript method called when the enclosing tab refreshes.functioneventHandler

Sample Code–Visualforce

<apex:page>

<apex:includeScript value="/support/console/57.0/integration.js"/>

<script type="text/javascript">

149

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

var eventHandler = function eventHandler(result) {
alert('Enclosing tab has refreshed:' + result.id

+ 'and the object Id is:' + result.objectId);
};

sforce.console.onEnclosingTabRefresh(eventHandler);
</script>

</apex:page>

Event Handler Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

The ID of the refreshed tab.stringid

The object ID of the refreshed tab or null if no object exists.stringobjectId

onFocusedPrimaryTab()

Registers a function to call when the focus of the browser changes to a different primary tab. This method is only available in API version
25.0 or later.

Syntax

sforce.console.onFocusedPrimaryTab(eventHandler:Function)

Arguments

DescriptionTypeName

JavaScript method called when the focus of the browser changes to a different
primary tab.

functioneventHandler

Sample Code–Visualforce

<apex:page>

<apex:includeScript value="/support/console/57.0/integration.js"/>

<script type="text/javascript">
var eventHandler = function (result) {

alert('Focus changed to a different primary tab. The primary tab ID is:'
+ result.id + 'and the object Id is:' + result.objectId);
};
sforce.console.onFocusedPrimaryTab(eventHandler);

</script>
</apex:page>

150

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

Event Handler Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

The ID of the primary tab on which the browser is focused.stringid

The object ID of the primary tab on which the browser is focused or null if no object
exists.

stringobjectId

onFocusedSubtab()

Registers a function to call when the focus of the browser changes to a different subtab. This method is only available in API version 24.0
or later.

Syntax

sforce.console.onFocusedSubtab(eventHandler:Function)

Arguments

DescriptionTypeName

JavaScript method called when the focus of the browser changes to a different
subtab.

functioneventHandler

Sample Code–Visualforce

<apex:page>

<apex:includeScript value="/support/console/57.0/integration.js"/>

<script type="text/javascript">
var eventHandler = function (result) {

alert('Focus changed to a different subtab. The subtab Id is:'
+ result.id + 'and the object Id is:' + result.objectId);
};
sforce.console.onFocusedSubtab(eventHandler);

</script>
</apex:page>

Event Handler Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

151

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

The ID of the subtab on which the browser is focused.stringid

The object ID of the subtab on which the browser is focused or null if no object exists.stringobjectId

onTabSave()

Registers and calls a callback method when a user clicks Save in a subtab’s Unsaved Changes dialog box. When using this method, call
setTabUnsavedChanges() in the callback method. This notifies the console that the custom save operation completed. In the
call to setTabUnsavedChanges(), pass the first parameter as false to indicate a successful save or true to indicate an
unsuccessful save. This method is only available in API version 28.0 or later.

Registering a callback method affects the user interface. When no save handler is registered, the user is presented with two options
when closing a subtab with unsaved changes: Continue or Cancel. When a save handler is registered, the user is presented with three
options when closing the subtab: Save, Don’t Save, or Cancel. In this scenario, the callback method registered is called when the user
chooses Save.

Important: When using onTabSave() with setTabUnsavedChanges():

• Calling sforce.console.setTabUnsavedChanges(false,...) closes the specified subtab. We recommend
placing the call to sforce.console.setTabUnsavedChanges() at the end of the callback method, as any
subsequent save logic might not execute.

• onTabSave() works only on subtabs or their sidebar components. It doesn’t work on primary tabs.

• Not calling sforce.console.setTabUnsavedChanges() will have a severe effect on the user interface. For
example, closing a primary tab with a subtab for which sforce.console.setTabUnsavedChanges() has not
been called prevents a Saving... modal dialog box from closing.

• Any callback passed to sforce.console.setTabUnsavedChanges() will not execute if the specified tab saves
successfully and closes.

Note: Calling onTabSave() from a custom console component prevents that component from refreshing when saving the
subtab. For more information on custom console components, see “Customize a Console with Custom Components in Salesforce
Classic” in the Salesforce online help.

Syntax

sforce.console.onTabSave(callback:Function)

Arguments

DescriptionTypeName

JavaScript method called to handle the save operation.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to register save handler

152

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testOnTabSave() {
sforce.console.onTabSave(handleSave);

}
var handleSave = function handleSave(result) {

alert('save handler called from tab with id ' + result.id +
' and objectId ' + result.objectId);

//Perform save logic here

//Mark tab as 'clean'
sforce.console.setTabUnsavedChanges(false, undefined, result.id);

};
</script>

</apex:page>

Response

DescriptionTypeName

ID of the subtab being saved.stringid

Object ID of the subtab being saved, if applicable; null otherwise.stringobjectId

openConsoleUrl()

Opens a URL created by the generateConsoleUrl() method (a URL to a tab, or group of related tabs, in the Salesforce console).
This method is only available in API version 28.0 or later.

Syntax

sforce.console.openConsoleUrl(id:String, consoleUrl:URL, active:Boolean,
(optional)tabLabels:String, (optional)tabNames:String, (optional)callback:Function)

Arguments

DescriptionTypeName

ID of the console tab to override. If the ID corresponds to an existing primary tab,
then the existing primary tab is redirected to the given URL because the console
prevents duplicate tabs. Use null to create a new primary tab.

stringid

Console URL that represents the array of URLs passed into Salesforce.stringconsoleUrl

If true, the opened primary tab displays immediately. If false, the opened
primary tab displays in the background and the current tab maintains focus.

booleanactive

153

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

Optional array of labels of the opened primary tab or subtabs. The order in which
the tabs appear in the console URL should match the order of the labels that appear
in the array. If you do not want to set the labels of tabs, use an empty string ('').

stringtabLabels

Optional array of names of the opened primary and subtabs. The order in which the
tabs appear in the console URL should match the order of the names that appear in
the array. If you do not want to set the names of tabs, use an empty string ('').

stringtabNames

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>

Click here to open a console URL

<script type="text/javascript">
var generateConsoleUrl = function testGenerateConsoleURL() {

sforce.console.generateConsoleUrl([/apex/pagename, /entityId,
www.externalUrl.com, Standard Salesforce Url/entityId], showConsoleUrl);

}
var openConsoleUrl = function showConsoleUrl(result) {

sforce.console.openConsoleUrl(null, result.consoleUrl, true, ['Apex', '',
'Salesforce', ''], ['', '', 'externalUrl', ''])

}
</script>

</apex:page>

Note: This example shows that if you want to set a label or name, you must set the other values to empty string (‘’).

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if the console URL was opened successfully, false otherwise.booleansuccess

openPrimaryTab()

Opens a new primary tab to display the content of the specified URL, which can be relative or absolute. You can also override an existing
tab. This method is only available in API version 20.0 or later.

• If the ID corresponds to an existing primary tab, the existing tab is redirected to the given URL because the Salesforce console prevents
duplicate tabs.

154

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

• If the URL is to a Salesforce object, that object displays as specified in the Salesforce console app settings. For example, if cases are
set to open as a subtab of their parent accounts, and openPrimaryTab() is called on a case, the case opens as subtab on its
parent account's primary tab.

If there's an error opening the tab, the error code is reported in the JavaScript console.

Syntax

sforce.console.openPrimaryTab(id:String, url:URL, active:Boolean,
(optional)tabLabel:String, (optional)callback:Function, (optional)name)

Arguments

DescriptionTypeName

ID of the primary tab to override.

Use null to create a new primary tab.

stringid

If the ID corresponds to an existing primary tab, the existing tab is redirected to the
given URL because the Salesforce console prevents duplicate tabs.

URL of the opened primary tab.

If the URL is to a Salesforce object, that object displays as specified in the Salesforce
console app settings. For example, if cases are set to open as a subtab of their parent

URLurl

accounts, and openPrimaryTab() is called on a case, the case opens as subtab
on its parent account's primary tab.

Users can open an external URL if it’s been added to the console’s allowlist. For more
information, see “Allow Domains for a Salesforce Console in Salesforce Classic” in
the online help.

Note: When using a relative URL, make sure that you include "/" at the
beginning of your URL. When pointing to a Visualforce page, use "/apex/"
at the beginning of your URL. Otherwise, your URL might not work as expected.

If true, the opened primary tab displays immediately. If false, the opened
primary tab displays in the background and the current tab maintains focus.

booleanactive

Optional label of the opened primary tab. If a label isn't specified, External
Page displays.

Add labels as text; HTML isn't supported.

stringtabLabel

JavaScript method called upon completion of the method.functioncallback

Optional name of the opened primary tab.

This argument is only available in API version 22.0 and later.

stringname

155

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to open a new primary tab

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testOpenPrimaryTab() {
//Open a new primary tab with the salesforce.com home page in it
sforce.console.openPrimaryTab(null, 'https://salesforce.com', false,

'salesforce', openSuccess, 'salesforceTab');
}

var openSuccess = function openSuccess(result) {
//Report whether opening the new tab was successful
if (result.success == true) {

alert('Primary tab successfully opened');
} else {

alert('Primary tab cannot be opened');
}

};

</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

true if the tab successfully opened; false if the tab didn't open.booleansuccess

ID of the primary tab. IDs are only valid during a user session; IDs become invalid
when a user leaves the Salesforce console.

stringid

openSubtab()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can also
override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's ID. This method is only available in API
version 20.0 or later.

If there's an error opening the tab, the error code is reported in the JavaScript console.

156

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Syntax

sforce.console.openSubtab(primaryTabId:String, url:URL, active:Boolean, tabLabel:String,
id:String, (optional)callback:Function, (optional)name:String)

Arguments

DescriptionTypeName

ID of the primary tab in which the subtab opened.stringprimaryTabId

URL of the opened subtab.

If the URL is to a Salesforce object, that object displays as specified in the Salesforce
console app settings. For example, if cases are set to open as a primary tab, and
openSubtab() is called on a case, the case opens as a primary tab.

URLurl

Users can open an external URL if it’s been added to the console’s allowlist. For more
information, see “Allow Domains for a Salesforce Console in Salesforce Classic” in
the online help.

Note: When using a relative URL, make sure that you include "/" at the
beginning of your URL. When pointing to a Visualforce page, use "/apex/"
at the beginning of your URL. Otherwise, your URL might not work as expected.

If true, the opened subtab displays immediately. If false, the opened subtab
displays in the background and the current tab maintains focus.

booleanactive

Optional label of the opened subtab. If a label isn't specified, External Page
displays.

Add labels as text; HTML isn't supported.

stringtabLabel

ID of the subtab to override.

Use null to create a new subtab.

stringid

JavaScript method called upon completion of the method.functioncallback

Optional name of the opened subtab.

This argument is only available in API version 22.0 and later.

stringname

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to open a new subtab

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testOpenSubtab() {
//First find the ID of the primary tab to put the new subtab in

157

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

sforce.console.getEnclosingPrimaryTabId(openSubtab);
}

var openSubtab = function openSubtab(result) {
//Now that we have the primary tab ID, we can open a new subtab in it
var primaryTabId = result.id;
sforce.console.openSubtab(primaryTabId , 'https://salesforce.com', false,

'salesforce', null, openSuccess, 'salesforceSubtab');
};

var openSuccess = function openSuccess(result) {
//Report whether we succeeded in opening the subtab
if (result.success == true) {

alert('subtab successfully opened');
} else {

alert('subtab cannot be opened');
}

};
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

true if the subtab successfully opened; false if the subtab didn't open.booleansuccess

ID of the subtab. IDs are only valid during a user session; IDs become invalid when
the user leaves the Salesforce console.

stringid

openSubtabByPrimaryTabName()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can also
override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's name. This method is only available in API
version 22.0 or later.

If there's an error opening the tab, the error code is reported in the JavaScript console.

Syntax

sforce.console.openSubtabByPrimaryTabName(primaryTabName:String, url:URL, active:Boolean,
tabLabel:String, id:String, (optional)callback:Function, (optional)name:String)

158

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Arguments

DescriptionTypeName

Name of the primary tab in which the subtab opened.stringprimaryTabName

URL of the opened subtab.

If the URL is to a Salesforce object, that object displays as specified in the Salesforce
console app settings. For example, if cases are set to open as a primary tab, and
openSubtab() is called on a case, the case opens as a primary tab.

URLurl

Users can open an external URL if it’s been added to the console’s allowlist. For more
information, see “Allow Domains for a Salesforce Console in Salesforce Classic” in
the online help.

If true, the opened subtab displays immediately. If false, the opened subtab
displays in the background and the current tab maintains focus.

booleanactive

Optional label of the opened subtab. If a label isn't specified, External Page
displays.

Add labels as text; HTML isn't supported.

stringtabLabel

ID of the subtab to override.

Use null to create a new subtab.

stringid

JavaScript method called upon completion of the method.functioncallback

Optional name of the opened subtab.

This argument is only available in API version 22.0 and later.

stringname

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to open a new subtab by primary tab name

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testOpenSubtabByPrimaryTabName() {
//First open a primary tab by name
sforce.console.openPrimaryTab(null, 'http://www.yahoo.com', true, 'Yahoo',

openSubtab, 'yahoo');
}

var openSubtab = function openSubtab(result) {
//Open the subtab by the name specified in function

testOpenSubtabByPrimaryTabName()
sforce.console.openSubtabByPrimaryTabName('yahoo', 'https://salesforce.com',

true,
'salesforce', null, openSuccess);

159

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

};

var openSuccess = function openSuccess(result) {
//Report whether we succeeded in opening the subtab
if (result.success == true) {

alert('subtab successfully opened');
} else {

alert('subtab cannot be opened');
}

};
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

true if the subtab successfully opened; false if the subtab didn't open.booleansuccess

ID of the subtab. IDs are only valid during a user session; IDs become invalid when
the user leaves the Salesforce console.

stringid

refreshPrimaryTabById()

Refreshes a primary tab specified by ID, including its subtabs. This method can't refresh subtabs with URLs to external pages or Visualforce
pages. This method is only available in API version 22.0 or later.

Syntax

sforce.console.refreshPrimaryTabById(id:String, activate:Boolean,
(optional)callback:Function, (optional)fullRefresh:Boolean)

Arguments

DescriptionTypeName

ID of the primary tab to refresh.stringid

If true, the refreshed primary tab displays immediately. If false, the refreshed
primary tab displays in the background.

booleanactivate

JavaScript method that’s called upon completion of the method.functioncallback

Enables a full refresh of the entire case feed.booleanfullRefresh

160

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to refresh a primary tab by id

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testRefreshPrimaryTabById() {
//Get the value for 'scc-pt-0' from the openPrimaryTab method
//This value is for example purposes only
var primaryTabId = 'scc-pt-0';
sforce.console.refreshPrimaryTabById(primaryTabId, true, refreshSuccess);

}

var refreshSuccess = function refreshSuccess(result) {
//Report whether refreshing the primary tab was successful
if (result.success == true) {

alert('Primary tab refreshed successfully');
} else {

alert('Primary did not refresh');
}

};

</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if the primary tab refreshed successfully; false if the primary tab didn't
refresh.

booleansuccess

refreshPrimaryTabByName()

Refreshes a primary tab specified by name, including its subtabs. This method can't refresh subtabs with URLs to external pages or
Visualforce pages. This method is only available in API version 22.0 or later.

Syntax

sforce.console.refreshPrimaryTabByName(name:String, active:Boolean,
(optional)callback:Function), (optional)fullRefresh:Boolean)

161

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Arguments

DescriptionTypeName

Name of the primary tab to refresh.stringname

If true, the refreshed primary tab displays immediately. If false, the refreshed
primary tab displays in the background.

booleanactive

JavaScript method that’s called upon completion of the method.functioncallback

Enables a full refresh of the entire case feed.booleanfullRefresh

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to refresh a primary tab by name

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testRefreshPrimaryTabByName() {
//Set the name of the tab by using the openPrimaryTab method
//This value is for example purposes only
var primaryTabName = 'myPrimaryTab';
sforce.console.refreshPrimaryTabByName(primaryTabName, true, refreshSuccess);

}

var refreshSuccess = function refreshSuccess(result) {
//Report whether refreshing the primary tab was successful
if (result.success == true) {

alert('Primary tab refreshed successfully');
} else {

alert('Primary tab did not refresh');
}

};

</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

162

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

DescriptionTypeName

true if the primary tab refreshed successfully; false if the primary tab didn't
refresh.

booleansuccess

refreshSubtabById()

Refreshes a subtab with the last known URL with a specified ID. This method can't refresh a subtab if the last known URL is an external
page or a Visualforce page. This method is only available in API version 22.0 or later.

Syntax

sforce.console.refreshSubtabById(id:String, activate:Boolean, (optional)callback:Function,
(optional)fullRefresh:Boolean)

Arguments

DescriptionTypeName

ID of the subtab to refresh.stringid

If true, the refreshed subtab displays immediately. If false, the refreshed subtab
displays in the background.

booleanactivate

JavaScript method that’s called upon completion of the method.functioncallback

Enables a full refresh of the entire case feed.booleanfullRefresh

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to refresh a subtab by id

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testRefreshSubtabById() {
//Set the name of the tab by using the openSubtab method
//This value is for example purposes only
var subtabId = 'scc-st-0';
sforce.console.refreshSubtabById(subtabId, true, refreshSuccess);

}

var refreshSuccess = function refreshSuccess(result) {
//Report whether refreshing the subtab was successful
if (result.success == true) {

alert('Subtab refreshed successfully');
} else {

alert('Subtab did not refresh');

163

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

}
};

</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if the subtab refreshed successfully; false if the subtab didn't refresh.booleansuccess

refreshSubtabByNameAndPrimaryTabId()

Refreshes a subtab with the last known URL with the specified name and primary tab ID. This method can't refresh a subtab if the last
known URL is an external page or a Visualforce page. This method is only available in API version 22.0 or later.

Syntax

sforce.console.refreshSubtabByNameAndPrimaryTabId(name:String, primaryTabId:String,
active:Boolean, (optional)callback:Function, (optional)fullRefresh:Boolean)

Arguments

DescriptionTypeName

Name of the subtab to refresh.stringname

ID of the primary tab in which the subtab opened.stringprimaryTabId

If true, the refreshed subtab displays immediately. If false, the refreshed subtab
displays in the background.

booleanactive

JavaScript method that’s called upon completion of the method.functioncallback

Enables a full refresh of the entire case feed.booleanfullRefresh

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to refresh a subtab by name and primary tab ID

164

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testRefreshSubtabByNameAndPrimaryTabId() {
//Get the value for 'mySubtab' and 'scc-pt-0' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabId = 'scc-pt-0';
sforce.console.refreshSubtabByNameAndPrimaryTabId(subtabName, primaryTabId,

true, refreshSuccess);
}

var refreshSuccess = function refreshSuccess(result) {
//Report whether refreshing the subtab was successful
if (result.success == true) {

alert('Subtab refreshed successfully');
} else {

alert('Subtab did not refresh');
}

};

</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if the subtab refreshed successfully; false if the subtab didn't refresh.booleansuccess

refreshSubtabByNameAndPrimaryTabName()

Refreshes a subtab with the last known URL with the specified name and primary tab name. This method can't refresh a subtab if the
last known URL is an external page or a Visualforce page. This method is only available in API version 22.0 or later.

Syntax

sforce.console.refreshSubtabByNameAndPrimaryTabName(name:String, primaryTabName:String,
active:Boolean, (optional)callback:Function, (optional)fullRefresh:Boolean)

165

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Arguments

DescriptionTypeName

Name of the subtab to refresh.stringname

Name of the primary tab in which the subtab opened.stringprimaryTabName

If true, the refreshed subtab displays immediately. If false, the refreshed subtab
displays in the background.

booleanactive

JavaScript method that’s called upon completion of the method.functioncallback

Enables a full refresh of the entire case feed.booleanfullRefresh

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to refresh a subtab by name and primary tab name

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testRefreshSubtabByNameAndPrimaryTabName() {
//Get the value for 'mySubtab' and 'myPrimaryTab' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabName = 'myPrimaryTab';

sforce.console.refreshSubtabByNameAndPrimaryTabName(subtabName, primaryTabName,
true, refreshSuccess);

}

var refreshSuccess = function refreshSuccess(result) {
//Report whether refreshing the subtab was successful
if (result.success == true) {

alert('Subtab successfully refreshed');
} else {

alert('Subtab did not refresh');
}

};

</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

166

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

DescriptionTypeName

true if the subtab refreshed successfully; false if the subtab didn't refresh.booleansuccess

reopenLastClosedTab()

Reopens the last closed primary tab, and any of its subtabs that were open, the moment it was closed. This method is only available in
API version 35.0 or later.

Syntax

sforce.console.reopenLastClosedTab()

Arguments

DescriptionTypeName

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var = callback = function (result) {
if (result.success) {

alert('Last tab was re-opened!');
} else {

alert('No tab was re-opened.');
}

};

function reopenLastClosedTabTest() {
sforce.console.reopenLastClosedTab(callback);

}

</script>
Re-open Last Closed Tab

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if the tab was reopened, false otherwise.booleansuccess

167

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

resetSessionTimeOut()

Resets a session timeout for a console app. This method ensures that users can continue working on Visualforce pages without being
prompted to log back in to the console when they return to a console tab or console component. This method is only available in API
version 24.0 or later.

For more information, see Modify Session Security Settings in Salesforce Help.

Syntax

sforce.console.resetSessionTimeOut()

Arguments
None

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to reset session timeout

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testResetSessionTimeOut() {
sforce.console.resetSessionTimeOut();

};
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
None

setTabUnsavedChanges()

Sets the unsaved changes icon () on subtabs to indicate unsaved data. This method is only available in API version 23.0 or later.

Syntax

sforce.console.setTabUnsavedChanges(unsaved:Boolean, callback:Function,
(optional)subtabId:String)

168

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/s/articleView?id=sf.admin_sessions.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Arguments

DescriptionTypeName

If true, the tab is marked as having unsaved changes.booleanunsaved

JavaScript method that’s called upon completion of the method.functioncallback

The ID of the subtab that is marked as having unsaved changes.

This argument is only available in API version 25.0 or later.

stringsubtabId

Sample Code API Version 23.0 or Later–Visualforce

<apex:page standardController="Case">

Click here to indicate this tab has unsaved changes

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testSetTabUnsavedChanges() {
sforce.console.setTabUnsavedChanges(true, displayResult);

};
function displayResult(result) {

if (result.success) {
alert('Tab status has been successfully updated');

} else {
alert('Tab status couldn’t be updated');

}
}

</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method returns its response in an object in a callback method. The response object contains the following field:

DescriptionTypeName

true if update was successful; false if update wasn't successful.booleansuccess

Sample Code API Version 25.0 or Later–Visualforce

<apex:page standardController="Case">

Click here to indicate this tab has unsaved changes

<apex:includeScript value="/support/console/25.0/integration.js"/>

169

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

<script type="text/javascript">
function testSetTabUnsavedChanges() {

sforce.console.getFocusedSubtabId(setTabDirty);
};
function setTabDirty(result) {

sforce.console.setTabUnsavedChanges(true, displayResult, result.id);
};
function displayResult(result) {

if (result.success) {
alert('Tab status has been successfully updated');

} else {
alert('Tab status couldn’t be updated');

}
};

</script>
</apex:page>

Note: This example is only set to run if the Visualforce page is inside an application-level custom component. For more information,
see Methods for Application-Level Custom Console Components on page 194.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if returning the focused subtab ID was successful; false if if returning the
focused subtab ID wasn't successful.

booleansuccess

setTabIcon()

Sets an icon on the specified tab. If a tab is not specified, the icon is set on the enclosing tab. Use this method to customize a tab’s icon.
This method is only available in API version 28.0 or later.

Syntax

sforce.console.setTabIcon(iconUrl:String, tabID:String, (optional)callback:Function)

Arguments

DescriptionTypeName

A URL pointing to an image, which is used as the tab’s icon. If null or undefined, the
tab’s default icon is used.

stringiconUrl

The ID of the tab on which to set the icon. If null or undefined, the enclosing tab’s
ID is used.

stringtabId

JavaScript method that’s called upon completion of the method.functioncallback

170

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>

Click here to change the enclosing tab’s icon

Click here to reset the enclosing tab’s icon

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function checkResult(result) {
if (result.success) {

alert('Tab icon set successfully!');
} else {

alert('Tab icon cannot be set!');
}

}
function testSetTabIcon() {

sforce.console.setTabIcon('http://host/path/to/your/icon.png', null,
checkResult);

}
function testResetTabIcon() {

sforce.console.setTabIcon(null, null, checkResult);
}
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if setting the tab’s icon was successful, false if setting the tab’s icon wasn’t
successful.

booleansuccess

Note: If this method is called without passing in a tab ID, the tab in which the Visualforce page is enclosed is used. If there isn’t
an enclosing tab, the error message Cannot get a workspace or view tab from the given ID displays
in the browser’s developer console.

setTabLink()

Sets a console tab’s URL attribute to the location of the tab’s content. Use this method to generate secure console URLs when users
navigate to tabs displaying content outside of the Salesforce domain.This method is only available in API version 28.0 or later.

Syntax

sforce.console.setTabLink((optional)callback:Function)

171

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page standardController="Account">
<apex: detail />

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

window.onload = function() {
sforce.console.setTabLink();
};

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

true if the link was set successfully, false if setting was unsuccessful.booleansuccess

JavaScript method that’s called upon completion of the method.functioncallback

setTabStyle()

Sets a cascading style sheet (CSS) on the specified tab. If a tab is not specified, the CSS is set on the enclosing tab. Use this method to
customize a tab’s look and feel. This method is only available in API version 28.0 or later.

Syntax

sforce.console.setTabStyle(style:String, tabId:String, (optional)callback:Function)

Arguments

DescriptionTypeName

A CSS specification string used to style the tab. If null or undefined, the tab’s default
style is used.

stringstyle

The ID of the tab on which to set the style. If null or undefined, the enclosing tab’s
ID is used.

stringtabId

JavaScript method that’s called upon completion of the method.functioncallback

172

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>

Click here to change the enclosing tab’s background color to red

Click here to reset the enclosing tab’s style

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function checkResult(result) {
if (result.success) {

alert('Tab style set successfully!');
} else {

alert('Tab style cannot be set!');
}

}
function testSetTabStyle() {

sforce.console.setTabStyle('background:red;', null, checkResult);
}

function testResetTabStyle() {
sforce.console.setTabStyle(null, null, checkResult);

}
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if setting the tab’s style was successful, false if setting the tab’s style wasn’t
successful.

booleansuccess

Note: If this method is called without passing in a tab ID, the tab in which the Visualforce page is enclosed is used. If there isn’t
an enclosing tab, the error message Cannot get a workspace or view tab from the given ID displays
in the browser’s developer console.

setTabTextStyle()

Sets a cascading style sheet (CSS) on a specified tab’s text. If a tab is not specified, the CSS is set on the enclosing tab’s text. Use this
method to customize a tab’s text style. This method is only available in API version 28.0 or later.

Syntax

sforce.console. setTabTextStyle(style:String, tabID:String, (optional)callback:Function))

173

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

A CSS specification string used to set a tab’s text style. If null or undefined, the tab’s
default text style is used.

stringstyle

The ID of the tab on which to set the text style. If null or undefined, the enclosing
tab’s ID is used.

stringtabId

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to change the enclosing tab’s text style

Click here to reset the enclosing tab’s text style

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function checkResult(result) {
if (result.success) {

alert('Tab text style set successfully!');
} else {

alert('Tab text style cannot be set!');
}

}
function testSetTabTextStyle() {

sforce.console.setTabTextStyle('color:blue;font-style:italic;', null,
checkResult);

}
function testResetTabTextStyle() {

sforce.console.setTabTextStyle(null, null, checkResult);
}
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if setting the tab’s text style was successful, false if setting the tab’s text
style wasn’t successful.

booleansuccess

174

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

Note: If this method is called without passing in a tab ID, the tab in which the Visualforce page is enclosed is used. If there isn’t
an enclosing tab, the error message Cannot get a workspace or view tab from the given ID displays
in the browser’s developer console.

setTabTitle()

Sets the title of a primary tab or subtab. This method is only available in API version 20.0 or later.

Syntax

sforce.console.setTabTitle(tabTitle:String, (optional)tabID:String)

Arguments

DescriptionTypeName

Title of a primary tab or subtab.stringtabTitle

The ID of the tab in which to set the title.

This argument is only available in API version 25.0 or later.

stringtabId

Sample Code–Visualforce API Version 20.0 or Later

<apex:page standardController="Case">

Click here to change this tab's title

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testSetTabTitle() {
//Set the current tab's title
sforce.console.setTabTitle('My New Title');

}
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
None

Sample Code–Visualforce API Version 25.0 or Later

<apex:page>

Click here to change the title of the focused primary tab

175

Methods for Primary Tabs and SubtabsSalesforce Console Integration Toolkit for Salesforce Classic

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testSetTabTitle() {
sforce.console.getFocusedPrimaryTabId(function(result) {

sforce.console.setTabTitle('My New Title', result.id);
});

}
</script>

</apex:page>

Note: This example is only set to run if the Visualforce page is inside an application-level custom component. For more information,
see Methods for Application-Level Custom Console Components on page 194.

Response
None

Methods for Navigation Tabs
A Salesforce console displays a navigation tab from which users can select objects to view lists or home pages. Administrators choose
the objects that users can access from a navigation tab. For more information, see “Salesforce Console Navigation Tab” and “Set Up a
Salesforce Console App in Salesforce Classic” in the online help.

IN THIS SECTION:

focusNavigationTab()

Focuses the browser on the navigation tab. This method is only available in API version 31.0 or later.

getNavigationTabs()

Returns all of the objects in the navigation tab. This method is only available in API version 31.0 or later.

getSelectedNavigationTab()

Returns the selected object in the navigation tab. This method is only available in API version 31.0 or later.

refreshNavigationTab()

Refreshes the selected navigation tab. This method is only available in API version 31.0 or later.

setSelectedNavigationTab()

Sets the navigation tab with a specific ID or URL. This method is only available in API version 31.0 or later.

focusNavigationTab()

Focuses the browser on the navigation tab. This method is only available in API version 31.0 or later.

Syntax

sforce.console.focusNavigationTab((optional)callback:Function)

176

Methods for Navigation TabsSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {}
if(result.success){
alert('success');

}
else{
alert('Something is wrong.');
}

};
sforce.console.focusNavigationTab(callback);

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if returning the object IDs was successful; false otherwise.booleansuccess

getNavigationTabs()

Returns all of the objects in the navigation tab. This method is only available in API version 31.0 or later.

Syntax

sforce.console.getNavigationTabs((optional)callback:Function)

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

177

Methods for Navigation TabsSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
var id;

if (result.success) {
var tempItem = JSON.parse(result.items);
for (var i = 0, len = tempItem.length; i < len; i++) {

alert('Label:'+tempItem[i].label+'listViewURl:'+tempItem[i].listViewUrl+'navTabid:'
+tempItem[i].navigationTabId+'Selected ' +tempItem[i].selected);
}

} else {
alert('something is wrong!');
}

};
sforce.console.getNavigationTabs(callback);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

The IDs of objects in the navigation tab.objectmenuItems

true if returning the IDs of objects in the navigation tab was successful, false
otherwise.

booleansuccess

getSelectedNavigationTab()

Returns the selected object in the navigation tab. This method is only available in API version 31.0 or later.

Syntax

sforce.console.getSelectedNavigationTab((optional)callback:Function)

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

178

Methods for Navigation TabsSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {}
if (result.success) {
alert('the navigation tab id is ' + result.navigationTabId + ' and navigation

url is ' + result.listViewUrl);
} else {

alert('something is wrong!');
}

};
sforce.console.getSelectedNavigationTab(callback);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

The object ID of the selected object.stringnavigationTabId

The list view URL of the selected object.objectlistViewUrl

The label of the selected object.objectlabel

true if returning the selected field of the object was successful, false otherwise.booleanselected

true if returning the object IDs was successful, false otherwise.booleansuccess

refreshNavigationTab()

Refreshes the selected navigation tab. This method is only available in API version 31.0 or later.

Syntax

sforce.console.refreshNavigationTab((optional)callback:Function)

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

179

Methods for Navigation TabsSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {}
if(result.success){
alert('success');

}
else{
alert('Something is wrong.');

}
};
sforce.console.refreshNavigationTab(callback);

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if refreshing the navigation tab was successful, false otherwise.booleansuccess

setSelectedNavigationTab()

Sets the navigation tab with a specific ID or URL. This method is only available in API version 31.0 or later.

Syntax

sforce.console.setSelectedNavigationTab((optional)callback, navigatorTabId:(optional)string,
url:(optional)string)

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

The ID of the navigation tab to be selected.stringnavigatorTabId

The URL of the navigation tab to be selected.stringurl

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>

180

Methods for Navigation TabsSalesforce Console Integration Toolkit for Salesforce Classic

<script type="text/javascript">
var callback = function (result) {}

if (result.success) {
alert('Successful');

} else {
alert('something is wrong!');

}
};
sforce.console.setSelectedNavigationTab(callback,'nav-tab-4');

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if setting the navigation tab with a specific ID or URL was successful, false
otherwise.

booleansuccess

Methods for Computer-Telephony Integration (CTI)
Salesforce Call Center seamlessly integrates Salesforce with Computer-Telephony Integration systems. Developers create a CTI system
with Open CTI and console users access telephony features through a softphone, which is a call-control tool that appears in the footer
of a console. For more information, see “Salesforce Open CTI” and “Salesforce Call Center” in the Salesforce Help.

IN THIS SECTION:

fireOnCallBegin()

Fires an event that notifies a call has begun. Use to get information or send information between an interaction log and a custom
console component. This method is only available in API version 31.0 or later.

fireOnCallEnd()

Fires an event that notifies a call has ended. Use to get information or send information between an interaction log and a custom
console component. This method executes when fireOnCallBegin() is called first. This method is only available in API
version 31.0 or later.

fireOnCallLogSaved()

Calls the eventHandler function registered with onCallLogSaved(). Use to get information or send information between
an interaction log and a custom console component.. This method is only available in API version 31.0 or later.

getCallAttachedData()

Returns the attached data of a call represented by the call object ID or null if there isn’t an active call. The data is returned in JSON
format. This method is for computer-telephony integration (CTI); it’s only available in API version 24.0 or later.

getCallObjectIds()

Returns any active call object IDs in the order in which they arrived or null if there aren’t any active calls. This method is for
computer-telephony integration (CTI); it’s only available in API version 24.0 or later.

181

Methods for Computer-Telephony Integration (CTI)Salesforce Console Integration Toolkit for Salesforce Classic

onCallBegin()

Registers a function that is called when a call begins (comes in). This method is for computer-telephony integration (CTI); it’s only
available in API version 24.0 or later.

onCallEnd()

Registers a function that is called when a call ends. This method is for computer-telephony integration (CTI); it’s only available in API
version 24.0 or later.

onCallLogSaved()

Registers a function that is fired when an interaction log saves a call log. Use to get information or send information between an
interaction log and a custom console component. This method is only available in API version 31.0 or later.

onSendCTIMessage()

Registers a function that is fired when a message is sent with the sendCTIMessage(). Use to get information or send information
between an interaction log and a custom console component. This method is only available in API version 31.0 or later.

sendCTIMessage()

Sends a message to the CTI adapter or Open CTI. This method is for computer-telephony integration (CTI); it’s only available in API
version 24.0 or later.

setCallAttachedData()

Sets the call data associated with a call object ID. Use to get information or send information between an interaction log and a
custom console component.This method is only available in API version 31.0 or later.

setCallObjectIds()

Sets call object IDs, in ascending order of arrival. This method is only available in API version 31.0 or later.

fireOnCallBegin()

Fires an event that notifies a call has begun. Use to get information or send information between an interaction log and a custom console
component. This method is only available in API version 31.0 or later.

Syntax

sforce.console.cti.fireOnCallBegin(callObjectId:String, callType:String, callLabel:String,
(optional)callback:Function)

Arguments

DescriptionTypeName

The object ID of the call.stringcallObjectId

String that specifies the call type, which must be internal, inbound or
outbound.

stringcallType

String that specifies a call as it appears in the Attach Call drop-down button. For
example, Call Label — Inbound Call 12:52:31 PM.

stringcallLabel

JavaScript method called upon completion of the method.functioncallback

182

Methods for Computer-Telephony Integration (CTI)Salesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>

Click here to start a call

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testFireOnCallBegin() {
sforce.console.cti.fireOnCallBegin('call.794937' , 'outbound' , 'label 1');

}

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if firing the event is successful, false otherwise.booleansuccess

fireOnCallEnd()

Fires an event that notifies a call has ended. Use to get information or send information between an interaction log and a custom console
component. This method executes when fireOnCallBegin() is called first. This method is only available in API version 31.0 or
later.

Syntax

sforce.console.cti.fireOnCallEnd(callObjectId:String, callDuration:Number,
callDisposition:String, (optional)callback:Function)

Arguments

DescriptionTypeName

The object ID of the call.stringcallObjectId

Number specifying the duration of the call.numbercallDuration

String representing the call’s disposition, such as call successful, left voicemail, or
disconnected.

stringcallDisposition

JavaScript method called upon completion of the method.functioncallback

183

Methods for Computer-Telephony Integration (CTI)Salesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>

Click here to end a call

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testFireOnCallEnd() {
//Here, 'call.1' refers to a call that is in progress.
sforce.console.cti.fireOnCallEnd('call.1', 60, 'Set Appointment');

}

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if firing the event is successful, false otherwise.booleansuccess

fireOnCallLogSaved()

Calls the eventHandler function registered with onCallLogSaved(). Use to get information or send information between
an interaction log and a custom console component.. This method is only available in API version 31.0 or later.

Syntax

sforce.console.cti.fireOnCallLogSaved(id:String, (optional)callback:Function)

Arguments

DescriptionTypeName

The object ID of the saved call log.stringid

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var MyCallback = function (result) {

184

Methods for Computer-Telephony Integration (CTI)Salesforce Console Integration Toolkit for Salesforce Classic

alert('fireOnCallLogSaved was thrown: ' + result.success);
};

function testFireOnCallLogSaved() {
// Simulates that a call log was saved by passing the task object Id as input.

sforce.console.cti.fireOnCallLogSaved('00Txx000003qf8u', myCallback);
}

var callback = function (result) {
alert('Call Log was saved! Object Id saved is : ' + result.id);

};

sforce.console.cti.onCallLogSaved(callback);
</script>

Test fireOnCallLogSaved API!
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if firing the event is successful, false otherwise.booleansuccess

getCallAttachedData()

Returns the attached data of a call represented by the call object ID or null if there isn’t an active call. The data is returned in JSON format.
This method is for computer-telephony integration (CTI); it’s only available in API version 24.0 or later.

Syntax

sforce.console.cti.getCallAttachedData(callObjectId, getCallType, (optional)
callback:Function)

Arguments

DescriptionTypeName

The call object ID of the call that retrieves the attached data.stringcallObjectId

true if the type of call is returned as either ‘INTERNAL,’ ‘INBOUND,’ or ‘OUTBOUND’;
false otherwise. This field is only available in API version 29.0 or later.

booleangetCallType

JavaScript method called upon completion of the method.functioncallback

185

Methods for Computer-Telephony Integration (CTI)Salesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

/* Note: Open CTI needs to set call type to before getting it, and call type is
INTERNAL/INBOUND/OUTBOUND.

*/

var callback2 = function (result) {
alert('Call attached data is ' + result.data + '\n Call Type is ' +

result.type);

};

/* Retrieving call ID of first call that came in and
* calling getCallAttachedData() to retrieve call data.
*/
var callback1 = function (result) {

if (result.ids && result.ids.length > 0) {
sforce.console.cti.getCallAttachedData(result.ids[0], callback2,

{getCallType:true});
}

};

//Note that we are using the CTI submodule here
function testGetCallAttachedData() {
sforce.console.cti.getCallObjectIds(callback1);

};

</script>
<h1>CTI</h1>
<button onclick="testGetCallAttachedData()">getAttachedData</button>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

The attached data of a call in JSON format.stringdata

true if returning the attached data was successful; false if returning the attached
data wasn’t successful.

booleansuccess

The type of call. Possible values are 'INTERNAL', 'INBOUND', and 'OUTBOUND'.stringtype

186

Methods for Computer-Telephony Integration (CTI)Salesforce Console Integration Toolkit for Salesforce Classic

getCallObjectIds()

Returns any active call object IDs in the order in which they arrived or null if there aren’t any active calls. This method is for
computer-telephony integration (CTI); it’s only available in API version 24.0 or later.

Syntax

sforce.console.cti.getCallObjectIds((optional) callback:Function)

Arguments

DescriptionTypeName

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert('Active call object ids: ' + result.ids);

};

//Note that we are using the CTI submodule here
sforce.console.cti.getCallObjectIds(callback);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

The call object IDs of active calls or null if no call is active.stringids

true if returning the active call object IDs was successful; false if returning the
active call object IDs wasn’t successful.

booleansuccess

onCallBegin()

Registers a function that is called when a call begins (comes in). This method is for computer-telephony integration (CTI); it’s only available
in API version 24.0 or later.

187

Methods for Computer-Telephony Integration (CTI)Salesforce Console Integration Toolkit for Salesforce Classic

Syntax

sforce.console.cti.onCallBegin(eventHandler:Function)

Arguments

DescriptionTypeName

JavaScript method called when a call begins.functioneventHandler

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert('Call ' + result.id + 'Just came in!');

};

//Note that we are using the CTI submodule here
sforce.console.cti.onCallBegin(callback);

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

The call object ID of the call which has begun.stringid

onCallEnd()

Registers a function that is called when a call ends. This method is for computer-telephony integration (CTI); it’s only available in API
version 24.0 or later.

Syntax

sforce.console.cti.onCallEnd(eventHandler:Function)

Arguments

DescriptionTypeName

JavaScript method called when a call ends.functioneventHandler

188

Methods for Computer-Telephony Integration (CTI)Salesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
var str = 'Call ' + result.id + ' ended! ';
str += 'Call duration is ' + result.duration + '. ';
str += 'Call disposition is ' + result.disposition;
alert(str);

};

//Note that we are using the CTI submodule here
sforce.console.cti.onCallEnd(callback);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

The call object ID of the call which has ended.stringid

The duration of the call.stringduration

The disposition of the call.stringdisposition

onCallLogSaved()

Registers a function that is fired when an interaction log saves a call log. Use to get information or send information between an interaction
log and a custom console component. This method is only available in API version 31.0 or later.

Syntax

sforce.console.cti.onCallLogSaved(eventHandler:Function)

Arguments

DescriptionTypeName

For a standard interaction log, eventHandler is a function that is executed when
a call log is saved. For a custom interaction log, eventHandler is a function that

functioneventHandler

is executed when the fireOnCallLogSaved API is called in your Visualforce
page.

189

Methods for Computer-Telephony Integration (CTI)Salesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert('Call Log was saved! Object Id saved is : ' + result.id);

};

sforce.console.cti.onCallLogSaved(callback);

</script>
<p>Registered onCallLogSaved listener...</p>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

Call log object ID that was saved.stringid

onSendCTIMessage()

Registers a function that is fired when a message is sent with the sendCTIMessage(). Use to get information or send information
between an interaction log and a custom console component. This method is only available in API version 31.0 or later.

Syntax

sforce.console.cti.onSendCTIMessage(eventHandler:Function)

Arguments

DescriptionTypeName

JavaScript method called when a message is sent with the sendCTIMessage()
method.

functioneventHandler

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert('sendCTIMessage API sent the following message: ' + result.message);

190

Methods for Computer-Telephony Integration (CTI)Salesforce Console Integration Toolkit for Salesforce Classic

};

sforce.console.cti.onSendCTIMessage(callback);

function sendCTIMessage() {
sforce.console.cti.sendCTIMessage('sending a message to CTI');

}
</script>

Send a message to see your listener receiving it!
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

The message that was sent with the sendCTIMessage() method.stringmessage

sendCTIMessage()

Sends a message to the CTI adapter or Open CTI. This method is for computer-telephony integration (CTI); it’s only available in API version
24.0 or later.

Syntax

sforce.console.cti.sendCTIMessage(msg, (optional) callback:Function)

Arguments

DescriptionTypeName

Message to send to the adapter.stringmsg

JavaScript method called when the message is sent.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
if (result.success) {

alert('CTI message was sent successfully!');
} else {

191

Methods for Computer-Telephony Integration (CTI)Salesforce Console Integration Toolkit for Salesforce Classic

alert('CTI message was not sent successfully.');
}

};

//Note that we are using the CTI submodule here
sforce.console.cti.sendCTIMessage('/ANSWER?LINE_NUMBER=1', callback);

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if sending the message was successful; false if sending the message wasn’t
successful.

booleansuccess

setCallAttachedData()

Sets the call data associated with a call object ID. Use to get information or send information between an interaction log and a custom
console component.This method is only available in API version 31.0 or later.

Syntax

sforce.console.cti.setCallAttachedData(callObjectId:String, callData:JSON string
callType:String, (optional)callback:Functional)

Arguments

DescriptionTypeName

The object ID of the call.stringcallObjectId

JSON string that specifies the data to attach to the call.stringcallData

String that specifies the call type, such as internal, inbound, or outbound.stringcallType

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to set call attached data

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

192

Methods for Computer-Telephony Integration (CTI)Salesforce Console Integration Toolkit for Salesforce Classic

function testSetCallAttachedData() {
//callData must be a JSON string. We assume that your browser has
//access to a JSON library.
var callData = JSON.stringify({"ANI":"4155551212", "DNIS":"8005551212"});

//Set the call attached data associated to call id 'call.1'
sforce.console.cti.setCallAttachedData('call.1', callData, 'outbound');

}
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if the event firing was successful; false otherwise.booleansuccess

setCallObjectIds()

Sets call object IDs, in ascending order of arrival. This method is only available in API version 31.0 or later.

Syntax

sforce.console.cti.setCallObjectIds(callObjectIds:Array, callback:Function)

Arguments

DescriptionTypeName

An array of string IDs specifying the calls to set.arraycallObjectId

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to set call object Ids

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function checkResult(result) {
if (result.success) {

alert('Call object ids set successfully!');
} else {

193

Methods for Computer-Telephony Integration (CTI)Salesforce Console Integration Toolkit for Salesforce Classic

alert('Call object ids cannot be set!');
}

}

function testSetCallObjectIds() {
sforce.console.cti.setCallObjectIds(['call.1', 'call.2', 'call.3'],

checkResult);
}

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if setting the call IDs was successful; false otherwise.booleansuccess

Methods for Application-Level Custom Console Components
Custom console components let you customize, extend, or integrate the footer, sidebars, highlights panels, and interaction logs of a
Salesforce console using Visualforce, canvas apps, lookup fields, or related lists. Administrators can add components to either:

• Page layouts to display content on specific pages

• Salesforce console apps to display content across all pages and tabs

For more information, see “Customize a Console with Custom Components in Salesforce Classic” in the Salesforce Help.

IN THIS SECTION:

addToBrowserTitleQueue()

Adds a browser tab title to a list of titles, which rotates every three seconds. This method is only available in API version 28.0 or later.

blinkCustomConsoleComponentButtonText()

Blinks a button’s text on an application-level custom console component that’s on a page. This method is only available in API version
25.0 or later.

isCustomConsoleComponentPoppedOut()

Determines if a custom console component is popped out from a browser. To use this method, multi-monitor components must
be turned on. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce Classic” in the
online help. This method is only available in API version 30.0 or later.

isCustomConsoleComponentWindowHidden()

Determines if the application-level custom console component window is hidden. This method is available in API versions 25.0
through 31.0.

isCustomConsoleComponentHidden()

Determines if the application-level custom console component window is hidden. This method is available in API version 32.0 and
later. In API version 31.0 and earlier, this method was called isCustomConsoleComponentWindowHidden().

194

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

isInCustomConsoleComponent()

Determines if the page is in an application-level custom console component. This method is only available in API version 25.0 or
later.

onCustomConsoleComponentButtonClicked()

Registers a function to call when a button is clicked on an application-level custom console component. This method is only available
in API version 25.0 or later.

removeFromBrowserTitleQueue()

Removes a browser tab title from the list of titles, which rotates every three seconds. This method is only available in API version
28.0 or later.

runSelectedMacro()

Executes the selected macro in the macro widget. This method is only available in API version 36.0 or later.

scrollCustomConsoleComponentButtonText()

Scrolls a button’s text on an application-level custom console component that’s on a page. This method is only available in API
version 25.0 or later.

selectMacro()

Selects and displays a specific macro in the macro widget. This method is only available in API version 36.0 or later.

setCustomConsoleComponentButtonIconUrl()

Sets the button icon URL of an application-level custom console component that’s on a page. This method is only available in API
version 25.0 or later.

setCustomConsoleComponentButtonStyle()

Sets the style of a button used to launch an application-level custom console component that’s on a page. This method is only
available in API version 25.0 or later.

setCustomConsoleComponentButtonText()

Sets the text on a button used to launch an application-level custom console component that’s on a page. This method is only
available in API version 25.0 or later.

setCustomConsoleComponentHeight()

Sets the window height of an application-level custom console component that’s on a page. This method is available in API version
32.0 or later.

setCustomConsoleComponentVisible()

Sets the window visibility of an application-level custom console component that’s on a page. This method is available in API version
32.0 and later. In API version 31.0 and earlier, this method was called setCustomConsoleComponentWindowVisible().

setCustomConsoleComponentWidth()

Sets the window width of an application-level custom console component that’s on a page. This method is available in API version
32.0 or later.

setCustomConsoleComponentPopoutable()

Sets a custom console component to be popped out or popped into a browser. To use this method, multi-monitor components
must be turned on. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce Classic” in
the online help. This method is only available in API version 30.0 or later.

setCustomConsoleComponentWindowVisible()

Sets the window visibility of an application-level custom console component that’s on a page. This method is available in API versions
25.0 through 31.0.

setSidebarVisible()

Shows or hides a console sidebar based on tabId and region. This method is available in API version 33.0 or later.

195

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

addToBrowserTitleQueue()

Adds a browser tab title to a list of titles, which rotates every three seconds. This method is only available in API version 28.0 or later.

Syntax

sforce.console.addToBrowserTitleQueue(title:String, callback:Function)

Arguments

DescriptionTypeName

Browser tab title that is displayed.stringtitle

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page >

Click here to enqueue a browser title

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testAddToBrowserTitleQueue() {
var title = 'TestTitle';

sforce.console.addToBrowserTitleQueue(title);
}

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

If true, the title was successfully added to the browser title queue. If false, the
title wasn’t added to the browser title queue.

booleansuccess

JavaScript method that’s called upon completion of the method.functioncallback

blinkCustomConsoleComponentButtonText()

Blinks a button’s text on an application-level custom console component that’s on a page. This method is only available in API version
25.0 or later.

196

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

Syntax

sforce.console.blinkCustomConsoleComponentButtonText(alternateText:String, interval:number,
(optional)callback:Function)

Arguments

DescriptionTypeName

The alternate text to display when the button text blinks.stringalternateText

Controls how often the text blinks in milliseconds.numberinterval

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to blink the button text on a custom console component

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testBlinkCustomConsoleComponentButtonText() {
//Blink the custom console component button text

sforce.console.blinkCustomConsoleComponentButtonText('Hello World', 10,
function(result){

if (result.success) {
alert('The text blinking starts!');
} else {
alert('Could not initiate the text blinking!');
}

});
}

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if blinking, the button text was successful; false if blinking the button text
wasn't successful.

booleansuccess

197

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

isCustomConsoleComponentPoppedOut()

Determines if a custom console component is popped out from a browser. To use this method, multi-monitor components must be
turned on. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce Classic” in the online
help. This method is only available in API version 30.0 or later.

Syntax

sforce.console.isCustomConsoleComponentPoppedOut (callback:Function)

Arguments

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Is this component popped out?

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function checkResult(result) {
if (result.success) {
alert('Is this component popped out: ' + result.poppedOut);

} else {
alert('Error invoking this method. Check the browser developer console for

more information.');
}

}
function checkPoppedOut() {
sforce.console.isCustomConsoleComponentPoppedOut(checkResult);

}
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if returning the component’s pop out status was successful; false otherwise.booleansuccess

true if the component is popped out; false otherwise.booleanpoppedOut

198

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

isCustomConsoleComponentWindowHidden()

Determines if the application-level custom console component window is hidden. This method is available in API versions 25.0 through
31.0.

Note: If this method is called from a popped out component in a Salesforce console where multi-montior components is turned
on, nothing will happen. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce
Classic” in the online help. Starting in API version 32.0, this method is no longer available and has been replaced by
isCustomConsoleComponentHidden(). For more information, see “isCustomConsoleComponentHidden().”

Syntax

sforce.console.isCustomConsoleComponentWindowHidden((optional) callback:Function)

Arguments

DescriptionTypeName

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to check if the custom console component window is hidden

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testIsCustomConsoleComponentWindowHidden() {
sforce.console.isCustomConsoleComponentWindowHidden(checkWindowVisibility);

}

var checkWindowVisibility = function checkWindowVisibility(result) {
//Display the window visibility
if (result.success) {
alert('Is window hidden: ' + result.hidden);

} else {
alert('Error!');

}
}

</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

199

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

true if the custom console component window is hidden; false if the custom
console component window is visible.

booleanhidden

true if returning the custom console component window visibility was successful;
false if returning the custom console component window visibility wasn't
successful.

booleansuccess

isCustomConsoleComponentHidden()

Determines if the application-level custom console component window is hidden. This method is available in API version 32.0 and later.
In API version 31.0 and earlier, this method was called isCustomConsoleComponentWindowHidden().

Syntax

sforce.console.isCustomConsoleComponentHidden((optional) callback:Function)

Arguments

DescriptionTypeName

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to check if the custom console component window is hidden

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testIsCustomConsoleComponentHidden() {
sforce.console.isCustomConsoleComponentHidden(checkWindowVisibility);

}

var checkWindowVisibility = function checkWindowVisibility(result) {
//Display the window visibility
if (result.success) {
alert('Is window hidden: ' + result.hidden);

} else {
alert('Error!');

}
}

</script>

</apex:page>

200

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if the custom console component window is hidden; false if the custom
console component window is visible.

booleanhidden

true if the isCustomConsoleComponentHidden() call was successful;
false if the isCustomConsoleComponentHidden() call wasn’t
successful.

booleansuccess

isInCustomConsoleComponent()

Determines if the page is in an application-level custom console component. This method is only available in API version 25.0 or later.

Syntax

sforce.console.isInCustomConsoleComponent((optional) callback:Function)

Arguments

DescriptionTypeName

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to check if the page is in an app-level custom console component

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testIsInCustomConsoleComponent() {
sforce.console.isInCustomConsoleComponent(checkInComponent);

}

var checkInComponent = function checkInComponent(result) {
//Check if in component
alert('Is in custom console component: ' + result.inCustomConsoleComponent);

};

</script>

</apex:page>

201

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if the page is in a custom console component; false if the page isn’t in a
custom console component.

booleaninCustomConsoleComponent

true if returning the page status was successful; false if returning the page
status wasn't successful.

booleansuccess

onCustomConsoleComponentButtonClicked()

Registers a function to call when a button is clicked on an application-level custom console component. This method is only available
in API version 25.0 or later.

Syntax

sforce.console.onCustomConsoleComponentButtonClicked(eventHandler:Function)

Arguments

DescriptionTypeName

JavaScript method called when a button is clicked on a custom console component.functioncallback

Sample Code–Visualforce

<apex:page>

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert('The Custom Console Component button is clicked. The component ID

is: ' + result.id +
' and the component window is: ' + (result.windowHidden ? 'hidden' :

'visible'));
};

sforce.console.onCustomConsoleComponentButtonClicked(eventHandler);
</script>

</apex:page>

Event Handler Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

202

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

The ID of the custom console component which includes the page.stringid

true if the custom console component window is hidden after the button is clicked;
false if the custom console component window is visible after the button is
clicked.

booleanwindowHidden

removeFromBrowserTitleQueue()

Removes a browser tab title from the list of titles, which rotates every three seconds. This method is only available in API version 28.0 or
later.

Syntax

sforce.console.removeFromBrowserTitleQueue(title:String, callback:Function)

Arguments

DescriptionTypeName

Browser tab title to remove.stringtitle

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

 {
Click here to enqueue a browser title

Click here to remove browser title

var title = 'TestTitle';
function testAddToBrowserTitleQueue() {

sforce.console.addToBrowserTitleQueue(title);
}
function testRemoveFromBrowserTitleQueue() {

sforce.console.removeFromBrowserTitleQueue(title);
}

</script>
</apex:page>

203

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

If true, the title was successfully removed from the browser title queue. If false,
the title wasn’t removed from the browser title queue.

booleansuccess

JavaScript method that’s called upon completion of the method.functioncallback

runSelectedMacro()

Executes the selected macro in the macro widget. This method is only available in API version 36.0 or later.

Syntax

sforce.console.runSelectedMacro ((optional)callback:Function)

Arguments

DescriptionTypeName

JavaScript method that is called when the method is completedfunctioncallback

Sample Code–Visualforce

<apex:page>
Click here to run a macro
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function executeInWidget() {
sforce.console.runSelectedMacro();

}
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

Explanation of function failure, if applicablestringcause

true if running the macro was successful; false otherwisebooleansuccess

204

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

scrollCustomConsoleComponentButtonText()

Scrolls a button’s text on an application-level custom console component that’s on a page. This method is only available in API version
25.0 or later.

Syntax

sforce.console.scrollCustomConsoleComponentButtonText(interval:number, pixelsToScroll:number,
isLeftScrolling:boolean, (optional)callback:Function)

Arguments

DescriptionTypeName

Controls how often the button text is scrolled in milliseconds.numberinterval

Controls how many pixels the button text scrolls.numberpixelsToScroll

If true, the text scrolls left. If false, the text scrolls right.booleanisLeftScrolling

JavaScript method that’s called upon completion of the method.functioncallback

Tip: Try to give buttons short names. Scrolling is limited to the width of the button. If a button name is too long, scrolling can
restart before the name finishes displaying.

Sample Code–Visualforce

<apex:page>

Click here to scroll the button text on a custom console component

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testScrollCustomConsoleComponentButtonText() {
//Scroll the custom console component button text from right to left

sforce.console.scrollCustomConsoleComponentButtonText(500, 10, true,
function(result){

if (result.success) {
alert('The text scrolling starts!');
} else {
alert('Could not initiate the text scrolling!');
}

});
}

</script>
</apex:page>

205

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if scrolling the button text was successful; false if scrolling the button text
wasn't successful.

booleansuccess

selectMacro()

Selects and displays a specific macro in the macro widget. This method is only available in API version 36.0 or later.

Syntax

sforce.console.selectMacro(macroId:String, (optional)callback:Function)

Arguments

DescriptionTypeName

JavaScript method that is called when the method is completedfunctioncallback

ID of the macro that’s selectedstringmacroID

Sample Code–Visualforce

<apex:page>
Click here to select

a macro
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function openInWidget(id) {
sforce.console.selectMacro(id);

}
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

Explanation of function failure, if applicablestringcause

true if selecting the macro was successful; false otherwisebooleansuccess

206

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

setCustomConsoleComponentButtonIconUrl()

Sets the button icon URL of an application-level custom console component that’s on a page. This method is only available in API version
25.0 or later.

Syntax

sforce.console.setCustomConsoleComponentButtonIconUrl(iconURL:String,
(optional)callback:Function)

Arguments

DescriptionTypeName

A URL that points to an image that’s used as a button to launch a custom console
component.

stringiconUrl

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to set the custom console component button icon

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testSetCustomConsoleComponentButtonIconUrl() {

sforce.console.setCustomConsoleComponentButtonIconUrl('http://imageserver/img.png');
}

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if setting the button icon URL was successful; false if setting the button
icon URL wasn't successful.

booleansuccess

setCustomConsoleComponentButtonStyle()

Sets the style of a button used to launch an application-level custom console component that’s on a page. This method is only available
in API version 25.0 or later.

207

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

Syntax

sforce.console.setCustomConsoleComponentButtonStyle(style:String, (optional)callback:
Function)

Arguments

DescriptionTypeName

The style of a button used to launch a custom console component. The styles
supported include font, font color, and background color. Font and font color isn’t
available for Internet Explorer® 7.

stringstyle

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to set the style of a button used to launch a custom console

component

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testSetCustomConsoleComponentButtonStyle() {
sforce.console.setCustomConsoleComponentButtonStyle('background:red;');

}
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if setting the button style was successful; false if setting the button style
wasn't successful.

booleansuccess

setCustomConsoleComponentButtonText()

Sets the text on a button used to launch an application-level custom console component that’s on a page. This method is only available
in API version 25.0 or later.

Syntax

sforce.console.setCustomConsoleComponentButtonText(text:String, (optional)callback:Function)

208

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

Text that’s displayed on a button used to launch a custom console component.stringtext

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to set the text on a button used to launch a custom console component

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testSetCustomConsoleComponentButtonText() {
//Change the custom console component button text to 'Hello World'

sforce.console.setCustomConsoleComponentButtonText('Hello World');
}

</script>
</apex:page>

Response

DescriptionTypeName

true if setting the button text was successful; false if setting the button text
wasn't successful.

booleansuccess

setCustomConsoleComponentHeight()

Sets the window height of an application-level custom console component that’s on a page. This method is available in API version 32.0
or later.

Note: If this method is called from a popped out component in a Salesforce console where multi-monitor components is turned
on, nothing will happen. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce
Classic” in the Salesforce Help.

Syntax

sforce.console.setCustomConsoleComponentHeight(height:number, (optional)callback:Function)

209

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

The new height in pixels.numberheight

Javascript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to set the custom console component height to 100px

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testSetCustomConsoleComponentHeight() {
// Set the custom console component height

sforce.console.setCustomConsoleComponentHeight(100);
}

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if the method call was successful; false otherwise.booleansuccess

setCustomConsoleComponentVisible()

Sets the window visibility of an application-level custom console component that’s on a page. This method is available in API version
32.0 and later. In API version 31.0 and earlier, this method was called setCustomConsoleComponentWindowVisible().

Syntax

sforce.console.setCustomConsoleComponentVisible(visible:Boolean,
(optional)callback:Function)

Arguments

DescriptionTypeName

true to make the custom console component window visible, false to hide
the custom console component window.

booleanvisible

210

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to make the custom console component window visible

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testSetCustomConsoleComponentVisible() {
// Make the custom console component window visible

sforce.console.setCustomConsoleComponentVisible(true);
}

</script>
</apex:page>

Response

DescriptionTypeName

true if setting the button window visibility was successful; false if setting the
button window visibility wasn't successful.

booleansuccess

setCustomConsoleComponentWidth()

Sets the window width of an application-level custom console component that’s on a page. This method is available in API version 32.0
or later.

Note: If this method is called from a popped out component in a Salesforce console where multi-monitor components is turned
on, nothing will happen. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce
Classic” in the Salesforce Help.

Syntax

sforce.console.setCustomConsoleComponentWidth(width:number, callback:Function)

Arguments

DescriptionTypeName

The new width in pixels.numberwidth

Javascript method called upon completion of the method.functioncallback

211

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>

Click here to set the custom console component width to 100px

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testSetCustomConsoleComponentWidth() {
// Set the custom console component width

sforce.console.setCustomConsoleComponentWidth(100);
}

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if the method call was successful; false otherwise.booleansuccess

setCustomConsoleComponentPopoutable()

Sets a custom console component to be popped out or popped into a browser. To use this method, multi-monitor components must
be turned on. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce Classic” in the online
help. This method is only available in API version 30.0 or later.

Syntax

sforce.console.setCustomConsoleComponentPopoutable(popoutable:Boolean,
(optional)callback:Function)

Arguments

DescriptionTypeName

If true, the component can be popped out or popped into a browser. If false,
the component cannot be popped out or popped into a browser.

booleanpopoutable

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

212

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

Click here to enable pop out or pop in functionality

Click here to disable pop out or pop in functionality

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function checkResult(result) {
if (result.success) {
alert('The method was successfully invoked.');

} else {
alert('Error while invoking this method. Check the browser developer console

for more information.');
}

}

function enablePopout() {
sforce.console.setCustomConsoleComponentPopoutable(true, checkResult);

}

function disablePopout() {
sforce.console.setCustomConsoleComponentPopoutable(false, checkResult);

}
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if enabling pop out or pop in functionality for the component was successful;
false otherwise.

booleansuccess

setCustomConsoleComponentWindowVisible()

Sets the window visibility of an application-level custom console component that’s on a page. This method is available in API versions
25.0 through 31.0.

Note: If this method is called from a popped out component in a Salesforce console where multi-montior components is turned
on, nothing will happen. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce
Classic” in the Salesforce Help. Starting in API version 32.0, this method is no longer available and has been replaced by
setCustomConsoleComponentVisible(). For more information, see
setCustomConsoleComponentVisible().

Syntax

sforce.console.setCustomConsoleComponentWindowVisible(visible:Boolean,
(optional)callback:Function)

213

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

true to make the custom console component window visible, false to hide
the custom console component window.

booleanvisible

JavaScript method that’s called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>

Click here to make the custom console component window visible

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testSetCustomConsoleComponentWindowVisible() {
//Make the custom console component window visible

sforce.console.setCustomConsoleComponentWindowVisible(true);
}

</script>
</apex:page>

Response

DescriptionTypeName

true if setting the button window visibility was successful; false if setting the
button window visibility wasn't successful.

booleansuccess

setSidebarVisible()

Shows or hides a console sidebar based on tabId and region. This method is available in API version 33.0 or later.

Syntax

sforce.console.setSidebarVisible(visible:Boolean, (optional)tabId:String,
(optional)region:String, (optional)callback:Function)

Arguments

DescriptionTypeName

true to show the sidebar or false to hide the sidebar.booleanvisible

The ID of the tab on which to show or hide the sidebar.stringtabId

214

Methods for Application-Level Custom Console ComponentsSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

The region on the console where the sidebar is located, such as left or right, top or
bottom. Regions are represented as:

stringregion

• sforce.console.Region.LEFT

• sforce.console.Region.RIGHT

• sforce.console.Region.TOP

• sforce.console.Region.BOTTOM

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
if (result.success) {

alert('Congratulations!');
}else {

alert('something is wrong!');
}

};
function setSidebarVisible() {

sforce.console.setSidebarVisible(true,'scc-st-1',sforce.console.Region.LEFT,callback);
}

</script>
SetSidebarToExpand

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if the method call was successful; false otherwise.booleansuccess

Methods for Push Notifications
Push notifications are visual indicators on lists and detail pages in a console that show when a record or field has changed during a user’s
session. For example, if two support agents are working on the same case, and one agent changes the Priority, a push notification
appears to the other agent so he or she spots the change and doesn’t duplicate the effort.

215

Methods for Push NotificationsSalesforce Console Integration Toolkit for Salesforce Classic

When administrators set up a Salesforce console, they choose when push notifications display, and which objects and fields trigger push
notifications. Developers can use push notification methods to customize push notifications beyond the default visual indicators supplied
by Salesforce. For example, developers can use the methods below to create personalized notifications about objects accessible to
specific console users, thereby eliminating the need for email notifications. For more information, see “Configure Push Notifications for
a Salesforce Console in Salesforce Classic” in the Salesforce Help.

Consider the following when using push notification methods:

• Push notification listener response is only available for the objects and fields selected to trigger push notifications for a console.

• When a Visualforce page includes a listener added by the addPushNotificationListener() method, the page receives
notifications. The listener receives notifications when there is an update by any user to the objects selected for triggering console
push notifications and the current user has access to the modified record. This functionality is slightly different from push notifications
set up in the Salesforce user interface in that:

– Listeners receive update notifications for changes made by all users.

– When Choose How Lists Refresh is set to Refresh List Rows and the user is viewing an empty list view for
an object set to trigger push notifications, a listener receives notifications for any record of that object created as well as any
updates made to fields selected to trigger push notifications on the object.

– When Choose How Lists Refresh is set to Refresh List and the user is viewing a list view for an object set to
trigger push notifications, a listener receives notifications for any record of that object created and any updates made to fields
selected to trigger push notifications, where the viewing user is the owner of the record.

– The only way to stop receiving notifications is to remove listeners using the removePushNotificationListener()
method.

• Push notifications aren't available in the console in Professional Edition.

IN THIS SECTION:

addPushNotificationListener()

Adds a listener for a push notification. A user can only register a listener once until he or she removes the listener, or the listener is
removed by another user. This method is only available in API version 26.0 or later.

removePushNotificationListener()

Removes a listener that gets added for a push notification. This method is only available in API version 26.0 or later.

addPushNotificationListener()

Adds a listener for a push notification. A user can only register a listener once until he or she removes the listener, or the listener is
removed by another user. This method is only available in API version 26.0 or later.

For more information on push notifications, see Methods for Push Notifications on page 215.

Syntax

sforce.console.addPushNotificationListener(objects: array, eventHandler:Function)

Arguments

DescriptionTypeName

Objects set to receive notifications.arrayobjects

216

Methods for Push NotificationsSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

JavaScript method called when there is a push notification.functioneventHandler

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert('There is a push notification of object: ' + result.Id);

};
//Add a push notification listener for Case and Account
sforce.console.addPushNotificationListener(['Case', 'Account'], eventHandler);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method.

DescriptionTypeName

The object ID of the push notification.stringid

The type of object included in the push notification. For example, Account or Contact.

Objects available for push notifications are determined by the administrator who
set up a Salesforce console. For more information, see “Configure Push Notifications
for a Salesforce Console in Salesforce Classic” in the Salesforce online help.

stringentityType

The field of the object included in the push notification. For example, the Account
Name field on Account. Notifications occur when the field is either updated or
created.

Fields on objects available for push notifications are determined by the administrator
who set up a Salesforce console. For more information, see “Configure Push

stringType

Notifications for a Salesforce Console in Salesforce Classic” in the Salesforce online
help.

The user ID of the user who last modified the object in the push notification.stringLastModifiedById

removePushNotificationListener()

Removes a listener that gets added for a push notification. This method is only available in API version 26.0 or later.

For more information on push notifications, see Methods for Push Notifications on page 215.

217

Methods for Push NotificationsSalesforce Console Integration Toolkit for Salesforce Classic

Syntax

sforce.console.removePushNotificationListener((optional) callback:Function)

Arguments

DescriptionTypeName

A function called when the removal of the push notification listener completes.functioncallback

Sample Code–Visualforce

<apex:page standardController="Case">

Click here to remove push notification

<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

function testRemovePushNotification() {
sforce.console.removePushNotificationListener(removeSuccess);

}
var removeSuccess = function removeSuccess(result) {

//Report whether removing the push notification listener is successful
if (result.success == true) {

alert('Removing push notification was successful');
} else {

alert('Removing push notification wasn't successful');
}

};
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method.

DescriptionTypeName

true if removing the push notification listener was successful; false if removing
the push notification listener wasn’t successful.

booleansuccess

Methods for Console Events
JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. The following standard
events are supported:

218

Methods for Console EventsSalesforce Console Integration Toolkit for Salesforce Classic

PayloadDescriptionEvent

Fired when a primary tab or subtab is opened.
Available in API version 30.0 or later.

sforce.console.ConsoleEvent.OPEN_TAB • id — The ID of the opened tab.

• objectId — The object ID of the
opened tab, if available.

Fired when a primary tab or subtab with a
specified ID in the additionalParams

sforce.console.ConsoleEvent.CLOSE_TAB • id — The ID of the closed tab.

• objectID — The object ID of the
closed tab, if available.

Note: For some objects (such as Email and
Case Comment), the tab is opened and

argument is closed. Or, fired when a primary
tab or subtab with no specified ID is closed.
Available in API version 30.0 or later.

closed immediately and no object ID is
generated for the tab. In those cases, this
field’s value is equal to the parent’s object
ID.

• tabObjectId — The object ID of the
closed tab, if available.

Note: tabObjectId is generally the
same as objectID. However, for tabs
that close upon submission, no
tabObjectId is generated. In those
cases, the value of this field is either empty
or null. For an Email, the value is empty.
For a Case Comment, the value is null.

NoneDelays the execution of logging out of a
console when a user clicks Logout. When
Logout is clicked:

sforce.console.ConsoleEvent.CONSOLE_LOGOUT

1. An overlay appears, which tells a user that
logout is in progress.

2. Callbacks are executed that have been
registered by using
sforce.console.ConsoleEvent.CONSOLE_LOGOUT.

3. Console logout logic is executed.

If the callback contains synchronous blocking
code, the console logout code isn’t executed
until the blocking code is executed. As a best
practice, avoid synchronous blocking code or
long code execution during logout.

Available in API version 31.0 or later.

219

Methods for Console EventsSalesforce Console Integration Toolkit for Salesforce Classic

IN THIS SECTION:

addEventListener()

Adds a listener for a custom event type or a standard event type when the event is fired. This method adds a listener for custom
event types in API version 25.0 or later; it adds a listener for standard event types in API version 30.0 or later.

fireEvent()

Fires a custom event. This method is only available in API version 25.0 or later.

removeEventListener()

Removes a listener for a custom event type or a standard event type. This method removes a listener for custom event types in API
version 25.0 or later; it removes a listener for standard event types in API version 30.0 or later.

addEventListener()

Adds a listener for a custom event type or a standard event type when the event is fired. This method adds a listener for custom event
types in API version 25.0 or later; it adds a listener for standard event types in API version 30.0 or later.

For the list of standard events, see Methods for Console Events on page 218.

Syntax

sforce.console.addEventListener(eventType: String, eventListener:Function,
(optional)additionalParams:Object)

Arguments

DescriptionTypeName

Custom event type for which eventListener listens.stringeventType

JavaScript method called when an eventType is fired.functioneventListener

Optional parameters accepted by this method. The supported properties on this
object are tabId: The ID of the tab to listen for the specified event.

This argument is only available in API version 30.0 or later.

objectadditionalParams

Sample Code API Version 25.0 or Later–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var listener = function (result) {
alert('Message received from event: ' + result.message);

};
//Add a listener for the 'SampleEvent' event type
sforce.console.addEventListener('SampleEvent', listener);

</script>
</apex:page>

220

Methods for Console EventsSalesforce Console Integration Toolkit for Salesforce Classic

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

The message which is sent with the fired event.

If the response is from a custom keyboard shortcut, the message includes the
following information on which the browser is focused, in this order:

stringmessage

1. Object ID of the primary tab

2. ID of the primary tab

3. Object ID of the subtab

4. ID of the subtab

For more information, see “Customize Keyboard Shortcuts for a Salesforce Console
in Salesforce Classic” in the online help.

Sample Code API Version 30.0 or Later–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var onEnclosingPrimaryTabClose = function (result) {
alert('The enclosing primary tab is about to be closed. Tab ID: ' + result.id

+ ', Object ID: ' + (result.objectId ? result.objectId : 'not available'));
};

//Add a listener to handle the closing of the enclosing primary tab
sforce.console.getEnclosingPrimaryTabId(function (result) {

if (result.id) {
sforce.console.addEventListener(sforce.console.ConsoleEvent.CLOSE_TAB,
onEnclosingPrimaryTabClose, { tabId : result.id });

} else {
alert('Could not find an enclosing primary TAB!');

}
});

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

221

Methods for Console EventsSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

The message which is sent with the fired event.

If the response is from a console event, the message includes payload details as
described in Methods for Console Events on page 218.

stringmessage

If the response is from a custom keyboard shortcut, the message includes the
following information on which the browser is focused, in this order:

1. Object ID of the primary tab

2. ID of the primary tab

3. Object ID of the subtab

4. ID of the subtab

For more information, see “Customize Keyboard Shortcuts for a Salesforce Console
in Salesforce Classic” in the online help.

fireEvent()

Fires a custom event. This method is only available in API version 25.0 or later.

Syntax

sforce.console.fireEvent(eventType:String, message:String, (optional)callback:Function
)

Arguments

DescriptionTypeName

The type of custom event to fire.stringeventType

The message which is sent with the fired event.stringmessage

JavaScript method called when the custom event is fired.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

Click here to fire an event of type 'SampleEvent'

var callback = function(result) {
if (result.success) {

alert('The custom event is fired!');
} else {

222

Methods for Console EventsSalesforce Console Integration Toolkit for Salesforce Classic

alert('The custom event could not be fired!');
}

};

function testFireEvent() {
//Fire an event of type 'SampleEvent'
sforce.console.fireEvent('SampleEvent', 'EventMessage', callback);
}

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

DescriptionTypeName

true if firing the event is successful, false if firing the event wasn’t successful.booleansuccess

removeEventListener()

Removes a listener for a custom event type or a standard event type. This method removes a listener for custom event types in API
version 25.0 or later; it removes a listener for standard event types in API version 30.0 or later.

For the list of standard events, see Methods for Console Events on page 218.

Syntax

sforce.console.removeEventListener(eventType: String, eventListener:Function,
(optional)additionalParams:Object)

Arguments

DescriptionTypeName

Event type for which eventListener is removed.stringeventType

Event listener to remove.functioneventListener

Optional parameters accepted by this method. The supported properties on this
object are tabId: The ID of the tab to remove the listener for the specified event.

This argument is only available in API version 30.0 or later.

objectadditionalParams

Sample Code API Version 25.0 or Later–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>

223

Methods for Console EventsSalesforce Console Integration Toolkit for Salesforce Classic

Click here to remove an event listener for the 'SampleEvent' event type

<script type="text/javascript">
var listener = function (result) {

alert('Message received from event: ' + result.message);
};
//Add a listener for the 'SampleEvent' event type
sforce.console.addEventListener('SampleEvent', listener);

function testRemoveEventListener() {
sforce.console.removeEventListener('SampleEvent', listener);

}
</script>

</apex:page>

Response
None

Sample Code API Version 30.0 or Later–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>

Click here to remove an event listener for the console 'CLOSE_TAB' event

type

<script type="text/javascript">
var tabId;

var onEnclosingPrimaryTabClose = function (result) {
alert('The enclosing primary tab is about to be closed. Tab ID: ' + result.id

+ ',
Object ID: ' + (result.objectId ? result.objectId : 'not available'));

};

//Add a listener to handle the closing of the enclosing primary tab
sforce.console.getEnclosingPrimaryTabId(function (result) {

if (result.id) {
tabId = result.id;
sforce.console.addEventListener(sforce.console.ConsoleEvent.CLOSE_TAB,

onEnclosingPrimaryTabClose, { tabId : tabId });
} else {

alert('Could not find an enclosing primary TAB!');
}

});

function testRemoveEventListener() {
sforce.console.removeEventListener(sforce.console.ConsoleEvent.CLOSE_TAB,

onEnclosingPrimaryTabClose, { tabId : tabId });
}

224

Methods for Console EventsSalesforce Console Integration Toolkit for Salesforce Classic

</script>
</apex:page>

Response
None

Methods for Chat
Connect with customers or website visitors in real time through Web-based chat. For more information, see “Add Chat to the Salesforce
Console” in the Salesforce Help.

Note: These methods don’t work for chats routed with Omni-Channel. Chats with Omni-Channel routing use the Methods for
Omni-Channel. If you’re using Lightning Experience, use the Methods for Omni-Channel in Lightning Experience.

IN THIS SECTION:

acceptChat()

Accepts a chat request. Available in API version 29.0 or later. This method isn't supported with Omni-Channel in API version 37.0 or
later.

cancelFileTransferByAgent()

Indicates that a file transfer request has been canceled by an agent. Available in API version 31.0 or later.

declineChat()

Declines a chat request. Available in API version 29.0 or later. This method isn't supported with Omni-Channel in API version 37.0 or
later.

endChat()

Ends a chat in which an agent is currently engaged. Available in API version 29.0 or later.

getAgentInput()

Returns the string of text which is currently in the agent’s text input area in the chat log of a chat with a specific chat key. Available
in API version 29.0 or later.

getAgentState()

Returns the agent's current Chat status, such as Online, Away, or Offline. Available in API version 29.0 or later.

getChatLog()

Returns the chat log of a chat associated with a specific chat key. Available in API version 29.0 or later.

getChatRequests()

Returns the chat keys of the chat requests that have been assigned to an agent. Available in API version 29.0 or later.

getDetailsByChatKey()

Returns the details of the chat associated with a specific chat key. Available in API version 29.0 or later.

getDetailsByPrimaryTabId()

Returns the details of the chat associated with a specific primary tab ID. Available in API version 29.0 or later.

getEngagedChats()

Returns the chat keys of the chats in which the agent is currently engaged. Available in API version 29.0 or later.

225

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

https://developer.salesforce.com/docs/atlas.en-us.242.0.api_console.meta/api_console/sforce_api_console_omnichannel_methods.htm
https://developer.salesforce.com/docs/atlas.en-us.242.0.api_console.meta/api_console/sforce_api_console_omnichannel_methods.htm
https://developer.salesforce.com/docs/atlas.en-us.242.0.api_console.meta/api_console/sforce_api_console_methods_lightning_omniToolkitAPI.htm

getMaxCapacity()

Returns the maximum chat capacity for the current agent, as specified in the agent's assigned agent configuration. Available in API
version 29.0 or later.

initFileTransfer()

Initiates the process of transferring a file from a customer to an agent. Available in API version 31.0 or later.

onAgentSend()

Registers a function to call when an agent sends a chat message through the Salesforce console. This method intercepts the message
and occurs before it is sent to the chat visitor. Available in API version 29.0 or later.

onAgentStateChanged()

Registers a function to call when agents change their Chat status, such as from Online to Away. Available in API version 29.0 or later.

onChatCanceled()

Registers a function to call when a chat visitor cancels a chat request. Available in API version 29.0 or later.

onChatCriticalWaitState()

Registers a function to call when a chat becomes critical to answer or a waiting chat is answered. Available in API version 29.0 or
later.

onChatDeclined()

Registers a function to call when an agent declines a chat request. Available in API version 29.0 or later.

onChatEnded()

Registers a function to call when an engaged chat ends. Available in API version 29.0 or later.

onChatRequested()

Registers a function to call when an agent receives a chat request. Available in API version 29.0 or later.

onChatStarted()

Registers a function to call when an agent starts a new chat with a customer. Available in API version 29.0 or later.

onChatTransferredOut()

Registers a function to call when an engaged chat is transferred out to another agent. Available in API version 29.0 or later.

onCurrentCapacityChanged()

Registers a function to call when an agent's capacity for accepting chats changes—for example, if an agent accepts a new chat,
ends a currently engaged chat, or otherwise changes the number of chats to which they are assigned, or if a chat request is pushed
to their chat queue. Available in API version 29.0 or later.

onCustomEvent()

Registers a function to call when a custom event takes place during a chat. Available in API version 29.0 or later.

onFileTransferCompleted()

Registers a function to call when a file is transferred from a customer to an agent. Available in API version 31.0 or later.

onNewMessage()

Registers a function to call when a new message is sent from a customer, agent, or supervisor. Available in API version 29.0 or later.

onTypingUpdate()

Registers a function to call when the customer’s text in the chat window changes. If Sneak Peek is enabled, this function is called
whenever the customer edits the text in the chat window. If Sneak Peek is not enabled, this function is called whenever a customer
starts or stops typing in the chat window. Available in API version 29.0 or later.

sendCustomEvent()

Sends a custom event to the client-side chat window for a chat with a specific chat key. Available in API version 29.0 or later.

226

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

sendMessage()

Sends a new chat message from the agent to a chat with a specific chat key. Available in API version 29.0 or later.

setAgentInput()

Sets the string of text in the agent’s text input area in the chat log of a chat with a specific chat key.Available in API version 29.0 or
later.

setAgentState()

Sets an agent's Chat status, such as Online, Away, or Offline. Available in API version 29.0 or later.

Methods for Chat Visitors

There are a few methods available that you can use to customize the visitor experience for Chat in a custom Visualforce chat window.
These methods apply to Salesforce Classic only.

acceptChat()

Accepts a chat request. Available in API version 29.0 or later. This method isn't supported with Omni-Channel in API version 37.0 or later.

Syntax

sforce.console.chat.acceptChat(chatKey:String, (optional)callback:Function)

Arguments

DescriptionTypeName

The chat key for the chat request you wish to accept.StringchatKey

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Accept Chat

<script type="text/javascript">
function testAcceptChat() {

//Get the value for 'myChatKey'from the getChatRequests() or onChatRequested()
methods.

//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.acceptChat(chatKey, acceptSuccess);

}

function acceptSuccess(result) {
//Report whether accepting the chat was succesful
if (result.success == true) {

alert('Accepting the chat was successful');
} else {

alert('Accepting the chat was not successful');

227

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

}
};

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if accepting the chat was successful; false if accepting the chat wasn’t
successful.

Booleansuccess

cancelFileTransferByAgent()

Indicates that a file transfer request has been canceled by an agent. Available in API version 31.0 or later.

Syntax

sforce.console.chat.cancelFileTransferByAgent(chatKey:String, (optional)callback:Function)

Arguments

DescriptionTypeName

The chat key for the chat for which the agent canceled the file transfer request.StringchatKey

JavaScript method that is called when the method is completed.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Cancel file transfer

<script type="text/javascript">
function testCancelFileTransfer() {

//Gets the value for 'myChatKey'from the getChatRequests() or onChatRequested()

methods.
//These values are for example purposes only.
var chatKey = 'myChatKey';
sforce.console.chat.cancelFileTransferByAgent(chatKey, fileSuccess);

}

function fileSuccess(result) {

228

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

//Report whether canceling was successful
if (result.success == true) {

alert('Canceling file transfer was successful.');
} else {

alert('Canceling file transfer was not successful.');
}

};
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if canceling the file transfer request was successful; false if canceling the
file transfer request wasn’t successful.

Booleansuccess

declineChat()

Declines a chat request. Available in API version 29.0 or later. This method isn't supported with Omni-Channel in API version 37.0 or later.

Syntax

sforce.console.chat.declineChat(chatKey:String, (optional)callback:Function)

Arguments

DescriptionTypeName

The chat key for the request you wish to decline.StringchatKey

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>

Decline Chat

<script type="text/javascript">
function testDeclineChat() {

//Get the value for 'myChatKey'from the getChatRequests() or onChatRequested()
methods.

//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.declineChat(chatKey, declineSuccess);

229

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

}

function declineSuccess(result) {
//Report whether declining the chat was succesful
if (result.success == true) {

alert('Declining the chat was successful');
} else {

alert('Declining the chat was not successful');
}

};
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if declining the event was successful; false if declining the event wasn’t
successful.

Booleansuccess

endChat()

Ends a chat in which an agent is currently engaged. Available in API version 29.0 or later.

Syntax

sforce.console.chat.endChat(chatKey:String, (optional)callback:Function)

Arguments

DescriptionTypeName

The chat key for the engaged chat you wish to end.StringchatKey

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
End Chat

<script type="text/javascript">
function testEndChat() {

//Get the value for 'myChatKey'from the getEngagedChats() or onChatStarted()

230

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.endChat(chatKey, endSuccess);

}

function endSuccess(result) {
//Report whether ending the chat was succesful
if (result.success == true) {

alert('Ending the chat was successful');
} else {

alert('Ending the chat was not successful');
}

};
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if ending the chat was successful; false if ending the chat wasn’t successful.Booleansuccess

getAgentInput()

Returns the string of text which is currently in the agent’s text input area in the chat log of a chat with a specific chat key. Available in
API version 29.0 or later.

Syntax

sforce.console.chat.getAgentInput(chatKey:String, callback:Function)

Arguments

DescriptionTypeName

The chatKey associated with the chat for which to retrieve the agent’s input text.StringchatKey

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
Get Agent Input

231

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

<script type="text/javascript">

function testGetAgentInput() {
//Get the value for 'myChatKey'from the

sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.getAgentInput(chatKey, getAgentInputSuccess);

}

function getAgentInputSuccess(result) {
//Report whether getting the agent's input was successful
if (result.success == true) {

agentInput = result.text;
alert('The text in the agent input is: ' + agentInput);

} else {
alert('Getting the agent input was not successful');

}
};

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The text that is currently in an agent’s text input area.Stringtext

true if getting the agent’s input was successful; false if getting the agent’s
input wasn’t successful.

Booleansuccess

getAgentState()

Returns the agent's current Chat status, such as Online, Away, or Offline. Available in API version 29.0 or later.

Syntax

sforce.console.chat.getAgentState(callback:Function)

Arguments

DescriptionTypeName

JavaScript method called upon completion of the method.functioncallback

232

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Get Agent State

<script type="text/javascript">
function testGetAgentState() {

sforce.console.chat.getAgentState(function(result) {
if (result.success) {

alert('Agent State:' + result.state);
} else {

alert('getAgentState has failed');
}

});
}

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

String representing the current agent state—for example, Online, Away, or Offline.Stringstate

true if getting the agent’s Chat status was successful; false if getting the agent’s
Chat status wasn’t successful.

Booleansuccess

getChatLog()

Returns the chat log of a chat associated with a specific chat key. Available in API version 29.0 or later.

Syntax

sforce.console.chat.getChatLog(chatKey:String, callback:Function)

Arguments

DescriptionTypeName

The chatKey associated with the chat for which to retrieve the chat log.StringchatKey

JavaScript method called upon completion of the method.functioncallback

233

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
Get Chat Log

<script type="text/javascript">

function testGetChatLog() {
//Get the value for 'myChatKey'from the

sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.getChatLog(chatKey, getChatLogSuccess);

}

function getChatLogSuccess(result) {
//Report whether getting the chat log was succesful
if (result.success == true) {

chatLogMessage = result.messages[0].content;
alert('The first message in this chatLog is: ' + chatLogMessage);

} else {
alert('Getting the chat log was not successful');

}
};

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

DescriptionTypeName

An array of custom event objects representing the custom events that occurred
during a chat.

Array of
customEvent
objects

customEvents

An array of chat message objects containing all of the chat messages from the chat
log.

Array of
message
objects

messages

true if getting the chat log was successful; false if getting the chat log wasn’t
successful.

Booleansuccess

customEvent

The customEvent object contains a single event from the chat log and the following properties:

234

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeProperty

The person who initiated the custom event, either the chat visitor or the agent.Stringsource

The type of custom event that occurred.Stringtype

The data of the custom event that was sent to the chat; corresponds to the data
argument of the liveagent.chasitor.sendCustomEvent() method
used to send this event from the chat window.

Stringdata

The date and time a custom event was received.Date/Timetimestamp

message

The message object contains a single chat message from the chat log and the following properties:

DescriptionTypeProperty

The text content of a message in the chat log.Stringcontent

The name of the user who sent the message in the chat log. This appears exactly as
it is displayed in the chat log.

Stringname

The type of message that was received, such as Agent or Visitor.Stringtype

The date and time the chat message was received.Date/Timetimestamp

getChatRequests()

Returns the chat keys of the chat requests that have been assigned to an agent. Available in API version 29.0 or later.

Syntax

sforce.console.chat.getChatRequests(callback:Function)

Arguments

DescriptionTypeName

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Get Chat Requests

<script type="text/javascript">
function testGetChatRequests() {

sforce.console.chat.getChatRequests(function(result) {

235

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

if (result.success) {
alert('Number of Chat Requests ' + result.chatKey.length);

} else {
alert('getChatRequests has failed');

}
});

}
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

Array of chatKey values, one for each of the current chat requests.ArraychatKey

true if getting chat requests was successful; false if getting chat requests wasn’t
successful.

Booleansuccess

getDetailsByChatKey()

Returns the details of the chat associated with a specific chat key. Available in API version 29.0 or later.

Syntax

sforce.console.chat.getDetailsByChatKey(chatKey:String, callback:Function)

Arguments

DescriptionTypeName

The chatKey associated with the chat for which to retrieve details.StringchatKey

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
Get Chat Details

<script type="text/javascript">

function testGetDetailsByChatKey() {
//Get the value for 'myChatKey' from the

sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only

236

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

var chatKey = 'myChatKey';
sforce.console.chat.getDetailsByChatKey(chatKey, getDetailsSuccess);

}

function getDetailsSuccess(result) {
//Report whether accepting the chat was succesful
if (result.success == true) {

ipAddress = result.details.ipAddress;
alert('The Visitor IP Address for this chat is: ' + ipAddress);

} else {
alert('Getting the details was not successful');

}
};

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The ID of the primary tab associated with the chat.StringprimaryTabId

An object that contains all the details for a chat associated with a particular primary
tab.

Objectdetails

true if retrieving the details was successful; false if retrieving the details wasn’t
successful.

Booleansuccess

details

The details object contains the following properties:

DescriptionTypeProperty

The date and time an agent accepted the chat request.Date/TimeacceptTime

An array of breadcrumb objects representing a list of Web pages visited by
the visitor before and during the chat.

Array of
breadcrumb
objects

breadcrumbs

The chat key associated with the chat.StringchatKey

An array of customDetail objects that represent custom details that have
been passed in to this chat via the Deployment API or Pre-Chat Form API.

Array of
customDetail
objects

customDetails

An object representing the details of a chat visitor’s location, derived from a
geoIP lookup on the chat visitor's IP address.

ObjectgeoLocation

237

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeProperty

The IP address of the chat visitor in dot-decimal format.StringipAddress

Specifies whether a chat has ended (true) or not (false).BooleanisEnded

Specifies whether a chat is currently engaged (true) or not (false).BooleanisEngaged

Specifies whether a chat was routed to an agent through a push-based routing
method such as Least Active or Most Available (true) or not (false).

BooleanisPushRequest

Specifies whether a chat is currently in the process of being transferred to another
agent (true) or not (false).

BooleanisTransferringOut

The 15-digit record ID for the chat button from which the chat request originated.StringliveChatButtonId

The 15-digit record ID for the deployment from which the chat request originated.StringliveChatDeploymentId

The name of the chat visitor.Stringname

The date and time the chat was requested.Date/TimerequestTime

An object containing information about the visitor's web browser.ObjectvisitorInfo

breadcrumb

A breadcrumb represents a Web page viewed by a chat visitor. The breadcrumb object contains the following properties:

DescriptionTypeProperty

The URL of a Web page viewed by a chat visitor.Stringlocation

The date and time a chat visitor visited a specific breadcrumb URL.Date/Timetime

customDetail

Custom details are details have been passed into the chat through the Deployment API or Pre-Chat Form API. The customDetail
object contains the following properties:

DescriptionTypeProperty

The name of the custom detail as specified in the Deployment API or Pre-Chat Form
API.

Stringlabel

The value of the custom detail as specified in the Deployment API or Pre-Chat Form
API.

Stringvalue

The names of fields where the customer’s details on the chat transcript are saved.Array of StringstranscriptFields

An array of pre-created records used for mapping custom detail information.Array of
entityMap
objects

entityMaps

238

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

entityMap

Entities are records that are created when a customer starts a chat with an agent. You can use the API to auto-populate these records
with customer details. The entityMap object contains the following properties:

DescriptionTypeProperty

The record to search for or create.StringentityName

The name of the field associated with the details.StringfieldName

Specifies whether the value can be used to populate the field when an agent creates
or edits a record (true) or not (false) (Live Agent console only).

BooleanisFastFillable

If you’re using the Live Agent console, specifies whether to perform a a SOSL query
(in the Live Agent console) (true) or not (false) to find records with a
fieldName containing the value.

If you’re using the Salesforce console, specifies whether to perform a SOQL query
(in the Salesforce console) (true) or not (false) to find records with a
fieldName containing the value.

BooleanisAutoQueryable

Specifies whether to only search for records that have fields exactly matching the
field fieldName (true) or not (false).

BooleanisExactMatchable

geoLocation

The geoLocation object represents the details of a chat visitor’s location. It contains the following properties:

DescriptionTypeProperty

The name of the chat visitor’s city.Stringcity

The two-digit ISO-3166 country code for the chat visitor's country.StringcountryCode

The name of chat visitor’s country.StringcountryName

The chat visitor's approximate latitude.Stringlatitude

The chat visitor's approximate longitude.Stringlongitude

The organization name of the chat visitor's internet service provider.Stringorganization

The chat visitor’s region, such as state or province.Stringregion

visitorInfo

The visitorInfo object represents information about the visitor's web browser. It contains the following properties:

DescriptionTypeProperty

The name and version of the chat visitor's web browser.StringbrowserName

The language of the chat visitor's web browser.Stringlanguage

239

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeProperty

The original URL of the Web page from which the chat visitor requested a chat.StringoriginalReferrer

The screen resolution of the chat visitor's computer, as passed by the chat visitor’s
browser.

StringscreenResolution

the sessionKey of the visitor which will ultimately be stored on the LiveChatVisitor
record as a unique reference to this live chat visitor

StringsessionKey

getDetailsByPrimaryTabId()

Returns the details of the chat associated with a specific primary tab ID. Available in API version 29.0 or later.

Syntax

sforce.console.chat.getDetailsByPrimaryTabId(primaryTabId:String, callback:Function)

Arguments

DescriptionTypeName

The ID of the primary tab associated with the chat for which to retrieve details.StringprimaryTabId

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
Get Chat Details

<script type="text/javascript">

function testGetDetailsByPrimaryTabId() {
//Get the value for 'myPrimaryTabId'from the getPrimaryTabIds() or

getEnclosingPrimaryTabId() methods.
//These values are for example purposes only
var primaryTabId = 'myPrimaryTabId';

sforce.console.chat.getDetailsByPrimaryTabId(primaryTabId, getDetailsSuccess);

}

function getDetailsSuccess(result) {
//Report whether accepting the chat was succesful
if (result.success == true) {

console.log(result);
chatKey = result.details.chatKey;
alert('The chatKey for this chat is: ' + chatKey);

} else {
alert('Getting the details was not Succesful');

240

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

}
};

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The ID of the primary tab associated with the chat.StringprimaryTabId

An object that contains all the details for a chat associated with a particular primary
tab.

Objectdetails

true if retrieving the details was successful; false if retrieving the details wasn’t
successful.

Booleansuccess

details

The details object contains the following properties:

DescriptionTypeProperty

The date and time an agent accepted the chat request.Date/TimeacceptTime

An array of breadcrumb objects representing a list of Web pages visited by
the visitor before and during the chat.

Array of
breadcrumb
objects

breadcrumbs

The chat key associated with the chat.StringchatKey

An array of customDetail objects that represent custom details that have
been passed in to this chat via the Deployment API or Pre-Chat Form API.

Array of
customDetail
objects

customDetails

An object representing the details of a chat visitor’s location, derived from a
geoIP lookup on the chat visitor's IP address.

ObjectgeoLocation

The IP address of the chat visitor in dot-decimal format.StringipAddress

Specifies whether a chat has ended (true) or not (false).BooleanisEnded

Specifies whether a chat is currently engaged (true) or not (false).BooleanisEngaged

Specifies whether a chat was routed to an agent through a push-based routing
method such as Least Active or Most Available (true) or not (false).

BooleanisPushRequest

Specifies whether a chat is currently in the process of being transferred to another
agent (true) or not (false).

BooleanisTransferringOut

The 15-digit record ID for the chat button from which the chat request originated.StringliveChatButtonId

241

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeProperty

The 15-digit record ID for the deployment from which the chat request originated.StringliveChatDeploymentId

The name of the chat visitor.Stringname

The date and time the chat was requested.Date/TimerequestTime

An object containing information about the visitor's web browser.ObjectvisitorInfo

breadcrumb

A breadcrumb represents a Web page viewed by a chat visitor. The breadcrumb object contains the following properties:

DescriptionTypeProperty

The URL of a Web page viewed by a chat visitor.Stringlocation

The date and time a chat visitor visited a specific breadcrumb URL.Date/Timetime

customDetail

Custom details are details that have been passed into the chat through the Deployment API or Pre-Chat Form API. The customDetail
object contains the following properties:

DescriptionTypeProperty

The name of the custom detail as specified in the Deployment API or Pre-Chat Form
API.

Stringlabel

The value of the custom detail as specified in the Deployment API or Pre-Chat Form
API.

Stringvalue

The names of fields where the customer’s details on the chat transcript are saved.Array of StringstranscriptFields

An array of pre-created records used for mapping the custom detail information.Array of
entityMap
objects

entityMaps

entityMap

Entities are records that are created when a customer starts a chat with an agent. You can use the API to auto-populate these records
with customer details. The entityMap object contains the following properties:

DescriptionTypeProperty

The record to search for or create.StringentityName

The name of the field associated the details.StringfieldName

Specifies whether the value can be used to populate the field when an agent creates
or edits a record (true) or not (false) (Live Agent console only).

BooleanisFastFillable

242

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeProperty

If you’re using the Live Agent console, specifies whether to perform a a SOSL query
(in the Live Agent console) (true) or not (false) to find records with a
fieldName containing the value.

If you’re using the Salesforce console, specifies whether to perform a SOQL query
(in the Salesforce console) (true) or not (false) to find records with a
fieldName containing the value.

BooleanisAutoQueryable

Specifies whether to only search for records that have fields exactly matching the
field fieldName (true) or not (false).

BooleanisExactMatchable

geoLocation

The geoLocation object represents the details of a chat visitor’s location. It contains the following properties:

DescriptionTypeProperty

The name of the chat visitor’s city.Stringcity

The two-digit ISO-3166 country code for the chat visitor's country.StringcountryCode

The name of chat visitor’s country.StringcountryName

The chat visitor's approximate latitude.Stringlatitude

The chat visitor's approximate longitude.Stringlongitude

The organization name of the chat visitor's internet service provider.Stringorganization

The chat visitor’s region, such as state or province.Stringregion

visitorInfo

The visitorInfo object represents information about the visitor's web browser. It contains the following properties:

DescriptionTypeProperty

The name and version of the chat visitor's web browser.StringbrowserName

The language of the chat visitor's web browser.Stringlanguage

The original URL of the Web page from which the chat visitor requested a chat.StringoriginalReferrer

The screen resolution of the chat visitor's computer, as passed by the chat visitor’s
browser.

StringscreenResolution

the sessionKey of the visitor which will ultimately be stored on the LiveChatVisitor
record as a unique reference to this live chat visitor

StringsessionKey

243

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

getEngagedChats()

Returns the chat keys of the chats in which the agent is currently engaged. Available in API version 29.0 or later.

Syntax

sforce.console.chat.getEngagedChats(callback:Function)

Arguments

DescriptionTypeName

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Get Engaged Chats

<script type="text/javascript">
function testGetEngagedChats() {

sforce.console.chat.getEngagedChats(function(result) {
if (result.success) {

alert('Number Engaged Chats: ' + result.chatKey.length);
} else {

alert('getEngagedChats has failed');
}

});
}

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

Array of chatKey values, one for each of the currently engaged chats.arraychatKey

true if getting engaged chats was successful; false if getting engaged chats
wasn’t successful.

booleansuccess

getMaxCapacity()

Returns the maximum chat capacity for the current agent, as specified in the agent's assigned agent configuration. Available in API
version 29.0 or later.

244

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Syntax

sforce.console.chat.getMaxCapacity(callback:Function)

Arguments

DescriptionTypeName

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Get Max Capacity

<script type="text/javascript">
function testGetMaxCapacity() {

sforce.console.chat.getMaxCapacity(function(result) {
if (result.success) {

alert('max capacity '+result.count);
} else {

alert('getMaxCapacity failed, agent my not be online');
}

});
}

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

Agent's current, maximum chat capacity.integercount

true if getting the agent’s capacity was successful; false if getting the agent’s
capacity wasn’t successful.

booleansuccess

initFileTransfer()

Initiates the process of transferring a file from a customer to an agent. Available in API version 31.0 or later.

Syntax

sforce.console.chat.initFileTransfer(chatKey:String, entityId:String,
(optional)callback:Function)

245

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

The chat key for the chat the file is transferred from.StringchatKey

The ID of the transcript object to attach the transferred file to.StringentityId

JavaScript method that is called when the method is completed.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Init file transfer

<script type="text/javascript">
function testInitFileTransfer() {

//Gets the value for 'myChatKey'from the getChatRequests() or onChatRequested()
methods.

//These values are for example purposes only.
var chatKey = 'myChatKey'; var entityId = 'myEntityId';
sforce.console.chat.initFileTransfer(chatKey, entityId, fileSuccess);

}

function fileSuccess(result) {
//Reports whether initiating the file transfer was successful.
if (result.success == true) {

alert('Initiating file transfer was successful.');
} else {

alert('Initiating file transfer was not successful.');
}

};
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if the request to transfer a file was sent successfully; false if the request
wasn’t sent successfully.

Booleansuccess

Note: A value of true doesn’t necessarily mean that the file was successfully
transferred to an agent. Rather, it indicates that the request to begin a file
transfer was sent successfully.

246

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

onAgentSend()

Registers a function to call when an agent sends a chat message through the Salesforce console. This method intercepts the message
and occurs before it is sent to the chat visitor. Available in API version 29.0 or later.

Note: This method is only called when an agent sends a message through the chat window interface. This method doesn’t apply
when a sendMessage() method is called in the API.

Syntax

sforce.console.chat.onAgentSend(chatKey:String, callback:Function)

Arguments

DescriptionTypeName

The chatKey associated with the chat for which to call a function when the agent
sends a message.

StringchatKey

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
var theMessage = result.content;
alert('The agent is attempting to send the following message: ' +

result.content);
sforce.console.chat.sendMessage(chatKey, theMessage)
alert('The following message has been sent: ' + theMessage);

}
//Get the value for 'myChatKey' from the

sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.onAgentSend(chatKey, eventHandler);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The text of the agent’s message.Stringcontent

247

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

The name of the agent who is attempting to send the message as it appears in the
chat log.

Stringname

The type of message that was received—for example, agent.Stringtype

The date and time the agent attempted to send the chat message.Date/Timetimestamp

true if firing event was successful; false if firing event wasn’t successful.Booleansuccess

onAgentStateChanged()

Registers a function to call when agents change their Chat status, such as from Online to Away. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onAgentStateChanged(eventHandler:Function)

Arguments

DescriptionTypeName

JavaScript method called when the agent's Chat status has changed.functioneventHandler

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert("Agent's State has Changed to: " + result.state);

};
sforce.console.chat.onAgentStateChanged(eventHandler);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

String that represents the agent’s current Chat status—for example, Online, Away,
or Offline. When an agent switches from Offline to Away, you may see two returned
values (Online then Away) instead of one (Away).

Stringstate

true if firing event was successful; false if firing event wasn’t successful.Booleansuccess

248

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

onChatCanceled()

Registers a function to call when a chat visitor cancels a chat request. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onChatCanceled(callback:Function)

Arguments

DescriptionTypeName

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>

<script type="text/javascript">
var eventHandler = function (result) {

alert('The chat request has been canceled for this chatKey: ' + result.chatKey);

}
sforce.console.chat.onChatCanceled(eventHandler);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The chat key for the chat request that has been canceled.stringchatKey

onChatCriticalWaitState()

Registers a function to call when a chat becomes critical to answer or a waiting chat is answered. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onChatCanceled(chatKey:String, callback:Function)

249

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

The chatKey associated with the chat for which the critical wait state has changed.StringchatKey

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert('This chat has reached a critical wait');

}
//Get the value for 'myChatKey' from the

sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.onChatCriticalWaitState(chatKey, eventHandler);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

Indicates whether the chat is in critical wait state (true) or not (false).Booleanstate

onChatDeclined()

Registers a function to call when an agent declines a chat request. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onChatDeclined(eventHandler:Function)

Arguments

DescriptionTypeName

JavaScript method called when a chat request is declined.functioneventHandler

250

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert('A chat request with this chatKey has been declined: ' + result.chatKey);

}
sforce.console.chat.onChatDeclined(eventHandler);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The chat key for the chat request that has been declined.StringchatKey

true if firing event was successful; false if firing event wasn’t successful.Booleansuccess

onChatEnded()

Registers a function to call when an engaged chat ends. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onChatEnded(eventHandler:Function)

Arguments

DescriptionTypeName

JavaScript method called when an engaged chat ends.functioneventHandler

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert('A chat with this chatKey has ended: ' + result.chatKey);

}
sforce.console.chat.onChatEnded(eventHandler);

</script>
</apex:page>

251

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The chat key for the engaged chat that has ended.StringchatKey

true if firing event was successful; false if firing event wasn’t successful.Booleansuccess

onChatRequested()

Registers a function to call when an agent receives a chat request. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onChatRequested(eventHandler:Function)

Arguments

DescriptionTypeName

JavaScript method called when a chat request is assigned to an agent.functioneventHandler

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert('There is a new incoming chat request with this chatKey: ' +

result.chatKey);
}
sforce.console.chat.onChatRequested(eventHandler);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The chat key for the incoming chat request.StringchatKey

true if firing event was successful; false if firing event wasn’t successful.Booleansuccess

252

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

onChatStarted()

Registers a function to call when an agent starts a new chat with a customer. Available in API version 29.0 or later.

Usage

Syntax

sforce.console.chat.onChatStarted(eventHandler:Function)

Arguments

DescriptionTypeName

JavaScript method called when a chat request is accepted and becomes an engaged
chat.

functioneventHandler

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert('A new engaged chat has started for this chatKey: ' + result.chatKey);

}
sforce.console.chat.onChatStarted(eventHandler);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The chat key for the chat request that has become an engaged chat.StringchatKey

true if firing event was successful; false if firing event wasn’t successful.Booleansuccess

onChatTransferredOut()

Registers a function to call when an engaged chat is transferred out to another agent. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onChatTransferredOut(eventHandler:Function)

253

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

JavaScript method called when a chat has been successfully transferred out to another
agent.

functioneventHandler

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert('A chat with this chatKey has been transferred out: ' + result.chatKey);

}
sforce.console.chat.onChatTransferredOut(eventHandler);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The chat key for the chat that has been transferred.StringchatKey

true if firing event was successful; false if firing event wasn’t successful.Booleansuccess

onCurrentCapacityChanged()

Registers a function to call when an agent's capacity for accepting chats changes—for example, if an agent accepts a new chat, ends a
currently engaged chat, or otherwise changes the number of chats to which they are assigned, or if a chat request is pushed to their
chat queue. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onCurrentCapacityChanged(eventHandler:Function)

Arguments

DescriptionTypeName

JavaScript method called when the agent's capacity for accepting chats has changed.functioneventHandler

254

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert('Capacity Changed. Current Requests + Engaged Chats is now: ' +

result.count);
}
sforce.console.chat.onCurrentCapacityChanged(eventHandler);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The number of chats in which the agent is currently engaged plus the number of
chat requests currently assigned to the agent.

integercount

true if firing event was successful; false if firing event wasn’t successful.Booleansuccess

onCustomEvent()

Registers a function to call when a custom event takes place during a chat. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onCustomEvent(chatKey:String, type:String, callback:Function)

Arguments

DescriptionTypeName

The chatKey associated with the chat for which to call a function when a custom
event takes place.

StringchatKey

The name of the custom event you want to listen for. This should match the name
of the custom event sent from the chat window.

Stringtype

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

255

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

var eventHandler = function (result) {
alert('A new custom event has been received of type ' + result.type + ' and

with data: ' + result.data);
}
//Get the value for 'myChatKey' from the

sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
var type = 'myCustomEventType';
sforce.console.chat.onCustomEvent(chatKey, type, eventHandler);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The type of the custom event that was sent to this chat; corresponds to the type
argument of the liveagent.chasitor.sendCustomEvent() method
used to send this event from the chat window.

Stringtype

The data of the custom event that was sent to this chat; corresponds to the data
argument of the liveagent.chasitor.sendCustomEvent() method
used to send this event from the chat window.

Stringdata

The source of the custom event that was sent to this chat; corresponds to either the
agent or the chat visitor, depending on who triggered the custom event.

Stringsource

The time and date the event was received.Date/Timetimestamp

true if firing event was successful; false if firing event wasn’t successful.Booleansuccess

onFileTransferCompleted()

Registers a function to call when a file is transferred from a customer to an agent. Available in API version 31.0 or later.

Syntax

sforce.console.chat.onFileTransferCompleted(chatKey:String, callback:Function)

Arguments

DescriptionTypeName

The chat key for the chat the file was transferred from.StringchatKey

JavaScript method that is called when the method is complete.functioncallback

256

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
test on file transfer

complete

<script type="text/javascript">
function testOnFileComplete() {

//Gets the value for 'myChatKey'from the getChatRequests() or onChatRequested()
methods.

//These values are for example purposes only.
var chatKey = 'myChatKey';
sforce.console.chat.onFileTransferCompleted(chatKey, fileSuccess);

}

function fileSuccess(result) {
//Reports status of the file transfer.
if (result.success == true) {

alert('File transfer was successful.');
} else {

alert('File transfer was not successful.');
}

};
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The ID of the object created for the transferred file.StringattachmentId

true if firing event was successful; false if firing event was unsuccessful.Booleansuccess

onNewMessage()

Registers a function to call when a new message is sent from a customer, agent, or supervisor. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onNewMessage(chatKey:String, callback:Function)

257

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

The chatKey associated with the chat for which to call a function when a new
customer message is received.

stringchatKey

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert('There is a new message in this chat: ' + result.content);

}
//Get the value for 'myChatKey'from the

sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.onNewMessage(chatKey, eventHandler);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

The text of a message in the chat log.Stringcontent

The name of the user who sent the message. This appears exactly as it is displayed
in the chat log.

Stringname

The type of message that was received, such as an Agent or Visitor message.Stringtype

The date and time the message was received.Date/Timetimestamp

true if firing event was successful; false if firing event wasn’t successful.Booleansuccess

onTypingUpdate()

Registers a function to call when the customer’s text in the chat window changes. If Sneak Peek is enabled, this function is called whenever
the customer edits the text in the chat window. If Sneak Peek is not enabled, this function is called whenever a customer starts or stops
typing in the chat window. Available in API version 29.0 or later.

258

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Syntax

sforce.console.chat.onTypingUpdate(chatKey:String, callback:Function)

Arguments

DescriptionTypeName

The chatKey associated with the chat for which to call a function when a customer
begins typing a new message to the agent.

StringchatKey

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert('There is a new typing update in this chat');

}
//Get the value for 'myChatKey'from the

sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.onTypingUpdate(chatKey, eventHandler);

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

Indicates whether a chat visitor is typing (true) or not (false).BooleanisTyping

The text the chat visitor is currently typing into their input box in the chat window.
This is visible only if Sneak Peek is enabled for the agent.

StringsneakPeek

true if firing event was successful; false if firing event wasn’t successful.Booleansuccess

sendCustomEvent()

Sends a custom event to the client-side chat window for a chat with a specific chat key. Available in API version 29.0 or later.

259

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Syntax

sforce.console.chat.sendCustomEvent(chatKey:String, type:String, data:String,
callback:Function)

Arguments

DescriptionTypeName

The chatKey associated with the chat to which to send a custom event.StringchatKey

The name of the custom event you want to send to the chat window.Stringtype

Additional data you want to send to the chat window along with the custom event.Stringdata

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
Send Custom Event

<script type="text/javascript">

function testSendCustomEvent() {
//Get the value for 'myChatKey'from the

sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
var type = 'myCustomEventType'
var data = 'myCustomEventData'

sforce.console.chat.sendCustomEvent(chatKey, type, data, sendCustomEventSuccess);

}

function sendCustomEventSuccess(result) {
//Report whether sending the custom event was successful
if (result.success == true) {

alert('The customEvent has been sent');
} else {

alert('Sending the customEvent was not successful');
}

};

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

260

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

true if sending the custom event was successful; false if sending the custom
event wasn’t successful.

Booleansuccess

sendMessage()

Sends a new chat message from the agent to a chat with a specific chat key. Available in API version 29.0 or later.

Syntax

sforce.console.chat.sendMessage(chatKey:String, message:String, callback:Function)

Arguments

DescriptionTypeName

The chatKey of the chat where the agent’s message is sent.StringchatKey

The message you would like to send from the agent to the customer in a chat.Stringmessage

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
Send Message

<script type="text/javascript">

function testSendMessage() {
//Get the value for 'myChatKey'from the

sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
var text ='This is sample text to send as a message';
sforce.console.chat.sendMessage(chatKey, text, sendMessageSuccess);

}

function sendMessageSuccess(result) {
//Report whether getting the chat log was successful
if (result.success == true) {

alert('Message Sent');
} else {

alert('Sending the message was not successful');
}

};

261

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if sending the message was successful; false if sending the message wasn’t
successful.

Booleansuccess

setAgentInput()

Sets the string of text in the agent’s text input area in the chat log of a chat with a specific chat key.Available in API version 29.0 or later.

Syntax

sforce.console.chat.setAgentInput(chatKey:String, text:String, callback:Function)

Arguments

DescriptionTypeName

The chatKey associated with the chat for which to set the agent’s input text.StringchatKey

The string of text which you want to set into an agent's input.Stringtext

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
Set Agent Input

<script type="text/javascript">

function testSetAgentInput() {
//Get the value for 'myChatKey'from the

sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
var text = 'This is example text to set the agent input'
sforce.console.chat.setAgentInput(chatKey, text, setAgentInputSuccess);

}

function setAgentInputSuccess(result) {
//Report whether setting the agent's input was succesful

262

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

if (result.success == true) {
alert('The text in the agent input has been updated');

} else {
alert('Setting the agent input was not Succesful');

}
};

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if setting the agent’s input was successful; false if setting the agent’s input
wasn’t successful.

Booleansuccess

setAgentState()

Sets an agent's Chat status, such as Online, Away, or Offline. Available in API version 29.0 or later.

Syntax

sforce.console.chat.setAgentState(state:String, (optional)callback:Function)

Arguments

DescriptionTypeName

Chat status you want to set the agent to—for example, Online, Away, or Offline.Stringstate

JavaScript method called upon completion of the method.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Set Agent Status to

Online
<script type="text/javascript">

function testSetAgentState(state) {
sforce.console.chat.setAgentState(state, function(result) {

if (result.success) {
alert('Agent State Set to Online');

} else {

263

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

alert('setAgentState has failed');
}

});
}

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if setting the agent’s Chat status was successful; false if setting the agent’s
Chat status wasn’t successful.

Booleansuccess

Methods for Chat Visitors
There are a few methods available that you can use to customize the visitor experience for Chat in a custom Visualforce chat window.
These methods apply to Salesforce Classic only.

IN THIS SECTION:

chasitor.addCustomEventListener()

Registers a function to call when a custom event is received in the chat window. Available in API version 29.0 or later.

chasitor.getCustomEvents()

Retrieves a list of custom events that have been received in this chat window during this chat session. Available in API version 29.0
or later.

chasitor.sendCustomEvent()

Sends a custom event to the agent console of the agent who is currently chatting with a customer. Available in API version 29.0 or
later.

chasitor.addCustomEventListener()

Registers a function to call when a custom event is received in the chat window. Available in API version 29.0 or later.

Syntax

liveagent.chasitor.addCustomEventListener(type:String, callback:Function)

Arguments

DescriptionTypeName

The type of custom event you want to listen for.stringtype

JavaScript method called upon completion of the method.functioncallback

264

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<script type="text/javascript">
function testAddCustomEventListener() {

//These values are for example purposes only
var type = 'myCustomEventType'
liveagent.chasitor.addCustomEventListener(type, customEventReceived)

}

function customEventReceived(result) {
eventType = result.getType();
eventData = result.getData();
alert('A custom event of type: ' + eventType + ' has been received with the

following data: ' + eventData);
};

testAddCustomEventListener();
</script>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
methods:

DescriptionTypeName

Accesses the type of the custom event that was sent to this chat window. Returns
the type argument of the

methodgetType

sforce.console.chat.sendCustomEvent() method used to send
this event.

Accesses the data of the custom event that was sent to this chat window. Returns
the data argument of the

methodgetData

sforce.console.chat.sendCustomEvent() method used to send
this event.

Accesses the source of the custom event that was sent to this chat window—for
example, agent or chat visitor.

methodgetSource

Accesses the date of the custom event that was sent to this chat window. Returns
the date and time the event was received.

methodgetDate

chasitor.getCustomEvents()

Retrieves a list of custom events that have been received in this chat window during this chat session. Available in API version 29.0 or
later.

Syntax

liveagent.chasitor.getCustomEvents()

265

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

Get Custom Events

<script type="text/javascript">
function testGetCustomEvents() {

events = liveagent.chasitor.getCustomEvents();
eventsCount = events.length;
alert('The following number of custom events have occurred: ' + eventsCount);

};
</script>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
methods and properties:

DescriptionTypeName

An array of event objects. Each object represents a custom event that has occurred
in this chat. Data on each message object can be accessed by the following methods:

Array of event
objects

events

• getType()

• getData()

• getSource()

• getDate()

Accesses the type of the custom event that was sent to this chat window. Returns
the type argument of the

methodgetType

sforce.console.chat.sendCustomEvent() method used to send
this event.

Accesses the data of the custom event that was sent to this chat window. Returns
the data argument of the

methodgetData

sforce.console.chat.sendCustomEvent() method used to send
this event.

Accesses the source of the custom event that was sent to this chat window—for
example, agent or chat visitor.

methodgetSource

Accesses the date of the custom event that was sent to this chat window. Returns
the date and time the event was received.

methodgetDate

chasitor.sendCustomEvent()

Sends a custom event to the agent console of the agent who is currently chatting with a customer. Available in API version 29.0 or later.

Syntax

liveagent.chasitor.sendCustomEvent(type:String, data:String)

266

Methods for ChatSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

The name of the custom event to send to the agent console.stringtype

Additional data you want to send to the agent console along with the custom event.stringdata

Sample Code–Visualforce

Send Custom Event

<script type="text/javascript">
function testSendCustomEvent() {

type = 'myCustomEventType';
data = 'myCustomEventData';
liveagent.chasitor.sendCustomEvent(type, data);
alert('The custom event has been sent');

};
</script>

Response

This method returns no responses.

Methods for Omni-Channel
Omni-Channel is a comprehensive customer service solution that lets your call center route any type of incoming work item—including
cases, chats, phone calls, or leads—to the most qualified, available agents in your organization. Omni-Channel provides a customizable
customer service solution that integrates seamlessly into the Salesforce console and benefits your customers and support agents.

For more information on Omni-Channel, see Set Up Omni-Channel.

IN THIS SECTION:

acceptAgentWork

Accepts a work item that’s assigned to an agent. Available in API versions 32.0 and later.

closeAgentWork

Changes the status of a work item to “Closed” and removes it from the list of work items in the Omni-Channel widget. Available in
API versions 32.0 and later.

declineAgentWork

Declines a work item that’s assigned to an agent. Available in API versions 32.0 and later.

getAgentWorks

Returns a list of work items that are currently assigned to an agent and open in the agent’s workspace. Available in API versions 32.0
and later.

getAgentWorkload

In API version 35.0 and later, we can retrieve an agent’s currently assigned workload. Use this method for rerouting work to available
agents.

267

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

getServicePresenceStatusChannels

Retrieves the service channels that are associated with an Omni-Channel user’s current presence status. Available in API versions
32.0 and later.

getServicePresenceStatusId

Retrieves an agent’s current presence status. Available in API versions 32.0 and later.

login

Logs an agent into Omni-Channel with a specific presence status. You also can use this method to reconnect to Omni-Channel after
a connection error. Available in API versions 32.0 and later.

logout

Logs an agent out of Omni-Channel. Available in API versions 32.0 and later.

setServicePresenceStatus

Sets an agent's presence status to a status with a particular ID. In API version 35.0 and later, we log the user into presence if that user
is not already logged in, so you don’t have to make additional calls. You also can use this method to reconnect to Omni-Channel
after a connection error.

Methods for Omni-Channel Console Events

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. In addition to the
standard methods for console events, there are a few events that are specific to Omni-Channel. These events apply to Salesforce
Classic only.

acceptAgentWork

Accepts a work item that’s assigned to an agent. Available in API versions 32.0 and later.

Syntax

sforce.console.presence.acceptAgentWork(workId:String, (optional) callback:function)

Arguments

DescriptionTypeName

The ID of the work item the agent accepts.StringworkId

JavaScript method to call when an agent accepts the work item associated with the
workId.

functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Accept Assigned Work Item

<script type="text/javascript">
function testAcceptWork() {

//First get the ID of the assigned work item to accept it
sforce.console.presence.getAgentWorks(function(result) {

268

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

if (result.success) {
var works = JSON.parse(result.works);
var work = works[0];
if (!work.isEngaged) {

//Now that we have the assigned work item ID, we can accept it
sforce.console.presence.acceptAgentWork(work.workId,

function(result) {
if (result.success) {

alert('Accepted work successfully');
} else {

alert('Accept work failed');
}

});
} else {

alert('The work item has already been accepted');
}

}
});

}
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if accepting the work item was successful; false if accepting the work
item wasn’t successful.

Booleansuccess

closeAgentWork

Changes the status of a work item to “Closed” and removes it from the list of work items in the Omni-Channel widget. Available in API
versions 32.0 and later.

Syntax

sforce.console.presence.closeAgentWork(workId:String, (optional) callback:function)

Arguments

DescriptionTypeName

The ID of the work item that’s closed.StringworkId

JavaScript method to call when the work item associated with the workId is
closed.

functioncallback

269

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Close Engaged Work Item
<script type="text/javascript">

function testCloseWork() {
//First get the ID of the engaged work item to close it
sforce.console.presence.getAgentWorks(function(result) {

if (result.success) {
var works = JSON.parse(result.works);
var work = works[0];
if (work.isEngaged) {

//Now that we have the engaged work item ID, we can close it
sforce.console.presence.closeAgentWork(work.workId,function(result)

{
if (result.success) {

alert('Closed work successfully');
} else {

alert('Close work failed');
}

});
} else {

alert('The work item should be accepted first');
}

}
});

}
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if closing the work item was successful; false if closing the work item
wasn’t successful.

Booleansuccess

declineAgentWork

Declines a work item that’s assigned to an agent. Available in API versions 32.0 and later.

Syntax

sforce.console.presence.declineAgentWork(workId:String, (optional) declineReason:String,
(optional) callback:function)

270

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

The ID of the work item that the agent declines.StringworkId

The provided reason for why the agent declined the work request.StringdeclineReason

JavaScript method to call when an agent declines the work item associated with the
workId.

functioncallback

Sample Code–Visualforce

<apex:page >
<apex:includeScript value="/support/console/57.0/integration.js"/>
Decline Assigned Work Item

<script type="text/javascript">
function testDeclineWork() {

//First, get the ID of the assigned work item to accept it
sforce.console.presence.getAgentWorks(function(result) {

if (result.success) {
var works = JSON.parse(result.works);
var work = works[0];

sforce.console.presence.declineAgentWork(work.workId, function(result)
{

if (result.success) {
alert('Declined work successfully');

} else {
alert('Decline work failed');

}
});

}
});

}
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if declining the work item was successful; false if declining the work item
wasn’t successful.

Booleansuccess

271

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

getAgentWorks

Returns a list of work items that are currently assigned to an agent and open in the agent’s workspace. Available in API versions 32.0 and
later.

Syntax

sforce.console.presence.getAgentWorks(callback:function)

Arguments

DescriptionTypeName

JavaScript method to call when the list of an agent’s work items is retrieved.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Get Agent’s Current Work Items

<script type="text/javascript">
function testGetWorks() {

//These values are for example purposes only.
sforce.console.presence.getAgentWorks(function(result) {

if (result.success) {
alert('Get work items successful');
var works = JSON.parse(result.works);
alert('First Agent Work ID is: ' + works[0].workId);
alert('Assigned Entity Id of the first Agent Work is: ' +

works[0].workItemId);
alert('Is first Agent Work Engaged: ' + works[0].isEngaged);

} else {
alert('Get work items failed');

}
});

}
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if retrieving the agent’s work items was successful; false if retrieving the
agent’s work items wasn’t successful.

Booleansuccess

272

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

A JSON string of work objects that represents the work items assigned to the agent
that are open in the agent’s workspace.

JSON string of
work objects

works

work

The work object contains the following properties:

DescriptionTypeName

The ID of the object that’s routed through Omni-Channel. This object becomes a
work assignment with a workId when it’s assigned to an agent.

StringworkItemId

The ID of a work assignment that’s routed to an agent.StringworkId

Indicates whether an agent is working on a work item that’s been assigned to them
(true) or not (false).

BooleanisEngaged

getAgentWorkload

In API version 35.0 and later, we can retrieve an agent’s currently assigned workload. Use this method for rerouting work to available
agents.

Syntax

sforce.console.presence.getAgentWorkload(callback:function)

Arguments

DescriptionTypeName

JavaScript method to call when the agent’s configured capacity and work retrieved.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>

Get Agent’s configured capacity and current workload

<script type="text/javascript">
function testGetAgentWorkload() {

sforce.console.presence.getAgentWorkload(function(result) {
if (result.success) {

alert('Retrieved Agent Configured Capacity and Current Workload
successfully');

alert('Agent\'s configured capacity is: ' + result.configuredCapacity);

273

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

alert('Agent\'s currently assigned workload is: ' +
result.currentWorkload);

} else {
alert('Get Agent Workload failed');

}
});

}
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if retrieving the agent’s work items was successful; false if retrieving the
agent’s work items wasn’t successful.

Booleansuccess

Indicates the agent’s configured capacity (work that’s assigned to the current user)
through Presence Configuration.

NumberconfiguredCapacity

Indicates the agent’s currently assigned workload.NumbercurrentWorkload

getServicePresenceStatusChannels

Retrieves the service channels that are associated with an Omni-Channel user’s current presence status. Available in API versions 32.0
and later.

Syntax

sforce.console.presence.getServicePresenceStatusChannels(callback:function)

Arguments

DescriptionTypeName

JavaScript method to call when the channels associated with a presence status are
retrieved.

functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>

Get Channels Associated with a Presence Status

274

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

<script type="text/javascript">
function testGetChannels() {

//These values are for example purposes only.
sforce.console.presence.getServicePresenceStatusChannels(function(result) {

if (result.success) {
alert('Retrieved Service Presence Status Channels successfully');
var channels = JSON.parse(result.channels);
//For example purposes, just retrieve the first channel
alert('First channel ID is: ' + channels[0].channelId);

alert('First channel developer name is: ' + channels[0].developerName);

} else {
alert('Get Service Presence Status Channels failed');

}
});

}
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if retrieving the current presence status channels was successful; false if
the retrieving the current presence status channels wasn’t successful.

Booleansuccess

Returns the IDs and API names of the channels associated with the presence status.JSON string of
channel
objects

channels

getServicePresenceStatusId

Retrieves an agent’s current presence status. Available in API versions 32.0 and later.

Syntax

sforce.console.presence.getServicePresenceStatusId(callback:function)

Arguments

DescriptionTypeName

JavaScript method to call when the agent’s presence status is retrieved.functioncallback

275

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Get Omni-Channel Status ID

<script type="text/javascript">
function testGetStatusId() {

sforce.console.presence.getServicePresenceStatusId(function(result) {
if (result.success) {

alert('Get Status Id successful');
alert('Status Id is: ' + result.statusId);

} else {
alert('Get Status Id failed');

}
});

}
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if retrieving the presence status ID was successful; false if the retrieving
the presence status ID wasn’t successful.

Booleansuccess

The name of the agent’s current presence status.StringstatusName

The API name of the agent’s current presence status.StringstatusApiName

The ID of the agent’s current presence status.StringstatusId

login

Logs an agent into Omni-Channel with a specific presence status. You also can use this method to reconnect to Omni-Channel after a
connection error. Available in API versions 32.0 and later.

Syntax

sforce.console.presence.login(statusId:String, (optional) callback:function)

Arguments

DescriptionTypeName

The ID of the presence status. Agents must be given access to this presence status
through their associated profile or permission set.

StringstatusId

276

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

JavaScript method to call when the agent is logged in with the presence status
associated with statusId.

functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Log In to

Omni-Channel

<script type="text/javascript">
function testLogin(statusId) {

//Gets the Salesforce ID of the presence status entity which the current user
has been assigned through their permission set or profile.

//These values are for example purposes only.
sforce.console.presence.login(statusId, function(result) {

if (result.success) {
alert('Login successful');

} else {
alert('Login failed');

}
});

}
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if the login was successful; false if the login wasn’t successful.Booleansuccess

logout

Logs an agent out of Omni-Channel. Available in API versions 32.0 and later.

Syntax

sforce.console.presence.logout((optional) callback:function)

277

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

JavaScript method to call when the agent is logged out of Omni-Channel.functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Log out of Omni-Channel

<script type="text/javascript">
function testLogout() {

sforce.console.presence.logout(function(result) {
if (result.success) {

alert('Logout successfully');
} else {

alert('Logout failed');
}

});
}

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if the logout was successful; false if the logout wasn’t successful.Booleansuccess

setServicePresenceStatus

Sets an agent's presence status to a status with a particular ID. In API version 35.0 and later, we log the user into presence if that user is
not already logged in, so you don’t have to make additional calls. You also can use this method to reconnect to Omni-Channel after a
connection error.

Syntax

sforce.console.presence.setServicePresenceStatus(statusId:String,
(optional) callback:function)

278

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

Arguments

DescriptionTypeName

The ID of the presence status you want to set the agent to. Agents must be given
access to this presence status through their associated profile or permission set.

StringstatusId

JavaScript method to call when the agent’s status is changed to the presence status
associated with statusId.

functioncallback

Sample Code–Visualforce

<apex:page>
<apex:includeScript value="/support/console/57.0/integration.js"/>
Set Presence

Status

<script type="text/javascript">
function testSetStatus(statusId) {

//Sets the user’s presence status to statusID. Assumes that the user was
assigned this presence status through Setup.

//These values are for example purposes only
sforce.console.presence.setServicePresenceStatus(statusId, function(result) {

if (result.success) {
alert('Set status successful');
alert('Current statusId is: ' + result.statusId);
alert('Channel list attached to this status is: ' + result.channels);

//printout in console for lists
} else {

alert('Set status failed');
}

});
}

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

DescriptionTypeName

true if setting the agent’s status was successful; false if setting the agent’s
status wasn’t successful.

Booleansuccess

The name of the agent’s current presence status.StringstatusName

The API name of the agent’s current presence status.StringstatusApiName

The ID of the agent’s current presence status.StringstatusId

279

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

DescriptionTypeName

Returns the IDs and API names of the channels associated with the presence status.JSON string of
channel
objects

channels

Methods for Omni-Channel Console Events
JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. In addition to the standard
methods for console events, there are a few events that are specific to Omni-Channel. These events apply to Salesforce Classic only.

Omni-Channel Console Events

PayloadDescriptionEvent

Fired when an Set Up
Omni-Channel user logs

sforce.console.ConsoleEvent.
PRESENCE.LOGIN_SUCCESS

• statusId—the ID of the agent’s current presence status.

into Set Up Omni-Channel
successfully.

Available in API version
32.0 or later.

Fired when a user changes
his or her presence status.

Available in API version
32.0 or later.

sforce.console.ConsoleEvent.
PRESENCE.STATUS_CHANGED

• statusId—the ID of the agent’s current presence status.

• channels—channelJSON string of channel objects.

• statusName—the name of the agent’s current presence
status.

• statusApiName—the API name of the agent’s current
presence status.

NoneFired when a user logs out
of Salesforce.

Available in API version
32.0 or later.

sforce.console.ConsoleEvent.
PRESENCE.LOGOUT

Fired when a user is
assigned a new work item.

Available in API version
32.0 or later.

sforce.console.ConsoleEvent.
PRESENCE.WORK_ASSIGNED

• workItemId—the ID of the object that’s routed through
Set Up Omni-Channel. This object becomes a work
assignment with a workId when it’s assigned to an agent.

• workId—the ID of a work assignment that’s routed to an
agent.

Fired when a user accepts
a work assignment, or

sforce.console.ConsoleEvent.
PRESENCE.WORK_ACCEPTED

• workItemId—the ID of the object that’s routed through
Set Up Omni-Channel. This object becomes a work
assignment with a workId when it’s assigned to an agent.when a work assignment

is automatically accepted.

Available in API version
32.0 or later.

• workId—the ID of a work assignment that’s routed to an
agent.

280

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

PayloadDescriptionEvent

Fired when a user declines
a work assignment.

Available in API version
32.0 or later.

sforce.console.ConsoleEvent.
PRESENCE.WORK_DECLINED

• workItemId—the ID of the object that’s routed through
Set Up Omni-Channel. This object becomes a work
assignment with a workId when it’s assigned to an agent.

• workId—the ID of a work assignment that’s routed to an
agent.

Fired when the status of
an AgentWork object is
changed to Closed.

Available in API version
32.0 or later.

sforce.console.ConsoleEvent.
PRESENCE.WORK_CLOSED

• workItemId—the ID of the object that’s routed through
Set Up Omni-Channel. This object becomes a work
assignment with a workId when it’s assigned to an agent.

• workId—the ID of a work assignment that’s routed to an
agent.

Fired when an agent’s
workload changes. This

sforce.console.ConsoleEvent.
PRESENCE.WORKLOAD_CHANGED

• ConfiguredCapacity—the configured capacity for
the agent.

includes receiving new
• PreviousWorkload—the agent’s workload before the

change.
work items, declining work
items, and closing items in

• NewWorkload—the agent’s new workload after the
change.

the console. It’s also fired
when there’s a change to
an agent’s capacity or
Presence Configuration or
when the agent goes
offline in the Set Up
Omni-Channel widget.

channel

The channel object contains the following functions:

DescriptionTypeName

Retrieves the ID of a service channel that’s associated with a presence status.StringchannelId

Retrieves the developer name of the the service channel that’s associated with the
channelId.

StringdeveloperName

281

Methods for Omni-ChannelSalesforce Console Integration Toolkit for Salesforce Classic

CHAPTER 4 Other Resources

In addition to this guide, there are other resources available for you as you learn how to use the console APIs.

IN THIS SECTION:

Console API Typographical Conventions

Typographical conventions are used in our code examples. Learn what Courier font, italics, and brackets mean.

SEE ALSO:

Salesforce Help: Salesforce Console

Salesforce Help: Glossary

Salesforce Developers: Getting Started with Salesforce Platform

Salesforce University: Training

Firebug Extension for Firefox

Salesforce Extensions for Visual Studio Code

Console API Typographical Conventions

Typographical conventions are used in our code examples. Learn what Courier font, italics, and brackets mean.

DescriptionConvention

In descriptions of syntax, monospace font indicates items that you should type as shown,
except for brackets. For example:

Public class HelloWorld

Courier font

In descriptions of syntax, italics represent variables. You supply the actual value. In the following
example, three values need to be supplied: datatype variable_name [= value];

If the syntax is bold and italic, the text represents a code element that needs a value supplied
by you, such as a class name or variable value:

public static class YourClassHere { ... }

Italics

In code samples and syntax descriptions, bold courier font emphasizes a portion of the code
or syntax.

Bold Courier font

282

https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_about.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=glossary.htm&language=en_US
https://developer.salesforce.com/gettingstarted
https://trailhead.salesforce.com/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://developer.salesforce.com/page/Tools

DescriptionConvention

In descriptions of syntax, less-than and greater-than symbols (< >) are typed exactly as shown.

<apex:pageBlockTable value="{!account.Contacts}" var="contact">

< >

<apex:column value="{!contact.Name}"/>
<apex:column value="{!contact.MailingCity}"/>
<apex:column value="{!contact.Phone}"/>

</apex:pageBlockTable>

In descriptions of syntax, braces ({ }) are typed exactly as shown.

<apex:page>
Hello {!$User.FirstName}!

</apex:page>

{ }

In descriptions of syntax, anything included in brackets is optional. In the following example,
specifying value is optional:

data_type variable_name [= value];

[]

In descriptions of syntax, the pipe sign means “or”. You can do one of the following (not all).
In the following example, you can create a new unpopulated set in one of two ways, or you
can populate the set:

Set<data_type> set_name
[= new Set<data_type>();] |

|

[= new Set<data_type{value [, value2. . .] };] |
;

283

Console API Typographical ConventionsOther Resources

INDEX

C
Chat 76

M
Methods

Chat 76

284

	Salesforce Console Developer Guide
	Get to Know Lightning Console
	Get to Know the Utility Bar

	Lightning Console API
	How are the Classic and Lightning Console APIs Different?
	Console API Method Parity
	Salesforce Classic Methods Supported in Lightning Experience

	Lightning Console JavaScript API
	Lightning Console JavaScript API Syntax
	JavaScript Promises
	Error Handling with Promises

	Using Background Utility Items
	Using Pop-Out Utilities
	Supported APIs

	Using Events with the Lightning Console JavaScript API
	Using Page Context in the Utility Bar API
	Using Page References to Open Console Workspace Tabs and Subtabs
	Debugging
	Methods for Lightning Console JavaScript API
	Methods for Navigation Items
	focusNavigationItem()
	getNavigationItems()
	getSelectedNavigationItem()
	refreshNavigationItem()
	setSelectedNavigationItem()

	Methods for Workspace Tabs and Subtabs
	addToBrowserTitleQueue()
	closeTab()
	disableTabClose()
	focusTab()
	generateConsoleUrl()
	getAllTabInfo()
	getEnclosingTabId()
	getFocusedTabInfo()
	getTabInfo()
	getTabURL()
	isConsoleNavigation()
	isSubtab()
	openConsoleUrl()
	openSubtab()
	openTab()
	refreshTab()
	removeFromBrowserTitleQueue()
	setTabHighlighted()
	setTabIcon()
	setTabLabel()

	Methods for the Utility Bar
	disableUtilityPopOut()
	getAllUtilityInfo()
	getEnclosingUtilityId()
	getUtilityInfo()
	isUtilityPoppedOut()
	minimizeUtility()
	onUtilityClick()
	openUtility()
	setPanelHeaderIcon()
	setPanelHeaderLabel()
	setPanelHeight()
	setPanelWidth()
	setUtilityHighlighted()
	setUtilityIcon()
	setUtilityLabel()
	toggleModalMode()

	Methods for Chat
	endChat()
	getChatLog()
	sendCustomEvent()
	sendMessage()

	Methods for Omni-Channel
	acceptAgentWork()
	closeAgentWork()
	declineAgentWork()
	getAgentWorkload()
	getAgentWorks()
	getServicePresenceStatusChannels()
	getServicePresenceStatusId()
	login()
	logout()
	lowerAgentWorkFlag()
	raiseAgentWorkFlag()
	setServicePresenceStatus()

	Events for Lightning Console JavaScript API
	lightning:tabClosed
	lightning:tabCreated
	lightning:tabFocused
	lightning:tabRefreshed
	lightning:tabReplaced
	lightning:tabUpdated
	Events for Chat
	lightning:conversationAgentSend
	lightning:conversationChatEnded
	lightning:conversationCustomEvent
	lightning:conversationNewMessage

	Events for Messaging
	lightning:conversationAgentSend
	lightning:conversationNewMessage

	Events for Omni-Channel
	lightning:omniChannel﻿ConnectionError
	lightning:omniChannelLoginSuccess
	lightning:omniChannelStatusChanged
	lightning:omniChannelLogout
	lightning:omniChannelWorkAssigned
	lightning:omniChannelWorkAccepted
	lightning:omniChannelWorkDeclined
	lightning:omniChannelWorkClosed
	lightning:omniChannelWorkFlagUpdated
	lightning:omniChannelWorkloadChanged

	Salesforce Classic API
	When to Use the Salesforce Console Integration Toolkit
	Salesforce Console Integration Toolkit Support Policy
	Backward Compatibility
	End-of-Life

	Sample Visualforce Page Using the Salesforce Console Integration Toolkit
	Working with the Salesforce Console Integration Toolkit
	Connecting to the Toolkit
	Asynchronous Calls with the Salesforce Console Integration Toolkit
	Working with Lightning Platform Canvas
	Best Practices

	Methods for Salesforce Classic
	Methods for Primary Tabs and Subtabs
	closeTab()
	disableTabClose()
	focusPrimaryTabById()
	focusPrimaryTabByName()
	focusSidebarComponent()
	focusSubtabById()
	focusSubtabByNameAndPrimaryTabId()
	focusSubtabByNameAndPrimaryTabName()
	generateConsoleUrl()
	getEnclosingPrimaryTabId()
	getEnclosingPrimaryTabObjectId()
	getEnclosingTabId()
	getFocusedPrimaryTabId()
	getFocusedPrimaryTabObjectId()
	getFocusedSubtabId()
	getFocusedSubtabObjectId()
	getPageInfo()
	getPrimaryTabIds()
	getSubtabIds()
	getTabLink()
	isInConsole()
	onEnclosingTabRefresh()
	onFocusedPrimaryTab()
	onFocusedSubtab()
	onTabSave()
	openConsoleUrl()
	openPrimaryTab()
	openSubtab()
	openSubtabByPrimaryTabName()
	refreshPrimaryTabById()
	refreshPrimaryTabByName()
	refreshSubtabById()
	refreshSubtabByNameAndPrimaryTabId()
	refreshSubtabByNameAndPrimaryTabName()
	reopenLastClosedTab()
	resetSessionTimeOut()
	setTabUnsavedChanges()
	setTabIcon()
	setTabLink()
	setTabStyle()
	setTabTextStyle()
	setTabTitle()

	Methods for Navigation Tabs
	focusNavigationTab()
	getNavigationTabs()
	getSelectedNavigationTab()
	refreshNavigationTab()
	setSelectedNavigationTab()

	Methods for Computer-Telephony Integration (CTI)
	fireOnCallBegin()
	fireOnCallEnd()
	fireOnCallLogSaved()
	getCallAttachedData()
	getCallObjectIds()
	onCallBegin()
	onCallEnd()
	onCallLogSaved()
	onSendCTIMessage()
	sendCTIMessage()
	setCallAttachedData()
	setCallObjectIds()

	Methods for Application-Level Custom Console Components
	addToBrowserTitleQueue()
	blinkCustomConsoleComponentButtonText()
	isCustomConsoleComponentPoppedOut()
	isCustomConsoleComponentWindowHidden()
	isCustomConsoleComponentHidden()
	isInCustomConsoleComponent()
	onCustomConsoleComponentButtonClicked()
	removeFromBrowserTitleQueue()
	runSelectedMacro()
	scrollCustomConsoleComponentButtonText()
	selectMacro()
	setCustomConsoleComponentButtonIconUrl()
	setCustomConsoleComponentButtonStyle()
	setCustomConsoleComponentButtonText()
	setCustomConsoleComponentHeight()
	setCustomConsoleComponentVisible()
	setCustomConsoleComponentWidth()
	setCustomConsoleComponentPopoutable()
	setCustomConsoleComponentWindowVisible()
	setSidebarVisible()

	Methods for Push Notifications
	addPushNotificationListener()
	removePushNotificationListener()

	Methods for Console Events
	addEventListener()
	fireEvent()
	removeEventListener()

	Methods for Chat
	acceptChat()
	cancelFileTransferByAgent()
	declineChat()
	endChat()
	getAgentInput()
	getAgentState()
	getChatLog()
	getChatRequests()
	getDetailsByChatKey()
	getDetailsByPrimaryTabId()
	getEngagedChats()
	getMaxCapacity()
	initFileTransfer()
	onAgentSend()
	onAgentStateChanged()
	onChatCanceled()
	onChatCriticalWaitState()
	onChatDeclined()
	onChatEnded()
	onChatRequested()
	onChatStarted()
	onChatTransferredOut()
	onCurrentCapacityChanged()
	onCustomEvent()
	onFileTransferCompleted()
	onNewMessage()
	onTypingUpdate()
	sendCustomEvent()
	sendMessage()
	setAgentInput()
	setAgentState()
	Methods for Chat Visitors
	chasitor.addCustomEventListener()
	chasitor.getCustomEvents()
	chasitor.sendCustomEvent()

	Methods for Omni-Channel
	acceptAgentWork
	closeAgentWork
	declineAgentWork
	getAgentWorks
	getAgentWorkload
	getServicePresenceStatusChannels
	getServicePresenceStatusId
	login
	logout
	setServicePresenceStatus
	Methods for Omni-Channel Console Events

	Other Resources
	Console API Typographical Conventions

	Index

