salesforce

Analytics SAQL Developer Guide

Salesforce, Winter ‘23

Y @salesforcedocs
Last updated: November 3, 2022

https://twitter.com/salesforcedocs

© Copyright 2000-2022 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

OVERVIEW . . . 1
INrodUCtioN . . . o oo 1
Use SAQL in the CRM Analytics Dashboard 2
Enable SAQL Logs in the Browser o 4
QUICK START e 5
Write Your First QUENY oo e 5
Create a Derived MEQSUIEttt i e 6
Create a Derived DIMENSION .«ottt 7
EXAMPLES 8
Analyze Your Data Over TIMe . . . o oottt e et e e e e e 8
Calculate How Long Activities TAKE e 9
Display the Opportunities Closed ThisMonth i 10
Forecast Future Data Points with timeseries n
Combine Data from Multiple Data Streams with cogroupo oo oo 12
Replace Null Values with coalescel)o 14
Dynamically Display Your Top Five Reps with Windowing 15
Append Datasets USING UNIONo oottt 16
Calculate the Slope of the Regression Line 17
Show the Top and Boftom Quartile 18
Calculate Grand Totals and Subtotals with the rollup Modifier and groupingl) Function 19
SAQL REFERENCE i, 22
SAQL Basic Elements 22
SAQL Operatorso e 27
SAQL STOTEMENTS . o . o e 36
SAQL FUNCHIONS . . oo e e e 63
QUERY PERFORMANCE e 129
Speed Up Queries with Dataflow Transformations 129
Limit Multivalue Fields e 130
Use Group and Filter Pre-projection o 132
Remove Redundant Projections 133
Check for Redundant Filters 134

Limitthe Use of uniquel)o 134

OVERVIEW

Use SAQL (Salesforce Analytics Query Language) to access data in CRM Analytics dataset. CRM Analytics uses SAQL behind the scenes
in lenses, dashboards, and explorer to gather data for visualizations.

Developers can write SAQL to directly access CRM Analytics data via:
e CRM Analytics REST API

Build your own app to access and analyze CRM Analytics data or integrate data with existing apps.

e Dashboard JSON

Create advanced dashboards. A dashboard is a curated set of charts, metrics, and tables.

e Compare Table

Use SAQL to perform calculations on data in your tables and add the results to a new column.

e Transformations During Data Flow

Use SAQL to perform manipulations or calculations on data when bringing it in to CRM Analytics.

Introduction

Most actions you take in Analytics result in one or more SAQL queries. Every lens, dashboard, and explorer action generates and
executes a SAQL query to build the data needed for the visualization.

Use SAQL in the CRM Analytics Dashboard

Use the CRM Analytics Studio user interface to modify existing SAQL queries or write new ones. Writing SAQL queries in the user
interface is the easiest way to get started.

Enable SAQL Logs in the Browser
If you're using Google Chrome to work with SAQL and Einstein CRM Analytics, you can turn on SAQL logs.

SEE ALSO:

Analytics REST API Developer Guide
Analytics Dashboard JSON Developer Guide

Introduction

Most actions you take in Analytics resultin one or more SAQL queries. Every lens, dashboard, and explorer action generates and executes
a SAQL query to build the data needed for the visualization.

Analytics evaluates queries, widgets, and layouts to render a dashboard. Behind every widget is a SAQL query which is sent the query
engine for execution. The resulting data is passed to the charting library, which renders it using corresponding widget definitions. SAQL
is influenced by the Apache Pig Latin (pigqgl) syntax, but their implementations differ, and they are not compatible.

https://developer.salesforce.com/docs/atlas.en-us.240.0.bi_dev_guide_rest.meta/bi_dev_guide_rest/
https://developer.salesforce.com/docs/atlas.en-us.240.0.bi_dev_guide_json.meta/bi_dev_guide_json/

Overview Use SAQL in the CRM Analytics Dashboard

How the components fit together

1. Auto-facet steps added using the builder
2. Resolve Mustache templates and custom bindings

a ¢ 3. Generate SAQL for each step
H 4. Dispatch queries to the Wave Engine
v “m = L Rendering ;
—> Engine H
—l
Query | ¢35 | Dataset
Engine 3
‘ H Runtime i

5. Execute query

6. Build resuits
7. Return them as JSON

8. Render results using widget definition

Developers can write SAQL to access Analytics data, either via the Analytics REST API, or by creating and editing SAQL queries contained
in the dashboard JSON.

A SAQL query loads an input dataset, operates on it, and outputs a results dataset. Each SAQL statement has an input stream, an operation,
and an output stream. Statements can span multiple lines and must end with a semicolon. Each query line is assigned to a named stream.
A named stream can be used as input to any subsequent statement in the same query. The only exception to this rule is the last line in
a query, which you don't need to assign explicitly.

Use SAQL in the CRM Analytics Dashboard

Use the CRM Analytics Studio user interface to modify existing SAQL queries or write new ones. Writing SAQL queries in the user interface
is the easiest way to get started.

Every component in CRM Analytics uses SAQL behind the scenes. You can build a widget in a dashboard, then switch to the SAQL view
to see the SAQL query for the widget. Or, you can create a lens while exploring a dataset, then switch to the SAQL view to see the SAQL
query for the lens.

Let’s look at the query generated by a widget in a dashboard.

@ Nofte: After you edit the SAQL for a widget, you may not be able to go back to the dashboard view, depending on how complex
the SAQL query is.

1. Inyour Salesforce org, open CRM Analytics Studio, then open a dashboard. For example, open Opportunity Details.
2. Click Edit.

Overview

3. Clicka query to edit, for example Amount_1, then click Edit in the dropdown list.

'at:'iurz-'m

Opportunity Details

Open Pip...

173

Won Dpp -

m Won Lost

Opportunity Amount

ae
-
2

274

EEED
- N
0

Sales Rep

Opporunity Amount

W

Opportunit . Account Close Da
All L] b 112 W

a2 Sep Ot Haw Dec

Clese Date (Year-banth)

Search Steps

Show All (12) «

+ @ DTC Opportunity + -

= Account_Name_1

= Amount_1 ‘_T
L3 Amolmt_J Edit

Clone
¥ Amount_3

Properties

4. Click SAQL Mode to display the SAQL query.

. Amount_1

Amount_1

Measures

HSum of. w
.

Group by

Dataset Flelds

Sum of Amount

L
i
S

Sum of Amount 1B

5. View the SAQL query.

Here is the SAQL query for our example:

q
q
q

group gq by all;

load "DTC Opportunity SAMPLE";
filter g by 'Closed' == "false";

Use SAQL in the CRM Analytics Dashboard

Overview Enable SAQL Logs in the Browser

= foreach g generate sum('Amount') as 'sum Amount';
qg = limit g 2000;

Q
|

6. Edit the query, then click Run Query to run the new query. For example, you could change the sum to average.

Enable SAQL Logs in the Browser

If you're using Google Chrome to work with SAQL and Einstein CRM Analytics, you can turn on SAQL logs.

@ Nofe: SAQL Logs in the browser are no longer supported. To see how your SAQL queries run in the dashboard, use the Dashboard
Inspector. You can also right-click the dashboard in the browser and select Inspect.

Turning on SAQL logs in the browser prints queries in the Developer Tools Console. This lets you see what SAQL is generated by CRM
Analytics dashboards and lenses. This action doesn’t change server-side logs.

1. In Google Chrome, open a CRM Analytics dashboard.
In Google Chrome, open Developer Tools.

In Developer Tools, select Console.

.

In the Einstein Analtyics dashboard, elect the explore (wave.apexp) frame.

. Inthe developer tools console, enter edge. log.enabled = true

. Inthe developer tools console, enter edge. 1og.query = true

SAQL logs are enabled. The logs are displayed when a query is sent from the dashboard or lens, for example when you drill into a chart.

Responsive ¥ 720 (% 516 100% ¥ Online ¥ Pl wall @ azl ¢ x
& top ¥ | Filter C

A vave.apexpitsid=0Rufstony =
erTyL:l

The S5L certificate used
to load resources from hit
ps://nas9 . salesforce, com

all Analytics Studio Opportunity Details x will be distrusted in MG,

Once distrusted, users

will be prevented from

L B . ks sarrlat : & loading these rescurces.
+ Follow ata updal ":) / ':I q B A B e See hitps://g.cofchrome/sy
pantecpkicerts for mare
information.
i N L e The specified value "I"
Opportunity Details InsightsExtDeps . is:sources
ap: 7440
does not conform to the
Sales Oppty Account Close required forsat. The
¥ format is "Hrrgghb” where
F. -
Rep Ype Date I| rr, B, bb are two.digit
Sales Rep Opportun,.. Account Close Date hexadecimal numbers.

Al W Al Al w 171w edge.log-enabled = true

Stage

=

true

-

edge.log.query = true
true

Opportunity Amount

artunity Armount

] IConscrI\'.'l:atch'.v x

QUICK START

Get up to speed quickly with these easy SAQL examples.

Write Your First Query
Let's walk through each part of a simple SAQL query.

Create a Derived Measure
Perform calculations on existing measures and use the result to create a new, or derived, measure.

Create a Derived Dimension
Perform string manipulations on existing dimensions to create a new, or derived, dimension.

Write Your First Query

Let's walk through each part of a simple SAQL query.
We'll create a new dashboard in a CRM Analytics org. Then we'll add a simple chart and look at the resulting SAQL.

@ Nofe: These instructions assume you are using the sample Salesforce Developer org, which includes sample datasets. If you are
using a different org, you can still follow the same general instructions with your own dataset.

1. In your CRM Analytics org, create a new dashboard:
a. Click Create.
b. Click Dashboard.

In the window Choose a dashboard template, click Blank Dashboard, then click Continue.
Drag a chart widget to the dashboard canvas.

In the chart widget, click Chart, then select DTC Opportunity dataset.

Click the SAQL Mode button to launch the SAQL editor.

The SAQL editor displays the SAQL query used to fetch the data and render the chart:

ok wWwN

1 q = load "DTC Opportunity SAMPLE";

2 g = group d by all;

3 g = foreach g generate count() as 'count';
4 g = limit g 2000;

Let's take a look at each line in the query.

Line Number Description

! g = load "DTC Opportunity SAMPLE";

This loads the dataset that you chose when you created the chart widget. You can use the variable g to access
the dataset in the rest of your SAQL statements.

Quick Start Create a Derived Measure

Line Number Description
2 q = group g by all;

In some queries, you want to group by a certain field, for example Account ID. In our case we didn't specify a
grouping when we created the chart. Use group by all when you don't want to group data.

3 g = foreach g generate count() as 'count';

This generates the output for our query. In this simple example, we just count the number of lines in the DTC
Opportunity dataset.

4 q = limit g 2000

This limits the number of results that are returned to 2000. Limiting the number of results can improve performance.
However if you want g to contain more than 2000 results, you can increase this number.

You can click Back to go back to the chart. You can use the Ul to make modifications to the chart, then view the resulting SAQL.

Create a Derived Measure

Perform calculations on existing measures and use the result to create a new, or derived, measure.
CRM Analytics calculates the value of derived measures at run time using the values from other fields.

@ Note: You canalso create a derived measure in a dataflow rather than at runtime using SAQL. Measures created during a dataflow
are calculated when the data is imported and may result in better performance.

Example - Calculate the Time to Win

Suppose that you have an Opportunities dataset with the Close Date and Open Date fields. You want to see the number of days it took
to win the opportunity. Use Close_Date_day_epoch and Created_Date_day_epoch to create a derived measure called Time to Win:
("Close_Date day epoch'- 'Created Date day epoch') as 'Time to Win'.

The field Time to Win is calculated at run time;

g = load "Opportunities";

e} foreach g generate 'Close Date day epoch' as 'Close Date day epoch',
'Created Date day epoch' as 'Created Date day epoch', 'Opportunity Name' as
'Opportunity Name', ('Close Date day epoch'- 'Created Date day epoch') as 'Time to Win';

The resulting table contains the number of days to win each opportunity:

Close Date (Epoch days) Created Date (Epoch days) Opportunity Name Time to Win
16,762 16,707 Opportunity for Wood9 55
16,886 16,750 Opportunity for Jeffersonl7 136
17,066 16,942 Opportunity for McLaughlin130 124

Quick Start Create a Derived Dimension

Create a Derived Dimension

Perform string manipulations on existing dimensions to create a new, or derived, dimension.

CRM Analytics creates derived dimensions at run time.

@ Nofe: You can also create a derived dimension in a dataflow rather than at runtime.

Example - Create a Field with City and State

Suppose that you have an Opportunities dataset with a City and a State field. You want to create a single field containing both city and
state. Use SAQL to create a derived dimension.

= load "Ops";
= foreach g generate 'Account' as 'Account', 'Amount' as 'Amount',6 'City' + "-" + 'State'
as 'City - State';

q
q

The resulting table contains city and state in the same field.

Account Armount City - State
Shoes2Go 1.5 Springfield-Illinois
FreshMeals 2 Springfield-Alabama
ZipBikeShare 1.1 Springfield-Missouri
Shoes2Go 3 Springfield-Georgia

EXAMPLES

These hands-on SAQL examples walk you through writing a query to retrieve data

Analyze Your Data Over Time
Use SAQL date functions for advanced time-based analysis.

Calculate How Long Activities Take
Use daysBetween () and date diff () to calculate the difference between two dates or times.

Display the Opportunities Closed This Month
Use relative date ranges to filter opportunities closed in the current month.

Forecast Future Data Points with timeseries
Use existing data to predict what might happen in the future.

Combine Data from Multiple Data Streams with cogroup

You can combine data from two or more data streams into a single data stream using cogroup. The data streams must have at
least one common field.

Replace Null Values with coalesce()
When you use a left outer or full outer cogroup, unmatched data comes through as null. Use coalesce () toreplace null
values with the value of your choice.

Dynamically Display Your Top Five Reps with Windowing
Windowing functions perform calculations over a dynamic range.

Append Datasets using union

You can append data from two or more data streams into a single data stream using union. The data streams must have the same
field names and structure.

Calculate the Slope of the Regression Line
Use SAQL to perform linear analysis on your data to find the line that best fits the data. Then use .regr _slope toreturn the slope
of this line.

Show the Top and Bottom Quartile
Use SAQL to calculate percentiles, like the top and bottom quartile of your data.

Calculate Grand Totals and Subtotals with the rollup Modifier and grouping() Function

Calculate subtotals of grouped data in your SAQL query using the rollup modifier on the group by statement, then work
with subtotaled data using grouping () . For example, to see the subtotaled value of opportunities by type and lead source, roll
up the type and lead source groups. Then, label the subtotals with the grouping function.

Analyze Your Data Over Time

Use SAQL date functions for advanced time-based analysis.

@ Nofe: You can use date filters in the dashboard for basic time-based analysis, for example to calculate month-to-date amounts.
You can also use window functions in the dashboard for basic date range calculations, such as calculating the change in
year-over-year earnings

Examples Calculate How Long Activities Take

Example - on Which Weekday Do Customers Send the Most Emails?

Suppose that you want to see which day of the week your customers are most active on email. This information allows you to better
target your email campaigns. Use day_in week () on the Mail_sent_sec_epoch field to calculate the day of the week, then count
the number of records for each day.

load "DTC Opportunity SAMPLE";
foreach g generate day in week(toDate(Mail sent sec epoch)) as 'Day in Week';

= group g by 'Day in Week';
foreach g generate 'Day in Week', count() as 'count';

Q Q9 Q Q

In this case, email traffic is slightly higher on day 4 (Wednesday) and day 7 (Sunday).

120
103
ol 97
30
4} I I
1 2 3 4 5 & T

Day In Week

SEE ALSO:

Date Functions

Calculate How Long Activities Take

Use daysBetween () and date diff () to calculate the difference between two dates or times.

Example: Display the Number of Days Since an Opportunity Opened

Suppose that you have an opportunity dataset with the account name and the epoch seconds fields:

Account OrderDate_sec_epoch
Shoes2Go 1,521,504,003
FreshMeals 1,521,158,403
ZipBikeShare 1,518,739,203

You want to see how many days ago an opportunity was opened. Use daysBetween () and now ().Use toDate () toconvert
the order date epoch seconds to a date format that can be passed to daysBetween ().

e} load "OpsDatesl";

q foreach g generate Account, daysBetween (toDate (OrderDate sec epoch), now()) as

'daysOpened’';

The resulting data stream displays the number of days since the opportunity was opened.

Examples

Display the Opportunities Closed This Month

Account daysOpened
Shoes2Go 66
FreshMeals 70
ZipBikeShare 98

Example - How Many Weeks Did Each Opportunity Take to Close?

Use date diff () with datepart = week to calculate how long, in weeks, it took to close each opportunity.

q = load "DTC Opportunity";

q = foreach g generate date diff ("week",
toDate (Close Date sec epoch)) as
q = order g by 'Weeks to Close';

toDate (Created Date sec epoch),
'Weeks to Close';

SEE ALSO:
daysBetween()
date_diff()

Display the Opportunities Closed This Month

Use relative date ranges to filter opportunities closed in the current month.

Example: Display Opportunities Closed This Month

Suppose that you want to see which opportunities closed this month. Your data includes the account name, the close date fields, and

the epoch seconds field.

Account CloseDate (Year) CloseDate (Month) CloseDate_sec_epoch CloseDate (Day)
Shoes2Go 2018 05 1,526,774.403 20
FreshiMeals 2018 03 1,522,368,003 30
ZipBikeShare 2018 02 1,519,516,803 25

Use date () togenerate the close date in date format. Then use relative date ranges to filter opportunities closed in the current month.

g = load "OpsDatesl";

g = filter g by date(’CloseDate Year’, ‘CloseDate Month’, ‘CloseDate Day’)
month" "current month"];

g = foreach g generate Account;

If the query is run in May 2018, the resulting data stream contains one entry:

10

in ["current

Examples Forecast Future Data Points with timeseries

Account

Shoes2Go

To add the close date in a readable format, use toDate ().

g = load "OpsDatesl";

q = filter g by date('CloseDate Year', 'CloseDate Month', 'CloseDate Day') in ["current
month" .. "current month"];

q = foreach g generate Account, toDate('CloseDate sec epoch') as 'Close Date';

The resulting data stream includes the full date and time of the close date.

Account Close Date

Shoes2Go 2018-05-20 00:00:03

You can also display just the month and day of the close date.

g = load "OpsDatesl";

g = filter g by date('CloseDate Year', 'CloseDate Month', 'CloseDate Day') in ["current
month" .. "current month"];

q = foreach g generate Account, 'CloseDate Month' + "/" + 'CloseDate Day' as 'Close Date';

The resulting data stream contains the month and day of the close date.

Account Close Date

Shoes2Go 05/20

SEE ALSO:
Time-Based Filtering

Forecast Future Data Points with timeseries

Use existing data to predict what might happen in the future.

Example - How Many Tourists Will Visit Next Year?

Suppose that you run a chain of retail stores, and the number of tourists in your city affect your sales. Use timeseries to predict
how many tourists will come to your city next year:

= load "TouristData";

q
q group q by ('Visit Year', 'Visit Month');

q = foreach g generate 'Visit Year', 'Visit Month', sum('NumTourist') as 'sum NumTourist';
-- If your data is missing some dates, use fill() before using timeseries|()

-- Make sure that the dateCols parameter in fill () matches the dateCols parameter in
timerseries ()

g = fill g by (dateCols=('Visit Year',6 'Visit Month', "Y-M"));

n

Examples Combine Data from Multiple Data Streams with cogroup

-- Use timeseries () to predict the number of tourists.
q = timeseries g generate 'sum NumTourist' as Tourists with (length=12,
dateCols=('Visit Year',6 'Visit Month', "vY-M"));

q = foreach g generate 'Visit Year' + "~~~" 4+ 'Visit Month' as 'Visit Year~~~Visit Month',
Tourists;

Use a timeline chart and set a predictive line to see the calculated future data. The resulting graph shows the likely number of tourists
in the future.

]
7}
2
2015 May Sep 2016 May Sep 2017 May Sep 2018 May Sep 2019
Visit (Year-Month)
SEE ALSO:
timeseries

Combine Data from Multiple Data Streams with cogroup

You can combine data from two or more data streams into a single data stream using cogroup. The data streams must have at least
one common field.

Example - Inner cogroup

Suppose that you want to understand how much time your reps spend meeting with each account. Is there a relationship between
spending more time and winning an account? Are some reps spending much more or much less time than average? To answer these
questions, first combine meeting data with account data using cogroup.

Suppose that you have a dataset of meeting information from the Salesforce Event object. In this example, your reps have had six
meetings with four different companies. The Meetings dataset has a MeetingDuration column, which contains the meeting duration in

hours.
Company MeetingDuration
1 Shoes2Go 2
2 FreshMeals 3
3 ZipBikeShare 4
4 Shoes2Go 5
5 FreshMeals 1
6 ZenRetreats 6

12

Examples Combine Data from Multiple Data Streams with cogroup

The account data exists in the Salesforce Opportunity object. The Ops dataset has an Account, Won, and Amount column. The Amount
column contains the dollar value of the opportunity, in millions.

Account Won Amount
1 Shoes2Go 1 15
2 FreshMeals 1 2
3 ZipBikeShare 1 11
&4 Shoes2Go 0 3
5 FreshMeals 1 1.4
6 ZenRetreats 0 2

To see the effect of meeting duration on opportunities, you start by combining these two datasets into a single data stream using
cogroup

g = cogroup ops by 'Account', meetings by 'Company';

Internally (you cannot see these results yet), the resulting cogrouped data stream contains the following data. Note how the data streams
are rolled up on one or more dimensions.

(1, { (Shoes2Go,2,), (Shoes2Go,5)},{(Shoes2Go,1,1.5), (Shoes2Go,0,3})
(2, { (FreshMeals, 3), (FreshMeals, 5)}, { (FreshMeals,1,2) (FreshMeals, 1, 1.4)})
(3,{(ZipBikeShare,4)},{ (ZipBikeShare,1, 1.1)1})

(4, { (ZenRetreats, 6) }, { (ZenRetreats, 0, 2)})

Now the datasets are combined. To see the data, you create a projection using foreach:

ops = load "Ops";

meetings = load "Meetings";

g = cogroup ops by 'Account', meetings by 'Company';

q = foreach g generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum Amount',
sum (meetings. 'MeetingDuration') as 'TimeSpent';

The resulting data stream contains the sum of amount and total meeting time for each company. The sum of amount is the sum of the
dollar value for every opportunity for the company.

Account Sum of Amount = TimeSpent
Companyl 45 7
Company2 34 4
Company3 11 &4
Company& 2 6

13

Examples Replace Null Values with coalescel()

Now that you have combined the data into a single data stream, you can analyze the effects that total meeting time has on your
opportunities.

SEE ALSO:

cogroup

Replace Null Values with coalesce ()

When you use a left outer or full outer cogroup, unmatched data comes through as null. Use coalesce () to replace null values
with the value of your choice.

Example: Left Outer Cogroup with coalesce ()

A left outer cogroup combines the right data stream with the left data stream. If a record on the left stream does not have a match on
the right stream, the missing right value comes through as null. To replace null values with a different value, use coalesce ().

For example, suppose that you have a dataset of meeting information from the Salesforce Event object, and you join it with data from
the Salesforce Opportunity object. This shows amount won with the total time spent in meetings.

ops = load "Ops";

meetings = load "Meetings";

g = cogroup ops by 'Account' left, meetings Dby 'Company' ;

q = foreach g generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum Amount',
sum (meetings. 'MeetingDuration') as 'TimeSpent';

It looks like we had no meetings with Zen Retreats.

Account Sum of Amount TimeSpent
FreshMeals 3.4 -
Shoes2Go 4.5 7
ZenRetreats ! 2 -
ZipBikeShare | 1.1 4

Let's use coalesce () tochange that null value to a zero.

ops = load "Ops";
meetings = load "Meetings";
g = cogroup ops by 'Account' left, meetings by 'Company' ;

—--use coalesce() to replace null values with zero

q = foreach g generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum Amount',
coalesce (sum(meetings. 'MeetingDuration'), 0) as 'TimeSpent';

14

Examples Dynamically Display Your Top Five Reps with Windowing

Account Sum of Amount TimeSpent

FreshMeals 3.4 4

Shoes2Go 4.5 7
)

ZenRetreats 2 0
1

ZipBikeShare 1.1 4

SEE ALSO:
cogroup

Dynamically Display Your Top Five Reps with Windowing

Windowing functions perform calculations over a dynamic range.

Example - Dynamically Display Your Top Five Reps
Use windowing to create a chart that dynamically displays your top-five reps for each country. The chart updates continuously as
opportunities are won. The example uses windowing to calculate:

e Percentage contribution that each rep made to the total amount, partitioned by country

e Ranking of the rep’s contribution, partitioned by country

These calculations let us display the top-five reps in each country.

= load "DTC Opportunity SAMPLE";
group q by ('Billing Country', 'Account Owner');

Q Q
([t

q = foreach g generate 'Billing Country', 'Account Owner',

-- sum(Amount) 1is the total amount for a single rep in the current country

-- sum(sum('Amount') is the total amount for ALL reps in the current country

-- sum(Amount) / sum(sum('Amount') calculates the percentage that each rep contributed
-- to the total amount in the current country

((sum('Amount') /sum(sum('Amount'))

-- [..] means "include all records in the partition"
-— "by Billing Country" means partition, or group, by country
over ([..] partition by 'Billing Country')) * 100) as 'Percent AmountContribution',

-- rank the percent contribution and partition by the country
rank () over ([..] partition by ('Billing Country') order by sum('Amount') desc) as

'Rep Rank';

-- filter to include only the top 5 reps
q = filter g by 'Rep Rank' <=5;

The resulting graph shows the top-five reps in each country and displays each rep’s ranking.

15

Examples

Append Datasets using union

Australia

Belgium

Brazil

Canada

Dennis Howard
Johnny Green
John Williams

Bruce Kennedy

Chris Riley

Julie Chavez
Johnny Green
Laura Garza

Eric Gutierrez
Evelyn Williamson

Bruce Kennedy
Eric Gutierrez
Eric Sanchez

Percent_AmountContribution

§31

Laura Garza l 58
Irene Kelley I 3.8
Laura Garza - 11

chris Riley [93

Eric Gutierrez . 8.1
Bruce Kennedy . 77
Johnny Green . 7.6

o
=
B
H!
¥

e 1 A
:)I\J J.I_‘Il_.l

P
)

Rep_Rank

[¥¥)

Append Datasets using union

You can append data from two or more data streams into a single data stream using union. The data streams must have the same
field names and structure.

To use union,first load the dataset and then use foreach to do the projection. Repeat the process with another dataset. If the two

resulting data streams have an identical structure, you can append them using union.

Let’s say that you have two opportunity datasets from different regions that you brought together using the Salesforce mulit-org

connector. You want to add these datasets together to look at your pipeline as a whole.

The OppsRegion1 data stream contains these fields.

Account Owner Account Type Amount

1 Laura Palmer Customer 8,577,295
2 Laura Garza Customer 5,839,810
3 Dennis Howard Customer 5,423,800
4 Micolas Weaver Customer 5,335,150

The OppsRegion2 data stream contains these fields.

16

Examples

Account Owner
1 Bruce Kennedy
2 Laura Garza
3 Julie Chavez

Account Type
Partner
Customer

Customer

Amount

14,260

18,178

20,493

Use union to combine the two data streams.

opsl = load "OppsRegionl";

opsl = foreach opsl generate

ops2 = load "OppsRegion2";

ops2 = foreach ops2 generate

-- opsl and ops2 have the same structure,

opps_total = union opsl,

ops2;

The resulting data stream contains both sets of data.

'Account Owner',

'Account Owner',

Account Owner Account Type Amount

1 Laura Palmer Customer 8,577,295
2 Laura Garza Customer 5,839,810
3 Dennis Howard Customer 5,423,800
4 Micolas Weaver Customer 5,335,150
5 Bruce Kennedy Partner 14,260
6 Laura Garza Customer 18,178
7 Julie Chavez Customer 20,493

SEE ALSO:
union

'Account Type',

'Account Type',

SO we can use union

Calculate the Slope of the Regression Line

Calculate the Slope of the Regression Line

'Amount’';

'Amount’';

Use SAQL to perform linear analysis on your data to find the line that best fits the data. Then use .regr_slope toreturn the slope of

this line.

17

Examples

Show the Top and Bottom Quartile

Example - Calculate the Relationship Between Number of Activities and

Deal Amount

Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

35

30

25

20

15 @

Amount Won
®

10

6

Number of Activities

10 12

How much bigger with the deal size be for each extra activity? regr slope performs alinear analysis on your data then calculates

the slope (that is, the increased amount you win for each extra activity).

g = load "data/sales";

a group g by all;

-—-trunc () truncates the result to two decimal places

q = foreach g generate trunc(regr_ slope ('Amount',

'"NumActivities'), 2)

as 'Gain per Activity';

Based on your existing data, every extra activity that you have tends to increase the deal size by $1.45 million, on average.

Gain per Activity

1.45

SEE ALSO:

regr_slope()

Show the Top and Bottom Quartile

Use SAQL to calculate percentiles, like the top and bottom quartile of your data.

18

Examples Calculate Grand Totals and Subtotals with the rollup Modifier
and grouping() Function

Example - Show Top Quartile and Bottom Quartile Deal Size by Country

Suppose that you want to see the top and bottom quartile deal size, by country. You want to see the size of the actual deal, not the
interpolated (or 'average') deal size. Use percentile disc(.25) and percentile disc(.75).

g = load "Data";

q group q by 'Billing Country';

q = foreach g generate 'Billing Country' as 'Billing Country', percentile disc(0.25) within
group (order by 'Amount' desc) as '25th Percentile', percentile disc(0.75) within group
(order by 'Amount' desc) as '75th Percentile';

g = order g by '25th Percentile' asc;

Use a bar chart and select Axis Mode > Single Axis to show the top and bottom quartiles together.

25th Percentile, 75th Percentile
1m 2m 3m

South Africa

Germany

France

Italy

Sweden

Thailand

Russia

Hong Kong

Mexico

Belgium

India

Japan

Singapore

Canada

United Kingdom

Billing Country

SEE ALSO:

percentile_disc()

Calculate Grand Totals and Subtotals with the ro11up Modifier and
grouping () Function

Calculate subtotals of grouped data in your SAQL query using the rollup modifier on the group by statement, then work with
subtotaled data using grouping () . For example, to see the subtotaled value of opportunities by type and lead source, roll up the
type and lead source groups. Then, label the subtotals with the grouping function.

Invoking rollup adds rows to your query results with null values for dimensions and subtotaled results for measures. Invoking
grouping () returns 1 if null dimension values are due to higher-level aggregates (which usually means the row is a subtotal),
otherwise it returns 0.

Using grouping () alongside rollup lets you work with subtotaled data. After subtotaling data, common next steps include
logically evaluating subtotaled data with a case statement. Or filtering on subtotaled data with a filter statement.

19

Examples

Calculate Grand Totals and Subtotals with the rollup Modifier
and grouping() Function

Suppose that you have an opportunity dataset, and want to see the value of deals by lead source and type. Plus, you want to see the
total value of all lead sources and all types. Write a query that returns the sum of opportunity amount grouped by type and lead source.
To see the value of all lead sources and all types, use rol1lup to subtotal opportunities, then use grouping () tolabelthe subtotaled

rows.

Example: rollup

Open the SAQL editor in the dashboard. Instead of grouping data by a field, specify the ro11up modifier as the group and pass the

fields you want subtotaled - Type and Lead Source - as parameters. Set q =

'LeadSource') ;. Here's the full query.

g = load "opportunityData";
g = group g by rollup('Type', 'LeadSource');
g = order g by ('Type', 'LeadSource');
q = foreach g generate
'Type' as 'Type',
'LeadSource' as 'LeadSource',

sum ('Amount') as 'sum Amount';

group gq by rollup('Type',

The query results show sum of amount by opportunity type and then by lead source. Subtotaled and grand totaled rows have null values

for dimensions.

Type LeadSource Sum of Amount
Existing Business ~ Advertisement 6,870,000
Internet 6,660,000
Partner 9,500,000
Trade Show 39,860,000
Word of mouth 23,400,000
- 86,290,000
~ A
New Business Advertisement 87,760,000
Partner 6,750,000
Trade Show 7,200,000
Word of mouth 24,310,000
o N
- 126,020,000
- - 212,310,000
LS v

20

Examples Calculate Grand Totals and Subtotals with the rollup Modifier

and grouping() Function

Example: grouping ()

Null values in place of labeled totals can confuse query results. Avoid this confusion by labeling totalsas 211 Types or A11 Lead
Sources using case statements with grouping () functions.

= load "opportunityData";
= group g by rollup('Type',
order g by ('Type', 'LeadSource');
= foreach g generate
(case
when grouping('Type') == 1 then "All Types"
else 'Type'
end) as 'Type',
(case
when grouping('LeadSource') == 1 then "All Lead Sources"
else 'LeadSource'
end) as 'LeadSource',
sum ('Amount') as 'sum Amount';

'LeadSource’') ;

Q Q9 Q \Q
Il

Now the query results include labeled totals.

21

Type LeadSource Sum of Amount
Existing Business Advertisement 6,870,000
Internet 6,660,000
Partner 9 500,000
Trade Show 39,860,000
Word of mouth 23,400,000
All Lead Sour... 86,290,000
. e
Mew Business Advertisement 87,760,000
Partner 6,750,000
Trade Show 7,200,000
Word of mouth 24,310,000
r A
All Lead Sour... 126,020,000
All Types All Lead Sour... 212,310,000

SAQL REFERENCE

These hands-on SAQL examples walk you through writing a query to retrieve data

SAQL Basic Elements
Basic elements are the building blocks of your SAQL query.

SAQL Operators

Use operators to perform mathematical calculations or comparisons.

SAQL Statements

A query is made up of statements. Each SAQL statement has an input stream, an operation, and an output stream.

SAQL Functions
Use functions to perform complex operations on your data.

SAQL Basic Elements

Basic elements are the building blocks of your SAQL query.

Statements

A SAQL query loads input data, operates on it, and outputs the result data. A query is made up of statements. Each SAQL statement
has an input stream, an operation, and an output stream.

Keywords
Keywords are case-sensitive and must be lowercase.

Identifiers
SAQL identifiers are case-sensitive and must be enclosed in single quotation marks ().

Number Literals
A number literal represents a number in your script.

String Literals
A string is a set of characters inside double quotes (").

Boolean Literals
A boolean literal represents true or false (yes or no) in your script.

Multivalue Field
A multivalue field contains more than one value.

Quoted String Escape Sequences
Strings can be escaped with the backslash character.

Special Characters
Certain characters have special meanings in SAQL.

22

SAQL Reference Statements

Comments

To add a single-line comment in SAQL, preface your comment with two hyphens (--). To add a multi-line comment, start your
comment with a forward slash and asterisk (/ *) and end it with an asterisk and forward slash (* /).

Statements

A SAQL query loads input data, operates on it, and outputs the result data. A query is made up of statements. Each SAQL statement has
an input stream, an operation, and an output stream.

A statement is made up of keywords (such as filter, group, and order), identifiers, literals, and special characters. Statements
can span multiple lines and must end with a semicolon.

Assign each query line to an identifier called a stream. The only exception is the last line in a query, which doesn't have to be assigned
explicitly.

The output stream is on the left side of the = operator and the input stream is on the right side of the = operator.

Example
Each line in this SAQL query is a SAQL statement.

g = load "Datasetl";
g = group g by all;
q

foreach g generate sum('Amount') as 'sum Amount';

SEE ALSO:
filter
foreach
limit
offset

order

Keywords

Keywords are case-sensitive and must be lowercase.

SEE ALSO:

sample

|dentifiers

SAQL identifiers are case-sensitive and must be enclosed in single quotation marks ().
Identifiers that are enclosed in quotation marks can contain any character that a string can contain.

This example uses valid syntax:

g = load "Opportunity";

--'Stage' is enclosed in single quotes because it is a field. "08 - Closed Won" is enclosed

23

SAQL Reference Number Literals

in double quotes because it is a string.
g = filter g by 'Stage' == "08 - Closed Won";
q = group g by 'Account Owner';
q foreach g generate 'Account Owner' as 'Account Owner', count() as 'count';

This example is not valid because you can't use double quotes for an identifier.

--this should be 'Account Owner' in single quotes
g = group gq by "Account Owner";

Number Literals

A number literal represents a number in your script.

Some examples of number literals are 16 and 3.14159. You can't explicitly assign a type (for example, integer or floating point) to a
number literal. Scientific E notation isn't supported.

The responses to queries are in JSON. Therefore, the returned numeric field is a “number” class.

String Literals

A string is a set of characters inside double quotes (").
Example: "This is a string."

This example uses valid syntax:

accounts = load "Data";

opps = load "0Fcyy000000002gCAA/0Fcyy000000002WCAQ";
c = group accounts by 'Year', opps by 'Year';

d = foreach c¢ generate opps.Year as 'Year';

e = filter d by Year == "2002";

@ Nofe: Identifiers are either unquoted or enclosed in single quotation marks.

Boolean Literals

A boolean literal represents true or false (yes or no) in your script.

Boolean literals t rue and false are supported in SAQL.

Multivalue Field

A multivalue field contains more than one value.

@ Example: One typical use case for multivalue fields is security. For example, you can have a dataset that contains various accounts,
and each account has multiple owner IDs. We've created a sample dataset called OppRoles where OwnerId isamultivalue field.

Account ID Amount Owner.Name Opportunity ID Owner ID Stage

(001RO0000046CHAIAM 1,900,013 Emily Dickinson (006R00000020F6elAG 005RO00000OVUIDIAG, - Closed Won
005RO000000VU9bIAH,
005R0000000VUSBIAI

24

SAQL Reference Quoted String Escape Sequences

Account ID Amount Owner.Name Opportunity ID Owner ID Stage

00TRO0000046CVEIAM 70,449 Albert Einstein (006R00000020F6elAG |+ 005RI0000OOMUQUIAW, Closed Won
(005R0000000VU9DIAG,
(005RO000000VUQUIAX
005RO000000VUSUIAY

00TRO0000046CIEIAM 4,206,995 Indiana Jones (006R00000020F6elAG 006RO0000020F6gIAG, Closed Won
(005RO000000VUSRIAW,
(005R000000OVUSSIAW

This query filters on an OwnerId to display only the accounts that it can access.

g = load "OppRoles";

g = filter g by 'OwnerId' in ["005R0000000VUSLIAG"];

g = foreach g generate 'AccountId' as 'AccountId', 'Amount' as 'Amount', 'Id' as 'Id’',
'Owner.Name' as 'Owner.Name', 'OwnerId' as 'OwnerId', 'StageName' as 'StageName';

Warning: When using comparison operators in the filter, use in and not in toreturn the correct values. Using ==
and !'= returns unexpected values when null handling is enabled. See Group-by with Null Values for more information.

Account ID Amount Owner.Name Opportunity ID Owner ID Stage
(001RO0000046CHdIAM 1,900,013 Emily Dickinson (006R00000020F6elAG 005RO000000VUIIAG Closed Won
001RO0000046CVEIAM - 70,449 Albert Einstein (006R00000020F6elAG 005R0000000VUIBIAG Closed Won

The OwnerID value 005R0000000VU9bTIAG hasaccess to two of the three accounts, so two of the accounts are displayed.

@ Important: Limit multivalue field use to filtering only. Multivalue fields can behave unpredictably with group and
foreach.

SEE ALSO:
mv_to_string()
Comparison Operators

Limit Multivalue Fields

Quoted String Escape Sequences

Strings can be escaped with the backslash character.

You can use the following string escape sequences:

Sequence Meaning

\n New line

\r Carriage return
\t Tab

25

SAQL Reference

Sequence
X
X
\\

Special Characters

Certain characters have special meanings in SAQL.

Character

Comments

Name
Semicolon
Single quote
Double quote

Parentheses

Brackets

Period

Two colons

Two periods

Special Characters

Meaning
One single-quote character
One double-quote character

One backslash character

Description

Used to terminate statements.
Used to quote identifiers.
Used to quote strings.

Used for function calls, to enforce precedence, for order clauses, and to group
expressions. Parentheses are mandatory when you're defining more than one group or
order field.

Used to denote arrays. For example, this is an array of strings:
[chisl" HiS", "aH, "String", "array"]

Also used for referencing a particular member of an object. For example,
em['miles'],whichisthesameas em.miles.

Used for referencing a particular member of an object. For example, em.mi les, which
isthesameas em['miles'].

Used to explicitly specify the dataset that a measure or dimension belongs to, by placing
it between a dataset name and a column name. Using two colons is the same as using
a period (.) between names. For example:

data = foreach data generate left::airline as airline

Used to separate a range of values. For example:

c = filter b by "the date" in
["2011-01-01".."2011-01-31"];

Toadd asingle-line commentin SAQL, preface your comment with two hyphens (--). To add a multi-line comment, start your comment
with a forward slash and asterisk (/ *) and end it with an asterisk and forward slash (* /).

26

SAQL Reference SAQL Operators

Single-Line Comments
Here's an example of a single-line comment on its own line.

--Load a data stream.
a = load "myData";

You can put a comment at the end of a line of SAQL code.
a = load "myData"; --Load a data stream.
To comment a line of SAQL code, add two hyphens at the beginning of the line.

--The following line is commented out:
--a = load "myData";

Multi-Line Comments

Here's an example of a multi-line comment.

q = load "campaign data";

g = group g by Owner;

g = foreach g generate count() as 'count';
/*

g = limit g 5;

*/

SAQL Operators

Use operators to perform mathematical calculations or comparisons.

Arithmetic Operators

Use arithmetic operators to perform addition, subtraction, multiplication, division, and modulo operations.

Comparison Operators

Use comparison operators to compare values of the same type. For example, you can compare strings with strings and numbers
with numbers.

String Operators

To concatenate strings, use the plus sign (+).

Logical Operators

Use logical operators to perform AND, OR, and NOT operations.

Simple case Operator

Use case ina foreach statement to assign different field values in different situations. case supports two syntax forms:
searched case and simple case. This section explains simple case.

Searched case Operator

Use case ina foreach statement to assign different field values in different situations. case supports two syntax forms:
searched case and simple case. This section shows searched case.

27

SAQL Reference Arithmetic Operators

Null Operators

Use is null and is not null tocheck whetheravalueisorisnotnull. is null returns True when avalueis null.
is not null returns True when avalue is not null.

Arithmetic Operators

Use arithmetic operators to perform addition, subtraction, multiplication, division, and modulo operations.

Operator Description
+ Plus

- Minus

* Multiplication
/ Division

% Modulo

Comparison Operators

Use comparison operators to compare values of the same type. For example, you can compare strings with strings and numbers with

numbers.
Operator Name Description
== Equals Returns True if the operands are equal. String comparisons that use the equals operator
are case-sensitive.
@ Note: For multivalue fields, use in to identify rows that contain some value.
1= Not equals Returns True if the operands aren't equal.
@ Note: For multivalue fields, use not in to identify rows that don't contain
some value.
< Less than Returns True if the left operand is less than the right operand.
<= Less or equal Returns True if the left operand is less than or equal to the right operand.
> Greater than Returns True if the left operand is greater than the right operand.
>= Greater or equal Returns True if the left operand is greater than or equal to the right operand.
like Like Returns True ifthe left operand contains the string on the right. Wildcards and regular

expressions aren't supported. This operator is case-sensitive.

To match any single character in the string, include an underscore (_). To match any
pattern of zero or more characters include a percent sign (%).

Starting a pattern with a percent sign returns all words that are either the pattern itself
or that end with it. Ending a pattern with a percent sign returns all the words that are

28

SAQL Reference Comparison Operators

Operator Name Description

either the pattern itself or that begin with it. To match a pattern anywhere in a string,
the pattern must start and end with a percent sign.

Toinclude a literal percent sign or underscore in a pattern, you must escape them with
a backwards slash (\).

This query matches names such as Anita Boyle, Annie Booth, Derek Jernigan, and Hazel
Jennings.

"o ton

g = filter g by Customer Name like "%ni%

This query matches names that begin with "ne" or contain "ne." These names include
Andrew Levine, Annette Boone, Annette Cline, and Annie Horne.

Q

q = filter g by Customer Name like "ne%";

Use with ! to exclude records. For example, the following query shows all customer
names that don't contain "po."

o)

g = filter g by ! (Customer Name like "%po%");

matches Matches Returns True ifthe left operand contains the string on the right. Wildcards and regular
expressions aren't supported. This operator isn't case-sensitive. Single-character matches
aren't supported.

For example, the following query matches airport codes such as LAX, LAS, ALA, and
BLA.

my matches = filter a by origin matches "LA";

Use with ! to exclude records. For example, the following query shows all opportunities
where Stage isn't equal to Closed Lost or Closed Won:

g = filter g by ! ('Stage' matches "Closed");

in In Returns True if the left operand contains one or more of the values in the array on
the right. For example:
al = filter a by origin in ["ORD", "LAX", "LGA"];

If the left operand is a measure, the query returns True if the left operand is in the
array on the right.
Use the date () function to filter by date ranges.

If you search for values in an empty array, in returns False.

Ranges that are out of order evaluate to False.Forexample, ["z" .. "A"]
evaluatesto False.

not in Notin Returns True ifthe left operandisn't equal to any of the values in an array on the right.

29

SAQL Reference String Operators

@ Note: Ifyou use matches or 1ike with multivaluefields, make suretouse mv_to_string () tomatchallrelevantvalues.
If any of the values in the array satisfies the condition, the query returns the first value. The query returns array values in numerical
or alphabetical order. The first value it returns in this case isn't necessarily the value that satisfied the condition.

SEE ALSO:
filter
Multivalue Field
Multivalue Field

String Operators

To concatenate strings, use the plus sign (+).

Operator Description

+ Concatenate

@ Example: To combine the year, month, and day into a value that's called CreatedDate:

q = foreach g generate Id as Id, Year + "-" + Month + "-" + Day as CreatedDate;

Logical Operators

Use logical operators to perform AND, OR, and NOT operations.

Logical operators can return true, false, or null.

Operator Name Description
&& (and) Logical AND See table.
|| (or) Logical OR See table.
! (not) Logical NOT See table.

The following tables show how nulls are handled in logical operations.

X y X &&y x|y
True True True True
True False False True
True Null Null True
False True False True
False False False False
False Null False Null

30

SAQL Reference Simple case Operator

X y X &&y x|y
Null True Null True
Null False False Null

Null Null Null Null

X Ix

True False

False True

Null Null

Simple case Operator

Use case ina foreach statement to assign different field values in different situations. case supports two syntax forms: searched
case and simple case. This section explains simple case.

Syntax

case
primary expr
when test expr then result expr
[when test _expr2 then result expr2]
[else default expr]

end

case. ..end opensand closes the case operator.

primary expr isany expression that takes a single input value and returns a single output value. May contain values, identifiers,
and scalar functions (including date and math functions). The expression can return a number, string, or date.

when. . . then defines a conditional statement. A case expression can contain one or more conditional statements.

test expr isany expression that takes a single input value and returns a single output value. May contain values, identifiers, and
scalar functions (including date and math functions). The expression must return the same data type as primary expr.

result expr isany expression that takes a single input value and returns a single output value. May contain values, identifiers, and
scalar functions (including date and math functions). The expression must return the same data type as primary expr.

else default expr (optional) is any expression that takes a single input value and returns a single output value. May contain
values, identifiers, and scalar functions (including date and math functions). The expression can return a number, string, or date.

Usage

Statements are evaluated in the order that they are given. If test expr returns true, the corresponding result expr is
returned. You can specify any number of when/then statements.

31

SAQL Reference

You can use else to specify a default expression. For example, if no industry is specified then use the string "No Industry Specified". If

you don't specify a default statement then nul1l is returned.

You can use case expressionsin foreach statements. You cannot use case in order, group, or £ilter statements.

Example

Suppose that you want to create a dimension that displays the meaning of industry codes. Use case to parse the Industry_Code field

and specify the corresponding string.

g = foreach g generate Amount as 'Amount',

'Industry Code'
when 541611 then
when 541800 then
when 561400 then

else "Unspecified"
end) as 'Industry';

The resulting data displays the meaning of industry codes:

'Industry Code' as

"Consulting services"
"Advertising"
"Support services"

Amount

637,520

1,750,200

1,935,980

4,067,300

219,000

1,005,200

Industry Code

541,611

541,800

561,400

541,611

541,800

561,400

Industry
Consulting services
Advertising
Support services
Consulting services
Advertising

Support services

Handling Null Values

Ingeneral, null valuescan't be compared. When primary expr or test expr evaluatesto null,the default expr

is returned. If no default expression is specified, nul1 is returned.

SEE ALSO:

Speed Up Queries with Dataflow Transformations

Searched case Operator

Use case ina foreach statement to assign different field values in different situations. case supports two syntax forms: searched

case and simple case. This section shows searched case.

32

Searched case Operator

'Industry Code',

SAQL Reference Searched case Operator

Syntax

case
when search condition then result expr
[when search condition2 then result expr2]
[else default expr]

end

case. ..end opensand closes the case operator.
when. . . then defines a conditional statement. A case expression can contain one or more conditional statements.

search condition canbeany scalar expression that returns a boolean value. It can be a complex boolean expression or a nested
case, as long as the result is boolean. For a list of supported operators, see Comparison Operators on page 28.

result expr isany expression that takes a single input value and returns a single output value. Can contain values, identifiers, and
scalar functions (including date and math functions). The expression must return the same data type as specified in the search condition.

else default expr (optional)is any expression that takes a single input value and returns a single output value. Can contain
values, identifiers, and scalar functions (including date and math functions). The expression can return a number, string, or date.

Usage

Statements are evaluated in the order that they are given. If the condition is primary expr == test_expr, thenthe corresponding
result expr isreturned. You can specify any number of when/then statements.

You can use else to specify a default expression. For example, if no industry is specified, you can use the string "No Industry Specified".
If you don't specify a default statement, then nul1 is returned.

You can use case expressionsin foreach statements. You cannot use case in order, group, or £ilter statements.

Example

Suppose that you want to see the median deal size for each of your reps. You want to bin their median deal size into the buckets "Small",
"Medium", and "Large". Use case to assign values to the median deal size.

g = load "data";

g = group g by 'Account Owner';

a foreach g generate 'Account Owner' as 'Account Owner', median('Amount') as 'Median
Amount', (case

when median ('Amount') < 1000000 then "Small"
when median ('Amount') > 1600000 then "Large"
else "Medium"

end) as 'Category';

The resulting data shows the median deal size for each rep, along with the appropriate bin label.

33

SAQL Reference Null Operators

Account Owner Category | Median Amount
Bruce Kennedy Medium 1373900
Catherine Brown Small 399740
Chris Riley Medium 1373900
Dennis Howard Small 517301
Doroth Gardner Medium 1079956.15
Eric Gutierrez Small 771320
Handling Null Values

In general, null values can't be compared. When the search condition evaluates to null, the default expr isreturned.|f no
default expression is specified, nul1 is returned.

Null Operators

Use is null and is not null tocheck whetheravalueisorisnotnull. is null returns True whenavalueisnull. is
not null returns True when a value is not null.

This example returns rows that contain Sub_Category fields that are not null and the counts of rows that contain each field.

g = load "Superstore";

q = filter g by 'Sub Category' is not null;

g = group q by 'Sub Category';

q = foreach g generate 'Sub Category' as 'Sub Category', count() as 'count';
qg = limit g 2000;

Sub-Category Count of Rows
Accessories 775

Appliances 466

Art 796

Binders 1,523

Bookcases 228

Chairs 617

Copiers 68

Envelopes 254

Fasteners 217

34

SAQL Reference

Sub-Category

Count of Rows

Null Operators

Furnishings 957
Labels 364
Machines 115
Paper 1,370
Phones 889
Storage 846
Supplies 190
Tables 319

Replace Null Values with case
Use case to replace null values with a value of your choice. This example labels the null Sub-Category field "Empty."

g = load "Superstore";

q = group g by 'Sub Category';

q = foreach g generate case when 'Sub Category' is null then "Empty" else 'Sub Category'
end as 'Sub Category', count() as 'count';

qg = limit g 2000;

Sub-Category Count of Rows
Accessories 775
Appliances 466
Art 796
Binders 1,523
Bookcases 228
Chairs 617
Copiers 68
Envelopes 254
Fasteners 217
Furnishings 957
Labels 364
Machines 115
Paper 1,370
Phones 889

35

SAQL Reference SAQL Statements

Sub-Category Count of Rows
Storage 846
Supplies 190
Tables 319
Empty 4
SEE ALSO:
filter

group-by rollup
group-by

SAQL Statements

A query is made up of statements. Each SAQL statement has an input stream, an operation, and an output stream.

cogroup

Use cogroup to combine data from two or more data streams into a single data stream. The data streams must have at least one
common field.

fill

Use £111 () tofillinany gapsin date fields. By specifying the date fields to check, £111 () createsarow that contains the missing
month, day, week, quarter, or year and includes a null value. To include values outside the bounds of your data’s date range, specify
a start date and end date to override existing limits. The function returns the missing date rows with null values.

filter

Selects rows from a dataset based on a filter predicate.

foreach

Applies a set of expressions to every row in a dataset. This action is often referred to as projection.

group-by

Organizes the rows returned from a query into groups. Within each group, you can apply an aggregate function, such as count ()
or sum () to get the number of items or sum, respectively.

group-by rollup

rollup isasubclause of group-by that creates and displays aggregations of grouped data. The output of rollup is based
on column order in your query.

limit

Limits the number of results that are returned. If you don't set a limit, queries return a maximum of 10,000 rows.

load

Loads a dataset. All SAQL queries start with a 1oad statement.

offset
Use offset to page through the results of your query.

36

SAQL Reference cogroup

order
Sorts in ascending or descending order on one or more fields.

sample
Returns a random sample from a large dataset, where each data point has an equal probability of being selected. This keyword uses
the Bernoulli distribution.

timeseries
Uses existing data to predict future data points. The timeseries statement must follow a projection statement in your query.
Perform any filtering pre-projection or after the timeseries statement.

union
Combines multiple result sets into one result set. The result sets must have the same field names and structure. You can use a different
dataset to create each result set, or you can use the same dataset.

cogroup
Use cogroup to combine data from two or more data streams into a single data stream. The data streams must have at least one
common field.

cogroup is similar to relational database joins, but with some important differences. Unlike a relational database join, in a cogroup
the datasets are grouped first, and then the groups are joined. You can use cogroup in these ways:

® inner cogroup
e left outer cogroup
® rightouter cogroup

e full outer cogroup

@ Nofe: The statements cogroup and group are interchangeable. For clarity, we use group for statements involving one
data stream and cogroup for statements involving two or more data streams.

Inner cogroup

Inner cogroup combines data from two or more data streams into a resulting data stream. The resulting data stream only contains
values that exist in both data streams. That is, unmatched records are dropped.

Syntax
result = cogroup data stream 1 by fieldl, data stream 2 by field2;

fieldl and field2 mustbe the same type, but can have different names. For example, g=group ops by 'Owner',
quota by 'Name';

Example - Inner cogroup

Suppose that you want to understand how much time your reps spend meeting with each account. Is there a relationship between
spending more time and winning an account? Are some reps spending much more or much less time than average? To answer these
questions, first combine meeting data with account data using cogroup.

Suppose that you have a dataset of meeting information from the Salesforce Event object. In this example, your reps have had six
meetings with four different companies. The Meetings dataset has a MeetingDuration column, which contains the meeting duration in
hours.

37

SAQL Reference

Company MeetingDuration
1 Shoes2Go 2
2 FreshMeals 3
3 ZipBikeShare 4
4 Shoes2Go 5
5 FreshMeals 1
6 ZenRetreats 6

The account data exists in the Salesforce Opportunity object. The Ops dataset has an Account, Won, and Amount column. The Amount
column contains the dollar value of the opportunity, in millions.

Account Won Amount
1 Shoes2Go 1 1.5
2 FreshMeals 1 2
3 ZipBikeShare 1 11
- Shoes2Go 0 3
5 FreshMeals 1 1.4
6 ZenRetreats 0 2

To see the effect of meeting duration on opportunities, you start by combining these two datasets into a single data stream using
cogroup

g = cogroup ops by 'Account', meetings by 'Company';

Internally (you cannot see these results yet), the resulting cogrouped data stream contains the following data. Note how the data streams
are rolled up on one or more dimensions.

(1, { (Shoes2Go,2,), (Shoes2Go,5)},{(Shoes2Go,1,1.5), (Shoes2Go,0,3})
(2, { (FreshMeals, 3), (FreshMeals, 5)}, {(FreshMeals,1,2) (FreshMeals, 1, 1.4)})
(3, { (ZipBikeShare,4) }, { (ZipBikeShare, 1, 1.1)})

(4, { (ZenRetreats, 6) }, { (ZenRetreats, 0, 2)})
Now the datasets are combined. To see the data, you create a projection using foreach:

ops = load "Ops";
meetings = load "Meetings";

38

cogroup

SAQL Reference cogroup

g = cogroup ops by 'Account', meetings by 'Company';
q = foreach g generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum Amount',
sum (meetings. 'MeetingDuration') as 'TimeSpent';

The resulting data stream contains the sum of amount and total meeting time for each company. The sum of amount is the sum of the
dollar value for every opportunity for the company.

Account Sum of Amount = TimeSpent
Companyl 45 7
Company2 34 &
Company3 11 4
Company 2 [

Now that you have combined the data into a single data stream, you can analyze the effects that total meeting time has on your
opportunities.

Left Outer cogroup

Left outer cogroup combines data from the right data stream with the left data stream. The resulting data stream only contains values
that exist in the left data stream. If the left data stream has a value that the right data stream does not, the missing value is null in the
resulting data stream.

O Tip: Use coalesce toreplace a null value with the value of your choice.
Syntax
result = cogroup data stream 1 by fieldl left, data stream 2 by field2;

fieldl and field2 mustbethesametype, butcanhave differentnames.Forexample, g=group ops by 'Owner' left,
quota by 'Name';

Example - Left Outer cogroup With coalesce

Suppose that you want to see what percentage of quota that your reps have obtained. Your quota dataset shows each employee's quota
(notice that Farah does not have a quota):

Employee Quota
Lilly Chow 18,000,000
Emily Dickinson 15,000,000

Jonathan James 17,000,000

Your opportunities data shows the opportunity amount that each employee has won (notice that Jonathan does not have a won
opportunity).

39

SAQL Reference cogroup

Employee Amount

Lilly Chow 6,000,000
Emily Dickinson 5,000,000
Farah Khan 15,000,000

Lilly Chow 10,000,000

Emily Dickinson 11,000,000

Use a left outer cogroup to show only employees that have quotas. Also show the percentage of quota attained.

quota = load "Quota";

opp = load "Opportunity";

g = group quota by 'Employee' left, opp by 'Employee';

q foreach g generate quota.'Employee' as 'Employee',

trunc (sum (opp. 'Amount') /sum(quota. 'Quota') *100, 2) as 'Percent Attained';

Jonathan has not won any opportunities yet, so his percent attained is null.

Employee Percent Attained
Emily Dickinson 106.66
Jonathan James -

Lilly Chow 88.88

Use coalesce toreplace the null opportunities with a zero.

quota = load "Quota";

opp = load "Opportunity";

g = group quota by 'Employee' left, opp by 'Employee';

g = foreach g generate quota.'Employee' as 'Employee',

trunc (coalesce (sum(opp. 'Amount'),0) /sum(quota. 'Quota') *100, 2) as 'Percent Attained';

Now Jonathan's percent attained is displayed as zero.

Employee Percent Attained
Emily Dickinson 106.66
Jonathan James 0
Lilly Chow 88.88

40

SAQL Reference fill

Right Outer cogroup

Right outer cogroup combines data from the left data stream with the right data stream. The resulting data stream only contains
values that exist in the right data stream. If the right data stream has a value that the left data stream does not, the missing value is null
in the resulting data stream.

O Tip: Use coalesce toreplace a null value with the value of your choice.

Syntax

result = cogroup data_stream 1 by fieldl right, data_stream 2 by field2;

fieldl and field2 must be the same type, but can have different names. For example, g=group ops by 'Owner'
right, quota by 'Name';

Full Outer cogroup

Full outer cogroup combines data from the left and right data streams. The resulting data stream contains all values. If one data stream
has a value that the other data stream does not, the missing value is null in the resulting data stream.

O Tip: Use coalesce toreplace a null value with the value of your choice.

Syntax
result = cogroup data_stream 1 by fieldl full, data stream 2 by field2;

fieldl and field2 mustbe the sametype, butcan have differentnames. Forexample, g=group ops by 'Owner' full,
quota by 'Name';

SEE ALSO:
union
Combine Data from Multiple Data Streams with cogroup

Replace Null Values with coalesce()

group-by

£fill

Use £i111 () tofillinany gaps in date fields. By specifying the date fields to check, £111 () creates a row that contains the missing
month, day, week, quarter, or year and includes a null value. To include values outside the bounds of your data’s date range, specify a
start date and end date to override existing limits. The function returns the missing date rows with null values.

Syntax

results = fill resultSet by (dateCols=(dateFieldl, dateField2, "<date format>"),
startDate=startDate, endDate=endDate, [partition])

Name Description
resultSet Required. The results of a query that serve asinputtothe £i11 ()
function.

4

SAQL Reference fill

Name Description
dateCols Required.
date_fields—The date fields in which to check for gaps.
The date format string accepts these values.
e 'yearField' K ''monthField'K 'Y-M'
® 'yearField'K 'quarterField',K 'Y-Q'
® 'yearField'K 'Y'
® 'yearField'K 'weekField'K 'Y-W'
® 'yearField'K 'monthField' 6 'dayField',
'Y-M-D'
startDate—The starting date value beyond the scope of your
data's date range.

endDate—The ending date value beyond the scope of your
data's date range.

e Youcanuse startDate and endDate together orone
and not the other.

e |[fyouleaveout startDate,thenthe startdateisthe earliest
date in your dataset.

e |[fyouleave out endDate,thenthe end date is the latest date
in your dataset.

e |f startDate and endDate are within the bounds of
your dataset, £111 () ignores them.

partition Optional. A field used to split query results into smaller partitions.
The £111 () function resets when the field value changes. After
each group of rows is completed for a given partition, £111 ()
runs on the next partition.

Example

This example uses £111 () to add missing quarter and year values to tourist data.

g = load "TouristsData";

g = foreach g generate date Year, date Quarter, tourists;
g = fill g by (dateCols=(date Year, date Quarter, "Y-Q"));
g = limit g 15;

The query first returns the year, quarter, and number of tourists for each quarter. Based on the results from the first three years represented
in the dataset, the only date data available is for the first quarter.

Thesearetheresultsfrom g = load "TouristsData"; g = foreach g generate date Year, date Quarter,
tourists;.

year quarter tourists

2001 1 4127

42

SAQL Reference fill

year quarter tourists
2002 1 4173
2003 1 4621

£i11 () specifiesinthe date cols array to group the input data by the quarter and year. To have a complete dataset of years and
quarters, £111 () adds the 2nd, 3rd, and 4th quarters for each year and a null value for the number of tourists.

year quarter tourists
2001 1 4127
2001 2 -
2001 3 -
2001 4 -
2002 1 4173
2002 2 -
2002 3 -
2002 4 -
2003 1 4621
2003 2 -
2003 3 -
2003 4 -

Example with Extended Date Range

This query returns null values for tourists where date Month and date Year come before or after the date values in the dataset
or there are gaps within the data provided.

g = load "TouristsData";

a foreach g generate date Year, date Month, tourists;

g = fill g by (dateCols=(date Year, date Month, "Y-M"), startDate="2000-10",
endDate="2001-07") ;

g = limit g 10;

date_Month date_Year tourists
10 2000 -

11 2000 -

12 2000 -

01 2001 41,735

43

SAQL Reference filter

date_Month date_Year tourists
02 2001 -

03 2001 -

04 2001 26,665
05 2001 -

06 2001 -

07 2001 -
filter

Selects rows from a dataset based on a filter predicate.

Syntax

result = filter rows by predicate;

Usage

A predicate is a Boolean expression that uses comparison or logical operators. The predicate is evaluated for every row. If the predicate
is true, the rowisincluded in the result. Comparisons on dimensions are lexicographic, and comparisons on measures are numerical.

When afilter is applied to grouped data, the filter is applied to the rows in the group. If all member rows are filtered out, groups are
eliminated. You canruna £ilter statement before or after group to filter out members of the groups.

@ Note: With results binding, an error may occur if the results from a previous query exceed the values supported by SAQL. For
example, if something like filter g by diml in {{results(Query 1)}}; produces afilter tree with a depth
greater than 10,000 values, SAQL will fail with an error.

Example: The following example returns only rows where the origin is ORD, LAX, or LGA:

(6

al = filter a by origin in ["ORD", "LAX", "LGA"];

(6

Example: The following example returns only rows where the destination is LAX or the number of miles is greater than 1,500:

y = filter x by dest == "LAX" || miles > 1500;

(6

Example: When in operates on an empty array ina £ilter operation, everything is filtered and the results are empty. The
second statement filters everything and returns empty results:

load "0Fbxx000000002gCAA/0Fcxx000000002WCAQ";
filter a by Year in [];

c = group a by ('Year', 'Name');

44

SAQL Reference foreach

d = foreach c¢ generate 'Name' as 'group::AName', 'Year' as 'group::Year',
sum (accounts: :Revenue) as 'sRev';

SEE ALSO:
Comparison Operators
Logical Operators
Statements
Null Operators

Use Group and Filter Pre-projection

foreach

Applies a set of expressions to every row in a dataset. This action is often referred to as projection.

Syntax

q = foreach g generate expression as alias|[, expression as alias ...];

The output column names are specified with the as keyword. The output data is ungrouped.

Using foreach with Ungrouped Data

When used with ungrouped data, the foreach statement maps the input rows to output rows. The number of rows remains the
same.

@ Exomple: a2 = foreach al generate carrier as carrier, miles as miles;

Using foreach with Grouped Data

When used with grouped data, the foreach statement behaves differently than it does with ungrouped data.

Fields can be directly accessed only when the value is the same for all group members. For example, the fields that were used as the
grouping keys have the same value for all group members. Otherwise, use aggregate functions to access the members of a group. The
type of the column determines which aggregate functions you can use. For example, if the column type is numeric, you can use the
sum () function.

@ Example: z = foreach y generate day as day, unique(origin) as uorg, count () as n;

Using foreach with a case Expression

To create logicina foreach statement that chooses between conditional statements, use a case expression.

Projected Field Names

Each field name in a projection must be unique and not have the name 'none’. Invalid field names throw an error.

45

SAQL Reference group-by

For example, the last line in this query is invalid because the same name is used for multiple projected fields:

= load "0Fabb000000002gCAA/0Fabb000000002WCAQ";

load "0Fcyy000000002gCAA/0Fcyy000000002WCAQ";

foreach 1 generate 'value'/'divisor' as 'value' , category as category;
foreach r generate 'value'/'divisor' as 'value' , category as category;
cg = cogroup 1 by category right, r by category;

K =R
o

foreach cg generate r.category as 'category', sum(r.value) as sumrval, sum(l.value)
as sumrval;

Q
Q
Il

The following query is also invalid because the projected field name can't be 'none’.

g = load "Products";
g = group g by all;
g = foreach g generate count() as 'none';
g = limit g 2000;
SEE ALSO:
Statements
group-by

Organizes the rows returned from a query into groups. Within each group, you can apply an aggregate function, such as count () or
sum () to get the number of items or sum, respectively.

Syntax
group-by takes this syntax.
group data_stream by fields;

data stream
Data input to group.

fields
Fields by which data is grouped.

Group-by One Field

In this example, the query counts the number of rows for each Category field and groups the counts by category.

q = load "Superstore";

g = group g by 'Category';

g = foreach g generate 'Category' as 'Category', count() as 'count';
g = limit g 2000;

Category Count of Rows

Furniture 2,121

Office Supplies 6,026

Technology 1,847

46

SAQL Reference group-by

@ Notfe: cogroup and group-by are interchangeable. For clarity, we use group-by for statements that involve one data
stream and cogroup for statements that involve two or more data streams.

Group-by With Null Values

To return grouped null values in your queries, you must select the preference to include null values in Setup. Otherwise, queries ignore
null values.

1. InSetup, enter Analytics inthe Quick Find box.
2. Select Settings from the list of Analytics options.

3. In Settings, click the checkbox for Include null values in Analytics queries.

s CRM querias

Maimum numbar of hours anapp canbe progress (48] 4
Enabl Indaxing of mult-value fiids for mv_to_ s¥ing feature in Tableau CRM. &
Disabio Rocipa Input Datasot Caching |

Here's an example of a query that returns null values. It orders the results by the Sub_Category field and specifies that the results
display in ascending order, with nulls first.

g = load "Superstore";

q = group gq by 'Sub Category';

g = foreach g generate 'Sub Category' as 'Sub Category', count() as 'count';
g = order g by 'Sub Category' asc nulls first;

q = limit g 2000;

Sub-Category Count of Rows
- 4

Accessories 775

Appliances 466

Art 796

Binders 1,523

Bookcases 228

Chairs 617

Copiers 68

Envelopes 254

Fasteners 217

Furnishings 957

Labels 364

Machines 115

Paper 1,370

47

SAQL Reference group-by rollup

Sub-Category Count of Rows
Phones 889

Storage 846

Supplies 190

Tables 319
SEE ALSO:

Aggregate Functions
Null Operators
cogroup

Use Group and Filter Pre-projection

group-by rollup

rollup isasubclause of group-by that creates and displays aggregations of grouped data. The output of rol1lup is based on
column order in your query.

Syntax
group-by rollup takes this syntax.
group data_stream by rollup (fields);
data stream
Data input to group.
fields
Fields by which data is grouped.
@ Note: rollup workswith group-by only. You cannot use it with cogroup.

rollup supports the following aggregate functions.
® average()

® count ()

® min()

® max()

® sum()

® unique ()

This example first groups the results by Category and Sub-Category,andruns sum ('Sales'),an aggregate function on
each resulting row. By modifying the group-by clause with rollup, the query "rolls up" the results into subtotals and a grand total.

q load "Superstore";
a group q by rollup('Category', 'Sub Category'):;

g = order g by ('Category');

48

SAQL Reference group-by rollup

q = foreach g generate 'Category' as 'Category', 'Sub Category' as 'Sub Category',

sum('Sales') as 'sum sales';

Category Sub-Category sum_sales

Furniture Bookcases 114,348
Chairs 328,237
Furnishings 91,514
Tables 206,966
- 741,064

Office Supplies Appliances 107,532
Art 27,119
Binders 203,413
Envelopes 16,363
Fasteners 3,024
Labels 12,486
Paper 78,479
Storage 223,844
Supplies 46,674
- 718,934

Technology Accessories 167,380
Copiers 149,528
Machines 189,239
Phones 329,636
- 835,783
- 2,295,781

The query first groups the total sales for each sub-category of a given category. Next, it groups the total sales for a single category. After
each category's total sales is accounted for, the query generates the total sales for all categories.

rollup with Null Values

@ Note: To return grouped null values in your queries, you must select the null handling for dimensions preference in Setup. See
group-by for more information.

49

SAQL Reference

This example shows how null values display in query results. The query is the same as the one in the first example.

q = load "Superstore";

q =
q =
sum('Sales') as
q = order g by

Category

Furniture

Office Supplies

Technology

group g by rollup('Category',
foreach g generate

'sum_sales';
('Category',

'Category' as

'Sub Category');

Sub-Category
Bookcases
Chairs
Furnishings

Tables

Appliances
Art

Binders
Envelopes
Fasteners
Labels
Paper
Storage

Supplies

Accessories
Copiers
Machines

Phones

Computers

Projectors

50

'Sub Category');
'Category',

'Sub_Category' as 'Sub Category',

sum_sales
114,348
328,237
91,514
206,966
92
741,156
107,532
27,119
203,413
16,363
3,024
12,486
78,479
223,844
46,674
273
719,206
167,380
149,528
189,239
329,636
259
836,041
113

744

562

group-by rollup

SAQL Reference group-by rollup

Category Sub-Category sum_sales
1,420

2,297,824

The query first groups the total sales for each sub-category of a given category. In this example, each category contains a null sub-category.
The value of the null sub-category is also included in the total sales for each sub-category.

After the query accounts for all of the named categories—categories that have a value—it displays the sub-categories and total sales
for null categories. Finally, the query generates the total sales for all categories.

rollup With Null Values and case Statements

Use the grouping functionand case statements together to label the subtotal and grand total categories. In this example, the first
case checks fora null value generated by the rollupinthe Category field. If true, then the query labels thefield A11 Categories.
The second case checks whether a Sub-Category field is similarly null. If true, then the query labels the field 211
Sub-Categories.

g = load "Superstore";

g = group ¢q by rollup ('Category', 'Sub Category');

g = foreach g generate

(case
when grouping('Category') == 1 then "All Categories"
else 'Category'

end) as 'Category',

(Casihen grouping ('Sub_ Category') == 1 then "All Sub-Categories"”
else 'Sub Category'

end) as 'SubCategory', sum('Sales') as 'sum sales';

Category Sub-Category sum_sales

Furniture Bookcases 114,348
Chairs 328,237
Furnishings 91,514
Tables 206,966
- 92
All Sub-Categories 741,156

Office Supplies Appliances 107,532
Art 27,119
Binders 203,413
Envelopes 16,363
Fasteners 3,024

51

SAQL Reference

Category Sub-Category

Labels

Paper

Storage

Supplies

All Sub-Categories
Technology Accessories

Copiers

Machines

Phones

All Sub-Categories
- Computers

Projectors

All Sub-Categories

All Categories All Sub-Categories

SEE ALSO:
Null Operators
Simple case Operator
Aggregate Functions

grouping()

limit

limit

sum_sales
12,486
78,479
223,844
46,674
273
719,206
167,380
149,528
189,239
329,636
259
836,041
113

744
562
1,420

2,297,824

Limits the number of results that are returned. If you don't set a limit, queries return a maximum of 10,000 rows.

Syntax

result = limit rows number;

52

SAQL Reference load

Usage

Use this statement only on data that has been ordered with the order statement. The results of a 1imi t operation aren’t automatically
ordered, and their order can change each time that statement is called.

You can use the 1imit statement with ungrouped data.

You can use the 1imit statement to limit grouped data by an aggregated value. For example, to find the top 10 regions by revenue:
group by region, call sum (revenue) toaggregate the data, order by sum (revenue) indescending order,and 1imit the
number of results to the first 10.

@ Note: The 1imit statementisn'ta top () or sample () function.

@ Example: This example limits the number of returned results to 10:
b = 1limit a 10;
The expression can't contain any columns from the input. For example, this query is not valid:

b = limit OrderDate 10;

SEE ALSO:
Statements

order

load

Loads a dataset. All SAQL queries start with a 1oad statement.

Syntax

result = load dataset;

If you're working in Dashboard JSON, dataset must be the dataset name from the Ul. Use of the dataset name (also called an alias)
means the app can substitute it with the correct version of the dataset.

If you're working in the Analytics REST API, dataset must be the containerld/versionld.

Usage
After being loaded, the data is not grouped. The columns are the columns of the loaded dataset.

@ Example: Load the Accounts dataset to the stream'b’. b = load "Accounts";

offset

Use offset to page through the results of your query.

53

SAQL Reference order

Syntax

result = offset rows number;

Usage
Skips over the specified number of rows when returning the results of a query. You typically use of fset to paginate the query results.
When using of£set in your SAQL statements, be aware of these rules:

e Theorderof filter and order can be swapped because it doesn't change the results
e offset mustbe after order
e offset mustbebefore 1imit

e There can be no more than one of fset statement aftera foreach statement

Example - Return Rows 51-101
This example loads the opportunity dataset, sorts the rows in alphabetical order by account owner, and returns rows 51-101:

= load "DTC Opportunity";
order g by 'Account Owner';

Q Q
[l

q = foreach g generate 'Account Owner' as 'Account Owner', 'Account Type' as 'Account Type',
'Amount' as 'Amount';

g = offset g 50;
g = limit g 50;
SEE ALSO:

Statements
order

Sorts in ascending or descending order on one or more fields.

Syntax

result = order rows by field [asc | desc 1;
result = order rows by (field [asc | desc], field [asc | desc]);
result = order rows by field [asc | desc] nulls [first | last];

asc or desc specifies whether the results are ordered in ascending (a s c) or descending (de s c) order. The default order is ascending.

Usage

Use order to sort the results in a data stream for display. You can use order with ungrouped data. You can also use order to
sort grouped data by an aggregated value.

Donotuse order to specify the order that another SAQL statement or function will process records in. For example, do not use order
before timeseries to change the order of processing. Instead, use timeseries parameters.

54

SAQL Reference sample

By default, nulls are sorted last when sorting in ascending order and first when sorting in descending order. You can change the ordering
of nullsusingnulls [first | last].

@ Note: Applying labels to dimension values in the XMD changes the displayed values, but doesn't change the sort order.
Example: g = order g by 'count' desc;

Example: To order a stream by multiple fields, use this syntax:

load "O0Fbxx000000002gCAA/0Fcxx000000002WCAQ" ;
= group a by (year, month);
foreach b generate year as year, month as month;

O Q0 T W
I

order c by (year desc, month desc);

Example: You can order a cogrouped stream before a foreach statement:

= load "O0Fbxx000000002gqCAA/0Fcxx000000002WCAQ";
= load "OFayy000000002gCAA/0Fbyy000000002WCAQ";
cogroup a by year, b by year;

= order c by a.airlineName;

= foreach c generate year as year;

Q Q Q O w
I

Example: By default, nulls are sorted first when sorting in descending order. To change the null sort order to last, use this syntax:

q = order g by last shipping cost desc nulls last;

Example: You can't reference a preprojection ID in a postprojection order operation. (Projection is another termfora foreach
operation.) This code throws an error:

load "OFbxx000000002gCAA/0Fcxx000000002WCAQ";

group g by 'FirstName';

foreach g generate sum('mea mmlOM') as 'sum mmlOM';

Q Q9 Q \Q

= order g by 'FirstName' desc;

This code is valid:

q = load "O0Fbxx000000002qCAA/0Fcxx000000002WCAQ" ;
g = group gq by 'FirstName';
q = foreach g generate 'FirstName' as 'User FirstName', sum('mea mmlOM') as 'sum mmlOM';
q = order q by 'User FirstName' desc;
SEE ALSO:
Statements
sample

Returns a random sample from a large dataset, where each data point has an equal probability of being selected. This keyword uses the
Bernoulli distribution.

55

SAQL Reference sample

Syntax

sample (percentage-size-of-dataset) repeatable (seed)

sample
Required. Specifies the percentage of the dataset that is returned as a random sample. The percentage size value can be any positive
decimal.

repeatable
Optional. To create arandom sample deterministically, specify a seed. samp1le returns the same subset of data each time you pass
repeatable the same seed value. The seed value can be any positive integer.

Usage

Use sample to project a query on a representative sample from your dataset, where each data point has an equal probability of being
selected. sample runs pre-projection.

Add sample and repeatable afterthe 1oad statement. Any operation performed on the query after the 1oad statement
affects only the random sample of data. Let's look at an example.

load "Opportunity" sample(10) repeatable(l);

group gq by all;
= foreach g generate count() as 'count';
limit g 2000;

Q Q9 Q \Q
|

Count of Rows

453

Here, the query returns the row count of the sample, 453—around 10% of the dataset's 4.6k rows. The repeatable keyword
guarantees that the query always returns the same result. Without the repeatable keyword, the query returns a sample of a slightly
different size each time you run it. If you modify your dataset and add more data, then repeatable doesn't return the same result.

group-by Example

This query returns the counts of opportunities for each stage. Since the query operates on 10% of the dataset, the counts for each stage
are approximately 1/10 of the original count.

g = load "Opportunity" sample(10) repeatable(l);

g = group d by 'StageName';

q = foreach g generate 'StageName', count() as 'count';

g = limit g 2000;

Stage Count of Rows
Closed Lost 89

Closed Won 254

Id. Decision Makers 13

Needs Analysis 15

56

SAQL Reference

Stage Count of Rows
Negotiation/Review 6

Perception Analysis 13
Proposal/Price Quote 9

Prospecting 10

Quialification 25

Value Proposition 19

filter Example

This query returns only the won opportunities for each stage. Since the query operates on 10% of the dataset, the count for each stage
is approximately 1/10 of the original count.

= load "Opportunity" sample (10);

= filter g by 'IsWon' == "true";

group g by 'StageName';

= foreach g generate 'StageName', count() as 'count';
= limit g 2000;

Q Q9 Q Q9 Q
I

Stage Count of Rows

Closed Won 275

SEE ALSO:

Keywords

timeseries

Uses existing data to predict future data points. The timeseries statement must follow a projection statement in your query. Perform
any filtering pre-projection or after the timeseries statement.

Usage

timeseries crunchesyourdataand selects the forecasting model that gives the best fit. You can let timeseries select the best
model or specify the model you want. timeseries detects seasonality in your data. It considers periodic cycles when predicting
what your data will look like in the future. You can specify the type of seasonality or let timeseries choose the best fit.

The amount of data, which is required to make a prediction depends on how your data is filtered and grouped. For example, for a
non-seasonal monthly model, 2 data points are sufficient, whereas for a seasonal monthly model, at least 24 data points (two seasonal
cycles) are required. If you don't have enough data to make a good prediction, timeseries returns nulls in the data. If no data is
passed to timeseries, an empty dataset is returned.

57

fimeseries

SAQL Reference fimeseries

Syntax

result = timeseries resultSet generate (measurel as fmeasurel [, measurel2 as

fmeasure2...]) with (parameters);

measurel, measure2 and so on are the measures that you want to predict future values for. You can predict measures from
grouping queries or from simple values queries. The predicted values and the original values are projected together. The columns from
the previous foreach statement are also projected.

parameters can have the following values:

length (required) Number of points to predict. Forexample, if lengthis 6 and the dateCols typestringis Y-M, timeseries
predicts data for 6 months.
@ Notfe: If youwant to use dateCols butyour data stream has missing dates, use £i11 before using timeseries.

timeseries makesthe mostaccurate prediction possible by choosing the best algorithm for your data. Predictive algorithms
are more accurate for shorter time periods.

dateCols (optional) Date fields to use for grouping the data, plus the date column type string. For example,
dateCols=(CloseDate Year, CloseDate Month, "Y-M").Date columns are projected automatically. Allowed
values are;

- YearField, MonthField, "Y-M"

— YearField, QuarterField, "Y-Q"

- YearField, "Y"

- YearField, MonthField, DayField "Y-M-D"
— YearField, WeekField "Y-W"

ignoreLast (optional) If true, timeseries doesn't use the last time period in the calculations. The defaultis false.

Set this parameter to true to improve the accuracy of the forecast if the last time period contains incomplete data. For example,
if you're partway through the quarter, timeseries forecasts more accurately if you set this parameter to true.

order (optional) Specify the field to use for ordering the data. Mandatory if dateCols isn't used. By default, this field is sorted
in ascending order. Use desc to specify descending order, for example order=('Type' desc).You can also order by
multiple fields, for example order=('Type' desc, 'Group' asc).

For example, suppose that your data has no date columns, but it has a measure column called Week. Use order="wWeek"'.

@ Note: Specify either dateCols or order.

partition (optional) Specify the column used to partition the data. The column must be a dimension. The timeseries
calculation is done separately for each partition to ensure that each partition uses the most accurate algorithm. For example, data
in one partition might have a seasonal variation while data in another partition doesn't. The partition columns are projected
automatically.

For example, suppose that your sales data for raw materials contains the date sold, type of raw material, and the weight sold. To

predict the future weight sold for each type of raw material, use partition="'Type".

predictionInterval (optional) Specify the uncertainty, or confidence interval, to display at each point. Allowed values are
80 and 95. The upper and lower bounds of the confidence interval are projected in columns named column _name low 95
and column_name high 95.

model (optional) Specify which prediction model to use. If unspecified, timeseries calculates the prediction for each model
and selects the best model using Bayesian information criterion (BIC).

58

SAQL Reference fimeseries

Allowed values are:
- None timeseries selects the best algorithm for the data
- Additive usesHolt's Linear Trend or Holt-Winters method with additive components.

- Multiplicative usesHolt's Linear Trend or Holt-Winters method with multiplicative components

* seasonality (optional) Use with dateCols to specify the seasonality for your prediction. Allowed values are:
— 0 No seasonality

- anyinteger between 2 and 24

If unspecified, timeseries calculates the prediction for each type of seasonality and select the results with the smallest error.

Example
seasonality dateCols Type of Seasonality
seasonality=4 dateCols="Y-Q" Yearly seasonality, because there are four
quarters in a year.
seasonality=12 dateCols="Yy-M" Yearly seasonality, because there are 12
months in a year.
seasonality=7 dateCols="Y-M-D" Weekly seasonality, because there are

seven days in a week.

Tips
Here's how you can make the most of using timeseries:

e Areyou currently part way through the month, quarter, or year? Consider setting ignoreLast t0 true sothat timeseries
doesn't use the partial data in the current time period, leading to a more accurate prediction.

* |s timeseries notreturning any data? If there aren't enough data points to make a good prediction, timeseries returns
null. Try increasing the number of data points.

e s timeseries returninganerror? You could have gaps in your dates or times. Like all good forecasting algorithms, timeseries
needs a continuous set of dates with no gaps, including in each partition. If you think your data has date gaps, try using £111 first.

Example - How Many Tourists Will Visit Next Year?

Suppose that you run a chain of retail stores, and the number of tourists in your city affect your sales. Use timeseries to predict
how many tourists will come to your city next year:

= load "TouristData";
group q by ('Visit Year', 'Visit Month');
= foreach g generate 'Visit Year', 'Visit Month', sum('NumTourist') as 'sum NumTourist';

q
q
a
-- If your data is missing some dates, use fill() before using timeseries|()

-- Make sure that the dateCols parameter in fill () matches the dateCols parameter in
timerseries ()

g = fill g by (dateCols=('Visit Year', 'Visit Month', "Y-M"));

-- Use timeseries () to predict the number of tourists.

59

SAQL Reference

q = timeseries g generate 'sum NumTourist' as Tourists with (length=12,
dateCols=('Visit Year',6 'Visit Month', "Y-M"));

q = foreach g generate 'Visit Year' + "~~~" + 'Visit Month' as 'Visit Year~~~Visit Month',
Tourists;

Use a timeline chart and set a predictive line to see the calculated future data. The resulting graph shows the likely number of tourists
in the future.

Tourists

2015 May Sep 2016 May Sep 2017 May Sep 2018 May Sep 2019
Visit (Year-Month)

Example - Predict a Range With 95% Accuracy

Suppose that you wanted to predict the number of tourists in your city next year with 95% accuracy. Use predictionInterval=95
to set a 95% confidence interval for the number of tourists. The upper and lower bounds are projected as the fields
Tourists high 95 and Tourists low 95.

g = load "TouristData";
q = group q by ('Visit Year', 'Visit Month');
q = foreach g generate 'Visit Year', 'Visit Month', sum('NumTourist') as 'sum NumTourist';

-- If your data is missing some dates, use fill() before using timeseries|()

-- Make sure that the dateCols parameter in fill () matches the dateCols parameter in
timerseries ()

g = fill g by (dateCols=('Visit Year',6 'Visit Month', "Y-M"));

-- use timeseries() to predict the number of tourists

q = timeseries g generate 'sum NumTourist' as 'fTourists' with (length=12,

predictionInterval=95, dateCols=('Visit Year',6 'Visit Month', "Y-M"));

q = foreach g generate 'Visit Year' + "~~~" + 'Visit Month' as 'Visit Year~~~Visit Month',
coalesce (sum NumTourist, fTourists) as 'Tourists', fTourists high 95, fTourists low 95;

Use a timeline chart and set a predictive line to see the calculated future data. In the timeline chart options, select Single Axis for the
Axis Mode, fTourists_high_95 for Measure 1, and fTourists_low_95 for Measure 2. The resulting graph shows the likely number of
tourists in the future and the 95% confidence interval.

Tourists =

Tourists

2015 May Sep 2016 May Sep 2017 May Sep 2018 May Sep 2019

Visit (Year-Month)

60

fimeseries

SAQL Reference union

Example - Predict Seasonal Data

Suppose that you want to predict the revenue for each type of account. You know that your account revenue has yearly seasonality and
that you want to group dates by quarter, so you specify dateCols=('Date Sold Year', 'Date Sold Quarter',
"y-Q") and seasonality = 4.To see the predicted values over the next year, use 1ength=4 to specify four quarters.

= load "Account";

group q by ('Date Sold Year', 'Date Sold Quarter', 'Type');

foreach g generate 'Date Sold Year', 'Date Sold Quarter', 'Type', sum('Amount') as
sum_Amount';

-9 Q9 Q
Il

-- If your data is missing some dates, use fill() before using timeseries ()

-— Make sure that the dateCols parameter in fill () matches the dateCols parameter in
timerseries|()

g = fill g by (dateCols=('Date Sold Year', 'Date Sold Quarter',6 "Y-Q"));

-— use timeseries () to predict the amount sold

q = timeseries g generate 'sum Amount' as Amount with (partition='Type', length=4,
dateCols=('Date Sold Year', 'Date Sold Quarter',6 "Y-Q"), seasonality = 4);

q = foreach g generate 'Date Sold Year' + "~~~" + 'Date Sold Quarter' as

'Date Sold Year~~~Date Sold Quarter', 'Type', Amount ;

Use a timeline chart and set a predictive line to see the calculated future data. The resulting graph shows the likely sum of revenue for
each account, taking into account the quarterly seasonal variation.

Amount

2015 Q2 Q3 Q4 2016 Q2 Q3 T Q4 2018 Q2 Q3 Q4 2019
Date Sold (Year-Quarter)

SEE ALSO:

Forecast Future Data Points with timeseries

union

Combines multiple result sets into one result set. The result sets must have the same field names and structure. You can use a different
dataset to create each result set, or you can use the same dataset.

Syntax

result = union resultSetA, resultSetB [, resultSetC ...];

Example

g = union gl, g2, g3;

61

SAQL Reference union

Example

You want to see how each rep compares to the average for deals won. You can make this comparison by appending these two result
sets together:

e Total amount of opportunities won for each rep
e Average amount of opportunities won for all reps
Then use union to append the two result sets.

First, show the total amount of won opportunities for each rep.

opt = load "DTC Opportunity SAMPLE";
opt filter opt by 'Won' == "true";

—-— group by owner
rep = group opt by 'Account Owner';

-- project the sum of amount for each rep
rep = foreach rep generate 'Account Owner' as 'Account Owner', sum('Amount') as 'sum Amount';

rep = order rep by 'sum Amount' asc;

The resulting graph shows the sum of amount for each rep.

Account Owner Sum of Amount
Laura Garza 31,605,866
Dorcth Gardner 29,543,120
Johnny Green 25672424
Irene Kelley 25,308,421

Next, calculate the average of the sum of the amounts for each rep using the average function.

-- grouping rep by all returns all the data in a single row.
avg rep = group rep by all;

—-— Calculate the average of the Sum of Amount column.

-- Use the text ‘Average Deal Size’ in the ‘Account Owner’ column

avg rep = foreach avg rep generate "Average deal size" as 'Account Owner', avg('sum Amount')
as 'sum Amount';

Because the two data streams have the same field names and structure, you can use union to combine them.
g = union rep, avg_rep;

The resulting graph contains the sum of amounts by each rep together with the average amount per rep.

62

SAQL Reference SAQL Functions

Sum of Amount
SMm 10m 15m 20m 25m 30m

0

Laura Garza

Doroth Gardner

Johnny Green

Account Owner

Irene Kelley

Average deal size

Combine the SAQL fragments to get the complete SAQL statement.

opt
opt

load "DTC Opportunity SAMPLE";
filter opt by 'Won' == "true";

—-— group by owner
rep = group opt by 'Account Owner';

-- project the sum of amount for each rep
rep = foreach rep generate 'Account Owner' as 'Account Owner', sum('Amount') as 'sum Amount';

rep = order rep by 'sum Amount' desc;
-- grouping rep by all returns all the data in a single row.

avg_rep = group rep by all;

-- Calculate the average of the Sum of Amount column.

-- Use the text ‘Average Deal Size’ in the ‘Account Owner’ column

avg _rep = foreach avg rep generate "Average deal size" as 'Account Owner', avg('sum Amount')
as 'sum Amount';

g = union rep, avg_rep;

SEE ALSO:
cogroup

Append Datasets using union

SAQL Functions

Use functions to perform complex operations on your data.

Aggregate Functions
Aggregate functions perform computations across all values of a grouped field.

63

SAQL Reference Aggregate Functions

Date Functions
Use SAQL date functions to perform time-based analysis.

Time Zone Date Functions

When you enable the time zone feature, you can use the fields of the DateTime and DateOnly type toaccess date information
in the specified time zone. For example, if a user in New York runs a SAQL query, they see date information displayed in Eastern
Standard time.

Work with Custom Fiscal Year Data
After inheriting custom fiscal years, SAQL queries support custom fiscal year data.

String Functions
Use SAQL string functions to format your measure and dimension fields.

Math Functions
To perform numeric operations in a SAQL query, use math functions.

Windowing Functions
Use SAQL windowing functionality to calculate common business cases such as percent of grand total, moving average, year and
quarter growth, and ranking.

coalesce
Use coalesce () toget the first non-null value from a list of parameters, or to replace nulls with a different value.

Aggregate Functions

Aggregate functions perform computations across all values of a grouped field.

If you don't precede an aggregate functionbya group by statement, it treats each line as its own group. Using an aggregate function
on an empty set returns null.

avg() or average()
Returns the average of the values of a measure field.

count()

Returns the number of rows that match the query criteria.
first()

Returns the first value for the specified field.

last()

Returns the last value in the tuple for the specified field.
max()

Returns the maximum value of a measure field.
median()

Returns the median value of a measure field.

min()

Returns the minimum value of a measure field.

sum()

Returns the sum of a numeric field.

unique()

Returns the count of unique values.

64

SAQL Reference Aggregate Functions

stddev()
Returns the standard deviation of the values in a field. Accepts measure fields (but not expressions) as input.

stddevp()
Returns the population standard deviation of the values in a field. Accepts measure fields as input but not expressions.

var()
Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

varp()
Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

percentile_cont()
Calculates a percentile based on a continuous distribution of the column value.

percentile_disc()
Returns the value corresponding to the specified percentile.

regr_intercept()

Uses two numerical fields to calculate a trend line, then returns the y-intercept value. Use this function to find out the likely value of
field y when field xiszero.

regr_slope()
Uses two numerical fields to calculate a trend line, then returns the slope. Use this function to learn more about the relationship
between two numerical fields.

regr_r2()
Uses two numerical fields to calculate R-squared, or goodness of fit. Use regr r2 () to understand how well the trend line fits
your data.

grouping()
Returns 1 if null dimension values are due to higher-level aggregates (which usually means the row is a subtotal or grand total),
otherwise returns 0.

SEE ALSO:
group-by

avg () Or average ()

Returns the average of the values of a measure field.

Example - Calculate the Average Amount of an Opportunity Grouped by Type

Use avg () to compare the average size of opportunities for each account type.

q = load "DTC Opportunity";

q = group q by 'Account Type';

q = foreach g generate 'Account Type' as 'Account Type', avg('Amount') as 'avg Amount';
SEE ALSO:

median()

65

SAQL Reference Aggregate Functions

count ()
Returns the number of rows that match the query criteria.

For example, to calculate the number of carriers:
g = foreach g generate 'carrier' as 'carrier', count() as 'count';

count () operateson the stream thatis input to the group or cogroup statement. It doesn't operate on the newly grouped
stream or on an ungrouped stream.

g = load "Carriers";

q = group g by (Year);

g = foreach al generate count(qg) as countYear, count() as count, Year as year;
first()

Returns the first value for the specified field.
Use first () toreturn the first value of a measure or dimension. You can also use £irst () used to return the value of a field

without grouping by that field.

@ Nofte: If the values are not sorted, the 'first' value could be any value in the tuple.

Example - Return the First Industry for an Account Owner

Your reps own opportunities in several industries. You need a list of rep names with their first industry, where industry is sorted
alphabetically. Group by account owner and industry, sort by industry, then use £irst () to get the first industry.

= load "DTC Opportunity SAMPLE";

group q by ('Account Owner', 'Industry');

foreach g generate 'Account Owner' as 'Account Owner', 'Industry' as 'Industry';
= order g by 'Industry';

Q Q9 Q \Q
Il

q = foreach g generate 'Account Owner' as 'Account Owner', first('Industry') as 'One

Industry';
Account Owner One Industry
Bruce Kennedy Agriculture
Chris Riley Agriculture
Dennis Howard Agriculture
Eric Gutierrez Agriculture
Eric Sanchez Agriculture
Evelyn Williamson Agriculture

66

SAQL Reference Aggregate Functions

Example - Return Any Industry for an Account Owner

Your reps own opportunities in several industries. You need a list of rep names with any one of a rep's industry - it doesn't matter which
one. In this case. Group by account owner then use first () to get the first industry from an unsorted collection.

g = load "DTC Opportunity SAMPLE";

q
q = foreach g generate 'Account Owner' as 'Account Owner', first('Industry') as 'One

group q by 'Account Owner';

Industry';

The resulting table displays each rep along with one of their industries (basically the first industry from an unsorted collection).

Account Owner One Industry
Bruce Kennedy Agriculture
Catherine Brown Engineering
Chris Riley Agriculture
Dennis Howard Healthcare
Doroth Gardner Utilities
Eric Gutierrez Education
SEE ALSO:
last()
last()

Returns the last value in the tuple for the specified field.

Use last () toreturnthe last value of a measure or dimension. You can also use last () used to return the value of a field without
grouping by that field.

@ Nofte: If the values are not sorted, the 'last' value could be any value in the tuple.

SEE ALSO:
first()

max ()

Returns the maximum value of a measure field.

67

SAQL Reference Aggregate Functions

Example - Find the Largest Opportunity for Each Account

= load "Ops";
= group g by 'Account Name';

Q Q
([

g = foreach g generate 'Company' as 'Company', max('Amount') as 'Largest Deal';

SEE ALSO:

min()

median ()

Returns the median value of a measure field.

Example - Find the Median Time to Close a Case

Use median () tofind the median amount of time it takes to resolve a case, grouped by company.

g = load "Case";

q = group g by 'Account Name';

q = foreach g generate 'Account Name' as 'Account Name', median('CallDuration') as
'median CallDuration';

q = order q by 'Account Name' asc;

SEE ALSO:

avg() or average()

min ()

Returns the minimum value of a measure field.

Example - Find the Smallest Opportunity For Each Account

g = load "Ops";
g = group g by 'Account Name';
g = foreach g generate 'Company' as 'Company', min ('Amount') as 'Smallest Deal';
SEE ALSO:
max()
sum ()

Returns the sum of a numeric field.

68

SAQL Reference Aggregate Functions

Example - Calculate the Total Meeting Time
Suppose that you have a database of meeting information. Use sum () to see that the total time spent meeting with each account.
g = load "Meetings";

g = group g by 'Company';
q foreach g generate 'Company' as 'Company', sum('MeetingDuration') as 'sum meetings';

unique ()

Returns the count of unique values.

Example - Count the Number of Industries

Use unique () tocount the number of different industries that you have opportunities with.

q = load "DTC Opportunity SAMPLE";
q = group g by all;
q foreach g generate unique('Industry') as 'unique Industry';

stddev ()

Returns the standard deviation of the values in a field. Accepts measure fields (but not expressions) as input.

Example - Look at Variability in Amount

Use stddev () toget a feel for the amount of spread, or dispersion, in the size of your deals.

q = load "DTCOpps";
g = group g by all;
q = foreach g generate stddev('Amount') as 'stddev Amount';

Should | Use stddev () or stddevp()?

Use stddev () when the values in your field are a partial sample of the entire set of values (that is, a partial sampling of the whole
population). Use stddevp () when your field contains the complete set of values (that is, the entire population of values).

SEE ALSO:
stddevp()

stddevp ()

Returns the population standard deviation of the values in a field. Accepts measure fields as input but not expressions.

Example - Calculate the Population Standard Deviation of Amount

Use stddevp () to calculate the population standard deviation of the amount of each opportunity. Group by product family to see
which type of product has the greatest variability in deal size.

q = load "DTC Opportunity SAMPLE";
q

group q by 'Product Family';

69

SAQL Reference Aggregate Functions

q = foreach g generate 'Product Family' as 'Product Family', stddevp('Amount') as
'stddevp_ Amount';

SEE ALSO:
stddev()

var ()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

Example - Calculate the Variance of Deal Amount

q = load "DTC Opportunity SAMPLE";
g = group g by all;
foreach g generate var ('Amount') as 'var Amount';

Q
I

SEE ALSO:
varp()

varp ()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

Example - Calculate the Population Variance of Deal Amount

q = load "DTC Opportunity SAMPLE";

g = group d by all;

q = foreach g generate varp('Amount') as 'var Amount';
SEE ALSO:

var()

percentile_cont()
Calculates a percentile based on a continuous distribution of the column value.
percentile cont(p) within group (order by expr [asc | desc])

percentile cont () acceptsanumeric grouped expression expr and sorts it in the specified order. If order is not specified, the
default orderis ascending. It returns the value behind which (100* p)% of values in the group fall in the sorted order, ignoring null values.

p can be any real numeric value between 0 and 1. expr can be any identifier, such as 'xInt' or 'price’, but cannot be a complex expression,
such as price/100 or ceil(distance), or a literal, such as 2.5.

If expr contains no value that falls exactly at the 100*p-th percentile mark, percentile cont () returns a value interpolated
from the two closest values in expr.

70

SAQL Reference Aggregate Functions

Forexample, if Meal contains the values [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] then:

percentile cont (0.25) within group (order by Meal asc) = 3.25
percentile cont (0.25) within group (order by Meal desc) = 9.75
percentile cont(0) within group (order by Meal asc) = 0
percentile cont(1l) within group (order by Meal asc) = 13

Example - Display the Interpolated Value of the Bottom 15% of Deals

Suppose that you want to see the bottom 15% of deals for each rep. You don't need to see the actual deal size - just the ‘average' size
of the bottom 15%. Use percentile cont (.15).

Amount
120k 160k
Eric Gutierrez
John Williams
Nicolas Weaver
Kelly Frazier
Evelyn Williamson
Chris Riley

Catherine Brown

SEE ALSO:

percentile_disc()

percentile_disc()

Returns the value corresponding to the specified percentile.

percentile disc(p) within group (order by expr [asc | desc])

percentile disc () acceptsanumeric grouped expression expr and sortsitin the specified order. If order is not specified, the
default orderis ascending. It returns the value behind which (100* p)% of values in the group fall in the sorted order, ignoring null values.

p can be any real numeric value between 0 and 1, and is accurate to 8 decimal places of precision. expr can be any identifier, such
as 'xInt' or 'price’, but cannot be a complex expression, such as price/100 or ceil(distance), or a literal, such as 2.5.

If expr contains no value that falls exactly at the 100*p-th percentile mark, percentile disc () returns the next value from
expr inthe sort order.

Forexample, if Meal contains the values [54, 35, 15, 15, 76, 87, 78] then:

percentile disc(0.5) within group (order by Meal) == 54
percentile disc(0.72) within group (order by Meal) == 78

SAQL Reference Aggregate Functions

Example - Rank Your Reps by Top Quartile of Deal Size

Suppose that you want to see which reps close the biggest deals. (The result may be different than the sum of deal amount, if some
reps close a lot of smaller deals). You also want the chart to display the size of actual deals, not an average of deal size. Use
percentile disc(.25) tolookatthe top quarter of the deal size for each rep.

g = load "DTC Opportunity SAMPLE";

q = group g by 'Account Owner';

q foreach g generate 'Account Owner' as 'Account Owner', percentile disc(0.25) within
group (order by 'Amount' desc) as 'Amount';

g = order g by 'Amount' desc;

You can see that 25% of Julie Chavez's deals are bigger than $2.4 million, and 25% of Kelly Frazier's deals are bigger than $2.2 million.
You also know that Julie closed a deal worth$2.4 million, and that number isn't an average.

Amount Measure

Julie Chavez 2.4M

o
=
%]
=

Kelly Frazier

Irene McCoy
Doroth Gardner
John Williams
Eric Sanchez
Laura Garza

Chris Riley

Evelyn Williamson

Account Owner
=

=
=

Dennis Howard
Johnny Green

=
un

SEE ALSO:
percentile_cont()

Show the Top and Bottom Quartile

regr_intercept()

Uses two numerical fields to calculate a trend line, then returns the y-intercept value. Use this function to find out the likely value of
field y when field x iszero.

regr intercept(field y, field x)

field y isagrouped dependent numeric expressionand field x isa grouped independent numeric expression.
regr intercept (field y, field x) usessimple linear regression to calculate the trendline. The inputfields (field y,
field x)mustcontain atleast two pairs of non-null values. This function works with simple grouped values but not with cogroups.

Example - What Is the Likely Amount Won If the Number of Activities Is Zero?

Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

72

SAQL Reference Aggregate Functions

35

30 o

25 ®

20

15 @

Amount Won
®

10

0 2 < 6 8 10 12

Number of Activities

What size of deal can you expect to win if you don't have any activities with anaccount? regr_intercept performsa linearanalysis
on your data then calculates the y-intercept (that is, the value of Amount Won when Number of Activities is zero).

g = load "Data";
g = group g by all;

-—-trunc () truncates the result to two decimal places
q = foreach g generate trunc(regr intercept ('Amount’', 'NumActivities'),2) as intercept;

The projected deal size with no activities is $15.04 million dollars.

Amount with No Activities 1504

SEE ALSO:

regr_slope()

regr_slope ()

Uses two numerical fields to calculate a trend line, then returns the slope. Use this function to learn more about the relationship between
two numerical fields.

regr_slope(field y, field x)

field y isagrouped dependent numeric expressionand field x isa grouped independent numeric expression.
regr_slope(field y, field x) usessimplelinear regression to calculate the trend line. The input fields (field y,
field x)mustcontain atleast two pairs of non-null values. This function works with simple grouped values but not with cogroups.

Example - Calculate the Relationship Between Number of Activities and Deal Amount

Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

73

SAQL Reference Aggregate Functions

35

30 L

25 ®

20

15 ®

Amount Won
@

10

0 2 < 6 8 10 12

Number of Activities

How much bigger with the deal size be for each extra activity? regr slope performs alinear analysis on your data then calculates
the slope (that is, the increased amount you win for each extra activity).

q load "data/sales";
g = group g by all;

-—-trunc () truncates the result to two decimal places
q = foreach g generate trunc(regr slope('Amount', 'NumActivities'),2) as 'Gain per Activity';

Based on your existing data, every extra activity that you have tends to increase the deal size by $1.45 million, on average.

Gain per Activity 145

SEE ALSO:

regr_intercept()

Calculate the Slope of the Regression Line

regr_r2()

Uses two numerical fields to calculate R-squared, or goodness of fit. Use regr r2 () to understand how well the trend line fits your
data.

regr r2(field y, field x)

field y isagrouped dependent numeric expression and field x isa grouped independent numeric expression.
regr r2(field y, field x) usessimplelinearregression to calculate a trend line, then calculates R-squared. If the returned
value is small, then functions like regr _slope () and regr_intercept () are likely to return accurate results.

Theinputfields (field y, field x)mustcontain atleast two pairs of non-null values. This function works with simple grouped
values but not with cogroups.

74

SAQL Reference Aggregate Functions

Example - How Well Does the Calculated Trend Line Fit My Data

Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

35

30 Cr

25 O

20

15 O

Amount Won
O

10

0 2 < 6 8 10 12

Number of Activities

You want to check the calculated trend line for 'goodness of fit' to see how accurate the results from other statistical functions are.

g = load "regression";
q = group g by all;

q foreach g generate trunc(regr r2('Amount', 'NumActivities'),2) as 'R Squared';

The value of R squared is 0.95.

R Squared 095

grouping ()

Returns 1if null dimension values are due to higher-level aggregates (which usually means the row is a subtotal or grand total), otherwise
returns 0.

The grouping () functionis most useful when paired with the ro11up modifieronthe group statement.Invoking grouping ()
lets work with subtotaled data.

Example - Label Subtotaled Data

Suppose that you have a dataset of opportunity information with amounts totaled by lead source and type. Calculate totals with rol1up.
Then use grouping () witha case statement to check whether a row is a total and if it is then label it as "all" values.

g = load "opportunityData";

--Modify the group statement with rollup to calculate subtotals of grouped measures
g = group g by rollup('Type', 'LeadSource');

q order gq by ('Type', 'LeadSource');

75

SAQL Reference

--Determine which rows are totals with grouping(),

g = foreach g generate
(case

end)

when grouping('Type')
else 'Type'
as 'Type',

(case
when grouping ('LeadSource') ==

else 'LeadSource'

== 1 then "All Types"

end) as 'LeadSource',
sum ('Amount') as 'sum Amount';
Type LeadSource Sum of Amount
Existing Business Advertisement 6,870,000
Internet 6,660,000
Partner 9,500,000
Trade Show 39,860,000
Word of mouth 23,400,000
All Lead Sour... 86,290,000
Mew Business | Advertisement S?,?ESO.DDO‘
Partner 6,750,000
Trade Show 7,200,000
Word of mouth 24,310,000
[All Lead Sour... 126,020.00(;
.;AII Types All Lead Sour... 212,310,[)00;

Date Functions

Use SAQL date functions to perform time-based analysis.

Understanding How Date Information is Uploaded to Analytics

1 then

"All Lead Sources"

Date Functions

which returns 1 if a row is a total

When you upload a date field to Analytics, it creates dimension and measure fields to contain the date and time information. You can
use SAQL date functions to convert the dimensions and measures to dates. You can then use the dates to sort, filter, and group data in
your SAQL queries.

For example, suppose that you upload a dataset that contains the CloseDate date field.

76

SAQL Reference Date Functions

"
K4
2018-05-20T00:00:03.000Z Shoes2Go =
ield Label
2018-03-30T00:00:03.000Z FreshMeals
CloseDate
2018-02-25T00:00:03.000Z ZipBikeShare
1 | Field Type
Date w
Date Format
yyyy-MM-dd T HH:mimiss. 555, o
Apply to All Dates
Upload File

During the dataflow processing, Analytics creates these fields. All the fields are dimensions, except for the epoch fields, which are

measures.

Field Description

CloseDate A dimension containing the date and time. For example, 2018-02-25T00:00:03.000Z. You can't use this
string in a date filter. Instead, ‘cast’ it to a date type using toDate ().

CloseDate (Day) Dimension containing the day in the month, for example 30.

CloseDate (Hour) Dimension containing the hour, for example, 11. If the original date did not contain the hour, this field
contains 00.

CloseDate (Minute) Dimension containing the minute, for example, 59. If the original date did not contain the minute, this
field contains 00

CloseDate (Month) Dimension containing the month, for example, 12.

CloseDate(Quarter) Dimension containing the quarter, for example, 4.

CloseDate (Second) Dimension containing the second, for example, 59. If the original date did not contain the second, this
field contains 00.

CloseDate (Week) Dimension containing the week, for example, 52.

CloseDate_day_epoch Measure containing the UNIX epoch time, which is the number of days that have elapsed since 00:00:00,
Thursday, 1 January 1970.

CloseDate_sec_epoch Measure containing the Unix epoch time in seconds. Seconds epoch time is the number of seconds

that have elapsed since 00:00:00, Thursday, 1 January 1970.

77

SAQL Reference Date Functions

Analytics creates fields endingin _ Fiscal for dates associated with a custom fiscal year. Querying dates with this field works the
same way as it does for standard fiscal years.

daysBetween()
Returns the number of days between two dates. This function is only valid ina foreach statement.

date_diff()
Returns the amount of time between two dates. This function is only valid ina foreach statement.

now()

Returns the current datetime in UTC. This function is only valid ina foreach statement.

date()

Returns a date that can be used in a filter. This function takes a year, a month, and a day dimension as input.

toDate()

Converts a string or Unix epoch seconds to a date. Returns a date that can be used in another function such as daysBetween (
). The returned date cannot be used in a filter.

date_to_epoch()
Converts a date to Unix epoch seconds.

date_to_string()
Converts a date to a string.

toString()
Converts a date to a string.

Time-Based Filtering

SAQL gives you many ways to specify the range of dates that you want to look at, such as "all ops from the last fiscal quarter" or "all
cases from the last seven days".

Day in the Week, Month, Quarter, or Year

Returns the day in the specified time period for a given date. These functions answer questions like "do we close more deals at the
beginning or end of a quarter?".

First Day in the Week, Month, Quarter, or Year
Returns the date of the first day in the specified week, month, quarter, or year.

Last Day in the Week, Month, Quarter, or Year
Returns the date of the last day in the specified week, month, quarter, or year.

Number of Days in the Month, Quarter, or Year
Returns the number of days in the month, quarter, or year for the specified date.

SEE ALSO:

Analyze Your Data Over Time

daysBetween ()

Returns the number of days between two dates. This function is only valid in a foreach statement.

78

SAQL Reference Date Functions

Syntax
daysBetween (datel, date2)
datel specifies the start date.

date2 specifies the end date.

Usage
If datel isafter date2, the number of days returned is a negative number.

Youmustuse daysBetween () ina foreach () statement. You cannot use thisfunctionin group by, order by,or filter
statements.

Example

How many days did it take to close each opportunity? Use daysBetween ().

q = load "DTC Opportunity";

a foreach g generate daysBetween (toDate (Created Date sec epoch),
toDate (Close Date sec epoch)) as 'Days to Close';

g = order g by 'Days to Close';

Example

How long has each opportunity been open for, in days? Use daysBetween () and now ().

q = load "DTC Opportunity";

g = filter g by 'Closed' == "false";
q = foreach g generate daysBetween (toDate (Created Date sec epoch), now()) as 'Days to
Close';

g = order g by 'Days to Close';

SEE ALSO:
date_diff()

Calculate How Long Activities Take

date diff ()

Returns the amount of time between two dates. This function is only valid ina foreach statement.

Syntax

date diff (datepart,startdate,enddate)
datepart specifies how you want to measure the time interval:
® year

® month

® Jguarter

® day

79

SAQL Reference Date Functions

* week

® hour

® minute

® second

startdate specifies the start date.

enddate specifies the end date.

Usage
Returns the time difference between two dates in years, months, or days. For example,

date diff ("year", toDate("31-12-2015", "dd-MM-yyyy"), toDate("1-1-2016", "dd-MM-yyyy"))
returns 1.

If startdate isafter enddate, the difference is returned as a negative number.

Youmustuse date diff () ina foreach () statement.You cannot use this functionin group by, order by,or filter
Sstatements.

The maximum amount of time returned is 9,223,372,036,854,775,807 nanoseconds. This maximum amount of time can be measured
in any supported datepart value (nanoseconds aren't supported). For example, in days, the maximum amount of time returned is
106,751.99 days (excluding leap seconds).

Example - How Many Weeks Did Each Opportunity Take to Close?
Use date diff () with datepart = week to calculate how long, in weeks, it took to close each opportunity.

q = load "DTC Opportunity";

q foreach g generate date diff ("week", toDate(Created Date sec epoch),
toDate (Close Date sec epoch)) as 'Weeks to Close';

g = order g by 'Weeks to Close';

Example - How Long Ago Was an Opportunity Closed?

Use date diff () with datepart = month to calculate how many months have passed since each opportunity closed. Use
now () asthe end date.

q = load "DTC Opportunity";

g = foreach g generate date diff ("month", toDate(Close Date sec epoch), now()) as 'Months
Since Close';

g = order g by 'Months Since Close';

SEE ALSO:
daysBetween()
now()

Calculate How Long Activities Take

now ()

Returns the current datetime in UTC. This function is only valid ina foreach statement.

80

SAQL Reference Date Functions

Syntax

now ()

Usage

This function is commonly used with daysBetween (), date diff (),and date to string().

Example

How long ago was each opportunity created, in weeks? Use date diff (), datepart = week,and now ().

g = load "DTC Opportunity";

q = foreach g generate date diff ("week", toDate(Created Date sec epoch), now()) as 'Weeks
to Close';

g = order g by 'Weeks to Close';

Example

What is the date today? Use now () inside date to string().
g = load "DTC Opportunity";
-- Notice how the ' character is escaped with the \ character in 'Today\'s

g = foreach g generate date to string(now(), "yyyy-MM-dd") as 'Today\'s Date';

SEE ALSO:
date_diff()

date ()

Returns a date that can be used in a filter. This function takes a year, a month, and a day dimension as input.

Syntax

date (year, month, day)

Usage
Specify the year, month, and day. For example:

date ('OrderDate Year', 'OrderDate Month', 'OrderDate Day')

Example

Which opportunities have your reps closed in the past 30 days? Use date () to select records with a close date in the past 30 days.

q = load "DTC Opportunity";

-- use date() to create a date that you can use in a filter
-— 'Close Date Year', 'Close Date Month', and 'Close Date Day' are date fields in the

81

SAQL Reference Date Functions

DTC Opportunity data set

g = filter g by date('Close Date Year',K 'Close Date Month', 'Close Date Day') in ["30 days
ago".."current day"];

g = group g by 'Account Owner';

q = foreach g generate 'Account Owner' as 'Account Owner', sum('Amount') as 'sum Amount';
q

order q by 'Account Owner' asc;

SEE ALSO:
toDate()
Time-Based Filtering

toDate ()

Converts a string or Unix epoch seconds to a date. Returns a date that can be used in another function such as daysBetween ().
The returned date cannot be used in a filter.

Syntax
toDate (string [, formatString])
Ifa formatString argumentisn't provided, the function uses the format yyyy-MM-dd HH:mm:ss

toDate (epoch_seconds)

@ Nofe: Be sure to use the sec_epoch field and not the day_epoch field.

Example: Display the Number of Days Since an Opportunity Opened

Suppose that you have an opportunity dataset with the account name and the epoch seconds fields:

Account OrderDate_sec_epoch
Shoes2Go 1,521,504,003
FreshMeals 1,521,158, 403
ZipBikeShare 1,518,739,203

You want to see how many days ago an opportunity was opened. Use daysBetween () and now ().Use toDate () toconvert
the order date epoch seconds to a date format that can be passed to daysBetween ().

g = load "OpsDatesl";

q = foreach g generate Account, daysBetween (toDate (OrderDate sec epoch), now()) as
'daysOpened';

The resulting data stream displays the number of days since the opportunity was opened.

82

SAQL Reference Date Functions

Account daysOpened
Shoes2Go 66
FreshMeals 70
ZipBikeShare 98

@ Nofe: Because dates are sorted lexicographically, changing the date format also changes the sort order.

SEE ALSO:
date()

date_to_epoch()

Converts a date to Unix epoch seconds.

Syntax

date to epoch (date)

date_to_string()

Converts a date to a string.

Syntax

date to string(date, formatString)

@ Note: This function isidentical to toString ().

Usage

This function must take a toDate () or now () function as its first argument.

Example

q = foreach g generate date to string(now(), "yyyy-MM-dd HH:mm:ss") as dsl;

toString()

Converts a date to a string.

Syntax

toString (date, formatString)

@ Note: This function is identical to date to_string().

83

SAQL Reference Date Functions

Usage

This function must take a toDate () or now () function as its first argument.

Example

g = foreach g generate toString(now(), "yyyy-MM-dd HH:mm:ss") as dsl;

Time-Based Filtering

SAQL gives you many ways to specify the range of dates that you want to look at, such as "all ops from the last fiscal quarter” or "all cases
from the last seven days".

Using Date Ranges in Filters
Use these filters to specify the date range you want to look at:

e Fixed date range, for example between August 1, 2018 and June 2, 2017
e Relative date range, for example between two years ago and last month
e Open-ended ranges, for example before 04/2/2018

e Add and subtract dates, for example all records from three months before yesterday

Example: Display Opportunities Closed This Month

Suppose that you want to see which opportunities closed this month. Your data includes the account name, the close date fields, and
the epoch seconds field.

Account CloseDate (Year) CloseDate (Month) CloseDate_sec_epoch CloseDate (Day)
Shoes2Go 2018 05 1,526,774,403 20
FreshMeals 2018 03 1,522,368,003 30
ZipBikeShare 2018 02 1,519,516,803 25

Use date () togenerate the close date in date format. Then use relative date ranges to filter opportunities closed in the current month.

g = load "OpsDatesl";

q = filter g by date(’CloseDate Year’, ‘CloseDate Month’, ‘CloseDate Day’) in ["current
month" .. "current month"];

g = foreach g generate Account;

If the query is run in May 2018, the resulting data stream contains one entry:

Account

Shoes2Go

To add the close date in a readable format, use toDate ().

q = load "OpsDatesl";
e} filter g by date('CloseDate Year', 'CloseDate Month', 'CloseDate Day') in ["current

84

SAQL Reference Date Functions

month" .. "current month"];
q = foreach g generate Account, toDate('CloseDate sec epoch') as 'Close Date';

The resulting data stream includes the full date and time of the close date.

Account Close Date

Shoes2Go 2018-05-20 00:00:03

You can also display just the month and day of the close date.

q load "OpsDatesl";

g = filter g by date('CloseDate Year', 'CloseDate Month', 'CloseDate Day') in ["current
month" .. "current month"];

g = foreach g generate Account, 'CloseDate Month' + "/" + 'CloseDate Day' as 'Close Date';

The resulting data stream contains the month and day of the close date.

Account Close Date

Shoes2Go 05/20

Fixed Date Ranges

Use dateRange () to specify a fixed range of dates in a filter:
dateRange (startArray y m d, endArray y m d)

startArray y m_disanarray that specifies the start date
endArray y m_d isan array that specifies the end date

For example, return all records between October 2, 2014 and August 16, 2016:

q = filter g by date('Created Date Year',K 'Created Date Month', 'Created Date Day') in
[dateRange ([2014,10,2], [2016,8,16]1)1;

Relative Date Ranges

Use relative date ranges to answer questions such as "how many opportunities did each rep close in the past fiscal quarter"? To specify
arelative date range, use the in operator on an array with relative date keywords. For example, return all records from one year ago
up to and including the current year.

q = filter g by date('Close Date Year', 'Close Date Month', 'Close Date Day') in ["1 year
ago".."current year"];

Return all records from two quarters ago, up to and including two quarters from now.

g = filter g by date('Close Date Year', 'Close Date Month', 'Close Date Day') in ["2
quarters ago".."2 quarters ahead"];

Return all records from the last two fiscal years, up to and including today.

g = filter g by date('Close Date Year', 'Close Date Month', 'Close Date Day') in ["2
fiscal years ago".."current day"];

Use these relative date keywords:

85

SAQL Reference Date Functions

e current day

e nday(s)ago

® nday(s) ahead

e current week

e nweek(s) ago

e nweek(s) ahead

e current month

e nmonth(s) ago

e nmonth(s) ahead

e current quarter

e nquarter(s) ago

e nquarter(s) ahead

e current fiscal_quarter
e nfiscal_quarter(s) ago
e nfiscal_quarter(s) ahead
e current year

® nyear(s) ago

® nyear(s) ahead

e current fiscal_year

e nfiscal_year(s) ago

e nfiscal_year(s) ahead

@ Note: Only standard fiscal periods are supported. See "About Fiscal Years" in Salesforce Help.

Open-Ended Date Ranges

Use open-ended date ranges for queries such as "List all opportunities closed after 12/23/2014". For example, return all records up to
and including the current month.

q = filter g by date('Close Date Year', 'Close Date Month', 'Close Date Day') in [.."1
year ago"l];

You can also specify a closed relative date range. For example, return all records from three years ago up to and including today.

q = filter g by date('Close Date Year', 'Close Date Month', 'Close Date Day') in ["3 years
ago"..];

Add and Subtract Dates

You can add and subtract dates using the relative date keywords. For example, return all records from one year ago, up to and including
today.

q = filter g by date('Close Date Year', 'Close Date Month', 'Close Date Day') in ["current
day - 1 year"..];

86

SAQL Reference Date Functions

Return all records from today up to two years and three months from now.

q = filter g by date('Close_Date Year', 'Close Date Month', 'Close Date Day') in ["current
day".."2 years ahead + 3 months"];

SEE ALSO:
date()
Display the Opportunities Closed This Month

Day in the Week, Month, Quarter, or Year

Returns the day in the specified time period for a given date. These functions answer questions like "do we close more deals at the
beginning or end of a quarter?".

Example

Suppose that you want to see on which day of the week most deals are closed. Use day in week (date).

a load "Data";

q = foreach g generate day in week (toDate('Close Date sec epoch')) as 'Day In Week Closed';
g = group g by 'Day In Week Closed';

g = foreach g generate 'Day In Week Closed' as 'Day In Week Closed', count() as 'count';
order g by 'count' desc;

Q
1

The resulting data displays the number of opportunities closed, grouped by the day of the week that the opportunities were closed on.

Count of Rows Measure

o

10 20 30 40 CountofRows B

2

Day In Week Closed
[
I I
&

It looks like most opportunities are closed on Thursday (day 5).

SAQL Reference Date Functions

day in week (date)
Returns an integer representing the day of the week for a specific date. For example, 1 = Sunday, 2 = Monday.

q = foreach g generate day in week(toDate('Close Date sec epoch')) as 'Day In Week Closed';

day in month (date)
Returns an integer representing the day of the month for a specific date.

q = foreach g generate day in month(toDate('Close Date sec epoch')) as 'Day in Month
Closed';

day in quarter (date)
Returns an integer representing the day of the quarter for a specific date.

q = foreach g generate day in quarter (toDate('Close Date sec epoch')) as 'Day in Quarter
Closed';

day in year (date)
Returns an integer representing the day of the year for a specific date.

q = foreach g generate day in year (toDate('Close Date sec epoch')) as 'Day in Year Closed';

First Day in the Week, Month, Quarter, or Year

Returns the date of the first day in the specified week, month, quarter, or year.

Usage
Use these functionsina foreach () statement. You cannot use themin group by, order by, or filter statements.

Use the functions whose names begin with week, month, quarter,and year with standard calendar year dates. Use the functions
whose names begin with £iscal with fiscal year dates.

@ Note: You can't use fiscal date functions in recipes and dataflow transformations.

week first day(date)
Returns the date of the first day of the week for the specified date.

q = foreach g generate week first day(toDate('Close Date sec epoch')) as 'Week First Day';

@ Note: This function always countsthe £irstDayOfWeek as 0 (Sunday). It overrides the £irstDayOfWeek parameter
for sfdcDigestTransformation and CSV uploads.

88

SAQL Reference Date Functions

fiscal week first day(date)

Returns the fiscal date of the first day of the week for the specified date.

q = foreach g generate fiscal week first day(toDate('Close Date sec _epoch')) as 'Fiscal
Week First Day';

@ Note: This function respects the firstDayOfWeek parameter for sfdcDigestTransformation and CSV uploads.
The default value is 0 (Sunday).

month first day(date)

Returns the date of the first day of the month for the specified date.

q = foreach g generate month first day(toDate('Close Date sec epoch')) as 'Month First
Day';

fiscal month first day(date)
Returns the fiscal date of the first day of the month for the specified date.

q = foreach g generate fiscal month first day(toDate('Close Date sec epoch')) as 'Fiscal
Month First Day';

quarter first day(date)

Returns the date of the first day of the quarter for the specified date.

q = foreach g generate quarter first day(toDate('Close Date sec epoch')) as 'Quarter First
Day';

fiscal quarter first day(date)

Returns the fiscal date of the first day of the quarter for the specified date.

q = foreach g generate fiscal quarter first day(toDate('Close Date sec epoch')) as 'Fiscal
Quarter First Day';

year first day(date)
Returns the date of the first day of the year for the specified date.

g = foreach g generate year first day(toDate('Close Date sec epoch')) as 'Year First day';

@ Nofte: This function always returns 1st January.

89

SAQL Reference Date Functions

fiscal year first day(date)

Returns the fiscal date of the first day of the year for the specified date.

q = foreach g generate fiscal year first day(toDate('Close Date sec epoch')) as 'Fiscal
Year First Day';

SEE ALSO:

Date Formats and Fiscal Dates for Source Data

Last Day in the Week, Month, Quarter, or Year

Returns the date of the last day in the specified week, month, quarter, or year.

Usage
Use these functionsina foreach () statement. You cannot use themin group by, order by, or filter Statements.

Use the functions whose names begin with week, month, quarter,and year with standard calendar year dates. Use the functions
whose names begin with £iscal with fiscal year dates.

@ Note: You can't use fiscal date functions in recipes and dataflow transformations.

week last day(date)

Returns the date of the last day of the week for the specified date.

@ Nofe: This function always counts the £irstDayOfWeek as 0 (Sunday). It overrides the firstDayOfWeek parameter
for sfdcDigestTransformation and CSV uploads.

q = foreach g generate week last day(toDate('Close Date sec epoch')) as 'Week Last Day';

fiscal week last day(date)

Returns the fiscal date of the last day of the week for the specified date.

@ Nofte: This function respects the firstDayOfWeek parameter for sfdcDigestTransformation and CSV uploads.
The default value is 0 (Sunday).

q = foreach g generate fiscal week last day(toDate('Close Date sec _epoch')) as 'Fiscal
Week Last Day';

month last day(date)

Returns the date of the last day of the month for the specified date.

q = foreach g generate month last day(toDate('Close Date sec epoch')) as 'Month Last Day';

90

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_integrate_date_formats_and_fiscal_dates.htm&language=en_US#bi_integrate_date_formats_and_fiscal_dates

SAQL Reference Date Functions

fiscal month last_day(date)

Returns the fiscal date of the last day of the month for the specified date.

q = foreach g generate fiscal month last day(toDate('Close Date sec _epoch')) as 'Fiscal
Month Last Day';

quarter last day(date)

Returns the date of the last day of the quarter for the specified date.

q = foreach g generate quarter last day(toDate('Close Date sec epoch')) as 'Quarter Last
Day';

fiscal quarter last day(date)

Returns the fiscal date of the last day of the quarter for the specified date.

g = foreach g generate fiscal quarter last day(toDate('Close Date sec epoch')) as 'Fiscal
Quarter Last Day';

year last day(date)

Returns the date of the last day of the year for the specified date.

q = foreach g generate year last day(toDate('Close Date sec epoch')) as 'Year Last Day';

@ Nofe: This function always returns 31st December. You can use it to find the number of days to the year end.

fiscal year last day(date)

Returns the fiscal date of the last day of the year for the specified date.

q = foreach g generate fiscal year last day(toDate('Close Date sec epoch')) as 'Fiscal
Year Last Day';

SEE ALSO:

Date Formats and Fiscal Dates for Source Data

Number of Days in the Month, Quarter, or Year

Returns the number of days in the month, quarter, or year for the specified date.

month days (date)

Returns the number of days in the month for the specified date.

g = foreach g generate month days(toDate('Close Date sec epoch')) as 'Billing Days In
Month';

91

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_integrate_date_formats_and_fiscal_dates.htm&language=en_US#bi_integrate_date_formats_and_fiscal_dates

SAQL Reference Time Zone Date Functions

quarter days (date)
Returns the number of days in the quarter for the specified date.

q = foreach g generate quarter days(toDate('Close Date sec epoch')) as 'Billing Days In
Quarter;

year days (date)
Returns the number of days in the year for the specified date.

q = foreach g generate year days(toDate('Close Date sec epoch')) as 'Billing Days In Year;

Time Zone Date Functions

When you enable the time zone feature, you can use the fields of the DateTime and DateOnly type to access date information
in the specified time zone. For example, if a user in New York runs a SAQL query, they see date information displayed in Eastern Standard
time.

@ Nofe: In SAQL, the DateOn1ly type displays the date with an empty timestamp, for example, “2014-12-31 00:00:00." The
inclusion of the timestamp is a limitation of the beta release.

Use Time Zone-Enabled Dates in SAQL Projections
You can project an exact date such as 2017-3-31 23:59:59 or part of a date such as year, month, or day.

Access Date Functions with Time Zone Enabled

Use these functions to get the day, week, year, and other parts of DateTime or DateOn1ly fields. The return values are numbers.
Group By Date

You can group the result of your SAQL query by DateTime and DateOnly fields.

Order By Date

You can order the result of your SAQL queries by DateTime or DateOnly.

Filter By Date
You can filter results by DateTime and DateOn1ly fields. Filters can include exact dates, specific date ranges, or relative date
ranges.

Calculate the Time Between Two Dates
Use date diff () and daysBetween () to calculate the time between two dates.

Convert Dates to and from Strings
You can convert dates to strings.

Handle Null Dates
Use is not null tofilter out null dates.

Determine the Day in the Week, Month, Quarter, or Year
These functions return the day of the week, month, quarter, or year, the date of the last day of the week, month, quarter, or year,
and the number of days in the quarter or year.

Use Time Zone-Enabled Dates in SAQL Projections

You can project an exact date such as 2017-3-31 23:59:59 or part of a date such as year, month, or day.

92

SAQL Reference Time Zone Date Functions

Project the entire CloseDate field to seethe CloseDate field forarecord. CloseDate canbea DateTime or DateOnly
type.

g = foreach g generate CloseDate as 'Close Date';
Project the year, month, day, and epoch date for a record.

g = foreach g generate year('CloseDate') as 'Year', month('CloseDate') as 'Month',
day ('CloseDate') as 'Day', epochSecond('CloseDate') as 'Seconds Epoch';

Access Date Functions with Time Zone Enabled

Use these functions to get the day, week, year, and other parts of DateTime or DateOn1ly fields. The return values are numbers.
® vyear (DateTime | DateOnly)

® quarter (DateTime | DateOnly)

®* month (DateTime | DateOnly)

® week (DateTime | DateOnly)

® day (DateTime | DateOnly)

® minute (DateTime | DateOnly)

® second (DateTime | DateOnly)

e fiscalYear (DateTime | DateOnly)

® fiscalQuarter (DateTime | DateOnly)
e fiscalMonth (DateTime | DateOnly)

e fiscalWeek (DateTime | DateOnly)

® epochDay (DateTime | DateOnly)

® epochSecond(DateTime | DateOnly)

Examples

Use year (), month (),and day () to project the year, month, and day for each record. CloseDate canbea DateTime or
DateOnly type.

g = foreach g generate year('CloseDate') as "Year", month('CloseDate') as "Month",
day ('CloseDate') as "Day";

Use month () to find results that closed in December.
g = filter g by month('CloseDate') == 12;
Use month () to order opportunities by month of close date.

g = order g by month('CloseDate');

93

SAQL Reference Time Zone Date Functions

Group By Date
You can group the result of your SAQL query by DateTime and DateOnly fields.
g = group q by 'CloseDate';

CloseDate canbe DateTime or DateOnly. You can also group by date parts. For example, you can group orders by year and
then month.

g = group g by year ('OrderDate'), month('OrderDate');
You can use the DateTime or DateOnly field to cogroup two datasets. For example, you can group two datasets by year.

= load datasetl;

load dataset2;

group a by year ('CloseDate'), b by year('CloseDate');

foreach ¢ generate year(a.'CloseDate') as 'CloseDate A', year(b.'CloseDate') as
Close Date B', sum(a.Amount) as 'Sum of Amount';

-D® Q O o
Il

Order By Date

You can order the result of your SAQL queries by DateTime or DateOnly.

Use the date part to order by date before the projection. For example, you can order results by the year that they closed.
g = order g by year ('CloseDate');

To order by date after the projection, use the field you created by projecting a date part. For example, you can order results by the year
that they closed.

e} foreach g generate year('CloseDate') as "Year Closed";

g = order g by 'Year Closed';

Filter By Date

You canfilter resultsby DateTime and DateOn1y fields. Filters can include exact dates, specific date ranges, or relative date ranges.

Type of Filter Example
exact date range .

q = filter g by year('CloseDate')=='2018";
specific date range ,)

g = filter g by year('CloseDate') in

[2017..2018];

relative date range

q = filter g by CloseDate in ["last 2

years"];
g = filter CloseDate in ["current
fiscal year".."current day"];

g = filter CloseDate in ["2 fiscal years
ago".."current day"];

94

SAQL Reference

Time Zone Date Functions

@ Nofte: Filter with binary comparison operators ==, !=, <, >, <=,and >= only after your query’s foreach statement,
post-projection. For example, include thefilter g = filter g by CloseDate >= "2014-01-01" post-projection.
If you include it pre-projection, the query throws an error. The inability to include filters that use these comparison operators

pre-projection is a limitation of the beta release.

You can filter pre- and post-projection with the IN comparison operator. The 1ike and matches operators are not supported
for time zone-enabled DateTime and DateOnly fields.

You can use these relative date keywords:
® current day

® n day(s) ago

® n day(s) ahead

® current week

®* n week(s) ago

® n week(s) ahead

® current month

® n month(s) ago

®* n month(s) ahead

® current quarter

® n quarter(s) ago

® n quarter(s) ahead

® current fiscal quarter
® n fiscal quarter(s) ago
® n fiscal quarter(s) ahead
® current year

® n year(s) ago

® n year(s) ahead

® current fiscal year

® n fiscal year(s) ago

® n fiscal year(s) ago

SEE ALSO:
filter

Comparison Operators

Calculate the Time Between Two Dates

Use date diff () and daysBetween () to calculate the time between two dates.

Use now () to getthe current time. You can use these functions with DateTime, DateOnly, or Date types.

date_diff(datepart, startdate, enddate)

Returns an integer representing the interval that has elapsed between two dates.

95

SAQL Reference Time Zone Date Functions

daysBetween(date1, date2)
Returns the number of days between two dates as an integer.

now()
Returns current datetime in the specified time zone. This function is valid only ina foreach statement.

date diff (datepart, startdate, enddate)

Returns an integer representing the interval that has elapsed between two dates.

datepart The part of the date to use when calculating the difference. Allowed
values are:

® vyear

®* month

® quarter
® day

* week

® hour

® minute

® second

startdate The start date of the interval.

enddate The end date of the interval.

The difference between two dates is calculated based on the difference in the indicated date parts. For example, the year difference
between two dates is calculated by subtracting the year part of startdate from the year part of enddate.

Suppose OrderDate and ShipDate are DateOnly types. The order date is 31-1-2017 and the ship date is 1-2-2018.

The year difference between the order date and ship date is 1.
date diff ("year", 'OrderDate' 'ShipDate');
The month difference between the order date and ship date is 2.
date diff ("month", 'OrderDate' 'ShipDate');

If startdate is after enddate, the result is a negative integer.

daysBetween (datel, date2)
Returns the number of days between two dates as an integer.

For example, display the number of days to close a deal. OpenDate and CloseDate fields canbe DateTime or DateOnly.

g = foreach g generate daysBetween ('OpenDate', 'CloseDate') as "Days to Close";

now ()

Returns current datetime in the specified time zone. This function is valid only ina foreach statement.

96

SAQL Reference Time Zone Date Functions

Display the number of days an account is opened.

q = foreach g generate Account, daysBetween ('OrderDate', now()) as "daysOpened";

Convert Dates to and from Strings

You can convert dates to strings.

date_to_string(DateTime | DateOnly, formatString)
Converts a date to a string.

toDateTime(epoch)
Converts an epochtoa DateTime type.

toDateTime(string, format)
Converts a date in string format to a DateTime type. format specifies the date format and can be any valid date format.

toDateOnly(epoch)
Converts an epoch toa DateOnly type.

toDateOnly(string, format)
Converts a date in string format to a DateOnly type. format specifies the date format and can be any valid date format.

date_to_string(DateTime | DateOnly, formatString)
Converts a date to a string.

This function takes a DateTime, DateOnly, or now () asits first argument. For the allowed formats, see the Analytics External
Data Format Reference.

Use date to_string() todisplay the close date for your opportunities in the format yyyy-mm-dd.

q = foreach g generate date to string('CloseDate', "yyyy-MM-dd") as "Close Date";

toDateTime (epoch)

Converts an epoch to a DateTime type.

g = foreach g generate toDateTime (epoch) as "DateTime";

toDateTime (string, format)
Converts a date in string format to a DateTime type. format specifies the date format and can be any valid date format.

q = foreach g generate toDateTime ('CloseDate',"yyyy/MM/dd") as DateTime;

toDateOnly (epoch)

Converts an epoch to a DateOnly type.

g = foreach g generate toDateOnly(epoch) as "DateTime";

97

https://developer.salesforce.com/docs/atlas.en-us.240.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.240.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_overview.htm

SAQL Reference

toDateOnly (string, format)

Time Zone Date Functions

Converts a date in string format to a DateOnly type. format specifies the date format and can be any valid date format.

d

= foreach g generate toDateOnly('CloseDate',"yyyy/MM/dd")

Handle Null Dates

Use is not null tofilter out null dates.

q
q

Projecting null values does not cause an error. For example, this Date Closed field is empty, but no error occurs.

g
q

Determine the Day in the Week, Month, Quarter, or Year

= filter g by 'CloseDate' is not null;

foreach g generate 'CloseDate';

filter g by year('CloseDate') is null;

= foreach g generate year('CloseDate') as "Date Closed";

as DateTime;

These functions return the day of the week, month, quarter, or year, the date of the last day of the week, month, quarter, or year, and
the number of days in the quarter or year.

day_in_week(date)

Returns an integer representing the day of the week for a specific date. 1 = Sunday, 2 = Monday and so on.

day_in_month(date)

Returns an integer representing the day of the month for a specific date.

day_in_quarter(date)

Returns an integer representing the day of the quarter for a specific date.

day_in_year(date)

Returns an integer representing the day of the quarter for a specific date.

week_last_day(date)
Returns the date of the last day of the week for a specific date.

year_last_day(date)
Returns the date of the last day of the year for a specific date.

quarter_last_day(date)
Returns the date of the last day of the quarter for a specific date.

month_days(date)
Returns the number of days in the month for a specific date.

quarter_days(date)
Returns the number of days in the quarter for a specific date.

year_days(date)
Returns the number of days in the year for a specific date.

98

SAQL Reference Time Zone Date Functions

day in week (date)
Returns an integer representing the day of the week for a specific date. 1 = Sunday, 2 = Monday and so on.

q = foreach g generate day in week ('OrderDate') as "Day in Week";

day in month (date)
Returns an integer representing the day of the month for a specific date.

q = foreach g generate day in month('OrderDate') as "Day in Month";

day in quarter (date)
Returns an integer representing the day of the quarter for a specific date.

q = foreach g generate day in quarter('OrderDate') as "Day in Quarter";

day in_ year (date)
Returns an integer representing the day of the quarter for a specific date.

q = foreach g generate day in quarter ('OrderDate') as "Day in Quarter";

week last day (date)

Returns the date of the last day of the week for a specific date.

q = foreach g generate week last day('BillDate') as "Week Last Day";

year last day (date)

Returns the date of the last day of the year for a specific date.

q = foreach g generate year last day('BillDate') as "Year Last Day";

@ Note: This function always returns December 31. It's included for uses such as finding the number of days to the year end and
for use in a specific locale.

quarter last day (date)

Returns the date of the last day of the quarter for a specific date.

q = foreach g generate quarter last day('BillDate') as "Quarter Last Day";

month days (date)

Returns the number of days in the month for a specific date.

q = foreach g generate month days(BillDate) as "Days in Billing Month";

99

SAQL Reference Work with Custom Fiscal Year Data

quarter_days (date)
Returns the number of days in the quarter for a specific date.

q = foreach g generate quarter days(BillDate) as "Days in Billing Quarter";

year days (date)
Returns the number of days in the year for a specific date.

q = foreach g generate year days(BillDate) as "Days in Billing Year";

Work with Custom Fiscal Year Data

After inheriting custom fiscal years, SAQL queries support custom fiscal year data.

Analytics supports custom fiscal year data by generating new fields that describe the custom fiscal year. Each of these new fields is
named withthe Fiscal suffix. By working with these fields, SAQL supports custom fiscal year data.

Make sure that a dataset's dataflow has run after inheriting custom fiscal years and before writing SAQL based on custom fiscal year data.

Each of the queries in the examples is based off the following dataset. These examples presume that Analytics inherited custom fiscal
years that begin on February 1 and end on January 31. Custom fiscal years are defined from 2017 until 2022.

@ Nofe: You can't use custom fiscal year data with the fill or timeseries statements.

Opportunity Name Created Date Amount
Widgets 2/15/2017 100
Widgets 1/25/2018 200
Widgets 3/30/2018 100
Widgets 3/30/2019 100
Widgets 3/30/2020 100
Widgets 3/30/2021 100
Widgets 3/30/2022 100

Group by a Custom Fiscal Year
Here’s how to group by a custom fiscal year.

Filter by a Custom Fiscal Year
Here's how to filter by a custom fiscal year date.

Dates Outside Ranges Defined by Custom Fiscal Year
If your query includes a date that falls outside of a range defined by an inherited fiscal year, SAQL does not return data for that date.

SEE ALSO:

Date Formats and Fiscal Dates for Source Data

100

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_integrate_date_formats_and_fiscal_dates.htm&language=en_US#bi_integrate_date_formats_and_fiscal_dates

SAQL Reference Work with Custom Fiscal Year Data

Group by a Custom Fiscal Year

Here’s how to group by a custom fiscal year.

@ Example:

g = load "opportunities";
q
q

group q by 'CreatedDate Year Fiscal';
foreach g generate
'CreatedDate Year Fiscal' as 'Fiscal Year',

count () as 'count';
g = order g by 'CreatedDate Year Fiscal' asc;
qg = limit g 2000;

The query returns:

Fiscal Year Count
2017 2
2018 1
2019 1
2020 1
2021 1
2022 1

Filter by a Custom Fiscal Year

Here's how to filter by a custom fiscal year date.

@ Example:

g = load "opportunities";
g = filter g by date('CreatedDate Year', 'CreatedDate Month', 'CreatedDate Day') in
["current fiscal year".."current fiscal year"];
q = group q by 'CreatedDate Year Fiscal';
q = foreach g generate
'CreatedDate Year Fiscal' as 'Fiscal Year',
count () as 'count';
q = order q by 'CreatedDate Year Fiscal' asc;
qg = limit g 2000;

Here's the query output.

Fiscal Year Count

2020 1

101

SAQL Reference Work with Custom Fiscal Year Data

Dates Outside Ranges Defined by Custom Fiscal Year

If your query includes a date that falls outside of a range defined by an inherited fiscal year, SAQL does not return data for that date.

If a date falls outside of a range defined by an inherited custom fiscal year from Salesforce, then SAQL returns nul1l for that date. When
grouping by a date field that includes dates outside a range defined by an inherited custom fiscal year, no group is returned for undefined
dates. If you group data based on non-fiscal periods, dates that aren't included in a custom fiscal year return data as expected.

@ Example: If your fiscal year ends in March 2021, and a date field, CreatedDate, isin April 2021, grouping by
CreatedDate Month Fiscal returns null ornogroup forApril2021.Groupingby CreatedDate Month returns
data as expected.

Consider this example dataset.

Opportunity Name Created Date Amount
Widgets 2/1/2017 100
Widgets 2/1/2018 100
Widgets 2/1/2019 100
Widgets 2/1/2020 100
Widgets 2/1/2021 100
Widgets 2/1/2022 100
Widgets 2/1/2023 100

In Salesforce, you have custom fiscal years defined as January 1 to December 31 for each year from 2018 through 2022. Inherit them in
Analytics by using the Start Date setting.

When running a query like this:

g = load "opportunities";

q = foreach g generate 'Created Date' as 'Created Date', Created Date Year Fiscal as 'Fiscal
Year';

g = limit g 2000;

SAQL returns these results:

Created Date Fiscal Year
2/1/2017 -

2/1/2018 2018
2/1/2019 2019
2/1/2020 2020
2/1/2021 2021
2/1/2022 2022
2/1/2023 -

102

SAQL Reference

Because a custom fiscal year definition doesn't include 2/1/2017 or 2/1/2023, SAQL returns nul1l.

Now, let’s group the dataset.

Q Q9 Q \Q

q

= load "opportunities";

= group q by 'Created Date Year Fiscal';
foreach g generate 'Created Date Year Fiscal' as
= order q by 'Created Date Year Fiscal';
= limit g 2000;

SAQL returns these results:

Fiscal Year

2018 1
2019 1
2020 1
2021 1
2022 1

Count

'Fiscal Year',

count ()

as

String Functions

'Count’;

Since the custom fiscal year definition doesn't include 2/1/2017 or 2/1/2023, the query excludes these dates from the results.

String Functions

Use SAQL string functions to format your measure and dimension fields.

ascii()
Returns the UTF-8 code value of a character n.

chr()
Returns the UTF-8 character of integer n.

ends_with()
Returns true if the string ends with the specified characters.

index_of()
Returns the location (index) of the specified characters.

len()
Returns the number of characters in the string.

lower()
Returns a copy of the string with all characters in lower case.

[trim()
Removes the specified characters from the beginning of a string.

mv_to_string()
Converts multivalue fields to string fields.

number_to_string
Converts a number literal to a string literal.

103

SAQL Reference String Functions

replace()
Replaces a substring with the specified characters.

rtrim()
Removes the specified characters from the end of a string.

starts_with()
Returns true if the string starts with the specified characters.

string_to_number
Converts a string literal to a number literal.

substr()
Returns a substring that starts at the specified position. You can also specify the length of the substring to return.

trim()
Removes the specified substring from the beginning and the end of a string.

upper()
Returns a copy of the string with all characters in upper case.

ascii ()

Returns the UTF-8 code value of a character n.

Syntax

ascii(n)

Usage

Returns null if nis null.The null character (0) is not allowed.

Example

q = foreach g generate ascii("a") as int value;
- -int value == 97

chr ()

Returns the UTF-8 character of integer n.

Syntax

chr(n)

Usage

Returns null if nis null.

104

SAQL Reference String Functions

Example

q = foreach g generate chr(97) as char value;
- —char value == a

ends with()

Returns true if the string ends with the specified characters.

Syntax

ends with (string, suffix)

Usage

Returns true ifendswith suffix,otherwisereturns £alse. String comparison is case-sensitive. If any of the parameters are nul1,
then the function returns null.If suffix isan empty string, then the function returns null.

Example
ends with ("FIT", "T") == true
ends_with ("FIT", "BIT") == false

index of ()

Returns the location (index) of the specified characters.

Syntax

index of(string, searchStr [position |, occurencel])

Usage

This function returns the index of searchStrin string, beginning at the specified posi tion. The function returns 0 if
searchStr isnot found. This function is case-sensitive. If any of the parameters are nu1 1, then the function returns nul1.

The default value of position is 1, which means that the function begins searching at the first character of string. Anerrorresults
if position isnegative or zero.

occurrence isan optional integer, with a default value of 1 . You can use this parameter to specify which occurrence of searchStr
to search for. For example, if there is more than one occurrence of searchStr,and occurence is 2, the index of the second
occurrence is returned.

Constant values are supported for position and occurrence, not arbitrary expressions.

If searchStr isanempty string, then the function returns null.
Example

-- return the first occurrence of "a", starting at the beginning.
-- The result is 2.

105

SAQL Reference String Functions

q = foreach g generate index of ("Hawaii", "a") as 'Index';

-- return the second occurrence of "a", starting at the beginning
-- the result is 4
q = foreach g generate index of ("Hawaii", "a",1, 2) as 'Index';

-- return the first occurrence of "a", starting at the third position
-- the result is 4
q = foreach g generate index of ("Hawaii", "a",3) as 'Index';

len()

Returns the number of characters in the string.

Syntax

len(string)

Usage

Leading and trailing whitespace characters are included in the length returned. Returns null if stringis null.

Example
len("starfox") == 7
len (" rocket ") == 8
len("0") == 1
len("") == 0
lower ()

Returns a copy of the string with all characters in lower case.

Syntax

lower(string)

Usage

Returns null if stringis null.

Example

lower ("JAVA") == "java"

ltrim()

Removes the specified characters from the beginning of a string.

106

SAQL Reference String Functions

Syntax

ltrim(stringsubstr)

Usage

Removes every instance of each character in substr from the beginning of string. This function is case-sensitive. To remove
leading spaces, do not specify a value for substr.

Example

This example shows that 1t rim removes the specified characters from the beginning of a string. This function is case-sensitive.
g = load "test";

g = foreach g generate 'Company' as 'Company', ltrim('Company', "abc") as 'ltrim abc',
ltrim('Company',"cba") as 'ltrim cba', ltrim('Company',"ab") as 'ltrim ab',

ltrim('Company',"bc") as 'ltrim bc';
Company Itrim abc Itrim cba Itrim ab It
CompanyABCABC CompanyABCABC CompanyABCABC CompanyABCABC C
abcabcCompany Company Company cabcCompany a
ABCABCCompany ABCABCCompany ABCABCCompany ABCABCCompany A

mv_to_ string()

Converts multivalue fields to string fields.

Syntax
mvftoistringMMltivalueﬁcolumnﬁname,delimeteﬂ

multivalue column name
Name of the multivalue field to be converted to a string.

delimiter
Optional. The characters used to delimit values in the converted string. Maximum length is 2 characters.

Usage

Returns an alphabetically-sorted, delimited string representation of a multivalue field. The default delimiter is a comma followed by a
space (,).

mv_to string () appliestonon-grouped streams only. You can run filtering or grouping on a multivalue field post-projection.

107

SAQL Reference

String Functions

@ Nofe: To enable multivalue fields, you must select the Enable indexing of multivalue fields in Analytics preference in Setup.
Ifyourun mv_to string () without the preference selected, the function returns the first value in the first field only.

1. From Setup, enter Analytics inthe Quick Find box.
2. Select Settings from the list of Analytics options.

3. In Settings, click the checkbox for Enable indexing of multivalue fields in CRM Analytics.

Inherit sharing from Salesforce ;

I Before you enable this setting, read the limitations in Salesforce Sharing Inheritance for Datasets

(] Use priority scheduling for recipe and dataflow requests || Show all values in a multivalue field in
alphabetical order returned by the

Secure image sharing and downloading | i mv_to_string() function. Otherwise,)
mv_to_string() shows only the first value in

Maximum number of hours an app can be in progress:{48 alphabetical order.

Enable indexing of multivalue fields in Tableau CRM. | ;

() Disable Recipe Input Dataset Caching ;

Example

This query returns values of the Accounts Team as a string delimited by a comma and space, in alphabetical order.

q
q

load "Accounts";

foreach g generate

'Account' as 'Account';

mv_to string('Account Team') as 'Account Team';

Account Account Team

Acme Fred Williamson, Hank Chen, Sarah Vasquez
DTC Electronics Brian Alison, Tessa McNaley

Salesforce Nadia Smith

Example

This query returns the values of Accounts Team as a string delimited by two semicolons (;;) in alphabetical order.

q

load "Accounts";

a foreach g generate
'Account' as 'Account';
mv_to string('Account Team',k6 ";;") as 'Account Team';
Account Account Team
Acme Fred Williamson;;Hank Chen;;Sarah Vasquez
DTC Electronics Brian Alison; Tessa McNaley

108

SAQL Reference String Functions

Account Account Team
Salesforce Nadia Smith
SEE ALSO:

Multivalue Field

number to_string

Converts a number literal to a string literal.

Syntax

number to_string(number, number format)

Usage

Returns the string representation of number. Use number format to specify the format of the string, for example as currency or
with two decimal places. number format can specify seperate formats for positive and negative numbers:

®* number to string(number, number format)

The format specified by number format is used for both positive and negative numbers.

® numbe r_to_string(n umber, <POSITIVE><NEGATIVE>)
If number is positive, the number format specified by <POSITIVE> isused.|f number isnegative, the number format specified
by <NEGATIVE> is used. Note the semicolon separating the two specified formats.

You can specify the format with these characters:

e (Q,# decimal point ()

e Thousands separator (,)

e Percentage (%)

e leading and trailing characters: S, +, -, (,),: |, A&/~ 4}

Example

Display the number amount as a string, formatted as currency:

g = foreach g generate 'Amount' as 'Amount', number to string('Amount', "S#,###.00") as
'NumberAmount';

Armount MNurmberAmount

397,280 5397.280.00

Example

Suppose that you have a measure field with the format shown in Number You Start With. Use the format shown in number_format
to display this number as a shown in Resulting String.

109

SAQL Reference String Functions

Initial Number number_format Resulting String
1234.56 #### 1234.6
89 #.000 8.900
631 0.# 0.6

12 #.0# 12.0
1234.568 #0# 1234.57
12000 # 12,000
12000 #, 12
12200000 0.0, 12.2

12 00000 00012
0.03457 #00% 3.46%
12.3 $#.00;(5#.00) $12.30
-12.3 $#.00;(5#.00) ($12.30)
32 +- +

-32 +- -

replace ()

Replaces a substring with the specified characters.

Syntax

replace(string, searchStr, replaceStr)

Usage

This function replaces searchStr with replaceStr, then returns the modified string. If any of the parameters are nul1, then
the function returns null.lf searchStr isanempty string, the function returns nul 1. This function is case-sensitive.

Example

replace ("Watson, come quickly.", "quickly", "slowly") == "Watson, come slowly."
replace ("Watson, come quickly.", "o", "a") == "Watsan, came quickly."

replace ("Watson, come quickly.", "", "Mr.") == null

rtrim()

Removes the specified characters from the end of a string.

110

SAQL Reference String Functions

Syntax

rtrim(stringsubstr)

Usage

Removes every instance of each character in substr from the end of string. This function is case-sensitive. To remove trailing
spaces, do not specify a value for substr.

Example

This example shows that rtrim removes the specified characters from the end of a string. This function is case-sensitive.

g = load "test";

g = foreach g generate 'Company' as 'Company', rtrim('Company', "abc") as 'rtrim abc',
rtrim('Company',"cba") as 'rtrim cba', rtrim('Company',"ab") as 'rtrim ab',
rtrim('Company',"ac") as 'rtrim ac';
Company rtrim abc rtrim cba rtrim ab rt
Companyabcabc Company Company Companyabcabc C

CompanyABCABC CompanyABCABC CompanyABCABC CompanyABCABC C

starts_with()

Returns true if the string starts with the specified characters.

Syntax

starts with(string, prefix)

Usage

Returns true if string startswith prefix,otherwisereturns false.String comparison is case-sensitive. If any of the parameters
are null,then the function returns null.|f prefix isanempty string, then the function returns null.

Example

Suppose that you want to count the opportunities where the owner role starts with "Sales". Use starts _with () ina case
statement.

q = load "DTC Opportunity";

-- Select rows where the owner roles starts with "Sales"
q = foreach g generate count() as 'count', (case

when starts with('Owner Role', "Sales") then 'Owner Role'
end) as 'Owner Role';

m

SAQL Reference String Functions

q = group g by 'Owner Role';
q foreach g generate count() as 'count', 'Owner Role' as 'Owner Role';

The resulting chart shows the number of opportunities where the owner role starts with "Sales", grouped by owner role.

Owner Role | Count of Rows

Sales AMER 27
Sales EMEA 28
Sales WW 45

string to number

Converts a string literal to a number literal.

Syntax

string to number (string)

Usage

If the string can't be parsed as a number, the query fails.

Example

-— creates a field called "Number" that contains the number 12345

q = foreach g generate string to number ("12345") as 'Number';

substr ()

Returns a substring that starts at the specified position. You can also specify the length of the substring to return.

Syntax

substr (string, position[, length])

Usage

substr returns the characters in st ring, starting at position position.If you specify 1ength, this function returns 1ength
number of characters. If any of the parameters are nul 1, then the function returns null. length is optional.

The first character in string is at position 1. If position is negative then the position is relative to the end of the string. So a
position of -1 denotes the last character.

N2

SAQL Reference String Functions

If Iength is negative, then the function returns null.If position > len (string)or position <-len(string)or
position =0,then the empty string is returned.

Example

-- we want a substring that is one character long, starting at position 1.
—-—- The character "C" is returned.
substr ("CRM", 1, 1)

-- we want a substring that is 2 characters long, starting at position 1
-— The string "CR" is returned
substr ("CRM", 1, 2) == "CR"

-- we want a substring that is two characters long, starting from the *end* of the string
-— The string "RM" is returned
substr ("CRM", -2, 2) == "RM"

-- we want to get the first 10 characters from this string
-- the string "2018-03-16" is returned
substr ("2018-03-16T00:00:03.000z",10)

Example

Suppose that you want to display the current time, but not the current date. Use substr () toreturn the last 11 characters from
date to string() .

q = foreach g generate substr(date to string(now(), "yyyy-MM-dd HH:mm:ss"), 11) as 'Time
Now';

trim()

Removes the specified substring from the beginning and the end of a string.

Syntax

trim(stringsubstr)

Usage

Thisfunctionremoves substr from the beginningandend of string,thenreturnsthe result. Toremove leading and trailing spaces,
do not specify a value for substr.

Example

—-— the resulting string in both cases is 'MyString';

g = foreach g generate trim("abcMyStringabc","abc") as 'Trimmed String';
g = foreach g generate trim(" MyString ") as 'Trimmed String';

13

SAQL Reference Math Functions

upper ()

Returns a copy of the string with all characters in upper case.

Syntax

upper(string)

Usage

Returns null if stringis null

Example

upper ("java") == "JAVA"

Math Functions

To perform numeric operations in a SAQL query, use math functions.
You can use SAQL math functions in foreach statementsandinthe filter by clause aftera foreach statement.

You can't use math functionsina group by clause orinan order by clause. You also can't use math functionsinthe filter
by clause before a foreach statement.

abs(n)

Returns the absolute number of n as a numeric value. n can be any real numeric value in the range of -1e308 <= n <= 1e308.
This function can only be used ina foreach statement.

acos(n)

Returns the arccosine value of radians value n. n can be any real numeric value in the range of -1 <= n <=1.If nul1 is passed
asan argument, acos () returns null. This function can only be used ina foreach statement.

asin(n)

Returns the arcsine value of radians value n. n can be any real numeric value in the range of -1 <= n <=1.If null is passed as
anargument, asin () returns null.This function can only be used ina foreach statement.

atan(n)

Returns the arctangent value of radians value n. ncan be any real numeric value in the range of -1e308 <= n <=1e308.If null
is passed as an argument, atan () returns nul1l.This function can only be used ina foreach statement.

ceil(n)

Returns the nearest integer of equal or greater value to n. n can be any real numeric value in the range of -1e308 <= n <= 1e308.
This function can only be used ina foreach statement.

cos(n)

Returns the cosine value of radians value n. n can be any real numeric value in the range of -1€308 <= n <=1e308.If null is
passed as an argument, cos () returns null.This function can only be used ina foreach statement.

degrees(n)

Returns the degrees value of a radians value n. n can be any real numeric value in the range of -1€308 <= n <=1e308.If null
is passed as an argument, degrees () returns null. This function can only be used ina foreach statement.

114

SAQL Reference Math Functions

exp(n)

Returns the value of Euler's number e raised to the power of n, where e =2.71828183... The smallest value for n that doesn’t
resultin 0is 3e-324. n can be any real numeric value in the range of -1e308 <= n <= 700. This function can only be usedin a
foreach statement.

floor(n)
Returns the nearest integer of equal or lesser value to n. n can be any real numeric value in the range of -1e308 <=n <= 1e308.
This function can only be used ina foreach statement.

log(m, n)

Returns the natural logarithm (base m) of a number n. The values m and n can be any positive, non-zero numeric value in the
range 0 < m, n <= 1e308 and m = 1. The smallest value for m or n that will not produce 0 is log(10, 0.3e-323). This function can
only be used ina foreach statement.

pi()

Returns the value of m, where m=3.14139265. This function can only be used ina foreach statement.

power(m, n)

Returns m raised to the nth power. m, n can be any numeric value in the range of -1€308 <= m, n <= 1e308. Returns null if m
=0and n <0.This function can only be used ina foreach statement.

radians(n)
Returns the radians value of a degrees value n. n can be any real numeric value in the range of -1€308 <= n <=1e308.If null
is passed as an argument, radians () returns null. This function can only be used ina foreach statement.

round(n[, m])

Returns the value of n rounded to m decimal places. m can be negative, in which case the function returns n rounded to -m places
to the left of the decimal point. If m is omitted, it returns n rounded to the nearest integer. For tie-breaking, it follows round half
way from zero convention. n can be any real numeric value in the range of -1e308 <=n <= 1e308. m can be an integer value
between -15 and 15, inclusive. This function can only be used ina foreach statement.

sign(n)
Returns 1 if the numeric value, n is positive. It returns -1 if the n is negative, and 0 if n is 0. n can be any real numeric value in the

range of -1e308 <= n <= 1e308.If null is passed as an argument, sign () returns nul1l. This function can only be usedin a
foreach statement.

sin(n)
Returns the sine value of radians value n. n can be any real numeric value in the range of -1e308 <= n <= 1€308.If null is
passed as an argument, sin () returns null. Thisfunction canonly be used ina foreach statement.

sqrt(n)
Returns the square root of a number n. The value n can be any non-negative numeric value in the range of 0 <= n <= 1e308. This
function can only be used ina foreach statement.

tan(n)
Returns the tangent value of radians value n. n can be any real numeric value in the range of -1e308 <= n <= 1€308.If null is
passed as an argument, tan () returns null. Thisfunction canonly be used ina foreach statement.

trunc(nf, m])

Returns the value of the numeric expression n truncated to m decimal places. m can be negative, in which case the function returns
n truncated to -m places to the left of the decimal point. If m is omitted, it returns n truncated to the integer place. n can be any
real numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value between -15 and 15 inclusive. This function
canonly be usedina foreach statement.

15

SAQL Reference Math Functions

abs (n)

Returns the absolute number of n as a numeric value. n can be any real numeric value in the range of -1e308 <= n <= 1e308. This
function can only be used ina foreach statement.

Example:

q = foreach g generate abs(pct change) as pct magnitude;

acos (n)

Returns the arccosine value of radians value n. n can be any real numeric value in the range of -1 <= n <=1.1f nul1 is passed as an
argument, acos () retuns null. This function can only be used ina foreach statement.

Example:

q = foreach g generate acos(radians) as arccosine;

asin(n)

Returns the arcsine value of radians value n. n can be any real numeric value in the range of -1 <= n <=1.If nul1l is passed as an
argument, asin () returns nul1l.This function can only be usedina foreach statement.

Example:

g = foreach g generate asin(radians) as arcsine;

atan(n)

Returns the arctangent value of radians value n. n can be any real numeric value in the range of -1e308 <= n <=1e308.1f nul1l is
passed as an argument, atan () returns null. This function can only be usedina foreach statement.

Example:

g = foreach g generate atan(radians) as arctangent;

ceil (n)

Returns the nearest integer of equal or greater value to n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. This
function can only be used ina foreach statement.

Example:

g = foreach g generate ceil (miles) as distance;

cos (n)

Returns the cosine value of radians value n. n can be any real numeric value in the range of -1€308 <= n <=1e308.If nul1 is passed
asan argument, cos () returns nul 1. This function can only be used ina foreach statement.

116

SAQL Reference Math Functions

Example:

g = foreach g generate cos(radians) as cosine;

degrees (n)

Returns the degrees value of a radians value n. n can be any real numeric value in the range of -1€308 <= n <=1e308.If null is
passed as an argument, degrees () returns null. This function can only be used ina foreach statement.

Example:

g = foreach g generate degrees(radians) as degrees;

exp (n)

Returns the value of Euler's number e raised to the power of n, where e =2.71828183... The smallest value for n that doesn't result
in 0is 3e-324. n can be any real numeric value in the range of -1e308 <= n <= 700. This function can only be used ina foreach

statement.

Example:
q = foreach g generate exp(value) as value;
g = filter g by exp(value) < 5;

floor (n)

Returns the nearest integer of equal or lesser value to n. n can be any real numeric value in the range of -1e308 <= n <= 1e308. This
function can only be used in a foreach statement.

Example:

g = foreach g generate floor(miles) as distance;

log(m, n)

Returns the natural logarithm (base m) of a number n. The values m and n can be any positive, non-zero numeric value in the range
0<m,n<=1e308and m # 1. The smallest value for m or n that will not produce 0is log(10, 0.3e-323). This function can only be used
ina foreach statement.

Example:

g = foreach g generate log (10, Population) as Population;
g = filter g by log(10, Population) < 15;

pi()

Returns the value of m, where m=3.14139265. This function can only be used ina foreach statement.

n7

SAQL Reference Math Functions

Example:

q = foreach g generate pi() as pi;

power (m, n)

Returns m raised to the nth power. m, n can be any numeric value in the range of -1e308 <= m, n <= 1e308.Returns null if m =
0and n < 0. This function can only be used ina foreach statement.

e If m=0, n must be a non-negative value.

e If m <0, n mustbe aninteger value.

e The result of power(m, n) must be within the range expressed by a float64 number.

Example:
g = foreach g generate power (length, 2) as area, length;
g = filter g by power (length, 2) > 10;

radians (n)

Returns the radians value of a degrees value n. n can be any real numeric value in the range of -1e308 <= n <= 1€308.If null is
passed as an argument, radians () returns null. This function can only be used ina foreach statement.

Example:

g = foreach g generate radians (degrees) as radians;

round (n[, m])

Returns the value of n rounded to m decimal places. m can be negative, in which case the function returns n rounded to -m places to
the left of the decimal point. If m is omitted, it returns n rounded to the nearest integer. For tie-breaking, it follows round half way from
zero convention. n can be any real numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value between -15 and
15, inclusive. This function can only be used ina foreach statement.

Example:

g = foreach g generate round(Price, 2) as Price;

sign(n)

Returns 1 if the numeric value, n is positive. It returns -1 if the n is negative, and 0 if n is 0. n can be any real numeric value in the
range of -1e308 <= n <= 1e308.If null is passed as an argument, sign () returns null.This function can only be usedin a
foreach statement.

Example:

g = foreach g generate sign(value) as value;

18

SAQL Reference Windowing Functions

sin (n)

Returns the sine value of radians value n. n can be any real numeric value in the range of -1€308 <= n <=1e308. If null is passed
asanargument, sin () returns null. This function can only be used ina foreach statement.

@ Example:

g = foreach g generate sin(radians) as sine;

sqgrt (n)

Returns the square root of a number n. The value n can be any non-negative numeric value in the range of 0 <= n <= 1e308. This
function can only be used ina foreach statement.

@ Example:

g = foreach g generate sqgrt(value) as value;
g = filter g by sqgqrt(value) < 10;
tan (n)

Returns the tangent value of radians value n. ncan be any real numeric value in the range of -1e308 <= n <=1e308.If nul1 is passed
asan argument, tan () returns null. This function can only be usedina foreach statement.

@ Example:

g = foreach g generate tan(radians) as tangent;

trunc(n[, m])

Returns the value of the numeric expression n truncated to m decimal places. m can be negative, in which case the function returns

n truncated to -m places to the left of the decimal point. If m is omitted, it returns n truncated to the integer place. n can be any real
numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value between -15 and 15 inclusive. This function can only
beusedina foreach statement.

@ Example:

g = foreach g generate trunc(Price, 2) as Price;

Windowing Functions

Use SAQL windowing functionality to calculate common business cases such as percent of grand total, moving average, year and quarter
growth, and ranking.

Windowing functions allow you to calculate data for a single group using aggregated data from adjacent groups. Windowing does not
change the number of rows returned by the query. Windowing aggregates across groups rather than within groups and accepts any
valid numerical projection on which to aggregate.

Windowing with an aggregate function uses the following syntax:

<windowfunction> (<projection expression>) over (<row range> partition by <reset groups>
order by <order clause>) as <label>

19

SAQL Reference Windowing Functions

When using ranking functions, use the following syntax:

<rankfunction> over ([..] partition by <reset groups> order by <order clause>) as <label>

Where:

windowfunction
An aggregate function that supports windowing. Currently supported functions are avg, sum, min, max, count, median,
percentile disc,and percentile cont.

rankfunction
Returns a rank value for each row in a partition. The following ranking functions are supported: rank (), dense_rank (),
cume dist () and row number ().Refer to the Ranking Functions section for examples.

projection expression
The expression used to generate a projection from the values of specified columns.
row range

Row ranges are specified using the following syntax.

Range Meaning
[.0] From beginning to current row in the reset group.
[0.] From current row to the last row in the reset group.
[-2.0] From two rows prior to current row. Window covers 3 rows.
[0.2] From current row to 2 rows ahead of current row. Windows covers 3 rows.
[-1.-1] One row prior to current row. Window includes a single row.
[.-2] From beginning of reset group to 2 rows prior to current row.
[.] Aggregates the entire reset group.
reset groups

The column(s) which reset windowing aggregation when their value(s) change. A reset group of a11 indicates no reset boundaries
for the window aggregation.

order clause
Specify column(s) by which to sort. This orders the rows before the window function gets evaluated.

@ Note: The order clause is not allowed on expressions where the row rangeis [. .1 andthe window functionis sum, avg,
min, or max. Forexample, sum (sum(Sales)) over([..] partition by Year order by Quarter)
is invalid.

label

The output column name.

120

SAQL Reference Windowing Functions

Notes

Grouped Queries

Windowing functionality is enabled only for grouped queries. The following is not valid:

a load "dataset";
b = foreach a generate sum(sum(sales)) over([.. 0] partition by all order by all);

Multiple Resets and Multiple Orders
Multiple resets and multiple orders are valid. For example:
sum (sum(Sales)) over([-2 .. 0] partition by (OrderDate Year, OrderDate Quarter) order

by OrderDate Year)

sum (sum(Sales)) over([-2 .. 0] partition by (Year, Quarter) order by (Year asc, sum(Sales)
desc))
Cogroups
Windowing functions can be used with cogroup queries. For example:
sum(sum(a[Sales])) over([-2 .. 0] partition by (a[Year], a[Quarter]) order by (a[Year]
asc, sum(a[Sales]) desc))

@ Note: Each Windowing function can be used with only 1 cogroup stream. The following is not valid:

a = load "datasetl";

b = load "dataset2";

c = group a by columnl, b by column2;

d = foreach ¢ generate sum(sum(a[sales])) over([.. 0] partition by b[column2] order
by all)

Refer to the Aggregate Functions topic for details on function usage.

Example - Dynamically Display Your Top Five Reps

Use windowing to create a chart that dynamically displays your top-five reps for each country. The chart updates continuously as
opportunities are won. The example uses windowing to calculate:

e Percentage contribution that each rep made to the total amount, partitioned by country

e Ranking of the rep’s contribution, partitioned by country

These calculations let us display the top-five reps in each country.

g = load "DTC Opportunity SAMPLE";
group q by ('Billing Country', 'Account Owner');

Q
I

q = foreach g generate 'Billing Country', 'Account Owner',

-- sum(Amount) is the total amount for a single rep in the current country

-- sum(sum('Amount') is the total amount for ALL reps in the current country

-- sum(Amount) / sum(sum('Amount') calculates the percentage that each rep contributed
-- to the total amount in the current country

((sum ('Amount') /sum (sum('Amount"'))

121

SAQL Reference Windowing Functions

-- [..] means "include all records in the partition"
-— "by Billing Country" means partition, or group, by country
over ([..] partition by 'Billing Country')) * 100) as 'Percent AmountContribution',

-- rank the percent contribution and partition by the country
rank() over ([..] partition by ('Billing Country') order by sum('Amount') desc) as
'Rep Rank';

-- filter to include only the top 5 reps
g = filter g by 'Rep Rank' <=5;

The resulting graph shows the top-five reps in each country and displays each rep’s ranking.

Percent_AmountContribution Rep_Rank

-

50 100

0 3

Australia Dennis Howard
Johnny Green

John Williams

Bruce Kennedy

Chris Riley

Belgium Julie Chavez
Johnny Green

Laura Garza

Eric Gutierrez

Evelyn Williamson

|]
[
.Lu!
= (Y]
=

[y

II
W
(]

fd

0o
n

Brazil Bruce Kennedy
Eric Gutierrez

Eric Sanchez

Laura Garza

Irene Kelley

.-
poe)
[E e

Canada Laura Garza 1
chris Riley [93

Eric Gutierrez . 8.1

Bruce Kennedy . 77

Johnny Green . 7.6

Examples

Running Total (No Reset)

The following query calculates the running total of sum of sales every quarter, with "partition by all" denoting that the sum is not reset
by any column.

g = load "dataset";

q = group q by (OrderDate Year, OrderDate Quarter);

q foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)
as sum_amt, sum(sum(Sales)) over([.. 0] partition by all order by (OrderDate Year,

OrderDate Quarter)) as r_ sum;

122

SAQL Reference Windowing Functions

Year Quarter sum_amt r_sum
2013 1 1000 1000
2013 2 2000 3000
2013 3 3000 6000
2013 4 2000 8000
2014 1 1000 9000
2014 2 500 9500
2014 3 9000 18500
2014 4 3000 21500
2015 1 500 22000
2015 2 500 22500
2015 3 200 22700
2015 4 400 23100

Running Totals By Year

Running total resets on every year.

g = load "dataset";

g = group g by (OrderDate Year, OrderDate Quarter);

a foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)
as sum_amt, sum(sum(Sales)) over([.. O] partition by OrderDate Year order by (OrderDate Year,
OrderDate Quarter)) as r sum;

Year Quarter sum_amt r_sum
2013 1 1000 1000
2013 2 2000 3000
2013 3 3000 6000
2013 4 2000 8000
2014 1 1000 1000
2014 2 500 1500
2014 3 9000 10500
2014 4 3000 13500
2015 1 500 500
2015 2 500 100
2015 3 200 1200

123

SAQL Reference

Year Quarter sum_amt

2015 4 400

Windowing Functions

r_sum

1600

Min Sales Trailing 3 Quarters (Moving Min)

Finds the moving minimum values in the window of last two rows to current row.

q = load "dataset";

q = group q by (OrderDate Year, OrderDate Quarter);

q foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)
as sumSales, min(sum(Sales)) over([-2 .. 0] partition by OrderDate Year order by

(OrderDate Year, OrderDate Quarter)) as m_min;

Year Quarter sumSales m_min
2013 1 1000 1000
2013 2 2000 1000
2013 3 3000 1000
2013 4 2000 2000
2014 1 1000 1000
2014 2 500 500
2014 3 9000 500
2014 4 3000 500
2015 1 4000 4000
2015 2 500 500
2015 3 200 200
2015 4 400 200
Percentage Total

This query calculates the percentage of the quarter’s sales for the year. Row range [..] calculates the subtotals of each year, which is used
in the formula to calculate the percentage.

g = load "dataset";
g = group gq by (OrderDate Year, OrderDate Quarter);
q = foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)

as sumSales, (sum(Sales) * 100) / sum(sum(Sales)) over([..] partition by OrderDate Year)
as p_tot;

Year Quarter sumSales p_tot

2013 1 1000 12.5%

2013 2 2000 25%

124

SAQL Reference Windowing Functions

Year Quarter sumSales p_tot
2013 3 3000 37.5%
2013 4 2000 25%
2014 1 1000 741%
2014 2 500 3.70%
2014 3 9000 66.67%
2014 4 3000 22.22%
2015 1 500 31.25%
2015 2 500 31.25%
2015 3 200 12.50%
2015 4 400 25%

Differences Along Year

This query calculates the growth of sales compared with the previous quarter, with [-1 .. -1] referring to the quarter before the quarter
on the row. The blank spaces in the result table represent null values.

a load "dataset";

q = group q by (OrderDate Year, OrderDate Quarter);

q = foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)
as sumSales, sum(Sales) - sum(sum(Sales)) over([-1 .. -1] partition by OrderDate Year order
by (OrderDate Year, OrderDate Quarter)) as diff;

Year Quarter sumSales diff
2013 1 1000

2013 2 2000 1000
2013 3 3000 1000
2013 4 2000 -1000
2014 1 1000

2014 2 500 -500
2014 3 9000 8500
2014 4 3000 -6000
2015 1 500

2015 2 500 0
2015 3 200 -300
2015 4 400 200

125

SAQL Reference Windowing Functions

Ranking Functions

rank()
Assigns rank based on order. Repeats rank when the value is the same, and skips as many on the next non-match.

dense_rank()
Same as rank() but doesn't skip values on previous repetitions.

cume_dist()
Calculates the cumulative distribution (relative position) of the data in the reset group.

row_number()
Assigns a number incremented by 1 for every row in the reset group.

Examples

g = load "dataset";
g = group g by (Year, Quarter);

q
by Year order by sum(Sales)) as rank;

foreach g generate Year, Quarter, sum(Sales) as sum amt, rank() over([..] partition

The following table also shows result columns as if the dense rank (), cume dist () and row number () functions were
substituted for rank () in the previous code.

Year Quarter sum_amt rank dense_rank cume_dist row_number
2013 1 1000 1 1 0.25 1
2013 2 2000 2 2 0.75 2
2013 4 2000 2 2 0.75 3
2013 3 3000 4 3 1 4
2014 2 500 1 1 0.25 1
2014 1 1000 2 2 0.5 2
2014 4 3000 3 3 0.75 3
2014 3 9000 4 4 1 4
2015 1 500 1 1 0.5 1
2015 2 500 1 1 0.5 2
2015 4 600 3 2 0.75 3
2015 3 700 4 3 1 4

This query shows the top 3 performing quarters in a year.

g = load "dataset";

g = group g by (Year, Quarter);

q = foreach g generate Year, Quarter, sum(Sales) as sum amt, rank() over([..] partition
by Year order by sum(Sales)) as rank;

qg = filter g by rank <= 3;

126

SAQL Reference Windowing Functions

Year Quarter sumSales rank
2013 1 1000 1
2013 2 2000 2
2013 4 2000 2
2014 2 500 1
2014 1 1000 2
2014 4 3000 3
2015 1 500 1
2015 2 600 1
2015 4 600 3

This query shows the 95th percentile.

q = load "Oppty Products Scored";

g = group g by (ProductName) ;

g = foreach g generate ProductName, sum(TotalPrice) as sum Price, percentile cont (0.95)
within group (order by 'TotalPrice') as 'sum 95Percentile’';

g = limit g 5;

Percentile functions: 95th Percentile

sum of Profit 95th Percentile of Profit

Refer to the Aggregate Functions topic for details on function usage.

SEE ALSO:
Windowing Functions

Windowing Functions

127

SAQL Reference coalesce

coalesce
Use coalesce () to getthe first non-null value from a list of parameters, or to replace nulls with a different value.

coalesce (valuel , value2 , value3d , ...)

Example: Left Outer Cogroup with coalesce ()

A left outer cogroup combines the right data stream with the left data stream. If a record on the left stream does not have a match on
the right stream, the missing right value comes through as null. To replace null values with a different value, use coalesce ().

For example, suppose that you have a dataset of meeting information from the Salesforce Event object, and you join it with data from
the Salesforce Opportunity object. This shows amount won with the total time spent in meetings.

ops = load "Ops";

meetings = load "Meetings";

g = cogroup ops by 'Account' left, meetings Dby 'Company' ;

q = foreach g generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum Amount',
sum (meetings. 'MeetingDuration') as 'TimeSpent';

It looks like we had no meetings with Zen Retreats.

Account Sum of Amount TimeSpent
FreshMeals 3.4 4
Shoes2Go 4.5 7
ZenRetreats ! 2 -
ZipBikeShare | 11 4

Let's use coalesce () tochange that null value to a zero.

ops = load "Ops";
meetings = load "Meetings";
g = cogroup ops by 'Account' left, meetings Dby 'Company' ;

—--use coalesce() to replace null values with zero
q = foreach g generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum Amount',
coalesce (sum(meetings. 'MeetingDuration'), 0) as 'TimeSpent';

Account Sum of Amount TimeSpent

FreshMeals 3.4 4

Shoes2Go 4.5 7
)

ZenRetreats 2 0
1

ZipBikeShare 1.1 4

128

QUERY PERFORMANCE

Here are some guidelines for structuring your queries to improve performance.

Speed Up Queries with Dataflow Transformations

To speed up your queries and reduce the number of network round trips, perform data transformations in the ELT process instead
of in the query.

Limit Multivalue Fields

Multivalue fields can cause poor performance. The behavior of these fields is undefined for group-by and foreach statements.
If possible, write your query so that the fields are referenced only in filters.

Use Group and Filter Pre-projection

Improve query performance by moving group and filter operations on simple fields before the foreach statement. A simple field
is projected as-is and doesn't have additional expressions.

Remove Redundant Projections

To improve memory usage and performance costs, remove unnecessary projections from your queries and load only the data
required. If you have to perform an operation, include pre-projection statements as needed.

Check for Redundant Filters

Binding and faceting in your dashboard design can generate redundant filters. Check the SAQL queries that your dashboard produces
to remove unnecessary filters. Consider how a filter in your dashboard Ul interacts with one in your query and vice versa.

Limit the Use of unique()

unique () can affect query performance for large datasets that have over 100 million rows and include more than one million
unique values. For large datasets, unique () is faster for measures than for dimensions. If counting the number of unique string
values causes performance issues, convert the string to a number. For example, use a hash of the string value or refer to the index
of the string in a sorted list of string values.

Speed Up Queries with Dataflow Transformations

To speed up your queries and reduce the number of network round trips, perform data transformations in the ELT process instead of in
the query.

Example: Geo Field

Let’s say you have a dataset with the GEO field that contains the value JP,and you want to replace this value with Japan. One solution
istoadd a case statement to your query.

q = foreach gl generate (case when 'GEO' == \"JP\" then \"Japan\" else 'GEO' end) as 'GEO;'

Running this query on each row in a dataset is time-consuming. A faster approach is to add the case statement to the
saglExpression fieldin the dataflow’s computeExpression transformation. Moving the case statement from the query
to the ELT process reduces the query’s network round trips.

"parameters": {
"source": "Opportunity Data",

129

Query Performance Limit Multivalue Fields

"mergeWithSource": true,
"computedFields": [{
"name": "GEO",
"type": "Text",
"label”™: "GEO"
"saglExpression": "case when 'GEO' == \"JP" then \"Japan\" else 'GEO' end"}
1}

O Tip: You can also improve query performance by shortening decimal values in your dataflow. For example, if the numbers in your
dataset have a single decimal digit, such as 9.1 or 924.3, set scale to 1ratherthan 4 inthe computeExpression
transformation. Restricting the decimal value only impacts storage only. SAQL performs query calculations with all decimal values
intact.

Example: Date Format

To change the date format, you can add an intermediate query to filter the stream based on the list selector values. Adding an extra filter
creates another network trip. Instead, transform the values in the computeExpression transformation, which you can use with
SAQL date functions.

"parameters": {
"source":"Opportunity Data",
"mergeWithSource":true,

"computedFields": [{
"name" :"UIFormattedDate",
"type": "Text",
"saqlExpression":"date_to_string(toDate(Date_sec_epoch), "yyyy-MM-dd")" } 1 }}

SEE ALSO:
Simple case Operator

computeExpression Transformation

Limit Multivalue Fields

Multivalue fields can cause poor performance. The behavior of these fields is undefined for group-by and foreach statements. If
possible, write your query so that the fields are referenced only in filters.

Nofte: Towork with multivalue fields, from Setup, in the Quick Find box, enter Analytics,andthen select Settings. In Settings,
click the checkbox for Enable indexing of multivalue fields in CRM Analytics. If you don't select this preference, the
mv_to_string () functionreturnsonly the first value in the field. See mv_to_string() on page 107 for more information.

Even with indexing enabled, multivalue fields in multilevel grouping, such as group by (Year, Region),can cause poor
performance.

Here's FlightsMV, a sample dataset of flight information.

airline fight num origin dest pilot airplane fight dossss Ytdados distance nmpeegs

southwest sw301 lax sfo john boeing besroray | neevere | 1000 100
737-700

130

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_integrate_saql_transformation.htm&language=en_US#bi_integrate_saql_transformation

Query Performance Limit Multivalue Fields

airline fight_ num origin dest pilot airplane fight dosses Ytdadrs distance nmpssgs

united u321 lax sfo mark boeing fhiegoory prdimee 1000 200
737-900

alaska as400 lax sfo tim airbus A320 huesrorary markjelabrad 1000 100

delta d301 lax sfo martin airbus A321 buesgonony sarah;maria 1000 100

southwest sw302 sfo lax - besooTy - 1000 100

united u322 sfo lax john boeing fhiegoory sarahmartin® 1000 200
737-700

alaska as401 sfo lax mark boeing buesponony mapekgre | 1000 100
737-900

delta d302 sfo lax tim airbus A320 buesgonoy evmgrRdEe 1000 100

southwest sw303 lax jfk robert airbus A321 buesgooy lelamarkbrad 1000 100

united u323 lax jfk maria thiegoory - 1000 200

alaska as403 lax jfk mark boeing bespoay - 1000 100
737-700

delta d303 lax jfk tim boeing buesroray | maria;sarah - 1000 100
737-900

southwest sw304 jfk lax robert airbus A320 buesgonoy martinsarah 1000 100

united u324 jfk lax - airbus A321 fsegoory kerdsgareh | 1000 200

alaska as404 jfk lax john bsespooy sgffpmete 1000 100

delta d304 jfk lax mark boeing besoay - 1000 100
737-700

southwest sw303 lax ord martin boeing besroaTy - 1000 100
737-900

united u323 lax ord robert airbus A320 fsegooy 1000 200

alaska as403 lax ord - airbus A321 hiessoramy | bradmarklela - 1000 100

delta d303 lax ord john - biesroray | sarah;maria 1000 100

The flight attendants column contains multivalue fields. Let's write a query to filter on the rows where maria is listed as a
flight attendant.

g = load "FlightsMV";

q = filter g by 'flight attendants'=="maria";

g = foreach g generate 'airplane' as 'airplane', 'distance' as 'distance',

'flight attendants' as 'flight attendants', 'flight num' as 'flight num', 'id' as 'id',
'num passengers' as 'num passengers', 'origin' as 'origin', 'pilot' as 'pilot';

131

Query Performance Use Group and Filter Pre-projection

airplane distance fight atiendorts flight_num id NUM PCSSENgEs | origin pilot
boeing 1000 kate sw301 1 100 lax john
737-700

airbus A321 1000 maria d301 4 100 lax martin
boeing 1000 kate as401 7 100 sfo mark
737-900

boeing 1000 maria d303 12 100 lax tim
737-900

airbus A321 1000 kate u324 14 200 jfk -

- 1000 maria d303 20 100 lax john

The results display the rows that include maria.The f1ight attendants field displays only one flight attendant name when
the field is multivalue. To return all the names, use the mv_to_string () function.

g = load "FlightsMV";

q = filter g by 'flight attendants'=="maria";
q
mv_to string('flight attendants') as 'flight attendants', 'flight num' as 'flight num',
'id' as 'id', 'num passengers' as 'num passengers', 'origin' as 'origin', 'pilot' as
'pilot';

foreach g generate 'airplane' as 'airplane', 'distance' as 'distance',

SEE ALSO:
Multivalue Field

Use Group and Filter Pre-projection

Improve query performance by moving group and filter operations on simple fields before the foreach statement. A simple field is
projected as-is and doesn't have additional expressions.

Projection refers to the subset of columns that your query returns. In SAQL, projection occurs in the foreach statement, where the
query performs an operation on each row in the dataset.

@ Notfe: SAQL supports only pre-projection filters that follow this format: fieldName operatorName constant.For
example, you caninclude g = filter g by Category;,butnotq = filter g by Discount > 1;.The
same applies to grouping. For example, you caninclude g = group g by Category;,butnot g = group g by
Discount > 1;.

Example: Filter
In this query, the £i1lter statement occurs post-projection.

g = load "Superstore";

a foreach g generate 'Category' as 'Store Category', 'Sub Category' as
'Store Sub Category';

q = filter g by 'Store Category'=="Furniture";

132

Query Performance Remove Redundant Projections

Here, we move the filter to pre-projection. Because the Category field occurs before the foreach statement, it doesn't have an

alias.

g = load "Superstore";

g = filter g by 'Category'=="Furniture";

q = foreach g generate 'Category' as 'Store Category', 'Sub Category' as
|l

Store Sub Category';

Example: Group

In this example, the query first creates two new fields: Detailed Category, a combination of the Category and
Sub Category fields,and Adjusted Discount.Aftergroupingtheresultsby Detailed Category,thesecond foreach
statement takes the average of Adjusted Discount foreach Detailed Category.

g = load "Superstore";

q = foreach g generate 'Category'+ "-" + 'Sub Category' as 'Detailed Category', 2*'Discount'
as 'Adjusted Discount';

g = group g by 'Detailed Category';

q = foreach g generate 'Detailed Category', avg('Adjusted Discount') as

'Avg Adjusted Discount';

Instead of using two foreach statements, groupby Sub_Category pre-projection, and additsaliasin the foreach statement.

g = load "Superstore";
g = group gq by ('Category', 'Sub Category'):;

q = foreach g generate 'Category'+ "-" + 'Sub Category' as 'Detailed Category',
2*avg ('Discount') as 'Avg Adjusted Discount';
SEE ALSO:

group-by

filter

Remove Redundant Projections

To improve memory usage and performance costs, remove unnecessary projections from your queries and load only the data required.
If you have to perform an operation, include pre-projection statements as needed.

Here's an example of a query with an unnecessary projection.

g = load "Superstore";

g = foreach g generate 'Category';

g = group g by 'Category';

q = foreach g generate 'Category', count() as 'count';

Thefirst foreach statement projects the Category field, which is already included in the dataset. Since we're not performing any
operation on the field, we can remove it.

q = load "Superstore";
g = group g by 'Category';
g = foreach g generate 'Category', count() as 'count';

133

Query Performance Check for Redundant Filters

Here's an example with an implicit cogroup.

a = load "Customer Data";

a = foreach a generate 'Customer Name';

b = load "Superstore";

b = foreach b generate 'Customer Name';

a = group a by 'Customer Name' full, b by 'Customer Name';

a = foreach a generate coalesce(a.'Customer Name', b.'Customer Name') as 'Customer Name',
count ('a') as 'Superstore', count('b') as 'Customer data';

In this example, the foreach statements that follow loading the “Customer_Data” and the “Superstore” datasets are unnecessary,
since they're projecting the Customer Name fields without any additional action. You can group the fields pre-projection.

a = load “Customer Data”;

b = load “Superstore”;

a = group a by ‘Customer Name’ full, b by 'Customer Name';

a = foreach a generate coalesce(a.'Customer Name', b.'Customer Name') as 'Customer Name',
count ('a') as 'Superstore', count('b') as 'Customer data';

Check for Redundant Filters

Binding and faceting in your dashboard design can generate redundant filters. Check the SAQL queries that your dashboard produces
to remove unnecessary filters. Consider how a filter in your dashboard Ul interacts with one in your query and vice versa.

Limit the Use of unique ()

unique () canaffect query performance for large datasets that have over 100 million rows and include more than one million unique
values. For large datasets, unique () isfaster for measures than for dimensions. If counting the number of unique string values causes
performance issues, convert the string to a number. For example, use a hash of the string value or refer to the index of the string in a
sorted list of string values.

@ Note: Counting unique values can impact performance, but counting the total number of rows in a dataset doesn't.

134

	Overview
	Introduction
	Use SAQL in the CRM Analytics Dashboard
	Enable SAQL Logs in the Browser

	Quick Start
	Write Your First Query
	Create a Derived Measure
	Create a Derived Dimension

	Examples
	Analyze Your Data Over Time
	Calculate How Long Activities Take
	Display the Opportunities Closed This Month
	Forecast Future Data Points with timeseries
	Combine Data from Multiple Data Streams with cogroup
	Replace Null Values with coalesce()
	Dynamically Display Your Top Five Reps with Windowing
	Append Datasets using union
	Calculate the Slope of the Regression Line
	Show the Top and Bottom Quartile
	Calculate Grand Totals and Subtotals with the rollup Modifier and grouping() Function

	SAQL Reference
	SAQL Basic Elements
	Statements
	Keywords
	Identifiers
	Number Literals
	String Literals
	Boolean Literals
	Multivalue Field
	Quoted String Escape Sequences
	Special Characters
	Comments

	SAQL Operators
	Arithmetic Operators
	Comparison Operators
	String Operators
	Logical Operators
	Simple case Operator
	Searched case Operator
	Null Operators

	SAQL Statements
	cogroup
	fill
	filter
	foreach
	group-by
	group-by rollup
	limit
	load
	offset
	order
	sample
	timeseries
	union

	SAQL Functions
	Aggregate Functions
	avg() or average()
	count()
	first()
	last()
	max()
	median()
	min()
	sum()
	unique()
	stddev()
	stddevp()
	var()
	varp()
	percentile_cont()
	percentile_disc()
	regr_intercept()
	regr_slope()
	regr_r2()
	grouping()

	Date Functions
	daysBetween()
	date_diff()
	now()
	date()
	toDate()
	date_to_epoch()
	date_to_string()
	toString()
	Time-Based Filtering
	Day in the Week, Month, Quarter, or Year
	First Day in the Week, Month, Quarter, or Year
	Last Day in the Week, Month, Quarter, or Year
	Number of Days in the Month, Quarter, or Year

	Time Zone Date Functions
	Use Time Zone-Enabled Dates in SAQL Projections
	Access Date Functions with Time Zone Enabled
	Group By Date
	Order By Date
	Filter By Date
	Calculate the Time Between Two Dates
	date_diff(datepart, startdate, enddate)
	daysBetween(date1, date2)
	now()

	Convert Dates to and from Strings
	date_to_string(DateTime | DateOnly, formatString)
	toDateTime(epoch)
	toDateTime(string, format)
	toDateOnly(epoch)
	toDateOnly(string, format)

	Handle Null Dates
	Determine the Day in the Week, Month, Quarter, or Year
	day_in_week(date)
	day_in_month(date)
	day_in_quarter(date)
	day_in_year(date)
	week_last_day(date)
	year_last_day(date)
	quarter_last_day(date)
	month_days(date)
	quarter_days(date)
	year_days(date)

	Work with Custom Fiscal Year Data
	Group by a Custom Fiscal Year
	Filter by a Custom Fiscal Year
	Dates Outside Ranges Defined by Custom Fiscal Year

	String Functions
	ascii()
	chr()
	ends_with()
	index_of()
	len()
	lower()
	ltrim()
	mv_to_string()
	number_to_string
	replace()
	rtrim()
	starts_with()
	string_to_number
	substr()
	trim()
	upper()

	Math Functions
	abs(n)
	acos(n)
	asin(n)
	atan(n)
	ceil(n)
	cos(n)
	degrees(n)
	exp(n)
	floor(n)
	log(m, n)
	pi()
	power(m, n)
	radians(n)
	round(n[, m])
	sign(n)
	sin(n)
	sqrt(n)
	tan(n)
	trunc(n[, m])

	Windowing Functions
	coalesce

	Query Performance
	Speed Up Queries with Dataflow Transformations
	Limit Multivalue Fields
	Use Group and Filter Pre-projection
	Remove Redundant Projections
	Check for Redundant Filters
	Limit the Use of unique()

