
Analytics Security
Implementation Guide

Salesforce, Winter ’23

 @salesforcedocs
Last updated: December 1, 2022

https://twitter.com/salesforcedocs

© Copyright 2000–2022 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

SECURITY FOR CRM ANALYTICS . 1

SALESFORCE DATA ACCESS IN CRM ANALYTICS . 2

APP-LEVEL SHARING . 4

SET UP DATASET SECURITY TO CONTROL ACCESS TO ROWS 6
Add Row-Level Security with a Security Predicate . 7
Row-Level Security Example based on Record Ownership . 7
Row-Level Security Example based on Opportunity Teams . 12
Row-Level Security Example based on Role Hierarchy and Record Ownership 20
Row-Level Security Example Based on Territory Management . 30
Add Row-Level Security by Inheriting Sharing Rules . 36

SECURITY PREDICATE REFERENCE . 37
Predicate Expression Syntax for Datasets . 37
Sample Predicate Expressions for Datasets . 42

SECURITY FOR CRM ANALYTICS

CRM Analytics has different levels of security that your organization can implement to ensure that the right user has access to the right
data.

• The administrator can implement object-level and field-level security to control access to Salesforce data. For example, the administrator
can restrict access to prevent the dataflow from loading sensitive Salesforce data into datasets. This document describes how CRM
Analytics uses object-level and field-level security on Salesforce data and how to configure permissions on Salesforce objects and
fields.

• Dataset owners can implement row-level security on each dataset that they create to restrict access to it’s records. If a dataset does
not have row-level security, users who have access to the dataset can view all records. This document describes how to configure
row-level security on datasets and provides some sample implementations based on datasets created from Salesforce data and
external data.

Note: CRM Analytics supports security predicates, a robust row-level security feature that enables you to model many different
types of access controls on datasets. Also, CRM Analytics supports sharing inheritance, to synchronize with sharing that’s
configured in Salesforce, subject to certain limitations. If you use sharing inheritance, you must also set a security predicate to
take over in situations when sharing settings can’t be honored.

• App owners, administrators, and users granted manager access to an app control access to datasets, lenses, and dashboards within
apps. This document describes the different levels of access for apps and how to share datasets, lenses, dashboards in an app with
other users.

1

SALESFORCE DATA ACCESS IN CRM ANALYTICS

CRM Analytics requires access to Salesforce data when extracting the data and also when the data is used as part of row-level security.
CRM Analytics gains access to Salesforce data based on permissions of two internal CRM Analytics users: Integration User and Security
User.

CRM Analytics uses the permissions of the Integration User to extract data from Salesforce objects and fields when a dataflow job runs.
Because the Integration User has View All Data access, consider restricting access to particular objects and fields that contain sensitive
data. If the dataflow is configured to extract data from an object or field on which the Integration User does not have permission, the
dataflow job fails.

When you query a dataset that has row-level security based on the User object, CRM Analytics uses the permissions of the Security User
to access the User object and its fields. The Security User must have at least read permission on each User object field included in a
predicate. A predicate is a filter condition that defines row-level security for a dataset. By default, the Security User has read permission
on all standard fields of the User object. If the predicate is based on a custom field, then grant the Security User read access on the field.
If the Security User does not have read access on all User object fields included in a predicate expression, an error appears when you try
to query the dataset using that predicate.

Important: Because CRM Analytics requires the Integration User and Security User to access Salesforce data, do not delete either
of these users.

Control Access to Salesforce Objects and Fields

CRM Analytics requires access to Salesforce data when extracting the data and also when the data is used as part of row-level security.
Configure the permissions of the Integration User on Salesforce objects and fields to control the dataflow’s access to Salesforce data.
Configure the permissions of the Security User to enable row-level security based on custom fields of the User object.

Control Access to Salesforce Objects and Fields

USER PERMISSIONS

To clone a user profile:

• Manage Profiles and
Permission Sets

To edit object permissions:

• Manage Profiles and
Permission Sets

AND

Customize Application

CRM Analytics requires access to Salesforce data when extracting the data and also when the data
is used as part of row-level security. Configure the permissions of the Integration User on Salesforce
objects and fields to control the dataflow’s access to Salesforce data. Configure the permissions of
the Security User to enable row-level security based on custom fields of the User object.

When configuring permissions for the Integration User or Security User, make changes to a cloned
version of the user profile.

1. From Setup, enter Profiles in the Quick Find box, then select Profiles, and then
select the user profile.

For the Integration User, select the Analytics Cloud Integration User profile. For the Security
User, select the Analytics Cloud Security User profile.

2. Click Clone to clone the user profile.

3. Name and save the cloned user profile.

4. Click Object Settings.

5. Click the name of the Salesforce object.

6. Click Edit.

2

a. To enable permission on the object, select Read in the Object Permissions section.

b. To enable permission on a field of the object, select Read for the field in the Field Permissions section.

Note: You can’t change the permissions on standard fields of the User object.

7. Save the object settings.

8. Assign the cloned user profile to the Integration User or Security User.

a. From Setup, enter Users in the Quick Find box, then select Users.

b. Select the user to which you want to assign the user profile.

c. Click Edit.

d. In the Profile field, select the user profile.

e. Click Save.

9. Verify that the Integration User or Security User has the right permissions on fields of the objects.

3

Control Access to Salesforce Objects and FieldsSalesforce Data Access in CRM Analytics

APP-LEVEL SHARING

CRM Analytics apps are like folders, allowing users to organize their own data projects—both private and shared—and control sharing
of dataset, lenses, and dashboard.

All CRM Analytics users start off with Viewer access to the default Shared App that’s available out of the box; administrators can change
this default setting to restrict or extend access. Each user also has access to a default app out of the box, called My Private App, intended
for personal projects in progress. The contents of each user’s My Private App aren’t visible to administrators, but dashboards and lenses
in My Private App can be shared.

All other apps created by individual users are private, by default; the app owner and administrators have Manager access and can extend
access to other users, groups, or roles.

Here’s a summary of what users can do with Viewer, Editor, and Manager access.

ManagerEditorViewerAction

XXXView dashboard, lenses, and dataset in the app

Note: If the underlying dataset is in a different app than a lens or
dashboard, the user must have access to both apps to view the lens
or dashboard.

XXXSee who has access to the app

XXXExplore datasets that the user has Viewer access to and save lenses to an
app that the user has Editor or Manager access to

XXXSave contents of the app to another app that the user has Editor or Manager
access to

XXSave changes to existing dashboard, lenses, and dataset in the app (saving
dashboard requires the appropriate permission set license and permission)

XChange the app’s sharing settings

XRename the app

XXUpdate asset visibility in an app

XDelete the app

Important: When users are deactivated, they lose share and delete access to all apps they manage. To avoid "stranding" an app,
be sure that manager access is assigned to at least one active user BEFORE deactivating the user who's the manager of the app.

1. Share an App

To enable others to see a lens, dashboard, or dataset, one way to share is by sharing the app it’s in.

4

Share an App

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To share an app:
• Use CRM Analytics and

Manager access to the
app

To enable others to see a lens, dashboard, or dataset, one way to share is by sharing the app it’s in.

1. On the app page, click the Share button.

2. On the Give Access tab:

a. Choose whether you’re sharing the app with a user, group, or role.

b. Start typing the name and select from the suggested matches.

c. Choose the level of sharing access: Viewer, Editor, or Manager.

d. Click Add.

e. Click Save, then click Done.

Important: When users are deactivated, they lose share and delete access to all apps they
manage. To avoid "stranding" an app, be sure that manager access is assigned to at least one
active user BEFORE deactivating the user who's the manager of the app.

5

Share an AppApp-Level Sharing

SET UP DATASET SECURITY TO CONTROL ACCESS TO ROWS

If a CRM Analytics user has access to a dataset, the user has access to all records in the dataset by default. To restrict access to records,
you can implement row-level security on a dataset when you use sharing inheritance and security predicates. Sharing inheritance
automatically applies a Salesforce object’s sharing logic to the dataset’s rows. A security predicate is a manually assigned filter condition
that defines dataset row access.

To implement effective dataset row-level security, most Salesforce orgs can use a combination of sharing inheritance and a backup
security predicate. Sharing inheritance provides the correct record access to your users who do not have many employees or shared
records. For users with access to many of their own or shared records, like a CEO or dashboard builder, a security predicate is set as
backup to sharing inheritance.

To get started, learn more about sharing inheritance and security predicates. Then turn on sharing inheritance and evaluate how well
sharing inheritance covers your users’ dataset access needs. Finally, set the dataset’s security predicate if needed and test.

Add Row-Level Security with a Security Predicate

Applying a predicate to a dataset is more than just defining the predicate expression. You also must consider how the predicate is
dependent on the information in the dataset and where to define the predicate expression.

Row-Level Security Example based on Record Ownership

Let’s look at an example where you create a dataset based on a CSV file and then implement row-level security based on record
ownership. In this example, you will create a dataset that contains sales targets for account owners. To restrict access on each record
in the dataset, you will create a security policy where each user can view only sales targets for accounts that they own. This process
requires multiple steps that are described in the sections that follow.

Row-Level Security Example based on Opportunity Teams

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on an
opportunity team. In this example, you will create a dataset that contains only opportunities associated with an opportunity team.
To restrict access on each record in the dataset, you will create a security policy where only opportunity members can view their
opportunity. This process requires multiple steps that are described in the sections that follow.

Row-Level Security Example based on Role Hierarchy and Record Ownership

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on the
Salesforce role hierarchy and record ownership. In this example, you will create a dataset that contains all opportunities. To restrict
access on each record in the dataset, you will create a security policy where each user can view only opportunities that they own or
that are owned by their subordinates based on the Salesforce role hierarchy. This process requires multiple steps that are described
in the sections that follow.

Row-Level Security Example Based on Territory Management

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on your
defined territories. In this example, you determine what model you use for territory management, so you can later review sample
JSON for that dataset. To restrict access on each record in the dataset, you will create a security predicate where each user can view
only data appropriate for the territory to which they belong.

Add Row-Level Security by Inheriting Sharing Rules

Use sharing inheritance to let CRM Analytics apply the same sharing setup for your datasets as Salesforce uses for your objects.
Sharing inheritance increases access accuracy and reduces the need for complicated security predicates for most objects and
situations. The tradeoff for applying sharing inheritance is an increase in the time to complete data syncs, dataflow and recipe jobs,
and queries. The more complicated the sharing settings, the more impact there is.

6

https://help.salesforce.com/articleView?id=bi_security_datasets_sharing_about.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=bi_security_datasets_predicate_considerations.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=bi_security_datasets_sharing_getting_started.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=bi_security_datasets_sharing_determine_will_work.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=bi_security_datasets_predicate_syntax.htm&type=5&language=en_US

Add Row-Level Security with a Security Predicate

Applying a predicate to a dataset is more than just defining the predicate expression. You also must consider how the predicate is
dependent on the information in the dataset and where to define the predicate expression.

Define a predicate for each dataset on which you want to restrict access to records. A security predicate is a filter condition that defines
row-level access to records in a dataset.

When a user submits a query against a dataset that has a predicate, CRM Analytics checks the predicate to determine which records the
user has access to. If the user doesn’t have access to a record, CRM Analytics doesn’t return that record.

Note:

• If the dataset already exists, changes to its security settings must be done directly by editing the dataset. After a dataset is
created, changes to security settings in the dataflow (rowLevelSharingSource or rowLevelSecurityFilter) or recipe (Security
Predicate) have no effect.

• When sharing inheritance is enabled, you can set the security predicate to ‘false’ to block all users not covered by sharing. In
fact, this predicate is the default when sharing is enabled on existing datasets.

The predicate is flexible and can model different types of security policies. For example, you can create predicates based on:

• Record ownership. Enables each user to view only records that they own.

• Management visibility. Enables each user to view records owned or shared by their subordinates based on a role hierarchy.

• Team or account collaboration. Enables all members of a team, like an opportunity team, to view records shared with the team.

• Combination of different security requirements. For example, you might choose to define a predicate based on the Salesforce role
hierarchy, teams, and record ownership.

The type of security policy you implement depends on how you want to restrict access to records in the dataset.

Warning: If row-level security isn’t applied to a dataset, any user that has access to the dataset can view all records in the dataset.

You can create a predicate expression based on the user or information in the dataset. For example, to enable each user to view only
dataset records that they own, you can create a predicate based on a dataset column that contains the owner for each record. If needed,
you can load additional data into a dataset required by the predicate.

Important: Security predicates referencing $User information require a new user session before a new value is recognized.

The location where you define the predicate varies.

• To create a dataset with a security predicate from a dataflow, add the predicate in the rowLevelSecurityFilter field of the Register
transformation.

• To create a dataset with a security predicate from a recipe, use the Security Predicate field of the Output node.

• To create a dataset with a security predicate from an external data file, define the predicate in the rowLevelSecurityFilter field in
the metadata file associated with the external data file during upload.

Row-Level Security Example based on Record Ownership

Let’s look at an example where you create a dataset based on a CSV file and then implement row-level security based on record ownership.
In this example, you will create a dataset that contains sales targets for account owners. To restrict access on each record in the dataset,
you will create a security policy where each user can view only sales targets for accounts that they own. This process requires multiple
steps that are described in the sections that follow.

7

Add Row-Level Security with a Security PredicateSet Up Dataset Security to Control Access to Rows

Note: Although this example is about applying a predicate to a dataset created from a CSV file, this procedure can also be applied
to a dataset that is created from Salesforce data.

1. Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create a Targets dataset that contains all
sales targets.

2. Determine Row-Level Security for Dataset

Now it’s time to think about row-level security. How will you restrict access to each record in this dataset?

3. Add the Predicate to the Metadata File

For a dataset created from a CSV file, you can specify the predicate in the metadata file associated with the CSV file or when you edit
the dataset.

4. Create the Dataset

Now that you updated the metadata file with the predicate, you can create the dataset.

5. Test Row-Level Security for the Dataset

You must verify that the predicate is applied properly and that each user can see their own sales targets.

Determine Which Data to Include in the Dataset
First, determine what data you want to include in the dataset. For this example, you will create a Targets dataset that contains all sales
targets.

You will obtain sales targets from the CSV file shown below.

TargetDateTargetRegionAccountOwner

1/1/201110000MidwestTony Santos

1/1/201150000NortheastLucy Timmer

12/1/20130NortheastLucy Timmer

1/1/201115000MidwestBill Rolley

1/1/201135000SouthwestKeith Laz

1/1/201140000SoutheastLucy Timmer

If you were to create the dataset without implementing row-level security, any user that had access to the dataset would be able to see
the sales targets for all account owners. For example, as shown below, Keith would be able to view the sales targets for all account
owners.

8

Determine Which Data to Include in the DatasetSet Up Dataset Security to Control Access to Rows

You need to apply row-level security to restrict access to records in this dataset.

Determine Row-Level Security for Dataset
Now it’s time to think about row-level security. How will you restrict access to each record in this dataset?

You decide to implement the following predicate on the dataset.

'AccountOwner' == "$User.Name"

Note: All predicate examples in this document escape the double quotes because it’s required when you enter the predicate in
the Register transformation or metadata file.This predicate implements row-level security based on record ownership. Based on
the predicate, CRM Analytics returns a sales target record when the user who submits the query on the dataset is the account
owner.

Let’s take a deeper look into the predicate expression:

• AccountOwner refers to the dataset column that stores the full name of the account owner for each sales target.

• $User.Name refers to the Name column of the User object that stores the full name of each user. CRM Analytics performs a lookup
to get the full name of the user who submits each query.

Note: The lookup returns a match when the names in AccountOwner and $User.Name match exactly—they must have the same
case.

Add the Predicate to the Metadata File
For a dataset created from a CSV file, you can specify the predicate in the metadata file associated with the CSV file or when you edit the
dataset.

You must escape the double quotes around string values when entering a predicate in the metadata file.

In this example, you add the predicate to the metadata file shown below.

{
"fileFormat": {

9

Determine Row-Level Security for DatasetSet Up Dataset Security to Control Access to Rows

"charsetName": "UTF-8",
"fieldsDelimitedBy": ",",
"fieldsEnclosedBy": "\"",
"numberOfLinesToIgnore": 1 },
"objects": [

{
"name": "Targets",
"fullyQualifiedName": "Targets",
"label": "Targets",
"rowLevelSecurityFilter": "'AccountOwner' == \"$User.Name\"",
"fields": [

{
"name": "AccountOwner",
"fullyQualifiedName": "Targets.AccountOwner",
"label": "Account Owner",
"type": "Text"

},
{

"name": "Region",
"fullyQualifiedName": "Targets.Region",
"label": "Region",
"type": "Text"

},
{

"name": "Target",
"fullyQualifiedName": "Targets.Target",
"label": "Target",
"type": "Numeric",
"precision": 16,
"scale": 0,
"defaultValue": "0",
"format": null

},
{

"name": "TargetDate",
"fullyQualifiedName": "Targets.TargetDate",
"label": "TargetDate",
"description": "",
"type": "Date",
"format": "dd/MM/yy HH:mm:ss",
"isSystemField": false,
"fiscalMonthOffset": 0

}
]
}

]
}

10

Add the Predicate to the Metadata FileSet Up Dataset Security to Control Access to Rows

Create the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To upload a CSV and
metadata file:
• Upload External Data to

CRM Analytics

Now that you updated the metadata file with the predicate, you can create the dataset.

Warning: If you wish to perform the steps in this sample implementation, perform the steps
in a non-production environment. Ensure that these changes do not impact other datasets
that you already created.

To create the dataset, perform the following steps.

1. In CRM Analytics, go to the home page.

2. Click Create > Dataset

3. Click CSV.

The following screen appears.

4. Select the CSV file and metadata (schema) file.

5. In the Dataset Name field, enter “SalesTarget” as the name of the dataset.

6. Optionally, choose a different app where you want to store the dataset.

7. Click Create Dataset.

CRM Analytics confirms that the upload is successful and then creates a job to create the dataset. You can view the SalesTarget
dataset after the job completes successfully.

11

Create the DatasetSet Up Dataset Security to Control Access to Rows

8. To verify that the job completes successfully, perform the following steps:

a.
Click the gear icon () and then select Data Monitor to open the data monitor.

By default, the Jobs View of the data monitor appears. It shows the statuses of dataflow and external data upload jobs.

b.
Click the Refresh Jobs button () to view the latest statuses of the jobs.

Test Row-Level Security for the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

You must verify that the predicate is applied properly and that each user can see their own sales
targets.

1. Log in to CRM Analytics as Keith.

2. Open the SalesTargets dataset.
As shown in the following lens, notice that Keith can see only his sales target.

Row-Level Security Example based on Opportunity Teams

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on an
opportunity team. In this example, you will create a dataset that contains only opportunities associated with an opportunity team. To
restrict access on each record in the dataset, you will create a security policy where only opportunity members can view their opportunity.
This process requires multiple steps that are described in the sections that follow.

1. Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create an OppTeamMember dataset that
contains only opportunities associated with an opportunity team.

12

Test Row-Level Security for the DatasetSet Up Dataset Security to Control Access to Rows

2. Design the Dataflow to Load the Data

Now it’s time to figure out how the dataflow will extract the Salesforce data and load it into a dataset. You start by creating this
high-level design for the dataflow.

3. Determine Row-Level Security for the Dataset

Now it’s time to think about row-level security. How will you restrict access to each record in this dataset?

4. Modify the Dataflow Based on Row-Level Security

It’s now time to add the predicate in the dataflow definition file.

5. Create the Dataset

Now that you have the final dataflow definition file, you can create the dataset.

6. Test Row-Level Security for the Dataset

You must verify that the predicate is applied properly and that each user can see the appropriate opportunities.

Determine Which Data to Include in the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

First, determine what data you want to include in the dataset. For this example, you will create an
OppTeamMember dataset that contains only opportunities associated with an opportunity team.

You will obtain opportunities from the Opportunity object and the opportunity teams from the
OpportunityTeamMember object. Both are Salesforce objects.

In this example, your Salesforce organization has the following opportunity team and users.

Your organization also contains the following opportunities, most of which are owned by Keith.

13

Determine Which Data to Include in the DatasetSet Up Dataset Security to Control Access to Rows

Acc - 1000 Widgets is the only opportunity shared by an opportunity team. Bill is the Sales Manager for this opportunity. Tony is the
opportunity owner.

Design the Dataflow to Load the Data

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

Now it’s time to figure out how the dataflow will extract the Salesforce data and load it into a dataset.
You start by creating this high-level design for the dataflow.

The dataflow will extract data from the Opportunity and OpportunityTeamMember objects, join
the data, and then load it into the OppTeamMember dataset.

Now let’s implement that design in JSON, which is the format of the dataflow definition file. A
dataflow definition file contains transformations that extract, transform, and load data into a dataset.

Based on the design, you create the JSON shown below.

{
"Extract_OpportunityTeamMember": {

"action": "sfdcDigest",
"parameters": {

"object": "OpportunityTeamMember",
"fields": [

{ "name": "Name" },
{ "name": "OpportunityId" },
{ "name": "UserId" }

]
}

},
"Extract_Opportunity": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

]
}

},
"Augment_OpportunityTeamMember_Opportunity": {

"action": "augment",
"parameters": {

"left": "Extract_OpportunityTeamMember",

14

Design the Dataflow to Load the DataSet Up Dataset Security to Control Access to Rows

"left_key": [
"OpportunityId"

],
"relationship": "TeamMember",
"right": "Extract_Opportunity",
"right_key": [

"Id"
],
"right_select": [

"Name","Amount"
]

}
},
"Register_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "OppTeamMember",
"name": "OppTeamMember",
"source": "Augment_OpportunityTeamMember_Opportunity",
"rowLevelSecurityFilter": ""

}
}

}

If you were to run this dataflow, CRM Analytics would generate a dataset with no row-level security. As a result, any user that has access
to the dataset would be able to see the opportunity shared by the opportunity team.

For example, as shown below, Lucy would be able to view the opportunity that belongs to an opportunity team of which she is not a
member.

You need to apply row-level security to restrict access to records in this dataset.

15

Design the Dataflow to Load the DataSet Up Dataset Security to Control Access to Rows

Determine Row-Level Security for the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

Now it’s time to think about row-level security. How will you restrict access to each record in this
dataset?

You decide to implement the following predicate on the dataset.

'UserId' == "$User.Id"

This predicate compares the UserId column in the dataset against the ID of the user running a query against the dataset. The UserId
column in the dataset contains the user ID of the team member associated with each opportunity. To determine the ID of the user
running the query, CRM Analytics looks up the ID of the user making the query in the User object.

For each match, CRM Analytics returns the record to the user.

Modify the Dataflow Based on Row-Level Security

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

It’s now time to add the predicate in the dataflow definition file.

You add the predicate to the Register transformation that registers the OppTeamMember dataset
as shown below.

{
"Extract_OpportunityTeamMember": {

"action": "sfdcDigest",
"parameters": {

"object": "OpportunityTeamMember",
"fields": [

{ "name": "Name" },
{ "name": "OpportunityId" },
{ "name": "UserId" }

]

16

Determine Row-Level Security for the DatasetSet Up Dataset Security to Control Access to Rows

}
},
"Extract_Opportunity": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

]
}

},
"Augment_OpportunityTeamMember_Opportunity": {

"action": "augment",
"parameters": {

"left": "Extract_OpportunityTeamMember",
"left_key": [

"OpportunityId"
],
"relationship": "TeamMember",
"right": "Extract_Opportunity",
"right_key": [

"Id"
],
"right_select": [

"Name","Amount"
]

}
},
"Register_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "OppTeamMember",
"name": "OppTeamMember",
"source": "105_Augment_OpportunityTeamMember_Opportunity",
"rowLevelSecurityFilter": "'UserId' == \"$User.Id\""

}
}

}

17

Modify the Dataflow Based on Row-Level SecuritySet Up Dataset Security to Control Access to Rows

Create the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To download, upload, run,
and monitor a dataflow:
• Edit CRM Analytics

Dataflows

Now that you have the final dataflow definition file, you can create the dataset.

Warning: If you wish to perform the steps in this sample implementation, verify that you
have all required Salesforce objects and fields, and perform the steps in a non-production
environment. Ensure that these changes do not impact other datasets that you already created.
Also, always make a backup of the existing dataflow definition file before you make changes
because you cannot retrieve old versions of the file.

To create the dataset, perform the following steps.

1.
In CRM Analytics, click the gear icon () and then select Monitor to open the monitor.
The Jobs view of the monitor appears by default.

2. Select Dataflow View.

3. Click the actions list (1) for the dataflow and then select Download to download the existing
dataflow definition file.

4. Open the dataflow definition file in a JSON or text editor.

5. Add the JSON determined in the previous step.

6. Before you save the dataflow definition file, use a JSON validation tool to verify that the JSON is valid.

An error occurs if you try to upload the dataflow definition file with invalid JSON. You can find JSON validation tool on the internet.

7. Save and close the dataflow definition file.

8. In the Dataflow View of the monitor, click the actions list for the dataflow and then select Upload.

9. Select the updated dataflow definition file and click Upload.

10. In the Dataflow View of the monitor, click the actions list for the dataflow and then select Run to run the dataflow job.

11.
Click the Refresh Jobs button () to view the latest status of the dataflow job.
You can view the OppTeamMember dataset after the dataflow job completes successfully.

18

Create the DatasetSet Up Dataset Security to Control Access to Rows

Note: If you are adding a predicate to a dataset that was previously created, each user must log out and log back in for the
predicate to take effect.

Test Row-Level Security for the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

You must verify that the predicate is applied properly and that each user can see the appropriate
opportunities.

1. Log in to CRM Analytics as Lucy.

2. Open the OppTeamMember opportunity.
Notice that Lucy can’t view the opportunity associated with the opportunity team anymore
because she is not a member of the team.

3. Log out and now log in as Bill.
Bill can view the opportunity that is shared by the opportunity team of which he is a member.

19

Test Row-Level Security for the DatasetSet Up Dataset Security to Control Access to Rows

Row-Level Security Example based on Role Hierarchy and Record
Ownership

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on the
Salesforce role hierarchy and record ownership. In this example, you will create a dataset that contains all opportunities. To restrict access
on each record in the dataset, you will create a security policy where each user can view only opportunities that they own or that are
owned by their subordinates based on the Salesforce role hierarchy. This process requires multiple steps that are described in the sections
that follow.

1. Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create the OppRoles dataset that contains
all opportunities as well as user details about each opportunity owner, such as their full name, division, and title.

2. Design the Dataflow to Load the Data

Now it’s time to figure out how the dataflow will extract the data and load it into a dataset. You start by creating this high-level
design for the dataflow.

3. Determine Row-Level Security for the Dataset

Now it’s time to think about row-level security. How will you restrict access to each record in this dataset?

4. Modify the Dataflow Based on Row-Level Security

Now it’s time to modify the dataflow definition file to account for the predicate.

5. Create the Dataset

Now that you have the final dataflow definition file, you can create the dataset.

6. Test Row-Level Security for the Dataset

You must verify that the predicate is applied properly and that each user can see the appropriate opportunities.

Determine Which Data to Include in the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

First, determine what data you want to include in the dataset. For this example, you will create the
OppRoles dataset that contains all opportunities as well as user details about each opportunity
owner, such as their full name, division, and title.

You will obtain opportunities from the Opportunity object and user details from the User object.
Both are objects in Salesforce.

In this example, your Salesforce organization has the following role hierarchy and users.

20

Row-Level Security Example based on Role Hierarchy and
Record Ownership

Set Up Dataset Security to Control Access to Rows

Also, your organization contains the following opportunities, most of which are owned by Keith.

Design the Dataflow to Load the Data

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

Now it’s time to figure out how the dataflow will extract the data and load it into a dataset. You
start by creating this high-level design for the dataflow.

The dataflow will extract data from the Opportunity and User objects, join the data, and then load
it into the OppRoles dataset.

Now let’s implement that design in JSON, which is the format of the dataflow definition file. A
dataflow definition file contains transformations that extract, transform, and load data into a dataset.

Based on the design, you create the JSON shown below.

{
"Extract_Opportunity": {

"action": "sfdcDigest",

21

Design the Dataflow to Load the DataSet Up Dataset Security to Control Access to Rows

"parameters": {
"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "AccountId" },
{ "name": "OwnerId" }
]

}
},
"Extract_User": {

"action": "sfdcDigest",
"parameters": {
"object": "User",
"fields": [

{ "name": "Id" },
{ "name": "Username" },
{ "name": "LastName" },
{ "name": "FirstName" },
{ "name": "Name" },
{ "name": "CompanyName" },
{ "name": "Division" },
{ "name": "Department" },
{ "name": "Title" },
{ "name": "Alias" },
{ "name": "CommunityNickname" },
{ "name": "UserType" },
{ "name": "UserRoleId" }
]

}
},
"Augment_Opportunity_User": {

"action": "augment",
"parameters": {

"left": "Extract_Opportunity",
"left_key": [

"OwnerId"
],
"right": "Extract_User",
"relationship": "Owner",
"right_select": [

"Name"
],
"right_key": [

"Id"
]

}
},
"Register": {

"action": "sfdcRegister",
"parameters": {

"alias": "OppRoles",

22

Design the Dataflow to Load the DataSet Up Dataset Security to Control Access to Rows

"name": "OppRoles",
"source": "Augment_Opportunity_User",
"rowLevelSecurityFilter": ""

}
}

}

If you were to run this dataflow, CRM Analytics would generate a dataset with no row-level security. As a result, any user that has access
to the dataset would be able to view all opportunities. For example, as shown below, Bill would be able to view all opportunities, including
those owned by his manager Keith.

You need to apply row-level security to restrict access to records in this dataset.

Determine Row-Level Security for the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

Now it’s time to think about row-level security. How will you restrict access to each record in this
dataset?

23

Determine Row-Level Security for the DatasetSet Up Dataset Security to Control Access to Rows

You decide to implement the following predicate on the dataset.

'ParentRoleIDs' == "$User.UserRoleId" || 'OwnerId' == "$User.Id"

Note: The current dataflow doesn’t contain logic to create a dataset column named “ParentRoleIDs.” ParentRoleIDs is a placeholder
for the name of a column that will contain this information. In the next step, you will modify the dataflow to add this column to
the dataset. This column name will change based on how you configure the dataflow.

Based on the predicate, CRM Analytics returns an opportunity record if:

• The user who submits the query is a parent of the opportunity owner based on the Salesforce role hierarchy. CRM Analytics determines
this based on their role IDs and the role hierarchy.

• Or, the user who submits the query on the dataset is the opportunity owner.

Let’s examine both parts of this predicate.

DescriptionPredicate Part

'ParentRoleIDs' == "$User.UserRoleId" • ParentRoleIDs refers to a dataset column that contains a
comma-separated list of role IDs of all users above the
opportunity owner based on the role hierarchy. You will create
this dataset column in the next section.

• $User.UserRoleId refers to the UserRoleId column of the User
object. CRM Analytics looks up the user role ID of the user who
submits the query from the User object.

'OwnerId' == "$User.Id" • OwnerId refers to the dataset column that contains the user
ID of the owner of each opportunity.

• $User.Id refers to the Id column of the User object. CRM
Analytics looks up the user ID of the user who submits the
query from the User object.

Modify the Dataflow Based on Row-Level Security

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

Now it’s time to modify the dataflow definition file to account for the predicate.

In this scenario, you have to make changes to the dataflow based on the predicate.

• Add a column in the dataset that stores a comma-separated list of the role IDs of all parents for
each opportunity owner. When you defined the predicate in the previous step, you temporarily
referred to this column as “ParentRoleIDs.” To add the column, you redesign the dataflow as
shown in the following diagram:

24

Modify the Dataflow Based on Row-Level SecuritySet Up Dataset Security to Control Access to Rows

The new dataflow design contains the following changes:

– Extracts the role IDs from the UserRole object.

– Uses the Flatten transformation to generate a column that stores a comma-separated list of the role IDs of all parents of each
user. When you determined the predicate in the previous step, you temporarily referred to this column as “ParentRoleIDs.”

– Link the new column to the OppRoles dataset.

• Add the predicate to the Register transformation that registers the OppRoles dataset.

You modify the dataflow as shown below.

{
"Extract_Opportunity": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

]
}

},
"Extract_User": {

"action": "sfdcDigest",
"parameters": {

"object": "User",
"fields": [

{ "name": "Id" },
{ "name": "Username" },
{ "name": "LastName" },
{ "name": "FirstName" },
{ "name": "Name" },
{ "name": "CompanyName" },
{ "name": "Division" },
{ "name": "Department" },
{ "name": "Title" },
{ "name": "Alias" },
{ "name": "CommunityNickname" },

25

Modify the Dataflow Based on Row-Level SecuritySet Up Dataset Security to Control Access to Rows

{ "name": "UserType" },
{ "name": "UserRoleId" }

]
}

},
"Extract_UserRole": {

"action": "sfdcDigest",
"parameters": {

"object": "UserRole",
"fields": [

{ "name": "Id" },
{ "name": "ParentRoleId" },
{ "name": "RollupDescription" },
{ "name": "OpportunityAccessForAccountOwner" },
{ "name": "CaseAccessForAccountOwner" },
{ "name": "ContactAccessForAccountOwner" },
{ "name": "ForecastUserId" },
{ "name": "MayForecastManagerShare" },
{ "name": "LastModifiedDate" },
{ "name": "LastModifiedById" },
{ "name": "SystemModstamp" },
{ "name": "DeveloperName" },
{ "name": "PortalAccountId" },
{ "name": "PortalType" },
{ "name": "PortalAccountOwnerId" }

]
}

},
"Flatten_UserRole": {

"action": "flatten",
"parameters": {

"multi_field": "Roles",
"parent_field": "ParentRoleId",
"path_field": "RolePath",
"self_field": "Id",
"source": "Extract_UserRole"

}
},
"Augment_User_FlattenUserRole": {

"action": "augment",
"parameters": {

"left": "Extract_User",
"left_key": [

"UserRoleId"
],
"relationship": "Role",
"right": "Flatten_UserRole",
"right_key": [

"Id"
],
"right_select": [

"Roles",
"RolePath"

]

26

Modify the Dataflow Based on Row-Level SecuritySet Up Dataset Security to Control Access to Rows

}
},
"Augment_Opportunity_UserWithRoles": {

"action": "augment",
"parameters": {

"left": "Extract_Opportunity",
"left_key": [

"OwnerId"
],
"right": "Augment_User_FlattenUserRole",
"relationship": "Owner",
"right_select": [

"Name",
"Role.Roles",
"Role.RolePath"

],
"right_key": [

"Id"
]

}
},
"Register": {

"action": "sfdcRegister",
"parameters": {

"alias": "OppRoles",
"name": "OppRoles",
"source": "Augment_Opportunity_UserWithRoles",

"rowLevelSecurityFilter": "'Owner.Role.Roles' == \"$User.UserRoleId\" || 'OwnerId'
== \"$User.Id\""

}
}

}

Note: In this example, the dataset has columns Owner.Role.Roles and OwnerId. A user can view the values of these columns for
each record to which they have access.

27

Modify the Dataflow Based on Row-Level SecuritySet Up Dataset Security to Control Access to Rows

Create the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To download, upload, run,
and monitor a dataflow:
• Edit CRM Analytics

Dataflows

Now that you have the final dataflow definition file, you can create the dataset.

Warning: If you wish to perform the steps in this sample implementation, verify that you
have all required Salesforce objects and fields, and perform the steps in a non-production
environment. Ensure that these changes do not impact other datasets that you already created.
Also, always make a backup of the existing dataflow definition file before you make changes
because you cannot retrieve old versions of the file.

To create the dataset, perform the following steps.

1.
In CRM Analytics, click the gear icon () and then select Data Monitor to open the data
monitor.
The Jobs View of the data monitor appears by default.

2. Select Dataflow View.

3. Click the actions list (1) for the dataflow and then select Download to download the existing
dataflow definition file.

4. Open the dataflow definition file in a JSON or text editor.

5. Add the JSON determined in the previous step.

6. Before you save the dataflow definition file, use a JSON validation tool to verify that the JSON is valid.

An error occurs if you try to upload the dataflow definition file with invalid JSON. You can find JSON validation tool on the internet.

7. Save and close the dataflow definition file.

8. In the Dataflow View of the data monitor, click the actions list for the dataflow and then select Upload.

9. Select the updated dataflow definition file and click Upload.

10. In the Dataflow View of the data monitor, click the actions list for the dataflow and then select Run to run the dataflow job.

11.
Click the Refresh Jobs button () to view the latest status of the dataflow job.
You can view the OppRoles dataset after the dataflow job completes successfully.

28

Create the DatasetSet Up Dataset Security to Control Access to Rows

Note: If you are adding a predicate to a dataset that was previously created, each user must log out and log back in for the
predicate to take effect.

Test Row-Level Security for the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available with CRM
Analytics, which is available
for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

•

•

You must verify that the predicate is applied properly and that each user can see the appropriate
opportunities.

1. Log in to CRM Analytics as Bill.

2. Open the OppRoles opportunity.
Notice that Bill can’t see his manager Keith’s opportunities anymore. Now, he can see only his
opportunity and his subordinate Tony’s opportunity.

3. Log out and now log in as Keith.

As expected, Keith can still see all opportunities.

29

Test Row-Level Security for the DatasetSet Up Dataset Security to Control Access to Rows

Row-Level Security Example Based on Territory Management

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on your
defined territories. In this example, you determine what model you use for territory management, so you can later review sample JSON
for that dataset. To restrict access on each record in the dataset, you will create a security predicate where each user can view only data
appropriate for the territory to which they belong.

Territory management is an account sharing system that grants access to accounts based on the characteristics of the accounts. It enables
your company to structure your Salesforce data and users the same way you structure your sales territories.

If your organization has a private sharing model, you might have granted users access to accounts based on criteria such as postal code,
industry, revenue, or a custom field that is relevant to your business. Perhaps you also need to generate forecasts for these diverse
categories of accounts. Territory management solves these business needs and provides a powerful solution for structuring your users,
accounts, and their associated contacts, opportunities, and cases.

1. Determine How You Use Territory Management

When working with security related to territory management, it helps to know how your organization implements territory
management. Usually, one of 2 methods are used. Either accounts are assigned to regions manually, following some
organization-specific precedence, or the organization use’s Salesforce's territory hierarchy feature.

2. Create the DataSet

Now we look at sample JSON code that describes territory management in a dataset.

30

Row-Level Security Example Based on Territory ManagementSet Up Dataset Security to Control Access to Rows

3. Create the Security Predicate

Now we can apply a security predicate to filter the dataset.

Determine How You Use Territory Management
When working with security related to territory management, it helps to know how your organization implements territory management.
Usually, one of 2 methods are used. Either accounts are assigned to regions manually, following some organization-specific precedence,
or the organization use’s Salesforce's territory hierarchy feature.

The manual process

For this example, any account with a Billing State or Province that is North Pole is manually assigned to the Canada region.

Territory Management hierarchies

31

Determine How You Use Territory ManagementSet Up Dataset Security to Control Access to Rows

For this example, we have a user called North America VP who needs access to all accounts in the Canada, Mexico, and US territories.
We also have a user called Rep1 Canada who should only have access to the accounts in the Canada territory, not Mexico or US, and
nowhere above in the hierarchy.

Create the DataSet
Now we look at sample JSON code that describes territory management in a dataset.

In this example, territory management data is stored on the following objects and fields.

Here is an example JSON file for this dataset.

{
"Extract_AccountShare": {
"action": "sfdcDigest",
"parameters": {
"object": "AccountShare",
"fields": [
{ "name": "Id"},
{ "name": "RowCause"},
{ "name": "UserOrGroupId"},
{ "name": "AccountId"}

]
}

},
"Extract_Group": {
"action": "sfdcDigest",
"parameters": {
"object": "Group",
"fields": [
{ "name": "Name"},
{ "name": "Type"},
{ "name": "Id"},
{ "name": "RelatedId"}

]
}

},
"Extract_Territory": {
"action": "sfdcDigest",
"parameters": {

32

Create the DataSetSet Up Dataset Security to Control Access to Rows

"object": "Territory",
"fields": [
{ "name": "Id"},
{ "name": "Name"},
{ "name": "ParentTerritoryId"}

]
}

},
"Extract_User_Territory": {
"action": "sfdcDigest",
"parameters": {
"object": "UserTerritory",
"fields": [
{ "name": "TerritoryId"},
{ "name": "UserId"}

]
}

},
"Extract_User": {
"action": "sfdcDigest",
"parameters": {
"object": "User",
"fields": [
{ "name": "Id"},
{ "name": "Name"}

]
}

},
"Extract_Account": {
"action": "sfdcDigest",
"parameters": {
"object": "Account",
"fields": [
{ "name": "Id"},
{ "name": "Name"},
{ "name": "BillingCountry"}

]
}

},
"Augment_TerritoryUsers": {
"action": "augment",
"parameters": {
"left": "Extract_Territory",
"left_key": [
"Id"

],
"relationship": "TerritoryId",
"right": "Extract_User_Territory",
"right_key": [
"TerritoryId"

],
"right_select": [
"UserId"

],

33

Create the DataSetSet Up Dataset Security to Control Access to Rows

"operation": "LookupMultiValue"
}

},
"Augment_AccountShare_To_Territory_Groups": {
"action": "augment",
"parameters": {
"left": "Augment_AccountShare_To_Account",
"left_key": [
"UserOrGroupId"

],
"relationship": "UserOrGroupId",
"right": "Extract_Group",
"right_key": [
"Id"

],
"right_select": [
"Name",
"RelatedId"

]
}

},
"Augment_AccountShare_To_Territory": {
"action": "augment",
"parameters": {
"left": "Augment_AccountShare_To_Territory_Groups",
"left_key": [
"UserOrGroupId.RelatedId"

],
"relationship": "Territory",
"right": "Augment_TerritoryUsers",
"right_key": [
"Id"

],
"right_select": [
"TerritoryId.UserId"

],
"operation": "LookupMultiValue"

}
},
"Augment_AccountShare_To_Account": {
"action": "augment",
"parameters": {
"left": "Extract_AccountShare",
"left_key": [
"AccountId"

],
"relationship": "AccountId",
"right": "Extract_Account",
"right_key": [
"Id"

],
"right_select": [
"Name"

]

34

Create the DataSetSet Up Dataset Security to Control Access to Rows

}
},
"Register_Territory_GroupUsers": {
"action": "sfdcRegister",
"parameters": {
"alias": "Register_Territory_GroupUsers",
"name": "Register_Territory_GroupUsers",
"source": "Augment_AccountShare_To_Territory"

}
}

}

When run, this JSON file results in a list of accounts. In this example, a list of 5:

Create the Security Predicate
Now we can apply a security predicate to filter the dataset.

Using this example, the following security predicate on the dataset enforces the territory management security rules.

'Territory.TerritoryId.UserId' == "$User.Id" || 'UserOrGroupId' == "$User.Id"

Note: Update the dataset, and then log out of and back in to the org so you see the changes.

Now you see only 2 accounts - Global Media because it is in the Canada territory, and Santa’s Workshop because of the manual rule.

35

Create the Security PredicateSet Up Dataset Security to Control Access to Rows

Add Row-Level Security by Inheriting Sharing Rules

Use sharing inheritance to let CRM Analytics apply the same sharing setup for your datasets as Salesforce uses for your objects. Sharing
inheritance increases access accuracy and reduces the need for complicated security predicates for most objects and situations. The
tradeoff for applying sharing inheritance is an increase in the time to complete data syncs, dataflow and recipe jobs, and queries. The
more complicated the sharing settings, the more impact there is.

As an admin for your Salesforce org, you likely use a combination of sharing settings to provide users access to Salesforce data appropriate
to their roles. Sharing settings include manual and rule-based sharing as well as role hierarchy, role, group, apex-managed, and team-based
sharing. For more information, see Sharing Settings.

For supported objects, you can enable sharing inheritance in CRM Analytics to use the Salesforce sharing settings in CRM Analytics.
When you create or edit datasets, specify the objects to inherit sharing from.

Enable Sharing Inheritance

Turn on sharing inheritance and select the objects to use as a sharing source. Sharing inheritance is on by default in new Salesforce
orgs.

Enable Sharing Inheritance
Turn on sharing inheritance and select the objects to use as a sharing source. Sharing inheritance is on by default in new Salesforce orgs.

Note: We recommend that you test in a sandbox environment before rolling out sharing inheritance to production. Test your
particular use cases against your org’s security model and data to make sure that sharing inheritance works for you.

Turn On Sharing Inheritance
1. From Setup, in the Quick Find box, enter Analytics, and then click Settings.

2. Select Inherit sharing from Salesforce, and click Save.

Enable Sharing Inheritance for Synced Objects
If your org has Data Sync enabled, enable sharing inheritance for each object that you want to use as a sharing source.

1. In CRM Analytics Studio, click Data Manager.

2. In Data Manager, click Connect.

3. On the right end of the row for the object you want to enable, click the dropdown list.

4. Click Row Level Sharing.

5. Click Sharing inheritance on.

6. Click Save.

36

Add Row-Level Security by Inheriting Sharing RulesSet Up Dataset Security to Control Access to Rows

https://help.salesforce.com/apex/HTViewHelpDoc?id=managing_the_sharing_model.htm&language=en_US#managing_the_sharing_model

SECURITY PREDICATE REFERENCE

Predicate Expression Syntax for Datasets

You must use valid syntax when defining the predicate expression.

The predicate expression must have the following syntax:

<dataset column> <operator> <value>

For example, you can define the following predicate expression for a dataset:

'UserId' == "$User.Id"

You can create more complex predicate expressions such as:

(‘Expected_Revenue’ > 4000 || ‘Stage Name’ == "Closed Won") && ‘isDeleted’ != "False"

Consider the following requirements for the predicate expression:

• The expression is case-sensitive.

• The expression cannot exceed 5,000 characters.

• There must be at least one space between the dataset column and the operator, between the operator and the value, and before
and after logical operators. This expression is not valid: ‘Revenue’>100. It must have spaces like this: ‘Revenue’ > 100.

If you try to apply a predicate to a dataset and the predicate is not valid, an error appears when any user tries to query the dataset.

Dataset Columns in a Predicate Expression

You include at least one dataset column as part of the predicate expression.

Values in a Predicate Expression

The value in the predicate expression can be a string literal or number literal. It can also be a field value from the User object in
Salesforce.

Escape Sequences

You can use the backslash character (\) to escape characters in column names and string values in a predicate expression.

Character Set Support

CRM Analytics supports UTF-8 characters in dataset column names and values in a predicate expression. CRM Analytics replaces

non-UTF-8 characters with the UTF-8 symbol (). If CRM Analytics has to replace a non-UTF-8 character in a predicate expression,
users may experience unexpected query results.

Special Characters

Certain characters have a special meaning in CRM Analytics.

Operators

You can use comparison operators and logical operators in predicate expressions.

Dataset Columns in a Predicate Expression
You include at least one dataset column as part of the predicate expression.

37

Consider the following requirements for dataset columns in a predicate expression:

• Column names are case-sensitive.

• Column names must be enclosed in single quotes ('). For example, 'Region' == "South"

Note: A set of characters in double quotes is treated as a string rather than a column name.

• Single quotes in column names must be escaped. For example, 'Team\'s Name' == "West Region Accounts"

Values in a Predicate Expression
The value in the predicate expression can be a string literal or number literal. It can also be a field value from the User object in Salesforce.

Consider the following requirements for each value type.

Predicate Expression ExamplesRequirementsValue Type

Enclose in double quotes and escape the
double quotes.

string literal • 'Owner' == "Amber"

• 'Stage Name' == "Closed
Won"

Can be a float or long datatype. Do not
enclose in quotes.

number literal • 'Expected_Revenue' >=
2000.00

• 'NetLoss' < -10000

When referencing a field from the User
object, use the $User.[field] syntax. Use the
API name for the field.

You can specify standard or custom fields
of type string, number, or multivalue picklist.

field value • 'Owner.Role' ==
"$User.UserRoleId"

• 'GroupID' ==
"$User.UserGroupId__c"

Note: Supported User object field
value types are string, number, and

When you define a predicate for a dataset,
you must have read access on all User object

multivalue picklist. Other types (for
fields used to create the predicate
expression.

38

Values in a Predicate ExpressionSecurity Predicate Reference

Predicate Expression ExamplesRequirementsValue Type

However, when a user queries a dataset that
has a predicate based on the User object,

example, boolean) are not
supported.

CRM Analytics uses the access permissions
of the Insights Security User to evaluate the
predicate expression based on the User
object.

Note: By default, the Security User
does not have access permission on
custom fields of the User object.

To grant the Security User read
access on a field, set field-level
security on the field in the user
profile of the Security User.

SEE ALSO:

Salesforce Data Access in CRM Analytics

Escape Sequences
You can use the backslash character (\) to escape characters in column names and string values in a predicate expression.

You can use the \’ escape sequence to escape a single quote in a column name. For example:

‘Team\’s Name’ == "West Region Accounts"

You can use the following escape sequences for special characters in string values.

MeaningSequence

One backspace character\b

New line\n

Carriage return\r

Tab\t

CTRL+Z (ASCII 26)\Z

One double-quote character\”

One backslash character\\

One ASCII null character\0

39

Escape SequencesSecurity Predicate Reference

Character Set Support
CRM Analytics supports UTF-8 characters in dataset column names and values in a predicate expression. CRM Analytics replaces non-UTF-8

characters with the UTF-8 symbol (). If CRM Analytics has to replace a non-UTF-8 character in a predicate expression, users may
experience unexpected query results.

Special Characters
Certain characters have a special meaning in CRM Analytics.

DescriptionNameCharacter

Encloses a dataset column name in a
predicate expression.

Single quote‘

Example predicate expression:

'Expected_Revenue' >=
2000.00

Encloses a string value or field value in a
predicate expression.

Double quote“

Example predicate expression:
'OpportunityOwner' ==
"Michael Vesti"

Enforces the order in which to evaluate a
predicate expression.

Parentheses()

Example predicate expression:

('Expected_Revenue' > 4000
|| 'Stage Name' == "Closed
Won") && 'isDeleted' !=
"False"

Identifies the Salesforce object in a predicate
expression.

Dollar sign$

Note: You can only use the User
object in a predicate expression.

Example predicate expression:

'Owner.Role' ==
"$User.UserRoleId"

Separates the object name and field name
in a predicate expression.

Period.

Example predicate expression:

40

Character Set SupportSecurity Predicate Reference

DescriptionNameCharacter

'Owner' == "$User.UserId"

Operators
You can use comparison operators and logical operators in predicate expressions.

Comparison Operators

Comparison operators return true or false.

Logical Operators

Logical operators return true or false.

Comparison Operators
Comparison operators return true or false.

CRM Analytics supports the following comparison operators.

DescriptionNameOperator

True if the operands are equal. String comparisons that use the equals operator are case-sensitive.Equals==

Example predicate expressions:

'Stage Name' == "Closed Won"

True if the operands are not equal. String comparisons that use the not equals operator are
case-sensitive.

Not equals!=

Example predicate expression:

'isDeleted' != "False"

True if the left operand is less than the right operand.Less than<

Example predicate expression:

'Revenue' < 100

True if the left operand is less than or equal to the right operand.Less or equal<=

True if the left operand is greater than the right operand.Greater than>

True if the left operand is greater than or equal to the right operand.Greater or equal>=

True if the left operand exists in the list of strings substituted for a multivalue picklist (field value).Multivalue list filterin

Example predicate expression:

'Demog' in ["$User.Demographic__c"]

In this example, Demographic__c is of type multiPicklistField. During evaluation,
the multivalue picklist field is substituted by a list of strings, with 1 string per user-selected item.

41

OperatorsSecurity Predicate Reference

DescriptionNameOperator

Note: Comma-separated lists are not supported within the square-bracket construct.

You can use the <, <=, >, and >= operators with measure columns only.

Logical Operators
Logical operators return true or false.

CRM Analytics supports the following logical operators.

DescriptionNameOperator

True if both operands are true.Logical AND&&

Example predicate expression:

'Stage Name' == "Closed Won" &&
'isDeleted' != "False"

True if either operand is true.Logical OR||

Example predicate expression:

'Expected_Revenue' > 4000 || 'Stage Name'
== "Closed Won"

Sample Predicate Expressions for Datasets

Review the samples to see how to structure a predicate expression.

The samples are based on the following Opportunity dataset.

IsDeletedStage_NameOwnerRoleIDOwnerExpected_RevOpportunity

TrueProspecting20Bill2000.00OppA

FalseClosed Won22Joe3000.00OppB

FalseClosed Won36可爱的花1000.00OppC

TrueProspecting18O’Fallon5000.00OppD

TrueClosed Won22JoeOppE

Let’s take a look at some examples to understand how to construct a predicate expression.

42

Sample Predicate Expressions for DatasetsSecurity Predicate Reference

DetailsPredicate Expression

Checks column values in the User object.'OwnerRoleID' == "$User.UserRoleId"

'Expected_Rev' > 1000 && 'Expected_Rev' <=
3000

'Owner' = "Joe" || 'Owner' = "Bill"

Parentheses specify the order of operations.('Expected_Rev' > 4000 || 'Stage Name' ==
"Closed Won") && 'isDeleted' != "False"

'Stage Name' == "Closed Won" &&
'Expected_Rev' > 70000

String contains Unicode characters.'Owner' == "可爱的花"

Single quote in a string requires the escape character.'Owner' == "O\’Fallon"

Checks for an empty string.'Stage Name' == ""

43

Sample Predicate Expressions for DatasetsSecurity Predicate Reference

	Security for CRM Analytics
	Salesforce Data Access in CRM Analytics
	App-Level Sharing
	Set Up Dataset Security to Control Access to Rows
	Add Row-Level Security with a Security Predicate
	Row-Level Security Example based on Record Ownership
	Determine Which Data to Include in the Dataset
	Determine Row-Level Security for Dataset
	Add the Predicate to the Metadata File
	Create the Dataset
	Test Row-Level Security for the Dataset

	Row-Level Security Example based on Opportunity Teams
	Determine Which Data to Include in the Dataset
	Design the Dataflow to Load the Data
	Determine Row-Level Security for the Dataset
	Modify the Dataflow Based on Row-Level Security
	Create the Dataset
	Test Row-Level Security for the Dataset

	Row-Level Security Example based on Role Hierarchy and Record Ownership
	Determine Which Data to Include in the Dataset
	Design the Dataflow to Load the Data
	Determine Row-Level Security for the Dataset
	Modify the Dataflow Based on Row-Level Security
	Create the Dataset
	Test Row-Level Security for the Dataset

	Row-Level Security Example Based on Territory Management
	Determine How You Use Territory Management
	Create the DataSet
	Create the Security Predicate

	Add Row-Level Security by Inheriting Sharing Rules
	Enable Sharing Inheritance

	Security Predicate Reference
	Predicate Expression Syntax for Datasets
	Dataset Columns in a Predicate Expression
	Values in a Predicate Expression
	Escape Sequences
	Character Set Support
	Special Characters
	Operators
	Comparison Operators
	Logical Operators

	Sample Predicate Expressions for Datasets

