
SOAP API Developer Guide
Version 55.0, Summer ’22

 @salesforcedocs
Last updated: August 25, 2022

https://twitter.com/salesforcedocs

© Copyright 2000–2022 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

GET STARTED WITH SOAP API . 1

Chapter 1: Introduction to SOAP API . 1

Customize, Integrate, and Extend Your Salesforce Solutions . 2
Supported Salesforce Editions . 2
Standards Compliance . 2
Development Platforms . 2
SOAP API Support Policy . 3
API End-of-Life . 3
Choosing a WSDL . 4
Related Resources . 4
Quick Start: SOAP API . 5

Step 1: Sign up for Salesforce Developer Edition . 5
Step 2: Generate or Obtain the Web Service WSDL . 5
Step 3: Import the WSDL File Into Your Development Platform . 6
Step 4: Walk Through the Sample Code . 7

Chapter 2: Core Data Types Used in API Calls . 29

sObject . 30
API Fault Element . 30
ExceptionCode . 31
Error . 36
StatusCode . 37
ExtendedErrorDetails . 47
ExtendedErrorCode . 47
Duplicate Management Data Types . 47

DuplicateError . 47
DuplicateResult . 49
MatchResult . 52
MatchRecord . 53
FieldDiff . 54
AdditionalInformationMap . 55

Chapter 3: Tooling API Objects in the Enterprise WSDL . 56

Chapter 4: API Call Basics . 57

Characteristics of API Calls . 58
Factors that Affect Data Access . 58
Package Version Settings . 60

Chapter 5: Error Handling . 62

Error Handling for Session Expiration . 63
More About Error Handling . 63

Chapter 6: Security and the API . 64

User Authentication . 65
User Profile and Permission Sets Configuration . 65
Security Token . 65
Sharing . 66
Implicit Restrictions for Objects and Fields . 67
API Access in Salesforce AppExchange Packages . 67
Outbound Port Restrictions . 69

Chapter 7: Using the Partner WSDL . 70

Obtaining the Partner WSDL File . 71
Calls and the Partner WSDL . 71
Objects, Fields, and Field Data and the Partner WSDL . 72
Queries and the Partner WSDL . 72
Namespaces in the Partner WSDL . 73
Package Versions and the Partner WSDL . 73
User Interface Themes . 74
Examples Using the Partner WSDL . 74

Sample query and queryMore Calls . 78
Sample search Call . 80
Sample create Call . 83
Sample update Call . 86

REFERENCE . 89

Chapter 8: Apex-Related Calls . 89

compileAndTest() . 90
CompileAndTestRequest . 91
CompileAndTestResult . 92

compileClasses() . 94
compileTriggers() . 95
executeanonymous() . 95

ExecuteAnonymousResult . 96
runTests() . 96

RunTestsRequest . 98
RunTestsResult . 100

Chapter 9: Core Calls . 105

convertLead() . 106
LeadConvertResult . 113

Contents

create() . 113
SaveResult . 123

delete() . 123
DeleteResult . 127

deleteByExample() . 127
DeleteByExampleResult . 129

emptyRecycleBin() . 129
EmptyRecycleBinResult . 132

executeListView() . 132
ExecuteListViewRequest . 133
ExecuteListViewResult . 133
ListViewColumn . 134
ListViewRecord . 135
ListViewRecordColumn . 135

findDuplicates() . 135
findDuplicatesByIds() . 139
getDeleted() . 144

GetDeletedResult . 148
getUpdated() . 148

GetUpdatedResult . 152
invalidateSessions() . 152

InvalidateSessionsResult . 154
login() . 154

LoginResult . 160
logout() . 160
merge() . 162

MergeResult . 168
performQuickActions() . 168

PerformQuickActionResult . 170
process() . 170

ProcessResult . 173
query() . 174

QueryResult . 177
QueryLocator . 180

queryAll() . 180
queryMore() . 183

QueryResult . 187
QueryLocator . 187

retrieve() . 187
search() . 190

SearchResult . 194
undelete() . 196

UndeleteResult . 199
update() . 199

Contents

SaveResult . 206
upsert() . 206

UpsertResult . 211

Chapter 10: Describe Calls . 213

describeAllTabs() . 214
describeAppMenu() . 215

DescribeAppMenuResult . 216
describeApprovalLayout() . 217

DescribeApprovalLayoutResult . 219
describeAvailableQuickActions() . 219

DescribeAvailableQuickActionResult . 220
describeCompactLayouts() . 221

DescribeCompactLayoutsResult . 223
describeDataCategoryGroups() . 224

DescribeDataCategoryGroupResult . 226
describeDataCategoryGroupStructures() . 227

describeDataCategoryGroupStructures() . 231
describeGlobal() . 231

DescribeGlobalResult . 233
describeGlobalTheme() . 235

DescribeGlobalTheme . 237
describeKnowledge() . 237
describeLayout() . 238

DescribeLayoutResult . 244
describePrimaryCompactLayouts() . 256
describeQuickActions() . 258

DescribeQuickActionResult . 259
describeSearchScopeOrder() . 264

DescribeSearchScopeOrderResult . 265
describeSearchLayouts() . 265

DescribeSearchLayoutResult . 266
describeSObject() . 267

describeSObjectResult . 270
describeSObjects() . 271

DescribeSObjectResult . 275
describeSoftphoneLayout() . 288
describeSoqlListViews() . 292

DescribeSoqlListView . 293
DescribeSoqlListViewParams . 293
DescribeSoqlListViewResult . 294
DescribeSoqlListViewsRequest . 294
ListViewColumn . 294
ListViewOrderBy . 295

Contents

SoqlWhereCondition . 295
describeTabs() . 297

describeTabSetResult . 300
describeTheme() . 302

DescribeThemeResult . 304
DescribeThemeItem . 304

Chapter 11: Utility Calls . 305

changeOwnPassword() . 305
getServerTimestamp() . 307

getServerTimestampResult . 309
getUserInfo() . 309

getUserInfoResult . 310
match() . 312

MatchOptions . 313
renderEmailTemplate() . 314

RenderEmailTemplateResult . 316
resetPassword() . 318
sendEmail() . 319

SendEmailResult . 329
sendEmailMessage() . 330
setPassword() . 333

Chapter 12: SOAP Headers . 335

AllOrNoneHeader . 336
AllowFieldTruncationHeader . 337
AssignmentRuleHeader . 339
CallOptions . 340
DisableFeedTrackingHeader . 341
DebuggingHeader . 342
DuplicateRuleHeader . 344
EmailHeader . 345
LimitInfoHeader . 346
LocaleOptions . 348
LoginScopeHeader . 348
MruHeader . 350
OwnerChangeOptions . 351
PackageVersionHeader . 354
QueryOptions . 356
SessionHeader . 356
UserTerritoryDeleteHeader . 357

USING THE API WITH SALESFORCE FEATURES . 358

Chapter 13: Implementation Considerations . 358

Contents

Choosing a User for an Integration . 359
Login Server URL . 359
Log In to the Login Server . 360
Typical API Call Sequence . 360
Salesforce Sandbox . 360
Multiple Instances of Salesforce Database Servers . 360
Content Type Requirement . 361
API Usage Metering . 361
Compression . 364
HTTP Persistent Connections . 364
HTTP Chunking . 365
Internationalization and Character Sets . 365
XML Compliance . 365
.NET, Non-String Fields, and the Enterprise WSDL . 365

Chapter 14: Objects and SOAP API Calls and Headers for Apex 366

Chapter 15: Outbound Messaging . 367

Understanding Outbound Messaging . 368
Understanding Notifications . 369
Setting Up Outbound Messaging . 369

Setting Up User Profiles . 370
Defining Outbound Messaging . 370
Downloading the Salesforce Client Certificate . 371
Viewing Outbound Messages . 371
Tracking Outbound Message Status . 372

Considerations for Security . 372
Understanding the Outbound Messaging WSDL . 372
Building a Listener . 374

Chapter 16: Data Loading and Integration . 376

Client Application Design . 377
Salesforce Settings . 377
Best Practices with Any Data Loader . 378
Integration and Single Sign-On . 379

Chapter 17: Data Replication . 380

API Calls for Data Replication . 381
Scope of Data Replication . 381
Data Replication Steps . 381
Object-Specific Requirements for Data Replication . 382
Polling for Changes . 382
Checking for Structural Changes in the Object . 383

Chapter 18: Feature-Specific Considerations . 384

Contents

Archived Activities . 385
Person Account Record Types . 385
External Objects . 386
Call Centers and the API . 387
Implementing Salesforce Integrations on Lightning Platform . 389
Knowledge . 389

GLOSSARY . 394

Contents

GET STARTED WITH SOAP API

CHAPTER 1 Introduction to SOAP API

Salesforce provides programmatic access to your org’s information using simple, powerful, and secure
application programming interfaces. To use this document, you should have a basic familiarity with
software development, web services, and the Salesforce user interface.

In this chapter ...

• Customize, Integrate,
and Extend Your
Salesforce Solutions Any functionality described in this guide is available if your org has the API feature enabled. This feature

is enabled by default for Performance, Unlimited, Enterprise, and Developer Editions. Some Professional
Edition orgs have the API enabled. If you can’t access the features you see in this guide, contact Salesforce.

• Supported Salesforce
Editions

Salesforce offers several APIs in addition to SOAP API. If you’re wondering whether SOAP API is the right
tool to use, check out Which API Do I Use? in Salesforce Help.

• Standards
Compliance

Note: Salesforce Education Services offers a suite of training courses to enable developers to
design, create, integrate, and extend applications built on the Lightning platform. Be sure to visit
https://trailhead.salesforce.com/ to learn more.

• Development
Platforms

• SOAP API Support
Policy

• API End-of-Life

• Choosing a WSDL

• Related Resources

• Quick Start: SOAP API

1

https://help.salesforce.com/s/articleView?id=sf.integrate_what_is_api.htm&type=5&language=en_US
https://trailhead.salesforce.com/

Customize, Integrate, and Extend Your Salesforce Solutions

The Lightning Platform allows you to customize, integrate, and extend your Salesforce organization using the language and platform
of your choice:

• Customize Salesforce with custom fields, links, objects, page layouts, buttons, record types, s-controls, and tabs to meet specific
business requirements.

• Integrate Salesforce with your org’s ERP and finance systems. Deliver real-time sales and support information to company portals
and populate critical business systems with customer information.

• Extend Salesforce in presentation, business logic, and data services with new functionality that reflects the business requirements
of your org.

For more information about Lightning Platform solutions and developer resources, go to Salesforce Developers.

Supported Salesforce Editions

To use SOAP API, your org must use Enterprise Edition, Performance Edition, Unlimited Edition, or Developer Edition. If you’re an existing
Salesforce customer and want to upgrade to Enterprise, Unlimited, or Performance Edition, contact your account representative.

It is recommended that you use Developer Sandbox to develop Web service client applications. Developer Sandbox is an exact replica
of your Salesforce deployment, including all customization and data. For more information, see Deploy Enhancements from Sandboxes.

Developer Edition provides access to all features available with Enterprise Edition. Developer Edition is constrained only by the number
of users and the amount of storage space. Developer Edition provides a development context that allows you to build and test your
solutions without affecting your org’s live data. Developer Edition accounts are available for free at
https://developer.salesforce.com/gettingstarted.

Standards Compliance

SOAP API is implemented to comply with the following specifications:

WebsiteStandard Name

https://www.w3.org/TR/2000/NOTE-SOAP-20000508/Simple Object Access Protocol (SOAP) 1.1

http://www.w3.org/TR/2001/NOTE-wsdl-20010315Web Service Description Language (WSDL) 1.1

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.htmlWS-I Basic Profile 1.1

Development Platforms

SOAP API works with current SOAP development environments, including, but not limited to, Visual Studio .NET 2005. In this document,
we provide examples in Java and C# (.NET). The Java examples are based on WSC 20.0 (WSC) and JDK 6 (Java Platform Standard Edition
Development Kit 6). Other versions of WSC are available at https://github.com/forcedotcom/wsc and
https://mvnrepository.com/artifact/com.force.api/force-wsc. To see a complete list of compatible
development platforms and more sample code, go to developer.salesforce.com.

2

Customize, Integrate, and Extend Your Salesforce SolutionsIntroduction to SOAP API

https://developer.salesforce.com/
https://help.salesforce.com/articleView?id=deploy_sandboxes_parent.htm&language=en_US
https://developer.salesforce.com/gettingstarted
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
https://github.com/forcedotcom/wsc
https://mvnrepository.com/artifact/com.force.api/force-wsc
https://developer.salesforce.com/

Note: Development platforms vary in their SOAP implementations. Implementation differences in certain development platforms
might prevent access to some or all features of the API. If you are using Visual Studio for .NET development, we recommend that
you use Visual Studio 2003 or higher.

SOAP API Support Policy

Salesforce recommends that your new client applications use the most recent version of the Lightning Platform WSDL file to fully exploit
the benefits of richer features and greater efficiency. You can navigate to the most recent WSDL for your organization from Setup by
entering API in the Quick Find box, then selecting API. When a new version is released, use the following steps in Quick Start to update
your WSDL:

• Regenerate the WSDL file (see Step 2: Generate or Obtain the Web Service WSDL)

• Import it into your environment (see Step 3: Import the WSDL File Into Your Development Platform)

Backward Compatibility
Salesforce strives to make backward compatibility easy when using the Lightning Platform.

Each new Salesforce release consists of two components:

• A new release of platform software that resides on Salesforce systems

• A new version of SOAP API

For example, the Winter ’07 release included SOAP API version 9.0 and the Summer ’07 release included SOAP API version 10.0.

We maintain support for each SOAP API version across releases of the platform software. SOAP API is backward compatible in that an
application created to work with a given SOAP API version will continue to work with that same SOAP API version in future platform
software releases.

Salesforce does not guarantee that an application written against one SOAP API version will work with future SOAP API versions: Changes
in method signatures and data representations are often required as we continue to enhance SOAP API. However, we strive to keep
SOAP API consistent from version to version with minimal, if any, changes required to port applications to newer SOAP API versions.

For example, an application written using SOAP API version 9.0 which shipped with the Winter ’07 release will continue to work with
SOAP API version 9.0 on the Summer ’07 release and on future releases beyond that. However, that same application may not work with
SOAP API version 10 without modifications to the application.

API End-of-Life

Salesforce is committed to supporting each API version for a minimum of three years from the date of first release. In order to mature
and improve the quality and performance of the API, versions that are more than three years old might cease to be supported.

When an API version is to be deprecated, advance notice is given at least one year before support ends. Salesforce will directly notify
customers using API versions planned for deprecation.

Version Retirement InfoVersion Support StatusSalesforce API Versions

Supported.Versions 31.0 through 55.0

3

SOAP API Support PolicyIntroduction to SOAP API

Version Retirement InfoVersion Support StatusSalesforce API Versions

Salesforce Platform API Versions 21.0 through 30.0
Retirement

As of Summer ‘22, these versions are
deprecated and no longer supported by
Salesforce.

Starting from Summer ‘23, these versions will
be retired and unavailable.

Versions 21.0 through 30.0

Salesforce Platform API Versions 7.0 through 20.0
Retirement

As of Summer ‘22, these versions are retired
and unavailable.

Versions 7.0 through 20.0

If you request any resource or use an operation from a retired API version, SOAP API returns 500:UNSUPPORTED_API_VERSION
error code.

To identify requests made from old or unsupported API versions of SOAP API, access the free API Total Usage event type.

Choosing a WSDL

There are two Lightning Platform Web services for which you can obtain WSDL files for API access:

• Lightning Platform Enterprise WSDL—This API is for most enterprise users who are developing client applications for their org.
The enterprise WSDL file is a strongly typed representation of your org’s data. It provides information about your schema, data types,
and fields to your development environment, allowing for a tighter integration between it and the Lightning Platform Web service.
This WSDL changes if custom fields or custom objects are added to, renamed, or removed from, your org’s Salesforce configuration.
If you are downloading an enterprise WSDL and you have managed packages installed in your organization, you need to take an
extra step to select the version of each installed package to include in the generated WSDL.

Note the following when generating the enterprise WSDL:

– If new custom fields or objects are added to, renamed, or removed from your org’s information, you must regenerate the WSDL
file to access them.

– The generated WSDL contains the objects and fields in your org, including those available in the selected versions of each
installed package. If a field or object is added in a later package version, you must generate the enterprise WSDL with that package
version to work with the object or field in your API integration.

• Lightning Platform Partner WSDL—This API is for Salesforce partners who are developing client applications for multiple orgs.
As a loosely-typed representation of the Salesforce object model, the partner WSDL can be used to access data within any org.

Related Resources

The Salesforce developer website provides a full suite of developer toolkits, sample code, sample SOAP messages, community-based
support, and other resources to help you with your development projects. Be sure to visit developer.salesforce.com for more
information, or visit developer.salesforce.com/signup to sign up for a free Developer Edition account.

You can visit these websites to find out more about Salesforce applications:

• Salesforce for information about the Salesforce application.

• Salesforce AppExchange for access to apps created for Salesforce.

• Trailblazer Community for services to ensure Salesforce customer success.

4

Choosing a WSDLIntroduction to SOAP API

https://help.salesforce.com/s/articleView?id=000354473&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000354473&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000351312&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000351312&type=1&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_objects_eventlogfile_apitotalusage.htm
https://developer.salesforce.com/gettingstarted
https://developer.salesforce.com/signup
https://salesforce.com
https://appexchange.salesforce.com/
https://trailhead.salesforce.com/en/trailblazer-community/feed

Quick Start: SOAP API

Use this quick start to create a sample application in your development environment.

Note: Before you begin building an integration or other client application:

• Install your development platform according to its product documentation.

• Read through all the steps before beginning this quick start. You may also wish to review the rest of this document to familiarize
yourself with terms and concepts.

Step 1: Sign up for Salesforce Developer Edition
Use Salesforce Developer Edition to develop, stage, and test your API code against sample data.

Using a separate org to develop your applications protects your live data during testing. This recommendation is especially true for
applications that insert, update, or delete data (as opposed to simply reading data). After you’ve tested your code, you can implement
it in an edition with API access.

To create a Developer Edition org, go to developer.salesforce.com/signup and follow the instructions for signing up for
a Developer Edition organization.

If you already have a Developer Edition organization, verify that your user profile has the API Enabled permission. This permission is
enabled by default, but may have been changed by an administrator. For more information, see Salesforce Help.

Step 2: Generate or Obtain the Web Service WSDL
To access the Lightning Platform Web service, you need a Web Service Description Language (WSDL) file. The WSDL file defines the Web
service that is available to you. Your development platform uses this WSDL to generate an API to access the Lightning Platform Web
service it defines. You can either obtain the WSDL file from your organization’s Salesforce administrator or you can generate it yourself
if you have access to the WSDL download page in the Salesforce user interface. You can navigate to the most recent WSDL for your
organization from Setup by entering API in the Quick Find box, then selecting API.

For more information about WSDL, see http://www.w3.org/TR/wsdl.

Generating the WSDL File for Your Organization
Any user with the Modify All Data permission can download the Web Services Description Language (WSDL) file to integrate and extend
Salesforce using the API. (The System Administrator profile has this permission.)

The WSDL file is dynamically generated based on which type of WSDL file (enterprise or partner) you download. The generated WSDL
defines all of the API calls, objects (including standard and custom objects), and fields that are available for API access for your organization.

To generate the WSDL file for your organization:

1. Log in to your Enterprise, Unlimited, Performance, or Developer Edition Salesforce account. You must log in as an administrator or
as a user who has the “Modify All Data” permission. Logins are checked to ensure they are from a known IP address. For more
information, see Security and the API.

2. From Setup, enter API in the Quick Find box, then select API to display the WSDL download page.

3. Download the appropriate WSDL:

• If you’re downloading an enterprise WSDL and you have managed packages installed in your org, click Generate Enterprise
WSDL. Select the version of each installed package to include in the generated WSDL. By default, it is set to the latest installed
versions of the packages.

5

Quick Start: SOAP APIIntroduction to SOAP API

https://developer.salesforce.com/signup
http://www.w3.org/TR/wsdl
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_concepts_security.htm

• Otherwise, right-click the link for the appropriate WSDL document to save it to a local directory. In the menu, Internet Explorer
users can choose Save Target As, while Google Chrome and Mozilla Firefox users can choose Save Link As.

Step 3: Import the WSDL File Into Your Development Platform
Once you have the WSDL file, you need to import it into your development platform so that your development environment can generate
the necessary objects for use in building client Web service applications in that environment. This section provides sample instructions
for WSC and Microsoft Visual Studio. For instructions about other development platforms, see your platform’s product documentation.

Note: The process for importing WSDL files is identical for the enterprise and partner WSDL files.

Instructions for Java Environments (WSC)
Java environments access the API through Java objects that serve as proxies for their server-side counterparts. Before using the API, you
must first generate these objects from your organization’s WSDL file.

Each SOAP client has its own tool for this process. For WSC, use the wsdlc utility.

Note: Before you run wsdlc, you must have the WSC JAR file installed on your system and referenced in your classpath.

The basic syntax for wsdlc is:

java –classpath pathToJAR/wsc-22.jar com.sforce.ws.tools.wsdlc pathToWsdl/WsdlFilename
pathToOutputJar/OutputJarFilename

This command generates an output jar file based on the specified WSDL file. After the output jar file is created, reference it along with
the wsc jar file (for example, wsc-22.jar) in your Java program to create a client application.

Instructions for Microsoft Visual Studio
Visual Studio languages access the API through objects that serve as proxies for their server-side counterparts. Before using the API, you
must first generate these objects from your organization’s WSDL file.

Once you have the proxy classes for the server-side objects, you need to ensure that you specify whether you have set any values on
non-string fields. For more information, see Implementation Considerations.

Visual Studio provides two approaches for importing your WSDL file and generating an XML Web service client: an IDE-based approach
and a command line approach. This walkthrough describes how to import your WSDL file through the IDE.

Note: Before you begin, the first step is to create a new application or open an existing application in Visual Studio. In addition,
you need to have generated the WSDL file, as described in Generating the WSDL File for Your Organization.

An XML Web service client is any component or application that references and uses an XML Web service. This does not necessarily
need to be a client-based application. In fact, in many cases, your XML Web service clients might be other Web applications, such as
Web Forms or even other XML Web services. When accessing XML Web services in managed code, a proxy class and the .NET Framework
handle all of the infrastructure coding.

To access an XML Web service from managed code:

1. Name your project Walkthrough or change the using directive in the following sample to
your_project_name.web_reference_name. Then, add a Web reference to your project for the XML Web service that
you want to access. The Web reference creates a proxy class with methods that serve as proxies for each exposed method of the
XML Web service.

2. Add the namespace for the Web reference.

6

Step 3: Import the WSDL File Into Your Development PlatformIntroduction to SOAP API

3. Create an instance of the proxy class and then access the methods of that class as you would the methods of any other class.

You can add either a .NET 2.0 style Web reference, or a .NET 3.0 style Service reference, depending on your version of Visual Studio and
preferred developer environment. A .NET 3.0 style reference uses services like SoapClient instead of SforceService.

To add a Web reference:

Note: These steps may be different depending on the version of Visual Studio that you’re using. For more information, see “Adding
and Removing Web References” in the Visual Studio documentation.

1. If you are using Visual Studio 2010 or earlier, on the Project menu, choose Add Web Reference. For later versions of Visual Studio,
on the Project menu, choose Add Service Reference, select Advanced and then select Add Web Reference.

2. In the URL box of the Add Web Reference dialog box, type the URL to obtain the service description of the XML Web service you
want to access, such as:

c:\WSDLFiles\enterprise.wsdl

3. Click Go to retrieve information about the XML Web service.

4. In the Web reference name box, rename the Web reference to sforce, which is the name you will use for this Web reference.

5. Click Add Reference to add a Web reference for the target XML Web service.

6. Visual Studio retrieves the service description and generates a proxy class to interface between your application and the XML Web
service.

Note: If you are using Visual Basic .Net 1.1 and the enterprise WSDL, you will need to modify the generated Web service client to
overcome a bug in Visual Studio's client generation utility. The API exposes two objects (Case and Event) whose names conflict
with Visual Basic keywords. When the classes that represent these objects are created, Visual Studio wraps the class names with
brackets ([Case] and [Event]). This is the method by which you can reuse keywords.

Unfortunately, in the definition of the SObject class, Visual Studio does not wrap Case and Event to class references in the
System.Xml.Serialization.XmlIncludeAttribute that are part of the SObject definition. To work around this
problem in Visual Studio, you need to edit the XmlIncludeAttribute settings for Case and Event as shown below. This does not
apply to C# and only applies when using the enterprise version of the WSDL.

System.Xml.Serialization.XmlIncludeAttribute(GetType([Event])), _

System.Xml.Serialization.XmlIncludeAttribute(GetType([Case])), _

Step 4: Walk Through the Sample Code
Once you have imported your WSDL file, you can begin building client applications that use the API. Use the following samples to create
a basic client application. Comments embedded in the sample explain each section of code.

Java Sample Code
This section walks through a sample Java client application that uses the WSC SOAP client. The purpose of this sample application is to
show the required steps for logging into the login server and to demonstrate the invocation and subsequent handling of several API
calls.

To run this sample, you must pass the authentication endpoint URL as an argument for your program. You can obtain this URL from the
WSDL file. This sample application performs the following main tasks:

1. Prompts the user for their Salesforce username and password.

7

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_case.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_event.htm

2. Calls login() to log in to the single login server and, if the login succeeds, retrieves user information and writes it to the console
along with session information.

3. Calls describeGlobal() to retrieve a list of all available objects for the organization’s data. The describeGlobal method
determines the objects that are available to the logged in user. This call should not be made more than once per session, since the
data returned from the call is not likely to change frequently. The DescribeGlobalResult is echoed to the console.

4. Calls describeSObjects() to retrieve metadata (field list and object properties) for a specified object. The
describeSObject method illustrates the type of metadata information that can be obtained for each object available to the
user. The sample client application executes a describeSObjects() call on the object that the user specifies and then echoes
the returned metadata information to the console. Object metadata information includes permissions, field types and lengths, and
available values for picklist fields and types for referenceTo fields.

5. Calls query(), passing a simple query string ("SELECT FirstName, LastName FROM Contact"), and iterating
through the returned QueryResult.

6. Calls logout() to the log the user out.

The following sample code uses try/catch blocks to handle exceptions that might be thrown by the API calls.

package com.example.samples;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.InputStreamReader;
import java.io.IOException;
import com.sforce.soap.enterprise.DeleteResult;
import com.sforce.soap.enterprise.DescribeGlobalResult;
import com.sforce.soap.enterprise.DescribeGlobalSObjectResult;
import com.sforce.soap.enterprise.DescribeSObjectResult;
import com.sforce.soap.enterprise.EnterpriseConnection;
import com.sforce.soap.enterprise.Error;
import com.sforce.soap.enterprise.Field;
import com.sforce.soap.enterprise.FieldType;
import com.sforce.soap.enterprise.GetUserInfoResult;
import com.sforce.soap.enterprise.LoginResult;
import com.sforce.soap.enterprise.PicklistEntry;
import com.sforce.soap.enterprise.QueryResult;
import com.sforce.soap.enterprise.SaveResult;
import com.sforce.soap.enterprise.sobject.Account;
import com.sforce.soap.enterprise.sobject.Contact;
import com.sforce.soap.enterprise.sobject.SObject;
import com.sforce.ws.ConnectorConfig;
import com.sforce.ws.ConnectionException;

public class QuickstartApiSample {

private static BufferedReader reader = new BufferedReader(
new InputStreamReader(System.in));

EnterpriseConnection connection;
String authEndPoint = "";

public static void main(String[] args) {
if (args.length < 1) {

System.out.println("Usage: com.example.samples."

8

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

+ "QuickstartApiSamples <AuthEndPoint>");

System.exit(-1);
}

QuickstartApiSample sample = new QuickstartApiSample(args[0]);
sample.run();

}

public void run() {
// Make a login call
if (login()) {

// Do a describe global
describeGlobalSample();

// Describe an object
describeSObjectsSample();

// Retrieve some data using a query
querySample();

// Log out
logout();

}
}

// Constructor
public QuickstartApiSample(String authEndPoint) {

this.authEndPoint = authEndPoint;
}

private String getUserInput(String prompt) {
String result = "";
try {

System.out.print(prompt);
result = reader.readLine();

} catch (IOException ioe) {
ioe.printStackTrace();

}

return result;
}

private boolean login() {
boolean success = false;
String username = getUserInput("Enter username: ");
String password = getUserInput("Enter password: ");

try {
ConnectorConfig config = new ConnectorConfig();
config.setUsername(username);
config.setPassword(password);

System.out.println("AuthEndPoint: " + authEndPoint);

9

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

config.setAuthEndpoint(authEndPoint);

connection = new EnterpriseConnection(config);
printUserInfo(config);

success = true;
} catch (ConnectionException ce) {

ce.printStackTrace();
}

return success;
}

private void printUserInfo(ConnectorConfig config) {
try {

GetUserInfoResult userInfo = connection.getUserInfo();

System.out.println("\nLogging in ...\n");
System.out.println("UserID: " + userInfo.getUserId());
System.out.println("User Full Name: " + userInfo.getUserFullName());
System.out.println("User Email: " + userInfo.getUserEmail());
System.out.println();
System.out.println("SessionID: " + config.getSessionId());
System.out.println("Auth End Point: " + config.getAuthEndpoint());
System.out

.println("Service End Point: " + config.getServiceEndpoint());
System.out.println();

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

private void logout() {
try {

connection.logout();
System.out.println("Logged out.");

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

/**
* To determine the objects that are available to the logged-in user, the
* sample client application executes a describeGlobal call, which returns
* all of the objects that are visible to the logged-in user. This call
* should not be made more than once per session, as the data returned from
* the call likely does not change frequently. The DescribeGlobalResult is
* simply echoed to the console.
*/
private void describeGlobalSample() {

try {
// describeGlobal() returns an array of object results that
// includes the object names that are available to the logged-in user.
DescribeGlobalResult dgr = connection.describeGlobal();

10

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

System.out.println("\nDescribe Global Results:\n");
// Loop through the array echoing the object names to the console
for (int i = 0; i < dgr.getSobjects().length; i++) {

System.out.println(dgr.getSobjects()[i].getName());
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

/**
* The following method illustrates the type of metadata information that can
* be obtained for each object available to the user. The sample client
* application executes a describeSObject call on a given object and then
* echoes the returned metadata information to the console. Object metadata
* information includes permissions, field types and length and available
* values for picklist fields and types for referenceTo fields.
*/
private void describeSObjectsSample() {

String objectToDescribe = getUserInput("\nType the name of the object to "
+ "describe (try Account): ");

try {
// Call describeSObjects() passing in an array with one object type
// name
DescribeSObjectResult[] dsrArray = connection

.describeSObjects(new String[] { objectToDescribe });

// Since we described only one sObject, we should have only
// one element in the DescribeSObjectResult array.
DescribeSObjectResult dsr = dsrArray[0];

// First, get some object properties
System.out.println("\n\nObject Name: " + dsr.getName());

if (dsr.getCustom())
System.out.println("Custom Object");

if (dsr.getLabel() != null)
System.out.println("Label: " + dsr.getLabel());

// Get the permissions on the object

if (dsr.getCreateable())
System.out.println("Createable");

if (dsr.getDeletable())
System.out.println("Deleteable");

if (dsr.getQueryable())
System.out.println("Queryable");

if (dsr.getReplicateable())
System.out.println("Replicateable");

if (dsr.getRetrieveable())
System.out.println("Retrieveable");

if (dsr.getSearchable())

11

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

System.out.println("Searchable");
if (dsr.getUndeletable())

System.out.println("Undeleteable");
if (dsr.getUpdateable())

System.out.println("Updateable");

System.out.println("Number of fields: " + dsr.getFields().length);

// Now, retrieve metadata for each field
for (int i = 0; i < dsr.getFields().length; i++) {

// Get the field
Field field = dsr.getFields()[i];

// Write some field properties
System.out.println("Field name: " + field.getName());
System.out.println("\tField Label: " + field.getLabel());

// This next property indicates that this
// field is searched when using
// the name search group in SOSL
if (field.getNameField())

System.out.println("\tThis is a name field.");

if (field.getRestrictedPicklist())
System.out.println("This is a RESTRICTED picklist field.");

System.out.println("\tType is: " + field.getType());

if (field.getLength() > 0)
System.out.println("\tLength: " + field.getLength());

if (field.getScale() > 0)
System.out.println("\tScale: " + field.getScale());

if (field.getPrecision() > 0)
System.out.println("\tPrecision: " + field.getPrecision());

if (field.getDigits() > 0)
System.out.println("\tDigits: " + field.getDigits());

if (field.getCustom())
System.out.println("\tThis is a custom field.");

// Write the permissions of this field
if (field.getNillable())

System.out.println("\tCan be nulled.");
if (field.getCreateable())

System.out.println("\tCreateable");
if (field.getFilterable())

System.out.println("\tFilterable");
if (field.getUpdateable())

System.out.println("\tUpdateable");

// If this is a picklist field, show the picklist values

12

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

if (field.getType().equals(FieldType.picklist)) {
System.out.println("\t\tPicklist values: ");
PicklistEntry[] picklistValues = field.getPicklistValues();

for (int j = 0; j < field.getPicklistValues().length; j++) {
System.out.println("\t\tValue: "

+ picklistValues[j].getValue());
}

}

// If this is a foreign key field (reference),
// show the values
if (field.getType().equals(FieldType.reference)) {

System.out.println("\tCan reference these objects:");
for (int j = 0; j < field.getReferenceTo().length; j++) {

System.out.println("\t\t" + field.getReferenceTo()[j]);
}

}
System.out.println("");

}
} catch (ConnectionException ce) {

ce.printStackTrace();
}

}

private void querySample() {
String soqlQuery = "SELECT FirstName, LastName FROM Contact";
try {

QueryResult qr = connection.query(soqlQuery);
boolean done = false;

if (qr.getSize() > 0) {
System.out.println("\nLogged-in user can see "

+ qr.getRecords().length + " contact records.");

while (!done) {
System.out.println("");
SObject[] records = qr.getRecords();
for (int i = 0; i < records.length; ++i) {

Contact con = (Contact) records[i];
String fName = con.getFirstName();
String lName = con.getLastName();

if (fName == null) {
System.out.println("Contact " + (i + 1) + ": " + lName);

} else {
System.out.println("Contact " + (i + 1) + ": " + fName

+ " " + lName);
}

}

if (qr.isDone()) {
done = true;

} else {

13

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

qr = connection.queryMore(qr.getQueryLocator());
}

}
} else {

System.out.println("No records found.");
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

}

C# Sample Code
This section walks through a sample C# client application. The purpose of this sample application is to show the required steps for
logging in and to demonstrate the invocation and subsequent handling of several API calls.

This sample application performs the following main tasks:

1. Prompts the user for their Salesforce username and password.

2. Calls login() to log in to the single login server and, if the login succeeds:

• Sets the returned sessionId into the session header, which is required for session authentication on subsequent API calls.

• Resets the Lightning Platform endpoint to the returned serverUrl, which is the target of subsequent API calls.

All client applications that access the API must complete the tasks in this step before attempting any subsequent API calls.

• Retrieves user information and writes it to the console along with session information.

3. Calls describeGlobal() to retrieve a list of all available objects for the organization’s data. The describeGlobal method
determines the objects that are available to the logged in user. This call should not be made more than once per session, since the
data returned from the call is not likely to change frequently. The DescribeGlobalResult is echoed to the console.

4. Calls describeSObjects() to retrieve metadata (field list and object properties) for a specified object. The
describeSObject method illustrates the type of metadata information that can be obtained for each object available to the
user. The sample client application executes a describeSObjects() call on the object that the user specifies and then echoes
the returned metadata information to the console. Object metadata information includes permissions, field types and lengths, and
available values for picklist fields and types for referenceTo fields.

5. Calls query(), passing a simple query string ("SELECT FirstName, LastName FROM Contact"), and iterating
through the returned QueryResult.

6. Calls logout() to the log the user out.

The following sample code uses try/catch blocks to handle exceptions that might be thrown by the API calls.

The following code begins the sample C# client application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Web.Services.Protocols;
using Walkthrough.sforce;

namespace Walkthrough
{

14

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

class QuickstartApiSample
{

private SforceService binding;

[STAThread]
static void Main(string[] args)
{

QuickstartApiSample sample = new QuickstartApiSample();
sample.run();

}

public void run()
{

// Make a login call
if (login())
{

// Do a describe global
describeGlobalSample();

// Describe an account object
describeSObjectsSample();

// Retrieve some data using a query
querySample();

// Log out
logout();

}
}

private bool login()
{

Console.Write("Enter username: ");
string username = Console.ReadLine();
Console.Write("Enter password: ");
string password = Console.ReadLine();

// Create a service object
binding = new SforceService();

// Timeout after a minute
binding.Timeout = 60000;

// Try logging in
LoginResult lr;
try
{

Console.WriteLine("\nLogging in...\n");
lr = binding.login(username, password);

}

// ApiFault is a proxy stub generated from the WSDL contract when

15

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

// the web service was imported
catch (SoapException e)
{

// Write the fault code to the console
Console.WriteLine(e.Code);

// Write the fault message to the console
Console.WriteLine("An unexpected error has occurred: " + e.Message);

// Write the stack trace to the console
Console.WriteLine(e.StackTrace);

// Return False to indicate that the login was not successful
return false;

}

// Check if the password has expired
if (lr.passwordExpired)
{

Console.WriteLine("An error has occurred. Your password has expired.");
return false;

}

/** Once the client application has logged in successfully, it will use
* the results of the login call to reset the endpoint of the service
* to the virtual server instance that is servicing your organization
*/
// Save old authentication end point URL
String authEndPoint = binding.Url;
// Set returned service endpoint URL
binding.Url = lr.serverUrl;

/** The sample client application now has an instance of the SforceService
* that is pointing to the correct endpoint. Next, the sample client
* application sets a persistent SOAP header (to be included on all
* subsequent calls that are made with SforceService) that contains the
* valid sessionId for our login credentials. To do this, the sample
* client application creates a new SessionHeader object and persist it to
* the SforceService. Add the session ID returned from the login to the
* session header
*/
binding.SessionHeaderValue = new SessionHeader();
binding.SessionHeaderValue.sessionId = lr.sessionId;

printUserInfo(lr, authEndPoint);

// Return true to indicate that we are logged in, pointed
// at the right URL and have our security token in place.
return true;

}

16

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

private void printUserInfo(LoginResult lr, String authEP)
{

try
{

GetUserInfoResult userInfo = lr.userInfo;

Console.WriteLine("\nLogging in ...\n");
Console.WriteLine("UserID: " + userInfo.userId);
Console.WriteLine("User Full Name: " +

userInfo.userFullName);
Console.WriteLine("User Email: " +

userInfo.userEmail);
Console.WriteLine();
Console.WriteLine("SessionID: " +

lr.sessionId);
Console.WriteLine("Auth End Point: " +

authEP);
Console.WriteLine("Service End Point: " +

lr.serverUrl);
Console.WriteLine();

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " + e.Message +
" Stack trace: " + e.StackTrace);

}
}

private void logout()
{

try
{

binding.logout();
Console.WriteLine("Logged out.");

}
catch (SoapException e)
{

// Write the fault code to the console
Console.WriteLine(e.Code);

// Write the fault message to the console
Console.WriteLine("An unexpected error has occurred: " + e.Message);

// Write the stack trace to the console
Console.WriteLine(e.StackTrace);

}
}

/**
* To determine the objects that are available to the logged-in
* user, the sample client application executes a describeGlobal
* call, which returns all of the objects that are visible to
* the logged-in user. This call should not be made more than
* once per session, as the data returned from the call likely

17

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

* does not change frequently. The DescribeGlobalResult is
* simply echoed to the console.
*/
private void describeGlobalSample()
{

try
{

// describeGlobal() returns an array of object results that
// includes the object names that are available to the logged-in user.
DescribeGlobalResult dgr = binding.describeGlobal();

Console.WriteLine("\nDescribe Global Results:\n");
// Loop through the array echoing the object names to the console

for (int i = 0; i < dgr.sobjects.Length; i++)
{

Console.WriteLine(dgr.sobjects[i].name);
}

}
catch (SoapException e)
{

Console.WriteLine("An exception has occurred: " + e.Message +
"\nStack trace: " + e.StackTrace);

}
}

/**
* The following method illustrates the type of metadata
* information that can be obtained for each object available
* to the user. The sample client application executes a
* describeSObject call on a given object and then echoes
* the returned metadata information to the console. Object
* metadata information includes permissions, field types
* and length and available values for picklist fields
* and types for referenceTo fields.
*/
private void describeSObjectsSample()
{

Console.Write("\nType the name of the object to " +
"describe (try Account): ");

string objectType = Console.ReadLine();
try
{

// Call describeSObjects() passing in an array with one object type name
DescribeSObjectResult[] dsrArray =

binding.describeSObjects(new string[] { objectType });

// Since we described only one sObject, we should have only
// one element in the DescribeSObjectResult array.
DescribeSObjectResult dsr = dsrArray[0];

// First, get some object properties
Console.WriteLine("\n\nObject Name: " + dsr.name);

18

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

if (dsr.custom) Console.WriteLine("Custom Object");
if (dsr.label != null) Console.WriteLine("Label: " + dsr.label);

// Get the permissions on the object
if (dsr.createable) Console.WriteLine("Createable");
if (dsr.deletable) Console.WriteLine("Deleteable");
if (dsr.queryable) Console.WriteLine("Queryable");
if (dsr.replicateable) Console.WriteLine("Replicateable");
if (dsr.retrieveable) Console.WriteLine("Retrieveable");
if (dsr.searchable) Console.WriteLine("Searchable");
if (dsr.undeletable) Console.WriteLine("Undeleteable");
if (dsr.updateable) Console.WriteLine("Updateable");

Console.WriteLine("Number of fields: " + dsr.fields.Length);

// Now, retrieve metadata for each field
for (int i = 0; i < dsr.fields.Length; i++)
{

// Get the field
Field field = dsr.fields[i];

// Write some field properties
Console.WriteLine("Field name: " + field.name);
Console.WriteLine("\tField Label: " + field.label);

// This next property indicates that this
// field is searched when using
// the name search group in SOSL
if (field.nameField)

Console.WriteLine("\tThis is a name field.");

if (field.restrictedPicklist)
Console.WriteLine("This is a RESTRICTED picklist field.");

Console.WriteLine("\tType is: " + field.type.ToString());

if (field.length > 0)
Console.WriteLine("\tLength: " + field.length);

if (field.scale > 0)
Console.WriteLine("\tScale: " + field.scale);

if (field.precision > 0)
Console.WriteLine("\tPrecision: " + field.precision);

if (field.digits > 0)
Console.WriteLine("\tDigits: " + field.digits);

if (field.custom)
Console.WriteLine("\tThis is a custom field.");

// Write the permissions of this field
if (field.nillable) Console.WriteLine("\tCan be nulled.");

19

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

if (field.createable) Console.WriteLine("\tCreateable");
if (field.filterable) Console.WriteLine("\tFilterable");
if (field.updateable) Console.WriteLine("\tUpdateable");

// If this is a picklist field, show the picklist values
if (field.type.Equals(fieldType.picklist))
{

Console.WriteLine("\tPicklist Values");
for (int j = 0; j < field.picklistValues.Length; j++)

Console.WriteLine("\t\t" + field.picklistValues[j].value);
}

// If this is a foreign key field (reference),
// show the values
if (field.type.Equals(fieldType.reference))
{

Console.WriteLine("\tCan reference these objects:");
for (int j = 0; j < field.referenceTo.Length; j++)

Console.WriteLine("\t\t" + field.referenceTo[j]);
}
Console.WriteLine("");

}
}
catch (SoapException e)
{

Console.WriteLine("An exception has occurred: " + e.Message +
"\nStack trace: " + e.StackTrace);

}
Console.WriteLine("Press ENTER to continue...");
Console.ReadLine();

}

private void querySample()
{

String soqlQuery = "SELECT FirstName, LastName FROM Contact";
try
{

QueryResult qr = binding.query(soqlQuery);
bool done = false;

if (qr.size > 0)
{

Console.WriteLine("Logged-in user can see "
+ qr.records.Length + " contact records.");

while (!done)
{

Console.WriteLine("");
sObject[] records = qr.records;
for (int i = 0; i < records.Length; i++)
{

Contact con = (Contact)records[i];
string fName = con.FirstName;
string lName = con.LastName;

20

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

if (fName == null)
Console.WriteLine("Contact " + (i + 1) + ": " + lName);

else
Console.WriteLine("Contact " + (i + 1) + ": " + fName

+ " " + lName);
}

if (qr.done)
{

done = true;
}
else
{

qr = binding.queryMore(qr.queryLocator);
}

}
}
else
{

Console.WriteLine("No records found.");
}

}
catch (Exception ex)
{

Console.WriteLine("\nFailed to execute query succesfully," +
"error message was: \n{0}", ex.Message);

}
Console.WriteLine("\nPress ENTER to continue...");
Console.ReadLine();

}
}

}

The following C# example is the same as the previous C# example, except it uses .NET 3.0 SoapClient services instead of .NET 2.0
SforceService services.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

using System.ServiceModel;
using Walkthrough.sforce;

namespace Walkthrough
{

class QuickstartApiSample
{

private static SoapClient loginClient; // for login endpoint
private static SoapClient client; // for API endpoint
private static SessionHeader header;
private static EndpointAddress endpoint;

static void Main(string[] args)

21

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

{
QuickstartApiSample sample = new QuickstartApiSample();
sample.run();

}

public void run()
{

// Make a login call
if (login())
{

// Do a describe global
describeGlobalSample();

// Describe an account object
describeSObjectsSample();

// Retrieve some data using a query
querySample();

// Log out
logout();

}
}

private bool login()
{

Console.Write("Enter username: ");
string username = Console.ReadLine();
Console.Write("Enter password: ");
string password = Console.ReadLine();

// Create a SoapClient specifically for logging in
loginClient = new SoapClient();

// (combine pw and token if necessary)
LoginResult lr;
try
{

Console.WriteLine("\nLogging in...\n");
lr = loginClient.login(null, username, password);

}
catch (Exception e)
{

// Write the fault message to the console
Console.WriteLine("An unexpected error has occurred: " + e.Message);

// Write the stack trace to the console
Console.WriteLine(e.StackTrace);
return false;

}

// Check if the password has expired
if (lr.passwordExpired)
{

22

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

Console.WriteLine("An error has occurred. Your password has expired.");
return false;

}

/** Once the client application has logged in successfully, it will use
* the results of the login call to reset the endpoint of the service
* to the virtual server instance that is servicing your organization
*/

// On successful login, cache session info and API endpoint info
endpoint = new EndpointAddress(lr.serverUrl);

/** The sample client application now has a cached EndpointAddress
* that is pointing to the correct endpoint. Next, the sample client
* application sets a persistent SOAP header that contains the
* valid sessionId for our login credentials. To do this, the sample
* client application creates a new SessionHeader object. Add the session
* ID returned from the login to the session header
*/
header = new SessionHeader();
header.sessionId = lr.sessionId;

// Create and cache an API endpoint client
client = new SoapClient("Soap", endpoint);

printUserInfo(lr, lr.serverUrl);

// Return true to indicate that we are logged in, pointed
// at the right URL and have our security token in place.
return true;

}

private void printUserInfo(LoginResult lr, String authEP)
{

try
{

GetUserInfoResult userInfo = lr.userInfo;

Console.WriteLine("\nLogging in ...\n");
Console.WriteLine("UserID: " + userInfo.userId);
Console.WriteLine("User Full Name: " +

userInfo.userFullName);
Console.WriteLine("User Email: " +

userInfo.userEmail);
Console.WriteLine();
Console.WriteLine("SessionID: " +

lr.sessionId);
Console.WriteLine("Auth End Point: " +

authEP);
Console.WriteLine("Service End Point: " +

lr.serverUrl);
Console.WriteLine();

}
catch (Exception e)

23

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

{
Console.WriteLine("An unexpected error has occurred: " + e.Message +

" Stack trace: " + e.StackTrace);
}

}

private void logout()
{

try
{

client.logout(header);
Console.WriteLine("Logged out.");

}
catch (Exception e)
{

// Write the fault message to the console
Console.WriteLine("An unexpected error has occurred: " + e.Message);

// Write the stack trace to the console
Console.WriteLine(e.StackTrace);

}
}

/**
* To determine the objects that are available to the logged-in
* user, the sample client application executes a describeGlobal
* call, which returns all of the objects that are visible to
* the logged-in user. This call should not be made more than
* once per session, as the data returned from the call likely
* does not change frequently. The DescribeGlobalResult is
* simply echoed to the console.
*/
private void describeGlobalSample()
{

try
{

// describeGlobal() returns an array of object results that
// includes the object names that are available to the logged-in user.
DescribeGlobalResult dgr = client.describeGlobal(

header, // session header
null // package version header
);

Console.WriteLine("\nDescribe Global Results:\n");
// Loop through the array echoing the object names to the console

for (int i = 0; i < dgr.sobjects.Length; i++)
{

Console.WriteLine(dgr.sobjects[i].name);
}

}
catch (Exception e)
{

Console.WriteLine("An exception has occurred: " + e.Message +

24

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

"\nStack trace: " + e.StackTrace);
}

}

/**
* The following method illustrates the type of metadata
* information that can be obtained for each object available
* to the user. The sample client application executes a
* describeSObject call on a given object and then echoes
* the returned metadata information to the console. Object
* metadata information includes permissions, field types
* and length and available values for picklist fields
* and types for referenceTo fields.
*/
private void describeSObjectsSample()
{

Console.Write("\nType the name of the object to " +
"describe (try Account): ");

string objectType = Console.ReadLine();
try
{

// Call describeSObjects() passing in an array with one object type name

DescribeSObjectResult[] dsrArray =
client.describeSObjects(
header, // session header
null, // package version header
null, // locale options
new string[] { objectType } // object name array
);

// Since we described only one sObject, we should have only
// one element in the DescribeSObjectResult array.
DescribeSObjectResult dsr = dsrArray[0];

// First, get some object properties
Console.WriteLine("\n\nObject Name: " + dsr.name);

if (dsr.custom) Console.WriteLine("Custom Object");
if (dsr.label != null) Console.WriteLine("Label: " + dsr.label);

// Get the permissions on the object
if (dsr.createable) Console.WriteLine("Createable");
if (dsr.deletable) Console.WriteLine("Deleteable");
if (dsr.queryable) Console.WriteLine("Queryable");
if (dsr.replicateable) Console.WriteLine("Replicateable");
if (dsr.retrieveable) Console.WriteLine("Retrieveable");
if (dsr.searchable) Console.WriteLine("Searchable");
if (dsr.undeletable) Console.WriteLine("Undeleteable");
if (dsr.updateable) Console.WriteLine("Updateable");

Console.WriteLine("Number of fields: " + dsr.fields.Length);

25

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

// Now, retrieve metadata for each field
for (int i = 0; i < dsr.fields.Length; i++)
{

// Get the field
Field field = dsr.fields[i];

// Write some field properties
Console.WriteLine("Field name: " + field.name);
Console.WriteLine("\tField Label: " + field.label);

// This next property indicates that this
// field is searched when using
// the name search group in SOSL
if (field.nameField)

Console.WriteLine("\tThis is a name field.");

if (field.restrictedPicklist)
Console.WriteLine("This is a RESTRICTED picklist field.");

Console.WriteLine("\tType is: " + field.type.ToString());

if (field.length > 0)
Console.WriteLine("\tLength: " + field.length);

if (field.scale > 0)
Console.WriteLine("\tScale: " + field.scale);

if (field.precision > 0)
Console.WriteLine("\tPrecision: " + field.precision);

if (field.digits > 0)
Console.WriteLine("\tDigits: " + field.digits);

if (field.custom)
Console.WriteLine("\tThis is a custom field.");

// Write the permissions of this field
if (field.nillable) Console.WriteLine("\tCan be nulled.");
if (field.createable) Console.WriteLine("\tCreateable");
if (field.filterable) Console.WriteLine("\tFilterable");
if (field.updateable) Console.WriteLine("\tUpdateable");

// If this is a picklist field, show the picklist values
if (field.type.Equals(fieldType.picklist))
{

Console.WriteLine("\tPicklist Values");
for (int j = 0; j < field.picklistValues.Length; j++)

Console.WriteLine("\t\t" + field.picklistValues[j].value);
}

// If this is a foreign key field (reference),
// show the values
if (field.type.Equals(fieldType.reference))
{

26

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

Console.WriteLine("\tCan reference these objects:");
for (int j = 0; j < field.referenceTo.Length; j++)

Console.WriteLine("\t\t" + field.referenceTo[j]);
}
Console.WriteLine("");

}
}
catch (Exception e)
{

Console.WriteLine("An exception has occurred: " + e.Message +
"\nStack trace: " + e.StackTrace);

}
Console.WriteLine("Press ENTER to continue...");
Console.ReadLine();

}

private void querySample()
{

String soqlQuery = "SELECT FirstName, LastName FROM Contact";
try
{

QueryResult qr = client.query(
header, // session header
null, // query options
null, // mru options
null, // package version header
soqlQuery // query string
);

bool done = false;

if (qr.size > 0)
{

Console.WriteLine("Logged-in user can see "
+ qr.records.Length + " contact records.");

while (!done)
{

Console.WriteLine("");
sObject[] records = qr.records;
for (int i = 0; i < records.Length; i++)
{

Contact con = (Contact)records[i];
string fName = con.FirstName;
string lName = con.LastName;
if (fName == null)

Console.WriteLine("Contact " + (i + 1) + ": " + lName);
else

Console.WriteLine("Contact " + (i + 1) + ": " + fName
+ " " + lName);

}

if (qr.done)
{

27

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

done = true;
}
else
{

qr = client.queryMore(
header, // session header
null, // query options
qr.queryLocator // query locator
);

}
}

}
else
{

Console.WriteLine("No records found.");
}

}
catch (Exception ex)
{

Console.WriteLine("\nFailed to execute query succesfully," +
"error message was: \n{0}", ex.Message);

}
Console.WriteLine("\nPress ENTER to continue...");
Console.ReadLine();

}
}

}

28

Step 4: Walk Through the Sample CodeIntroduction to SOAP API

CHAPTER 2 Core Data Types Used in API Calls

Many calls in the API use the following data types:In this chapter ...
• sObject• sObject
• ID (String). See ID Field Types.• API Fault Element
The API also uses several error handling objects. If an error occurs during a SOAP request, the API returns
a SOAP fault message. The message contains different content, depending on the type of error:

• ExceptionCode

• Error
• If an error affects the entire request, an API Fault Element, is returned, containing an ExceptionCode

and the associated error message text.
• StatusCode

• ExtendedErrorDetails
• If the error affects some records and not others, an Error is returned, containing a StatusCode. These

errors typically occur during bulk operations, such as creating, updating, or deleting multiple records
with a single call.

• ExtendedErrorCode

• Duplicate
Management Data
Types You can see the list of exception codes, status codes, and extended error codes in the WSDL file for your

org. Some codes don’t appear in your WSDL, depending on the features enabled. See Generating the
WSDL File for Your Organization.

29

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_quickstart_steps_generate_wsdl.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_quickstart_steps_generate_wsdl.htm

sObject

An sObject represents an object, such as an Account or Campaign. For a list of standard objects, see Standard Objects.

An sObject has the following properties:

DescriptionTypeName

Array of one or more field names whose value you want to explicitly set to null.

When used with update() or upsert(), you can specify only those fields that you can update and that
have the nillable property. When used with create(), you can specify only those fields that you
can create and that have the nillable or the default on create property.

string[]fieldsToNull

For example, if specifying an ID field or required field results in a runtime error, you can specify that field
name in fieldsToNull. Similarly, if a picklist field has a default value and you want to set the value to
null instead, specify the field in fieldsToNull.

Unique ID for this individual object. For the create() call, this value is null. For all other API calls, this value
must be specified.

IDID

API Fault Element

An ApiFault element contains information about a fault that occurs when processing a service request. The ApiFault element
has the following properties.

DescriptionTypeName

A code that characterizes the exception.ExceptionCodeexceptionCode

Exception message text.stringexceptionMessage

Additional details about the exception, including an extended error code and
extra error properties, when available.

ExtendedErrorDetailsextendedErrorDetails

The following table lists the API fault elements that represent all the API faults that can occur.

DescriptionFault

The row and column numbers where the problem occurred.ApiQueryFault

An error occurred during the login() call.LoginFault

An invalid sObject in a describeSObject(), describeSObjects(),
describeLayout(), describeDataCategoryGroups(),

InvalidSObjectFault

describeDataCategoryGroupStructures(), create(), update(),
retrieve(), or query() call.

An invalid field in a retrieve() or query() call.InvalidFieldFault

An invalid appMenuType in a describeAppMenu() call.InvalidOrNullForRestrictedPicklist

30

sObjectCore Data Types Used in API Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_campaign.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_list.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435330

DescriptionFault

A problem in the queryString passed in a query() call.MalformedQueryFault

A problem in the queryLocator passed in a queryMore() call.InvalidQueryLocatorFault

A problem in the search passed in a search() call.MalformedSearchFault

A specified ID was invalid in a setPassword() or resetPassword() call.InvalidIdFault

An unexpected error occurred. The error isn’t associated with any other API fault.UnexpectedErrorFault

ExceptionCode

The following exception codes can be returned with an error.

APEX_REST_SERVICES_DISABLED
Apex REST Services permission hasn’t been enabled for the user. Enable the user permission to access Apex classes and
methods as REST web services.

API_CURRENTLY_DISABLED
Because of a system problem, API functionality is temporarily unavailable.

API_DISABLED_FOR_ORG
API access hasn’t been enabled for the org. Contact Salesforce to enable API access.

CANT_ADD_STANDARD_PORTAL_USER_TO_TERRITORY
A user with a standard portal license can't be added to a territory.

CIRCULAR_OBJECT_GRAPH
The request failed because it contained a circular object reference.

CLIENT_NOT_ACCESSIBLE_FOR_USER
The current user doesn’t have permission to access the specified client.

CLIENT_REQUIRE_UPDATE_FOR_USER
The current user is required to use a newer version of the specified client and doesn’t have access until the client is updated.

CLONE_NOT_SUPPORTED
This entity doesn’t support the clone operation.

CLONE_FIELD_INTEGRITY_EXCEPTION
A field integrity exception occurred during the clone operation.

CONTENT_ALREADY_AN_ASSET_EXCEPTION
File with id: {id} is already an asset.

CONTENT_HUB_AUTHENTICATION_EXCEPTION
Authentication token has expired.

CONTENT_HUB_FILE_HAS_NO_URL_EXCEPTION
Can’t open file.

CONTENT_HUB_FILE_NOT_FOUND_EXCEPTION
Object not found.

CONTENT_HUB_INVALID_PAGE_NUMBER_EXCEPTION
This document has no content.

31

ExceptionCodeCore Data Types Used in API Calls

CONTENT_HUB_INVALID_OBJECT_TYPE_EXCEPTION
Invalid object type.

CONTENT_HUB_INVALID_RENDITION_PAGE_NUMBER_EXCEPTION
Not a valid rendition page number.

CONTENT_HUB_ITEM_TYPE_NOT_FOUND_EXCEPTION
Item type not found.

CONTENT_HUB_OBJECT_NOT_FOUND_EXCEPTION
Object not found.

CONTENT_HUB_OPERATION_NOT_SUPPORTED_EXCEPTION
Operation not supported.

CONTENT_HUB_SECURITY_EXCEPTION
Unauthorized operation.

CONTENT_HUB_TIMEOUT_EXCEPTION
Operation timed out.

CONTENT_HUB_UNEXPECTED_EXCEPTION
An error occurred while performing this operation.

CONTENT_IMAGE_SCALING_INVALID_ARGUMENTS_EXCEPTION

Invalid argument type for the operation.

CONTENT_IMAGE_SCALING_INVALID_IMAGE_EXCEPTION

The specified image isn’t valid.

CONTENT_IMAGE_SCALING_MAX_RENDITIONS_EXCEPTION

You’ve reached the maximum number of renditions for the image.

CONTENT_IMAGE_SCALING_TIMEOUT_EXCEPTION

The image scaling operation timed out.

CONTENT_IMAGE_SCALING_UNKNOWN_EXCEPTION

The system encountered an internal error during image scaling. Report this problem to Salesforce.

DELETE_REQUIRED_ON_CASCADE
The delete operation triggers a cascade delete on a record, but the logged-in user doesn’t have delete permission on that related
object.

DUPLICATE_COMM_NICKNAME
You can't create a user with the same nickname as another user.

DUPLICATE_VALUE
You can’t supply a duplicate value for a field that must be unique. For example, you can’t submit two copies of the same session ID
in a invalidateSessions() call.

EMAIL_BATCH_SIZE_LIMIT_EXCEEDED
A method tried to process more email records than the maximum batch size.

EMAIL_TO_CASE_INVALID_ROUTING
An Email-to-Case record has been submitted for processing but the feature isn’t enabled.

EMAIL_TO_CASE_LIMIT_EXCEEDED
The daily converted email limit for the Email-to-Case feature has been exceeded.

32

ExceptionCodeCore Data Types Used in API Calls

EMAIL_TO_CASE_NOT_ENABLED
The Email-to-Case feature hasn’t been enabled.

EXCEEDED_ID_LIMIT
Too many IDs were specified in a call. For example, more than 2000 IDs were requested in a retrieve() call, or more than 200
session IDs were specified in a logout() call.

EXCEEDED_LEAD_CONVERT_LIMIT
Too many IDs were sent to a convertLead() call.

EXCEEDED_MAX_SEMIJOIN_SUBSELECTS
Too many topic filters were applied to a list view.

EXCEEDED_MAX_SIZE_REQUEST
The size of the message sent to the API exceeded 50 MB.

EXCEEDED_MAX_TYPES_LIMIT
The number of object types to describe is too large.

EXCEEDED_QUOTA
The size limit for org data storage was exceeded during a create() call.

FUNCTIONALITY_NOT_ENABLED
Functionality has been temporarily disabled. Other calls continue to work.

GONE
The requested resource or operation has been retired or removed. Delete or update any references to the resource or operation.

INACTIVE_OWNER_OR_USER
The user or record owner isn’t active.

INACTIVE_PORTAL
The referenced portal is inactive.

INSUFFICIENT_ACCESS
The user doesn’t have sufficient access to perform the operation.

INVALID_ASSIGNMENT_RULE
An invalid AssignmentRuleHeader value was specified.

INVALID_BATCH_SIZE
The query options have an invalid batch size value.

INVALID_CLIENT
The client is invalid.

INVALID_CROSS_REFERENCE_KEY
An invalid foreign key can’t be set on a field. For example, an object share, such as AccountShare, can’t be deleted because the share
row is a result of a sharing rule.

INVALID_FIELD
The specified field name is invalid.

INVALID_FILTER_LANGUAGE
The specified language can't be used as a filter.

INVALID_FILTER_VALUE
A SOQL query with LIKE specified an invalid character, for example, an incorrectly placed asterisk (*). Correct the query and resubmit.

33

ExceptionCodeCore Data Types Used in API Calls

INVALID_ID_FIELD
The specified ID is correctly formatted but isn’t valid. For example, the ID is of the wrong type, or the object it identifies no longer
exists.

INVALID_GOOGLE_DOCS_URL
An invalid Salesforce record URL was used when trying to associate a Google Doc to that record. Correct the URL before trying the
operation again.

INVALID_LOCATOR
The locator is invalid.

INVALID_LOGIN
The login() credentials aren’t valid, or the maximum number of logins have been exceeded. Contact your administrator for more
information.

INVALID_NEW_PASSWORD
The new password doesn’t conform with the password policies of the org.

INVALID_OPERATION
The client application tried to modify a record that is locked by an approval process.

INVALID_OPERATION_WITH_EXPIRED_PASSWORD
Due to password expiration, a valid password must be set using setPassword() before the call can be invoked.

INVALID_QUERY_FILTER_OPERATOR
An invalid operator was used in the query() filter clause, at least for that field.

INVALID_QUERY_LOCATOR
An invalid queryLocator parameter was specified in a queryMore() call. It’s also possible that you've exceed the maximum
number of calls, which is 10 per user for the API, and 5 for Apex and Visualforce.

INVALID_QUERY_SCOPE
The specified search scope is invalid.

INVALID_REPLICATION_DATE
The date for replication is out of the allowed range, such as before the org was created.

INVALID_SETUP_OWNER
The setup owner must be an Organization, Profile, or User.

INVALID_SEARCH
The search() call has invalid syntax or grammar. For more information, see the Salesforce SOQL and SOSL Reference Guide.

INVALID_SEARCH_SCOPE
The specified search scope is invalid.

INVALID_SESSION_ID
The specified sessionId is malformed (incorrect length or format) or has expired. Log in again to start a new session.

INVALID_SOAP_HEADER
There’s is an error in the SOAP header. If you’re migrating from an earlier version of the API, be advised that the SaveOptions header
can't be used with API version 6.0 or later. Use AssignmentRuleHeader instead.

INVALID_SSO_GATEWAY_URL
The URL provided to configure the Single Sign-On gateway wasn’t a valid URL.

INVALID_TYPE
The specified sObject type invalid.

34

ExceptionCodeCore Data Types Used in API Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/

INVALID_TYPE_FOR_OPERATION
The specified sObject type is invalid for the specified operation.

INVALID_VERSION
The requested resource no longer exists. Confirm the API version number used in the request is supported, and update if needed.

LIMIT_EXCEEDED
An array is too long. For example, there are too many BCC addresses, targets, or email messages.

LOGIN_DURING_RESTRICTED_DOMAIN
The user isn’t allowed to log in from this IP address.

LOGIN_DURING_RESTRICTED_TIME
The user isn’t allowed to log in during this time period.

MALFORMED_ID
An invalid ID string was specified. For information about IDs, see ID Field Type.

MALFORMED_QUERY
An invalid query string was specified. For example, the query string was longer than 100,000 characters.

MALFORMED_SEARCH
An invalid search string was specified. For example, the search string was longer than 100,000 characters.

MISSING_ARGUMENT
A required argument is missing.

MIXED_DML_OPERATION
There are limits on what kinds of DML operations can be performed in the same transaction. For more information, see Data
Manipulation Language in the Apex Developer Guide.

NOT_MODIFIED
The describe call response hasn’t changed since the specified date.

NO_SOFTPHONE_LAYOUT
If an org has the CTI feature enabled, but no softphone layout has been defined, this exception is returned if a describe call is issued.
This exception is most often caused because no call center has been defined. A default softphone layout is created during call center
definition.

If an org doesn’t have the CTI feature enabled, FUNCTIONALITY_NOT_ENABLED is returned instead.

NUMBER_OUTSIDE_VALID_RANGE
The number specified is outside the valid range for the field.

OPERATION_TOO_LARGE
The query has returned too many results. If certain queries are run by a user without the “View All Data” permission and many records
are returned, the queries require sharing rule checking. For example, consider queries that are run on objects, such as Task, that use
a polymorphic foreign key. These queries return this exception because the operation requires too many resources. To correct, add
filters to the query to narrow the scope, or use filters such as date ranges to break the query up into a series of smaller queries.

ORDER_MANAGEMENT_ACTION_NOT_ALLOWED
The requested action isn’t allowed.

ORG_LOCKED
The org has been locked. Contact Salesforce to unlock the org.

ORG_NOT_OWNED_BY_INSTANCE
The user tried to log in to the wrong server instance. Choose another server instance, use your org’s My Domain login URL, or log in
at https://login.salesforce.com.

35

ExceptionCodeCore Data Types Used in API Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.apexcode.meta/pages/langCon_apex_dml.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.apexcode.meta/pages/langCon_apex_dml.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_task.htm

PASSWORD_LOCKOUT
The user has exceeded the allowed number of login attempts. The user must contact an administrator to regain login access.

PORTAL_NO_ACCESS
Access to the specified portal isn’t available.

QUERY_TIMEOUT
The query has timed out. For more information on query limits and how to avoid them, see SOQL and SOSL Limits for Search Queries
in the Developer Limits and Allocations Quick Reference and SOQL SELECT Syntax in the Salesforce SOQL and SOSL Reference Guide.

QUERY_TOO_COMPLICATED
SOQL query is either selecting too many fields or there are too many filter conditions. Try reducing the number of formula fields
referenced in the query.

REQUEST_LIMIT_EXCEEDED
Exceeded either the concurrent request limit or the request rate limit for your org. For details on API request limits, see API Usage
Metering.

REQUEST_RUNNING_TOO_LONG
A request has taken too long to be processed.

SERVER_UNAVAILABLE
A server that is necessary for this call is unavailable. Other types of requests could still work.

SSO_SERVICE_DOWN
The service was unavailable, and an authentication call to the org’s specified Single Sign-On server failed.

TOO_MANY_APEX_REQUESTS
Too many Apex requests have been issued. If this exception persists, contact Salesforce Customer Support.

TRIAL_EXPIRED
The trial period for the org has expired. A representative from the company must contact Salesforce to re-enable the org.

UNSUPPORTED_API_VERSION
A method call was made that doesn’t exist in the accessed API version, for example, trying to use upsert() (new in 8.0) against
version 5.0.

UNSUPPORTED_CLIENT
This version of the client is no longer supported.

Error

An Error contains information about an error that occurred during a create(), merge(), process(), update(), upsert(),
delete(), or undelete() call. For more information, see Error Handling. An Error has the following properties:

DescriptionTypeName

A code that describes the error.StatusCodestatusCode

Error message text.stringmessage

Array of one or more field names. Identifies which fields in the object, if any,
affected the error condition.

string[]fields

More details about the error, including an extended error code and extra error
properties, when available.

ExtendedErrorDetailsextendedErrorDetails

36

ErrorCore Data Types Used in API Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_soslsoql.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select.htm

Note: If your org has active duplicate rules and a duplicate is detected, the SaveResult includes an error with a data type of
DuplicateError.

StatusCode

An error can return any of these API status codes.

ALL_OR_NONE_OPERATION_ROLLED_BACK
The bulk operation was rolled back because one of the records wasn't processed successfully. See AllOrNoneHeader.

ALREADY_IN_PROCESS
You can’t submit a record that is already in an approval process. Wait for the previous approval process to complete before resubmitting
a request with this record.

ASSIGNEE_TYPE_REQUIRED
Designate an assignee for the approval request (ProcessInstanceStep or ProcessInstanceWorkitem).

BAD_CUSTOM_ENTITY_PARENT_DOMAIN
The changes you’re trying to make can’t be completed because changes to the associated master-detail relationship can’t be made.

BCC_NOT_ALLOWED_IF_BCC_COMPLIANCE_ENABLED
Your client application blind carbon-copied an email address even though the org’s Compliance BCC Email option is enabled. This
option specifies a particular email address that automatically receives a copy of all outgoing email. When this option is enabled, you
can’t BCC any other email address. To disable the option, log in to the user interface and from Setup, enter Compliance BCC
Email in the Quick Find box, then select Compliance BCC Email.

BCC_SELF_NOT_ALLOWED_IF_BCC_COMPLIANCE_ENABLED
Your client application blind carbon-copied the logged-in user’s email address even though the org’s BCC COMPLIANCE option is
set to true. This option specifies a particular email address that automatically receives a copy of all outgoing email. When this option
is enabled, you can’t BCC any other email address. To disable the option, log in to the user interface and from Setup, enter
Compliance BCC Email in the Quick Find box, then select Compliance BCC Email.

CANNOT_CASCADE_PRODUCT_ACTIVE
An update to a product caused by a cascade can't be done because the associated product is active.

CANNOT_CHANGE_FIELD_TYPE_OF_APEX_REFERENCED_FIELD
You can't change the type of a field that is referenced in an Apex script.

CANNOT_CREATE_ANOTHER_MANAGED_PACKAGE
You can create only one managed package in an org.

CANNOT_DEACTIVATE_DIVISION
You can't deactivate Divisions if an assignment rule references divisions or if the DefaultDivision field on a user record isn’t
set to null.

CANNOT_DELETE_LAST_DATED_CONVERSION_RATE
If dated conversions are enabled, you must have at least one DatedConversionRate record.

CANNOT_DELETE_MANAGED_OBJECT
You can't modify components that are included in a managed package.

CANNOT_DISABLE_LAST_ADMIN
You must have at least one active administrator user.

CANNOT_ENABLE_IP_RESTRICT_REQUESTS
If you exceed the limit of five IP ranges specified in a profile, you can't enable restriction of login by IP addresses. Reduce the number
of specified ranges in the profile and try the request again.

37

StatusCodeCore Data Types Used in API Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_duplicateerror.htm

CANNOT_INSERT_UPDATE_ACTIVATE_ENTITY
You don’t have permission to create, update, or activate the specified record.

CANNOT_MODIFY_MANAGED_OBJECT
You can't modify components that are included in a managed package.

CANNOT_RENAME_APEX_REFERENCED_FIELD
You can't rename a field that is referenced in an Apex script.

CANNOT_RENAME_APEX_REFERENCED_OBJECT
You can't rename an object that is referenced in an Apex script.

CANNOT_REPARENT_RECORD
You can't define a new parent record for the specified record.

CANNOT_RESOLVE_NAME
A sendEmail() call couldn’t resolve an object name.

CANNOT_UPDATE_CONVERTED_LEAD
A converted lead couldn’t be updated.

CANT_DISABLE_CORP_CURRENCY
You can’t disable the corporate currency for an org. To disable a currency that is set as the corporate currency, first use the user
interface to change the corporate currency to a different currency. Then disable the original currency.

CANT_UNSET_CORP_CURRENCY
You can’t change the corporate currency for an org from the API. Use the user interface to change the corporate currency.

CHILD_SHARE_FAILS_PARENT
If you don’t have appropriate permissions on a parent record, you can’t change the owner of or define sharing rules for a child record.
For example, you can’t change the owner of a contact record if you can’t edit its parent account record.

CIRCULAR_DEPENDENCY
You can't create a circular dependency between metadata objects in your org. For example, public group A can't include public
group B, if public group B already includes public group A.

COMMUNITY_NOT_ACCESSIBLE
You don’t have permission to access the Experience Cloud site that this entity belongs to. You must be given permission to access
the site before you can access this entity.

CUSTOM_CLOB_FIELD_LIMIT_EXCEEDED
You can't exceed the maximum size for a CLOB field.

CUSTOM_ENTITY_OR_FIELD_LIMIT
You’ve reached the maximum number of custom objects or custom fields for your org.

CUSTOM_FIELD_INDEX_LIMIT_EXCEEDED
You’ve reached the maximum number of indexes on a field for your org.

CUSTOM_INDEX_EXISTS
You can create only one custom index per field.

CUSTOM_LINK_LIMIT_EXCEEDED
You’ve reached the maximum number of custom links for your org.

CUSTOM_METADATA_LIMIT_EXCEEDED
Your org has reached its custom metadata maximum limit.

CUSTOM_SETTINGS_LIMIT_EXCEEDED
Your org has reached its custom settings maximum limit.

38

StatusCodeCore Data Types Used in API Calls

CUSTOM_TAB_LIMIT_EXCEEDED
You’ve reached the maximum number of custom tabs for your org.

DELETE_FAILED
You can't delete a record because it is in use by another object.

DEPENDENCY_EXISTS
You can't perform the requested operation because of an existing dependency on the specified object or field.

DUPLICATE_CASE_SOLUTION
You can't create a relationship between the specified case and solution because it already exists.

DUPLICATE_CUSTOM_ENTITY_DEFINITION
Custom object or custom field IDs must be unique.

DUPLICATE_CUSTOM_TAB_MOTIF
You can't create a custom object or custom field with a duplicate master name.

DUPLICATE_DEVELOPER_NAME
You can't create a custom object or custom field with a duplicate developer name.

DUPLICATES_DETECTED
Duplicate records have been detected. Used for an Error object with a data type of DuplicateError.

DUPLICATE_EXTERNAL_ID
A user-specified external ID matches more than one record during an upsert.

DUPLICATE_MASTER_LABEL
You can't create a custom object or custom field with a duplicate master name.

DUPLICATE_SENDER_DISPLAY_NAME
A sendEmail() call couldn’t choose between OrgWideEmailAddress.DisplayName or senderDisplayName. Define
only one of the two fields.

DUPLICATE_USERNAME
A create, update, or upsert failed because of a duplicate username.

DUPLICATE_VALUE
You can’t supply a duplicate value for a field that must be unique. For example, you can’t submit two copies of the same session ID
in a invalidateSessions() call.

EMAIL_ADDRESS_BOUNCED
Emails to one or more recipients have bounced. Check the email addresses to make sure that they’re valid.

EMAIL_NOT_PROCESSED_DUE_TO_PRIOR_ERROR
Because of an error earlier in the call, the current email wasn’t processed.

EMAIL_OPTED_OUT
A single email message was sent with the REJECT setting in the optOutPolicy field to recipients that have opted out from
receiving email. To avoid this error, set the optOutPolicy field to another value.

EMAIL_TEMPLATE_FORMULA_ERROR
The email template is invalid and can’t be rendered. Check the template for incorrectly specified merge fields.

EMAIL_TEMPLATE_MERGEFIELD_ACCESS_ERROR
You don’t have access to one or more merge fields in this template. To request access, contact your Salesforce administrator.

EMAIL_TEMPLATE_MERGEFIELD_ERROR
One or more merge fields don’t exist. Check the spelling of field names.

39

StatusCodeCore Data Types Used in API Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_duplicateerror.htm

EMAIL_TEMPLATE_MERGEFIELD_VALUE_ERROR
One or more merge fields have no value. To provide values, update the records before sending the email.

EMAIL_TEMPLATE_PROCESSING_ERROR
The merge fields in this email template can’t be processed. Ensure that your template body is valid.

EMPTY_SCONTROL_FILE_NAME
The Scontrol file name was empty, but the binary wasn’t empty.

ENTITY_FAILED_IFLASTMODIFIED_ON_UPDATE
If the value in a record’s LastModifiedDate field is later than the current date, you can’t update the record.

ENTITY_IS_ARCHIVED
If a record has been archived, you can’t access it.

ENTITY_IS_DELETED
You can’t reference an object that has been deleted. This status code occurs only in API version 10.0 and later. Previous releases of
the API use INVALID_ID_FIELD for this error.

ENTITY_IS_LOCKED
You can’t edit a record that is locked by an approval process.

ENVIRONMENT_HUB_MEMBERSHIP_CONFLICT
You can’t add an org to more than one Environment Hub.

ERROR_IN_MAILER
An email address is invalid, or another error occurred during an email-related transaction.

FAILED_ACTIVATION
The activation of a Contract failed.

FIELD_CUSTOM_VALIDATION_EXCEPTION
You can't define a custom validation formula that violates a field integrity rule.

FIELD_FILTER_VALIDATION_EXCEPTION
You can't violate field integrity rules.

FILTERED_LOOKUP_LIMIT_EXCEEDED
The creation of the lookup filter failed because it exceeds the maximum number of lookup filters allowed per object.

HTML_FILE_UPLOAD_NOT_ALLOWED
Your attempt to upload an HTML file failed. HTML attachments and documents, including HTML attachments to a Solution, can't be
uploaded if the Disallow HTML documents and attachments checkbox is selected on the HTML Documents and
Attachments Settings page.

IMAGE_TOO_LARGE
The image exceeds the maximum width, height, and file size.

INACTIVE_OWNER_OR_USER
The owner of the specified item is an inactive user. To reference this item, either reactivate the owner or reassign ownership to
another active user.

INSERT_UPDATE_DELETE_NOT_ALLOWED_DURING_MAINTENANCE
Starting with version 32.0, you can’t create, update, or delete data while the instance where your org resides is being upgraded to
the latest release. Try again after the release has completed. For release schedules, see trust.salesforce.com. Before version
32.0, the code is INVALID_READ_ONLY_USER_DML.

INSUFFICIENT_ACCESS_ON_CROSS_REFERENCE_ENTITY
An operation affects an object that is cross-referenced by the specified object, but the logged-in user doesn’t have sufficient
permissions on the cross-referenced object. For example, a logged-in user attempts to modify an account record, and the update

40

StatusCodeCore Data Types Used in API Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_solution.htm
https://trust.salesforce.com

creates a ProcessInstanceWorkitem. If the user doesn’t have permission to approve, reject, or reassign the ProcessInstanceWorkitem,
this exception occurs.

INSUFFICIENT_ACCESS_OR_READONLY
You can’t perform the specified action because you don’t have sufficient permissions.

INVALID_ACCESS_LEVEL
You can’t define a new sharing rule that provides less access than the specified org-wide default.

INVALID_ARGUMENT_TYPE
You supplied an argument that is of the wrong type for the operation being attempted.

INVALID_ASSIGNEE_TYPE
You specified an assignee type that isn’t a valid integer between one and six.

INVALID_ASSIGNMENT_RULE
You specified an assignment rule that is invalid or that isn’t defined in the org.

INVALID_BATCH_OPERATION
The specified batch operation is invalid.

INVALID_CONTENT_TYPE
The outgoing email has anEmailFileAttachment with an invalid contentType property. See RFC2045 - Internet Message Format.

INVALID_CREDIT_CARD_INFO
The specified credit card information isn’t valid.

INVALID_CROSS_REFERENCE_KEY
The specified value in a relationship field is not valid, or data is the expected type.

INVALID_CROSS_REFERENCE_TYPE_FOR_FIELD
The specified cross-reference type isn’t valid for the specified field.

INVALID_CURRENCY_CONV_RATE
Specify a positive, non-zero value for the currency conversion rate.

INVALID_CURRENCY_CORP_RATE
You can’t modify the corporate currency conversion rate.

INVALID_CURRENCY_ISO
The specified currency ISO code isn’t valid.

INVALID_EMAIL_ADDRESS
A specified email address is invalid.

INVALID_EMPTY_KEY_OWNER
You can't set the value for owner to null.

INVALID_EVENT_SUBSCRIPTION
Invalid parameters were specified when subscribing to an event.

INVALID_FIELD
You specified an invalid field name when trying to update or upsert a record.

INVALID_FIELD_FOR_INSERT_UPDATE
You can't combine a person account record type change with any other field update.

INVALID_FIELD_WHEN_USING_TEMPLATE
You can't use an email template with an invalid field name.

INVALID_FILTER_ACTION
The specified filter action can't be used with the specified object. For example, an alert isn’t a valid filter action for a Task.

41

StatusCodeCore Data Types Used in API Calls

http://tools.ietf.org/html/rfc2045
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_currencytype.htm#isocode_field

INVALID_ID_FIELD
The specified ID field (ID, ownerId), or cross-reference field is invalid.

INVALID_INET_ADDRESS
A specified Inet address isn’t valid.

INVALID_LINEITEM_CLONE_STATE
You can’t clone a Pricebook2 or PricebookEntry record that isn’t active.

INVALID_MASTER_OR_TRANSLATED_SOLUTION
The solution is invalid. For example, this exception occurs if you try to associate a translated solution with a master solution that’s
associated with another translated solution.

INVALID_MESSAGE_ID_REFERENCE
The outgoing email's References or In-Reply-To fields are invalid. These fields must contain valid Message-IDs. See RFC2822 - Internet
Message Format.

INVALID_OPERATION
There’s no applicable approval process for the specified object.

INVALID_OPERATOR
The specified operator isn’t applicable for the field type when used as a workflow filter.

INVALID_OR_NULL_FOR_RESTRICTED_PICKLIST
You specified an invalid or null value for a restricted picklist.

INVALID_PARTNER_NETWORK_STATUS
The specified partner network status is invalid for the specified template field.

INVALID_PERSON_ACCOUNT_OPERATION
You can't delete a person account.

INVALID_READ_ONLY_USER_DML
Version 31.0 and earlier: You can’t create, update, or delete data while the instance where your org resides is being upgraded to the
latest release. Try again after the release has completed. For release schedules, see trust.salesforce.com. After version
31.0, the code is INSERT_UPDATE_DELETE_NOT_ALLOWED_DURING_MAINTENANCE.

INVALID_SAVE_AS_ACTIVITY_FLAG
Specify true or false for the saveAsActivity flag.

INVALID_SESSION_ID
The specified sessionId is malformed (incorrect length or format) or has expired. Log in again to start a new session.

INVALID_STATUS
The specified org status change isn’t valid.

INVALID_TYPE
The specified type isn’t valid for the specified object.

INVALID_TYPE_FOR_OPERATION
The specified type isn’t valid for the specified operation.

INVALID_TYPE_ON_FIELD_IN_RECORD
The specified value isn’t valid for the specified field's type.

IP_RANGE_LIMIT_EXCEEDED
The specified IP address is outside the IP range specified for the org.

JIGSAW_IMPORT_LIMIT_EXCEEDED
The number of records you attempted to purchase from Data.com exceeds your available record addition limit.

42

StatusCodeCore Data Types Used in API Calls

http://tools.ietf.org/html/rfc2822#section-3.6.4
http://tools.ietf.org/html/rfc2822#section-3.6.4
https://trust.salesforce.com

LICENSE_LIMIT_EXCEEDED
You’ve exceeded the number of licenses assigned to your org.

LIGHT_PORTAL_USER_EXCEPTION
You attempted an action with a customer portal that's not allowed. For example, trying to add the user to a case team.

LIMIT_EXCEEDED
You’ve exceeded a limit on a field size or value, license, platform event publishing, or other component.

LOGIN_CHALLENGE_ISSUED
An email containing a security token was sent to the user’s email address because the user logged in from an untrusted IP address.
The user can’t log in until the security token is added to the end of the password.

LOGIN_CHALLENGE_PENDING
The user logged in from an untrusted IP address, but a security token hasn’t yet been issued.

LOGIN_MUST_USE_SECURITY_TOKEN
The user must add a security token to the end of the password to log in.

MALFORMED_ID
An ID must be either 15 characters, or 18 characters with a valid case-insensitive extension. There’s also an exception code of the
same name.

MANAGER_NOT_DEFINED
A manager hasn’t been defined for the specified approval process.

MASSMAIL_RETRY_LIMIT_EXCEEDED
A mass mail retry failed because your org has exceeded its mass mail retry limit.

MASS_MAIL_LIMIT_EXCEEDED
The org has exceeded its daily limit for mass email. Mass email messages can't be sent again until the next day.

MAXIMUM_CCEMAILS_EXCEEDED
You’ve exceeded the maximum number of specified CC addresses in a workflow email alert.

MAXIMUM_DASHBOARD_COMPONENTS_EXCEEDED
You’ve exceeded the document size limit for a dashboard.

MAXIMUM_HIERARCHY_LEVELS_REACHED
You’ve reached the maximum number of levels in a hierarchy.

MAXIMUM_SIZE_OF_ATTACHMENT
You’ve exceeded the maximum size of an attachment.

MAXIMUM_SIZE_OF_DOCUMENT
You’ve exceeded the maximum size of a document.

MAX_ACTIONS_PER_RULE_EXCEEDED
You’ve exceeded the maximum number of actions per rule.

MAX_ACTIVE_RULES_EXCEEDED
You’ve exceeded the maximum number of active rules.

MAX_APPROVAL_STEPS_EXCEEDED
You’ve exceeded the maximum number of approval steps for an approval process.

MAX_FORMULAS_PER_RULE_EXCEEDED
You’ve exceeded the maximum number of formulas per rule.

MAX_RULES_EXCEEDED
You’ve exceeded the maximum number of rules for an object.

43

StatusCodeCore Data Types Used in API Calls

MAX_RULE_ENTRIES_EXCEEDED
You’ve exceeded the maximum number of entries for a rule.

MAX_TASK_DESCRIPTION_EXCEEDED
The task description is too long.

MAX_TM_RULES_EXCEEDED
You’ve exceeded the maximum number of rules per Territory.

MAX_TM_RULE_ITEMS_EXCEEDED
You’ve exceeded the maximum number of rule criteria per rule for a Territory.

MERGE_FAILED
A merge operation failed.

MISSING_ARGUMENT
You didn’t specify a required argument.

NONUNIQUE_SHIPPING_ADDRESS
You can't insert a reduction order item if the original order shipping address is different from the shipping address of other items in
the reduction order.

NO_APPLICABLE_PROCESS
A process() request failed because the record submitted doesn’t satisfy the entry criteria of any active approval processes for
which the user has permission.

NO_ATTACHMENT_PERMISSION
Your org doesn’t permit email attachments.

NO_INACTIVE_DIVISION_MEMBERS
You can't add members to an inactive Division.

NO_MASS_MAIL_PERMISSION
You don’t have permission to send the email. You must have “Mass Email” to send mass mail or “Send Email” to send individual
email.

NUMBER_OUTSIDE_VALID_RANGE
The number specified is outside the valid range of values.

NUM_HISTORY_FIELDS_BY_SOBJECT_EXCEEDED
The number of history fields specified for the sObject exceeds the allowed limit.

OP_WITH_INVALID_USER_TYPE_EXCEPTION
The operation you attempted can't be performed for one or more users. For example, you can't add high-volume portal users to a
group.

OPTED_OUT_OF_MASS_MAIL
An email can't be sent because the specified User has opted out of mass mail.

ORDER_MANAGEMENT_ACTION_NOT_ALLOWED
The requested action isn’t allowed.

ORDER_MANAGEMENT_RECORD_EXISTS
You can’t create the record because it already exists.

ORDER_MANAGEMENT_RECORD_NOT_FOUND
We couldn’t find the requested record.

PACKAGE_LICENSE_REQUIRED
The logged-in user can’t access an object that is in a licensed package without a license for the package.

44

StatusCodeCore Data Types Used in API Calls

PLATFORM_EVENT_ENCRYPTION_ERROR
The platform event messages couldn’t be published due to a problem with encryption. A misconfiguration in your Salesforce org
or a general encryption service error can cause this problem.

PLATFORM_EVENT_PUBLISHING_UNAVAILABLE
Publishing platform event messages failed due to a service being temporarily unavailable. Try again later.

PLATFORM_EVENT_PUBLISH_FAILED
The platform event message couldn’t be published after one or more attempts because of a system error. Try again later.

PORTAL_USER_ALREADY_EXISTS_FOR_CONTACT
A create User operation failed because you can't create a second portal user under a Contact.

PRIVATE_CONTACT_ON_ASSET
You can’t have a private contact on an asset.

RECORD_IN_USE_BY_WORKFLOW
You can’t access a record that’s in use by a workflow or approval process.

REQUEST_RUNNING_TOO_LONG
A request that has been running too long is canceled.

REQUIRED_FIELD_MISSING
A call requires a field that wasn’t specified.

SELF_REFERENCE_FROM_TRIGGER
You can't recursively update or delete the same object from an Apex trigger. This error often occurs when:

• You try to update or delete an object from within its before trigger.

• You try to delete an object from within its after trigger.

This error occurs with both direct and indirect operations. The following is an example of an indirect operation:

1. A request is submitted to update Object A.

2. A before update trigger on object A creates an object B.

3. Object A is updated.

4. An after insert trigger on object B queries object A and updates it. This update is an indirect update of object A because
of the before trigger of object A, so an error is generated.

SHARE_NEEDED_FOR_CHILD_OWNER
If a parent record has a child record that needs a sharing rule, you can’t delete the sharing rule for the parent record.

SINGLE_EMAIL_LIMIT_EXCEEDED
(API version 18.0 and later) The org has exceeded its daily limit for individual emails. Individual email messages can’t be sent again
until the next day.

STANDARD_PRICE_NOT_DEFINED
Custom prices can't be defined without corresponding standard prices.

STORAGE_LIMIT_EXCEEDED
You’ve exceeded your org’s storage limit.

STRING_TOO_LONG
The specified string exceeds the maximum allowed length.

TABSET_LIMIT_EXCEEDED
You’ve exceeded the number of tabs allowed for a tabset.

45

StatusCodeCore Data Types Used in API Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm

TEMPLATE_NOT_ACTIVE
The template specified is unavailable. Specify another template or make the template available for use.

TERRITORY_REALIGN_IN_PROGRESS
An operation can't be performed because a territory realignment is in progress.

TEXT_DATA_OUTSIDE_SUPPORTED_CHARSET
The specified text uses a character set that isn’t supported.

TOO_MANY_APEX_REQUESTS
Too many Apex requests have been sent. This error is transient. Resend your request after a short wait.

TOO_MANY_ENUM_VALUE
A request failed because too many values were passed in for a multi-select picklist. You can select a maximum of 100 values for a
multi-select picklist.

TRANSFER_REQUIRES_READ
You can't assign the record to the specified User because the user doesn’t have read permission.

UNABLE_TO_LOCK_ROW
A deadlock or timeout condition has been detected.

• A deadlock involves at least two transactions that are attempting to update overlapping sets of objects. If the transaction involves
a summary field, the parent objects are locked, making these transactions especially prone to deadlocks. To debug, check your
code for deadlocks and correct. Deadlocks are generally not the result of an issue with Salesforce operations.

• A timeout occurs when a transaction takes too long to complete, for example, when replacing a value in a picklist or changing
a custom field definition. The timeout state is temporary. No corrective action is needed.

If an object in a batch can’t be locked, the entire batch fails with this error. Errors with this status code contain the IDs of the records
that couldn’t be locked, when available, in the error message.

UNAVAILABLE_RECORDTYPE_EXCEPTION
The appropriate default record type couldn’t be found.

UNDELETE_FAILED
An object couldn’t not be undeleted because it doesn’t exist or hasn’t been deleted.

UNKNOWN_EXCEPTION
The system encountered an internal error. Report this problem to Salesforce.

Note: Don’t report this exception code to Salesforce if it results from a sendEmail() call. The sendEmail() call
returns this exception code when it is used to send an email to one or more recipients who have the Email Opt Out option
selected.

UNSPECIFIED_EMAIL_ADDRESS
The specified user doesn’t have an email address.

UNSUPPORTED_APEX_TRIGGER_OPERATION
You can't save recurring events with an Apex trigger.

UNVERIFIED_SENDER_ADDRESS
A sendEmail() call attempted to use an unverified email address defined in the OrgWideEmailAddress object.

WEBLINK_SIZE_LIMIT_EXCEEDED
The size of a WebLink URL or JavaScript code exceeds the limit.

WEBLINK_URL_INVALID
The WebLink URL has failed the URL string validation check.

46

StatusCodeCore Data Types Used in API Calls

WRONG_CONTROLLER_TYPE
The controller type for your Visualforce email template doesn’t match the object type being used.

If you receive a status code not listed in the previous table, contact Customer Support.

ExtendedErrorDetails

An ExtendedErrorDetails element contains additional information about an error. The ExtendedErrorDetails element
can include the following properties.

DescriptionTypeName

A code that characterizes the extended error details.ExtendedErrorCodeextendedErrorCode

An extended error property that contains more information about the error. The
property name and value vary based on the extended error code. For example,

Variesextended error
property

in a limits-related error, the property limit contains the value of a limit and
input contains the submitted value that reaches or exceeds the limit.

ExtendedErrorCode

Each ExtendedErrorDetails contains an error code and its related properties. The codes and descriptions included here are
examples of extended errors. You might see other extended error codes, depending on the error you encounter.

MAX_STATEMENT_SIZE
The query exceeds the character limit. See SOQL SELECT Syntax.

MAX_XDS_IMPLICIT_SUBQUERIES
The query exceeds the number of joins allowed across external objects. Understanding Relationship Query Limitations.

Duplicate Management Data Types

DuplicateError
Contains information about an error that occurred when an attempt was made to save a duplicate record. Use if your organization has
set up duplicate rules, which are part of the Duplicate Management feature.

Fields

DetailsField

Type
DuplicateResult

duplicateResult

Description
The details of a duplicate rule and duplicate records found by the duplicate rule.

47

ExtendedErrorDetailsCore Data Types Used in API Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_relationships_query_limits.htm#sforce_api_calls_soql_relationships_query_limits

DetailsField

Type
string[]

fields

Description
Array of one or more field names. Identifies which fields in the object, if any, affected the
error condition.

Type
string

message

Description
Error message text.

Type
StatusCode

statusCode

Description
A code that characterizes the error. The full list of status codes is available in the WSDL file
for your organization (see Generating the WSDL File for Your Organization).

Usage
DuplicateError and its constituent objects are available to organizations that use duplicate rules.

DuplicateError is a data type of Error.

To process duplicates, loop through all the Error objects in the errors field on SaveResult. An Error object with a data type of
DuplicateError contains information about an error that occurred when an attempt was made to save a duplicate record. To access
information about the duplicates, use the duplicateResult field.

Java Sample
Here is a sample that shows how to see if there are any errors on the saveResult with a data type of DuplicateError. If so, duplicates were
detected. See DuplicateResult for a full code sample that shows how to block users from entering duplicate leads and display an alert
and a list of duplicates.

if (!saveResult.isSuccess()) {
for (Error e : saveResult.getErrors()) {

if (e instanceof DuplicateError) {
System.out.println("Duplicate(s) Detected for lead with ID: " +

leads[i].getId());
System.out.println("ERROR MESSAGE: " + e.getMessage());
System.out.println("STATUS CODE: " + e.getStatusCode());
DuplicateResult dupeResult = ((DuplicateError)e).getDuplicateResult();
System.out.println("Found the following duplicates...");
for (MatchResult m : dupeResult.getMatchResults()) {

if (m.isSuccess()) {
System.out.println("The match rule that was triggered was " +

m.getRule());
for (MatchRecord mr : m.getMatchRecords()) {

48

DuplicateErrorCore Data Types Used in API Calls

System.out.println("Your record matched " + mr.getRecord().getId()
+ " of type "

+ mr.getRecord().getType());
System.out.println("The match confidence is " +

mr.getMatchConfidence());
}

}
}

}
}

}

DuplicateResult
Represents the details of a duplicate rule that detected duplicate records and information about those duplicate records.

Fields

DetailsField

Type
boolean

allowSave

Description
true if duplicates are allowed to be saved. false if duplicates are not allowed to be
saved.

Type
string

duplicateRule

Description
The name of the duplicate rule that detected duplicate records.

Type
string

duplicateRuleEntityType

Description
The name of the duplicate rule that detected duplicate records.

Type
string

errorMessage

Description
The error message configured by the administrator to warn users they are potentially creating
duplicate records. This message is associated with a duplicate rule.

Type
MatchResult

matchResults

Description
The duplicate records and related match information.

49

DuplicateResultCore Data Types Used in API Calls

Usage
DuplicateResult and its constituent objects are available to organizations that use duplicate rules.

Java Sample
Here is a sample that shows how to block users from entering duplicate leads and display an alert and a list of duplicates.

package com.doc.example;

import java.io.FileNotFoundException;

import com.sforce.soap.partner.*;
import com.sforce.soap.partner.Error;
import com.sforce.soap.partner.sobject.SObject;
import com.sforce.ws.ConnectionException;
import com.sforce.ws.ConnectorConfig;

public class SaveResultsWithDupeHeader {

private PartnerConnection partnerConnection = null;
static SaveResultsWithDupeHeader tester;

public static void main(String[] args) {
tester = new SaveResultsWithDupeHeader();
try {

tester.demoDuplicateRuleHeader();
} catch (Exception e) {

e.printStackTrace();
}

}

/*
* Make sure that you have an active lead duplicate rule linked to an active matching

rule. This method tries to save
* an array of leads and inspects whether any duplicates were detected
*/

public void demoDuplicateRuleHeader() throws FileNotFoundException, ConnectionException
{

// Create the configuration for the partner connection
ConnectorConfig config = new ConnectorConfig();
config.setUsername("user@domain.com");
config.setPassword("secret");
config.setAuthEndpoint("authEndPoint");
config.setTraceFile("traceLogs.txt");
config.setTraceMessage(true);
config.setPrettyPrintXml(true);

// Initialize the connection
partnerConnection = new PartnerConnection(config);

// Get the leads that have to be saved
SObject[] leads = getLeadsForInsertOrUpdate();

50

DuplicateResultCore Data Types Used in API Calls

/* Set a duplicate rule header to return a result if duplicates are detected
* This sets the allowSave, includeRecordDetails, and runAsCurrentUser flags to

true
*/
partnerConnection.setDuplicateRuleHeader(true, true, true);

// Save the leads
SaveResult[] saveResults = partnerConnection.create(leads);

// Check the results to see if duplicates were detected
for (int i = 0; i < leads.length; i++) {

SaveResult saveResult = saveResults[i];
if (!saveResult.isSuccess()) {

for (Error e : saveResult.getErrors()) {
// See if there are any errors on the saveResult with a data type of

DuplicateError
if (e instanceof DuplicateError) {

System.out.println("Duplicate(s) Detected for lead with ID: " +
leads[i].getId());

System.out.println("ERROR MESSAGE: " + e.getMessage());
System.out.println("STATUS CODE: " + e.getStatusCode());
DuplicateResult dupeResult =

((DuplicateError)e).getDuplicateResult();
System.out.println("Found the following duplicates...");
for (MatchResult m : dupeResult.getMatchResults()) {

if (m.isSuccess()) {
System.out.println("The match rule that was triggered was

" + m.getRule());
for (MatchRecord mr : m.getMatchRecords()) {

System.out.println("Your record matched " +
mr.getRecord().getId() + " of type "

+ mr.getRecord().getType());
System.out.println("The match confidence is " +

mr.getMatchConfidence());
for (FieldDiff f : mr.getFieldDiffs()) {

System.out.println("For field " + f.getName() + "
field difference is "

+ f.getDifference().name());
}

}
}

}
}

}
}

}

// Clear the duplicate rule header
partnerConnection.clearDuplicateRuleHeader();

}

/**
* The assumption here is that this method is retrieving leads from either UI, a data

source, etc

51

DuplicateResultCore Data Types Used in API Calls

*/
private SObject[] getLeadsForInsertOrUpdate() {

return new SObject[0];
}

}

MatchResult
Represents the duplicate results for a matching rule.

Fields

DetailsField

Type
Error[]

errors

Description
Errors that occurred during matching for the matching rule.

Type
string

entityType

Description
The entity type of the matching rule.

Type
string

matchEngine

Description
The match engine for the matching rule.

Type
MatchRecord[]

matchRecords

Description
Information about the duplicates detected by the matching rule.

Type
string

rule

Description
The developer name of the matching rule that detected duplicates.

Type
int

size

Description
The number of duplicates detected by the matching rule.

52

MatchResultCore Data Types Used in API Calls

DetailsField

Type
boolean

success

Description
true if the matching rule successfully ran. false if there’s an error with the matching
rule.

Usage
MatchResult and its constituent objects are available to organizations that use duplicate rules.

There is 1 MatchResult for each saved record that has duplicates. The MatchResult contains all duplicates for that saved record.

Java Sample
Here is a sample that shows how to display the ID and type of all duplicates detected when leads are saved. See DuplicateResult for a
full code sample that shows how to block users from entering duplicate leads and display an alert and a list of duplicates.

for (MatchResult m : dupeResult.getMatchResults()) {
if (m.isSuccess()) {

System.out.println("The match rule that was triggered was " + m.getRule());
for (MatchRecord mr : m.getMatchRecords()) {

System.out.println("Your record matched " + mr.getRecord().getId() + " of type
"

+ mr.getRecord().getType());
System.out.println("The match confidence is " + mr.getMatchConfidence());

}
}

}

MatchRecord
Represents a duplicate record detected by a matching rule.

Fields

DetailsField

Type
AdditionalInformationMap

additionalInformation

Description
Other information about matched records.

Type
FieldDiff[]

fieldDiffs

53

MatchRecordCore Data Types Used in API Calls

DetailsField

Description
Matching rule fields and how each field value compares for the duplicate and its matching
record.

Type
double

matchConfidence

Description
The ranking of how similar a matched record’s data is to the data in your request. Must be
equal to or greater than the value of the minMatchConfidence specified in your
request. Returns -1 if unused.

Type
sObject

record

Description
The fields and field values for the duplicate record.

Usage
MatchRecord and its constituent objects are available to organizations that use duplicate rules.

Each MatchRecord represents a duplicate detected when a record is saved. There can be multiple MatchRecord objects for a saved record
if multiple duplicates are detected.

Java Sample
Here is a sample that shows how to display the ID and type of all duplicates detected when a lead is saved. See DuplicateResult for a full
code sample that shows how to block users from entering duplicate leads and display an alert and a list of duplicates.

for (MatchRecord mr : m.getMatchRecords()) {
System.out.println("Your record matched " + mr.getRecord().getId() + " of type "

+ mr.getRecord().getType());
System.out.println("The match confidence is " + mr.getMatchConfidence());

}

FieldDiff
Represents the name of a matching rule field and how the values of the field compare for the duplicate and its matching record.

Fields

DetailsField

Type
differenceType

difference

54

FieldDiffCore Data Types Used in API Calls

DetailsField

Description
How the values of the matching rule field compare for the duplicate and its matching record.

Possible values include:

• Same: Indicates the field values match exactly.

• Different: Indicates that the field values do not match.

• Null: Indicates that the field values are a match because both values are blank.

Type
string

name

Description
The name of a field on a matching rule that detected duplicates.

Java Sample
Here is a sample that shows how to display the matching rule field differences when a duplicate is detected. See DuplicateResult for a
full code sample that shows how to block users from entering duplicate leads and display an alert and a list of duplicates.

for (FieldDiff f : mr.getFieldDiffs()) {
System.out.println("For field " + f.getName() + " field difference is "

+ f.getDifference().name());
}

AdditionalInformationMap
Represents other information, if any, about matched records.

Fields

DetailsField

Type
string

name

Description
The name of the element.

Type
string

value

Description
The value of the element.

55

AdditionalInformationMapCore Data Types Used in API Calls

CHAPTER 3 Tooling API Objects in the Enterprise WSDL

Some objects used by the Tooling API are included in the Enterprise and Partner WSDL. Use the objects
from these WSDLs instead of the Tooling WSDL if you need field-level security.

The following Tooling API objects are exposed in the Enterprise and Partner WSDL.

• BriefcaseDefinition

• DataType

• EntityDefinition

• EntityParticle

• FieldDefinition

• PicklistValueInfo

• Publisher

• SearchLayout

• Service

• ServiceDataType (Reserved for future use.)

• ServiceFieldDataType (Unavailable in version 35.0 and later. Do not use.)

• RelationshipDomain

• RelationshipInfo

• UserEntityAccess

• UserFieldAccess

• WsdlDataType (Reserved for future use.)

• XmlSchema (Reserved for future use.)

For more information, use the Tooling API Developer’s Guide.

56

CHAPTER 4 API Call Basics

API calls represent specific operations that your client applications can invoke at runtime to perform
tasks, for example:

In this chapter ...

• Characteristics of API
Calls • Query data in your organization.

• Add, update, and delete data.• Factors that Affect
Data Access • Obtain metadata about your data.

• Run utilities to perform administration tasks.• Package Version
Settings Using your development environment, you can construct Web service client applications that use

standard Web service protocols to programmatically:

• Log in to the login server (login()) and receive authentication information to be used for
subsequent calls

• Query your organization’s information (query(), queryAll(), queryMore(), and
retrieve() calls)

• Perform text searches across your organization’s information (search() call)

• Create, update, and delete data (create(), merge(), update(), upsert(), delete(),
and undelete() calls)

• Perform administrative tasks, such as retrieving user information (getUserInfo() call), changing
passwords (setPassword() and resetPassword() calls), and getting the system time
(getServerTimestamp() call)

• Replicate data locally (getDeleted() and getUpdated() calls)

• Obtain and navigate metadata about your organization’s data (describeGlobal(),
describeSObject(), describeSObjects(), describeLayout(), and
describeTabs() calls)

• Work with approval processes (process())

• Return category groups and categories from your organization
(describeDataCategoryGroups() and
describeDataCategoryGroupStructures()).

See Core Calls, Describe Calls, and Utility Calls for complete details about each call.

SEE ALSO:

User Permissions

57

https://help.salesforce.com/apex/HTViewHelpDoc?id=admin_userperms.htm&language=en_US#admin_userperms

Characteristics of API Calls

All API calls are:

• Service Requests and Responses—Your client application prepares and submits a service request to the Lightning Platform Web
Service via the API, the Lightning Platform Web Service processes the request and returns a response, and the client application
handles the response.

• Synchronous—After the API call is invoked, your client application waits until it receives a response from the service. Asynchronous
calls are not supported.

• Committed Automatically Versus Rollback on Error—By default, every operation that writes to a Salesforce object is committed
automatically. This is analogous to the AUTOCOMMMIT setting in SQL. For create(), update(), and delete() calls that
attempt to write to multiple records for an object, the write operation for each record is treated as a separate transaction. For example,
if a client application attempts to create two new accounts, they’re created using mutually exclusive insert operations that succeed
or fail individually, not as a group.

For API version 20.0 and later, there is an AllOrNoneHeader header that allows a call to roll back all changes unless all records are
processed successfully. This header is supported by the create(), delete(), undelete(), update(), and upsert()
calls.

Note: The default behavior means that client applications may need to handle some failures: for example, if you create an
opportunity that has shipments (a custom object), and the opportunity line item gets created but the shipment creation fails, if
your business rules required all opportunities be created with shipment, your client application would need to roll back the
opportunity creation. The easiest way to do this is to use AllOrNoneHeader.

Factors that Affect Data Access

When using the API, the following factors affect access to your organization’s data:

Access
Your organization must be enabled for API access.

Objects may not be available until you contact Salesforce and request access. For example, Territory2 is visible only if Enterprise
Territory Management has been enabled in the application. Such requirements are in the “Usage” section for each object.

Sometimes a feature must be used once before objects related to it can be accessed with the API. For example, the recordTypeIds
is available only after at least one record type has been created for your organization in the user interface.

To investigate data access issues, you can start by inspecting the WSDL:

• Enterprise WSDL: The generated enterprise WSDL file contains all of the objects that are available to your organization. By using
the API, a client application can access objects that are defined in your enterprise WSDL file.

• Partner WSDL: When using the generated partner WSDL file, a client application can access objects that are returned in the
describeGlobal() call.

Object-Level and Field-Level Security
The API respects object-level and field-level security configured in the user interface. You can access objects and fields only if the
logged-in user's permissions and access settings allow such access. For example, fields that are not visible to a given user are not
returned in a query() or describeSObjects() call. Similarly, read-only fields can't be updated.

User Permissions
A user attempting to access the API must have the permission “API Enabled” selected. It’s selected by default.

Your client application logs in as a user called a logged-in user. The logged-in user's permissions grant or deny access to specific
objects and fields in your organization:

58

Characteristics of API CallsAPI Call Basics

• Read—Users can only view objects of this type.

• Create—Users can read and create objects of this type.

• Edit—Users can read and update objects of this type.

• Delete—Users can read, edit, and delete objects of this type.

User permissions do not affect field-level security. If field-level security specifies that a field is hidden, users with “Read” on that object
can view only those fields that are not hidden on the record. In addition, users with “Read” on an object can view only those records
that sharing settings allow. The one exception is the “Edit Read Only Fields” permission, which gives users the ability to edit fields
marked as read only via field-level security.

Sharing
For most API calls, data that is outside of the logged-in user’s sharing model is not returned. Users are granted the most permissive
access that is available to them, either through organization-wide defaults or manual record sharing, just as in the application.

User Permissions that Override Sharing

• View All—Users can view all records associated with this object, regardless of sharing settings.

• Modify All—Users can read, edit, delete, transfer, and approve all records associated with this object, regardless of sharing
settings.

• Modify All Data—users can read, edit, delete, transfer, and approve all records regardless of sharing settings. This permission
is not an object-level permission, unlike “View All” and “Modify All.”

To protect the security of your data, give the logged-in user only the permissions needed to successfully execute all the calls made
by the application. For large integration applications, “Modify All Data” may speed up call response times. If you are loading a large
number of records, use Bulk API 2.0 instead.

Related Objects
Some objects depend on other objects for permission. For example, AccountTeamMember follows sharing on the associated
permission-assigned object such as the Account record. Similarly, a Partner depends on the permissions in the associated .

Ownership changes to a record do not automatically cascade to related records. For example, if ownership changes for a given
Account, ownership does not then automatically change for any Contract associated with that Account—each ownership change
must be made separately and explicitly by the client application.

Object Properties
To create an object with the create() call, the object's createable attribute must be set to true. To determine what
operations are allowed on a given object, your client application can invoke the describeSObjects() call on the object and
inspect the properties in the DescribeSObjectResult.

Note: replicatable allowsgetUpdated() and getDeleted() calls.

Page Layouts and Record Types
Requirements defined in the Salesforce user interface for page layouts and record types are not enforced by the API:

• Page layouts can specify whether a given field is required, but the API does not enforce such layout-specific field restrictions or
validations in create() and update() calls. It’s up to the client application to enforce any such constraints, if applicable.

• Record types can control which picklist values can be chosen in a given record and which page layouts users with different
profiles can see. However, such rules that are configured and enforced in the user interface are not enforced in the API. For
example, the API does not validate whether the value in a picklist field is allowed per any record type restrictions associated with
the profile of the logged-in user. Similarly, the API does not prevent a client application from adding data to a particular field
simply because that field does not appear in a layout associated with the profile of the logged-in user.

Referential Integrity
To ensure referential integrity, the API forces or prevents certain behaviors:

• ID values in reference fields are validated in create() and update() calls.

59

Factors that Affect Data AccessAPI Call Basics

https://developer.salesforce.com/docs/atlas.en-us.238.0.api_asynch.meta/api_asynch/bulk_api_2_0.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435823

• If a client application deletes a record, then its children are automatically deleted as part of the call if the cascadeDelete
property on ChildRelationship for that child has a value of true. For example, if a client application deletes an Opportunity,
then any associated OpportunityLineItem records are also deleted. However, if an OpportunityLineItem is not deletable or is
currently being used, then deletion of the parent Opportunity fails. For example, if a client application deletes an Invoice_Statement,
then any associated Line_Item records are also deleted. However, if a Line_Item is not deletable or is currently being used, then
deletion of the parent Invoice_Statement fails. Use DescribeSObjectResult to view the ChildRelationship value if you want to be
sure what will be deleted.

There are certain exceptions that prevent the execution of a cascadeDelete. For example, you can't delete an account if
it has associated cases, if it has related opportunities that are owned by other users, or if associated contacts are enabled for the
Customer Portal. In addition, if you attempt to delete an account that has closed/won opportunities owned by you or has active
contracts, then the delete request for that record will fail.

Package Version Settings

When your API client is referencing components in managed packages, you can specify the version of each installed package that you
want to reference for your integration. This allows your API client to continue to function with specific, known behavior even when you
install subsequent versions of a package. You can use the PackageVersionHeader SOAP header to set different package versions for
different calls, if necessary.

A package version is a number that identifies the set of components uploaded in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a chosen value
during every major release. The patchNumber is generated and updated only for a patch release. Publishers can use package versions
to evolve the components in their managed packages gracefully by releasing subsequent package versions without breaking existing
customer integrations using the package.

Default package versions for API calls provide fallback settings if package versions are not provided by an API call. Many API clients do
not include package version information, so the default settings maintain existing behavior for these clients.

You can specify the default package versions for enterprise API and partner API calls. The enterprise WSDL is for customers who want to
build an integration with their Salesforce organization only. It is strongly typed, which means that calls operate on objects and fields
with specific data types, such as int and string. The partner WSDL is for customers, partners, and ISVs who want to build an
integration that can work across multiple Salesforce organizations, regardless of their custom objects or fields. It is loosely typed, which
means that calls operate on name-value pairs of field names and values instead of specific data types.

You must associate the enterprise WSDL with specific package versions to maintain existing behavior for clients. There are options for
setting the package version bindings for an API call from client applications using either the enterprise or partner WSDL. The package
version information for API calls issued from a client application based on the enterprise WSDL is determined by the first match in the
following settings.

1. The PackageVersionHeader SOAP header.

2. The SOAP endpoint contains a URL with a format of serverName/services/Soap/c/api_version/ID where
api_version is the version of the API, such as 55.0, and ID encodes your package version selections when the enterprise WSDL
was generated.

3. The default enterprise package version settings.

The partner WSDL is more flexible as it is used for integration with multiple organizations. If you choose the Not Specified option for a
package version when configuring the default partner package versions, the behavior is defined by the latest installed package version.
This means that behavior of package components, such as an Apex trigger, could change when a package is upgraded and that change
would immediately impact the integration. Subscribers may want to select a specific version for an installed package for all partner API
calls from client applications to ensure that subsequent installations of package versions do not affect their existing integrations.

The package version information for partner API calls is determined by the first match in the following settings.

60

Package Version SettingsAPI Call Basics

1. The PackageVersionHeader SOAP header.

2. An API call from a Visualforce page uses the package versions set for the Visualforce page.

3. The default partner package version settings.

To configure default package versions for API calls:

1. From Setup, enter API in the Quick Find box, then select API.

2. Click Configure Enterprise Package Version Settings or Configure Partner Package Version Settings. These links are only
available if you have at least one managed package installed in your organization.

3. Select a Package Version for each of your installed managed packages. If you are unsure which package version to select,
you should leave the default selection.

4. Click Save.

Note: Installing a new version of a package in your organization does not affect the current default settings.

61

Package Version SettingsAPI Call Basics

CHAPTER 5 Error Handling

The API calls return error data that your client application can use to identify and resolve runtime errors.
If an error occurs during the invocation of most API calls, then the API provides the following types of
error handling:

In this chapter ...

• Error Handling for
Session Expiration

• For errors resulting from badly formed messages, failed authentication, or similar problems, the API
returns a SOAP fault message with an associated ExceptionCode.

• More About Error
Handling

• For most calls, if the error occurs because of a problem specific to the query, the API returns an Error.
For example, if a create() request contains more than 200 objects.

62

Error Handling for Session Expiration

When you sign on via the login() call, a new client session begins and a corresponding unique session ID is generated. Sessions
expire automatically after a predetermined length of inactivity, which can be configured in Salesforce from Setup by clicking Security
Controls. The default is 120 minutes (two hours). If you make an API call, the inactivity timer is reset to zero.

When your session expires, the exception code INVALID_SESSION_ID is returned. If this happens, you must invoke the login() call
again.

More About Error Handling

For more information about errors, see the following topics:

• API Fault Element

• ExceptionCode

• Error

63

Error Handling for Session ExpirationError Handling

CHAPTER 6 Security and the API

Client apps that access your Salesforce data are subject to the same security protections that are used
in the Salesforce user interface. Additional protection is available for orgs that install AppExchange
managed packages if those packages contain components that access Salesforce via the API.

In this chapter ...

• User Authentication

• User Profile and
Permission Sets
Configuration

• Security Token

• Sharing

• Implicit Restrictions
for Objects and Fields

• API Access in
Salesforce
AppExchange
Packages

• Outbound Port
Restrictions

64

User Authentication

Client apps must log in using valid credentials. After validating, the server provides the client app with a:

• sessionId that is set into the session header so that all subsequent calls to the Web service are authenticated

• URL address (serverUrl) for the client app's web service requests

Salesforce supports only the Transport Layer Security (TLS) protocol and frontdoor.jsp. Ciphers must have a key length of at least 128
bits.

User Profile and Permission Sets Configuration

As an org’s Salesforce admin, you control which features and views are available to users by configuring profiles and permission sets
and assigning users to them. To access the API to issue calls and receive the call results, a user must have the API Enabled permission.
Client apps can query or update only those objects and fields to which they have access via the permissions of the logged-in user.

To create, edit, or delete a profile, from Setup, enter Profiles in the Quick Find box, then select Profiles. To create, edit, or delete
a permission set, from Setup, enter Permission Sets in the Quick Find box, then select Permission Sets.

Note: The web services WSDL files return all available objects and fields for an org.

Security Token

When users log in to Salesforce via the user interface, the API, or a desktop client such as Salesforce for Outlook, Connect Offline, Connect
for Office, or the Data Loader, Salesforce authorizes the login as follows.

1. Salesforce checks whether the user’s profile has login-hour restrictions. If the user’s profile specifies login-hour restrictions, login
attempts outside the specified hours are denied.

2. If the user has the Multi-Factor Authentication for User Interface Logins permission, the Salesforce login process prompts the user
for an identity verification method in addition to their username and password. If the user’s account isn’t already connected to a
verification method, such as the Salesforce Authenticator mobile app, Salesforce prompts the user to register a method.

3. If the user has the Multi-Factor Authentication for API Logins permission and connected an authenticator app to the account, the
user must enter a verification code (TOTP) generated by the authenticator app. If the user uses the standard security token, Salesforce
returns an error.

4. Salesforce then checks whether the user’s profile defines IP address range restrictions. If so, logins from outside the IP address range
are denied. If the Enforce login IP ranges on every request session setting is enabled, the IP address restrictions are enforced for
each page request, including requests from client apps.

5. If profile-based IP address restrictions aren’t set, Salesforce checks whether the user is logging in from a device that was previously
used to access Salesforce.

• If the user is logging in from a device and browser that Salesforce recognizes, the login is allowed.

• If the user is logging in from an IP address on your org’s trusted IP address list, the login is allowed.

• If the user isn’t logging in from a trusted IP address, device, or browser that Salesforce recognizes, the login is blocked.

Whenever a login is blocked or returns an API login fault, Salesforce verifies the user’s identity.

• For access via the user interface, the user is prompted to verify using Salesforce Authenticator (version 2 or later) or enter a verification
code.

65

User AuthenticationSecurity and the API

Note: Users aren’t asked for a verification code the first time they log in to Salesforce.

• For access via the API or client app, if the Multi-Factor Authentication on API Logins permission is set on the user profile, users enter
a TOTP verification code generated by an authenticator app.

If the permission isn’t set, users must add their security token to the end of their password to log in. A security token is a generated
key from Salesforce. For example, if a user’s password is mypassword and the security token is XXXXXXXXXX, the user enters
mypasswordXXXXXXXXXX to log in. Some client apps have a separate field for the security token.

Users can get their security token by changing their password or resetting their security token via the Salesforce user interface. When
a user changes a password or resets a security token, Salesforce sends a new security token to the email address on the user’s
Salesforce record. The security token is valid until the user resets the security token, changes a password, or has a password reset.

Note: Before you access Salesforce from a new IP address, we recommend that you get your security token from a trusted
network using Reset My Security Token.

For more information about tokens, see Reset Your Security Token in Salesforce Help.

When a user’s password is changed, the user’s security token is automatically reset. To log in after the reset, the user adds the generated
security token to the end of the password. Or the user enters the new password after you add the user’s IP address to the org’s list of
trusted IP addresses.

If you reset the password of a user with the API only user permission, the user doesn’t receive a security token reset email. If you want
API only users to receive a security token reset email when you reset their password, take these steps.

1. Temporarily assign the user to a profile that doesn’t have the API only user permission. For more information on user profiles and
permissions, see User Permissions and Access.

2. Ask the user to manually reset their security token.

3. Reassign the user to a profile with the API only user permission.

If single sign-on (SSO) is enabled, users who access the API or a desktop client can’t log in unless their IP address is included on your
org’s list of trusted IP addresses or on their profile, if their profile has IP address restrictions set. The delegated authentication authority
usually handles login lockout policies for users with the Uses Single Sign-On permission. However, if the security token is enabled, your
login lockout settings determine how many times a user can try to log in with an invalid security token before getting locked out. For
more information, see Setting Login Restrictions and Setting Password Policies in Salesforce Help.

Sharing

Sharing refers to the act of granting read or write access to a user or group so that they can view or edit a record owned by other users,
if the default access levels don’t permit such access. All API calls respect the sharing model.

The following table describes the types of access levels.

DescriptionAPI Picklist LabelSalesforce User
Interface Label

API Value

Only the record owner and Users above that role in
the hierarchy can view and edit the record.

PrivatePrivateNone

All Users and Groups can view the record but not edit
it. Only the owner and users above that role in the
hierarchy can edit the record.

Read OnlyRead OnlyRead

All Users and Groups can view and edit the record.Read/WriteRead/WriteEdit

66

SharingSecurity and the API

https://help.salesforce.com/articleView?id=sf.user_security_token.htm&language=en_US
https://help.salesforce.com/articleView?id=sf.permissions_about_users_access.htm&language=en_US
https://help.salesforce.com/articleView?id=sf.user_security_token.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_group.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_group.htm

DescriptionAPI Picklist LabelSalesforce User
Interface Label

API Value

All Users and Groups can view, edit, delete, and
transfer the record. (Only available for cases and leads
as an org-wide default setting.)

Read/Write/TransferRead/Write/TransferReadEditTransfer

All Users and Groups can view, edit, transfer, delete,
and share the record. (Only available for campaigns
as an org-wide default setting.)

OwnerFull AccessAll

(Contacts only.) All Users and Groups can perform an
action (such as view, edit, or delete) on the contact

Controlled By
Parent

Controlled by
Parent

ControlledByParent

based on whether he or she can perform that same
action on the record associated with it.

Not all access levels are available for every object. See the Fields table for each object to learn which access levels are available, as well
as other sharing details specific to that object.

For more information about sharing in general, see Salesforce Help.

Note: In the API, you can create and update objects such as AccountShare and OpportunityShare that define sharing entries for
records.

Implicit Restrictions for Objects and Fields

Certain objects can be created or deleted only in the Salesforce user interface. Other objects are read-only—client apps cannot create(),
delete(), or update() such objects. Similarly, certain fields within some objects can be specified on create() but not on update(). Other
fields are read-only—client apps cannot specify field values in create() or update() calls. For more information, see the respective object
descriptions in Object Basics.

API Access in Salesforce AppExchange Packages

The API allows access to objects and calls based on the permissions of the user who logs into the API. To prevent security issues from
arising when installed packages have components that access data via the API, Salesforce provides additional security:

• When a developer creates an AppExchange package with components that access the API, the developer can restrict the API access
for those components.

• When an administrator installs an AppExchange package, the administrator can accept or reject the access. Rejecting the access
cancels the installation.

• After an administrator installs a package, the administrator can restrict the API access of components in the package that access the
API.

Editing API access for a package is done in the Salesforce user interface. For more information, see Manage API and Dynamic Apex Access
in Packages in Salesforce Help.

API access for a package affects the API requests originating from components within the package; it determines the objects that the
API requests can access. If the API access for a package is not defined, then the objects that the API requests have access to are determined
by the user's permissions.

67

Implicit Restrictions for Objects and FieldsSecurity and the API

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_group.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_group.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_group.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_accountshare.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_opportunityshare.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_concepts.htm

The API access for a package never allows users to do more than the permissions granted to the user. API access in a package only
reduces what the user's permissions allow.

Choosing Restricted for the API Access setting in a package affects the following:

• API access in a package overrides the following user permissions:

– Author Apex

– Customize Application

– Edit HTML Templates

– Edit Read Only Fields

– Manage Billing

– Manage Call Centers

– Manage Categories

– Manage Custom Report Types

– Manage Dashboards

– Manage Letterheads

– Manage Package Licenses

– Manage Public Documents

– Manage Public List Views

– Manage Public Reports

– Manage Public Templates

– Manage Users

– Transfer Record

– Use Team Reassignment Wizards

– View Setup and Configuration

– Weekly Export Data

• If Read, Create, Edit, and Delete access are not selected in the API access setting for objects, users do not have access to
those objects from the package components, even if the user has the “Modify All Data” and “View All Data” permissions.

• A package with Restricted API access can’t create new users.

• Salesforce denies access to Web service and executeanonymous requests from an AppExchange package that has
Restricted access.

The following considerations also apply to API access in packages:

• Workflow rules and Apex triggers fire regardless of API access in a package.

• If a component is in more than one package in an organization, API access is unrestricted for that component in all packages in the
organization regardless of the access setting.

• If Salesforce introduces a new standard object after you select restricted access for a package, access to the new standard object is
not granted by default. You must modify the restricted access setting to include the new standard object.

• When you upgrade a package, changes to the API access are ignored even if the developer specified them. This ensures that the
administrator installing the upgrade has full control. Installers should carefully examine the changes in package access in each
upgrade during installation and note all acceptable changes. Then, because those changes are ignored, the administrator should
manually apply any acceptable changes after installing an upgrade.

68

API Access in Salesforce AppExchange PackagesSecurity and the API

• S-controls are served by Salesforce and rendered inline in Salesforce. Because of this tight integration, there are several means by
which an s-control in an installed package could escalate its privileges to the user’s full privileges. In order to protect the security of
organizations that install packages, s-controls have the following limitations:

– For packages you are developing (that is, not installed from AppExchange), you can only add s-controls to packages with the
default Unrestricted API access. Once a package has an s-control, you cannot enable Restricted API access.

– For packages you have installed, you can enable access restrictions even if the package contains s-controls. However, access
restrictions provide only limited protection for s-controls. Salesforce recommends that you understand the JavaScript in an
s-control before relying on access restriction for s-control security.

– If an installed package has Restricted API access, upgrades will be successful only if the upgraded version does not contain
any s-controls. If s-controls are present in the upgraded version, you must change the currently installed package to
Unrestricted API access.

To manage API access to packages, see “Manage API and Dynamic Apex Access in Packages” in Salesforce Help.

Note: XML-RPC requests that originate from restricted packages are denied access.

Outbound Port Restrictions

For security reasons, Salesforce restricts the outbound ports you can specify to one of the following:

• 80: This port only accepts HTTP connections.

• 443: This port only accepts HTTPS connections.

• 1024–66535 (inclusive): These ports accept HTTP or HTTPS connections.

The port restriction applies to any feature where a port is specified, for example outbound messages, AJAX proxy, or single-sign on.

69

Outbound Port RestrictionsSecurity and the API

CHAPTER 7 Using the Partner WSDL

The API provides two WSDLs to choose from:In this chapter ...
• Enterprise Web Services WSDL—Used by enterprise developers to build client applications for a

single Salesforce organization. The enterprise WSDL is strongly typed, which means that it contains
• Obtaining the Partner

WSDL File
objects and fields with specific data types, such as int and string. Customers who use the

• Calls and the Partner
WSDL

enterprise WSDL document must download and re-consume it when changes are made to the
custom objects or fields in their org or when they want to use a different version of the API. To access

• Objects, Fields, and
Field Data and the
Partner WSDL

the current WSDL for your organization, log in to your Salesforce organization and from Setup, enter
API in the Quick Find box. Then, on the API page, select Generate Enterprise WSDL.

• Partner Web Services WSDL—Used for client applications that are metadata-driven and dynamic
in nature. It is particularly—but not exclusively—useful to Salesforce partners who are building

• Queries and the
Partner WSDL

client applications for multiple organizations. As a loosely typed representation of the Salesforce
• Namespaces in the

Partner WSDL
data model that works with name-value pairs of field names and values instead of specific data types,
it can be used to access data within any organization. This WSDL is most appropriate for developers

• Package Versions
and the Partner
WSDL

of clients that can issue a query call to get information about an object before the client acts on the
object. The partner WSDL document needs to be downloaded and consumed only once per version
of the API. To access the current WSDL for your organization, log in to your Salesforce organization

• User Interface
Themes

and from Setup, enter API in the Quick Find box. Then, on the API page, select Generate
Partner WSDL.

• Examples Using the
Partner WSDL

In general, the enterprise WSDL is more straightforward to use, while the partner WSDL is more flexible
and dynamically adaptable to different organizations, allowing you to write a single application that can
be used for multiple users and multiple organizations.

High Precision Versions

If you require higher precision than the regular WSDLs provide, ask your account team about the “High
Precision API” feature. When this feature is enabled, the WSDLs that you download (both Enterprise and
Partner) use higher precision data types. For example, this feature is useful if your organization uses
complex numerical formulas that are prone to rounding errors.

Note: This feature is a limited pilot and is not currently a generally available feature.

If you have been using the regular version of the WSDL and change to the high precision version, perform
the following checks:

1. Download the new WSDL.

2. Regenerate the stub code. (See Setting Up Your Java Developer Environment.)

3. Verify that the type of variables used to store numeric values in your code can accommodate the
new types.

70

https://developer.salesforce.com/docs/atlas.en-us.238.0.salesforce_developer_environment_tipsheet.meta/salesforce_developer_environment_tipsheet/salesforce_developer_environment_overview.htm

Obtaining the Partner WSDL File

To use the partner WSDL, download a copy of the file using either of the following methods:

• Obtain it from your organization’s Salesforce administrator, or

• Generate from Setup in Salesforce (enter API in the Quick Find box, then select API) according to the instructions in Step 2:
Generate or Obtain the Web Service WSDL.

While the enterprise WSDL file needs to be regenerated whenever custom fields or custom objects are added to an organization’s
Salesforce information, the partner WSDL file remains the same regardless of underlying changes in the organization’s Salesforce data.

Calls and the Partner WSDL

The partner WSDL file defines exactly the same API calls found in the enterprise WSDL file. A client application using the partner WSDL
will likely use the following API calls to determine an organization’s metadata:

DescriptionTask / Call

Retrieves a list of available objects for your organization’s data.describeGlobal()

Retrieves metadata about page layouts for the specified object type.describeLayout()

describeSObject() has been superseded by describeSObjects().describeSObject()

Use to obtain metadata for a given object. You can first call to retrieve a list of all objects for your
organization, then iterate through the list and use to obtain metadata about individual objects.

describeSObjects()

In the user interface, users have access to standard apps (and may also have access to custom apps)
as listed in the Lightning Platform app menu at the top of the page. Selecting a standard app or
custom app in the user interface allows the user to switch between the listed apps at any time.

describeTabs()

To explore an organization’s metadata, a client application can:

1. Call describeGlobal() to obtain a list of available objects.

2. In the returned DescribeGlobalResult object, retrieve an array of DescribeGlobalSObjectResult objects by calling sobjects.

3. Get the sObject type name for each returned sObject by calling name on the DescribeGlobalSObjectResult objects.

4. The DescribeGlobalSObjectResult object provides some metadata about the sObject, such as whether the sObject is createable or
updateable. If you want to get more information about particular sObjects, like their fields and child relationships, call
describeSObjects() by passing it an array of the sObject type names that you’re interested in obtaining more information
about.

sObject Reference Reuse
An sObject reference can't be reused within a single operation.

Use a different reference. For example, the following code snippet creates an account and contact with a custom field and an event
using two different references:

SObject account = new com.sforce.soap.partner.sobject.wsc.SObject();
account.setType("Account");

71

Obtaining the Partner WSDL FileUsing the Partner WSDL

account.setField("Name","myAccount");
account.setField("XID1__c", "1");
SObject refAcc1 = new com.sforce.soap.partner.sobject.wsc.SObject();
refAcc1.setType("Account");
refAcc1.setField("XID1__c", "1");
SObject refAcc2 = new com.sforce.soap.partner.sobject.wsc.SObject();
refAcc2.setType("Account");
refAcc2.setField("XID1__c", "1");

SObject contact = new com.sforce.soap.partner.sobject.wsc.SObject();
contact.setType("Contact");
contact.setField("LastName", "LName");
contact.setField("XID2__c", "2");
contact.setField("Account", refAcc1);
SObject refCon = new com.sforce.soap.partner.sobject.wsc.SObject();
contact.setType("Contact");
contact.setField("XID2__c", "2");

SObject event = new com.sforce.soap.partner.sobject.wsc.SObject();
contact.setType("Event");
contact.setField("Subject", "myEvent");
contact.setField("ActivityDateTime", Calendar.getInstance());
contact.setField("DurationInMinutes", 60);
contact.setField("Who", refCon);
contact.setField("What", refAcc2);

client.create(new SObject[] { account, contact, event}); // exception thrown here

Any call that takes a parameter of the form sObject[] sObjects is subject to this limitation.

Objects, Fields, and Field Data and the Partner WSDL

The enterprise WSDL file defines all the specific objects (such as Account and Contact) in a Salesforce org. In contrast, the partner WSDL
file defines a single, generic object (sObject) that represents all the objects. For a particular object, its type is defined in the name field
in the returned DescribeSObjectResult.

With the partner WSDL, your client application code handles fields as arrays of name-value pairs that represent the field data. When
referring to the name of an individual field, use the value in its name field of the Field type in the DescribeSObjectResult.

Languages vary in the way they handle name-value pairs and map typed values to the primitive XML data types defined in SOAP
messages. With the enterprise WSDL, the mapping is handled implicitly. With the partner WSDL, however, you manually manage values
and data types when building client applications. Specify the object type before you assign field values. When specifying the value of a
particular field, use a value that is valid for the field (range, format, and data type). Make sure that you understand the mapping between
data types in your programming language and XML primitive data types. See SOAPType for more information.

Queries and the Partner WSDL

When using the query() call with the partner WSDL, consider the following guidelines:

• The queryString parameter is case-insensitive. The API will accept field names in the fieldList using any combination of uppercase
and lowercase letters. However, in the QueryResult, the case of field names (both predefined and custom fields) will match exactly

72

Objects, Fields, and Field Data and the Partner WSDLUsing the Partner WSDL

the value in the name field of the Field type in the DescribeSObjectResult. It is recommended that you use the proper case when
specifying fields in the fieldList.

• For the partner WSDL, the ordering of fields in the QueryResult is determined by the field order in the fieldList, not the field order in
the WSDL file.

• The fieldList cannot contain duplicate field names. For example:

– Invalid (returns an error): "SELECT Firstname, Lastname, Firstname FROM User"

– Valid: "SELECT Firstname, Lastname FROM User"

• The QueryResult always contains all of the fields specified in the fieldList, even if some of the fields contain no data (null). Although
SOAP allows you to omit fields that contain no values in the result set, the API always returns an array containing all fields.

• If you use the partner WSDL, a query that includes ID will return the ID field twice in the SOAP XML response data. Similarly, a query
that does not include ID will return a single null ID field in the SOAP XML response data. For example, a query for SELECT ID,
FirstName, LastName FROM Contact might return a SOAP XML response with records like:

<records xsi:type="sf:sObject" xmlns="urn:partner.soap.sforce.com">
<sf:type>Contact</sf:type>
<sf:Id>0038000000FrjoBQRW</sf:Id>
<sf:Id>0038000000FrjoBQRW</sf:Id>
<sf:FirstName>John</sf:FirstName>
<sf:LastName>Smith</sf:LastName>

</records>

This is expected behavior and something to be aware of if you are accessing the full SOAP XML response data and not using WSC
to access the web service response.

Namespaces in the Partner WSDL

In XML, every tag has a defined namespace. In the enterprise.wsdl, namespaces are handled implicitly. When using API calls
with the partner WSDL, however, you need to explicitly specify the correct namespaces for API calls, objects, and fields, and faults. This
rule applies to predefined and custom objects and fields.

NamespaceFor

urn:partner.soap.sforce.comAPI Calls

urn:sobject.partner.soap.sforce.comsObjects

urn:sobject.partner.soap.sforce.comFields

urn:fault.partner.soap.sforce.comFaults

Package Versions and the Partner WSDL

The partner WSDL is loosely typed. This makes it more flexible for partners who want to integrate with multiple organizations. Default
package versions for API calls provide fallback settings if package versions are not provided by an API call.

The behavior of a package in partner API calls is defined by the latest installed package version if the default value (Not Specified)
is selected for the installed package. This means that behavior of package components, such as an Apex trigger, could change when a
package is upgraded and that change would immediately impact the integration. Subscribers may want to select a specific version for

73

Namespaces in the Partner WSDLUsing the Partner WSDL

an installed package for all partner API calls from client applications to ensure that subsequent installations of package versions do not
affect their existing integrations.

An API client developer should communicate with the administrator of the default partner package version settings if these are two
different roles in your organization and the developer recommends changing the settings. Alternatively, an API client developer can set
the package versions in the PackageVersionHeader SOAP header for the client.

A partner that is developing a package that references another package should always supply version information for the base package
in their partner API calls. This ensures that the extension package is not affected by a component being deprecated in the base package.

The package version information for partner API calls is determined by the first match in the following settings.

1. The PackageVersionHeader SOAP header.

2. An API call from a Visualforce page uses the package versions set for the Visualforce page.

3. The default partner package version settings.

To configure default package versions for API calls with the partner WSDL, see Package Version Settings.

User Interface Themes

EDITIONS

Available in: Salesforce
Classic and earlier

Back in the Winter ’06 release, Salesforce started supporting multiple user interface themes, allowing
you to use different sets of icons and colors for the user interface. But these user interface themes
do not apply when your org is using Lightning Experience.

Two user interface themes match the earlier iterations of Salesforce.

• Theme3—The “Salesforce Classic 2010 user interface theme.” This interface was previously
referred to as “Salesforce” or “new user interface theme.” You might also be familiar with it as
the Salesforce Aloha interface.

• Theme2—The “Salesforce Classic 2005 user interface theme.” This interface was previously referred to as “Salesforce Classic” or the
“classic user interface theme.”

The getUserInfo() call returns a getUserInfoResult object, which includes the userUiSkin property. This property
informs you of the user’s current user interface theme.

Use the describeQuickActions(), describeTabs(), and describeTheme() calls and their return types to get
information on theme icons and colors.

Style sheets are available to mimic the look and feel of the older user interfaces. For more information, see Styling Visualforce Pages in
the Visualforce Developer's Guide. But if you’re planning to switch to Lightning Experience, consider the Lightning Component framework,
our new UI framework. See the “Lightning Components” module in the Develop for Lightning Experience Trailhead trail to learn more.

Examples Using the Partner WSDL

This section includes examples in Java and C# for making API calls using the partner WSDL. Before running these samples, perform the
following steps in the quick start tutorial to get the partner WSDL file and generate the proxy client code for your development environment.

• Step 2: Generate or Obtain the Web Service WSDL

• Step 3: Import the WSDL File Into Your Development Platform

After you generate the proxy client code and set up your development environment, you can start writing your client application. First,
your application needs to log into the Salesforce service using the partner authentication endpoint. After a successful login, you can
execute the sample methods.

74

User Interface ThemesUsing the Partner WSDL

https://trailhead.salesforce.com/module/lex_dev_lc_basics
https://trailhead.salesforce.com/trail/lex_dev

For your convenience, template classes are provided, one in Java and one in C#, that make a login call. You can use them to execute the
sample methods provided later in this section.

Sample template class for Java: This sample prompts the user to enter the username, password, and authentication endpoint. Next,
it logs the user in. For the authentication endpoint URL, pass in the endpoint found in the partner WSDL file.

import com.sforce.soap.partner.PartnerConnection;
import com.sforce.soap.partner.sobject.*;
import com.sforce.soap.partner.*;
import com.sforce.ws.ConnectorConfig;
import com.sforce.ws.ConnectionException;
import com.sforce.soap.partner.Error;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.util.*;

public class PartnerSamples {
PartnerConnection partnerConnection = null;
private static BufferedReader reader =

new BufferedReader(new InputStreamReader(System.in));

public static void main(String[] args) {
PartnerSamples samples = new PartnerSamples();
if (samples.login()) {

// Add calls to the methods in this class.
// For example:
// samples.querySample();

}
}

private String getUserInput(String prompt) {
String result = "";
try {
System.out.print(prompt);
result = reader.readLine();

} catch (IOException ioe) {
ioe.printStackTrace();

}
return result;

}

private boolean login() {
boolean success = false;
String username = getUserInput("Enter username: ");
String password = getUserInput("Enter password: ");
String authEndPoint = getUserInput("Enter auth end point: ");

try {
ConnectorConfig config = new ConnectorConfig();
config.setUsername(username);
config.setPassword(password);

config.setAuthEndpoint(authEndPoint);

75

Examples Using the Partner WSDLUsing the Partner WSDL

config.setTraceFile("traceLogs.txt");
config.setTraceMessage(true);
config.setPrettyPrintXml(true);

partnerConnection = new PartnerConnection(config);

success = true;
} catch (ConnectionException ce) {
ce.printStackTrace();

} catch (FileNotFoundException fnfe) {
fnfe.printStackTrace();

}

return success;
}

//
// Add your methods here.
//

}

Sample template class for C#: This sample prompts the user to enter the username and password. Next, it logs the user in. The project
name for this sample is assumed to be TemplatePartner and the Web reference name sforce. If these values are different for
your project, make sure to change the using directive to appropriate values for your project: using
your_project_name.web_reference_name;.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Web.Services.Protocols;
using System.Collections;
using TemplatePartner.sforce;

namespace TemplatePartner
{

class PartnerSamples
{

private SforceService binding;

static void Main(string[] args)
{

PartnerSamples samples = new PartnerSamples();
if (samples.login())
{
// Add calls to the methods in this class.
// For example:
// samples.querySample();
}

}

private bool login()
{

Console.Write("Enter username: ");

76

Examples Using the Partner WSDLUsing the Partner WSDL

string username = Console.ReadLine();
Console.Write("Enter password: ");
string password = Console.ReadLine();

// Create a service object
binding = new SforceService();

// Timeout after a minute
binding.Timeout = 60000;

// Try logging in
LoginResult lr;
try
{

Console.WriteLine("\nLogging in...\n");
lr = binding.login(username, password);

}

// ApiFault is a proxy stub generated from the WSDL contract when
// the web service was imported
catch (SoapException e)
{

// Write the fault code to the console
Console.WriteLine(e.Code);

// Write the fault message to the console
Console.WriteLine("An unexpected error has occurred: " + e.Message);

// Write the stack trace to the console
Console.WriteLine(e.StackTrace);

// Return False to indicate that the login was not successful
return false;

}

// Check if the password has expired
if (lr.passwordExpired)
{

Console.WriteLine("An error has occurred. Your password has expired.");
return false;

}

// Set the returned service endpoint URL
binding.Url = lr.serverUrl;

// Set the SOAP header with the session ID returned by
// the login result. This will be included in all
// API calls.
binding.SessionHeaderValue = new SessionHeader();
binding.SessionHeaderValue.sessionId = lr.sessionId;

// Return true to indicate that we are logged in, pointed
// at the right URL and have our security token in place.

77

Examples Using the Partner WSDLUsing the Partner WSDL

return true;
}

//
// Add your methods here.
//

}

This partner WSDL samples are:

• Sample query and queryMore Calls

• Sample search Call

• Sample create Call

• Sample update Call

Sample query and queryMore Calls
The following Java and C# examples show usage of the query() and queryMore() calls for the partner WSDL. Each example sets
the batch size of the query to 250 items returned. It then performs a query call to get the first name and last name of all contacts and
iterates through the contact records returned. For each contact, it writes the contact’s first name and last name to the output, or only
the last name if the first name is null. Finally, if there are more items to be returned by the query, as indicated by a QueryResult.done
property value of false, it calls queryMore() to get the next batch of items, and repeats the process until no more records are
returned.

To execute the sample method, you can use the corresponding Java or C# template class provided in Examples Using the Partner WSDL.

Java Example
public void querySample() {

try {
// Set query batch size
partnerConnection.setQueryOptions(250);

// SOQL query to use
String soqlQuery = "SELECT FirstName, LastName FROM Contact";
// Make the query call and get the query results
QueryResult qr = partnerConnection.query(soqlQuery);

boolean done = false;
int loopCount = 0;
// Loop through the batches of returned results
while (!done) {

System.out.println("Records in results set " + loopCount++
+ " - ");

SObject[] records = qr.getRecords();
// Process the query results
for (int i = 0; i < records.length; i++) {

SObject contact = records[i];
Object firstName = contact.getField("FirstName");
Object lastName = contact.getField("LastName");
if (firstName == null) {

System.out.println("Contact " + (i + 1) +

78

Sample query and queryMore CallsUsing the Partner WSDL

": " + lastName
);

} else {
System.out.println("Contact " + (i + 1) + ": " +

firstName + " " + lastName);
}

}
if (qr.isDone()) {

done = true;
} else {

qr = partnerConnection.queryMore(qr.getQueryLocator());
}

}
} catch(ConnectionException ce) {

ce.printStackTrace();
}
System.out.println("\nQuery execution completed.");

}

C# Example
public void querySample()
{

try
{

QueryResult qr = null;
binding.QueryOptionsValue = new sforce.QueryOptions();
binding.QueryOptionsValue.batchSize = 250;
binding.QueryOptionsValue.batchSizeSpecified = true;

qr = binding.query("SELECT FirstName, LastName FROM Contact");

bool done = false;
int loopCount = 0;
while (!done)
{

Console.WriteLine("\nRecords in results set " +
Convert.ToString(loopCount++)

+ " - ");
// Process the query results
for (int i = 0; i < qr.records.Length; i++)
{

sforce.sObject con = qr.records[i];
string fName = con.Any[0].InnerText;
string lName = con.Any[1].InnerText;
if (fName == null)

Console.WriteLine("Contact " + (i + 1) + ": " + lName);
else

Console.WriteLine("Contact " + (i + 1) + ": " + fName
+ " " + lName);

}

if (qr.done)

79

Sample query and queryMore CallsUsing the Partner WSDL

done = true;
else

qr = binding.queryMore(qr.queryLocator);
}

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " + e.Message +
" Stack trace: " + e.StackTrace);

}
Console.WriteLine("\nQuery execution completed.");

}

Sample search Call
The following Java and C# examples show how to use the search() call for the partner WSDL. Each example accepts a phone number
string value that is used in the SOQL query. The search call looks for phone fields that match the passed in phone value in all contacts,
leads, and accounts. Next, the example iterates through the returned search results that contain the matching records, adds them to
arrays, and writes their field values to the console. The record fields returned correspond to the fields specified in the SOQL query for
each record type.

To execute the sample method, you can use the corresponding Java or C# template class provided in Examples Using the Partner WSDL.

Java Example
public void searchSample(String phoneNumber) {

try {
// Example of phoneNumber format: 4155551212
String soslQuery =

"FIND {" + phoneNumber + "} IN Phone FIELDS " +
"RETURNING " +
"Contact(Id, Phone, FirstName, LastName), " +
"Lead(Id, Phone, FirstName, LastName)," +
"Account(Id, Phone, Name)";

// Perform SOSL query
SearchResult sResult = partnerConnection.search(soslQuery);
// Get the records returned by the search result
SearchRecord[] records = sResult.getSearchRecords();
// Create lists of objects to hold search result records
List<SObject> contacts = new ArrayList<SObject>();
List<SObject> leads = new ArrayList<SObject>();
List<SObject> accounts = new ArrayList<SObject>();

// Iterate through the search result records
// and store the records in their corresponding lists
// based on record type.
if (records != null && records.length > 0) {
for (int i = 0; i < records.length; i++){
SObject record = records[i].getRecord();
if (record.getType().toLowerCase().equals("contact")) {
contacts.add(record);

} else if (record.getType().toLowerCase().equals("lead")){

80

Sample search CallUsing the Partner WSDL

leads.add(record);
} else if (record.getType().toLowerCase().equals("account")) {
accounts.add(record);

}
}
// Display the contacts that the search returned
if (contacts.size() > 0) {
System.out.println("Found " + contacts.size() +

" contact(s):");
for (SObject contact : contacts) {
System.out.println(contact.getId() + " - " +

contact.getField("FirstName") + " " +
contact.getField("LastName") + " - " +
contact.getField("Phone")

);
}

}
// Display the leads that the search returned
if (leads.size() > 0) {
System.out.println("Found " + leads.size() +

" lead(s):");
for (SObject lead : leads) {
System.out.println(lead.getId() + " - " +

lead.getField("FirstName") + " " +
lead.getField("LastName") + " - " +
lead.getField("Phone")

);
}

}
// Display the accounts that the search returned
if (accounts.size() > 0) {
System.out.println("Found " +

accounts.size() + " account(s):");
for (SObject account : accounts) {
System.out.println(account.getId() + " - " +

account.getField("Name") + " - " +
account.getField("Phone")

);
}

}
} else {
// The search returned no records
System.out.println("No records were found for the search.");

}
} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

C# Example
public void searchSample(String phoneNumber)
{

81

Sample search CallUsing the Partner WSDL

try
{

// Example of phoneNumber format: 4155551212
String soslQuery =

"FIND {" + phoneNumber + "} IN Phone FIELDS " +
"RETURNING " +
"Contact(Id, Phone, FirstName, LastName), " +
"Lead(Id, Phone, FirstName, LastName)," +
"Account(Id, Phone, Name)";

// Perform SOSL query
SearchResult sResult = binding.search(soslQuery);
// Get the records returned by the search result
SearchRecord[] records = sResult.searchRecords;
// Create lists of objects to hold search result records
ArrayList contacts = new System.Collections.ArrayList();
ArrayList leads = new System.Collections.ArrayList();
ArrayList accounts = new System.Collections.ArrayList();

// Iterate through the search result records
// and store the records in their corresponding lists
// based on record type.
if ((records != null) && (records.Length > 0))
{

for (int i = 0; i < records.Length; i++)
{

sObject record = records[i].record;

if (record.type.ToLower().Equals("contact"))
{

contacts.Add(record);
}
else if (record.type.ToLower().Equals("lead"))
{

leads.Add(record);
}
else if (record.type.ToLower().Equals("account"))
{

accounts.Add(record);
}

}
// Display the contacts that the search returned
if (contacts.Count > 0)
{

Console.WriteLine("Found " + contacts.Count + " contact(s):");
for (int i = 0; i < contacts.Count; i++)
{

sObject c = (sObject)contacts[i];
Console.WriteLine(c.Any[0].InnerText + " - " +

c.Any[2].InnerText + " " +
c.Any[3].InnerText + " - " + c.Any[1].InnerText);

}
}
// Display the leads that the search returned
if (leads.Count > 0)

82

Sample search CallUsing the Partner WSDL

{
Console.WriteLine("Found " + leads.Count + " lead(s):");
for (int i = 0; i < leads.Count; i++)
{

sObject l = (sObject)leads[i];
Console.WriteLine(l.Any[0].InnerText + " - " +

l.Any[2].InnerText + " " +
l.Any[3].InnerText + " - " + l.Any[1].InnerText);

}
}
// Display the accounts that the search returned
if (accounts.Count > 0)
{

Console.WriteLine("Found " + accounts.Count + " account(s):");
for (int i = 0; i < accounts.Count; i++)
{

sObject a = (sObject)accounts[i];
Console.WriteLine(a.Any[0].InnerText + " - " +

a.Any[2].InnerText + " - " +
a.Any[1].InnerText);

}
}

}
else
{

// The search returned no records
Console.WriteLine("No records were found for the search.");

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " + e.Message +
" Stack trace: " + e.StackTrace);

}
}

Sample create Call
The following Java and C# examples show how to use the create() call for the partner WSDL. Each example creates a contact record
with several fields. It iterates through the results of the create call and checks whether the operation was successful or not. If the create
operation was successful, it writes the ID of the contact created to the console. Otherwise, it iterates through the errors and writes details
of each error to the console. In this case, the output of the example is the ID of the new contact.

To execute the sample method, you can use the corresponding Java or C# template class provided in Examples Using the Partner WSDL.

Java Example
public String createSample() {

String result = null;
try {

// Create a new sObject of type Contact
// and fill out its fields.

SObject contact = new SObject();

83

Sample create CallUsing the Partner WSDL

contact.setType("Contact");
contact.setField("FirstName", "Otto");
contact.setField("LastName", "Jespersen");
contact.setField("Salutation", "Professor");
contact.setField("Phone", "(999) 555-1234");
contact.setField("Title", "Philologist");

// Add this sObject to an array
SObject[] contacts = new SObject[1];
contacts[0] = contact;
// Make a create call and pass it the array of sObjects
SaveResult[] results = partnerConnection.create(contacts);

// Iterate through the results list
// and write the ID of the new sObject
// or the errors if the object creation failed.
// In this case, we only have one result
// since we created one contact.
for (int j = 0; j < results.length; j++) {

if (results[j].isSuccess()) {
result = results[j].getId();
System.out.println(

"\nA contact was created with an ID of: " + result
);

} else {
// There were errors during the create call,
// go through the errors array and write
// them to the console
for (int i = 0; i < results[j].getErrors().length; i++) {

Error err = results[j].getErrors()[i];
System.out.println("Errors were found on item " + j);
System.out.println("Error code: " +

err.getStatusCode().toString());
System.out.println("Error message: " + err.getMessage());

}
}

}
} catch (ConnectionException ce) {

ce.printStackTrace();
}
return result;

}

C# Example
public void createSample()
{

try
{

// Create a new sObject of type Contact
// and fill out its fields.
sObject contact = new sforce.sObject();
System.Xml.XmlElement[] contactFields = new System.Xml.XmlElement[6];

84

Sample create CallUsing the Partner WSDL

// Create the contact's fields
System.Xml.XmlDocument doc = new System.Xml.XmlDocument();
contactFields[0] = doc.CreateElement("FirstName");
contactFields[0].InnerText = "Otto";
contactFields[1] = doc.CreateElement("LastName");
contactFields[1].InnerText = "Jespersen";
contactFields[2] = doc.CreateElement("Salutation");
contactFields[2].InnerText = "Professor";
contactFields[3] = doc.CreateElement("Phone");
contactFields[3].InnerText = "(999) 555-1234";
contactFields[4] = doc.CreateElement("Title");
contactFields[4].InnerText = "Philologist";

contact.type = "Contact";
contact.Any = contactFields;

// Add this sObject to an array
sObject[] contactList = new sObject[1];
contactList[0] = contact;

// Make a create call and pass it the array of sObjects
SaveResult[] results = binding.create(contactList);
// Iterate through the results list
// and write the ID of the new sObject
// or the errors if the object creation failed.
// In this case, we only have one result
// since we created one contact.
for (int j = 0; j < results.Length; j++)
{

if (results[j].success)
{

Console.Write("\nA contact was created with an ID of: "
+ results[j].id);

}
else
{

// There were errors during the create call,
// go through the errors array and write
// them to the console
for (int i = 0; i < results[j].errors.Length; i++)
{

Error err = results[j].errors[i];
Console.WriteLine("Errors were found on item " + j.ToString());
Console.WriteLine("Error code is: " + err.statusCode.ToString());
Console.WriteLine("Error message: " + err.message);

}
}

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " + e.Message +
" Stack trace: " + e.StackTrace);

85

Sample create CallUsing the Partner WSDL

}
}

Sample update Call
The following Java and C# examples show how to use the update() call for the Partner WSDL. Each example takes the ID of the
contact to update as an argument. It creates two sObject records of type Contact—one to hold the valid passed in ID and the other has
an invalid ID. Next, it sets a new phone number for the valid contact and null for the last name of the invalid contact. It then makes
the update call and iterates through the results. For a successful update operation, it writes the ID of the contact that got updated. For
a failed update operation, it writes the details of all returned errors to the console. In this case, the output is the ID of the contact that
was successfully updated and an error for the invalid contact update.

To execute the sample method, you can use the corresponding Java or C# template class provided in Examples Using the Partner WSDL.

Java Example
public void updateSample(String id) {
try {

// Create an sObject of type contact
SObject updateContact = new SObject();
updateContact.setType("Contact");

// Set the ID of the contact to update
updateContact.setId(id);
// Set the Phone field with a new value
updateContact.setField("Phone", "(415) 555-1212");

// Create another contact that will cause an error
// because it has an invalid ID.
SObject errorContact = new SObject();
errorContact.setType("Contact");
// Set an invalid ID on purpose
errorContact.setId("SLFKJLFKJ");
// Set the value of LastName to null
errorContact.setFieldsToNull(new String[] {"LastName"});

// Make the update call by passing an array containing
// the two objects.
SaveResult[] saveResults = partnerConnection.update(

new SObject[] {updateContact, errorContact}
);
// Iterate through the results and write the ID of
// the updated contacts to the console, in this case one contact.
// If the result is not successful, write the errors
// to the console. In this case, one item failed to update.
for (int j = 0; j < saveResults.length; j++) {

System.out.println("\nItem: " + j);
if (saveResults[j].isSuccess()) {

System.out.println("Contact with an ID of " +
saveResults[j].getId() + " was updated.");

}
else {

86

Sample update CallUsing the Partner WSDL

// There were errors during the update call,
// go through the errors array and write
// them to the console.
for (int i = 0; i < saveResults[j].getErrors().length; i++) {
Error err = saveResults[j].getErrors()[i];
System.out.println("Errors were found on item " + j);
System.out.println("Error code: " +

err.getStatusCode().toString());
System.out.println("Error message: " + err.getMessage());

}
}

}
} catch (ConnectionException ce) {

ce.printStackTrace();
}

}

For more information about setFieldsToNull (or its equivalent in client tools other than WSC), see fieldsToNull and
Resetting Values to null.

C# Example
public void updateSample(String id) {

try
{

// Create an sObject of type contact
sObject updateContact = new sObject();
updateContact.type = "Contact";

// Set the ID of the contact to update
updateContact.Id = id;
// Set the Phone field to a new value.
// The Phone field needs to be created as an XML element.
System.Xml.XmlDocument doc = new System.Xml.XmlDocument();
System.Xml.XmlElement phoneField = doc.CreateElement("Phone");
phoneField.InnerText = "(415) 555-1212";

// Add the Phone field to the contact
updateContact.Any = new System.Xml.XmlElement[] {phoneField};

// Create another contact that will cause an error
// because it has an invalid ID.
sObject errorContact = new sObject();
errorContact.type = "Contact";
// Set an invalid ID on purpose
errorContact.Id = "SLFKJLFKJ";
// Set the value of LastName to null
errorContact.fieldsToNull = new String[] { "LastName" };

// Make the update call by passing an array containing
// the two objects.
SaveResult[] saveResults = binding.update(

new sObject[] {updateContact, errorContact});
// Iterate through the results and write the ID of

87

Sample update CallUsing the Partner WSDL

// the updated contacts to the console, in this case one contact.
// If the result is not successful, write the errors
// to the console. In this case, one item failed to update.
for (int j = 0; j < saveResults.Length; j++) {

Console.WriteLine("\nItem: " + j);
if (saveResults[j].success)
{

Console.WriteLine("Contact with an ID of " +
saveResults[j].id + " was updated.");

}
else
{

// There were errors during the update call,
// go through the errors array and write
// them to the console.
for (int i = 0; i < saveResults[j].errors.Length; i++) {

Error err = saveResults[j].errors[i];
Console.WriteLine("Errors were found on item " + j.ToString());
Console.WriteLine("Error code: " +

err.statusCode.ToString());
Console.WriteLine("Error message: " + err.message);

}
}

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " + e.Message +
" Stack trace: " + e.StackTrace);

}
}

88

Sample update CallUsing the Partner WSDL

REFERENCE

CHAPTER 8 Apex-Related Calls

The following table lists supported calls in the API in alphabetical order, and provides a brief description
for each. Click a call name to see syntax, usage, and more information for that call.

In this chapter ...

• compileAndTest()
Note: For a list of core calls, see Core Calls, for a list of describe calls, see Describe Calls, and for a
list of utility calls, see Utility Calls.

• compileClasses()

• compileTriggers()

DescriptionCall• executeanonymous()

• runTests()
Compile and test your Apex in a single call.compileAndTest()

Compile your Apex in Developer Edition or sandbox organizations.compileClasses()

Compile your Apex triggers in Developer Edition or sandbox
organizations.

compileTriggers()

Execute a block of Apex.executeanonymous()

Run your Apex unit tests.runTests()

89

compileAndTest()

Compile and test your Apex in a single call.

Syntax
CompileAndTestResult[] = compileAndTest(CompileAndTestRequest request);

Usage
Use this call to both compile and test the Apex you specify with a single call. Production organizations (not a Developer Edition or
Sandbox Edition) must use this call instead of compileClasses() or compileTriggers().

This call supports the DebuggingHeader on page 342 and the SessionHeader on page 356.

All specified tests must pass, otherwise data is not saved to the database. If this call is invoked in a production organization, the
RunTestsRequest property of the CompileAndTestRequest is ignored, and all unit tests defined in the organization are run and must
pass.

Sample Code—Java
Note that the following example sets checkOnly to true so that this class is compiled and tested, but the classes are not saved to
the database.

{
CompileAndTestRequest request;
CompileAndTestResult result = null;

String triggerBody = "trigger t1 on Account (before insert){ " +
" for(Account a:Trigger.new){ " +
" a.description = 't1_UPDATE';}" +
"}";

String testClassBody = "@isTest private class TestT1{" +
" // Test for the trigger" +
" public static testmethod void test1(){" +
" Account a = new Account(name='TEST');" +
" insert(a);" +
" a = [select id,description from Account where id=:a.id];" +
" System.assert(a.description.contains('t1_UPDATE'));" +
" }" +
" // Test for the class" +
" public static testmethod void test2(){" +
" String s = C1.method1();" +
" System.assert(s=='HELLO');" +
" }" +
"}";

String classBody = "public class C1{" +
" public static String s ='HELLO';" +
" public static String method1(){" +

90

compileAndTest()Apex-Related Calls

" return(s);" +
" }" +
"}";

request = new CompileAndTestRequest();

request.setClasses(new String[]{classBody, testClassBody});
request.setTriggers(new String[]{triggerBody});
request.setCheckOnly(true);

try {
result = apexBinding.compileAndTest(request);

} catch (RemoteException e) {
System.out.println("An unexpected error occurred: " + e.getMessage());

}
assert (result.isSuccess());

}

Arguments

DescriptionTypeName

A request that includes the Apex and the values for any fields that need
to be set for this request.

CompileAndTestRequestrequest

Response
CompileAndTestResult

CompileAndTestRequest
The compileAndTest() call contains this object, a request with information about the Apex to be compiled.

A CompileAndTestRequest object has the following properties:

DescriptionTypeName

If set to true, the Apex classes and triggers submitted are not saved to your
organization, whether or not the code successfully compiles and unit tests pass.

booleancheckOnly

Content of the class or classes to be compiled.stringclasses

Name of the class or classes to be deleted.stringdeleteClasses

Name of the trigger or triggers to be deleted.stringdeleteTriggers

Specifies information about the Apex to be tested. If this request is sent in a production
organization, this property is ignored and all unit tests are run for your entire
organization.

RunTestsRequestrunTestsRequest

Content of the trigger or triggers to be compiled.stringtriggers

91

CompileAndTestRequestApex-Related Calls

Note the following about this object:

• This object contains the RunTestsRequest property. If the request is run in a production organization, the property is ignored
and all tests are run.

• If any errors occur during compile, delete, testing, or if the goal of 75% code coverage is missed, no classes or triggers are saved to
your organization. This is the same requirement as Salesforce AppExchange package testing.

• All triggers must have code coverage. If a trigger has no code coverage, no classes or triggers are saved to your organization.

CompileAndTestResult
The compileAndTest() call returns information about the compile and unit test run of the specified Apex, including whether it
succeeded or failed.

A CompileAndTestResult object has the following properties:

DescriptionTypeName

Information about the success or failure of the compileAndTest()
call if classes were being compiled.

CompileClassResultclasses

Information about the success or failure of the compileAndTest()
call if classes were being deleted.

DeleteApexResultdeleteClasses

Information about the success or failure of the compileAndTest()
call if triggers were being deleted.

DeleteApexResultdeleteTriggers

Information about the success or failure of the Apex unit tests, if any were
specified.

RunTestsResultrunTestsResult

If true, all of the classes, triggers, and unit tests specified ran successfully.
If any class, trigger, or unit test failed, the value is false, and details are
reported in the corresponding result object:

booleansuccess

• CompileClassResult

• CompileTriggerResult

• DeleteApexResult

• RunTestsResult

Information about the success or failure of the compileAndTest()
call if triggers were being compiled.

CompileTriggerResulttriggers

CompileClassResult
This object is returned as part of a compileAndTest() or compileClasses() call. It contains information about whether or
not the compile and run of the specified Apex was successful.

A CompileClassResult object has the following properties:

DescriptionTypeName

The CRC (cyclic redundancy check) of the class or trigger file.intbodyCrc

92

CompileAndTestResultApex-Related Calls

DescriptionTypeName

The column number where an error occurred, if one did.intcolumn

An ID is created for each compiled class. The ID is unique within an organization.IDid

The line number where an error occurred, if one did.intline

The name of the class.stringname

The description of the problem if an error occurred.stringproblem

If true, the class or classes compiled successfully. If false, problems are specified
in other properties of this object.

booleansuccess

CompileTriggerResult
This object is returned as part of a compileAndTest() or compileTriggers() call. It contains information about whether or
not the compile and run of the specified Apex was successful.

A CompileTriggerResult object has the following properties:

DescriptionTypeName

The CRC (cyclic redundancy check) of the trigger file.intbodyCrc

The column where an error occurred, if one did.intcolumn

An ID is created for each compiled trigger. The ID is unique within an organization.IDid

The line number where an error occurred, if one did.intline

The name of the trigger.stringname

The description of the problem if an error occurred.stringproblem

If true, all the specified triggers compiled and ran successfully. If the compilation
or execution of any trigger fails, the value is false.

booleansuccess

DeleteApexResult
This object is returned when the compileAndTest() call returns information about the deletion of a class or trigger.

A DeleteApexResult object has the following properties:

DescriptionTypeName

ID of the deleted trigger or class. The ID is unique within an organization.IDid

The description of the problem if an error occurred.stringproblem

If true, all the specified classes or triggers were deleted successfully. If any class or
trigger is not deleted, the value is false.

booleansuccess

93

CompileAndTestResultApex-Related Calls

compileClasses()

Compile your Apex in Developer Edition or sandbox organizations.

Syntax
CompileClassResult[] = compileClasses(string[] classList);

Usage
Use this call to compile Apex classes in Developer Edition or sandbox organizations. Production organizations must use
compileAndTest().

This call supports the DebuggingHeader on page 342 and the SessionHeader on page 356.

Sample Code—Java
public void compileClassesSample() {

String p1 = "public class p1 {\n"
+ "public static Integer var1 = 0;\n"
+ "public static void methodA() {\n"
+ " var1 = 1;\n" + "}\n"
+ "public static void methodB() {\n"
+ " p2.MethodA();\n" + "}\n"
+ "}";

String p2 = "public class p2 {\n"
+ "public static Integer var1 = 0;\n"
+ "public static void methodA() {\n"
+ " var1 = 1;\n" + "}\n"
+ "public static void methodB() {\n"
+ " p1.MethodA();\n" + "}\n"
+ "}";

CompileClassResult[] r = new CompileClassResult[0];
try {

r = apexBinding.compileClasses(new String[]{p1, p2});
} catch (RemoteException e) {

System.out.println("An unexpected error occurred: "
+ e.getMessage());

}
if (!r[0].isSuccess()) {

System.out.println("Couldn't compile class p1 because: "
+ r[0].getProblem());

}
if (!r[1].isSuccess()) {

System.out.println("Couldn't compile class p2 because: "
+ r[1].getProblem());

}
}

94

compileClasses()Apex-Related Calls

Arguments

DescriptionTypeName

A request that includes the Apex classes and the values for any fields that need to be
set for this request.

stringscripts

Response
CompileClassResult

compileTriggers()

Compile your Apex triggers in Developer Edition or sandbox organizations.

Syntax
CompileTriggerResult[] = compileTriggers(string[] triggerList);

Usage
Use this call to compile the specified Apex triggers in your Developer Edition or sandbox organization. Production organizations must
use compileAndTest().

This call supports the DebuggingHeader on page 342 and the SessionHeader on page 356.

Arguments

DescriptionTypeName

A request that includes the Apex trigger or triggers and the values for any fields that
need to be set for this request.

stringscripts

Response
CompileTriggerResult

executeanonymous()

Executes a block of Apex.

Syntax
ExecuteAnonymousResult[] = binding.executeanonymous(string apexcode);

95

compileTriggers()Apex-Related Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/primitive_data_types.htm#i1435116
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/primitive_data_types.htm#i1435116

Usage
Use this call to execute an anonymous block of Apex. This call can be executed from AJAX.

This call supports the API DebuggingHeader on page 342 and SessionHeader on page 356.

If a component in a package with restricted API access issues this call, the request is blocked.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String value that
is too long for the field.

Arguments

DescriptionTypeName

A block of Apex.stringapexcode

Response
ExecuteAnonymousResult[]

ExecuteAnonymousResult
The executeanonymous() call returns information about whether or not the compile and run of the code was successful.

An ExecuteAnonymousResult object has the following properties:

DescriptionTypeName

If compiled is False, this field contains the column number of the point where
the compile failed.

intcolumn

If compiled is False, this field contains a description of the problem that caused
the compile to fail.

stringcompileProblem

If True, the code was successfully compiled. If False, the column, line, and
compileProblem fields are not null.

booleancompiled

If success is False, this field contains the exception message for the failure.stringexceptionMessage

If success is False, this field contains the stack trace for the failure.stringexceptionStackTrace

If compiled is False, this field contains the line number of the point where the
compile failed.

intline

If True, the code was successfully executed. If False, the exceptionMessage
and exceptionStackTrace values are not null.

booleansuccess

runTests()

Run your Apex unit tests.

96

ExecuteAnonymousResultApex-Related Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/primitive_data_types.htm#i1435116

Syntax
RunTestsResult[] = binding.runTests(RunTestsRequest request);

Usage
To facilitate the development of robust, error-free code, Apex supports the creation and execution of unit tests. Unit tests are class
methods that verify whether a particular piece of code is working properly. Unit test methods take no arguments, commit no data to
the database, and send no emails. Such methods are flagged with the @isTest annotation in the method definition. Unit test methods
must be defined in test classes, that is, classes annotated with @isTest. Use this call to run your Apex unit tests.

This call supports the DebuggingHeader on page 342 and the SessionHeader on page 356.

Sample Code—Java
public void runTestsSample() {

String sessionId = "sessionID goes here";
String url = "url goes here";
// Set the Apex stub with session ID received from logging in with the partner API
_SessionHeader sh = new _SessionHeader();
apexBinding.setHeader(

new ApexServiceLocator().getServiceName().getNamespaceURI(),
"SessionHeader", sh);

// Set the URL received from logging in with the partner API to the Apex stub
apexBinding._setProperty(ApexBindingStub.ENDPOINT_ADDRESS_PROPERTY, url);

// Set the debugging header
_DebuggingHeader dh = new _DebuggingHeader();
dh.setDebugLevel(LogType.Profiling);
apexBinding.setHeader(

new ApexServiceLocator().getServiceName().getNamespaceURI(),
"DebuggingHeader", dh);

long start = System.currentTimeMillis();
RunTestsRequest rtr = new RunTestsRequest();
rtr.setAllTests(true);
RunTestsResult res = null;
try {

res = apexBinding.runTests(rtr);
} catch (RemoteException e) {

System.out.println("An unexpected error occurred: " + e.getMessage());
}

System.out.println("Number of tests: " + res.getNumTestsRun());
System.out.println("Number of failures: " + res.getNumFailures());
if (res.getNumFailures() > 0) {

for (RunTestFailure rtf : res.getFailures()) {
System.out.println("Failure: " + (rtf.getNamespace() ==
null ? "" : rtf.getNamespace() + ".")
+ rtf.getName() + "." + rtf.getMethodName() + ": "
+ rtf.getMessage() + "\n" + rtf.getStackTrace());

}

97

runTests()Apex-Related Calls

}
if (res.getCodeCoverage() != null) {

for (CodeCoverageResult ccr : res.getCodeCoverage()) {
System.out.println("Code coverage for " + ccr.getType() +
(ccr.getNamespace() == null ? "" : ccr.getNamespace() + ".")
+ ccr.getName() + ": "
+ ccr.getNumLocationsNotCovered()
+ " locations not covered out of "
+ ccr.getNumLocations());

if (ccr.getNumLocationsNotCovered() > 0) {
for (CodeLocation cl : ccr.getLocationsNotCovered())

System.out.println("\tLine " + cl.getLine());
}

}
}
System.out.println("Finished in " +
(System.currentTimeMillis() - start) + "ms");

}

Arguments

DescriptionTypeName

A request that includes the Apex unit tests and the values for any fields that
need to be set for this request.

RunTestsRequestrequest

Response
RunTestsResult

RunTestsRequest
Specifies information about the Apex code to be tested. RunTestsRequest is part of CompileAndTestRequest, which is the request passed
to the compileAndTest() call. This object is also passed to the Tooling SOAP API call runTests(). You can specify the same
or different classes to be tested and compiled. Since triggers cannot be tested directly, they are not included in this object. Instead, you
must specify a class that calls the trigger.

If the request is sent to a production organization, this request is ignored and all unit tests defined for your organization are run.

The RunTestsRequest object has the following properties:

DescriptionTypeName

If allTests is true, all unit tests defined for your organization are run.booleanallTests

An array of one or more objects.string[]classes

If specified, the namespace that contains the unit tests to be run. Do not use this
property if you specify allTests as true. Also, if you execute compileAndTest()

stringnamespace

98

RunTestsRequestApex-Related Calls

DescriptionTypeName

in a production organization, this property is ignored, and all unit tests defined for
the organization are run.

A mandatory parameter for the Tooling SOAP API call runTests(). To allow all
tests in a run to execute, set maxFailedTests to -1. To stop the test run from

intmaxFailedTests

executing new tests after a given number of tests fail, set maxFailedTests to
an integer value from 0 to 1,000,000. This integer value sets the maximum
allowable test failures. A value of 0 causes the test run to stop if any failure occurs.
A value of 1 causes the test run to stop on the second failure, and so on.

Do not use after version 10.0. For earlier, unsupported releases, the content of the
package to be tested.

string[]packages

Indicates whether to opt out of collecting code coverage information during Apex
test runs. Available in API version 43.0 and later.

booleanskipCodeCoverage

A mandatory parameter for the Tooling SOAP API call runTests(). Specifies
individual test methods in an Apex test class.

TestsNode[]tests

To specify classes or suites instead of a TestsNode[], set tests to null.

Although this property accepts an array, the array can contain only one entry.

TestsNode
Specifies individual test methods in an Apex test class.

DescriptionTypeName

Description

The ID of the Apex class that contains the test methods you want to run.

stringclassId

classId or className is required.

Supported Methods

• getClassId()

• setClassId(new String "<your class ID>")

Description

The name of the Apex class that contains the test methods you want to run.

stringclassName

To run tests from a managed package, include the package’s namespace using
dot notation.

classId or className is required.

Supported Methods

• getClassName()

• setClassName(new String "YourClassName")

99

RunTestsRequestApex-Related Calls

DescriptionTypeName

Description

The test methods you want to run.

string[]testMethods

Required.

Supported Methods

• getTestMethods()

• setTestMethods(new String[] {"testMethod1",
"testMethod2"}))

RunTestsResult
Contains information about the execution of unit tests, including whether unit tests were completed successfully, code coverage results,
and failures.

A RunTestsResult object has the following properties:

DescriptionTypeName

The ID of an ApexLog object that is created at the end of a test run.
The ApexLog object is created if there is an active trace flag on the
user running an Apex test, or on a class or trigger being executed.

stringapexLogId

This field is available in API version 35.0 and later.

An array of one or more CodeCoverageResult objects that contains
the details of the code coverage for the specified unit tests.

CodeCoverageResult[]codeCoverage

An array of one or more code coverage warnings for the test run.
The results include both the total number of lines that could have

CodeCoverageWarning[]codeCoverageWarnings

been executed, as well as the number, line, and column positions
of code that was not executed.

An array of one or more RunTestFailure objects that contain
information about the unit test failures, if there are any.

RunTestFailure[]failures

An array of results from test runs that executed flows. This field is
available in API version 44.0 and later.

FlowCoverageResult on page
103[]

flowCoverage

An array of warnings generated by test runs that executed flows.
This field is available in API version 44.0 and later.

FlowCoverageWarning on page
103[]

flowCoverageWarnings

The number of failures for the unit tests.intnumFailures

The number of unit tests that were run.intnumTestsRun

100

RunTestsResultApex-Related Calls

DescriptionTypeName

An array of one or more RunTestSuccess objects that contain
information about successes, if there are any.

RunTestSuccess[]successes

The total cumulative time spent running tests, in milliseconds. This
can be helpful for performance monitoring.

doubletotalTime

CodeCoverageResult
The RunTestsResult object contains this object. It contains information about whether or not the compile of the specified Apex and run
of the unit tests was successful.

A CodeCoverageResult object has the following properties:

DescriptionTypeName

For each class or trigger tested, for each portion of code tested, this property contains
the DML statement locations, the number of times the code was executed, and the

CodeLocation[]dmlInfo

total cumulative time spent in these calls. This can be helpful for performance
monitoring.

The ID of the CodeLocation. The ID is unique within an organization.IDid

For each class or trigger tested, if any code is not covered, the line and column of the
code not tested, and the number of times the code was executed.

CodeLocation[]locationsNotCovered

For each class or trigger tested, the method invocation locations, the number of times
the code was executed, and the total cumulative time spent in these calls. This can
be helpful for performance monitoring.

CodeLocation[]methodInfo

The name of the class or trigger covered.stringname

The namespace that contained the unit tests, if one is specified.stringnamespace

The total number of code locations.intnumLocations

For each class or trigger tested, the location of SOQL statements in the code, the
number of times this code was executed, and the total cumulative time spent in
these calls. This can be helpful for performance monitoring.

CodeLocation[]soqlInfo

For each class tested, the location of SOSL statements in the code, the number of
times this code was executed, and the total cumulative time spent in these calls. This
can be helpful for performance monitoring.

CodeLocation[]soslInfo

Do not use. In early, unsupported releases, used to specify class or package.stringtype

101

RunTestsResultApex-Related Calls

CodeCoverageWarning
The RunTestsResult object contains this object. It contains information about the Apex class which generated warnings.

This object has the following properties:

DescriptionTypeName

The ID of the class which generated warnings.IDid

The message of the warning generated.stringmessage

The name of the class that generated a warning. If the warning applies to the overall
code coverage, this value is null.

stringname

The namespace that contains the class, if one was specified.stringnamespace

RunTestFailure
The RunTestsResult object returns information about failures during the unit test run.

This object has the following properties:

DescriptionTypeName

The ID of the class which generated failures.IDid

The failure message.stringmessage

The name of the method that failed.stringmethodName

The name of the class that failed.stringname

The namespace that contained the class, if one was specified.stringnamespace

Indicates whether the test method has access to organization data (true) or not
(false).

This field is available in API version 33.0 and later.

booleanseeAllData

The stack trace for the failure.stringstackTrace

The time spent running tests for this failed operation, in milliseconds. This can be
helpful for performance monitoring.

doubletime

Do not use. In early, unsupported releases, used to specify class or package.stringtype

102

RunTestsResultApex-Related Calls

FlowCoverageResult
This object contains information about the flow version and the number of elements executed by the test run. This object is available
in API version 44.0 and later.

DescriptionTypeName

List of elements in the flow version that weren’t executed by the test run.stringelementsNotCovered

The ID of the flow version. The ID is unique within an org.stringflowId

The name of the flow that was executed by the test run.stringflowName

The namespace that contains the flow, if one is specified.stringflowNamespace

The total number of elements in the flow version.intnumElements

The number of elements in the flow version that weren’t executed by the test runintnumElementsNotCovered

The process type of the flow version.FlowProcessType
(enumeration of
type string)

processType

FlowCoverageWarning
This object contains information about the flow version that generated warnings. This object is available in API version 44.0 and later.

DescriptionTypeName

The ID of the flow version that generated the warning.stringflowId

The name of the flow that generated the warning. If the warning applies to the overall
test coverage of flows within your org, this value is null.

stringflowName

The namespace that contains the flow, if one was specified.stringflowNamespace

The message of the warning that was generated.stringmessage

RunTestSuccess
The RunTestsResult object returns information about successes during the unit test run.

This object has the following properties:

DescriptionTypeName

The ID of the class which generated the success.IDid

The name of the method that succeeded.stringmethodName

The name of the class that succeeded.stringname

103

RunTestsResultApex-Related Calls

DescriptionTypeName

The namespace that contained the class, if one was specified.stringnamespace

Indicates whether the test method has access to organization data (true) or not
(false).

This field is available in API version 33.0 and later.

booleanseeAllData

The time spent running tests for this operation. This can be helpful for performance
monitoring.

doubletime

CodeLocation
The RunTestsResult object contains this object in a number of fields.

This object has the following properties:

DescriptionTypeName

The column location of the Apex tested.intcolumn

The line location of the Apex tested.intline

The number of times the Apex was executed in the test run.intnumExecutions

The total cumulative time spent at this location. This can be helpful for performance
monitoring.

doubletime

104

RunTestsResultApex-Related Calls

CHAPTER 9 Core Calls

The following table lists supported calls in the API in alphabetical order, and provides a brief description for each. Click a call name to
see syntax, usage, and more information for that call.

Note: For a list of Apex-related calls, see Apex-Related Calls, for a list of describe calls, see Describe Calls, and for a list of utility
calls, see Utility Calls.

DescriptionCall

Converts a Lead into an Account, Contact, or (optionally) an Opportunity.convertLead()

Adds one or more new individual objects to your organization’s data.create()

Deletes one or more individual objects from your organization’s data.delete()

Deletes objects from your organization’s data using an sObject as a template for what to delete.
All data in a big object matching the values in the sObject templates are deleted.

deleteByExample()

Delete records from the recycle bin immediately.emptyRecycleBin()

Executes a list view’s SOQL query to retrieve data, labels, and actions from a list view.executeListView()

Performs rule-based searches for duplicate records. The input is an array of sObject, each of
which specifies the values to search for and the type of object that supplies the duplicate rules.

findDuplicates()

The output identifies the detected duplicates for each object that supplies the duplicate rules.
findDuplicates() applies the rules to the values to do the search. The output identifies
the detected duplicates for each sObject.

Performs rule-based searches for duplicate records. The input is an array of IDs, each of which
specifies the records for which to search for duplicates. The output identifies the detected

findDuplicatesByIds()

duplicates for each object that supplies the duplicate rules. findDuplicatesByIds()
applies the rules to the record IDs to do the search. The output identifies the detected duplicates
for each ID.

Retrieves the IDs of individual objects of the specified object that have been deleted since the
specified time. For information on IDs, see ID Field Type.

getDeleted()

Retrieves the IDs of individual objects of the specified object that have been updated since
the specified time. For information on IDs, see ID Field Type.

getUpdated()

Ends one or more sessions specified by sessionId.invalidateSessions()

Logs in to the login server and starts a client session.login()

105

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_opportunity.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/field_types.htm#i1435616

DescriptionCall

Ends the session of the logged-in user.logout()

Merges records of the same object type.merge()

Executes quick actions of type create or update.performQuickActions()

Submits an array of approval process instances for approval, or processes an array of approval
process instances to be approved, rejected, or removed.

process()

Executes a query against the specified object and returns data that matches the specified
criteria.

query()

Same as query(), but includes deleted and archived items.queryAll()

Retrieves the next batch of objects from a query.queryMore()

Retrieves one or more objects based on the specified object IDs.retrieve()

Executes a text search in your organization’s data.search()

Undelete records identified with queryAll().undelete()

Updates one or more existing objects in your organization’s data.update()

Creates new objects and updates existing objects; matches on a custom field to determine
the presence of existing objects.

upsert()

Samples

The samples in this section are based on the enterprise WSDL file. They assume that you have already imported the WSDL file and created
a connection. To learn how to do so, see the Quick Start tutorial.

convertLead()

Converts a Lead into an Account, Contact, or (optionally) an Opportunity.

Syntax
LeadConvertResult[] = connection.convertLead(leadConverts LeadConvert[]);

Usage
Use convertLead() to convert a Lead into an Account and Contact, and (optionally) an Opportunity. If appropriate for your business,
you can also use convertLead() to convert a lead to an account and a person account instead of a contact. To convert a Lead, your client
application must be logged in with the “Convert Leads” permission and the “Edit” permission on leads, as well as “Create” and “Edit” on
the Account, Contact, and Opportunity objects.

106

convertLead()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_opportunity.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_opportunity.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_opportunity.htm

This call provides an easy way to convert the information in a qualified lead to a new or updated account, contact, and opportunity. Your
organization can set its own guidelines for determining when a lead is qualified. Typically, a lead can be converted when it becomes a
real opportunity that you want to forecast.

If data is merged into existing account, contact, and opportunity objects, then only empty fields in the target object are
overwritten—existing data (including IDs) aren’t overwritten. The only exception is if your client application sets
overwriteLeadSource to true. In this case, the LeadSource field in the target Contact object will be overwritten with the
contents of the LeadSource field in the source Lead object.

When converting leads, consider the following rules and guidelines:

Field Mappings
The system automatically maps standard lead fields to standard account, contact, and opportunity fields. For custom lead fields, your
Salesforce administrator can specify how they map to custom account, contact, and opportunity fields.

Record Types
If the organization uses record types, the default record type of the new owner is assigned to records created during lead conversion.
For more information about record types, see Salesforce Help .

Picklist Values
The system assigns the default picklist values for the account, contact, and opportunity when mapping any standard lead picklist fields
that are blank. If your organization uses record types, blank values are replaced with the default picklist values of the new record owner.

String Values
Starting with API version 15.0, if you specify a value for a field that contains a string, and the value is too big for the field, the call fails and
an error is returned. In previous versions of the API the value was truncated and the call succeeded. If you wish to keep the old behavior
with versions 15.0 and later, use the AllowFieldTruncationHeader SOAP header.

Errors
If any of the leads fail to convert as part of a bulk operation, the lead conversion is retried for each lead individually.

Automatic Subscriptions for Chatter Feeds
When you convert a lead into a new account, contact, and opportunity, the lead owner is unsubscribed from the lead record’s Chatter
feed. The lead owner, the owner of the generated records, and users that were subscribed to the lead aren’t automatically subscribed
to the generated records, unless they have automatic subscriptions enabled in their Chatter feed settings. They must have automatic
subscriptions enabled to see changes to the account, contact, and opportunity records in their news feed.

A user can subscribe to a record or to another user. Changes to the record and updates from the users are displayed in the Chatter feed
on the user's home page, which is a useful way to stay up-to-date with other users and with changes made to records in Salesforce.
Feeds are available in API version 18.0 and later.

107

convertLead()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm

Basic Steps for Converting Leads
Converting leads involves the following basic steps:

1. The client application determines the IDs of any lead(s) to be converted.

2. Optionally, the client application determines the IDs of any account(s) to merge the lead into. The client application can use SOSL
or SOQL to search for accounts that match the lead name, as in the following example:

select id, name from account where name='CompanyNameOfLeadBeingMerged'

3. Optionally, the client application determines the IDs of contact(s) to merge the lead into. The client application can use SOSL or
SOQL to search for contacts that match the lead contact name, as in the following example:

select id, name from contact where firstName='FirstName' and lastName='LastName' and
accountId = '001...'

4. Optionally, the client application determines whether opportunities should be created from the lead, or the ID of an opportunity to
merge the lead into. The client application can use SOSL or SOQL to search for contacts that match the lead contact name, as in the
following example:

select id, name from opportunity where name='OpportunityNameOfOpportunityBeingMerged'

5. The client application queries the LeadStatus table to obtain the possible converted status options (

SELECT Id, MasterLabel FROM LeadStatus WHERE IsConverted=true

), and then selects a value for the Converted Status.

6. The client application calls convertLead().

7. The client application iterates through the returned result and examines each LeadConvertResult object to determine whether
conversion succeeded for each lead.

8. As an optional best practice, the client application creates tasks in which the WhoId is the ContactId and, if an opportunity is
created, the WhatId is the OpportunityId.

9. Optionally, when converting leads owned by a queue, the owner must be specified. This is because accounts and contacts cannot
be owned by a queue. Even if you are specifying an existing account or contact, you must still specify an owner.

Sample Code—Java
This sample shows how to convert leads. It creates two leads and converts them. Next, it iterates through the lead conversion results
and writes the IDs of the account, contact, and opportunity created for each lead.

public String[] convertLeadRecords() {
String[] result = new String[4];
try {

// Create two leads to convert
Lead[] leads = new Lead[2];
Lead lead = new Lead();
lead.setLastName("Mallard");
lead.setFirstName("Jay");
lead.setCompany("Wingo Ducks");
lead.setPhone("(707) 555-0328");
leads[0] = lead;

108

convertLead()Core Calls

lead = new Lead();
lead.setLastName("Platypus");
lead.setFirstName("Ogden");
lead.setCompany("Denio Water Co.");
lead.setPhone("(775) 555-1245");
leads[1] = lead;
SaveResult[] saveResults = connection.create(leads);

// Create a LeadConvert array to be used
// in the convertLead() call
LeadConvert[] leadsToConvert = new LeadConvert[saveResults.length];

for (int i = 0; i < saveResults.length; ++i) {
if (saveResults[i].isSuccess()) {

System.out
.println("Created new Lead: " + saveResults[i].getId());

leadsToConvert[i] = new LeadConvert();
leadsToConvert[i].setConvertedStatus("Closed - Converted");
leadsToConvert[i].setLeadId(saveResults[i].getId());
result[0] = saveResults[i].getId();

} else {
System.out.println("\nError creating new Lead: "

+ saveResults[i].getErrors()[0].getMessage());
}

}
// Convert the leads and iterate through the results
LeadConvertResult[] lcResults = connection.convertLead(leadsToConvert);
for (int j = 0; j < lcResults.length; ++j) {

if (lcResults[j].isSuccess()) {
System.out.println("Lead converted successfully!");
System.out.println("Account ID: " + lcResults[j].getAccountId());
System.out.println("Contact ID: " + lcResults[j].getContactId());
System.out.println("Opportunity ID: "

+ lcResults[j].getOpportunityId());
} else {

System.out.println("\nError converting new Lead: "
+ lcResults[j].getErrors()[0].getMessage());

}
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
return result;

}

Sample Code—C#
This sample shows how to convert leads. It creates two leads and converts them. Next, it iterates through the lead conversion results
and writes the IDs of the account, contact, and opportunity created for each lead.

public String[] convertLeadRecords()
{

String[] result = new String[4];

109

convertLead()Core Calls

try
{

// Create two leads to convert
Lead[] leads = new Lead[2];
Lead lead = new Lead();
lead.LastName = "Mallard";
lead.FirstName = "Jay";
lead.Company = "Wingo Ducks";
lead.Phone = "(707) 555-0328";
leads[0] = lead;
lead = new Lead();
lead.LastName = "Platypus";
lead.FirstName = "Ogden";
lead.Company = "Denio Water Co.";
lead.Phone = "(775) 555-1245";
leads[1] = lead;
SaveResult[] saveResults = binding.create(leads);

// Create a LeadConvert array to be used
// in the convertLead() call
LeadConvert[] leadsToConvert =

new LeadConvert[saveResults.Length]; ;
for (int i = 0; i < saveResults.Length; ++i)
{

if (saveResults[i].success)
{

Console.WriteLine("Created new Lead: " +
saveResults[i].id);

leadsToConvert[i] = new LeadConvert();
leadsToConvert[i].convertedStatus = "Closed - Converted";
leadsToConvert[i].leadId = saveResults[i].id;
result[0] = saveResults[i].id;

}
else
{

Console.WriteLine("\nError creating new Lead: " +
saveResults[i].errors[0].message);

}
}
// Convert the leads and iterate through the results
LeadConvertResult[] lcResults =

binding.convertLead(leadsToConvert);
for (int j = 0; j < lcResults.Length; ++j)
{

if (lcResults[j].success)
{

Console.WriteLine("Lead converted successfully!");
Console.WriteLine("Account ID: " +

lcResults[j].accountId);
Console.WriteLine("Contact ID: " +

lcResults[j].contactId);
Console.WriteLine("Opportunity ID: " +

lcResults[j].opportunityId);
}

110

convertLead()Core Calls

else
{

Console.WriteLine("\nError converting new Lead: " +
lcResults[j].errors[0].message);

}
}

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
return result;

}

LeadConvert Arguments
This call accepts an array of LeadConvert objects (100 maximum). A LeadConvert object contains the following properties.

DescriptionTypeName

ID of the Account into which the lead will be merged. Required only when
updating an existing account, including person accounts. If no accountID

IDaccountId

is specified, then the API creates a new account. To create a new account,
the client application must be logged in with sufficient access rights. To
merge a lead into an existing account, the client application must be logged
in with read/write access to the specified account. The account name and
other existing data are not overwritten. For information on IDs, see ID Field
Type.

ID of the Contact into which the lead will be merged (this contact must be
associated with the specified accountId, and an accountId must be
specified). Required only when updating an existing contact.

IDcontactId

Important: If you’re converting a lead into a person account, do not
specify the contactId or an error will result. Specify only the
accountId of the person account.

If no contactID is specified, then the API creates a contact that is
implicitly associated with the Account. To create a new contact, the client
application must be logged in with sufficient access rights. To merge a lead
into an existing contact, the client application must be logged in with
read/write access to the specified contact. The contact name and other
existing data aren’t overwritten (unless overwriteLeadSource is set
to true, in which case only the LeadSource field is overwritten).

Valid LeadStatus value for a converted lead. Required. To obtain the list of
possible values, the client application queries the LeadStatus object. For
example:

SELECT Id, MasterLabel
FROM LeadStatus WHERE IsConverted=true

stringconvertedStatus

111

convertLead()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#field_types/i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#field_types/i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm

DescriptionTypeName

Specifies whether to create an Opportunity during lead conversion (false,
the default) or not (true). Set this flag to true only if you don’t want to
create an opportunity from the lead. An opportunity is created by default.

booleandoNotCreateOpportunity

ID of the Lead to convert. Required. For information on IDs, see ID Field Type.IDleadId

The ID of an existing opportunity to relate to the lead. The
opportunityId and opportunityName arguments are mutually

IDopportunityId

exclusive. Specifying a value for both results in an error. If
doNotCreateOpportunity argument is true, then no Opportunity
is created and this field must be left blank; otherwise, an error is returned.

Name of the opportunity to create. If no name is specified, then this value
defaults to the company name of the lead. The maximum length of this field

stringopportunityName

is 80 characters. The opportunityId and opportunityName
arguments are mutually exclusive. Specifying a value for both results in an
error. If doNotCreateOpportunity argument is true, then no
Opportunity is created and this field must be left blank; otherwise, an error
is returned.

Specifies whether to overwrite the LeadSource field on the target Contact
object with the contents of the LeadSource field in the source Lead

booleanoverwriteLeadSource

object (true), or not (false, the default). To set this field to true, the
client application must specify a contactId for the target contact.

Specifies the ID of the person to own any newly created account, contact,
and opportunity. If the client application doesn’t specify this value, then the

IDownerId

owner of the new object will be the owner of the lead. Not applicable when
merging with existing objects—if an ownerId is specified, the API doesn’t
overwrite the ownerId field in an existing account or contact. For
information on IDs, see ID Field Type.

When converting a lead to a business account and a person account instead
of a contact, specifies the ID of the existing person account to convert the
lead to.

IDrelatedPersonAccountId

When converting a lead to a business account and a person account instead
of a contact, specifies the entity record of the new person account to convert
the lead to.

EntityrelatedPersonAccountRecord

Specifies whether to send a notification email to the owner specified in the
ownerId (true) or not (false, the default).

booleansendNotificationEmail

Response
LeadConvertResult[]

112

convertLead()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_opportunity.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#field_types/i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#field_types/i1435616

Fault
UnexpectedErrorFault

SEE ALSO:

API Call Basics

LeadConvertResult
This call returns an array of LeadConvertResult objects. Each element in the LeadConvertResult array corresponds to
the LeadConvert[] array passed as the leadConverts parameter in the convertLead() call. For example, the object returned
in the first index in the LeadConvertResult array matches the object specified in the first index of the LeadConvert[] array. A
LeadConvertResult object has the following properties:

DescriptionTypeName

ID of the new Account (if a new account was specified) or the ID of the account specified when
convertLead() was invoked.

IDaccountId

ID of the new Contact (if a new contact was specified) or the ID of the contact specified when
convertLead() was invoked. For information on IDs, see ID Field Type.

IDcontactId

ID of the converted Lead. For information on IDs, see ID Field Type.IDleadId

ID of the new or existing Opportunity, if one was created or related to the lead when
convertLead() was invoked. For information on IDs, see ID Field Type.

IDopportunityId

ID of the new or existing related Person Account, if one was created or related to the lead when
convertLead() was invoked. For information on IDs, see ID Field Type.

IDrelatedPersonAccountId

Indicates whether the convertLead() call succeeded (true) or not (false) for this object.booleansuccess

If an error occurred during the create() call, an array of one or more Error objects providing the
error code and description.

Error[]errors

create()

[other]: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain
terms to avoid any effect on customer implementations.

Adds one or more new records to your organization’s data.

Syntax
SaveResult[] = connection.create(sObject[] sObjects);

113

LeadConvertResultCore Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_opportunity.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

Usage
Use create() to add one or more records, such as an Account or Contact record, to your organization’s information. The create()
call is analogous to the INSERT statement in SQL.

When creating objects, consider the following rules and guidelines.

Permissions
Your client application must be logged in with sufficient access rights to create records within the specified object. For more information,
see Factors that Affect Data Access.

Special Handling
Certain objects—and certain fields within those objects—require special handling or permissions. For example, you might also need
permissions to access the object’s parent object. Before you attempt to create() a record for a particular object, be sure to read its
description in the Standard Objects.

Createable Fields
Only objects where createable is true can be created via the create() call. To determine whether a given object can be
created, your client application can invoke the describeSObjects()describeSObjects() call on the object and inspect its
createable property.

Automatically Maintained Fields
The API generates unique values for ID fields automatically. For create(), you cannot explicitly specify an ID value in the sObject.
The saveResult[] object contains the ID of each record that was successfully created. For information on IDs, see ID Field Type.

The API populates certain fields automatically, such as CreatedDate, CreatedById, LastModifiedDate,
LastModifiedById, and SystemModstamp. You cannot explicitly specify these values.

Required Fields
For required fields that do not have a preconfigured default value, you must supply a value. For more information, see Required Fields.

Default Values
For some objects, some fields have a default value, such as OwnerID. If you do not specify a value for such fields, the API populates
the fields with the default value. For example, if you do not override OwnerID, then the API populates this field with the user ID
associated with the user as whom your client application is logged in.

• For required fields that do not have a preconfigured default value, you must supply a value.

• For all other fields in the object, if you do not explicitly specify a value, then its value is null (VT_EMPTY).

114

create()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_list.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/required_fields.htm

Referential Integrity
Your client application must conform to the rules of referential integrity. For example, if you are creating a record for an object that is
the child of a parent object, you must supply the foreign key information that links the child to the parent. For example, when creating
a CaseComment, you must supply the valid case ID for the parent Case, and that parent Case must exist in the database.

Valid Data Values
You must supply values that are valid for the field’s data type, such as integers (not alphabetic characters) for integer fields. In your client
application, follow the data formatting rules specified for your programming language and development tool (your development tool
will handle the appropriate mapping of data types in SOAP messages).

String Values
When storing values in string fields, the API trims any leading and trailing whitespace. For example, if the value of a name field is entered
as " ABC Company ", then the value is stored in the database as "ABC Company".

Starting with API version 15.0, if you specify a value for a field that contains a string, and the value is too big for the field, the call fails and
an error is returned. In previous versions of the API the value was truncated and the call succeeded. If you wish to keep the old behavior
with versions 15.0 and later, use the AllowFieldTruncationHeader SOAP header.

Assignment Rules
When creating new Account (accounts fire Territory Management assignment rules), Case, or Lead records, your client application can
set options in the AssignmentRuleHeader to have the case or lead automatically assigned to one or more users based on assignment
rules configured in the Salesforce user interface.

Maximum Number of Records Created
Your client application can add up to 200 records in a single create() call. If a create request exceeds 200 records, then the entire
operation fails.

Rollback on Error
The AllOrNoneHeader header allows you to roll back all changes unless all records are processed successfully. This header is available in
API version 20.0 and later. Allows a call to roll back all changes unless all records are processed successfully.

Automatic Subscriptions for Chatter Feeds
To subscribe to records they create, users must enable the Automatically follow records that I create option in
their personal settings. If users have automatic subscriptions enabled, they automatically follow the records they create and see changes
to those records in their Chatter feed on the Home tab.

A user can subscribe to a record or to another user. Changes to the record and updates from the users are displayed in the Chatter feed
on the user's home page, which is a useful way to stay up-to-date with other users and with changes made to records in Salesforce.
Feeds are available in API version 18.0 and later. The EntitySubscription object represents a subscription of a user following a record or
another user.

115

create()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_casecomment.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_case.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_case.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm

Disabling Feed Notifications
If you're processing a large number of records and don't want to track the changes in various feeds related to the records, use
DisableFeedTrackingHeader. This is especially useful for bulk changes.

Creating Records for Different Object Types
You can create records for multiple object types, including custom objects, in one call with API version 20.0 and later. For example, you
could create a contact and an account in one call. You can create records for up to 10 object types in one call.

Records are saved in the same order that they are entered in the sObjects input array. If you are entering new records that have a
parent-child relationship, the parent record must precede the child record in the sObjects array. For example, if you are creating a
contact that references an account that is also being created in the same call, the account must have a smaller index in the sObjects
array than the contact does. The contact references the account by using an External ID field.

You can't add a record that references another record of the same object type in the same call. For example, the Contact object has a
Reports To field that is a reference to another contact. You can't create two contacts in one call if one contact uses the Reports
To field to reference a second contact in the sObjects array. You can create a contact that references another contact that has been
previously created.

Records for different object types are broken into multiple chunks by Salesforce. A chunk is a subset of the sObjects input array and
each chunk contains records of one object type. Data is committed on a chunk-by-chunk basis. Any Apex triggers related to the records
in a chunk are invoked once per chunk. Consider an sObjects input array containing the following set of records:

account1, account2, contact1, contact2, contact3, case1, account3, account4, contact4

Salesforce splits the records into five chunks:

1. account1, account2

2. contact1, contact2, contact3

3. case1

4. account3, account4

5. contact4

Each call can process up to 10 chunks. If the sObjects array contains more than 10 chunks, you must process the records in more
than one call.

Warning: You can't create records for multiple object types in one call if one of those types is related to a feature in the Setup
area in Salesforce. The only exceptions are the following objects:

• Custom settings objects, which are similar to custom objects. For more information, see “Create Custom Settings” in Salesforce
Help .

• GroupMember

• Group

• User if the UserRoleId field is not being set.

create() and Foreign Keys
You can use external ID fields as a foreign key, which allows you to create a record and relate it to another existing record in a single step
instead of querying the parent record ID first. To do this, set the foreign key field to an instance of the parent sObject that only has the
external ID field specified. This external ID should match the external ID value on the parent record.

116

create()Core Calls

The following Java and C# examples show you how to create an opportunity and relate it to an existing account using a custom external
ID field named MyExtId__c. Each example creates an opportunity, sets the required fields, and then sets the opportunity external
ID field to the account object that has only the external ID field specified. The code then creates the opportunity. Once the opportunity
is created, the account will be its parent.

Java Example

public void createForeignKeySample() {
try {

Opportunity newOpportunity = new Opportunity();
newOpportunity.setName("OpportunityWithFK");
newOpportunity.setStageName("Prospecting");
Calendar dt = connection.getServerTimestamp().getTimestamp();
dt.add(Calendar.DAY_OF_MONTH, 7);
newOpportunity.setCloseDate(dt);

Account parentAccountRef = new Account();
parentAccountRef.setMyExtId__c("SAP1111111");
newOpportunity.setAccount(parentAccountRef);

SaveResult[] results = connection
.create(new SObject[] { newOpportunity });

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

C# Example

public void createForeignKeySample()
{

try
{

Opportunity newOpportunity = new Opportunity();
newOpportunity.Name = "OpportunityWithFK";
newOpportunity.StageName = "Prospecting";
DateTime dt = (DateTime)binding.getServerTimestamp().timestamp;
newOpportunity.CloseDate = dt.AddDays(7);
newOpportunity.CloseDateSpecified = true;

// Create the parent reference.
// Used only for foreign key reference
// and doesn't contain any other fields
Account accountReference = new Account();
accountReference.MyExtId__c = "SAP1111111";
newOpportunity.Account = accountReference;

// Create the account and the opportunity
SaveResult[] results = binding.create(new sObject[] {

newOpportunity });
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

117

create()Core Calls

}
}

Creating Parent and Child Records in a Single Call Using Foreign Keys
You can use external ID fields as foreign keys to create parent and child records of different sObject types in a single call instead of
creating the parent record first, querying its ID, and then creating the child record. To do this:

• Create the child sObject and populate its required fields, and optionally other fields.

• Create the parent reference sObject used only for setting the parent foreign key reference on the child sObject. This sObject has only
the external ID field defined and no other fields set.

• Set the foreign key field of the child sObject to the parent reference sObject you just created.

• Create another parent sObject to be passed to the create() call. This sObject must have the required fields (and optionally other
fields) set in addition to the external ID field.

• Call create() by passing it an array of sObjects to create. The parent sObject must precede the child sObject in the array, that
is, the array index of the parent must be lower than the child’s index.

The parent and child records are records related through a predefined relationship, such as a master-detail or lookup relationship. You
can create related records that are up to 10 levels deep. Also, the related records created in a single call must have different sObject
types. For more information, see Creating Records for Different Object Types.

The following Java and C# examples show you how to create an opportunity with a parent account in the same create() call. Each
example creates an Opportunity sObject and populates some of its fields, then creates two Account objects. The first account is only for
the foreign key relationship, and the second is for the account creation and has the account fields set. Both accounts have the external
ID field, MyExtID__c, set. Next, the sample calls create() by passing it an array of sObjects. The first element in the array is the
parent sObject and the second is the opportunity sObject. The create() call creates the opportunity with its parent account in a
single call. Finally, the sample checks the results of the call and writes the IDs of the created records to the console, or the first error if
record creation fails.

Java Example

public void createForeignKeySample() {
try {

Opportunity newOpportunity = new Opportunity();
newOpportunity.setName("OpportunityWithAccountInsert");
newOpportunity.setStageName("Prospecting");
Calendar dt = connection.getServerTimestamp().getTimestamp();
dt.add(Calendar.DAY_OF_MONTH, 7);
newOpportunity.setCloseDate(dt);

// Create the parent reference.
// Used only for foreign key reference
// and doesn't contain any other fields.
Account accountReference = new Account();
accountReference.setMyExtID__c("SAP111111");
newOpportunity.setAccount(accountReference);

// Create the Account object to insert.
// Same as above but has Name field.
// Used for the create call.
Account parentAccount = new Account();
parentAccount.setName("Hallie");
parentAccount.setMyExtID__c("SAP111111");

118

create()Core Calls

// Create the account and the opportunity.
SaveResult[] results = connection.create(new SObject[] {

parentAccount, newOpportunity });

// Check results.
for (int i = 0; i < results.length; i++) {

if (results[i].isSuccess()) {
System.out.println("Successfully created ID: "

+ results[i].getId());
} else {

System.out.println("Error: could not create sobject "
+ "for array element " + i + ".");

System.out.println(" The error reported was: "
+ results[i].getErrors()[0].getMessage() + "\n");

}
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

C# Example

public void createForeignKeySample()
{

try
{

Opportunity newOpportunity = new Opportunity();
newOpportunity.Name = "OpportunityWithAccountInsert";
newOpportunity.StageName = "Prospecting";
DateTime dt = (DateTime)binding.getServerTimestamp().timestamp;
newOpportunity.CloseDate = dt.AddDays(7);
newOpportunity.CloseDateSpecified = true;

// Create the parent reference.
// Used only for foreign key reference
// and doesn't contain any other fields.
Account accountReference = new Account();
accountReference.MyExtID__c = "SAP111111";
newOpportunity.Account = accountReference;

// Create the Account object to insert.
// Same as above but has Name field.
// Used for the create call.
Account parentAccount = new Account();
parentAccount.Name = "Hallie";
parentAccount.MyExtID__c = "SAP111111";

// Create the account and the opportunity.
SaveResult[] results = binding.create(new sObject[] {
parentAccount, newOpportunity });

// Check results.
for (int i = 0; i < results.Length; i++)

119

create()Core Calls

{
if (results[i].success)
{

Console.WriteLine("Successfully created ID: "
+ results[i].id);

}
else
{

Console.WriteLine("Error: could not create sobject "
+ "for array element " + i + ".");

Console.WriteLine(" The error reported was: "
+ results[i].errors[0].message + "\n");

}
}

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Basic Steps for Creating Records
Creating records involves the following basic steps:

1. Create an sObject for one or more objects. For each record, populate its fields with the data that you want to add.

2. Construct an sObject[] array and populate that array with the objects that you want to create.

3. Call create(), passing in the sObject[] array.

4. Process the results in the saveResult[] object to verify whether the records have been successfully created.

Sample Code—Java
This sample shows how to create records. It creates two Account objects and sets their fields. The Name of the second account isn’t set
so that an error occurs on creation, since Name is a required field. After making the create() call by passing the array containing
the two accounts, the sample iterates over the results and writes the ID of the new account or an error message if the account creation
fails. Finally, the sample returns an array of the new account IDs, which in this case contains only one ID.

public String[] createRecords() {
// Create two accounts
String[] result = new String[2];
Account account1 = new Account();
Account account2 = new Account();

// Set some fields on the account object
account1.setName("The Brick Hut");
account1.setBillingStreet("403 McAdoo St");
account1.setBillingCity("Truth or Consequences");
account1.setBillingState("NM");
account1.setBillingPostalCode("87901");
account1.setBillingCountry("US");

120

create()Core Calls

// Required Name field is not being set on account2,
// so this record should fail during create.
// account2.setName("Camp One Creations");
account2.setBillingStreet("25800 Arnold Dr");
account2.setBillingCity("Sonoma");
account2.setBillingState("CA");
account2.setBillingPostalCode("95476");
account2.setBillingCountry("US");
Account[] accounts = { account1, account2 };

try {
// Call create() to add the accounts
SaveResult[] saveResults = connection.create(accounts);
// Iterate through the results.
// There should be one successful creation
// and one failed creation.
for (int i = 0; i < saveResults.length; i++) {

if (saveResults[i].isSuccess()) {
System.out.println("Successfully created Account ID: "

+ saveResults[i].getId());
result[i] = saveResults[i].getId();

} else {
System.out.println("Error: could not create Account "

+ "for array element " + i + ".");
System.out.println(" The error reported was: "

+ saveResults[i].getErrors()[0].getMessage() + "\n");
result[i] = saveResults[i].getId();

}
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
return result;

}

Sample Code—C#
This sample shows how to create records. It creates two Account objects and sets their fields. The Name of the second account isn’t set
so that an error occurs on creation, since Name is a required field. After making the create() call by passing the array containing
the two accounts, the sample iterates over the results and writes the ID of the new account or an error message if the account creation
fails. Finally, the sample returns an array of the new account IDs, which in this case contains only one ID.

public String[] createRecords()
{

// Create two accounts
String[] result = new String[2];
Account account1 = new Account();
Account account2 = new Account();

// Set some fields on the account object
account1.Name = "The Brick Hut";
account1.BillingStreet = "403 McAdoo St";
account1.BillingCity = "Truth or Consequences";

121

create()Core Calls

account1.BillingState = "NM";
account1.BillingPostalCode = "87901";
account1.BillingCountry = "US";
// Required Name field is not being set on account2,
// so this record should fail during create.
// account2.Name = "Camp One Creations";
account2.BillingStreet = "25800 Arnold Dr";
account2.BillingCity = "Sonoma";
account2.BillingState = "CA";
account2.BillingPostalCode = "95476";
account2.BillingCountry = "US";
Account[] accounts = { account1, account2 };

try
{

// Call create() to add the accounts
SaveResult[] saveResults = binding.create(accounts);
// Iterate through the results.
// There should be one successful creation
// and one failed creation.
for (int i = 0; i < saveResults.Length; i++)
{

if (saveResults[i].success)
{

Console.WriteLine("Successfully created Account ID: " +
saveResults[i].id);

result[i] = saveResults[i].id;
}
else
{

Console.WriteLine("Error: could not create Account " +
"for array element " + i + "."

);
Console.WriteLine(" The error reported was: " +
saveResults[i].errors[0].message + "\n");
result[i] = saveResults[i].id;

}
}

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}

return result;
}

122

create()Core Calls

Arguments

DescriptionTypeName

Array of one or more sObject objects to create().
Limit: 200 sObject values.

sObject[]sObjects

Response
saveResult[]

Faults
InvalidSObjectFault

UnexpectedErrorFault

SEE ALSO:

upsert()

API Call Basics

SaveResult
The create() call returns an array of SaveResult objects. Each element in the SaveResult array corresponds to the sObject[]
array passed as the sObjects parameter in the create() call. For example, the object returned in the first index in the SaveResult
array matches the object specified in the first index of the sObject[] array. A SaveResult object has the following properties:

DescriptionTypeName

ID of the sObject that you attempted to create(). If this field contains a value, then
the object was created successfully. If this field is empty, then the object was not created
and the API returned error information instead.

IDid

Indicates whether the create() call succeeded (true) or not (false) for this object.booleansuccess

If an error occurred during the create() call, an array of one or more Error objects
providing the error code and description.

If your organization has active duplicate rules and a duplicate is detected, the SaveResult
includes an Error with a data type of DuplicateError.

Error[]errors

delete()

Deletes one or more records from your organization’s data.

123

SaveResultCore Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_duplicateerror.htm

Syntax
DeleteResult[] = connection.delete(ID[] ids);

Usage
Use delete() to delete one or more existing records, such as individual accounts or contacts, in your organization’s data. The
delete() call is analogous to the DELETE statement in SQL.

Rules and Guidelines
When deleting objects, consider the following rules and guidelines:

• Your client application must be logged in with sufficient access rights to delete individual objects within the specified object. For
more information, see Factors that Affect Data Access.

• In addition, you might also need permission to access this object’s parent object. For special access requirements, see the object’s
description in Standard Objects.

• To ensure referential integrity, the delete() call supports cascading deletions. If you delete a parent object, you delete its children
automatically, as long as each child object can be deleted. For example, if you delete a Case, the API automatically deletes any
CaseComment, CaseHistory, and CaseSolution objects associated with that case. However, if a CaseComment is not deletable or is
currently being used, then the delete() call on the parent Case will fail.

• Certain objects cannot be deleted via the API. To delete an object via the delete() call, its object must be configured as deletable
(deletable is true) . To determine whether a given object can be deleted, your client application can invoke the
describeSObjects() call on the object and inspect its deletable property.

• You can't delete records for multiple object types in one call if one of those types is related to a feature in the Setup area in Salesforce.
The only exceptions are the following objects:

– Custom settings objects, which are similar to custom objects. For more information, see “Create Custom Settings” in Salesforce
Help .

– GroupMember

– Group

– User

Rollback on Error
The AllOrNoneHeader header allows you to roll back all changes unless all records are processed successfully. This header is available in
API version 20.0 and later. Allows a call to roll back all changes unless all records are processed successfully.

Basic Steps for Deleting Records
Deleting records involves the following basic steps:

1. Determine the ID of each record that you want to delete. For example, you might call query() to retrieve a set of records that you
want to delete based on specific criteria.

2. Construct an ID[] array and populate it with the IDs of each record that you want to delete. You can specify the IDs of different types
of objects in the same call. For example, you could specify the ID for an individual Account and an individual Contact in the same
array. For information on IDs, see ID Field Type.

124

delete()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_list.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_case.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_casecomment.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_casesolution.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_casecomment.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_case.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

3. Call delete(), passing in the ID[] array.

4. Process the results in the DeleteResult[] to verify whether the records have been successfully deleted.

Sample Code—Java
This sample shows how to delete records based on record IDs. The method in this sample accepts an array of IDs, which it passes to the
delete() call and makes the call. It then parses the results and writes the IDs of the deleted records to the console or the first returned
error if the deletion failed.

public void deleteRecords(String[] ids) {
try {

DeleteResult[] deleteResults = connection.delete(ids);
for (int i = 0; i < deleteResults.length; i++) {

DeleteResult deleteResult = deleteResults[i];
if (deleteResult.isSuccess()) {

System.out
.println("Deleted Record ID: " + deleteResult.getId());

} else {
// Handle the errors.
// We just print the first error out for sample purposes.
Error[] errors = deleteResult.getErrors();
if (errors.length > 0) {

System.out.println("Error: could not delete " + "Record ID "
+ deleteResult.getId() + ".");

System.out.println(" The error reported was: ("
+ errors[0].getStatusCode() + ") "
+ errors[0].getMessage() + "\n");

}
}

}
} catch (ConnectionException ce) {

ce.printStackTrace();
}

}

Sample Code—C#
This sample shows how to delete records based on record IDs. The method in this sample accepts an array of IDs, which it passes to the
delete() call and makes the call. It then parses the results and writes the IDs of the deleted records to the console or the first returned
error if the deletion failed.

public void deleteRecords(String[] ids)
{

try
{

DeleteResult[] deleteResults = binding.delete(ids);
for (int i = 0; i < deleteResults.Length; i++)
{

DeleteResult deleteResult = deleteResults[i];
if (deleteResult.success)
{

Console.WriteLine("Deleted Record ID: " + deleteResult.id);

125

delete()Core Calls

}
else
{

// Handle the errors.
// We just print the first error out for sample purposes.
Error[] errors = deleteResult.errors;
if (errors.Length > 0)
{

Console.WriteLine("Error: could not delete " + "Record ID "
+ deleteResult.id + ".");

Console.WriteLine(" The error reported was: ("
+ errors[0].statusCode + ") "
+ errors[0].message + "\n");

}
}

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments

DescriptionTypeName

Array of one or more IDs associated with the objects to delete. In version 7.0 and later, you can
pass a maximum of 200 object IDs to the delete() call. In version 6.0 and earlier, the limit is
2,000.

ID[]ids

Response
DeleteResult[]

Faults
InvalidSObjectFault

UnexpectedErrorFault

SEE ALSO:

API Call Basics

126

delete()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435330

DeleteResult
The delete() call returns an array of DeleteResult objects. Each element in the DeleteResult array corresponds to the
ID[] array passed as the ids parameter in the delete() call. For example, the object returned in the first index in the DeleteResult
array matches the object specified in the first index of the ID[] array.

A DeleteResult object has the following properties:

DescriptionTypeName

ID of an sObject that you attempted to delete. For information on IDs, see ID Field Type.IDid

Indicates whether the delete() call succeeded (true) or not (false) for this object.booleansuccess

If an error occurred during the delete() call, an array of one or more Error objects
providing the error information.

Error[]errors

deleteByExample()

Use deleteByExample() to delete big object data from your org using an sObject as a template for what to delete. All data in a
big object matching the values in the sObject templates are deleted.

Syntax
DeleteByExampleResult[] = connection.deleteByExample(sObject[] sObjects);

Rules and Guidelines
When deleting data, consider the following rules and guidelines:

• Your client application must be logged in with sufficient access rights to delete individual objects within the specified object. For
more information, see Factors that Affect Data Access.

• You can't delete records for multiple object types in one call if one of those types is related to a feature in the Setup area in Salesforce.
The only exceptions are the following objects:

– Custom settings objects, which are similar to custom objects. For more information, see “Create Custom Settings” in the Salesforce
Help.

– GroupMember

– Group

– User

Basic Steps for Deleting Data
Deleting data involves the following basic steps:

1. Define an sObject using all the fields that make up the index of the big object.

2. Specify the values for each field.

3. Call deleteByExample(), passing in the sObject you created.

127

DeleteResultCore Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

4. Process the results in the DeleteByExampleResult[] to verify whether the records have been successfully deleted.

Note: Repeating a successful deleteByExample() operation results in success, even if the data has already been deleted.

Sample Code—Custom Big Objects
This sample shows how to delete records in a custom big object. In this example, Account__c, Game_Platform__c, and
Play_Date__c are part of the custom big object’s index. All rows where Account__c is “001d000000Ky3xIAB”,
Game_Platform__c is “iOS”, and Play_Date__c is “2017-11-28T19:13:36.000z” are deleted.

public static void main(String[] args) {
try{

//Declare an sObject that has the values to delete
sObject[] sObjectsToDelete = new sObject[1];
sObject[] customerBO = new sObject();
customerBO.setType("Customer_Interaction__b");
customerBO.setField("Account__c","001d000000Ky3xIAB");
customerBO.setField("Game_Platform__c","iOS");
customerBO.setField("Play_Date__c","2017-11-28T19:13:36.000z");
sObjectsToDelete[0] = customerBO;

DeleteByExampleResult[] result = connection.deleteByExample(sObjectsToDelete);
}

}

Sample Code—Field Audit Trail
This sample shows how to delete records in FieldHistoryArchive. All rows with the specified criteria are deleted.

public static void main(String[] args) {
try{

//Declare an sObject that has the values to delete
sObject[] sObjectsToDelete = new sObject[2];
sObject[] fieldHistoryArchive_1 = new sObject();
fieldHistoryArchive_1.setType("FieldHistoryArchive");
fieldHistoryArchive_1.setField("FieldHistoryType","Account");
fieldHistoryArchive_1.setField("ParentId","001d000000Ky3xIAB");
fieldHistoryArchive_1.setField("CreatedDate","2017-11-28T19:13:36.000z");
fieldHistoryArchive_1.setField("HistoryId","017D000000ESURXIA5");
sObjectsToDelete[0] = fieldHistoryArchive_1;

sObject[] fieldHistoryArchive_2 = new sObject();
fieldHistoryArchive_2.setType("FieldHistoryArchive");
fieldHistoryArchive_2.setField("FieldHistoryType","Account");
fieldHistoryArchive_2.setField("ParentId","001d000000Ky3xIAB");
fieldHistoryArchive_2.setField("CreatedDate","2017-11-29T19:13:36.000z");
fieldHistoryArchive_2.setField("HistoryId","017D000000ESURMIA5");
sObjectsToDelete[1] = fieldHistoryArchive_2;

DeleteByExampleResult[] result = connection.deleteByExample(sObjectsToDelete);
}

}

128

deleteByExample()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_fieldhistoryarchive.htm

Arguments

DescriptionTypeName

Array of one or more sObjects to use as templates for deletion.sObject[]sObject

Response
DeleteByExampleResult[]

Faults
InvalidSObjectFault

UnexpectedErrorFault

DeleteByExampleResult
The deleteByExample() call returns an array of DeleteByExampleResult objects. Each element in the
DeleteByExampleResult array corresponds to the sObject[] array passed in the deleteByExample() call. For example,
the object returned in the first index in the DeleteByExampleResult array matches the sObject specified in the first index of
the sObject[] array.

A DeleteByExampleResult object has the following properties:

DescriptionTypeName

Details for the sObject that you attempted to delete.sObjectentity

Indicates the number of rows that were deleted.longrowCount

Indicates whether the deleteByExample() call succeeded (true) or not (false)
for this object.

booleansuccess

If an error occurred during the deleteByExample() call, an array of one or more
Error objects providing the error information.

Error[]errors

emptyRecycleBin()

Delete records from the recycle bin immediately.

Syntax
EmptyRecycleBinResult[] = connection.emptyRecycleBin(ID[] ids);

129

DeleteByExampleResultCore Calls

Usage
The Recycle Bin lets you view and restore recently deleted records for 15 days before they are permanently deleted. Your org can have
up to 5,000 records per license in the Recycle Bin at any one time. For example, if your org has five user licenses, 25,000 records can be
stored in the Recycle Bin. If your org reaches its Recycle Bin limit, Salesforce automatically removes the oldest records, as long as they
have been in the recycle bin for at least two hours.

If you know you will be adding a great number of records to the Recycle Bin and you know you won't need to undelete() them,
you may wish to remove them before the Salesforce process deletes records. For example, you can use this call if you are loading a large
number of records for testing, or if you are doing a large number of create()calls followed by delete() calls.

Rules and Guidelines
When emptying recycle bins, consider the following rules and guidelines:

• The logged in user can delete any record that he or she can query in their Recycle Bin, or the recycle bins of any subordinates. If the
logged in user has Modify All Data permission, he or she can query and delete records from any Recycle Bin in the organization.

• Available in version 10.0 and later.

• Maximum number of records is 200.

• Do not include the IDs of any records that will be cascade deleted, or an error will occur.

• Once records are deleted using this call, they cannot be undelete().

• After records are deleted from the Recycle Bin using this call, they can be queried using queryAll() for some time. Typically this
time is 24 hours, but may be shorter or longer.

Sample Code—Java
This sample shows how to empty the Recycle Bin. It accepts an array containing the IDs of the records to remove from the Recycle Bin.
It calls emptyRecycleBin() and passes it the array of IDs. Next, it iterates over the results and writes the IDs of the removed records
or the first error of the failed records to the console.

public void emptyRecycleBin(String[] ids) {
try {

EmptyRecycleBinResult[] emptyRecycleBinResults = connection
.emptyRecycleBin(ids);

for (int i = 0; i < emptyRecycleBinResults.length; i++) {
EmptyRecycleBinResult emptyRecycleBinResult = emptyRecycleBinResults[i];
if (emptyRecycleBinResult.isSuccess()) {

System.out.println("Recycled ID: "
+ emptyRecycleBinResult.getId());

} else {
Error[] errors = emptyRecycleBinResult.getErrors();
if (errors.length > 0) {

System.out
.println("Error code: " + errors[0].getStatusCode());

System.out
.println("Error message: " + errors[0].getMessage());

}
}

}
} catch (ConnectionException ce) {

ce.printStackTrace();

130

emptyRecycleBin()Core Calls

}
}

Sample Code—C#
This sample shows how to empty the Recycle Bin. It accepts an array containing the IDs of the records to remove from the Recycle Bin.
It calls emptyRecycleBin() and passes it the array of IDs. Next, it iterates over the results and writes the IDs of the removed records
or the first error of the failed records to the console.

public void emptyRecycleBin(String[] ids)
{

try
{

EmptyRecycleBinResult[] emptyRecycleBinResults =
binding.emptyRecycleBin(ids);

for (int i = 0; i < emptyRecycleBinResults.Length; i++)
{

EmptyRecycleBinResult emptyRecycleBinResult = emptyRecycleBinResults[i];
if (emptyRecycleBinResult.success)
{

Console.WriteLine("Recycled ID: "
+ emptyRecycleBinResult.id);

}
else
{

Error[] errors = emptyRecycleBinResult.errors;
if (errors.Length > 0)
{

Console.WriteLine("Error code: " + errors[0].statusCode);
Console.WriteLine("Error message: " + errors[0].message);

}
}

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments

DescriptionTypeName

Array of one or more IDs associated with the records to delete from the Recycle Bin.
Maximum number of records is 200.

ID[]ids

131

emptyRecycleBin()Core Calls

Response
EmptyRecycleBinResult

Faults
InvalidSObjectFault

UnexpectedErrorFault

SEE ALSO:

delete()

undelete()

EmptyRecycleBinResult
The emptyRecycleBin() call returns an array of EmptyRecycleBinResult objects. Each element in the array corresponds
to an element in the ID[] array passed as the parameter in the emptyRecycleBin() call. For example, the object returned in the
first index in the EmptyRecycleBinResult array matches the object specified in the first index of the ID[] array.

A EmptyRecycleBinResult object has the following properties:

DescriptionTypeName

ID of an sObject that you attempted to delete from the Recycle Bin. For information about
IDs, see ID Field Type.

IDid

Indicates whether the call succeeded (true) or not (false) for this record.booleanisSuccess

If an error occurred during the call, an array of one or more Error objects providing the
error information.

Error[]errors

executeListView()

Executes a list view’s SOQL query to retrieve data, labels, and actions from a list view.

Syntax
ExecuteListViewResult result = connection.executeListView(ExecuteListViewResult request);

Usage
The executeListView() call takes an ExecuteListViewRequest object, executes the SOQL query for the list view, and
returns the resulting data and presentation information in an ExecuteListViewResult object. This call is available in API version
32.0 and later.

132

EmptyRecycleBinResultCore Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

Sample Code—Java
private void example(ApiProtocol protocol, AppVersion version) throws Exception {

// Get the list results via the list view API
EnterpriseConnection connection =

makeClient(getUserUtil().getUserWithModifyAllData(), AppVersion.VERSION_190,
getName());

ExecuteListViewRequest request = new ExecuteListViewRequest();
request.setSobjectType("Account");
request.setDeveloperNameOrId(listViews[0].getId());
request.setLimit(50000);

com.sforce.soap.enterprise.ExecuteListViewResult result =
connection.executeListView(request);

}

Arguments

DescriptionTypeName

An object that specifies the list view and the limit, offset, and ordering
of the results.

ExecuteListViewRequestrequest

Response
An ExecuteListViewResult object.

ExecuteListViewRequest
Use the ExecuteListViewRequest object with executeListView() to retrieve data, labels, and actions from a list view.

The ExecuteListViewRequest object has the following properties:

DescriptionTypeName

The list view’s ID or fully qualified developer name.stringdeveloperNameOrId

The maximum number of records to return. Default: 25intlimit

The number of records to skip. Default: 0intoffset

The order in which to return the records.ListViewOrderBy[]orderBy

The API name of the sObject for the list view.stringsobjectType

ExecuteListViewResult
Contains list view data that you retrieve programmatically.

133

ExecuteListViewRequestCore Calls

To retrieve an executeListViewResult object, use the executeListView() call. The executeListViewResult
object has the following properties:

DescriptionTypeName

An array of the columns in the list view.ListViewColumn[]columns

The list view’s fully qualified developer name.stringdeveloperName

If true, indicates that all records have been returned.booleandone

The list view’s ID.IDid

The display label of the list view.stringlabel

An array of records that match the list view query.ListViewRecord[]records

The number of records that are returned by the list view query.intsize

ListViewColumn
Contains metadata about a single list view column.

The ListViewColumn object is returned by the describeSoqlListViews() and executeListView() calls. It has
the following properties:

DescriptionTypeName

The localized type-specific label for sorting the column in ascending order. For
example: “A-Z” for a text field, or “Low to High” for a numeric field. Set to null if the
column isn’t sortable.

stringascendingLabel

The localized type-specific label for sorting the column in ascending order. For
example: “Z-A” for a text field, or “High to Low” for a numeric field. Set to null if the
column is not sortable.

stringdescendingLabel

The field name or SOQL field path for the column.stringfieldNameOrPath

If true, specifies that the column is not displayed, and is present only to support
the display of other columns or other client-side logic.

booleanhidden

The localized display label for the column.stringlabel

Whether the column is searchable.booleansearchable

The SOQL SELECT item for the column. The item might differ from the field name
or path, due to display formatting (for example, toLabel for picklists).

stringselectListItem

An enumerated value, one of the following if the column is sortable:orderByDirectionsortDirection

• ascending

• descending

Set to null if the column is not sortable.

The zero-based index that indicates the column’s position within a multilevel sort,
or null if the records are not sorted by the column.

intsortIndex

134

ListViewColumnCore Calls

DescriptionTypeName

Whether the column is sortable, in which case it might be referenced in the
ExecuteListView orderBy parameter.

booleansortable

The column data type.FieldTypetype

ListViewRecord
Represents a single row in a list view.

The ListViewRecord object is a member of the ExecuteListViewResult object and has the following properties:

DescriptionTypeName

The columns and their values for the record. The record data columns are
returned in the same order as metadata and describe columns. For any data

ListViewRecordColumn[]columns

column that’s obtained by using
ExecuteListViewResult.getRecords()[0].getColumns[index],
the corresponding describe column can be obtained with
ExecuteListViewResult.getColumns[index].

ListViewRecordColumn
Represents a single cell in a row from a list view.

The ListViewRecordColumn object is one cell (column) of a row (ListViewRecord) and has the following properties:

DescriptionTypeName

The field name or SOQL field path for the column.stringfieldNameOrPath

The contents of the record for a certain column, localized if appropriate, or null if there’s
no value.

stringvalue

findDuplicates()

Performs rule-based searches for duplicate records. The input is an array of sObject, each of which specifies the values to search for and
the type of object that supplies the duplicate rules. The output identifies the detected duplicates for each object that supplies the
duplicate rules. findDuplicates() applies the rules to the values to do the search. The output identifies the detected duplicates
for each sObject.

Syntax
FindDuplicatesResult[] duplicateResults =

connection.findDuplicates(SObject[] inputSObjectArray);

135

ListViewRecordCore Calls

https://developer.salesforce.com/docs/atlas.en-us.232.0.api_meta.meta/api_meta/meta_field_types.htm#meta_type_fieldtype

Usage
Use findDuplicates() to apply duplicate rules associated with an object to values specified by each sObject. Each sObject also
has a type that corresponds to an object.

findDuplicates() uses the duplicate rules for the object that has the same type as the sObject. For example, if the sObject type
is Account, findDuplicates() uses the duplicate rules associated with the Account object.

Note:

• All the sObject elements in the input array must have the same type, and that type must correspond to an object type that
supports duplicate rules.

• The input array is limited to 50 elements. If you exceed this limit, the SOAP call returns an API Fault Element containing the
following fields:

– ExceptionCode: LIMIT_EXCEEDED

– exceptionMessage: Configuration error: The number of records to check is greater
than the permitted batch size.

For each input sObject, findDuplicates() adds a FindDuplicatesResult object to the output array.

Matching is controlled by the values specified in the sObject. The values can include a record ID, a field map, or both. The specified values
determine the behavior of findDuplicates():

Record ID only
findDuplicates() searches the object defined by the duplicate rule for an existing record that has the same ID. Then it loads
the values from that record, and searches for duplicates based on those values.

Field Map only
findDuplicates() loads the values from the map and searches for duplicates based on those values.

Record ID and Field Map
findDuplicates() searches the object defined by the duplicate rule for an existing record that has the same ID. It loads any
values from that record that aren’t specified in the map, and then loads values from the map. Based on the resulting union of values,
findDuplicates() searches for duplicates.

The output of findDuplicates() is an array of FindDuplicatesResult objects with the same number of elements as the input array,
and in the same order. The output objects encapsulate record IDs for duplicate records, if any. Optionally, the output objects also contain
values from the duplicate records.

Each FindDuplicatesResult element contains a DuplicateResult object. If findDuplicates() doesn't find any duplicates for an
sObject, the duplicateRule field in DuplicateResult contains the name of the duplicate rule that findDuplicates() applied,
but the matchResults array is empty.

If the includeRecordDetails flag in DuplicateRuleHeader is set to false, findDuplicates() only returns the record
IDs of the matching records. Otherwise, findDuplicates() returns all the fields specified in the primary CompactLayout associated
with the target object.

Basic Steps for Using
1. Create one or more sObject objects with a type that corresponds to the object that has the duplicate rules you want to use.

2. In each sObject, specify record IDs or field maps (or both) to compare to records in the object.

3. Set DuplicateRuleHeader to control the output you want.

136

findDuplicates()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_duplicateresult.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api_tooling.meta/api_tooling/tooling_api_objects_compactlayout.htm

Sample
The following Java sample demonstrates how to search for duplicates of a Lead, using the standard Leads duplicate rule.

package wsc;

import com.sforce.soap.partner.*;
import com.sforce.soap.partner.Error;
import com.sforce.soap.partner.sobject.SObject;
import com.sforce.ws.ConnectionException;
import com.sforce.ws.ConnectorConfig;

public class Main {

private static final String USERNAME = "YOUR-USERNAME";
private static final String PASSWORD = "YOUR-PASSWORD&SECURITY-TOKEN";
private static PartnerConnection connection = null;

public static void main(String[] args) throws ConnectionException {

// Create the configuration for the partner connection
ConnectorConfig config = new ConnectorConfig();
config.setUsername(USERNAME);
config.setPassword(PASSWORD);

// Initialize the connection
connection = new PartnerConnection(config);

SObject[] inputSObjectArray = new SObject[1];
// Instantiate an empty Java SObject
SObject searchCriteria = new SObject();
// Set its type to Lead. This tells findDuplicates() to use the duplicate rules
// for Lead
searchCriteria.setType("Lead");
/*
* Set the necessary fields for matching, based on the standard matching rules for

Lead (Search
* help.salesforce.com for "Standard Contact and Lead Matching Rule" to see the rules).

*/
searchCriteria.setField("FirstName", "Marc");
searchCriteria.setField("LastName", "Benioff");
searchCriteria.setField("Company", "Salesforce.com Inc");
searchCriteria.setField("Title", "CEO");
searchCriteria.setField("Email", "ceo@salesforce.com");
// Add the sObject to the input array
inputSObjectArray[0] = searchCriteria;
/*
* By default, findDuplicates() returns only record IDs. To return additional values,

set the second parameter
* to true.
*/
connection.setDuplicateRuleHeader(

/*
* @param allowSave - Not Applicable for this API call

137

findDuplicates()Core Calls

*/
false,
/* @param includeRecordDetails */
false,
/*
* @param runAsCurrentUser - Not Applicable for this API call
*/
false);

// Invoke findDuplicates() to find duplicates based on the information in the
// SObject array
FindDuplicatesResult[] callResults = connection.findDuplicates(inputSObjectArray);

// Iterate through the results
// For each SObject in the input array, get the duplicate results
for (FindDuplicatesResult findDupeResult : callResults) {
// If errors were found for this SObject, print them out
if (!findDupeResult.isSuccess()) {
for (Error findDupError : findDupeResult.getErrors()) {
System.out.println("FindDuplicatesRule errors detected: " +

findDupError.getMessage());
}

} else {
/*
* Get the DuplicateResult object array for the result. Each element in the array

represents the result
* of testing one duplicate rule for the SObject. Process each DuplicateResult.
*/
for (DuplicateResult dupeResult : findDupeResult.getDuplicateResults()) {
System.out.println("Duplicate rule: " + dupeResult.getDuplicateRule());
// Print out the name of the object associated with the duplicate
// rule
System.out.println("Source of this duplicate rule is: " +

dupeResult.getDuplicateRuleEntityType());
for (MatchResult matchResult : dupeResult.getMatchResults()) {
if (!matchResult.isSuccess()) {
for (Error e : matchResult.getErrors()) {
System.out.println("Errors detected: " + e.getMessage());

}
} else {
System.out.println("Matching rule is: " + matchResult.getRule());
System.out.println("Object type for this matching rule is: " +

matchResult.getEntityType());
for (MatchRecord matchRecord : matchResult.getMatchRecords()) {
System.out.println("Duplicate record ID: " +

matchRecord.getRecord().getId());
}

}
}

}
}

}
}

}

138

findDuplicates()Core Calls

Arguments

DescriptionTypeName

Required. A list of sObject objects that contain values you
want to search for.

Array of sObjectsObjects

Response
An array of FindDuplicatesResult objects.

FindDuplicatesResult
Represents the result of a duplicate search for a single sObject in the input array. Because the object associated with the sObject can
have more than one duplicate rule, FindDuplicatesResult contains an array of DuplicateResult objects.

Fields

DescriptionField TypeField Name

The result of each duplicate rule applied by findDuplicates()
to a single sObject.

Array of
DuplicateResult
objects

duplicateResults

Contains an array of errors encountered by findDuplicates().Array of Error
objects

errors

This field is set to true if the findDuplicates() doesn't
encounter any errors.

booleansuccess

Faults
InvalidSObjectFault

UnexpectedErrorFault

InvalidFieldFault

findDuplicatesByIds()

Performs rule-based searches for duplicate records. The input is an array of IDs, each of which specifies the records for which to search
for duplicates. The output identifies the detected duplicates for each object that supplies the duplicate rules.
findDuplicatesByIds() applies the rules to the record IDs to do the search. The output identifies the detected duplicates for
each ID.

139

findDuplicatesByIds()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_duplicateresult.htm

Syntax
FindDuplicatesResult[] duplicateResults =

connection.findDuplicatesByIds(Id[] inputIdArray);

Usage
Use findDuplicatesByIds() to apply duplicate rules associated with an object to records represented by the record IDs.

findDuplicatesByIds() uses the duplicate rules for the object that has the same type as the input record IDs. For example, if
the record ID represents an Account, findDuplicatesByIds() uses the duplicate rules associated with the Account object.

Note:

• All record IDs in the input array must have the same object type, and that type must correspond to an object type that supports
duplicate rules.

• The input array is limited to 50 elements. If you exceed this limit, the SOAP call returns an API Fault Element containing the
following fields:

– ExceptionCode: LIMIT_EXCEEDED

– exceptionMessage: Configuration error: The number of records to check is greater
than the permitted batch size.

For each input ID, findDuplicatesByIds() adds an object to the output array.

Matching is controlled by the values specified by the input record ID. The values can include a record ID only.

findDuplicatesByIds() searches the object defined by the duplicate rule for an existing record that has the same ID. Then it
loads the values from that record, and searches for duplicates based on those values.

The output of findDuplicatesByIds() is an array of objects with the same number of elements as the input array, and in the
same order. The output objects encapsulate record IDs for duplicate records. Optionally, the output objects also contain values from the
duplicate records.

Each element contains a DuplicateResult object. If findDuplicatesByIds() doesn’t find any duplicates for an sObject, the
duplicateRule field in DuplicateResult contains the name of the duplicate rule that findDuplicatesByIds() applied, but
the matchResults array is empty.

If the includeRecordDetails flag in DuplicateRuleHeader is set to false, findDuplicatesByIds() returns only the
record IDs of the matching records. Otherwise, findDuplicatesByIds() returns all the fields specified in the primary
CompactLayout associated with the target object.

Basic Steps for Using
1. Create one or more ID objects that correspond to the object that has the duplicate rules you want to use.

2. Specify record IDs to compare to records in the object.

3. Set DuplicateRuleHeader to control the output you want.

140

findDuplicatesByIds()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_duplicateresult.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api_tooling.meta/api_tooling/tooling_api_objects_compactlayout.htm

Sample
The following Java sample demonstrates how to search for duplicates of a Lead, using the standard Leads duplicate rule.

package wsc;

import com.sforce.soap.partner.*;
import com.sforce.soap.partner.Error;
import com.sforce.soap.partner.sobject.SObject;
import com.sforce.ws.ConnectionException;
import com.sforce.ws.ConnectorConfig;

public class Main {

private static final String USERNAME = "YOUR-USERNAME";
private static final String PASSWORD = "YOUR-PASSWORD&SECURITY-TOKEN";
private static PartnerConnection connection = null;

public static void main(String[] args) throws ConnectionException {

// Create the configuration for the partner connection
ConnectorConfig config = new ConnectorConfig();
config.setUsername(USERNAME);
config.setPassword(PASSWORD);

// Initialize the connection
connection = new PartnerConnection(config);

SObject[] objectsToSearch = new SObject[2];
String[] inputIds = new String[2];
// Instantiate an empty Java SObject
SObject searchCriteria = new SObject();
// Set its type to Lead. This tells findDuplicatesByIds() to use the duplicate rules
// for Lead
searchCriteria.setType("Lead");
/*
* Set the necessary fields for matching, based on the standard matching rules for

Lead
* (Search help.salesforce.com for "Standard Contact and Lead Matching Rule" to see

the
* rules).
*/
searchCriteria.setField("FirstName", "Marc");
searchCriteria.setField("LastName", "Benioff");
searchCriteria.setField("Company", "Salesforce.com Inc");
searchCriteria.setField("Title", "CEO");
searchCriteria.setField("Email", "ceo@salesforce.com");
// Add the sObjects to the input array
objectsToSearch[0] = searchCriteria;
objectsToSearch[1] = searchCriteria;

SaveResult[] saveResults = connection.create(objectsToSearch);

for (int i = 0; i < saveResults.length; ++i) {
if (saveResults[i].isSuccess()) {

141

findDuplicatesByIds()Core Calls

System.out.println("Successfully created ID: " + saveResults[i].getId());
inputIds[i] = saveResults[i].getId();

} else {
System.out.println("Error: could not create SObject.");
System.out.println("The error reported was: " +
saveResults[i].getErrors()[0].getMessage() + "\n");

}
}
/*
* By default, findDuplicatesByIds() returns only record IDs. To return additional

values,
* set the second parameter to true.
*/
connection.setDuplicateRuleHeader(

/*
* @param allowSave - Not Applicable for this API call
*/
false,
/* @param includeRecordDetails */
false,
/*
* @param runAsCurrentUser - Not Applicable for this API call
*/
false);

// Invoke findDuplicatesByIds() to find duplicates based on the information in the
// SObject array
FindDuplicatesResult[] callResults = connection.findDuplicatesByIds(inputIds);

// Iterate through the results
/* For each Id in the input array, get the duplicate results. There could be more

matches
* depending on the data in the organization.
*/
for (FindDuplicatesResult findDupeResult : callResults) {
// If errors were found for this Id, print them out
if (!findDupeResult.isSuccess()) {
for (Error findDupError : findDupeResult.getErrors()) {
System.out.println("FindDuplicatesRule errors detected: " +

findDupError.getMessage());
}

} else {
/*
* Get the DuplicateResult object array for the result. Each element in the array

represents
* the result of testing one duplicate rule for the Id. Process each DuplicateResult.

*/
for (DuplicateResult dupeResult : findDupeResult.getDuplicateResults()) {
System.out.println("Duplicate rule: " + dupeResult.getDuplicateRule());
// Print out the name of the object associated with the duplicate
// rule
System.out.println("Source of this duplicate rule is: " +
dupeResult.getDuplicateRuleEntityType());

142

findDuplicatesByIds()Core Calls

for (MatchResult matchResult : dupeResult.getMatchResults()) {
if (!matchResult.isSuccess()) {
for (Error e : matchResult.getErrors()) {
System.out.println("Errors detected: " + e.getMessage());

}
} else {
System.out.println("Matching rule is: " + matchResult.getRule());
System.out.println("Object type for this matching rule is: " +

matchResult.getEntityType());
for (MatchRecord matchRecord : matchResult.getMatchRecords()) {
System.out.println("Duplicate record ID: " +

matchRecord.getRecord().getId());
}

}
}

}
}

}
}

}

Arguments

DescriptionTypeName

Required. A list of IDs that contain values you want to search
for.

Array of IDIDs

Response
An array of FindDuplicatesResult objects.

FindDuplicatesResult
Represents the result of a duplicate search for a single ID in the input array. Because the object associated with the sObject can have
more than one duplicate rule, FindDuplicatesResult contains an array of DuplicateResult objects.

Fields

DescriptionField TypeField Name

The result of each duplicate rule applied by
findDuplicatesByIds() to a single sObject.

Array of
DuplicateResult
objects

duplicateResults

Contains an array of errors encountered by
findDuplicatesByIds().

Array of Error
objects

errors

143

findDuplicatesByIds()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_duplicateresult.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_duplicateresult.htm

DescriptionField TypeField Name

This field is set to true if findDuplicatesByIds() doesn’t
encounter any errors.

booleansuccess

Faults
InvalidSObjectFault

UnexpectedErrorFault

InvalidFieldFault

getDeleted()

Retrieves the list of individual records that have been deleted within the given timespan for the specified object.

Syntax
GetDeletedResult = connection.getDeleted(string sObjectType, dateTime startDate, dateTime
EndDate);

Usage
Use getDeleted() for data replication applications to retrieve a list of records that have been deleted from your organization’s data
within the specified timespan. The getDeleted() call retrieves a GetDeletedResult object that contains an array of DeletedRecord
objects containing the ID of each deleted record and the date/time (Coordinated Universal Time (UTC) time zone) on which it was
deleted. Be sure to read Data Replication before using getDeleted() in your client applications. (For information on IDs, see ID Field
Type.)

As of release 8.0, the getDeleted() call respects the user’s sharing model.

Rules and Guidelines
When replicating deleted records, consider the following rules and guidelines:

• The specified startDate must chronologically precede the specified endDate value by more than one minute. The specified
startDate can’t be the same value as, or later than, the specified endDate value. Otherwise, the API returns an
INVALID_REPLICATION_DATE error.

• Records are returned only if the user has access to them.

• Results are returned for no more than 15 days previous to the day the call is executed (or earlier if an administrator has purged the
Recycle Bin). If the purge has been performed before your getDeleted() call is executed, an INVALID_REPLICATION_DATE
error is returned.

• If latestDateCovered is less than endDate, the call fails, returning an INVALID_REPLICATION_DATE error with the value of
latestDateCovered.

• Deleted records are written to a delete log, which getDeleted() accesses. A background process that runs every two hours
purges records that have been in an organization's delete log for more than two hours if the number of records is above a certain

144

getDeleted()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

limit. Starting with the oldest records, the process purges delete log entries until the delete log is back below the limit. This is done
to protect Salesforce from performance issues related to massive delete logs. The limit is calculated using this formula:

5000 * number of licenses in the organization

For example, an organization with 1,000 licenses could have up to 5,000,000 (five million) records in the delete log before any purging
took place. If purging has been performed before your getDeleted() call is executed, an INVALID_REPLICATION_DATE
error is returned. If you get this exception, you should do a full pull of the table.

• If you delete a large number of records, your data replication should run more frequently than every two hours to ensure all records
are returned by getDeleted().

• Client applications typically poll for changed data periodically. For important polling considerations, see Polling for Changes.

• Records for certain objects can’t be replicated via the API. To replicate a record via the getDeleted() call, its object must be
configured as replicateable (replicateable is true). To determine whether a given object can be replicated, your client
application can invoke the describeSObjects() call on the object and inspect its replicateable property.

• Development tools differ in the way that they handle time data. Some development tools report the local time, while others report
only the Coordinated Universal Time (UTC) time. To determine how your development tool handles time values, refer to its
documentation.

• If you call getDeleted() for a history object, the call returns the records deleted during the given date range for all history
objects, not only the history object you specified. For example, if you call getDeleted() for AccountHistory, you’ll get records
deleted during the given date range for AccountHistory, ContactHistorfy, and so on. However, getDeleted() calls on
OpportunityHistory return only deleted OpportunityHistory records, not other associated deleted history objects.

Basic Steps for Replicating Deleted Records
You can replicate deleted records using the following basic steps for each object:

1. Optionally, determine whether the structure of the object has changed since the last replication request, as described in Checking
for Structural Changes in the Object.

2. Call getDeleted(), passing in the object and the relevant time span for deleted records.

3. In the DeleteResult object, iterate through the returned array of DeletedRecord objects containing the ID of each deleted
record and the date on which it was deleted (Coordinated Universal Time (UTC) time zone).

4. Take the appropriate action on the local data to remove the deleted records or flag as deleted.

5. Optionally, save the request time span for future reference, using the value of latestDateCovered.

A client application likely performs other tasks associated with data replication operations. For example, if an opportunity is closed, a
client application might run a new revenue report. Similarly, if a task is completed, the process might log this in another system.

Sample Code—Java
This sample calls getDeleted() to get all accounts that were deleted in the last 60 minutes. It then writes the ID and the deleted
date of each returned account to the console.

public void getDeletedRecords() {
try {

GregorianCalendar endTime = (GregorianCalendar)
connection.getServerTimestamp().getTimestamp();

GregorianCalendar startTime = (GregorianCalendar) endTime.clone();
// Subtract 60 minutes from the server time so that we have
// a valid time frame.

145

getDeleted()Core Calls

startTime.add(GregorianCalendar.MINUTE, -60);
System.out.println("Checking deletes at or after: "

+ startTime.getTime().toString());

// Get records deleted during the specified time frame.
GetDeletedResult gdResult = connection.getDeleted("Account",

startTime, endTime);

// Check the number of records contained in the results,
// to check if something was deleted in the 60 minute span.
DeletedRecord[] deletedRecords = gdResult.getDeletedRecords();
if (deletedRecords != null && deletedRecords.length > 0) {

for (int i = 0; i < deletedRecords.length; i++) {
DeletedRecord dr = deletedRecords[i];
System.out.println(dr.getId() + " was deleted on "

+ dr.getDeletedDate().getTime().toString());
}

} else {
System.out.println("No deletions of Account records in "

+ "the last 60 minutes.");
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Sample Code—C#
This sample calls getDeleted() to get all accounts that were deleted in the last 60 minutes. It then writes the ID and the deleted
date of each returned account to the console.

public void getDeletedRecords()
{

try
{

DateTime endTime = binding.getServerTimestamp().timestamp;
// Subtract 60 minutes from the server time so that we have
// a valid time frame.
DateTime startTime = endTime.AddMinutes(-60);
Console.WriteLine("Checking deletes at or after: "

+ startTime.ToLocalTime().ToString());

// Get records deleted during the specified time frame.
GetDeletedResult gdResult = binding.getDeleted("Account",

startTime, endTime);

// Check the number of records contained in the results,
// to check if something was deleted in the 60 minute span.
DeletedRecord[] deletedRecords = gdResult.deletedRecords;
if (deletedRecords != null && deletedRecords.Length > 0)
{

for (int i = 0; i < deletedRecords.Length; i++)
{

146

getDeleted()Core Calls

DeletedRecord dr = deletedRecords[i];
Console.WriteLine(dr.id + " was deleted on "

+ dr.deletedDate.ToLocalTime().ToString());
}

}
else
{

Console.WriteLine("No deletions of Account records in "
+ "the last 60 minutes.");

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments

DescriptionTypeName

Object type. The specified value must be a valid object for your organization. See
sObject.

stringsObjectTypeEntityType

Starting date/time (Coordinated Universal Time (UTC)—not local— timezone) of the
timespan for which to retrieve the data. The API ignores the seconds portion of the
specified dateTime value (for example, 12:30:15 is interpreted as 12:30:00 UTC).

dateTimestartDate

Ending date/time (Coordinated Universal Time (UTC)—not local— timezone) of the
timespan for which to retrieve the data. The API ignores the seconds portion of the
specified dateTime value (for example, 12:35:15 is interpreted as 12:35:00 UTC).

dateTimeendDate

Limits
When a getDeleted() call returns too many results, the exception EXCEEDED_ID_LIMIT is returned in the response. See API Call
Limits for the number of records that can be returned.

Response
GetDeletedResult

Faults
InvalidSObjectFault

147

getDeleted()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/primitive_data_types.htm#i1435039
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/primitive_data_types.htm#i1435039
https://developer.salesforce.com/docs/atlas.en-us.238.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_apicalls.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_apicalls.htm

UnexpectedErrorFault

SEE ALSO:

Data Replication

API Call Basics

GetDeletedResult
The getDeleted() call returns a GetDeletedResult object that contains an array of DeletedRecord records and two
properties:

DescriptionTypeName

For the object type of the getDeleted() call, the timestamp (Coordinated
Universal Time (UTC)—not local— timezone) of the last physically deleted object.

dateTimeearliestDateAvailable

If this value is less than endDate, the call will fail, and you should resynch your
data before performing another replication.

Array of the deleted records which satisfy the start and end dates specified in the
getDeleted() call.

deletedRecords=deletedRecords[]

The timestamp (Coordinated Universal Time (UTC)—not local— time zone) of the
last date covered in the getDeleted() call. If there is a value, it is less than or

dateTimelatestDateCovered

equal to endDate. A value here indicates that, for safety, you should use this
value for the startDate of your next call to capture the changes that started
after this date but did not complete before endDate and were, therefore, not
returned in the previous call.

deletedRecords
The GetDeletedResult contains and array of deletedRecords, which contain the following properties:

DescriptionTypeName

Date and time (Coordinated Universal Time (UTC)—not local—timezone) when
this record was deleted. This information is obtained using the
SystemModstamp system field if available.

dateTimedeletedDate

ID of an sObject that has been deleted.IDid

getUpdated()

Retrieves the list of individual records that have been updated (added or changed) within the given timespan for the specified object.

148

GetDeletedResultCore Calls

Syntax
GetUpdatedResult[] = connection.getUpdated(string sObjectType, dateTime startDate, dateTime
EndDate);

Usage
Use getUpdated() for data replication applications to retrieve a set of IDs for objects of the specified object that have been created
or updated within the specified timespan. The getUpdated() call retrieves an array of GetUpdatedResult objects containing
the ID of each created or updated object and the date/time (Coordinated Universal Time (UTC) time zone) on which it was created or
updated, respectively. Be sure to read Data Replication before using getUpdated() in your client application.

Note: The getUpdated() call retrieves the IDs only for objects to which the logged-in user has access.

Rules and Guidelines
When replicating created and updated objects, consider the following rules and guidelines:

• The specified startDate must chronologically precede the specified endDate value. The specified startDate cannot be
the same value as, or later than, the specified endDate value. Otherwise, the API returns an INVALID_REPLICATION_DATE
error.

• Results are returned for no more than 30 days previous to the day the call is executed.

• Client applications typically poll for changed data periodically. For important polling considerations, see Polling for Changes.

• Your client application can replicate any objects to which it has sufficient permissions. For example, to replicate all data for your
organization, your client application must be logged in with “View All Data” access rights to the specified object. Similarly, the objects
must be within your sharing rules. For more information, see Factors that Affect Data Access.

• Certain objects cannot be replicated via the API. To replicate an object via the getUpdated() call, its object must be configured
as replicateable (replicateable is true). To determine whether a given object can be replicated, your client application can
invoke the describeSObjects() call on the object and inspect its replicateable property.

• Certain objects cannot be deleted, such as Group, User, Contract, or Product2 objects. However, if instances of these objects are no
longer visible in the Salesforce user interface, they may have been rendered inactive so that only users with administrative access
can see them. To determine whether a missing object instance has been made inactive, your client application can call
getUpdated() and check the object’s active flag.

• Development tools differ in the way that they handle time data. Some development tools report the local time, while others report
only the Coordinated Universal Time (UTC) time. To determine how your development tool handles time values, refer to its
documentation.

Basic Steps for Replicating Updated Objects
Replicating objects involves the following basic steps for each object that you want to replicate:

1. Optionally, the client application determines whether the structure of the object has changed since the last replication request, as
described in Checking for Structural Changes in the Object.

2. Call getUpdated(), passing in the object and timespan for which to retrieve data.

3. Iterate through the returned array of IDs. For each ID element in the array, call retrieve() to obtain the latest information you
want from the associated object. Your client application must then take the appropriate action on the local data, such as inserting
new rows or updating existing ones with the latest information.

149

getUpdated()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_group.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contract.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_product2.htm

4. Optionally, the client application saves the request timestamp for future reference.

A client application likely performs other tasks associated with data replication operations. For example, if an opportunity were to become
closed, a client application might run a new revenue report. Similarly, if a task were completed, the process might log this somehow in
another system.

Sample Code—Java
This sample gets the accounts that were updated in the last 60 minutes and writes their IDs to the console.

public void getUpdatedRecords() {
try {

GregorianCalendar endTime = (GregorianCalendar) connection
.getServerTimestamp().getTimestamp();

GregorianCalendar startTime = (GregorianCalendar) endTime.clone();
// Subtract 60 minutes from the server time so that we have
// a valid time frame.
startTime.add(GregorianCalendar.MINUTE, -60);
System.out.println("Checking updates as of: "

+ startTime.getTime().toString());

// Get the updated accounts within the specified time frame
GetUpdatedResult ur = connection.getUpdated("Account", startTime,

endTime);
System.out.println("GetUpdateResult: " + ur.getIds().length);

// Write the results
if (ur.getIds() != null && ur.getIds().length > 0) {

for (int i = 0; i < ur.getIds().length; i++) {
System.out.println(ur.getIds()[i] + " was updated between "

+ startTime.getTime().toString() + " and "
+ endTime.getTime().toString());

}
} else {

System.out.println("No updates to accounts in "
+ "the last 60 minutes.");

}
} catch (ConnectionException ce) {

ce.printStackTrace();
}

}

Sample Code—C#
This sample gets the accounts that were updated in the last 60 minutes and writes their IDs to the console.

public void getUpdatedRecords()
{

try
{

DateTime endTime = binding.getServerTimestamp().timestamp;
// Subtract 60 minutes from the server time so that we have
// a valid time frame.

150

getUpdated()Core Calls

DateTime startTime = endTime.AddMinutes(-60);
Console.WriteLine("Checking updates as of: "

+ startTime.ToLocalTime().ToString());

// Get the updated accounts within the specified time frame
GetUpdatedResult ur = binding.getUpdated("Account", startTime,

endTime);
Console.WriteLine("GetUpdateResult: " + ur.ids.Length);

// Write the results
if (ur.ids != null && ur.ids.Length > 0)
{

for (int i = 0; i < ur.ids.Length; i++)
{

Console.WriteLine(ur.ids[i] + " was updated between "
+ startTime.ToLocalTime().ToString() + " and "
+ endTime.ToLocalTime().ToString());

}
}
else
{

Console.WriteLine("No updates to accounts in "
+ "the last 60 minutes.");

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments

DescriptionTypeName

Object type. The specified value must be a valid object for your organization. For a list
of standard objects, see Standard Objects.

stringsObjectTypeEntityType

Starting date/time (Coordinated Universal Time (UTC) time zone—not local—
timezone) of the timespan for which to retrieve the data. The API ignores the seconds

dateTimestartDate

portion of the specified dateTime value (for example, 12:30:15 is interpreted as 12:30:00
UTC).

Ending date/time (Coordinated Universal Time (UTC) time zone—not local— timezone)
of the timespan for which to retrieve the data. The API ignores the seconds portion of
the specified dateTime value (for example, 12:35:15 is interpreted as 12:35:00 UTC).

dateTimeendDate

Important: There is a limit of 600,000 IDs in the result GetUpdatedResult[]. If your getUpdated() call returns more than
600,000 IDs, an exception EXCEEDED_ID_LIMIT is returned. You can correct the error by choosing start and end dates that are
closer together.

151

getUpdated()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_list.htm

Response
GetUpdatedResult[]

Faults
InvalidSObjectFault

UnexpectedErrorFault

SEE ALSO:

Data Replication

API Call Basics

GetUpdatedResult
The getUpdated() call returns a GetUpdatedResult object that contains information about each record that was inserted or
updated within the given timespan. An GetUpdatedResult object has the following properties:

DescriptionTypeName

Array of IDs of each object that has been updated.IDid[]

The timestamp (Coordinated Universal Time (UTC)—not local— time zone) of the last
date covered in the getUpdated() call. If there is a value, it is less than or equal to

dateTimelatestDateCovered

endDate. A value here indicates that, for safety, you should use this value for the
startDate of your next call to capture the changes that started after this date but
did not complete before the endDate and were, therefore, not returned in the previous
call.

Note: If Salesforce executes a long-running transaction on your instance, the
value in this field is the start time of that long-running transaction until it
completes. This is because a long-running transaction might affect your user data
(for example, batch processing).

invalidateSessions()

Ends one or more sessions specified by a sessionId.

Syntax
InvalidateSessionsResult = connection.invalidateSessions(string[] sessionIds);

Usage
Use this call to end one or more sessions.

152

GetUpdatedResultCore Calls

You can also use logout() to end just one session, the session of the logged-in user.

Sample Code—Java
This sample invalidates a set of sessions. The method in this sample takes an array of session IDs passed in as String values. The method
then calls invalidateSessions() with this array and then checks the results for any errors.

public void invalidateSessionsSample(String[] sessionIds) {
try {

InvalidateSessionsResult[] results;
results = connection.invalidateSessions(sessionIds);
for (InvalidateSessionsResult result : results) {

// Check results for errors
if (!result.isSuccess()) {

if (result.getErrors().length > 0) {
System.out.println("Status code: "

+ result.getErrors()[0].getStatusCode());
System.out.println("Error message: "

+ result.getErrors()[0].getMessage());
}

} else {
System.out.println("Success.");

}
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Sample Code—C#
This sample invalidates a set of sessions. The method in this sample takes an array of session IDs passed in as String values. The method
then calls invalidateSessions() with this array and then checks the results for any errors.

public void invalidateSessionsSample(string[] sessionIds)
{

try
{

InvalidateSessionsResult[] results;
results = binding.invalidateSessions(sessionIds);
foreach (InvalidateSessionsResult result in results)
{

// Check results for errors
if (!result.success)
{

if (result.errors.Length > 0)
{

Console.WriteLine("Status code: " +
result.errors[0].statusCode);

Console.WriteLine("Error message: " +
result.errors[0].message);

}
}

153

invalidateSessions()Core Calls

else
{

Console.WriteLine("Success.");
}

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments

DescriptionTypeName

One or more sessionId strings. Limit 200. You can obtain your sessionId from the
SessionHeader.

string[]sessionIds

Response
InvalidateSessionsResult[]

Faults
UnexpectedErrorFault

InvalidateSessionsResult
The invalidateSessions() call returns an array of LogoutResult objects. Each object has the following properties:

DescriptionTypeName

Indicates whether the session was successfully terminated (true) or not (false).booleansuccess

If an error occurred during the call, an array of one or more Error objects. Each object contains
an error code and description.

Error[]errors

login()

Logs in to the login server and starts a client session.

Note: login() calls count toward your login rate limit.

154

InvalidateSessionsResultCore Calls

Syntax
LoginResult = connection.login(string username, string password);

Usage
Use the login() call to log in to the login server and start a client session. The client app logs in and obtains a sessionId and
server URL before making other API calls.

When a client app invokes the login() call, it passes in a username and password as credentials. Upon invocation, the API authenticates
the credentials . It then returns the sessionId, the user ID associated with the logged-in username, and a URL that points to the
Lightning Platform API to use in all subsequent API calls.

Salesforce checks the IP address from which the client app is logging in and blocks logins from unknown IP addresses. If the API blocks
the login, Salesforce returns a login fault. To log in, the user must add the security token at the end of the user’s password. For example,
if a user's password is mypassword and the security token is XXXXXXXXXX, the user enters mypasswordXXXXXXXXXX. Users
get their security token by changing their password or resetting their security token from the Salesforce user interface. When users
change their password or reset their security token, Salesforce sends a new security token to the email address on the user’s Salesforce
record. The security token is valid until the user resets the security token, or changes the password, or you reset the user’s password.
When the security token is invalid, the user must repeat the login process. To avoid another log in, add the client's IP address to the org's
list of trusted IP addresses. For more information, see Security Token.

After logging in, make sure that your client app performs these tasks.

• Sets the session ID in the SOAP header so that the API can validate subsequent requests for this session.

• Specifies the server URL as the target for subsequent service requests. The login server supports only login calls.

Development tools differ in the way you specify session headers and server URLs. For more information, see the documentation for your
particular development tool.

Note: Multiple client apps can log in using the same username argument. However, this approach increases your risk of getting
errors due to query limits. A user can have up to 10 query cursors open at a time. If 10 QueryLocator cursors are open when
a client application, logged in as the same user, attempts to open a new one, then the oldest of the 10 cursors is released. If the
client application attempts to open the released query cursor, an error results.

The limit is 3,600 calls to login() per user per hour. Exceeding this limit results in a “Login Rate Exceeded” error. After reaching the
hourly limit, Salesforce blocks the user from logging in. Users can try to log in again an hour after the block occurred.

Enterprise and Partner Endpoints
In API version 11.1 and earlier, client apps built with the partner WSDL can send requests to the enterprise endpoint, and enterprise
WSDL apps can send requests to the partner endpoint. Beginning with version 12.0, this functionality is not supported.

Endpoint Base URLs
When specifying an endpoint for a Salesforce org, there are three options for the base URL.

1. Recommended: Your My Domain login URL, in the format https://MyDomainName.my.salesforce.com for production
orgs and https://MyDomainName--SandboxName.sandbox.my.salesforce.com for sandboxes with enhanced
domains enabled. If you’re not using enhanced domains, your sandbox, use
https://MyDomainName--SandboxName.my.salesforce.com, and plan to update these endpoints when you
enable enhanced domains.

155

login()Core Calls

2. The default Salesforce login URLs: https://login.salesforce.com for production and Developer Edition orgs and
https://test.salesforce.com for sandboxes.

Note: Admins can prevent SOAP API logins from the default Salesforce login URLs via a My Domain setting.

All examples use the recommended My Domain login URL format for a production org. To specify an endpoint for a sandbox or to use
the default Salesforce login URLs, modify the example as needed.

To understand the benefits of using your My Domain login URL versus the default Salesforce login URL, see Log In to Salesforce with
Code in Salesforce Help.

Login When Using a Proxy
If you log in to Salesforce via a proxy, set the proxy host and port number on the instance of the ConnectorConfig class that you
use to log in. If you must authenticate on the proxy, set the username and password.

ConnectorConfig config = new ConnectorConfig();
config.setUsername(userId);
config.setPassword(passwd);
config.setAuthEndpoint(authEndPoint);
config.setProxy(proxyHost, proxyPort);
// Set the username and password if your proxy must be authenticated
config.setProxyUsername(proxyUsername);
config.setProxyPassword(proxyPassword);
try {

EnterpriseConnection connection = new EnterpriseConnection(config);
// etc.

} catch (ConnectionException ce) {
ce.printStackTrace();

}

Session Expiration
Client apps aren’t required to explicitly log out to end a session. Sessions expire automatically after a predetermined length of inactivity.
The default is two hours. If you make an API call, the inactivity timer is reset to zero. To change the session expiration (timeout) value,
from Setup, enter Session Settings in the Quick Find box, and select Session Settings.

Active Self-Service Users Authentication
Note: Starting with Spring ’12, the Self-Service portal isn’t available for new Salesforce orgs. Existing orgs continue to have access
to the Self-Service portal.

To authenticate active self-service users, use LoginScopeHeader to specify the Organization ID against which self-service users are
authenticated. A self-service user must exist and be active before being authenticated (see SelfServiceUser).

Customer Experience Cloud Site User Authentication
To authenticate an active Experience Cloud site user who has the API Enabled permission, use LoginScopeHeader to specify the
Organization ID of the org with Experience Cloud sites. Site users must exist, be active, and belong to the Experience Cloud site before
being authenticated.

156

login()Core Calls

https://help.salesforce.com/s/articleView?id=sf.domain_name_login_code.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.domain_name_login_code.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_organization.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_selfserviceuser.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_organization.htm

When specifying an endpoint that authenticates an Experience Cloud site user, the base URL is different in orgs without enhanced
domains enabled.

• If enhanced domains are enabled, the base URL format is https://MyDomainName.my.site.com for a production org
and https:/MyDomainName--SandboxName.sandbox.my.site.com for a sandbox org.

• If enhanced domains aren’t enabled, the base URL format is https://ExperienceCloudSitesSubdomain.force.com
for a production org and SandboxName-CommunitySubdomainName.InstanceName.force.com for a sandbox
org.

All examples for Experience Cloud Site User Authorization use the base URL format for a production org with enhanced domains enabled.
To specify an endpoint for a sandbox org, or if you haven’t yet enabled enhanced domains, update the base URL.

Example Endpoints
Client apps can send login requests to these endpoints (using valid values for the authentication endpoint).

Enterprise WSDL:

• String authEndPoint =
"https://MyDomainName.my.salesforce.com/services/Soap/c/version/"

• String authEndPoint =
"https://MyDomainName.my.site.com/path-prefix/services/Soap/c/version/"

Partner WSDL:

• String authEndPoint =
"https://MyDomainName.my.salesforce.com/services/Soap/u/version/"

• String authEndPoint =
"https://MyDomainName.my.site.com/path-prefix/services/Soap/u/version/"

Logout
Salesforce recommends that you always call logout() to end a session when it’s no longer needed. This call ends any child sessions.
To provide the most protection, log out the user instead of waiting for the session to expire.

Sample Code—Java
This sample logs a user in with the specified username, password, and authentication endpoint URL. The sample writes user and session
information to the console after a successful login. Before running this sample, replace the values for username, password, and
authentication endpoint with valid values.

To learn how to generate and import the web service WSDL needed to make API calls, see Step 2: Generate or Obtain the Web Service
WSDL in the Quick Start.

public boolean loginSample() {
boolean success = false;
String username = "username";
String password = "password";
String authEndPoint = "https://MyDomainName.my.salesforce.com/services/Soap/c/24.0/";

try {
ConnectorConfig config = new ConnectorConfig();
config.setUsername(username);

157

login()Core Calls

config.setPassword(password);

System.out.println("AuthEndPoint: " + authEndPoint);
config.setAuthEndpoint(authEndPoint);

connection = new EnterpriseConnection(config);

// Print user and session info
GetUserInfoResult userInfo = connection.getUserInfo();
System.out.println("UserID: " + userInfo.getUserId());
System.out.println("User Full Name: " + userInfo.getUserFullName());
System.out.println("User Email: " + userInfo.getUserEmail());
System.out.println();
System.out.println("SessionID: " + config.getSessionId());
System.out.println("Auth End Point: " + config.getAuthEndpoint());
System.out

.println("Service End Point: " + config.getServiceEndpoint());
System.out.println();

success = true;
} catch (ConnectionException ce) {

ce.printStackTrace();
}

return success;
}

Sample Code—C#
This sample logs a user in using the specified username and password. The result of the login call contains the service endpoint URL,
which is the virtual server instance that is servicing your org, and a unique session ID. The sample sets these returned values on the
binding. It sets the binding URL to the returned service endpoint. It also sets the session ID on the session header that is used on all API
calls. Next, the sample writes user and session information to the console after a successful login. Before running this sample, replace
the values for username and password with valid values.

To learn how to generate and import the web service WSDL needed to make API calls, see Step 2: Generate or Obtain the Web Service
WSDL in the Quick Start.

public bool loginSample()
{

Boolean success = false;
string username = "username";
string password = "password";

// Create a service object
binding = new SforceService();

LoginResult lr;
try
{

Console.WriteLine("\nLogging in...\n");
lr = binding.login(username, password);

158

login()Core Calls

/**
* The login results contain the endpoint of the virtual server instance
* that is servicing your org. Set the URL of the binding
* to this endpoint.
*/

// Save old authentication end point URL
String authEndPoint = binding.Url;
// Set returned service endpoint URL
binding.Url = lr.serverUrl;

/** Get the session ID from the login result and set it for the
* session header that will be used for all subsequent calls.
*/

binding.SessionHeaderValue = new SessionHeader();
binding.SessionHeaderValue.sessionId = lr.sessionId;

// Print user and session info
GetUserInfoResult userInfo = lr.userInfo;
Console.WriteLine("UserID: " + userInfo.userId);
Console.WriteLine("User Full Name: " +

userInfo.userFullName);
Console.WriteLine("User Email: " +

userInfo.userEmail);
Console.WriteLine();
Console.WriteLine("SessionID: " +

lr.sessionId);
Console.WriteLine("Auth End Point: " +

authEndPoint);
Console.WriteLine("Service End Point: " +

lr.serverUrl);
Console.WriteLine();

// Return true to indicate that we are logged in, pointed
// at the right URL and have our security token in place.
success = true;

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
return success;

}

Arguments

DescriptionTypeName

Login username.stringusername

Login password associated with the specified username.stringpassword

159

login()Core Calls

The login request size is limited to 10 KB.

Response
LoginResult

Faults
LoginFault

UnexpectedErrorFault

SEE ALSO:

API Call Basics

LoginResult
The login() call returns a LoginResult object, which has the following properties:

DescriptionTypeName

URL of the endpoint that will process subsequent metadata API calls. Your
client application needs to set the endpoint.

stringmetadataServerUrl

Indicates whether the password used during the login attempt is expired
(true) or not (false). If the password has expired, then the API returns a

booleanpasswordExpired

valid sessionId, but the only allowable operation is the
setPassword() call.

URL of the endpoint that will process subsequent API calls. Your client
application needs to set the endpoint.

stringserverUrl

Unique ID associated with this session. Your client application needs to set
this value in the session header.

stringsessionId

ID of the user associated with the specified username and password.IDuserId

User information fields. For a list of these fields, see getUserInfoResult.getUserInfoResultuserInfo

logout()

Ends the session of the logged-in user.

Syntax
connection.logout();

160

LoginResultCore Calls

Usage
This call ends the session for the logged-in user issuing the call. No arguments are needed.

To end one or more sessions started by someone other than the logged-in user, see invalidateSessions().

Sample Code—Java
This sample calls logout() to log the current user out and writes a message to the console.

public void logoutSample() {
try {

connection.logout();
System.out.println("Logged out.");

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Sample Code—C#
This sample calls logout() to log the current user out and writes a message to the console.

public void logoutSample()
{

try
{

binding.logout();
Console.WriteLine("Logged out.");

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments
This call uses no arguments. It ends the session for the logged-in user issuing the call, so no arguments are needed. The logged-in user
is identified by the sessionId specified in the SessionHeader for this call.

Response
Void is returned. Because failure of the call means that the session has already been logged out, no results are needed. Any unexpected
error, such as system unavailability, throws an error that should be handled by your client application.

Faults
UnexpectedErrorFault

161

logout()Core Calls

merge()

Important: Where possible, we changed noninclusive terms to align with our company value of Equality. Because changing
terms in our code can break current implementations, we maintained this object’s name.

Combines up to 3 records of the same type into 1 record. The input is an array of MergeRequest elements, each of which specifies
the records to combine. The output is a MergeResult object that contains information about the result of the merge.

Syntax
MergeResult[]= connection.merge(MergeRequest[] mergeRequests);

Usage
Use merge() to combine records of the same object type into one of the records, known as the main record. merge() deletes the
other records, known as the victim records. If a victim record has related records, merge() makes the main record the new parent of
the related records.

Rules and Guidelines
Values from non-main records

Before you call merge(), decide if you want field values in the non-main records to supersede the main record values. If you do,
set the field names and values in the record identified by the masterRecord of the MergeRequest.

Contacts, Leads, and Data Privacy Records
When you merge contacts or leads that have corresponding data privacy records based on the Individual object, merge()
determines the correct data privacy record to associate with the main record.

• If you selected the option to retain the most recently updated data privacy record for merging leads and contacts, merge()
selects the most recently updated data privacy record.

• Otherwise, merge() selects the data privacy record already associated with the main record.

Successive merges
Because merge() handles each MergeResult element in the input argument as a separate transaction, you can successively
merge several records into the same main record.

To perform successive merges, call merge() with an array of MergeResult elements. For each MergeResult element,
set:

• masterRecord to the main record ID.

• Each element in the recordToMergeIds array to the ID of a record you want to combine into the main record.

Deleted records
Use queryAll() to view records that have been deleted during a merge.

List merged records
To find all records that have been merged since a given point in time, call queryAll() with a SELECT statement. For example:

SELECT Id FROM Contact WHERE isDeleted=true and masterRecordId != null
AND SystemModstamp > 2006-01-01T23:01:01+01:00

162

merge()Core Calls

Supported Object Types

The supported object types are Lead, Contact, Account, Person Account, and Individual. You can only merge objects of the same
type. For example, leads can be merged only with leads.

Account Hierarchies
When you merge accounts that are part of an account hierarchy, merge() tries to set the victims’ child records as children of the
main record. If this action causes a cyclical relationship, merge() returns an error.

Contacts Reports To relationships
When you merge contacts that have a value for the ReportsToId field, merge() tries to add the victims’ ReportsToId
value to the main record. If this action causes a cyclical relationship, merge()reports an error.

Contacts and portal users
When you want to merge a contact victim record that has an associated portal user, set AdditionalInformationMap for
victim record’s MergeRequest element. You can only merge 1 victim with a portal user into the main record. In Salesforce Classic,
you can’t merge person accounts that are enabled to use a Customer Portal.

Considerations
The following limits apply to any merge request:

• Up to 200 merge requests can be made in a single SOAP call.

• Up to three records can be merged in a single request, including the main record. This limit is the same as the limit enforced by
the Salesforce user interface. To merge more than 3 records, do a successive merge.

• External ID fields cannot be used with merge().

• If you selected the option to retain the most recently updated data privacy record for merging leads and contacts, but the caller
does not have CRUD permission for the selected data privacy record, the merge process selects the data privacy record already
associated with the main record.

Redundant relationships
You can’t merge accounts or person accounts that are related to the same contact. Remove redundant account-contact relationships
before you try to merge accounts.

Note: Starting with API version 15.0, if you specify a value for a field that contains a string, and the value is too big for the field,
the call fails and an error is returned. In previous versions of the API the value was truncated and the call succeeded. If you wish
to keep the old behavior with versions 15.0 and later, use the AllowFieldTruncationHeader SOAP header.

Sample Code—Java
This sample merges a victim account with a main account. It creates 2 accounts and attaches a note to the victim. After the merge, the
code prints the ID of the victim account and the number of child records updated. In this example, the number of updated records is
one, because the note of the merged account is moved to the main account.

public Boolean mergeRecords() {
Boolean success = false;
// Array to hold the results
String[] accountIds = new String[2];
try {

// Create two accounts to merge
Account[] accounts = new Account[2];
Account masterAccount = new Account();
masterAccount.setName("MasterAccount");
masterAccount.setDescription("The Account record to merge with.");
accounts[0] = masterAccount;

163

merge()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_individual.htm

Account accountToMerge = new Account();
accountToMerge.setName("AccountToMerge");
accountToMerge

.setDescription("The Account record that will be merged.");
accounts[1] = accountToMerge;
SaveResult[] saveResults = connection.create(accounts);

if (saveResults.length > 0) {
for (int i = 0; i < saveResults.length; i++) {

if (saveResults[i].isSuccess()) {
accountIds[i] = saveResults[i].getId();
System.out.println("Created Account ID: "

+ accountIds[i]);
} else {

// If any account is not created,
// print the error returned and exit
System.out

.println("An error occurred while creating account."
+ " Error message: "
+ saveResults[i].getErrors()[0].getMessage());

return success;
}

}
}

// Set the Ids of the accounts
masterAccount.setId(accountIds[0]);
accountToMerge.setId(accountIds[1]);

// Attach a note to the account to be merged with the master,
// which will get re-parented after the merge
Note note = new Note();
System.out.println("Attaching note to record " +

accountIds[1]);
note.setParentId(accountIds[1]);
note.setTitle("Merged Notes");
note.setBody("This note will be moved to the "

+ "MasterAccount during merge");
SaveResult[] sRes = connection.create(new SObject[] { note });
if (sRes[0].isSuccess()) {

System.out.println("Created Note record.");
} else {

Error[] errors = sRes[0].getErrors();
System.out.println("Could not create Note record: "

+ errors[0].getMessage());
}

// Perform the merge
MergeRequest mReq = new MergeRequest();
masterAccount.setDescription("Was merged");
mReq.setMasterRecord(masterAccount);
mReq.setRecordToMergeIds(new String[] { saveResults[1].getId() });
MergeResult mRes = connection.merge(new MergeRequest[] { mReq })[0];

164

merge()Core Calls

if (mRes.isSuccess())
{

System.out.println("Merge successful.");
// Write the IDs of merged records
for(String mergedId : mRes.getMergedRecordIds()) {

System.out.println("Merged Record ID: " + mergedId);

}
// Write the updated child records. (In this case the note.)
System.out.println(

"Child records updated: " + mRes.getUpdatedRelatedIds().length);
success = true;

} else {
System.out.println("Failed to merge records. Error message: " +

mRes.getErrors()[0].getMessage());
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
return success;

}

Sample Code—C#
This sample merges a victim account with a main account. It creates 2 accounts and attaches a note to the victim. After the merge, the
code prints the ID of the victim account and the number of child records updated. In this example, the number of updated records is
one, because the note of the merged account is moved to the main account.

public Boolean mergeRecords()
{

Boolean success = false;
// Array to hold the results
String[] accountIds = new String[2];
try
{

// Create two accounts to merge
Account[] accounts = new Account[2];
Account masterAccount = new Account();
masterAccount.Name = "MasterAccount";
masterAccount.Description = "The Account record to merge with.";
accounts[0] = masterAccount;
Account accountToMerge = new Account();
accountToMerge.Name = "AccountToMerge";
accountToMerge

.Description = "The Account record that will be merged.";
accounts[1] = accountToMerge;
SaveResult[] saveResults = binding.create(accounts);

if (saveResults.Length > 0)
{

for (int i = 0; i < saveResults.Length; i++)
{

if (saveResults[i].success)

165

merge()Core Calls

{
accountIds[i] = saveResults[i].id;
Console.WriteLine("Created Account ID: "

+ accountIds[i]);
}
else
{

// If any account is not created,
// print the error returned and exit
Console.WriteLine("An error occurred while creating account."

+ " Error message: "
+ saveResults[i].errors[0].message);

return success;
}

}
}

// Set the Ids of the accounts
masterAccount.Id = accountIds[0];
accountToMerge.Id = accountIds[1];

// Attach a note to the account to be merged with the master,
// which will get re-parented after the merge
Note note = new Note();
Console.WriteLine("Attaching note to record " +

accountIds[1]);
note.ParentId = accountIds[1];
note.Title = "Merged Notes";
note.Body = "This note will be moved to the "

+ "MasterAccount during merge";
SaveResult[] sRes = binding.create(new sObject[] { note });
if (sRes[0].success)
{

Console.WriteLine("Created Note record.");
}
else
{

Error[] errors = sRes[0].errors;
Console.WriteLine("Could not create Note record: "

+ errors[0].message);
}

// Perform the merge
MergeRequest mReq = new MergeRequest();
masterAccount.Description = "Was merged";
mReq.masterRecord = masterAccount;
mReq.recordToMergeIds = new String[] { saveResults[1].id };

MergeResult mRes = binding.merge(new MergeRequest[] { mReq })[0];

if (mRes.success)
{

Console.WriteLine("Merge successful.");
// Write the IDs of merged records

166

merge()Core Calls

foreach (String mergedId in mRes.mergedRecordIds)
{

Console.WriteLine("Merged Record ID: " + mergedId);
}
// Write the updated child records. (In this case the note.)
Console.WriteLine(

"Child records updated: " + mRes.updatedRelatedIds.Length);
success = true;

}
else
{

Console.WriteLine("Failed to merge records. Error message: " +
mRes.errors[0].message);

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
return success;

}

Arguments
This call accepts an array of MergeRequest objects. A MergeRequest object contains the following properties.

DescriptionTypeName

Required. Must provide the ID of the object that other records will be merged into.
Optionally, provide the fields to be updated and their values.

sObjectmasterRecord

Required. Minimum of one, maximum of two. The other record or records to be merged
into the main record.

ID[]recordToMergeIds

A field-value map.mapAdditionalInformationMap

• Merge a portal user ID:

– name: PortalUserId

– value: ID of the portal user

• In all other merge cases, set to null.

Response
MergeResult[]

Faults
InvalidSObjectFault

167

merge()Core Calls

UnexpectedErrorFault

InvalidIdFault

SEE ALSO:

API Call Basics

MergeResult
The merge() call returns a MergeResult object, which has the following properties:

DescriptionTypeName

If an error occurred during the merge() call, an array of one or more Error objects
providing the error code and description.

Error[]errors

ID of the primary record, the record into which the other records were merged.IDid

ID of the records that were merged into the primary record. If successful, the values
match mergeRequest.recordToMergeIds.

ID[]mergedRecordIds

Indicates whether the merge was successful (true) or not (false).booleansuccess

ID of all related records that were moved (reparented) as a result of the merge, and
that are viewable by the user sending the merge call.

ID[]updatedRelatedIds

performQuickActions()

Executes quick actions of type create or update.

Syntax
PerformQuickActionResult[] = connection.performQuickActions(PerformQuickActionRequest
PerformQuickActionRequest[]);

Usage
Use the performQuickActions() call to perform a specific quick action. Returns an array of PerformQuickActionResult objects.

Note: In API version 46.0 and later, the apiName for a global quick action can include the prefix Global. in a
performQuickActions() request body. The request body also accepts global quick action API names without the prefix.

Note: If you’re accessing the API using a custom community URL and you use the performQuickActions() call to create
a group, the group is only available within that community.

Note: The OutgoingEmail entity can be created only via calls from the performQuickAction API.

168

MergeResultCore Calls

Sample—Java
This sample uses a quick action to create a new contact.

public void example() throws Exception {

PerformQuickActionRequest req = new PerformQuickActionRequest();

Contact con = new Contact();
con.setLastName("Smith");

req.setQuickActionName("Account.QuickCreateContact");
req.setParentId("001D000000JSaHa");

/* For version 29.0 and greater, use setContextId */
req.setRecords(new SObject[] { con }); //you can only save one record here
PerformQuickActionResult[] pResult =

conn.performQuickActions(new PerformQuickActionRequest[] { req });
for(PerformQuickActionResult pr : pResult) {

assert pr.getSuccess();
assert pr.getCreated();
assert pr.getErrors().length == 0;
System.out.println("Id of the record created: " + pr.getIds()[0]);
System.out.println("Id of the feeditem for action performed: " +

pr.getFeedItemIds()[0]);
}

}

Arguments

DescriptionTypeName

The action request to perform.PerformQuickActionRequestquickActions

PerformQuickActionRequest

DescriptionTypeName

IDparentOrContextId • In API version 28.0, parentId is the ID of the sObject
on which to create a record for the request.

• In API version 29.0 and greater, contextId is the ID
of the context on which to create a record for the
request.

The parent or context sObject and action name—for
example, Opportunity.QuickCreateOpp.

stringquickActionName

The record to be created. Only one record can be saved at
a time.

SObject[]records

169

performQuickActions()Core Calls

Response
PerformQuickActionResult

PerformQuickActionResult
The performQuickActions() call returns an array of PerformQuickActionResult objects.

DescriptionTypeName

If true, the record was created successfully and if false, no record was created.booleancreated

If an error occurred during the call, an array of one or more Error objects providing the error
information.

Error[]errors

Returns an array of unique identifiers of a feed item in the form of a string with IDs; in partner
portals, a type with an ID is returned.

ID[]feedItemIds

An array of IDs.ID[]ids

If true, the action executed successfully and if false, the action failed.booleansuccess

Returns the message that displays to the user upon successful completion of the action.stringsuccessMessage

process()

Submits an array of approval process instances for approval, or processes an array of approval process instances to be approved, rejected,
or removed. For more information, see “Set Up an Approval Process” in the Salesforce Help.

Syntax
ProcessResult = connection.process(processType processRequest[])

processType can be either ProcessSubmitRequest or ProcessWorkitemRequest

Usage
Use the process() call to perform either of the following two tasks:

• Submit an array of objects to the approval process. Objects cannot already be in an approval process when submitted. Use the
ProcessSubmitRequest signature.

• Process an object that has been submitted to the approval process by performing an approval action (Approve or Reject). Use the
ProcessWorkitemRequest signature.

Requests are processed and a ProcessResult is returned with the same process instances as sent in the request.

The failure of a particular record will not cause failure of the entire request.

170

PerformQuickActionResultCore Calls

Note: Because you can fire Apex triggers with this call, you may be updating fields that contain strings.

Starting with API version 15.0, if you specify a value for a field that contains a string, and the value is too big for the field, the call
fails and an error is returned. In previous versions of the API the value was truncated and the call succeeded. If you wish to keep
the old behavior with versions 15.0 and later, use the AllowFieldTruncationHeader SOAP header.

Sample Code—Java
This sample accepts the ID of the sObject to process the approval for and an array containing the IDs of the next approvers. It creates a
process approval request and submits it for approval. Finally, it parses the results of the process() call.

public void processRecords(String id, String[] approverIds) {
ProcessSubmitRequest request = new ProcessSubmitRequest();
request.setComments("A comment about this approval.");
request.setObjectId(id);
request.setNextApproverIds(approverIds);
try {

ProcessResult[] processResults = connection
.process(new ProcessSubmitRequest[] { request });

for (ProcessResult processResult : processResults) {
if (processResult.isSuccess()) {

System.out.println("Approval submitted for: " + id + ":");
for (int i = 0; i < approverIds.length; i++) {

System.out
.println("\tBy: " + approverIds[i] + " successful.");

}
System.out.println("Process Instance Status: "

+ processResult.getInstanceStatus());
} else {

System.out.println("Approval submitted for: " + id
+ ", approverIds: " + approverIds.toString() + " FAILED.");

System.out.println("Error: "
+ processResult.getErrors().toString());

}
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Sample Code—C#
This sample accepts the ID of the sObject to process the approval for and an array containing the IDs of the next approvers. It creates a
process approval request and submits it for approval. Finally, it parses the results of the process() call.

public void processRecords(String id, String[] approverIds)
{

ProcessSubmitRequest request = new ProcessSubmitRequest();
request.comments = "A comment about this approval.";
request.objectId = id;
request.nextApproverIds = approverIds;
try
{

171

process()Core Calls

ProcessResult[] processResults = binding.process(
new ProcessSubmitRequest[] { request });

foreach (ProcessResult processResult in processResults)
{

if (processResult.success)
{

Console.WriteLine("Approval submitted for: " + id + ":");
for (int i = 0; i < approverIds.Length; i++)
{

Console.WriteLine("\tBy: " + approverIds[i] + " successful.");
}
Console.WriteLine("Process Instance Status: "

+ processResult.instanceStatus);
}
else
{

Console.WriteLine("Approval submitted for: " + id
+ ", approverIds: " + approverIds.ToString() + " FAILED.");

Console.WriteLine("Error: "
+ processResult.errors.ToString());

}
}

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

ProcessSubmitRequest Arguments

DescriptionTypeName

Text that you want to accompany the submission. Don’t reference merge fields or
formula expressions.

Submission comments appear in the approval history for the specified record. This text
also appears in the initial approval request email if the template uses the
{!ApprovalRequest.Comments} merge field.

stringcomments

If the process requires specification of the next approval, the ID of the user to be assigned
the next request.

IDnextApproverIds

The record to submit for approval.IDobjectId

The unique name or ID of the specific approval process to which you want the record
to be submitted. The process must have the same object type as the record you specified
in objectId.

Required if skipEntryCriteria is true.

stringprocessDefinitionNameOrId

172

process()Core Calls

DescriptionTypeName

If true, the record isn’t evaluated against the entry criteria set on the process that is
defined in processDefinitionNameOrId.

booleanskipEntryCriteria

The ID for the user who submitted the record for approval. The user receives notifications
about responses to the approval request.

The user must be one of the allowed submitters for the process.

IDsubmitterId

ProcessWorkitemRequest Arguments

DescriptionTypeName

For processing an item after being submitted for approval, a string representing the
kind of action to take: Approve, Reject, or Remove. Only system administrators can

stringaction

specify Remove. If the Allow submitters to recall approval requests option is
selected for the approval process, the submitter can also specify Remove.

Text that you want to accompany the submission. Don’t reference merge fields or
formula expressions.

Submission comments appear in the approval history for the specified record. This
text also appears in the initial approval request email if the template uses the
{!ApprovalRequest.Comments} merge field.

stringcomments

If the process requires specification of the next approval, the ID of the user to be
assigned the next request.

IDnextApproverIds

The ID of the ProcessInstanceWorkitem that is being approved, rejected, or removed.IDworkitemId

Response
ProcessResult[]

Faults
ALREADY_IN_PROCESS

NO_APPLICABLE_PROCESS

SEE ALSO:

API Call Basics

ProcessResult
The process() call returns a ProcessResult object, which has the following properties, depending on the type of call (submit for
approval or process object already submitted to for approval):

173

ProcessResultCore Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_processinstanceworkitem.htm

DescriptionTypeName

IDs of the users who are currently assigned to this approval step.IDactorIds

The object being processed.IDentityId

The set of errors returned if the request failed.Error[]errors

The ID of the ProcessInstance associated with the object submitted for processing.IDinstanceId

The status of the current process instance (not an individual object but the entire
process instance). The valid values are “Approved,” “Rejected,” “Removed,” or
“Pending.”

stringinstanceStatus

Case-insensitive IDs that point to ProcessInstanceWorkitem items (the set of pending
approval requests).

ID[]newWorkItemIds

true if processing or approval completed successfully.booleansuccess

query()

Executes a query against the specified object and returns data that matches the specified criteria.

Syntax
QueryResult = connection.query(string queryString);

Usage
Use the query() call to retrieve data from an object. When a client application invokes the query() call, it passes in a query
expression that specifies the object to query, the fields to retrieve, and any conditions that determine whether a given object qualifies.
For an extensive discussion about the syntax and rules used for queries, see the Salesforce SOQL and SOSL Reference Guide.

Upon invocation, the API executes the query against the specified object, caches the results of the query on the API, and returns a query
response object to the client application. The client application can then use methods on the query response object to iterate through
rows in the query response and retrieve information.

Your client application must be logged in with sufficient access rights to query individual objects within the specified object and to
query the fields in the specified field list. For more information, see Factors that Affect Data Access.

Certain objects cannot be queried via the API. To query an object via the query() call, its object must be configured as queryable.
To determine whether an object can be queried, your client application can invoke the describeSObjects() call on the object
and inspect its queryable property.

Tip: If you use the enterprise WSDL, don't use describe to populate a select list. For example, if a Salesforce admin adds a
field to the sObject after you consume it, the describe call will pull down the field but your toolkit won’t know how to serialize
it, and your integration may fail.

You can use queryAll() to query on all Task and Event records, archived or not. You can also filter on the isArchived field to
find only the archived objects. You cannot use query(), it automatically filters out all records where isArchived is set to true.
You can insert, update, or delete archived records.

174

query()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_processinstance.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_processinstanceworkitem.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_task.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_event.htm

The query result object contains up to 2,000 rows of data by default. If the query results exceed the default, then the client application
uses the queryMore() call and a server-side cursor to retrieve additional rows in batches. You can adjust the default results batch in
the QueryOptions on page 356 header. For more information see Change the Batch Size in Queries in the SOQL and SOSL Reference.

Queries that take longer than two minutes to process time out. For timed out queries, the API returns an API fault element of
InvalidQueryLocatorFault. If a timeout occurs, refactor your query to return or scan a smaller amount of data.

When querying for fields of type Base64 (see base64), the query response object returns only one record at a time. You can't alter this
by changing the batch size of the query() call.

Note: For multicurrency organizations, special handling is required when querying currency fields containing values in different
currencies. For example, if a client application is querying PricebookEntry objects based on values in the UnitPrice field, and
if the UnitPrice amounts are expressed in different currencies, then the query logic must handle this case correctly. For
example, if the query is trying to retrieve the product codes of all products with a unit price greater than or equal to $10 USD, the
query expression might look something like this:

SELECT Product2Id,ProductCode,UnitPrice FROM PricebookEntry
WHERE (UnitPrice >= 10 and CurrencyIsoCode='USD')
OR (UnitPrice >= 5.47 and CurrencyIsoCode='GBP')
OR (UnitPrice >= 8.19 and CurrencyIsoCode='EUR')

Sample Code—Java
This sample executes a query that fetches the first names and last names of all contacts. It calls query() with the query string to get
the first batch of records. It then calls queryMore() in a loop to get subsequent batches of records until no records are returned. It
writes the first and last names of the contacts queried to the console.

public void queryRecords() {
QueryResult qResult = null;
try {

String soqlQuery = "SELECT FirstName, LastName FROM Contact";
qResult = connection.query(soqlQuery);
boolean done = false;
if (qResult.getSize() > 0) {

System.out.println("Logged-in user can see a total of "
+ qResult.getSize() + " contact records.");

while (!done) {
SObject[] records = qResult.getRecords();
for (int i = 0; i < records.length; ++i) {

Contact con = (Contact) records[i];
String fName = con.getFirstName();
String lName = con.getLastName();
if (fName == null) {

System.out.println("Contact " + (i + 1) + ": " + lName);
} else {

System.out.println("Contact " + (i + 1) + ": " + fName
+ " " + lName);

}
}
if (qResult.isDone()) {

done = true;
} else {

qResult = connection.queryMore(qResult.getQueryLocator());
}

175

query()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_changing_batch_size.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/primitive_data_types.htm#i1435003
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_pricebookentry.htm

}
} else {

System.out.println("No records found.");
}
System.out.println("\nQuery succesfully executed.");

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Sample Code—C#
This sample executes a query that fetches the first names and last names of all contacts. It calls query() with the query string to get
the first batch of records. It then calls queryMore() in a loop to get subsequent batches of records until no records are returned. It
writes the first and last names of the contacts queried to the console.

public void queryRecords()
{

QueryResult qResult = null;
try
{

String soqlQuery = "SELECT FirstName, LastName FROM Contact";
qResult = binding.query(soqlQuery);
Boolean done = false;
if (qResult.size > 0)
{

Console.WriteLine("Logged-in user can see a total of "
+ qResult.size + " contact records.");

while (!done)
{

sObject[] records = qResult.records;
for (int i = 0; i < records.Length; ++i)
{

Contact con = (Contact)records[i];
String fName = con.FirstName;
String lName = con.LastName;
if (fName == null)
{

Console.WriteLine("Contact " + (i + 1) + ": " + lName);
}
else
{

Console.WriteLine("Contact " + (i + 1) + ": " + fName
+ " " + lName);

}
}
if (qResult.done)
{

done = true;
}
else
{

qResult = binding.queryMore(qResult.queryLocator);

176

query()Core Calls

}
}

}
else
{

Console.WriteLine("No records found.");
}
Console.WriteLine("\nQuery succesfully executed.");

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments

DescriptionTypeName

Query string that specifies the object to query, the fields to return, and any conditions for
including a specific object in the query. For more information, see the Salesforce SOQL and SOSL
Reference Guide.

stringqueryString

Response
QueryResult

Faults
MalformedQueryFault

InvalidSObjectFault

InvalidFieldFault

UnexpectedErrorFault

SEE ALSO:

queryAll()

queryMore()

API Call Basics

Change the Batch Size in Queries

QueryResult
The query() call returns a QueryResult object, which has the following properties:

177

QueryResultCore Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_changing_batch_size.htm

DescriptionTypeName

A specialized string, similar to ID. Used in queryMore() for retrieving subsequent sets of
objects from the query results, if applicable. Represents a server-side cursor. Each user can
have up to ten query cursors open at a time.

QueryLocatorqueryLocator

Indicates whether additional rows need to be retrieved from the query results (false) using
queryMore(), or not (true). Your client application can use this value as a loop condition
while iterating through the query results.

booleandone

Array of sObjects representing individual objects of the specified object and containing data
defined in the field list specified in the queryString.

For information on queries that use a GROUP BY clause, see AggregateResult.

sObject[]records

Your client application can use this value to determine whether the query retrieved any rows
(size > 0) or not (size = 0). Total number of rows retrieved in the query.

intsize

AggregateResult
This object contains the results returned by a query() if the query contains an aggregate function, such as MAX(). AggregateResult
is an sObject, but unlike other sObject objects such as Contact, it is read-only and it is only used for query results.

The QueryResult object has a records field that is an array of sObject records matching your query. For example, the following query
returns an array of Contact records in the records field.

SELECT Id, LastName
FROM Contact
WHERE FirstName = 'Bob'

When a SOQL query contains an aggregate function, the results are a set of aggregated data instead of an array of records for a standard
object, such as Contact. Therefore, the records field returns an array of AggregateResult records.

For more information on aggregate functions, see “Aggregate Functions” in the Salesforce SOQL and SOSL Reference Guide.

Fields
Each AggregateResult object contains a separate field for each of the items in the SELECT list. For the enterprise WSDL, retrieve the
result for each item by calling getField() on an AggregateResult object when using WSC client framework. For the partner WSDL,
retrieve the result for each item by calling getField() on an sObject object.

See Sample Code—Java and Sample Code—C# for examples that work with the enterprise WSDL.

Sample Code—Java

public void queryAggregateResult() {
try {
String groupByQuery = "SELECT Account.Name n, " +

"MAX(Amount) max, MIN(Amount) min " +
"FROM Opportunity GROUP BY Account.Name";

QueryResult qr = connection.query(groupByQuery);
if (qr.getSize() > 0) {
System.out.println("Query returned " +

qr.getRecords().length + " results."

178

QueryResultCore Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/

);
for (SObject sObj : qr.getRecords()) {
AggregateResult result = (AggregateResult) sObj;
System.out.println("aggResult.Account.Name: " +

result.getField("n")
);
System.out.println("aggResult.max: " +

result.getField("max")
);
System.out.println("aggResult.min: " +

result.getField("min")
);
System.out.println();

}
} else {
System.out.println("No results found.");

}
System.out.println("\nQuery successfully executed.");

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Sample Code—C#

private void testAggregateResult()
{

try
{

QueryResult qr = null;

binding.QueryOptionsValue = new QueryOptions();

String soqlStr = "SELECT Name, " +
"MAX(Amount), " +
"MIN(Amount) " +
"FROM Opportunity " +
"GROUP BY Name";

qr = binding.query(soqlStr);

if (qr.size > 0)
{

for (int i = 0; i < qr.records.Length; i++)
{

sforce.AggregateResult ar = (AggregateResult)qr.records[i];

foreach (XmlElement e in ar.Any)
Console.WriteLine(

"{0} - {1}",
e.LocalName,

179

QueryResultCore Calls

e.InnerText
);

}
}
else
{

Console.WriteLine("No records found");
}
Console.WriteLine("Query successfully executed.");

}
catch (Exception ex)
{

Console.WriteLine(
"\nFailed to execute query successfully." +
"error message was: \n" +
ex.Message

);

}
}

QueryLocator
In the QueryResult object returned by the query() call, queryLocator contains a value that you use in the subsequent
queryMore() call. Note the following guidelines:

• Use a given queryLocator value only one time. When you pass it in a queryMore() call, the API returns a new
queryLocator in the QueryResult.

• QueryLocator objects expire automatically after 15 minutes of inactivity.

• A user can have up to 10 query cursors open at a time. If 10 QueryLocator cursors are open when a client application, logged
in as the same user, attempts to open a new one, then the oldest of the 10 cursors is released. If the client application attempts to
open the released query cursor, an error results.

Note: Cursor limits for different Lightning Platform features are tracked separately. For example, you can have 10 SOAP API query
cursors, 10 Metadata API cursors, and 50 Apex query cursors open at the same time.

A QueryLocator represents a server-side cursor.

queryAll()

[other]: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain
terms to avoid any effect on customer implementations.

Retrieves data from specified objects, whether or not they have been deleted.

Syntax
QueryResult = connection.queryAll(string queryString);

180

QueryLocatorCore Calls

Usage
Use queryAll to identify the records that have been deleted because of a merge or delete. queryAll has read-only access to the
field isDeleted; otherwise it is the same as query().

To find records that have been deleted (in preparation for undeleting them with the undelete() call), specify isDeleted =
true in the query string, and for merged records, request the masterRecord. For example:

SELECT id, isDeleted, masterRecordId FROM Account WHERE masterRecordId='100000000000Abc'

You can use queryAll() to query on all Task and Event records, archived or not. You can also filter on the isArchived field to
find only the archived objects. You cannot use query() as it automatically filters out all records where isArchived is set to true.
You can update or delete archived records, though you cannot update the isArchived field. If you use the API to insert activities
that meet the criteria listed below, the activities will be archived during the next run of the archival background process.

Because Salesforce doesn’t track changes to external data, queryAll() behaves the same as query() for external objects.

For additional information about using queryAll, see query().

Sample Code—Java
This sample performs a query to get all the accounts, whether they’re deleted or not. It sets a custom batch size of 250 records. It fetches
all batches of records by calling queryAll() the first time and then queryMore(). The names and the value of the isDeleted
fields of all returned accounts are written to the console.

public void queryAllRecords() {
// Setting custom batch size
connection.setQueryOptions(250);

try {
String soqlQuery = "SELECT Name, IsDeleted FROM Account";
QueryResult qr = connection.queryAll(soqlQuery);
boolean done = false;
if (qr.getSize() > 0) {

System.out.println("Logged-in user can see a total of "
+ qr.getSize()
+ " contact records (including deleted records).");

while (!done) {
SObject[] records = qr.getRecords();
for (int i = 0; i < records.length; i++) {

Account account = (Account) records[i];
boolean isDel = account.getIsDeleted();
System.out.println("Account " + (i + 1) + ": "

+ account.getName() + " isDeleted = "
+ account.getIsDeleted());

}
if (qr.isDone()) {

done = true;
} else {

qr = connection.queryMore(qr.getQueryLocator());
}

}
} else {

System.out.println("No records found.");
}

181

queryAll()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_task.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_event.htm

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Sample Code—C#
This sample performs a query to get all the accounts, whether they’re deleted or not. It sets a custom batch size of 250 records. It fetches
all batches of records by calling queryAll() the first time and then queryMore(). The names and the value of the isDeleted
fields of all returned accounts are written to the console.

public void queryAllRecords()
{

// Setting custom batch size
QueryOptions qo = new QueryOptions();
qo.batchSize = 250;
qo.batchSizeSpecified = true;
binding.QueryOptionsValue = qo;

try
{

String soqlQuery = "SELECT Name, IsDeleted FROM Account";
QueryResult qr = binding.queryAll(soqlQuery);
Boolean done = false;
if (qr.size > 0)
{

Console.WriteLine("Logged-in user can see a total of "
+ qr.size
+ " contact records (including deleted records).");

while (!done)
{

sObject[] records = qr.records;
for (int i = 0; i < records.Length; i++)
{

Account account = (Account)records[i];
Boolean isDel = (Boolean)account.IsDeleted;
Console.WriteLine("Account " + (i + 1) + ": "

+ account.Name + " isDeleted = "
+ account.IsDeleted);

}
if (qr.done)
{

done = true;
}
else
{

qr = binding.queryMore(qr.queryLocator);
}

}
}
else
{

Console.WriteLine("No records found.");

182

queryAll()Core Calls

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments

DescriptionTypeName

Query string that specifies the object to query, the fields to return, and any conditions for
including a specific object in the query. For more information, see the Salesforce SOQL and SOSL
Reference Guide.

stringqueryString

Response
QueryResult

Faults
MalformedQueryFault

InvalidSObjectFault

InvalidFieldFault

UnexpectedErrorFault

SEE ALSO:

API Call Basics

queryMore()

queryMore()

Retrieves the next batch of objects from a query().

Syntax
QueryResult = connection.queryMore(QueryLocator QueryLocator);

Usage
Use this call to process query() calls that retrieve a large number of records. The query() call retrieves up to 2,000 record in the
first batch returned and creates a server-side cursor that is represented in the queryLocator object. The queryMore() call processes

183

queryMore()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/

subsequent records in additional batches, resets the server-side cursor, and returns a newly generated QueryLocator. To iterate through
records in the result set, you generally call queryMore() repeatedly until all records in the result set have been processed (the Done
flag is true). See Change the Batch Size in Queries in the Salesforce SOQL and SOSL Reference Guide for more information.

You can't use queryMore() if a query includes a GROUP BY clause. See GROUP BY in the Salesforce SOQL and SOSL Reference
Guide for more information.

Note: A queryMore() call on a parent object invalidates all child cursors in the previous result set. If you need the results
from the child, you must use queryMore() on those results before using queryMore() on the parent results.

When querying external objects, Salesforce Connect accesses the external data in real time via Web service callouts. Each queryMore()
call results in a Web service callout. The batch boundaries and page sizes depend on your adapter and how you set up the external data
source.

We recommend the following:

• When possible, avoid paging by filtering your queries of external objects to return fewer rows than the batch size, which by default
is 2,000 rows. Remember, obtaining each batch requires a queryMore() call, which results in a Web service callout.

• If the external data frequently changes, avoid using queryMore() calls. If the external data is modified between queryMore()
calls, you can get an unexpected QueryResult.

If the primary or “driving” object for a SELECT statement is an external object, queryMore() supports only that primary object
and doesn’t support subqueries.

By default, the OData 2.0 and 4.0 adapters for Salesforce Connect use client-driven paging. With client-driven paging, OData adapters
convert each queryMore() call into an OData query that uses the $skip and $top system query options to specify the batch
boundary and page size. These options are similar to using LIMIT and OFFSET clauses to page through a result set. If you enable
server-driven paging on an external data source, Salesforce ignores the requested page sizes, including the default queryMore()
batch size of 2,000 rows. The pages returned by the external system determine the batches, but each page can’t exceed 2,000 rows.

Sample Code—Java
This sample executes a query that fetches the first names and last names of all contacts. It calls query() with the query string to get
the first batch of records. It then calls queryMore() in a loop to get subsequent batches of records until no records are returned. It
writes the first and last names of the contacts queried to the console.

public void queryRecords() {
QueryResult qResult = null;
try {

String soqlQuery = "SELECT FirstName, LastName FROM Contact";
qResult = connection.query(soqlQuery);
boolean done = false;
if (qResult.getSize() > 0) {

System.out.println("Logged-in user can see a total of "
+ qResult.getSize() + " contact records.");

while (!done) {
SObject[] records = qResult.getRecords();
for (int i = 0; i < records.length; ++i) {

Contact con = (Contact) records[i];
String fName = con.getFirstName();
String lName = con.getLastName();
if (fName == null) {

System.out.println("Contact " + (i + 1) + ": " + lName);
} else {

System.out.println("Contact " + (i + 1) + ": " + fName

184

queryMore()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_groupby.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_groupby.htm

+ " " + lName);
}

}
if (qResult.isDone()) {

done = true;
} else {

qResult = connection.queryMore(qResult.getQueryLocator());
}

}
} else {

System.out.println("No records found.");
}
System.out.println("\nQuery succesfully executed.");

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Sample Code—C#
This sample executes a query that fetches the first names and last names of all contacts. It calls query() with the query string to get
the first batch of records. It then calls queryMore() in a loop to get subsequent batches of records until no records are returned. It
writes the first and last names of the contacts queried to the console.

public void queryRecords()
{

QueryResult qResult = null;
try
{

String soqlQuery = "SELECT FirstName, LastName FROM Contact";
qResult = binding.query(soqlQuery);
Boolean done = false;
if (qResult.size > 0)
{

Console.WriteLine("Logged-in user can see a total of "
+ qResult.size + " contact records.");

while (!done)
{

sObject[] records = qResult.records;
for (int i = 0; i < records.Length; ++i)
{

Contact con = (Contact)records[i];
String fName = con.FirstName;
String lName = con.LastName;
if (fName == null)
{

Console.WriteLine("Contact " + (i + 1) + ": " + lName);
}
else
{

Console.WriteLine("Contact " + (i + 1) + ": " + fName
+ " " + lName);

}

185

queryMore()Core Calls

}
if (qResult.done)
{

done = true;
}
else
{

qResult = binding.queryMore(qResult.queryLocator);
}

}
}
else
{

Console.WriteLine("No records found.");
}
Console.WriteLine("\nQuery succesfully executed.");

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments

DescriptionTypeName

Represents the server-side cursor that tracks the current processing
location in the query result set.

QueryLocatorqueryLocator

Response
QueryResult

Faults
InvalidQueryLocatorFault

UnexpectedErrorFault

SEE ALSO:

query()

API Call Basics

Change the Batch Size in Queries

186

queryMore()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_changing_batch_size.htm

QueryResult
The queryMore() call returns a QueryResult object, which has the following properties:

DescriptionTypeName

A specialized string, similar to ID. Used in the subsequent queryMore() call for retrieving sets
of objects from the query results, if applicable.

QueryLocatorqueryLocator

Indicates whether additional rows need to be retrieved from the query results (false) using
another queryMore() call, or not (true). Your client application can use this value as a loop
condition while iterating through the query results.

booleandone

Array of sObjects representing individual objects of the specified object and containing data defined
in the field list specified in the queryString.

sObject[]records

Total number of rows retrieved in the query. Your client application can use this value to determine
whether the query retrieved any rows (size != 0) or not (size = 0).

When querying external objects, the system may not know the number of rows that are retrieved
from the external data source. If this situation occurs, size = -1.

intsize

Note: A queryMore()call on a parent object invalidates all child cursors in the previous result set. If you need the results from
the child, you must use queryMore() on those results before using queryMore() on the parent results.

QueryLocator
In the QueryResult object returned by the queryMore() call, queryLocator contains a value that you will use in the subsequent
queryMore() call. Note the following guidelines for using this value:

• Use a queryLocator only once. When you pass it in a queryMore() call, the API returns a new queryLocator in the
QueryResult.

• The queryLocator value expires automatically after 15 minutes of inactivity.

• A user can have up to ten query cursors open at a time. If ten QueryLocator cursors are opened when a client application with
the same logged-in user attempts to open a new cursor, then the oldest of the ten cursors is released.

• You can't use a custom metadata query as a queryLocator.

A QueryLocator represents a server-side cursor.

Note: A queryMore()call on a parent object invalidates all child cursors in the previous result set. If you need the results from
the child, you must use queryMore() on those results before using queryMore() on the parent results.

retrieve()

Retrieves one or more records based on the specified IDs.

Syntax
sObject[] result = connection.retrieve(string fieldList, string sObjectType, ID ids[]);

187

QueryResultCore Calls

Usage
Use the retrieve() call to retrieve individual records from an object. The client application passes the list of fields to retrieve, the
object, and an array of record IDs to retrieve. The retrieve() call does not return records that have been deleted.

In general, you use retrieve() when you know in advance the IDs of the records to retrieve. Use query() instead to obtain
records when you do not know the IDs or when you want to specify other selection criteria.

Client applications can use retrieve() to perform a client-side join. For example, a client application can run a query() to obtain
a set of Opportunity records, iterate through the returned opportunity records, obtain the accountId for each opportunity, and then
call retrieve() to obtain Account information for those accountIds.

Records for certain objects cannot be retrieved via the API. To retrieve a record via the retrieve() call, its object must be configured
as retrieveable (retrieveable is true). To determine whether an object can be retrieved, your client application can invoke the
describeSObjects() call on the object and inspect its retrievable property.

Your client application must be logged in with sufficient access rights to retrieve records within the specified object and to retrieve the
fields in the specified field list. For more information, see Factors that Affect Data Access.

Sample Code—Java
This sample retrieves the Id, Name, and Website of the specified Account records. It writes the fields of the retrieved records to the
console.

public void retrieveRecords(String[] ids) {
try {

SObject[] sObjects = connection.retrieve("ID, Name, Website",
"Account", ids);

// Verify that some objects were returned.
// Even though we began with valid object IDs,
// someone else might have deleted them in the meantime.
if (sObjects != null) {

for (int i = 0; i < sObjects.length; i++) {
// Cast the SObject into an Account object
Account retrievedAccount = (Account) sObjects[i];
if (retrievedAccount != null) {

System.out.println("Account ID: " + retrievedAccount.getId());
System.out.println("Account Name: " + retrievedAccount.getName());
System.out.println("Account Website: "

+ retrievedAccount.getWebsite());
}

}
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

188

retrieve()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_opportunity.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm

Sample Code—C#
This sample retrieves the Id, Name, and Website of the specified Account records. It writes the fields of the retrieved records to the
console.

public void retrieveRecords(String[] ids)
{

try
{

sObject[] sObjects = binding.retrieve("ID, Name, Website",
"Account", ids);

// Verify that some objects were returned.
// Even though we began with valid object IDs,
// someone else might have deleted them in the meantime.
if (sObjects != null)
{

for (int i = 0; i < sObjects.Length; i++)
{

// Cast the SObject into an Account object
Account retrievedAccount = (Account)sObjects[i];
if (retrievedAccount != null)
{

Console.WriteLine("Account ID: " + retrievedAccount.Id);
Console.WriteLine("Account Name: " + retrievedAccount.Name);
Console.WriteLine("Account Website: "

+ retrievedAccount.Website);
}

}
}

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments

DescriptionTypeName

List of one or more fields in the specified object, separated by commas. You must specify
valid field names and must have read-level permissions to each specified field. The fieldList
defines the ordering of fields in the result.

stringfieldList

Object from which to retrieve data. The specified value must be a valid object for your
organization. For a complete list of objects, see Standard Objects.

stringsObjectType

Array of one or more IDs of the objects to retrieve. You can pass a maximum of 2000 object
IDs to the retrieve() call. For information on IDs, see ID Field Type.

ID[]ids

189

retrieve()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_list.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

Response

DescriptionTypeName

Array of one or more sObjects representing individual records of the specified object. The number
of sObject returned in the array matches the number of IDs passed into the retrieve() call.

sObject[]result

If you do not have access to an object or if a passed ID is invalid, the array returns null for that
object. For information on IDs, see ID Field Type.

Faults
InvalidSObjectFault

InvalidFieldFault

UnexpectedErrorFault

SEE ALSO:

API Call Basics

search()

Executes a text search in your organization’s data.

Syntax
SearchResult = connection.search(String searchString);

Usage
Use search() to search for records based on a search string. The search call supports searching custom objects. For an extensive
discussion about the syntax and rules used for text searches, see the Salesforce SOQL and SOSL Reference Guide.

Certain objects cannot be searched via the API, such as Attachment objects. To search an object via the search() call, the object must be
configured as searchable (isSearchable is true). To determine whether an object can be searched, your client application can
invoke the describeSObjects() call on the object and inspect its searchable property.

Sample Code—Java
This sample makes the search() call by passing it a SOSL query, which returns contacts, leads, and accounts whose phone fields
contain a specified value. Next, it gets the sObject records from the results and stores the records in arrays depending on the record
type. Finally, it writes the fields of the returned contacts, leads, and accounts to the console.

public void searchSample() {
try {
// Perform the search using the SOSL query.
SearchResult sr = connection.search(
"FIND {4159017000} IN Phone FIELDS RETURNING "

190

search()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_attachment.htm

+ "Contact(Id, Phone, FirstName, LastName), "
+ "Lead(Id, Phone, FirstName, LastName), "
+ "Account(Id, Phone, Name)");

// Get the records from the search results.
SearchRecord[] records = sr.getSearchRecords();

ArrayList<Contact> contacts = new ArrayList<Contact>();
ArrayList<Lead> leads = new ArrayList<Lead>();
ArrayList<Account> accounts = new ArrayList<Account>();

// For each record returned, find out if it's a
// contact, lead, or account and add it to the
// appropriate array, then write the records
// to the console.
if (records.length > 0) {
for (int i = 0; i < records.length; i++) {
SObject record = records[i].getRecord();
if (record instanceof Contact) {
contacts.add((Contact) record);
} else if (record instanceof Lead) {
leads.add((Lead) record);
} else if (record instanceof Account) {
accounts.add((Account) record);
}
}

System.out.println("Found " + contacts.size() + " contacts.");
for (Contact c : contacts) {
System.out.println(c.getId() + ", " + c.getFirstName() + ", "
+ c.getLastName() + ", " + c.getPhone());
}
System.out.println("Found " + leads.size() + " leads.");
for (Lead d : leads) {
System.out.println(d.getId() + ", " + d.getFirstName() + ", "
+ d.getLastName() + ", " + d.getPhone());
}
System.out.println("Found " + accounts.size() + " accounts.");
for (Account a : accounts) {
System.out.println(a.getId() + ", " + a.getName() + ", "
+ a.getPhone());
}
} else {
System.out.println("No records were found for the search.");
}
} catch (Exception ce) {
ce.printStackTrace();
}
}

191

search()Core Calls

Sample Code—C#
This sample makes the search() call by passing it a SOSL query, which returns contacts, leads, and accounts whose phone fields
contain a specified value. Next, it gets the sObject records from the results and stores the records in arrays depending on the record
type. Finally, it writes the fields of the returned contacts, leads, and accounts to the console.

public void searchSample()
{
try
{
// Perform the search using the SOSL query.
SearchResult sr = binding.search(
"FIND {4159017000} IN Phone FIELDS RETURNING "
+ "Contact(Id, Phone, FirstName, LastName), "
+ "Lead(Id, Phone, FirstName, LastName), "
+ "Account(Id, Phone, Name)");

// Get the records from the search results.
SearchRecord[] records = sr.searchRecords;

List<Contact> contacts = new List<Contact>();
List<Lead> leads = new List<Lead>();
List<Account> accounts = new List<Account>();

// For each record returned, find out if it's a
// contact, lead, or account and add it to the
// appropriate array, then write the records
// to the console.
if (records.Length > 0)
{
for (int i = 0; i < records.Length; i++)
{
sObject record = records[i].record;
if (record is Contact)
{
contacts.Add((Contact)record);
}
else if (record is Lead)
{
leads.Add((Lead)record);
}
else if (record is Account)
{
accounts.Add((Account)record);
}
}

Console.WriteLine("Found " + contacts.Count + " contacts.");
foreach (Contact c in contacts)
{
Console.WriteLine(c.Id + ", " +
c.FirstName + ", " +
c.LastName + ", " +
c.Phone);

192

search()Core Calls

}
Console.WriteLine("Found " + leads.Count + " leads.");
foreach (Lead d in leads)
{
Console.WriteLine(d.Id + ", " +
d.FirstName + ", " +
d.LastName + ", " +
d.Phone);
}
Console.WriteLine("Found " + accounts.Count + " accounts.");
foreach (Account a in accounts)
{
Console.WriteLine(a.Id + ", " +
a.Name + ", " +
a.Phone);
}
}
else
{
Console.WriteLine("No records were found for the search.");
}
}
catch (SoapException e)
{
Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);
}
}

Arguments

DescriptionTypeName

Search string that specifies the text expression to search for, the scope of fields to search, the list of
objects and fields to retrieve, and the maximum number of records to return. For more information,
see the Salesforce SOQL and SOSL Reference Guide.

stringsearch

Response
SearchResult

Fault
InvalidFieldFault

InvalidSObjectFault

MalformedSearchFault

193

search()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/

UnexpectedErrorFault

SEE ALSO:

API Call Basics

SearchResult
The search() call returns a SearchResult object, which has the following properties.

DescriptionTypeName

Unique identifier for the SOSL search.stringqueryId

Array of SearchRecord objects, each of which contains an sObject.SearchRecord[]searchRecords

Metadata for SearchRecords.SearchResultsMetadatasearchResultsMetadata

SearchRecord
Represents an individual record returned from a search.

DescriptionTypeName

The individual record returned by the search.sObjectrecord

Metadata for searchRecords.SearchRecordMetadatasearchRecordMetadata

On the search results page, shows terms that match the search string,
highlighted within the surrounding text.

SearchSnippetsnippet

SearchRecordMetadata
Metadata for search results at the record level.

DescriptionTypeName

Indicates that an article has been promoted in search results. Admins
define promoted search terms by adding promoted terms to knowledge

booleansearchPromoted

articles. Users who search for these keywords see the article first in search
results. Available in API version 42.0 and later.

Indicates that a record matches a spell-corrected search term. Appears in
the response only when true.

booleanspellCorrected

SearchSnippet
Excerpts shown on search results pages for article, case, feed, and idea searches.

194

SearchResultCore Calls

DescriptionTypeName

The excerpt that contains the match for the search term.stringtext

The list of highlighted fields.WholeFieldswholeFields

WholeFields
Contains the complete text of each field that contains highlighting for terms that match the search query. The highlighted terms are
surrounded by <mark> tags.

DescriptionTypeName

The name of the highlighted field.stringname

The highlighted text.stringvalue

SearchResultsMetadata
Global metadata for the search result.

DescriptionTypeName

Search results metadata at the object level.EntitySearchMetadataentityMetadata

EntitySearchMetadata
Metadata for search results at the object level.

DescriptionTypeName

Metadata for search results at the field level.FieldLevelSearchMetadatafieldMetadata

Metadata for search term promotion at the object level. Available in API
version 42.0 and later.

EntitySearchPromotionMetadatasearchPromotedMetadata

Metadata for spelling correction at the object level.EntitySpellCorrectionMetadataspellCorrectionMetadata

Identifies the object.stringentityName

FieldLevelSearchMetadata
Metadata for search results at the field level.

DescriptionTypeName

The field name.stringname

The field label.stringlabel

The field type.stringtype

195

SearchResultCore Calls

EntitySearchPromotionMetadata
Metadata for search term promotion at the object level. Appears in the response only when at least one article for an object is a promoted
result. Available in API version 42.0 and later.

DescriptionTypeName

Count of promoted article results at the object level.intpromotedResultCount

EntitySpellCorrectionMetadata
Metadata for spelling correction at the object level. Appears in the response only when at least one record for an object matches a
spell-corrected search term.

DescriptionTypeName

The spell-corrected search term.stringcorrectedQuery

If true, indicates that the user has access to at least one record that
matches a search term that wasn't spell-corrected. Each object sometimes
returns a different value.

booleanhasNonCorrectedResults

SEE ALSO:

WITH SNIPPET

WITH SPELL_CORRECTION

undelete()

Undeletes records from the Recycle Bin.

Syntax
UndeleteResult[] = connection.undelete(ID[] ids);

Usage
Use this call to restore any deleted record that is undeletable. Undeletable records include those in the Recycle Bin. Records can be put
in the Recycle Bin as the result of a merge() or delete() call. You can identify deleted records, including records deleted as the
result of a merge, using the queryAll() call.

You should verify that a record can be undeleted before attempting to delete it. Some records cannot be undeleted, for example, Account
records can be undeleted, but not AccountTeamMember records. To verify that a record can be undeleted, check that the value of the
undeletable flag in the DescribeSObjectResult for that object is set to true.

Since a delete call cascade-deletes child records, an undelete call will undelete the cascade-deleted records. For example, deleting an
account will delete all the contacts associated with that account.

196

undelete()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_sosl_with_snippet.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_sosl_with_spell_correction.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_accountteammember.htm

You can undelete records that were deleted as the result of a merge, but the child objects will have been re-parented, which cannot be
undone.

Note: Starting with API version 15.0, if you specify a value for a field that contains a string, and the value is too big for the field,
the call fails and an error is returned. In previous versions of the API the value was truncated and the call succeeded. If you wish
to keep the old behavior with versions 15.0 and later, use the AllowFieldTruncationHeader SOAP header.

This call supports the AllOrNoneHeader, AllowFieldTruncationHeader, and CallOptions headers.

Rollback on Error
The AllOrNoneHeader header allows you to roll back all changes unless all records are processed successfully. This header is available in
API version 20.0 and later. Allows a call to roll back all changes unless all records are processed successfully.

Sample Code—Java
This sample calls queryAll() to get the last five deleted accounts. It then passes the IDs of these accounts to undelete(), which
restores these accounts. Finally, it checks the results of the call and writes the IDs of the restored accounts or any errors to the console.

public void undeleteRecords() {
try {

// Get the accounts that were last deleted
// (up to 5 accounts)
QueryResult qResult = connection

.queryAll("SELECT Id, SystemModstamp FROM "
+ "Account WHERE IsDeleted=true "
+ "ORDER BY SystemModstamp DESC LIMIT 5");

String[] Ids = new String[qResult.getSize()];
// Get the IDs of the deleted records
for (int i = 0; i < qResult.getSize(); i++) {

Ids[i] = qResult.getRecords()[i].getId();
}

// Restore the records
UndeleteResult[] undelResults = connection.undelete(Ids);

// Check the results
for (UndeleteResult result : undelResults) {

if (result.isSuccess()) {
System.out.println("Undeleted Account ID: " + result.getId());

} else {
if (result.getErrors().length > 0) {

System.out.println("Error message: "
+ result.getErrors()[0].getMessage());

}
}

}
} catch (ConnectionException ce) {

ce.printStackTrace();
}

}

197

undelete()Core Calls

Sample Code—C#
This sample calls queryAll() to get the last five deleted accounts. It then passes the IDs of these accounts to undelete(), which
restores these accounts. Finally, it checks the results of the call and writes the IDs of the restored accounts or any errors to the console.

public void undeleteRecords()
{

try
{

// Get the accounts that were last deleted
// (up to 5 accounts)
QueryResult qResult = binding.queryAll(

"SELECT Id, SystemModstamp FROM " +
"Account WHERE IsDeleted=true " +
"ORDER BY SystemModstamp DESC LIMIT 5");

String[] Ids = new String[qResult.size];
// Get the IDs of the deleted records
for (int i = 0; i < qResult.size; i++)
{

Ids[i] = qResult.records[i].Id;
}

// Restore the records
UndeleteResult[] undelResults = binding.undelete(Ids);

// Check the results
foreach (UndeleteResult result in undelResults)
{

if (result.success)
{

Console.WriteLine("Undeleted Account ID: " +
result.id);

}
else
{

if (result.errors.Length > 0)
{

Console.WriteLine("Error message: " +
result.errors[0].message);

}
}

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

198

undelete()Core Calls

Arguments

DescriptionTypeName

IDs of the records to be restored.ID[]ids

Response
UndeleteResult

Faults
UnexpectedErrorFault

SEE ALSO:

delete()

UndeleteResult
The undelete() call returns an undeleteResult object with the following properties:

DescriptionTypeName

ID of the record being undeleted.IDId

Indicates whether the undelete was successful (true) or not (false).booleansuccess

If an error occurred during the undelete() call, an array of one or more Error objects
providing the error code and description.

Error[]errors

update()

Updates one or more existing records in your organization’s data.

Syntax
SaveResult[] = connection.update(sObject[] sObjects);

Usage
Use this call to update one or more existing records, such as accounts or contacts, in your organization’s data. The update() call is
analogous to the UPDATE statement in SQL.

199

UndeleteResultCore Calls

Permissions
Your client application must be logged in with sufficient access rights to update() records objects for the specified object, as well
as individual fields inside that object. For more information, see Factors that Affect Data Access.

Special Handling
Certain objects—and certain fields within those objects—require special handling or permissions. For example, you might also need
permissions to access an object’s parent object. Before you attempt to update a record for a particular object, be sure to read its description
in the Standard Objects and in Salesforce Help.

Updateable Objects
Certain records cannot be updated via the API. To update a record via the update() call, its object must be configured as updateable
(updateable is true). To determine whether an object can be updated, your client application can invoke the
describeSObjects() call on the object and inspect its updateable property.

Required Fields
When updating required fields, you must supply a value—you cannot set the value to null. For more information, see Required Fields.

ID Fields
Fields whose names contain “Id” are either that object’s primary key (see ID Field Type) or a foreign key (see Reference Field Type).
Client applications cannot update primary keys, but they can update foreign keys. For example, a client application can update the
OwnerId of an Account, because OwnerID is a foreign key that refers to the user who owns the account record. Use
describeSObjects() to confirm whether the field can be updated.

This call checks a batch for duplicate Id values, and if there are duplicates, the first 12 are processed. For additional duplicate Id values,
the SaveResult for those entries is marked with an error similar to the following:

Maximum number of duplicate updates in one batch (12 allowed).

Automatically Updated Fields
The API updates certain fields automatically, such as LastModifiedDate, LastModifiedById, and SystemModstamp.
You cannot explicitly specify these values in your update() call.

Resetting Values to null
To reset a field value to null, you add the field name to the fieldsToNull array in the sObject. You cannot set required fields
(nillable is false) to null.

Valid Field Values
You must supply values that are valid for the field’s data type, such as integers (not alphabetic characters) for integer fields. In your client
application, follow the data formatting rules specified for your programming language and development tool (your development tool
will handle the appropriate mapping of data types in SOAP messages).

200

update()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_list.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/required_fields.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435823
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm

String Values
When storing values in string fields, the API trims any leading and trailing white space. For example, if the value of a name field is entered
as " ABC Company ", then the value is stored in the database as "ABC Company".

Starting with API version 15.0, if you specify a value for a field that contains a string, and the value is too big for the field, the call fails and
an error is returned. In previous versions of the API the value was truncated and the call succeeded. If you wish to keep the old behavior
with versions 15.0 and later, use the AllowFieldTruncationHeader SOAP header.

Assignment Rules
When updating Case or Lead objects, your client application can set AssignmentRuleHeader options to have the case or lead automatically
assigned to one or more users based on assignment rules configured in the Salesforce user interface. For more information, see Case or
Lead.

Maximum Number of Objects Updated
Your client application can change up to 200 records in a single update() call. If an update request exceeds 200 records, the entire
operation fails.

Rollback on Error
The AllOrNoneHeader header allows you to roll back all changes unless all records are processed successfully. This header is available in
API version 20.0 and later. Allows a call to roll back all changes unless all records are processed successfully.

Automatic Subscriptions for Chatter Feeds
To subscribe to records they create, users must enable the Automatically follow records that I create option in
their personal settings. If users have automatic subscriptions enabled, they automatically follow the records they create and see changes
to those records in their Chatter feed on the Home tab.

When you update the owner of a record, the new owner is not automatically subscribed to the record, unless the new owner has
automatic subscriptions for records enabled in his or her Chatter feed settings. The previous owner is not automatically unsubscribed.
If the new owner has automatic subscriptions for records enabled, the new and previous owners both see any changes to the record in
their news feed.

A user can subscribe to a record or to another user. Changes to the record and updates from the users are displayed in the Chatter feed
on the user's home page, which is a useful way to stay up-to-date with other users and with changes made to records in Salesforce.
Feeds are available in API version 18.0 and later.

Updating Records for Different Object Types
You can update records for multiple object types, including custom objects, in one call with API version 20.0 and later. For example, you
could update a contact and an account in one call. You can update records for up to 10 objects types in one call.

Records are saved in the same order that they are entered in the sObjects input array.

201

update()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_case.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm

Records for different object types are broken into multiple chunks by Salesforce. A chunk is a subset of the sObjects input array and
each chunk contains records of one object type. Data is committed on a chunk-by-chunk basis. Any Apex triggers related to the records
in a chunk are invoked once per chunk. Consider an sObjects input array containing the following set of records:

account1, account2, contact1, contact2, contact3, case1, account3, account4, contact4

Salesforce splits the records into five chunks:

1. account1, account2

2. contact1, contact2, contact3

3. case1

4. account3, account4

5. contact4

Each call can process up to 10 chunks. If the sObjects array contains more than 10 chunks, you must process the records in more
than one call.

Warning: You can't update records for multiple object types in one call if one of those types is related to a feature in the Setup
area in Salesforce. The only exceptions are the following objects:

• Custom settings objects, which are similar to custom objects. For more information, see “Create Custom Settings” in Salesforce
Help.

• GroupMember

• Group

• User if the following fields are not being updated:

– UserRoleId

– IsActive

– ForecastEnabled

– IsPortalEnabled

– Username

– ProfileId

update() and Foreign Keys
You can use external ID fields as a foreign key, which allows you to update a record and relate it to another existing record in a single
step instead of querying the parent record ID first. To do this, set the foreign key to an instance of the parent sObject that has only the
external ID field specified. This external ID should match the external ID value on the parent record.

The following Java and C# examples show you how to update an opportunity and relate it to an existing account using a custom external
ID field named MyExtId__c. Each example has a method that accepts the ID of the opportunity to update. It creates an opportunity
sObject and sets its ID field so that the object points to an existing opportunity to be updated, sets a new value for the stage name field,
and then sets the external ID field to the account object. It then updates the opportunity. Once the opportunity is updated, the account
becomes its parent and the state name is updated.

Java Example

public void updateForeignKeySample(String oppId) {
try {

Opportunity updateOpportunity = new Opportunity();
// Point to an existing opportunity to update

202

update()Core Calls

updateOpportunity.setId(oppId);
updateOpportunity.setStageName("Qualification");

Account parentAccountRef = new Account();
parentAccountRef.setMyExtId__c("SAP1111111");
updateOpportunity.setAccount(parentAccountRef);

SaveResult[] results = connection
.update(new SObject[] { updateOpportunity });

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

C# Example

public void updateForeignKeySample(String oppId)
{

try
{

Opportunity updateOpportunity = new Opportunity();
// Point to an existing opportunity to update
updateOpportunity.Id = oppId;
updateOpportunity.StageName = "Prospecting";

Account parentAccountRef = new Account();
parentAccountRef.MyExtId__c = "SAP1111111";
updateOpportunity.Account = parentAccountRef;

SaveResult[] results = binding.update(
new sObject[] { updateOpportunity });

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Basic Steps for Updating Records
Use this process to update records:

1. Determine the ID of each record that you want to update(). For example, you might call query() to retrieve a set of records (with
their IDs), based on specific criteria, that you would want to update. If you know the ID of the record that you want to update, you
can call retrieve() instead. For information on IDs, see ID Field Type.

2. Create an sObject for each record, and populate its fields with the data that you want to update.

3. Construct an sObject[] array and populate that array with the records that you want to update.

4. Call update(), passing in the sObject[] array.

5. Process the results in the SaveResult[] object to verify whether the records have been successfully updated.

203

update()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

Sample Code—Java
This sample accepts the IDs of the accounts to update. It creates two account sObjects, sets each with one of the passed IDs so that the
sObject points to an existing account, and sets other fields. It then makes the update() call and verifies the results.

public void updateRecords(String[] ids) {
Account[] updates = new Account[2];

Account account1 = new Account();
account1.setId(ids[0]);
account1.setShippingPostalCode("89044");
updates[0] = account1;

Account account2 = new Account();
account2.setId(ids[1]);
account2.setNumberOfEmployees(1000);
updates[1] = account2;

// Invoke the update call and save the results
try {

SaveResult[] saveResults = connection.update(updates);
for (SaveResult saveResult : saveResults) {

if (saveResult.isSuccess()) {
System.out.println("Successfully updated Account ID: "

+ saveResult.getId());
} else {

// Handle the errors.
// We just print the first error out for sample purposes.
Error[] errors = saveResult.getErrors();
if (errors.length > 0) {

System.out.println("Error: could not update " + "Account ID "
+ saveResult.getId() + ".");

System.out.println("\tThe error reported was: ("
+ errors[0].getStatusCode() + ") "
+ errors[0].getMessage() + ".");

}
}

}
} catch (ConnectionException ce) {

ce.printStackTrace();
}

}

Sample Code—C#
This sample accepts the IDs of the accounts to update. It creates two account sObjects, sets each with one of the passed IDs so that the
sObject points to an existing account, and sets other fields. It then makes the update() call and verifies the results.

public void updateRecords(String[] ids)
{

Account[] updates = new Account[2];

Account account1 = new Account();
account1.Id = ids[0];

204

update()Core Calls

account1.ShippingPostalCode = "89044";
updates[0] = account1;

Account account2 = new Account();
account2.Id = ids[1];
account2.NumberOfEmployees = 1000;
updates[1] = account2;

// Invoke the update call and save the results
try
{

SaveResult[] saveResults = binding.update(updates);
foreach (SaveResult saveResult in saveResults)
{

if (saveResult.success)
{

Console.WriteLine("Successfully updated Account ID: " +
saveResult.id);

}
else
{

// Handle the errors.
// We just print the first error out for sample purposes.
Error[] errors = saveResult.errors;
if (errors.Length > 0)
{

Console.WriteLine("Error: could not update " +
"Account ID " + saveResult.id + "."

);
Console.WriteLine("\tThe error reported was: (" +

errors[0].statusCode + ") " +
errors[0].message + "."

);
}

}
}

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments

DescriptionTypeName

Array of one or more records (maximum of 200) to update.sObject[]sObjects

205

update()Core Calls

Response
SaveResult[]

Faults
InvalidSObjectFault

UnexpectedErrorFault

SEE ALSO:

API Call Basics

SaveResult
The update() call returns an array of SaveResult objects. Each element in the SaveResult array corresponds to the sObject[] array
passed as the sObjects parameter in the update() call. For example, the object returned in the first index in the SaveResult array
matches the object specified in the first index of the sObject[] array.

A SaveResult object has the following properties:

DescriptionTypeName

ID of an sObject that you successfully updated. If this field contains a value, then the
object was updated successfully. If this field is empty, then the object was not updated
and the API returned error information instead.

IDid

Indicates whether the update() call succeeded (true) or not (false) for this
object.

booleansuccess

If an error occurred during the update() call, an array of one or more Error objects
providing the error code and description.

If your organization has active duplicate rules and a duplicate is detected, the
SaveResult includes an Error with a data type of DuplicateError.

Error[]errors

upsert()

Creates new records and updates existing records; uses a custom field to determine the presence of existing records. In most cases, we
recommend that you use upsert() instead of create() to avoid creating unwanted duplicate records (idempotent). Available
in the API version 7.0 and later.

Note: Starting with API version 15.0, if you specify a value for a field that contains a string, and the value is too big for the field,
the call fails and an error is returned. In previous versions of the API the value was truncated and the call succeeded. If you wish
to keep the old behavior with versions 15.0 and later, use the AllowFieldTruncationHeader SOAP header.

Syntax
UpsertResult[] = connection.upsert(String externalIdFieldName, sObject[] sObjects);

206

SaveResultCore Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_duplicateerror.htm

Usage
Upsert is a merging of the words insert and update. This call is available for objects if the object has an external ID field or a field with
the idLookup field property.

On custom objects, this call uses an indexed custom field called an external ID to determine whether to create a new record or update
an existing record. On standard objects, this call can use the name of any field with the idLookup instead of the external ID.

Note: External ID fields cannot be used with merge().

For more information about adding custom fields, including external ID fields, to objects, see the “Adding Fields” topic in Salesforce Help.

Using this call can dramatically reduce how many calls you need to make, particularly when:

• You are integrating your organization’s Salesforce data with ERP (enterprise resource planning) systems such as accounting and
manufacturing.

• You are importing data and want to prevent the creation of duplicate objects.

If you are upserting a record for an object that has a custom field with both the External ID and Unique attributes selected (a
unique index), you do not need any special permissions, because the Unique attribute prevents the creation of duplicates. If you are
upserting a record for an object that has the External ID attribute selected but not the Unique attribute selected, (a non-unique
index) your client application must have the permission “View All Data” to execute this call.

Note: Matching by external ID is case-insensitive only if the external ID field has the Unique attribute and the Treat "ABC"
and "abc" as duplicate values (case insensitive)) option selected. These options are selected in the
Salesforce user interface during field creation. If this is the case, “ABC123” is matched with “abc123.” Before performing an operation,
if you have external ID fields without the case-insensitive option selected, review your external IDs for any values that would be
matched if case was not considered. If such values exist, you may want to modify them to make them unique, or select the
case-sensitive option for your external ID fields. For more information about field attributes, see “Custom Field Attributes” in
Salesforce Help.

How Upsert Chooses to update() or create()
Upsert uses the external ID to determine whether it should create a new record or update an existing one:

• If the external ID is not matched, then a new record is created.

• If the external ID is matched once, then the existing record is updated.

• If the external ID is matched multiple times, then an error is reported.

• When batch updating multiple records where the external ID is the same for two or more records in your batch call, those records
will be marked as errors in the UpsertResult file. The records will be neither created or updated.

Rollback on Error
The AllOrNoneHeader header allows you to roll back all changes unless all records are processed successfully. This header is available in
API version 20.0 and later. Allows a call to roll back all changes unless all records are processed successfully.

Automatic Subscriptions for Chatter Feeds
To subscribe to records they create, users must enable the Automatically follow records that I create option in
their personal settings. If users have automatic subscriptions enabled, they automatically follow the records they create and see changes
to those records in their Chatter feed on the Home tab.

207

upsert()Core Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/access_for_fields.htm#access_lookup

When you update the owner of a record, the new owner is not automatically subscribed to the record, unless the new owner has
automatic subscriptions for records enabled in his or her Chatter feed settings. The previous owner is not automatically unsubscribed.
If the new owner has automatic subscriptions for records enabled, the new and previous owners both see any changes to the record in
their news feed.

A user can subscribe to a record or to another user. Changes to the record and updates from the users are displayed in the Chatter feed
on the user's home page, which is a useful way to stay up-to-date with other users and with changes made to records in Salesforce.
Feeds are available in API version 18.0 and later.

upsert() and Foreign Keys
You can use external ID fields as a foreign key, which allows you to create or update a record and relate it to another existing record in
a single step instead of querying the parent record ID first. To do this, set the foreign key to an instance of the parent sObject that has
only the external ID field specified. This external ID should match the external ID value on the parent record. Unlike create(), the
parent record must already exist when using upsert() to create or update a child record related by a foreign key.

The following Java and C# examples upsert an opportunity. In this case, the opportunity doesn’t exist in the database, so the upsert()
call will create it. The opportunity references an existing account. Rather than specify the account ID, which would require a separate
query to obtain, we specify an external ID for the account, in this example the MyExtId__c custom field.

Java Example

public void upsertForeignKeySample() {
try {

Opportunity newOpportunity = new Opportunity();
newOpportunity.setName("UpsertOpportunity");
newOpportunity.setStageName("Prospecting");
Calendar dt = connection.getServerTimestamp().getTimestamp();
dt.add(Calendar.DAY_OF_MONTH, 7);
newOpportunity.setCloseDate(dt);
newOpportunity.setMyExtId__c("UPSERTID001");

// Parent Account record must already exist
Account parentAccountRef = new Account();
parentAccountRef.setMyExtId__c("SAP111111");
newOpportunity.setAccount(parentAccountRef);

SaveResult[] results = connection
.upsert("MyExtId__c", new SObject[] { newOpportunity });

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

C# Example

public void upsertForeignKeySample()
{

try
{

Opportunity newOpportunity = new Opportunity();
newOpportunity.Name = "UpsertOpportunity";
newOpportunity.StageName = "Prospecting";
DateTime dt = (DateTime)binding.getServerTimestamp().timestamp;
newOpportunity.CloseDate = dt.AddDays(7);

208

upsert()Core Calls

newOpportunity.CloseDateSpecified = true;
newOpportunity.MyExtId__c = "UPSERTID001";

// Parent Account record must already exist
Account parentAccountRef = new Account();
parentAccountRef.MyExtId__c = "SAP111111";
newOpportunity.Account = parentAccountRef;

SaveResult[] results = binding
.upsert("MyExtId", new sObject[] { newOpportunity });

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Sample Code—Java
This sample upserts two accounts using a custom external ID field called MyExtId__c. The upsert() call matches the accounts
based on the MyExtId__c field in order to determine whether to create or update the accounts. Before running this sample, change
the MyExtId__c field name to an existing custom ID field name in your org.

public void upsertRecords() {
SObject[] upserts = new Account[2];

Account upsertAccount1 = new Account();
upsertAccount1.setName("Begonia");
upsertAccount1.setIndustry("Education");
upsertAccount1.setMyExtId__c("1111111111");
upserts[0] = upsertAccount1;

Account upsertAccount2 = new Account();
upsertAccount2 = new Account();
upsertAccount2.setName("Bluebell");
upsertAccount2.setIndustry("Technology");
upsertAccount2.setMyExtId__c("2222222222");
upserts[1] = upsertAccount2;

try {
// Invoke the upsert call and save the results.
// Use External_Id custom field for matching records.
UpsertResult[] upsertResults = connection.upsert(

"MyExtId__c", upserts);
for (UpsertResult result : upsertResults) {

if (result.isSuccess()) {
System.out.println("\nUpsert succeeded.");
System.out.println((result.isCreated() ? "Insert" : "Update")

+ " was performed.");
System.out.println("Account ID: " + result.getId());

} else {
System.out.println("The Upsert failed because: "

209

upsert()Core Calls

+ result.getErrors()[0].getMessage());
}

}
} catch (ConnectionException ce) {

ce.printStackTrace();
}

}

Sample Code—C#
This sample upserts two accounts using a custom external ID field called MyExtId__c. The upsert() call matches the accounts
based on the MyExtId__c field in order to determine whether to create or update the accounts. Before running this sample, change
the MyExtId__c field name to an existing custom ID field name in your org.

public void upsertRecords()
{

sObject[] upserts = new Account[2];

Account upsertAccount1 = new Account();
upsertAccount1.Name = "Begonia";
upsertAccount1.Industry = "Education";
upsertAccount1.MyExtId__c = "1111111111";
upserts[0] = upsertAccount1;

Account upsertAccount2 = new Account();
upsertAccount2 = new Account();
upsertAccount2.Name = "Bluebell";
upsertAccount2.Industry = "Technology";
upsertAccount2.MyExtId__c = "2222222222";
upserts[1] = upsertAccount2;

try
{

// Invoke the upsert call and save the results.
// Use External_Id custom field for matching records.
UpsertResult[] upsertResults =

binding.upsert("MyExtId__c", upserts);
foreach (UpsertResult result in upsertResults)
{

if (result.success)
{

Console.WriteLine("\nUpsert succeeded.");
Console.WriteLine(

(result.created ? "Insert" : "Update") +
" was performed."

);
Console.WriteLine("Account ID: " + result.id);

}
else
{

Console.WriteLine("The Upsert failed because: " +
result.errors[0].message);

}

210

upsert()Core Calls

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments

DescriptionTypeName

Contains the name of the field on this object with the external ID field attribute for custom
objects or the idLookup field property for standard objects. The idLookup field property

stringExternalIDFieldName

is usually on a field that is the object's ID field or name field, but there are exceptions, so
check for the presence of the property in the object you wish to upsert().

Array of one or more records (maximum of 200) to create or update. All records must
have the same object type.

sObject[]sObjects

Response
UpsertResult[]

Faults
InvalidSObjectFault

UnexpectedErrorFault

SEE ALSO:

create()

update()

API Call Basics

UpsertResult
The upsert call returns an array of UpsertResult objects. Each element in the array corresponds to the sObject[] array passed as the
sObjects parameter in the upsert() call. For example, the object returned in the first index in the UpsertResult array matches
the object specified in the first index of the sObject[] array.

An UpsertResult object has the following properties:

DescriptionTypeName

Indicates whether the record was created (true) or updated (false).booleancreated

211

UpsertResultCore Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/access_for_fields.htm#access_lookup

DescriptionTypeName

If errors occurred during the call, an array Error objects, providing the error code and
description, is returned.

Error[]errors

If the call succeeded, the field contains the ID of the record that was either updated or
created. If there was an error, the field is null. For more information, see ID Field Type.

IDid

Indicates whether the call succeeded (true) or not (false) for this object.

If your organization has active duplicate rules and a duplicate is detected, the UpsertResult
includes an Error with a data type of DuplicateError.

booleansuccess

212

UpsertResultCore Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_duplicateerror.htm

CHAPTER 10 Describe Calls

The following table lists supported describe calls in the API in alphabetical order, and provides a brief description for each. Click a call
name to see syntax, usage, and more information for that call.

Note: For a list of Apex-related calls, see Apex-Related Calls, for a list of core calls, see Core Calls, and for a list of utility calls, see
Utility Calls.

DescriptionCall

Returns information about all the tabs—including Lightning page tabs—available to the
logged-in user, regardless of whether the user has chosen to hide tabs in his own user interface
via the All Tabs (+) tab customization feature.

describeAllTabs()

Retrieves metadata about items either in the Salesforce mobile app navigation menu or the
Salesforce drop-down app menu.

describeAppMenu()

Retrieves metadata about approval layouts for the specified object type.describeApprovalLayout()

In API version 28.0, describes details about actions available for a specified parent. In API
version 29.0 and greater, describes details about actions available for a specified context.

describeAvailableQuickActions()

Retrieves metadata about compact layouts for the specified object type.describeCompactLayouts()

Retrieves available category groups for entities specified in the request.describeDataCategoryGroups()

Retrieves available category groups along with their data category structure for entities specified
in the request.

describeDataCategoryGroupStructures()

Retrieves a list of available objects for your organization’s data.describeGlobal()

Returns information about both objects and themes available to the current logged-in user.describeGlobalTheme()

Retrieves the Knowledge language settings in the organization.describeKnowledge()

Retrieves metadata about page layouts for the specified object type.describeLayout()

Retrieves metadata about the primary compact layout for each of the specified object types.describePrimaryCompactLayouts()

Retrieves details about specified actions.describeQuickActions()

Retrieves an ordered list of objects in the logged-in user’s default global search scope, including
any pinned objects in the user’s search results page.

describeSearchScopeOrder()

Retrieves metadata (field list and object properties) for the specified object type. Superseded
by describeSObjects().

describeSObject()

An array-based version of describeSObject.describeSObjects()

Describes the softPhone layout(s) created for an organization.describeSoftphoneLayout()

213

DescriptionCall

Retrieves the SOQL query and other information about a list view.describeSoqlListViews()

Returns information about the standard and custom apps available to the logged-in user, as
listed in the Lightning Platform app menu at the top of the page.

describeTabs()

Returns information about themes available to the current logged-in user.describeTheme()

Samples

The samples in this section are based on the enterprise WSDL file. They assume that you have already imported the WSDL file and created
a connection. To learn how to do so, see the Quick Start tutorial.

describeAllTabs()

Returns information about all the tabs—including Lightning page tabs—available to the logged-in user, regardless of whether the user
has chosen to hide tabs in his own user interface via the All Tabs (+) tab customization feature.

Syntax
DescribeTab [] = connection.describeAllTabs();

Usage
Use the describeAllTabs() call to obtain information about all the tabs that are available to the logged-in user.

Alternately, use describeTabs() if you want information only about the tabs that display in the Salesforce user interface for the
logged-in user.

Sample Code—Java
This sample calls describeAllTabs(), which returns an array of DescribeTab results.

public void describeAllTabsSample() {
try {
// Describe tabs
DescribeTab[] tabs = connection.describeAllTabs();
System.out.println("There are " + tabs.length +

" tabs available to you.");

// Iterate through the returned tabs
for (int j = 0; j < tabs.length; j++) {
DescribeTab tab = tabs[j];
System.out.println("\tTab " + (j + 1) + ":");
System.out.println("\t\tName: " + tab.getName());
System.out.println("\t\t\Associated SObject" + tab.getSobjectName());
System.out.println("\t\tLabel: " + tab.getLabel());

214

describeAllTabs()Describe Calls

System.out.println("\t\tURL: " + tab.getUrl());
DescribeColor[] tabColors = tab.getColors();
// Iterate through tab colors as needed
DescribeIcon[] tabIcons = tab.getIcons();
// Iterate through tab icons as needed

}
} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Arguments
None.

Response
DescribeTab

describeAppMenu()

Retrieves metadata about items either in the Salesforce mobile app navigation menu or the Salesforce drop-down app menu. This call
is available in API version 29.0 and later.

If you’re accessing the API using a custom community URL, the describeAppMenu() call retrieves the tab set associated with the
community ID you specify.

Syntax
DescribeAppMenuResult describeResult = connection.describeAppMenu(String appMenuType,
String networkId);

Code Sample—Java
This code sample shows how to get the menu items from the Salesforce mobile app navigation menu.

public void describeAppMenu() {
try {

//The following two lines are equivalent
DescribeAppMenuResult describe = connection.describeAppMenu("Salesforce1", "");

DescribeAppMenuResult appMenu = getClient().describeAppMenu(AppMenuType.Salesforce1);

for (DescribeAppMenuItem menuItem : appMenu.getAppMenuItems()) {

if (menuItem.getType() == "Tab.apexPage") {

String visualforceUrl = menuItem.getContent();

215

describeAppMenu()Describe Calls

System.out.println("URL to Visualforce page: " + visualforceUrl);

}

}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Arguments

DescriptionTypeName

Restricts the menu data returned to the specified menu type.

Valid values are:

stringappMenuType

• AppSwitcher—to retrieve the data from the Salesforce drop-down app menu

• Salesforce1—to retrieve the data from the Salesforce mobile app navigation menu

• NetworkTabs—to retrieve the data from a community tab set

If the appMenuType is set to NetworkTabs, enter the ID of the community to retrieve
the tab set from. If appMenuType is not NetworkTabs, this field must be null or empty.

IDnetworkId

Response
DescribeAppMenuResult

Faults
InvalidOrNullForRestrictedPicklist

DescribeAppMenuResult
The describeAppMenu() call returns a list of menu items contained in the specified menu type. The following types are available
in API version 29.0 and later.

DescriptionTypeName

Array of one or more menu items in the selected menu type.DescribeAppMenuItem[]appMenuItems

DescribeAppMenuItem
Each DescribeAppMenuItem object has these fields:

216

DescribeAppMenuResultDescribe Calls

DescriptionTypeName

Array of color information used for the tab associated with
the menu item.

DescribeColor[]colors

Information that helps build the menu item. Each menu item
has a different type of content for this field. For example, the
Salesforce app menu type could contain:

stringcontent

• FlexiPage—the ID of the Lightning page

• Visualforce tab—the URL to the page, such as
/apex/myApexPage.

Menu items of types other than these don’t use this field.

Array of icon information used for the tab associated with
the menu item.

DescribeColor[]icons

The display label of the menu item.stringlabel

API name of the menu item.stringname

The type of menu item, and its subtype, if any. Possible values
for the Salesforce app menu type are:

stringtype

• Standard.Dashboards—Dashboards menu item

• Standard.Feed—Chatter feed menu item

• Standard.Today—the Today menu item

• Standard.Tasks—Tasks menu item

• Tab.apexPage—a Visualforce tab menu item

• Tab.flexipage—a Lightning page tab menu item

The Salesforce URL the menu item should point to.

For the Salesforce app menu type, this field is null for the
Dashboards, Feed, Today, Tasks, and Lightning page menu
items.

stringurl

describeApprovalLayout()

Retrieves metadata about approval layouts for the specified object type.

Syntax
DescribeApprovalLayoutResult approvalLayoutResult = connection.describeApprovalLayout(string
sObjectType, string[] approvalProcessNames);

Usage
Use this call to retrieve information about the approval layout for a given object type. Each approval process has one approval layout.

217

describeApprovalLayout()Describe Calls

If you supply a null value for approvalProcessNames, all the approval layouts for the object are returned, instead of the approval
layout of each specified approval process.

Sample Code—Java
This sample shows how to get the approval layouts of an Account sObject. It calls describeApprovalLayout() with the name
of the sObject type to describe. After getting the approval layouts, the sample prints the name and fields found for each approval layout.

public void describeApprovalLayoutSample() {
try {
String objectToDescribe = "Account";
DescribeApprovalLayoutResult approvalLayoutResult =
connection.describeApprovalLayout(objectToDescribe, null);

System.out.print("There are " + approvalLayoutResult.getApprovalLayouts().length);
System.out.println(" approval layouts for the " + objectToDescribe + " object.");

// Get all the approval layouts for the sObject
for (int i = 0; i < approvalLayoutResult.getApprovalLayouts().length; i++) {
DescribeApprovalLayout aLayout = approvalLayoutResult.getApprovalLayouts()[i];
System.out.println(" There is an approval layout with name: " + aLayout.getName());

DescribeLayoutItem[] layoutItems = aLayout.getLayoutItems();
System.out.print(" There are " + layoutItems.length);
System.out.println(" fields in this approval layout.");
for (int j = 0; j < layoutItems.length; j++) {
System.out.print("This approval layout has a field with name: ");
System.out.println(layoutItems[j].getLabel());

}
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Arguments

DescriptionTypeName

The specified value must be a valid object for your organization. If the object is a person account,
specify Account, or if it is a person contact, specify Contact.

stringsObjectType

Optional array of the approval process API names to return approval layout metadata for.string[]approvalProcessNames

Response
DescribeApprovalLayoutResult

Faults
InvalidSObjectFault

218

describeApprovalLayout()Describe Calls

UnexpectedErrorFault

DescribeApprovalLayoutResult
The describeApprovalLayout() call returns a DescribeApprovalLayoutResult object containing top-level record type information
about the passed-in sObjectType. Your client application can traverse this object to retrieve detailed metadata about the approval
layout.

DescriptionTypeName

List of all the approval layouts in use by the object.DescribeApprovalLayout[]approvalLayouts

DescribeApprovalLayout
Represents an individual item in the DescribeApprovalLayout list.

DescriptionTypeName

Unique ID of this ApprovalLayout. For information on IDs,
see ID Field Type.

IDid

Label of the approval layout.stringlabel

Array of one or more fields assigned to the approval layout.DescribeLayoutItem[]layoutItems

API name of the approval layout.stringname

describeAvailableQuickActions()

In API version 28.0, describes details about actions available for a specified parent. In API version 29.0 and greater, describes details about
actions available for a specified context.

Syntax
DescribeAvailableQuickActionResult [] = connection.describeAvailableQuickActions(string
parentOrContextType);

Usage
Use describeAvailableQuickActions() to get the list of actions whose parent (API version 28.0) or context (API version
29.0 and greater) entity name is supplied as well as standard and global actions. The describeAvailableQuickActions()
call uses the parent entity name, such as “Account”, or “null” for global actions, or in API version 29.0 and greater, the context, to return
an array of DescribeAvailableQuickActionResult.

219

DescribeApprovalLayoutResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

Sample—Java
This sample retrieves and displays the available action information for the Account object.

public void example() throws Exception {
DescribeAvailableQuickActionResult[] aResult =

conn.describeAvailableQuickActions("Account");
for(DescribeAvailableQuickActionResult ar : aResult) {

System.out.println("Action label: " + ar.getLabel());
System.out.println("Action name: " + ar.getName());
System.out.println("Action type: " + ar.getType());

}
}

Arguments

DescriptionTypeName

Either a standard or custom object.stringparentOrContextType

• The parentType applies only to API version 28.0.

• The contextType applies to API version 29.0 and
greater.

Response
An array of DescribeAvailableQuickActionResult objects.

Faults
connection.exception errors

DescribeAvailableQuickActionResult
The describeAvailableQuickActions() call returns an array of DescribeAvailableQuickActionResult objects. In API version
28.0, each DescribeAvailableQuickActionResult object represents details about actions available for a specified parent. In API version
29.0 and greater, each DescribeAvailableQuickActionResult object represents details about actions available for a specified context.

DescriptionTypeName

The unique ID for the action. If the action doesn’t have an
ID, its API name is used.

This field is available in API version 35.0 and later.

stringactionEnumOrId

The action label.stringlabel

The action name.stringname

stringtype • LogACall

220

DescribeAvailableQuickActionResultDescribe Calls

DescriptionTypeName

• SocialPost

• Canvas

• Create

• VisualforcePage

• Update

describeCompactLayouts()

Retrieves metadata about compact layouts for the specified object type.

Syntax
DescribeCompactLayoutsResult compactLayoutResult = connection.describeCompactLayouts(string
sObjectType, ID[] recordTypeId);

Usage
Use this call to retrieve information about the compact layout for a given object type. This call returns metadata about a given compact
layout, including the record type mappings. For more information about compact layouts, see the Salesforce online help.

Sample Code—Java
This sample shows how to get the compact layouts of an Account sObject. It calls describeCompactLayouts() with the name
of the sObject type to describe. After getting the compact layouts, the sample prints the images, fields, and action buttons found for
each compact layout. Next, it prints the system default compact layout for the object, then the mapping information of record types to
compact layouts.

public void testDescribeCompactLayoutsSample() {
try {

String objectToDescribe = "Account";
DescribeCompactLayoutsResult compactLayoutResult = connection

.describeCompactLayouts(objectToDescribe, null);
System.out.println("There are " + compactLayoutResult.getCompactLayouts().length

+ " compact layouts for the " + objectToDescribe + " object.");

// Get all the compact layouts for the sObject
for (int i = 0; i < compactLayoutResult.getCompactLayouts().length; i++) {

DescribeCompactLayout cLayout = compactLayoutResult.getCompactLayouts()[i];
System.out.println(" There is a compact layout with name: " + cLayout.getName());

DescribeLayoutItem[] fieldItems = cLayout.getFieldItems();
System.out.println(" There are " + fieldItems.length + " fields in this compact

layout.");

// Write field items

221

describeCompactLayouts()Describe Calls

for (int j = 0; j < fieldItems.length; j++) {
System.out.println(j + " This compact layout has a field with name: " +

fieldItems[j].getLabel());
}

DescribeLayoutItem[] imageItems = cLayout.getImageItems();
System.out.println(" There are " + imageItems.length + " image fields in this

compact layout.");

// Write the image items
for (int j = 0; j < imageItems.length; j++) {

System.out.println(j + " This compact layout has an image field with name:
" + imageItems[j].getLabel());

}

DescribeLayoutButton[] actions = cLayout.getActions();
System.out.println(" There are " + actions.length + " buttons in this compact

layout.");

// Write the action buttons
for (int j = 0; j < actions.length; j++) {

System.out.println(j + " This compact layout has a button with name: " +
actions[j].getLabel());

}

System.out.println("This object's default compact layout is: "
+ compactLayoutResult.getDefaultCompactLayoutId());

RecordTypeCompactLayoutMapping[] mappings =
compactLayoutResult.getRecordTypeCompactLayoutMappings();

System.out.println("There are " + mappings.length + " record type to compact
layout mapping for the "

+ objectToDescribe + " object.");
for (int j = 0; j < mappings.length; j++) {

System.out.println(j + " Record type " + mappings[j].getRecordTypeId()
+ " is mapped to compact layout " +

mappings[j].getCompactLayoutId());
}

}

} catch (ConnectionException ce) {
ce.printStackTrace();

}

}

Arguments

DescriptionTypeName

The specified value must be a valid object for your organization. If the object is a person account,
specify Account, or if it is a person contact, specify Contact.

stringsObjectType

222

describeCompactLayouts()Describe Calls

DescriptionTypeName

Optional parameter that restricts the compact layout data returned to the specified record
types.

ID[]recordTypeId

Response
DescribeCompactLayoutsResult

Faults
InvalidSObjectFault

UnexpectedErrorFault

DescribeCompactLayoutsResult
The describeCompactLayouts() call returns a DescribeCompactLayoutsResult object containing top-level record type
information about the passed-in sObjectType, as well as a mapping of record types to compact layouts. Your client application can
traverse this object to retrieve detailed metadata about the compact layout.

DescriptionTypeName

List of all the compact layouts in use by the object.DescribeCompactLayout[]compactLayouts

ID of the primary compact layout assigned to the object.
The system default compact layout ID has a value of
null.

IDdefaultCompactLayoutId

Record type mapping(s) for the object. The compact
layouts associated with the object may be mapped to
more than one record type.

RecordTypeCompactLayoutMapping[]recordTypeCompactLayoutMappings

DescribeCompactLayout
Represents an individual item in the DescribeCompactLayout list.

DescriptionTypeName

Array of one or more DescribeLayoutButtonSection items
assigned to the compact layout. This list is set by
Salesforce and is read-only.

DescribeLayoutButtonSection[]actions

Array of one or more fields assigned to the compact
layout.

DescribeLayoutItem[]fieldItems

Unique ID of this CompactLayout. For information on IDs,
see ID Field Type.

IDid

223

DescribeCompactLayoutsResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

DescriptionTypeName

Array of one or more images assigned to the compact
layout. This list is set by Salesforce and is read-only.

DescribeLayoutItem[]imageItems

Label of the compact layout.stringlabel

API name of the compact layout.stringname

The name of the object to which the compact layout is
assigned.

stringobjectType

RecordTypeCompactLayoutMapping
Represents a single record type mapping in the recordTypeCompactLayoutMappings field in a DescribeCompactLayoutsResult
object. This object is a map of valid recordTypeId to compactLayoutId.

DescriptionTypeName

Indicates whether this record type is available (true) or
not (false). Availability is used to display a list of

booleanavailable

available record types to the user when they are creating
a new record.

ID of the compact layout associated with this record type.
This field has a value of null if the record type is
associated with the system default compact layout.

IDcompactLayoutId

API name of the compact layout.stringcompactLayoutName

API name of the record type.stringrecordTypeName

ID of the record type.IDrecordTypeId

describeDataCategoryGroups()

Retrieves available category groups for objects specified in the request.

Syntax
DescribeDataCategoryGroupResult[] = connection.describeDataCategoryGroups()(string[]
sObjectTypes);

Usage
Use this call to describe the available category groups for the objects specified in the request. This call can be used with the
describeDataCategoryGroupStructures() call to describe all the categories available for a specific object. For additional
information about data categories, see “Work with Data Categories” in the Salesforce online help.

224

describeDataCategoryGroups()Describe Calls

Sample Code—Java
This sample shows how to retrieve the data category groups associated with:

• Salesforce Knowledge articles

• Questions from the Answers feature

It returns the name, label and description of a category group and the name of the associated sobject (article or question). It also
returns the number of data categories in the data category group.

public void describeDataCategoryGroupsSample() {
try {
// Make the describe call for data category groups
DescribeDataCategoryGroupResult[] results =
connection.describeDataCategoryGroups(new String[] {
"KnowledgeArticleVersion", "Question"});

// Get the properties of each data category group
for (int i = 0; i < results.length; i++) {
System.out.println("sObject: " +
results[i].getSobject());
System.out.println("Group name: " +
results[i].getName());
System.out.println("Group label: " +
results[i].getLabel());
System.out.println("Group description: " +
(results[i].getDescription()==null? "" :
results[i].getDescription()));
System.out.println("Number of categories: " +
results[i].getCategoryCount());
}
} catch (ConnectionException ce) {
ce.printStackTrace();
}
}

Sample Code—C#
This sample shows how to retrieve the data category groups associated with:

• Salesforce Knowledge articles

• Questions from the Answers feature

It returns the name, label and description of a category group and the name of the associated sobject (article or question). It also
returns the number of data categories in the data category group.

public void describeDataCategoryGroups() {
try {
// Make the describe call for data category groups
DescribeDataCategoryGroupResult[] results =
binding.describeDataCategoryGroups(new String[] {
"KnowledgeArticleVersion", "Question"});

// Get the properties of each data category group
for (int i = 0; i < results.Length; i++) {

225

describeDataCategoryGroups()Describe Calls

Console.WriteLine("sObject: " +
results[i].sobject);
Console.WriteLine("Group name: " +
results[i].name);
Console.WriteLine("Group label: " +
results[i].label);
Console.WriteLine("Group description: " +
(results[i].description==null? "" :
results[i].description));
Console.WriteLine("Number of categories: " +
results[i].categoryCount);
}
} catch (SoapException e) {
Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);
}
}

Arguments

DescriptionTypeName

The specified value can be:string[]sObjectTypes

• KnowledgeArticleVersion—to retrieve category groups associated with article
types.

• Question—to retrieve category groups associated with questions.

For additional information about articles and questions, see "Work with Articles and Translations"
in the Salesforce online help.

Response
DescribeDataCategoryGroupResult

Faults
InvalidSObjectFault

UnexpectedErrorFault

DescribeDataCategoryGroupResult
The describeDataCategoryGroups() call returns a DescribeDataCategoryGroupResult object containing the list of the category groups
associated with the specified objects.

DescriptionTypeName

The number of visible data categories in the data category group.intcategoryCount

226

DescribeDataCategoryGroupResultDescribe Calls

DescriptionTypeName

The description of the data category group.stringdescription

Label for the data category group in the Salesforce user interface.stringlabel

The unique name used for API access to the data category group .stringname

The object associated with the data category group.stringsobject

describeDataCategoryGroupStructures()

Retrieves available category groups along with their data category structure for objects specified in the request.

Syntax
describeDataCategoryGroupStructures()[] = connection.

describeDataCategoryGroupStructures()(DataCategoryGroupSObjectTypePair[]
pairs, boolean topCategoriesOnly)

Usage
Use this call to return the visible data category structure for the given object category group pairs. First use
describeDataCategoryGroups() to find the available category groups for the objects specified. From the returned list, choose
the object category group pairs to pass as the input in describeDataCategoryGroupStructures(). This call returns all
the visible categories and data category structure as output. For additional information about data categories and data category visibility,
see “Work with Data Categories” and “Data Category Visibility” in the Salesforce online help.

Sample Code—Java
This sample shows how to use sObject and data category group pairs to retrieve data categories for each pair. It calls
describeDataCategoryGroupStructures() with two pairs, KnowledgeArticleVersion/Regions and Question/Regions,
and iterates through the results of this call. It gets the top categories for each result, which is “All”, and then gets the first-level child
categories. The sample requires that you set up a data category group called Regions with some child categories and associate it
with a knowledge article and questions. Alternatively, you can replace the data category group name in the sample if you want to use
an existing data category group in your org that has a different name.

public void describeDataCateogryGroupStructuresSample() {
try {
// Create the data category pairs
DataCategoryGroupSobjectTypePair pair1 =
new DataCategoryGroupSobjectTypePair();
DataCategoryGroupSobjectTypePair pair2 =
new DataCategoryGroupSobjectTypePair();
pair1.setSobject("KnowledgeArticleVersion");
pair1.setDataCategoryGroupName("Regions");
pair2.setSobject("Question");

227

describeDataCategoryGroupStructures()Describe Calls

pair2.setDataCategoryGroupName("Regions");

DataCategoryGroupSobjectTypePair[] pairs =
new DataCategoryGroupSobjectTypePair[] {
pair1,
pair2
};

// Get the list of top level categories using the describe call
DescribeDataCategoryGroupStructureResult[] results =
connection.describeDataCategoryGroupStructures(
pairs,
false
);

// Iterate through each result and get some properties
// including top categories and child categories
for (int i = 0; i < results.length; i++) {
DescribeDataCategoryGroupStructureResult result =
results[i];
String sObject = result.getSobject();
System.out.println("sObject: " + sObject);
System.out.println("Group name: " + result.getName());
System.out.println("Group label: " + result.getLabel());
System.out.println("Group description: " +
result.getDescription());

// Get the top-level categories
DataCategory[] topCategories = result.getTopCategories();

// Iterate through the top level categories and retrieve
// some information
for (int j = 0; j < topCategories.length; j++) {
DataCategory topCategory = topCategories[j];
System.out.println("Category name: " +
topCategory.getName());
System.out.println("Category label: " +
topCategory.getLabel());
DataCategory [] childCategories =
topCategory.getChildCategories();
System.out.println("Child categories: ");
for (int k = 0; k < childCategories.length; k++) {
System.out.println("\t" + k + ". Category name: " +
childCategories[k].getName());
System.out.println("\t" + k + ". Category label: " +
childCategories[k].getLabel());
}
}
}
} catch (ConnectionException ce) {
ce.printStackTrace();
}
}

228

describeDataCategoryGroupStructures()Describe Calls

Sample Code—C#
This sample shows how to use sObject and data category group pairs to retrieve data categories for each pair. It calls
describeDataCategoryGroupStructures() with two pairs, KnowledgeArticleVersion/Regions and Question/Regions,
and iterates through the results of this call. It gets the top categories for each result, which is “All”, and then gets the first-level child
categories. The sample requires that you set up a data category group called Regions with some child categories and associate it
with a knowledge article and questions. Alternatively, you can replace the data category group name in the sample if you want to use
an existing data category group in your org that has a different name.

public void describeDataCateogryGroupStructuresSample() {
try {
// Create the data category pairs
DataCategoryGroupSobjectTypePair pair1 =
new DataCategoryGroupSobjectTypePair();
DataCategoryGroupSobjectTypePair pair2 =
new DataCategoryGroupSobjectTypePair();
pair1.sobject = "KnowledgeArticleVersion";
//pair1.setDataCategoryGroupName("Regions");
pair1.dataCategoryGroupName = "KBArticleCategories";
pair2.sobject = "Question";
//pair2.setDataCategoryGroupName("Regions");
pair2.dataCategoryGroupName = "KBArticleCategories";

DataCategoryGroupSobjectTypePair[] pairs =
new DataCategoryGroupSobjectTypePair[] {
pair1,
pair2
};

// Get the list of top level categories using the describe call
DescribeDataCategoryGroupStructureResult[] results =
binding.describeDataCategoryGroupStructures(
pairs,
false
);

// Iterate through each result and get some properties
// including top categories and child categories
for (int i = 0; i < results.Length; i++) {
DescribeDataCategoryGroupStructureResult result =
results[i];
String sObject = result.sobject;
Console.WriteLine("sObject: " + sObject);
Console.WriteLine("Group name: " + result.name);
Console.WriteLine("Group label: " + result.label);
Console.WriteLine("Group description: " +
result.description);

// Get the top-level categories
DataCategory[] topCategories = result.topCategories;

// Iterate through the top level categories and retrieve
// some information
for (int j = 0; j < topCategories.Length; j++) {

229

describeDataCategoryGroupStructures()Describe Calls

DataCategory topCategory = topCategories[j];
Console.WriteLine("Category name: " +
topCategory.name);
Console.WriteLine("Category label: " +
topCategory.label);
DataCategory [] childCategories =
topCategory.childCategories;
Console.WriteLine("Child categories: ");
for (int k = 0; k < childCategories.Length; k++) {
Console.WriteLine("\t" + k + ". Category name: " +
childCategories[k].name);
Console.WriteLine("\t" + k + ". Category label: " +
childCategories[k].label);
}
}
}
}
catch (SoapException e)
{
Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);
}
}

Arguments

DescriptionTypeName

Specifies a category group and an object to query. Visible data
categories are retrieved for that object.

DataCategoryGroupSObjectTypePair[]pairs

Indicates whether the call returns only the top (true) or all the
categories (false) visible depending on the user's data category

booleantopCategoriesOnly

group visibility settings. For more information on data category group
visibility, see Data Category Visibility in the Salesforce online help.

DataCategoryGroupSObjectTypePair contains the following fields:

DescriptionTypeName

The unique name used for API access to the data category group.stringdataCategoryGroupName

The object associated with the data category groupstringsobject

Response
describeDataCategoryGroupStructures()[]

230

describeDataCategoryGroupStructures()Describe Calls

Faults
InvalidSObjectFault

UnexpectedErrorFault

describeDataCategoryGroupStructures()
The describeDataCategoryGroupStructures() call returns an array of DescribeDataCategoryGroupStructureResult objects containing the
category groups and categories associated with the specified objects.

DescriptionTypeName

The description of the data category group.stringdescription

The label for the data category group in the Salesforce user interface.stringlabel

The unique name used for API access to the data category group.stringname

The object associated with the data category group.stringsobject

A list of top level categories visible depending on the user's data category group
visibility settings. For more information on data category group visibility, see “Data
Category Visibility” in the Salesforce online help.

DataCategory[]topCategories

DataCategory

DescriptionTypeName

A recursive list of visible sub categories in the data category.DataCategory[]childDataCategories

The label for the data category in the Salesforce user interface.stringlabel

The unique name used for API access to the data category.stringname

describeGlobal()

Retrieves a list of available objects for your organization’s data.

Syntax
DescribeGlobalResult = connection.describeGlobal();

Usage
Use describeGlobal() to obtain a list of available objects for your organization. You can then iterate through this list and use
describeSObjects() to obtain metadata about individual objects.

Your client application must be logged in with sufficient access rights to retrieve metadata about your organization’s data. For more
information, see Factors that Affect Data Access.

231

describeDataCategoryGroupStructures()Describe Calls

Sample Code—Java
This sample shows how to perform a global describe. It then retrieves the sObjects from the global describe result and writes their names
to the console.

public void describeGlobalSample() {
try {

// Make the describeGlobal() call
DescribeGlobalResult describeGlobalResult =

connection.describeGlobal();

// Get the sObjects from the describe global result
DescribeGlobalSObjectResult[] sobjectResults =

describeGlobalResult.getSobjects();

// Write the name of each sObject to the console
for (int i = 0; i < sobjectResults.length; i++) {
System.out.println(sobjectResults[i].getName());

}
} catch (ConnectionException ce) {

ce.printStackTrace();
}

}

Sample Code—C#
This sample shows how to perform a global describe. It then retrieves the sObjects from the global describe result and writes their names
to the console.

public void describeGlobalSample()
{

try
{

// Make the describeGlobal() call
DescribeGlobalResult dgr = binding.describeGlobal();

// Get the sObjects from the describe global result
DescribeGlobalSObjectResult[] sObjResults = dgr.sobjects;

// Write the name of each sObject to the console
for (int i = 0; i < sObjResults.Length; i++)
{

Console.WriteLine(sObjResults[i].name);
}

}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

232

describeGlobal()Describe Calls

Arguments
None.

Response
DescribeGlobalResult

Fault
UnexpectedErrorFault

SEE ALSO:

describeSObjects()

API Call Basics

Using the Partner WSDL

https://developer.salesforce.com/page/Sample_SOAP_Messages

DescribeGlobalResult
The describeGlobal() call returns a DescribeGlobalResult object, which has the following properties.

DescriptionTypeName

Specifies how an org’s data is encoded, such as UTF-8 or
ISO-8859-1.

stringencoding

Maximum number of records allowed in a create(), update(), or
delete() call.

intmaxBatchSize

List of result objects that returns information about the available objects
for your org. Available in API version 17.0 and later. This property

DescribeGlobalSObjectResult[]sobjects

enhances the information that was previously available in the types
property.

List of available objects for your org. You iterate through this list to
retrieve the object string that you pass to describeSObjects().

Beginning with API version 17.0, this property is no longer supported.
Use the name property in DescribeGlobalSObjectResult instead.

string[]types

DescribeGlobalSObjectResult
Represents the properties for one of the objects available for your org. Each object has the following properties:

DescriptionTypeName

Reserved for future use.booleanactivateable

233

DescribeGlobalResultDescribe Calls

https://developer.salesforce.com/page/Sample_SOAP_Messages

DescriptionTypeName

Indicates whether the object can be created via the create() call (true)
or not (false).

booleancreateable

Indicates whether the object is a custom object (true) or not (false).booleancustom

Indicates whether the object is a custom setting object (true) or not (false).booleancustomSetting

Indicates whether data translation is enabled for the object (true) or not
(false). Available in API version 49.0 and later.

booleandataTranslationEnabled

Reserved for future use.booleandeepCloneable

Indicates whether the object can be deleted via the delete() call (true)
or not (false).

booleandeletable

Reserved for future use.booleandeprecatedAndHidden

Indicates whether Chatter feeds are enabled for the object (true) or not
(false). This property is available in API version 19.0 and later.

booleanfeedEnabled

Reserved for future use.booleanisInterface

Three-character prefix code in the object ID. Object IDs are prefixed with
three-character codes that specify the type of the object. For example, Account

stringkeyPrefix

objects have a prefix of 001 and Opportunity objects have a prefix of 006.
Note that a key prefix can sometimes be shared by multiple objects so it does
not always uniquely identify an object.

Use the value of this field to determine the object type of a parent in those cases
where the child may have more than one object type as parent (polymorphic).
For example, you may need to obtain the keyPrefix value for the parent of
a Task or Event.

Label text for a tab or field renamed in the user interface, if applicable, or the
object name, if not. For example, an organization representing a medical vertical

stringlabel

might rename Account to Patient. Tabs and fields can be renamed in the
Salesforce user interface. See the Salesforce online help for more information.

Label text for an object that represents the plural version of an object name, for
example, “Accounts.”

stringlabelPlural

Indicates whether the object supports the describeLayout() call (true)
or not (false).

booleanlayoutable

Indicates whether the object can be merged with other objects of its type (true)
or not (false). true for leads, contacts, and accounts.

booleanmergeable

Indicates whether Most Recently Used (MRU) list functionality is enabled for the
object (true) or not (false).

booleanmruEnabled

Name of the object. This name is equivalent to an entry in the types list that
is no longer supported, beginning with API version 17.0.

stringname

234

DescribeGlobalResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_opportunity.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_task.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_event.htm

DescriptionTypeName

Indicates whether the object can be queried via the query() call (true) or
not (false).

booleanqueryable

Indicates whether the object can be replicated via the getUpdated() and
getDeleted() calls (true) or not (false).

booleanreplicateable

Indicates whether the object can be retrieved via the retrieve() call (true)
or not (false).

booleanretrieveable

Indicates whether the object can be searched via the search() call (true)
or not (false).

booleansearchable

Indicates whether the object supports Apex triggers.booleantriggerable

Indicates whether an object can be undeleted using the undelete() call
(true) or not (false).

booleanundeletable

Indicates whether the object can be updated via the update() call (true)
or not (false).

booleanupdateable

describeGlobalTheme()

Returns information about both objects and themes available to the current logged-in user.

Syntax
DescribeGlobalTheme = connection.describeGlobalTheme();

Usage
Use describeGlobalTheme() to get both a list of available objects and theme information about those objects for your
organization. describeGlobalTheme() is a combination of describeGlobal() and describeTheme() combined
into a single call.

Your client application must be logged in with sufficient access rights to retrieve theme and object information about your organization’s
data. For more information, see Factors that Affect Data Access.

describeGlobalTheme() is available in API version 29.0 and later.

Sample
This Java sample calls describeGlobalTheme() and then iterates over the retrieved object and theme information.

public static void describeGlobalThemeExample() {
try {

// Get current theme and object information
DescribeGlobalTheme globalThemeResult = connection.describeGlobalTheme();
DescribeGlobalResult globalResult = globalThemeResult.getGlobal();
DescribeThemeResult globalTheme = globalThemeResult.getTheme();

235

describeGlobalTheme()Describe Calls

// For the themes, get the array of theme items, one per object
DescribeThemeItem[] themeItems = globalTheme.getThemeItems();
for (int i = 0; i < themeItems.length; i++) {

DescribeThemeItem themeItem = themeItems[i];
System.out.println("Theme information for object " + themeItem.getName());
// Get color and icon info for each themeItem
DescribeColor colors[] = themeItem.getColors();
System.out.println(" Number of colors: " + colors.length);
int k;
for (k = 0; k < colors.length; k++) {

DescribeColor color = colors[k];
System.out.println(" For Color #" + k + ":");
System.out.println(" Web RGB Color: " + color.getColor());
System.out.println(" Context: " + color.getContext());
System.out.println(" Theme: " + color.getTheme());

}
DescribeIcon icons[] = themeItem.getIcons();
System.out.println(" Number of icons: " + icons.length);
for (k = 0; k < icons.length; k++) {

DescribeIcon icon = icons[k];
System.out.println(" For Icon #" + k + ":");
System.out.println(" ContentType: " + icon.getContentType());
System.out.println(" Height: " + icon.getHeight());
System.out.println(" Theme: " + icon.getTheme());
System.out.println(" URL: " + icon.getUrl());
System.out.println(" Width: " + icon.getWidth());

}
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Response
DescribeGlobalTheme

Faults
UnexpectedErrorFault

SEE ALSO:

DescribeGlobalTheme

DescribeThemeResult

DescribeThemeItem

DescribeColor

DescribeIcon

236

describeGlobalTheme()Describe Calls

DescribeGlobalTheme
The describeGlobalTheme() call returns DescribeGlobalTheme, which contains a DescribeThemeResult and a DescribeGlobalResult.

DescriptionTypeName

Object information.DescribeGlobalResultglobal

Theme information.DescribeThemeResulttheme

describeKnowledge()

Retrieves the Knowledge language settings in the organization.

Syntax
KnowledgeSettings result = _connection.describeKnowledgeSettings();

Usage
Use this call to describe the existing Knowledge language settings, including the default Knowledge language, supported languages,
and a list of Knowledge language information. You can also use KnowledgeSettings in the Metadata API to obtain similar information.

Sample Code—Java
This sample shows how to retrieve the Knowledge language settings. It returns the default Knowledge language, a list of Knowledge
supported language, including the language code and whether it’s an active Knowledge language.

public void describeKnowledgeSettingsSample() {
try {

// Make the describe call for KnowledgeSettings
KnowledgeSettings result = connection.describeKnowledgeSettings();

// Get the properties of KnowledgeSettings
System.out.println("Knowledge default language: " + result.getDefaultLanguage());
for (KnowledgeLanguageItem lang : result.getLanguages()) {
System.out.println("Language: " + lang.getName());
System.out.println("Active: " + lang.isActive());
}
} catch (ConnectionException ex) {
ex.printStackTrace();
}
}

237

DescribeGlobalThemeDescribe Calls

Sample Code—C#
This sample shows how to retrieve the Knowledge language settings. It returns the default Knowledge language, a list of Knowledge
supported language, including the language code and whether it’s an active Knowledge language.

public void describeKnowledgeSettingsSample() {
try {

// Make the describe call for KnowledgeSettings
KnowledgeSettings result = connection.describeKnowledgeSettings();

// Get the properties of KnowledgeSettings
Console.WriteLine("Knowledge default language: " + result.getDefaultLanguage());
for (KnowledgeLanguageItem lang : result.getLanguages()) {
Console.WriteLine("Language: " + lang.getName());
Console.WriteLine("Active: " + lang.isActive());
}
} catch (SoapException ex) {
ex.printStackTrace();
}
}

Response
KnowledgeSettings

describeLayout()

Retrieves metadata about page layouts for the specified object type.

Syntax
DescribeLayoutResult = connection.describeLayout(string sObjectType, string layoutName,
ID recordTypeID[]);

Usage
Use this call to retrieve information about the layout (presentation of data to users) for a given object type. This call returns metadata
about a given page layout, such as the detail page layout, the edit page layout, and the record type mappings. For additional information,
see “Page Layouts” in Salesforce Help .

Generally, user profiles have one layout associated with each object. In Enterprise, Unlimited, and Performance Editions, user profiles
can have multiple layouts per object, where each layout is specific to a given record type. This call returns metadata for multiple layouts,
if applicable.

Layouts can be further customized in standard objects that have defined named layouts, which are separate from the primary layout for
both the profile and the record type. One example of named layouts is the UserAlt layout defined on the User object, which is consumed
in the Salesforce mobile app instead of the primary User layout. New layout names can only be defined by Salesforce, but customization
of named layouts is controlled by administrators in the same way as primary layouts.

238

describeLayout()Describe Calls

If you supply a null value for recordTypeIds, all the layouts for that user are returned, instead of just the layouts for each specified
record type. The same layout can be associated with multiple record types for the user’s profile, in which case there would only be one
layout returned.

Note: This call is an advanced API call that is typically used only by partners who have written custom page rendering code for
generating output on a specialized device (for example, on PDAs) and need to examine the layout details of an object before
rendering the page output.

Use the following procedure to describe layouts:

1. To display a detail page or edit page for a record that exists, a client application first gets the recordTypeIds from the record,
then it finds the layoutId associated with that recordTypeIds (through recordTypeMapping), and finally it uses that layout
information to render the page.

2. To display the create version of an edit page, a client application first determines whether more than one record type is available
and, if so, presents the user with a choice. Once a record type has been chosen, then the client application uses the layout information
to render the page. It uses the picklist values from the RecordTypeMapping to display valid picklist values for picklist fields.

3. A client application can access the labels for the layout, using the DescribeLayoutResult.

The following restrictions apply to person account record types:

• describeLayout() for version 7.0 and below returns the default business account record type as the default record type even
if the tab default is a person account record type. In version 8.0 and after, it will always be the tab default.

• describeLayout() for version 7.0 and below doesn’t return any person account record types.

For more information about person account record types, see Person Account Record Types.

Sample Code—Java
This sample shows how to get the layouts of an Account sObject. It calls describeLayout() with the name of the sObject type
to describe. It doesn’t specify record type IDs as a third argument, which means that layouts for all record types will be returned if record
types are defined in your org for the specified sObject. After getting the layout, the sample writes the number of detail and edit sections
found and their headings. Next, it iterates through each edit layout section and retrieves its components.

public void describeLayoutSample(){
try {

String objectToDescribe = "Account";
DescribeLayoutResult dlr =

connection.describeLayout(objectToDescribe, null, null);
System.out.println("There are " + dlr.getLayouts().length +

" layouts for the " + objectToDescribe + " object."
);

// Get all the layouts for the sObject
for(int i = 0; i < dlr.getLayouts().length; i++) {
DescribeLayout layout = dlr.getLayouts()[i];
DescribeLayoutSection[] detailLayoutSectionList =
layout.getDetailLayoutSections();

System.out.println(" There are " +
detailLayoutSectionList.length +
" detail layout sections");

DescribeLayoutSection[] editLayoutSectionList =
layout.getEditLayoutSections();

System.out.println(" There are " +
editLayoutSectionList.length +

239

describeLayout()Describe Calls

" edit layout sections");

// Write the headings of the detail layout sections
for(int j = 0; j < detailLayoutSectionList.length; j++) {
System.out.println(j +

" This detail layout section has a heading of " +
detailLayoutSectionList[j].getHeading());

}

// Write the headings of the edit layout sections
for(int x = 0; x < editLayoutSectionList.length; x++) {
System.out.println(x +

" This edit layout section has a heading of " +
editLayoutSectionList[x].getHeading());

}

// For each edit layout section, get its details.
for(int k = 0; k < editLayoutSectionList.length; k++) {
DescribeLayoutSection els =
editLayoutSectionList[k];

System.out.println("Edit layout section heading: " +
els.getHeading());

DescribeLayoutRow[] dlrList = els.getLayoutRows();
System.out.println("This edit layout section has " +

dlrList.length + " layout rows.");
for(int m = 0; m < dlrList.length; m++) {
DescribeLayoutRow lr = dlrList[m];
System.out.println(" This row has " +

lr.getNumItems() + " layout items.");
DescribeLayoutItem[] dliList = lr.getLayoutItems();
for(int n = 0; n < dliList.length; n++) {
DescribeLayoutItem li = dliList[n];
if ((li.getLayoutComponents() != null) &&
(li.getLayoutComponents().length > 0)) {
System.out.println("\tLayout item " + n +

", layout component: " +
li.getLayoutComponents()[0].getValue());

}
else {
System.out.println("\tLayout item " + n +

", no layout component");
}

}
}

}
}

// Get record type mappings
if (dlr.getRecordTypeMappings() != null) {
System.out.println("There are " +

dlr.getRecordTypeMappings().length +
" record type mappings for the " +
objectToDescribe + " object"

);

240

describeLayout()Describe Calls

} else {
System.out.println(

"There are no record type mappings for the " +
objectToDescribe + " object."

);
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Sample Code—C#
This sample shows how to get the layouts of an Account sObject. It calls describeLayout() with the name of the sObject type
to describe. It doesn’t specify record type IDs as a third argument, which means that layouts for all record types will be returned if record
types are defined in your org for the specified sObject. After getting the layout, the sample writes the number of detail and edit sections
found and their headings. Next, it iterates through each edit layout section and retrieves its components.

public void describeLayoutSample()
{

try
{

String objectToDescribe = "Account";
DescribeLayoutResult dlr =

binding.describeLayout(objectToDescribe, null, null);
Console.WriteLine("There are " + dlr.layouts.Length +

" layouts for the " + objectToDescribe + " object."
);

// Get all the layouts for the sObject
for (int i = 0; i < dlr.layouts.Length; i++)
{

DescribeLayout layout = dlr.layouts[i];
DescribeLayoutSection[] detailLayoutSectionList =

layout.detailLayoutSections;
Console.WriteLine(" There are " +

detailLayoutSectionList.Length +
" detail layout sections");

DescribeLayoutSection[] editLayoutSectionList =
layout.editLayoutSections;

Console.WriteLine(" There are " +
editLayoutSectionList.Length +
" edit layout sections");

// Write the headings of the detail layout sections
for (int j = 0; j < detailLayoutSectionList.Length; j++)
{

Console.WriteLine(j +
" This detail layout section has a heading of " +
detailLayoutSectionList[j].heading);

}

// Write the headings of the edit layout sections

241

describeLayout()Describe Calls

for (int x = 0; x < editLayoutSectionList.Length; x++)
{

Console.WriteLine(x +
" This edit layout section has a heading of " +
editLayoutSectionList[x].heading);

}

// For each edit layout, get its details.
for (int k = 0; k < editLayoutSectionList.Length; k++)
{

DescribeLayoutSection els =
editLayoutSectionList[k];

Console.WriteLine("Edit layout section heading: " +
els.heading);

DescribeLayoutRow[] dlrList = els.layoutRows;
Console.WriteLine("This edit layout section has " +

dlrList.Length + " layout rows.");
for (int m = 0; m < dlrList.Length; m++)
{

DescribeLayoutRow lr = dlrList[m];
Console.WriteLine(" This row has " +

lr.numItems + " layout items.");
DescribeLayoutItem[] dliList = lr.layoutItems;
for (int n = 0; n < dliList.Length; n++)
{

DescribeLayoutItem li = dliList[n];
if ((li.layoutComponents != null) &&

(li.layoutComponents.Length > 0))
{

Console.WriteLine("\tLayout item " + n +
", layout component: " +

li.layoutComponents[0].value);
}
else
{

Console.WriteLine("\tLayout item " + n +
", no layout component");

}
}

}
}

// Get record type mappings
if (dlr.recordTypeMappings != null)
{

Console.WriteLine("There are " +
dlr.recordTypeMappings.Length +
" record type mappings for the " +
objectToDescribe + " object");

}
else
{

Console.WriteLine(
"There are no record type mappings for the " +

242

describeLayout()Describe Calls

objectToDescribe + " object.");
}

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments

DescriptionTypeName

The specified value must be a valid object for your organization. If the object is a person account,
specify Account, or if it is a person contact, specify Contact.

stringsObjectType

The specified value must be a valid named layout for this object. Layout names are obtained
from namedLayoutInfos in DescribeSObjectResult. The entity name is not valid because
the primary layout is not considered “named.”

stringlayoutName

Optional parameter restricts the layout data returned to the specified record types.ID[]recordTypeIds

To retrieve the layout for the primary record type, specify the value 012000000000000AAA
for the recordTypeIds regardless of the object. This value is returned in the
recordTypeInfos for the primary record type in the DescribeSObjectResult. A SOQL
query returns a null value, not 012000000000000AAA.

For information on IDs, see ID Field Type.

Response
DescribeLayoutResult

Faults
InvalidSObjectFault

UnexpectedErrorFault

SEE ALSO:

API Call Basics

https://developer.salesforce.com/page/Sample_SOAP_Messages

243

describeLayout()Describe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435330
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/page/Sample_SOAP_Messages

DescribeLayoutResult
The describeLayout() call returns a DescribeLayoutResult object containing top-level record type information about
the passed-in sObjectType, as well as a mapping of record types to layouts. Your client application can traverse this object to retrieve
detailed metadata about the layout.

Tip: If you have actions in the publisher enabled in your organization, you can retrieve the layout definition for a global publisher
layout by using Global as the sObjectType and null as the recordTypeId.

DescriptionTypeName

Feed view related layout data for a feed-based layout. This
field is null for page layouts that are not feed-based.

DescribeLayoutFeedView[]feedView

Layout(s) associated with the specified sObjectType.
In general, there is a one-to-one correspondence between

DescribeLayout[]layouts

layouts and objects. However, in some cases, an object will
have multiple layouts in the context of a given user profile.

Record type mapping(s) available for the user. The objects
on a user profile can have multiple record types. All record

RecordTypeMapping[]recordTypeMappings

types are returned, not just those available to the calling
user. This allows the client application to display a layout
appropriate for a given user profile. For example, suppose
User A owns a record, and this record has record type X set.
If User B tries to view this record, then the client application
can display the record using the layout associated with this
record type for User B’s profile (even if the record type is
not available for the user).

If true, a record type selector page is required; if false,
use the default record type.

booleanrecordTypeSelectorRequired

DescribeLayout
Represents a specific layout for the specified sObjectType. Each DescribeLayout is referenced by its unique layout ID and
consists of two types of views (represented in this object as arrays of DescribeLayoutSection):

• Detail view—Read-only display of the object. In a detail layout, certain pieces of information (such as address details) might be
aggregated into a single DescribeLayoutItem.

• Edit view—Editable display of the object. In an edit layout, individual pieces of information (such as an address) will be broken up
into separate fields.

An individual DescribeLayout consists of these fields:

DescriptionTypeName

Standard and custom button sections associated with the
specified layout.

DescribeLayoutButtonSectionbuttonLayoutSection

Layout section(s) for the detail view.DescribeLayoutSection[]detailLayoutSections

Layout section(s) for the edit view.DescribeLayoutSection[]editLayoutSections

244

DescribeLayoutResultDescribe Calls

DescriptionTypeName

Layout section(s) for the highlights panel view.DescribeLayoutSection[]highlightsPanelLayoutSection

Layout section(s) for the multiline layout view. This field is
available in API version 35.0 and later.

DescribeLayoutSection[]multirowEditLayoutSections

Unique ID of this layout. For information on IDs, see ID Field
Type.

IDid

List of actions associated with the specified layout. This field
is available in API version 28.0 and later.

DescribeQuickActionListResultquickActionList

Mobile Cards section associated with the specified layout.
This field is available in API version 29.0 and later.

RelatedContentrelatedContent

Related list(s) associated with the specified layout.RelatedList[]relatedLists

List of save options for the layout.DescribeLayoutSaveOption[]saveOptions

DescribeLayoutButtonSection
Represents one of two sections of the layout containing either standard or custom buttons.

DescriptionTypeName

Standard or custom button(s) associated with the specified button
section.

DescribeLayoutButton[]detailButtons

DescribeLayoutButton
Represents a single standard button, custom button, or custom link in a DescribeLayout.

DescriptionTypeName

What the button or link does when clicked, such as execute
JavaScript or open its content source in a new window, for example.

This field is available in API version 31.0 and later.

WebLinkWindowTypebehavior

Array of color information for icons associated with this button or
link. Each color is associated with a theme.

This field is available in API version 32.0 and later.

DescribeColor[]colors

The API name of the Visualforce page or s-control being delivered.

This field is available in API version 31.0 and later.

stringcontent

The content source of the custom button or link. The
contentSource for a standard button which hasn’t been
overridden is null.

This field is available in API version 31.0 and later.

WebLinkTypecontentSource

245

DescribeLayoutResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

DescriptionTypeName

Required. Indicates whether this is a custom button or link (true)
or not (false).

booleancustom

Type of encoding assigned to the URL called by the button or link.
Valid values are:

stringencoding

• UTF-8—Unicode (UTF-8)

• ISO-8859-1—General US & Western Europe (ISO-8859–1,
ISO-LATIN-1)

• Shift_JIS—Japanese (Shift-JIS)

• ISO-2022-JP—Japanese (JIS)

• EUC-JP—Japanese (EUC-JP)

• x-SJIS_0213—Japanese (Shift-JIS_2004)

• ks_c_5601-1987—Korean (ks_c_5601-1987)

• Big5—Traditional Chinese (Big5)

• GB2312—Simplified Chinese (GB2312)

• Big5-HKSCS—Traditional Chinese Hong Kong (Big5–HKSCS)

This field is available in API version 31.0 and later.

The height (in pixels) when a button or link’s behavior field
value is set to newWindow, sidebar, or noSidebar.

This field is available in API version 31.0 and later.

intheight

Array of icons for this button or link. Each icon is associated with a
theme. This field is available in API version 29.0 and later.

DescribeIcon[]icons

Label for the button or link displayed in the Salesforce user
interface.

stringlabel

Indicates whether the menu bar displays (true) or not (false)
when a button or link’s behavior field value is set to
newWindow.

This field is available in API version 31.0 and later.

booleanmenubar

API name of the button or link.stringname

Required. Indicates whether a standard button has been overridden
(true) or not (false).

This field is available in API version 31.0 and later.

booleanoverridden

Indicates whether the new window is resizeable (true) or not
(false) when a button or link’s behavior field value is set to
newWindow.

This field is available in API version 31.0 and later.

booleanresizeable

246

DescribeLayoutResultDescribe Calls

DescriptionTypeName

Indicates whether scrollbars display (true) or not (false) when
a button or link’s behavior field value is set to newWindow.

This field is available in API version 31.0 and later.

booleanscrollbars

Indicates whether the address bar displays (true) or not (false)
when a button or link’s behavior field value is set to
newWindow.

This field is available in API version 31.0 and later.

booleanshowsLocation

Indicates whether the status bar displays (true) or not (false)
when a button or link’s behavior field value is set to
newWindow.

This field is available in API version 31.0 and later.

booleanshowsStatus

Indicates whether the toolbars display (true) or not (false)
when a button or link’s behavior field value is set to
newWindow.

This field is available in API version 31.0 and later.

booleantoolbar

The URL called by the button or link. This field is null for standard
buttons in a related list.

This field is available in API version 31.0 and later.

stringurl

The width (in pixels) when a button or link’s behavior field
value is set to newWindow.

This field is available in API version 31.0 and later.

intwidth

Indicates the window position when a button or link’s behavior
field value is set to newWindow.

This field is available in API version 31.0 and later.

WebLinkPositionwindowPosition

DescribeLayoutComponent
Represents the smallest unit in a layout—a field or a separator. To reference a field for display, a client application uses the following
notation to reference a field in the describeSObjects() call: LayoutComponent.fieldName.

In API version 31.0 and later, DescribeLayoutComponent is extended with FieldLayoutComponent if both the LayoutComponentType
value is Field, and the field being described is either the compound field Address or the compound field Person Name.

DescriptionTypeName

The number of vertical lines displayed for a field in the edit view.
Applies to textarea and multi-select picklist fields.

intdisplayLines

Indicates the tab order for the item in the row.inttabOrder

247

DescribeLayoutResultDescribe Calls

DescriptionTypeName

The LayoutComponentType for this LayoutComponent.LayoutComponentTypetype

Value of this LayoutComponent. The name of the field if the
LayoutComponentType value is Field. The API name of the
canvas app if the LayoutComponentType value is Canvas.

stringvalue

DescribeLayoutFeedFilter
Represents an individual feed filter option that you can use to filter the feed.

DescriptionTypeName

The label of the filter.stringlabel

The API name of the filter.stringname

Standard feed filter types:FeedLayoutFilterType enumtype

• AllUpdates

• FeedItemType

DescribeLayoutFeedView
Represents the layout of the feed view for a feed-based page layout.

DescriptionTypeName

Lists the feed filter options that are displayed with the feed.DescribeLayoutFeedFilter[]feedFilters

DescribeLayoutItem
Represents an individual item in a DescribeLayoutRow. A DescribeLayoutItem consists of a set of components (DescribeLayoutComponent),
each of which is either a field or a separator. For most fields on a layout, there is only one component per layout item. However, in a
display-only view, the DescribeLayoutItem might be a composite of the individual fields (for example, an address can consist of street,
city, state, country, and postal code data). On the corresponding edit view, each component of the address field would be split up into
separate DescribeLayoutItems.

DescriptionTypeName

Indicates whether this DescribeLayoutItem can be edited (true)
or not (false). This field is available in API version 30.0 and below.

booleaneditable

It was replaced by the editableForNew and
editableForUpdate fields in API version 31.0.

Indicates whether a new DescribeLayoutItem can be edited when
creating a new record (true) or not (false).

This field is available in API version 31.0 and later.

booleaneditableForNew

248

DescribeLayoutResultDescribe Calls

DescriptionTypeName

Indicates whether an existing DescribeLayoutItem can be edited
when editing a record (true) or not (false).

This field is available in API version 31.0 and later.

booleaneditableForUpdate

Label text for this DescribeLayoutItem.stringlabel

DescribeLayoutComponent for this DescribeLayoutItem.DescribeLayoutComponent[]layoutComponents

Indicates whether this DescribeLayoutItem is a placeholder (true)
or not (false). If true, then this DescribeLayoutItem is blank.

booleanplaceholder

Indicates whether this DescribeLayoutItem is required (true) or
not (false). This is useful to know if, for example, you wanted to
render required fields in a contrasting color (such as red).

booleanrequired

DescribeLayoutRow
Represents a row in a DescribeLayoutSection. A DescribeLayoutRow consists of one or more DescribeLayoutItem objects. For each
DescribeLayoutRow, a DescribeLayoutItem refers either to a specific field or to an “empty” DescribeLayoutItem (a DescribeLayoutItem
that contains no DescribeLayoutComponent objects). An empty DescribeLayoutItem can be returned when a given DescribeLayoutRow
is sparse (for example, containing more fields on the right column than on the left column). Where there are gaps in the layout, an empty
DescribeLayoutItem is returned as a placeholder.

DescriptionTypeName

Refers to either a specific field or to an empty LayoutItem (a
LayoutItem that contains no DescribeLayoutComponent objects).

DescribeLayoutItem[]layoutItems

Number of layoutItems. This information is redundant but,
due to a bug in a popular SOAP toolkit, was required to avoid
serialization problems.

intnumItems

DescribeLayoutSection
Represents a section of a DescribeLayout and consists of one or more columns and one or more rows (an array of DescribeLayoutRow).

DescriptionTypeName

Number of columns in this DescribeLayoutSection.intcolumns

Heading text (label) for this DescribeLayoutSection.stringheading

Array of one or more DescribeLayoutRow objects.DescribeLayoutRow[]layoutRows

The ID of the layout upon which this DescribeLayoutSection resides.

This field is available in API version 35.0 and later.

IDparentLayoutId

Number of rows in this DescribeLayoutSection.introws

249

DescribeLayoutResultDescribe Calls

DescriptionTypeName

Indicates the tab order for the fields in the section in the edit view.
Valid values are:

stringtabOrder

• LeftToRight

• TopToBottom

This field is available in API version 31.0 and later.

Indicates whether this DescribeLayoutSection is a collapsible
section, also known as a “twistie” (true), or not (false).

booleanuseCollapsibleSection

Indicates whether to display the heading (true) or not
(false).

booleanuseHeading

DescribeQuickActionListResult
Represents a list of actions assigned to the page layout. Available in API version 28.0 and later.

DescriptionTypeName

Array of zero or more QuickActionListItemResult objects.DescribeQuickActionListResult[]quickActionListItems

DescribeQuickActionListItemResult
Represents a QuickAction assigned to the actions list for a page layout. Available in API version 28.0 and later.

DescriptionTypeName

Array of color information. Each color is associated with a theme.
This field is available in API version 29.0 and later.

DescribeColor[]colors

The URL of the icon associated with the action. This icon URL
corresponds to the 32x32 icon used for the current Salesforce
theme, introduced in Spring ‘10.

stringiconUrl

Array of icons for this action. Each icon is associated with a theme.
This field is available in API version 29.0 and later.

DescribeIcon[]icons

The label of the action.stringlabel

The URL of the mini icon associated with the action. This icon URL
corresponds to the 16x16 icon used for the current Salesforce
theme, introduced in Spring ‘10.

stringminiIconUrl

The API name of the action.stringquickActionName

The API name of the action’s target object.stringtargetSobjectType

The QuickActionType of the action. Valid values are:stringtype

• Create

• VisualforcePage

250

DescribeLayoutResultDescribe Calls

CustomLinkComponent
When the LayoutComponentType value is CustomLink, this type contains information about a single custom link on the page layout.

DescriptionTypeName

A single LayoutComponent object of type CustomLink.DescribeLayoutButtoncustomLink

FieldLayoutComponent
Extends the information returned by describeLayoutComponent. When the LayoutComponentType value is Field, and the field being
described is an Address or Person Name field, FieldLayoutComponent includes information about the field’s components.When
the LayoutComponentType value is Field, and the field being described is a compound field, such as Address or Person Name,
FieldLayoutComponent includes information about its components.

Available in API version 31.0 and later.

DescriptionTypeName

Array of zero or more LayoutComponent objects of type
Field.

describeLayoutComponent[]components

The field type.FieldTypefieldType

Sample Code for Usage of FieldLayoutComponent
DescribeLayoutComponent layoutComponent = layoutComponents[n];
// Look for a component representing the BillingAddress field
if (layoutComponent.getType() == LayoutComponentType.Field.toString() &&
layoutComponent.getValue().equals("BillingAddress") {
// Cast this component as a FieldLayoutComponent
DescribeLayoutComponent.FieldLayoutComponent addressFieldComponent =

(FieldLayoutComponent)layoutComponent;
// At this point you can access addressFieldComponent

FieldLayoutComponent-specific methods such as getComponents() or
getFieldType()

}

LayoutComponentType
Represents the type for a DescribeLayoutComponent. Contains one of these values:

• AnalyticsCloud—A CRM Analytics dashboard on the page layout. Available in API version 34.0 and later.

• Canvas—A canvas component on the page layout. This layout component type is available in API version 31.0 and later.

• CustomLink—A custom link on the page layout.

• EmptySpace—A blank space on the page layout.

• ExpandedLookup—An Expanded Lookup component in the Mobile Cards section of the page layout.

• Field—Field name. A mapping to the RecordTypeInfo field on the describeSObjectResult.

• ReportChart—A report chart on the page layout.

251

DescribeLayoutResultDescribe Calls

• SControl—Reserved for future use.

• Separator—Separator character, such as a semicolon (:) or slash (/).

• VisualforcePage—A Visualforce component on the page layout.

PicklistForRecordType
Represents a single record type picklist in a RecordTypeMapping. The picklistName matches up with the name attribute of each
field in the fields array in describeSObjectResult. The picklistValues are the set of acceptable values for the recordType.

DescriptionTypeName

Name of the picklist.stringpicklistName

Set of picklist values associated with the recordTypeIds in the RecordTypeMapping.

Note: If you retrieve picklistValues, the PicklistEntry value is null. If you need the
PicklistEntry value, get it from the PicklistEntry object obtained from the Field object
associated with the DescribeSObjectResult.

PicklistEntry[]picklistValues

RecordTypeMapping
Represents a single record type mapping in the recordTypeMappings field in a DescribeLayoutResult object. This object is a map
of valid recordTypeIds to layoutId. For displaying a detail view, a client application uses this mapping to determine which
layout is associated with the record type on the record. For displaying an edit view, a client application uses this mapping to determine
which layout to use (and possibly to allow the user to choose between multiple record types); it will also determine the set of available
picklist values.

DescriptionTypeName

Indicates whether this record type is available (true) or
not (false). Availability is used to display a list of available

booleanavailable

record types to the user when they are creating a new
record.

Indicates whether this is the default record type mapping
(true) or not (false).

booleandefaultRecordTypeMapping

ID of the layout associated with this record type.IDlayoutId

Name of this record type.stringname

Record type picklist(s) mapped to the recordTypeIds.PicklistForRecordType[]picklistsForRecordType

ID of this record type.IDrecordTypeId

Note: Some fields previously in this result have moved to RecordTypeInfo on page 287.

RelatedContent
Represents the Mobile Cards section in a DescribeLayout. Available in API version 29.0 and later.

252

DescribeLayoutResultDescribe Calls

DescriptionTypeName

An array of items in the Mobile Cards section of the page
layout.

DescribeRelatedContentItem[]relatedContentItems

DescribeRelatedContentItem
Represents an individual item in the DescribeRelatedContentItem list. Available in API version 29.0 and later.

DescriptionTypeName

An individual layout item in the Mobile Cards section. Must
be wrapped in a DescribeRelatedContentItem to be added
to the Mobile Cards section.

DescribeLayoutItemdescribeLayoutItem

RelatedList
Represents a single related list in a DescribeLayoutResult.

DescriptionTypeName

Buttons associated with this related list. This field is available in API
version 32.0 and later.

DescribeLayoutButton[]buttons

Columns associated with this related list.

You can pair this value with Field to achieve a number of useful
tasks, including determining whether the field is:

RelatedListColumn[]columns

• A name field, in order to present a link to the detail

• Sortable, (to allow the user to include it in an ORDER BY
clause to sort the rows by the given column

• A currency field, to include the currency symbol or code

If true, this related list is custom.booleancustom

Name of the field on the related (associated) object that establishes
the relationship with the associating object. For example, for the
Contact related list on Account, the value is AccountId.

stringfield

Label for the related list, displayed in the Salesforce user interface.stringlabel

Number of rows to display.intlimitRows

Name of the ChildRelationship in the DescribeSObjectResult for
the sObjectType which was provided as the argument to
DescribeLayout.

stringname

Name of the sObjectType that is the row type for rows within
this related list.

stringsobject

253

DescribeLayoutResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm

DescriptionTypeName

If not null, the column(s) that should be used to order the related
objects.

RelatedListSort[]sort

RelatedListColumn
Represents a single field in a related list returned by DescribeLayoutResult.

DescriptionTypeName

API name of the field. This value is always of the form object_type.field_name.
For example, if name is Contact.Account.Owner.Alias, then this value is
User.Alias.

stringfield

SOQL field syntax for the field in relation to the main sObject for the related list. This value
is always of the form object_type.field_name. Unlike name, it doesn’t return
a value in the Translate Returned SOQL Results format.

stringfieldApiName

Display in date or dateTime format.stringformat

Label of the field.stringlabel

Optional SOQL field syntax to retrieve the lookup ID value for the main related list sObject.
This value may be an expression that uses SOQL relationship query dot notation.

For example, if the related list sObjectType is Case and the column display value
is Owner.Alias, then the lookup ID value would be Owner.Id.

stringlookupId

SOQL field syntax for the field in relation to the main sObject for the related list. This value
may be an expression that uses SOQL relationship query dot notation, or it may use the
Translate Returned SOQL Results or convertCurrency() format.

For example, if the related list sObjectType is Case, then the value might be
Owner.Alias or it might be toLabel(Case.Status).

stringname

RelatedListSort
Represents the sorting preference for objects in the related list.

DescriptionTypeName

Name of the field that is used to order the related objects.stringcolumn

If true, sort order is ascending. If false, descending.booleanascending

Although in most cases there is only one RelatedListSort in the array, for some special standard related lists, there is more than one. If
there is more than one, the RelatedListSorts are ordered according to how they should be included in a corresponding SOQL query, for
example:

ORDER BY relatedListSort[0].getColumn() DIRECTION, relatedListSort[1].getColumn() DIRECTION

254

DescribeLayoutResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_tolabel.htm?search_text=translate%20returned%20SOQL
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_tolabel.htm?search_text=translate%20returned%20SOQL

DescribeLayoutSaveOption
Represents the save options for the layout. Save options define behavior that occurs when objects are created or modified using the
given layout. For example, for Cases and Leads, a “UseDefaultAssignmentRule” save option is exposed to control whether assignment
rules are applied when Cases or Leads are created or edited.

DescriptionTypeName

Default value for the save option. Controls
whether the save option defaults to enabled
or not in the Salesforce user interface.

booleandefaultValue

For example, for the
“UseDefaultAssignmentRule” save option,
if defaultValue is true, then by
default the system triggers the default
assignment rules when an Account, Case,
or Lead is created or edited. If false, then
the default assignment rules aren’t applied
when an Account, Case, or Lead is created
or edited, unless the user enables the save
option in the Salesforce user interface.

If true, then the save option is displayed
in the layout. If false, then the save
option isn’t displayed in the layout.

booleanisDisplayed

Label for the save option that is displayed
in the Salesforce user interface.

stringlabel

API name for the save option.stringname

The corresponding REST API header for the
save option.

stringrestHeaderName

The corresponding SOAP API header for the
save option.

stringsoapHeaderName

WebLinkPosition
Represents the window position for a new window opened upon clicking a DescribeLayoutButton. Applies only to custom buttons.
Available in API version 31.0 and later. Contains one of these values:

• fullScreen—The new window opens in a full screen. If this option is selected, any width or height parameters set for the new
window are ignored.

• none—No window position preference is set.

• topLeft—The new window opens, positioned at the top left of the screen.

WebLinkType
Represents the content being delivered by the custom button. Contains one of these values:

255

DescribeLayoutResultDescribe Calls

• javascript

• page—Visualforce page

• sControl

• url

WebLinkWindowType
Represents the behavior for a DescribeLayoutButton. Applies only to custom buttons. Available in API version 31.0 and later. Contains
one of these values:

• newWindow—The custom button’s content opens in a new browser window.

• noSidebar—The custom button’s content displays in the existing browser window without a sidebar.

• onClickJavaScript—Valid only when the DescribeLayoutButton’s contentSource field value is javascript. Clicking
the button or link executes JavaScript.

• replace—The custom button’s content displays in the existing browser window without a sidebar or header.

• sidebar—The custom button’s content displays in the existing browser window with a sidebar.

describePrimaryCompactLayouts()

Retrieves metadata about the primary compact layout for each of the specified object types. Information returned is limited to 100
objects.

Syntax
DescribeCompactLayout[] primaryCompactLayouts =
connection.describePrimaryCompactLayouts(string[] sObjectType)

Usage
Use this call to retrieve information about the primary compact layout for the given object types. This call returns metadata about a
given primary compact layout. For more information about compact layouts, see the Salesforce Help.

Sample Code—Java
public void testDescribePrimaryCompactLayoutsSample() {
try {
String[] objectsToDescribe = new String[] {"Account","Lead"};
DescribeCompactLayout[] primaryCompactLayouts =

connection.describePrimaryCompactLayouts(objectsToDescribe);

for (int i = 0; i < primaryCompactLayouts.length; i++) {
DescribeCompactLayout cLayout = primaryCompactLayouts[i];
System.out.println(" There is a compact layout with name: " + cLayout.getName());

// Write the objectType
System.out.println(" This compact layout is the primary compact layout for: " +

256

describePrimaryCompactLayouts()Describe Calls

cLayout.getObjectType());

DescribeLayoutItem[] fieldItems = cLayout.getFieldItems();
System.out.println(" There are " + fieldItems.length + " fields in this compact

layout.");

// Write field items
for (int j = 0; j < fieldItems.length; j++) {
System.out.println(j + " This compact layout has a field with name: " +

fieldItems[j].getLabel());
}

DescribeLayoutItem[] imageItems = cLayout.getImageItems();
System.out.println(" There are " + imageItems.length + " image fields in this

compact layout.");

// Write the image items
for (int j = 0; j < imageItems.length; j++) {
System.out.println(j + " This compact layout has an image field with name: " +

imageItems[j].getLabel());
}

DescribeLayoutButton[] actions = cLayout.getActions();
System.out.println(" There are " + actions.length + " buttons in this compact

layout.");

// Write the action buttons
for (int j = 0; j < actions.length; j++) {
System.out.println(j + " This compact layout has a button with name: " +

actions[j].getLabel());
}

}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Arguments

DescriptionTypeName

An array of one or more objects. The specified values must be valid objects for your organization.string[]sObjectTypes

Response
DescribeCompactLayout

Faults
InvalidSObjectFault

257

describePrimaryCompactLayouts()Describe Calls

UnexpectedErrorFault

describeQuickActions()

Retrieves details about specified actions.

Syntax
DescribeQuickActionResult[] = connection.describeQuickActions(string[] quickActionNames);

Usage
Use the describeQuickActions() call to retrieve details for specified actions. In API version 28.0, the
describeQuickActions() call takes the action name in the form of ParentEntity.ActionName. In API version 29.0 and
greater, it takes the action name in the form of ContextEntity.ActionName. Returns an array of DescribeQuickActionResult. For
example, you can first call describeAvailableQuickActions() for a list of actions available for a specified context and then
use describeQuickActions() to obtain details about specific actions.

Note: In API version 46.0 and later, the apiName for a global quick action can include the prefix Global. in a
describeQuickActions() request body. The request body also accepts global quick action API names without the prefix.

Note: The describeQuickActions() call doesn’t return results for actions created in your org if the Apex class was
installed as part of a managed package.

Sample—Java
This sample retrieves and displays publisher action details for a create action on the Account object.

public void example() throws Exception {
DescribeQuickActionResult[] result =

conn.describeQuickActions(new String[]
{ "Account.QuickCreateContact", "Account.QuickCreateTask" });

for(DescribeQuickActionResult r : result) {
assert r != null;

DescribeQuickActionDefaultValue [] describeQuickActionDefaultValues =
r.getDefaultValues();

for(DescribeQuickActionDefaultValue defaultValue : describeQuickActionDefaultValues)
{

System.out.println("Target Object Field: " + defaultValue.getField());
System.out.println("Target Object Field's default Value: " +

defaultValue.getDefaultValue);
}

System.out.println("Action name: " + r.getName());
System.out.println("Action label: " + r.getLabel());
System.out.println("ParentOrContext object: " + r.getSourceSobjectType());
System.out.println("Target object: " + r.getTargetSobjectType());
System.out.println("Target object record type: " + r.getTargetRecordTypeId());
System.out.println("Relationship field: " + r.getTargetParentField());
System.out.println("Quick action type: " + r.getType());
System.out.println("VF page name for custom actions: " +

258

describeQuickActions()Describe Calls

r.getVisualforcePageName());
System.out.println("Icon name: " + r.getIconName());
System.out.println("Icon URL: " + r.getIconUrl());
System.out.println("Mini icon URL: " + r.getMiniIconUrl());
assert r.getLayout() != null;
System.out.println("Height of VF page for custom actions: " + r.getHeight());
System.out.println("Width of VF page for custom actions: " + r.getWidth());

}
}

Arguments

DescriptionTypeName

An array of quick actions to be retrieved.string[]quickActions

Response
DescribeQuickActionResult

DescribeQuickActionResult
The describeQuickActions() call returns an array of DescribeQuickActionResult objects. Each DescribeQuickActionResult
object represents a quick action for a specified object.

DescriptionTypeName

The unique ID for the action. If the action doesn’t have an
ID, its API name is used.

This field is available in API version 35.0 and later.

stringactionEnumOrId

The name of your Canvas application, if you use it.stringcanvasApplicationName

Array of color information. Each color is associated with a
theme.

This field is available in API version 29.0 and later.

DescribeColor[]colors

The action’s default values.DescribeQuickActionDefaultValue[]defaultValues

The height in pixels of the action pane.intheight

Name of icon used for the action. If a custom icon is not
used, this value will not be set.

stringiconName

URL of icon used for the action. This icon URL corresponds
to the 32x32 icon used for the current Salesforce theme,
introduced in Spring ‘10, or the custom icon, if there is one.

stringiconUrl

259

DescribeQuickActionResultDescribe Calls

DescriptionTypeName

Array of icons. Each icon is associated with a theme.

If no custom icon was associated with the quick action and
the quick action creates a specific object, the icons will

DescribeIcon[]icons

correspond to the icons used for the created object. For
example, if the quick action creates an Account, the icon
array will contain the icons used for Account.

If a custom icon was associated with the quick action, the
array will contain that custom icon.

This field is available in API version 29.0 and later. API version
32.0 and later returns different icons than in earlier API
versions.

Label of the action.stringlabel

The section of the layout where the action resides.DescribeLayoutSectionlayout

If type is LightningComponent, the ID of the
Lightning component bundle called by the action.

This field is available in API version 38.0 and later.

IDlightningComponentBundleId

If type is LightningComponent, the name of the
Lightning component bundle called by the action.

This field is available in API version 38.0 and later.

stringlightningComponentBundleName

The icon’s URL. This icon URL corresponds to the 16x16 icon
used for the current Salesforce theme, introduced in Spring
’10, or the custom icon, if there is one.

stringminiIconUrl

Name of the action.stringname

The object used for the action. Named
sourceSobjectType in version 29.0 and earlier.

stringcontextSobjectType

Whether or not the Visualforce quick action header and
footer should be shown. If set to false, then both the

booleanshowQuickActionVfHeader

header containing the quick action title and the footer
containing the Save and Cancel buttons aren’t displayed.

The parent object type of the action. Links the target object
to the parent object. For example, use Account if the target
object is Contact and the parent object is Account.

stringtargetParentField

The record type of the target record.IDtargetRecordTypeId

The action’s target object type.stringtargetSobjectType

The action’s type. Valid values are:stringtype

• Canvas

• Create

260

DescribeQuickActionResultDescribe Calls

DescriptionTypeName

• Flow (This value is available as a Beta in API version
41.0 and later)

• LightningComponent (This value is available in
API version 38.0 and later.)

• LogACall

• Post

• SendEmail (This value is available in API version 31.0
and later.)

• SocialPost

• Update

• VisualforcePage

If type is Visualforce, the page name of the associated
page for the action.

stringvisualforcePageName

If type is Visualforce, the URL of the associated page for
the action.

stringvisualforcePageUrl

If a custom action is created, this is the width in pixels of the
action pane.

intwidth

DescribeQuickActionDefaultValue
Represents the default values of fields to use in default layouts.

DescriptionTypeName

The value of the auto-populated default action.stringdefaultValue

The field name of the action.stringfield

DescribeLayoutSection
Represents a section of a DescribeLayout and consists of one or more columns and one or more rows (an array of DescribeLayoutRow).

DescriptionTypeName

Number of columns in this DescribeLayoutSection.intcolumns

Heading text (label) for this DescribeLayoutSection.stringheading

Array of one or more DescribeLayoutRow objects.DescribeLayoutRow[]layoutRows

The ID of the layout upon which this DescribeLayoutSection resides.

This field is available in API version 35.0 and later.

IDparentLayoutId

Number of rows in this DescribeLayoutSection.introws

261

DescribeQuickActionResultDescribe Calls

DescriptionTypeName

Indicates the tab order for the fields in the section in the edit view.
Valid values are:

stringtabOrder

• LeftToRight

• TopToBottom

This field is available in API version 31.0 and later.

Indicates whether this DescribeLayoutSection is a collapsible
section, also known as a “twistie” (true), or not (false).

booleanuseCollapsibleSection

Indicates whether to display the heading (true) or not
(false).

booleanuseHeading

DescribeLayoutRow
Represents a row in a DescribeLayoutSection. A DescribeLayoutRow consists of one or more DescribeLayoutItem objects. For each
DescribeLayoutRow, a DescribeLayoutItem refers either to a specific field or to an “empty” DescribeLayoutItem (a DescribeLayoutItem
that contains no DescribeLayoutComponent objects). An empty DescribeLayoutItem can be returned when a given DescribeLayoutRow
is sparse (for example, containing more fields on the right column than on the left column). Where there are gaps in the layout, an empty
DescribeLayoutItem is returned as a placeholder.

DescriptionTypeName

Refers to either a specific field or to an empty LayoutItem (a
LayoutItem that contains no DescribeLayoutComponent objects).

DescribeLayoutItem[]layoutItems

Number of layoutItems. This information is redundant but,
due to a bug in a popular SOAP toolkit, was required to avoid
serialization problems.

intnumItems

DescribeLayoutItem
Represents an individual item in a DescribeLayoutRow. A DescribeLayoutItem consists of a set of components (DescribeLayoutComponent),
each of which is either a field or a separator. For most fields on a layout, there is only one component per layout item. However, in a
display-only view, the DescribeLayoutItem might be a composite of the individual fields (for example, an address can consist of street,
city, state, country, and postal code data). On the corresponding edit view, each component of the address field would be split up into
separate DescribeLayoutItems.

DescriptionTypeName

Indicates whether this DescribeLayoutItem can be edited (true)
or not (false). This field is available in API version 30.0 and below.

booleaneditable

It was replaced by the editableForNew and
editableForUpdate fields in API version 31.0.

Indicates whether a new DescribeLayoutItem can be edited when
creating a new record (true) or not (false).

This field is available in API version 31.0 and later.

booleaneditableForNew

262

DescribeQuickActionResultDescribe Calls

DescriptionTypeName

Indicates whether an existing DescribeLayoutItem can be edited
when editing a record (true) or not (false).

This field is available in API version 31.0 and later.

booleaneditableForUpdate

Label text for this DescribeLayoutItem.stringlabel

DescribeLayoutComponent for this DescribeLayoutItem.DescribeLayoutComponent[]layoutComponents

Indicates whether this DescribeLayoutItem is a placeholder (true)
or not (false). If true, then this DescribeLayoutItem is blank.

booleanplaceholder

Indicates whether this DescribeLayoutItem is required (true) or
not (false). This is useful to know if, for example, you wanted to
render required fields in a contrasting color (such as red).

booleanrequired

DescribeLayoutComponent
Represents the smallest unit in a layout—a field or a separator. To reference a field for display, a client application uses the following
notation to reference a field in the describeSObjects() call: LayoutComponent.fieldName.

In API version 31.0 and later, DescribeLayoutComponent is extended with FieldLayoutComponent if both the DescribeLayoutComponent
value is Field, and the field being described is either the compound field Address or the compound field Person Name.

DescriptionTypeName

The number of vertical lines displayed for a field in the edit view.
Applies to textarea and multi-select picklist fields.

intdisplayLines

Indicates the tab order for the item in the row.inttabOrder

The LayoutComponentType for this LayoutComponent.LayoutComponentTypetype

Value of this LayoutComponent. The name of the field if the
LayoutComponentType value is Field. The API name of the
canvas app if the LayoutComponentType value is Canvas.

stringvalue

LayoutComponentType
Represents the type for a DescribeLayoutComponent.Contains one of these values:

• AnalyticsCloud—A CRM Analytics dashboard on the page layout. Available in API version 34.0 and later.

• Canvas—A canvas component on the page layout. This layout component type is available in API version 31.0 and later.

• CustomLink—A custom link on the page layout.

• EmptySpace—A blank space on the page layout.

• ExpandedLookup—An Expanded Lookup component in the Mobile Cards section of the page layout.

• Field—Field name. A mapping to the name field on the describeSObjectResult.

• ReportChart—A report chart on the page layout.

• SControl—Reserved for future use.

263

DescribeQuickActionResultDescribe Calls

• Separator—Separator character, such as a semicolon (:) or slash (/).

• VisualforcePage—A Visualforce component on the page layout.

describeSearchScopeOrder()

Retrieves an ordered list of the objects in a user’s default global search scope.

Syntax
DescribeSearchScopeOrderResult[] describeSearchScopeOrderResults =
connection.describeSearchScopeOrder();

Usage
Use describeSearchScopeOrder() to retrieve an ordered list of objects in the default global search scope of a logged-in user.
Global search keeps track of which objects the user interacts with and how often and arranges the search results accordingly. Objects
used most frequently appear at the top of the list. The returned list reflects the object order in the user’s default search scope, including
any pinned objects on the user’s search results page. This call is useful if you want to implement a custom search results page using the
optimized global search scope.

Note: You must enable Chatter to enable global search.

Sample Code—Java
This sample shows how to retrieve the global search scope for a user and then iteratively display the name of each object in the scope.

public void describeSearchScopeOrderSample() {
try {
//Get the order of objects in search smart scope for the logged-in user
DescribeSearchScopeOrderResult[] describeSearchScopeOrderResults =

connection.describeSearchScopeOrder();
//Iterate through the results and display the name of each object
for (int i = 0; i < describeSearchScopeOrderResults.length; i++) {
System.out.println(describeSearchScopeOrderResults[i].getName());

}
}
catch(ConnectionException ce) {
ce.printStackTrace();

}
}

Arguments
None.

Response
An array of DescribeSearchScopeOrderResult objects

264

describeSearchScopeOrder()Describe Calls

Fault
UnexpectedErrorFault

SEE ALSO:

API Call Basics

DescribeSearchScopeOrderResult
The describeSearchScopeOrder() call returns an array of DescribeSearchScopeOrderResult objects. Each
DescribeSearchScopeOrderResult object represents an object in the user’s global search scope. The list reflects the order
of the objects in the user’s scope, including any pinned objects. The DescribeSearchScopeOrderResult object has the
following properties.

DescriptionTypeName

Three-character prefix code in the object ID. Object IDs are prefixed with
three-character codes that specify the type of the object. For example,

stringkeyPrefix

Account objects have a prefix of 001 and Opportunity objects have a
prefix of 006. Note that a key prefix can sometimes be shared by multiple
objects so it does not always uniquely identify an object.

Name of the object. English only.stringname

describeSearchLayouts()

Retrieves the search result layout configuration for one or more objects.

Syntax
DescribeSearchLayoutResult[] = binding.describeSearchLayouts(string sObjectType[]);

Usage
Use describeSearchLayouts() to retrieve search layout information for one or more objects. This is handy when you want to
create a custom search results page with the same layout settings as in Salesforce.

Sample
This sample shows how to retrieve the search result layout information for a list of objects.

public void describeSearchLayoutSample(String[] sObjectTypes) {
try {

// Get the search layout of Account and Group
DescribeSearchLayoutResult[] searchLayoutResults =

connection.describeSearchLayouts(sObjectTypes);
// Iterate through the results and display the label of each column

265

DescribeSearchScopeOrderResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_opportunity.htm

for (int i = 0; i < sObjectTypes.length; i += 1) {
String sObjectType = sObjectTypes[i];
DescribeSearchLayoutResult result = searchLayoutResults[i];
System.out.println("Top label for search results for " + sObjectType + "

is " + result.getLabel() + " and should display " + result.getLimitRows() + " rows");
System.out.println("Column labels for search results for " + sObjectType

+ " are: ");
for (DescribeColumn column : result.getSearchColumns()) {

System.out.println(column.getLabel());
}

}
} catch (ConnectionException ce) {

ce.printStackTrace();
}

}

Arguments

DescriptionTypeName

The list of objects you want to obtain search result layout
configuration for. For example, if the object is a person

string[]sObjectType

account, specify Account, or if it is a person contact, specify
Contact. The specified values must be valid objects in your
organization. For a complete list of standard objects, see
Standard Objects.

Response
DescribeSearchLayoutResult

Faults
InvalidSObjectFault

UnexpectedErrorFault

DescribeSearchLayoutResult
The describeSearchLayouts() on page 265 call returns an array of DescribeSearchLayoutResult objects. Each
DescribeSearchLayoutResult object represents the search layout configuration for each object queried for. The
DescribeSearchLayoutResult object has the following properties.

DescriptionTypeName

The browser title used for the search results page.stringlabel

The maximum number of rows to be displayed in the first page of search
results. This number can be changed by the administrator.

intlimitRows

266

DescribeSearchLayoutResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_list.htm

DescriptionTypeName

The columns associated with the search results for this object.DescribeColumn on page 266[]searchColumns

DescribeColumn
Represents the columns in the search layout configuration for each DescribeSearchLayoutResult object returned by the
describeSearchLayouts() on page 265 call.

DescriptionTypeName

Field reference in relation to the object it belongs to. For example,
“Lead.Phone.”stringfield

Field data format. For example, “date”. This value can be null.stringformat

Display text for this field in the user interface. For example, “Company
Phone” or just “Phone.”stringlabel

Field name. Use this in your SOQL query or code. For example, “Name.”stringname

describeSObject()

Describes metadata (field list and object properties) for the specified object.

Note: describeSObjects() supersedes describeSObject(). Use describeSObjects() instead of
describeSObject().

Syntax
DescribeSObjectResult = connection.describeSObject(string sObjectType);

Usage
Use describeSObject() to obtain metadata for a given object. You can first call describeGlobal() to retrieve a list of all
objects for your organization, then iterate through the list and use describeSObject() to obtain metadata about individual
objects.

Your client application must be logged in with sufficient access rights to retrieve metadata about your organization’s data. For more
information, see Factors that Affect Data Access.

Sample Code—Java
This sample calls describeSObject() to perform describes on the Account sObject. It retrieves some properties of the sObject
describe result, such as the sObject name, label, and fields. It then iterates through the fields and gets the field properties. For picklist

267

describeSObject()Describe Calls

fields, it gets the picklist values and for reference fields, it gets the referenced object names. The sample writes the retrieved sObject and
field properties to the console.

public void describeSObjectSample() {
try {

// Make the describe call
DescribeSObjectResult describeSObjectResult =

connection.describeSObject("Account");

// Get sObject metadata
if (describeSObjectResult != null) {
System.out.println("sObject name: " +

describeSObjectResult.getName());
if (describeSObjectResult.isCreateable())

System.out.println("Createable");

// Get the fields
Field[] fields = describeSObjectResult.getFields();
System.out.println("Has " + fields.length + " fields");

// Iterate through each field and gets its properties
for (int i = 0; i < fields.length; i++) {
Field field = fields[i];
System.out.println("Field name: " + field.getName());
System.out.println("Field label: " + field.getLabel());

// If this is a picklist field, show the picklist values
if (field.getType().equals(FieldType.picklist)) {

PicklistEntry[] picklistValues =
field.getPicklistValues();

if (picklistValues != null) {
System.out.println("Picklist values: ");
for (int j = 0; j < picklistValues.length; j++) {
if (picklistValues[j].getLabel() != null) {
System.out.println("\tItem: " +

picklistValues[j].getLabel()
);

}
}

}
}

// If a reference field, show what it references
if (field.getType().equals(FieldType.reference)) {

System.out.println("Field references the " +
"following objects:");

String[] referenceTos = field.getReferenceTo();
for (int j = 0; j < referenceTos.length; j++) {

System.out.println("\t" + referenceTos[j]);
}

}
}

}
} catch (ConnectionException ce) {

ce.printStackTrace();

268

describeSObject()Describe Calls

}
}

Sample Code—C#
This sample calls describeSObject() to perform describes on the Account sObject. It retrieves some properties of the sObject
describe result, such as the sObject name, label, and fields. It then iterates through the fields and gets the field properties. For picklist
fields, it gets the picklist values and for reference fields, it gets the referenced object names. The sample writes the retrieved sObject and
field properties to the console.

public void describeSObjectSample() {
try {

// Make the describe call
DescribeSObjectResult describeSObjectResult =

binding.describeSObject("Account");

// Get sObject metadata
if (describeSObjectResult != null) {

Console.WriteLine("sObject name: " +
describeSObjectResult.name);

if (describeSObjectResult.createable)
Console.WriteLine("Createable");

// Get the fields
Field[] fields = describeSObjectResult.fields;
Console.WriteLine("Has " + fields.Length + " fields");

// Iterate through each field and gets its properties
for (int i = 0; i < fields.Length; i++) {

Field field = fields[i];
Console.WriteLine("Field name: " + field.name);
Console.WriteLine("Field label: " + field.label);

// If this is a picklist field, show the picklist values
if (field.type.Equals(fieldType.picklist)) {

PicklistEntry[] picklistValues =
field.picklistValues;

if (picklistValues != null) {
Console.WriteLine("Picklist values: ");
for (int j = 0; j < picklistValues.Length; j++) {

if (picklistValues[j].label != null) {
Console.WriteLine("\tItem: " +

picklistValues[j].label);
}

}
}

}

// If a reference field, show what it references
if (field.type.Equals(fieldType.reference)) {

Console.WriteLine("Field references the " +
"following objects:");

String[] referenceTos = field.referenceTo;

269

describeSObject()Describe Calls

for (int j = 0; j < referenceTos.Length; j++) {
Console.WriteLine("\t" + referenceTos[j]);

}
}

}
}

} catch (SoapException e) {
Console.WriteLine("An unexpected error has occurred: " +

e.Message + "\n" + e.StackTrace);
}

}

Arguments

DescriptionTypeName

Object. The specified value must be a valid object for your organization. For a complete list
of objects, see Standard Objects.

stringsObjectType

Response
DescribeSObjectResult

Faults
InvalidSObjectFault

UnexpectedErrorFault

SEE ALSO:

describeSObjects()

describeGlobal()

API Call Basics

Using the Partner WSDL

https://developer.salesforce.com/page/Sample_SOAP_Messages

describeSObjectResult
The describeSObject() call returns a DescribeSObjectResult object.

Note: describeSObjects() supersedes describeSObject(). Use describeSObjects() instead of
describeSObject().

270

describeSObjectResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_list.htm
https://developer.salesforce.com/page/Sample_SOAP_Messages

describeSObjects()

An array-based version of describeSObject(); describes metadata (field list and object properties) for the specified object or
array of objects.

Note: Use this call instead of describeSObject().

Syntax
DescribeSObjectResult [] = connection.describeSObjects(string sObjectType[]);

Usage
Use describeSObjects() to obtain metadata for a given object or array of objects. You can first call describeGlobal() to
retrieve a list of all objects for your organization, then iterate through the list and use describeSObjects() to obtain metadata
about individual objects. The describeSObjects() call is limited to a maximum of 100 objects returned.

Your client application must be logged in with sufficient access rights to retrieve metadata about your organization’s data. For more
information, see Factors that Affect Data Access.

In organizations where person accounts are enabled, this call shows Accounts as not createable if the profile does not have access to
any business account record types.

Sample Code—Java
This sample calls describeSObjects() to perform describes on account, contact, and lead. It iterates through the sObject describe
results, gets the properties and fields for each sObject in the result, and writes them to the console. For picklist fields, it writes the picklist
values. For reference fields, it writes the referenced object names.

public void describeSObjectsSample()
{
try {
// Call describeSObjectResults and pass it an array with
// the names of the objects to describe.
DescribeSObjectResult[] describeSObjectResults =

connection.describeSObjects(
new String[] { "account", "contact", "lead" });

// Iterate through the list of describe sObject results
for (int i=0;i < describeSObjectResults.length; i++)
{

DescribeSObjectResult desObj = describeSObjectResults[i];
// Get the name of the sObject
String objectName = desObj.getName();
System.out.println("sObject name: " + objectName);

// For each described sObject, get the fields
Field[] fields = desObj.getFields();

// Get some other properties
if (desObj.getActivateable()) System.out.println("\tActivateable");

271

describeSObjects()Describe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm

// Iterate through the fields to get properties for each field
for(int j=0;j < fields.length; j++)
{

Field field = fields[j];
System.out.println("\tField: " + field.getName());
System.out.println("\t\tLabel: " + field.getLabel());
if (field.isCustom())

System.out.println("\t\tThis is a custom field.");
System.out.println("\t\tType: " + field.getType());
if (field.getLength() > 0)

System.out.println("\t\tLength: " + field.getLength());
if (field.getPrecision() > 0)

System.out.println("\t\tPrecision: " + field.getPrecision());

// Determine whether this is a picklist field
if (field.getType() == FieldType.picklist)
{

// Determine whether there are picklist values
PicklistEntry[] picklistValues = field.getPicklistValues();
if (picklistValues != null && picklistValues[0] != null)
{

System.out.println("\t\tPicklist values = ");
for (int k = 0; k < picklistValues.length; k++)
{

System.out.println("\t\t\tItem: " + picklistValues[k].getLabel());

}
}

}

// Determine whether this is a reference field
if (field.getType() == FieldType.reference)
{

// Determine whether this field refers to another object
String[] referenceTos = field.getReferenceTo();
if (referenceTos != null && referenceTos[0] != null)
{

System.out.println("\t\tField references the following objects:");
for (int k = 0; k < referenceTos.length; k++)
{

System.out.println("\t\t\t" + referenceTos[k]);
}

}
}

}
}

} catch(ConnectionException ce) {
ce.printStackTrace();

}
}

272

describeSObjects()Describe Calls

Sample Code—C#
This sample calls describeSObjects() to perform describes on account, contact, and lead. It iterates through the sObject describe
results, gets the properties and fields for each sObject in the result, and writes them to the console. For picklist fields, it writes the picklist
values. For reference fields, it writes the referenced object names.

public void describeSObjectsSample()
{

try
{
// Call describeSObjectResults and pass it an array with
// the names of the objects to describe.
DescribeSObjectResult[] describeSObjectResults =

binding.describeSObjects(
new string[] { "account", "contact", "lead" });

// Iterate through the list of describe sObject results
foreach (DescribeSObjectResult describeSObjectResult in describeSObjectResults)
{

// Get the name of the sObject
String objectName = describeSObjectResult.name;
Console.WriteLine("sObject name: " + objectName);

// For each described sObject, get the fields
Field[] fields = describeSObjectResult.fields;

// Get some other properties
if (describeSObjectResult.activateable) Console.WriteLine("\tActivateable");

// Iterate through the fields to get properties for each field
foreach (Field field in fields)
{

Console.WriteLine("\tField: " + field.name);
Console.WriteLine("\t\tLabel: " + field.label);
if (field.custom)

Console.WriteLine("\t\tThis is a custom field.");
Console.WriteLine("\t\tType: " + field.type);
if (field.length > 0)

Console.WriteLine("\t\tLength: " + field.length);
if (field.precision > 0)

Console.WriteLine("\t\tPrecision: " + field.precision);

// Determine whether this is a picklist field
if (field.type == fieldType.picklist)
{

// Determine whether there are picklist values
PicklistEntry[] picklistValues = field.picklistValues;
if (picklistValues != null && picklistValues[0] != null)
{

Console.WriteLine("\t\tPicklist values = ");
for (int j = 0; j < picklistValues.Length; j++)
{

Console.WriteLine("\t\t\tItem: " + picklistValues[j].label);
}

273

describeSObjects()Describe Calls

}
}

// Determine whether this is a reference field
if (field.type == fieldType.reference)
{

// Determine whether this field refers to another object
string[] referenceTos = field.referenceTo;
if (referenceTos != null && referenceTos[0] != null)
{

Console.WriteLine("\t\tField references the following objects:");
for (int j = 0; j < referenceTos.Length; j++)
{

Console.WriteLine("\t\t\t" + referenceTos[j]);
}

}
}

}
}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " + e.Message
+ "\n" + e.StackTrace);

}
}

Arguments
The describeSObjects() call takes in an array of sObjects.

DescriptionTypeName

Object. The specified value must be a valid object for your organization. For a complete list
of objects, see Standard Objects.

stringsObjectType

Response
DescribeSObjectResult

Faults
InvalidSObjectFault

274

describeSObjects()Describe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_list.htm

UnexpectedErrorFault

SEE ALSO:

describeSObject()

describeGlobal()

API Call Basics

Using the Partner WSDL

DescribeSObjectResult
Important: Where possible, we changed noninclusive terms to align with our company value of Equality. Because changing
terms in our code can break current implementations, we maintained this object’s name.

The describeSObjects() call returns an array of DescribeSObjectResult objects. Each object has the following properties:

DescriptionTypeName

An array of action overrides. Action overrides replace the URLs specified in
the urlDetail, urlEdit and urlNew fields. This field is available in
API version 32.0 and later.

ActionOverride[]actionOverrides

Reserved for future use.booleanactivateable

An array of action overrides. Action overrides replace the URLs specified in
the urlDetail, urlEdit and urlNew fields. This field is available in
API version 32.0 and later.

ActionOverride[]actionOverrides

If the object is associated with a parent object, the type of association it has
to its parent, such as History. Otherwise, its value is null. Available in
API version 50.0 and later.

stringassociateEntityType

If the object is associated with a parent object, the parent object it’s
associated with. Otherwise, its value is null. Available in API version 50.0
and later.

stringassociateParentEntity

An array of child relationships, which is the name of the sObject that has a
foreign key to the sObject being described.

ChildRelationship[]childRelationships

Indicates that the object can be used in describeCompactLayouts().booleancompactLayoutable

Indicates whether the object can be created via the create() call (true)
or not (false).

booleancreateable

Indicates whether the object is a custom object (true) or not (false).booleancustom

Indicates whether the object is a custom setting object (true) or not
(false).

booleancustomSetting

Indicates whether data translation is enabled for the object (true) or not
(false). Available in API version 49.0 and later.

booleandataTranslationEnabled

Reserved for future use.booleandeepCloneable

275

DescribeSObjectResultDescribe Calls

DescriptionTypeName

Reserved for future use.stringdefaultImplementation

Indicates whether the object can be deleted via the delete() call (true)
or not (false).

booleandeletable

Reserved for future use.booleandeprecatedAndHidden

Reserved for future use.stringextendedBy

Reserved for future use.stringextendsInterfaces

Indicates whether Chatter feeds are enabled for the object (true) or not
(false). This property is available in API version 19.0 and later.

booleanfeedEnabled

Array of fields associated with the object. The mechanism for retrieving
information from this list varies among development tools.

Field[]fields

Reserved for future use.stringimplementedBy

Reserved for future use.stringimplementsInterfaces

Reserved for future use.booleanisInterface

Three-character prefix code in the object ID. Object IDs are prefixed with
three-character codes that specify the type of the object. For example,

stringkeyPrefix

Account objects have a prefix of 001 and Opportunity objects have a prefix
of 006. Note that a key prefix can sometimes be shared by multiple objects
so it does not always uniquely identify an object.

Use the value of this field to determine the object type of a parent in those
cases where the child may have more than one object type as parent
(polymorphic). For example, you may need to obtain the keyPrefix
value for the parent of a Task or Event.

Label text for a tab or field renamed in the user interface, if applicable, or the
object name, if not. For example, an organization representing a medical

stringlabel

vertical might rename Account to Patient. Tabs and fields can be renamed
in the Salesforce user interface. See the Salesforce online help for more
information.

Label text for an object that represents the plural version of an object name,
for example, “Accounts.”

stringlabelPlural

Indicates whether the object supports the describeLayout() call
(true) or not (false).

booleanlayoutable

Indicates whether the object can be merged with other objects of its type
(true) or not (false). true for leads, contacts, and accounts.

booleanmergeable

Indicates whether Most Recently Used (MRU) list functionality is enabled for
the object (true) or not (false).

booleanmruEnabled

Name of the object. This is the same string that was passed in as the
sObjectType parameter.

stringname

276

DescribeSObjectResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_opportunity.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_task.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_event.htm

DescriptionTypeName

The specific named layouts that are available for the objects other than the
default layout.

NamedLayoutInfo[]namedLayoutInfos

The API name of the networkScopeField that scopes the entity to
an Experience Cloud site. For most entities, the value of this property is null.

stringnetworkScopeFieldName

Indicates whether the object can be queried via the query() call (true)
or not (false).

booleanqueryable

An array of the record types supported by this object. The user need not
have access to all the returned record types to see them here.

[]recordTypeInfos

Indicates whether the object can be replicated via the getUpdated()
and getDeleted() calls (true) or not (false).

booleanreplicateable

Indicates whether the object can be retrieved via the retrieve() call
(true) or not (false).

booleanretrieveable

Indicates whether the object can be searched via the search() call
(true) or not (false).

booleansearchable

Indicates whether search layout information can be retrieved via the
describeSearchLayouts() call (true) or not (false).

booleansearchLayoutable

The list of supported scopes for the object. For example, Account might have
supported scopes of “All Accounts”, “My Accounts”, and “My Team’s
Accounts”.

ScopeInfosupportedScopes

Indicates whether the object supports Apex triggers.booleantriggerable

Indicates whether an object can be undeleted using the undelete()
call (true) or not (false).

booleanundeletable

Indicates whether the object can be updated via the update() call (true)
or not (false).

booleanupdateable

URL to the read-only detail page for this object. Compare with urlEdit,
which is read-write. Client applications can use this URL to redirect to, or

stringurlDetail

access, the Salesforce user interface for standard and custom objects. To
provide flexibility and allow for future enhancements, returned urlDetail
values are dynamic. To ensure that client applications are forward compatible,
it is recommended that they use this capability where possible. Note that,
for objects for which a stable URL is not available, this field is returned empty.

URL to the edit page for this object. For example, the urlEdit field for
the Account object returns

stringurlEdit

https://yourInstance.salesforce.com/{ID}/e.
Substituting the {ID} field for the current object ID will return the edit page
for that specific account in the Salesforce user interface. Compare with
urlDetail, which is read-only. Client applications can use this URL to
redirect to, or access, the Salesforce user interface for standard and custom
objects. To provide flexibility and allow for future enhancements, returned
urlDetail values are dynamic. To ensure that client applications are

277

DescribeSObjectResultDescribe Calls

DescriptionTypeName

forward compatible, it is recommended that they use this capability where
possible. Note that, for objects for which a stable URL is not available, this
field is returned empty.

URL to the new/create page for this object. Client applications can use this
URL to redirect to, or access, the Salesforce user interface for standard and

stringurlNew

custom objects. To provide flexibility and allow for future enhancements,
returned urlNew values are dynamic. To ensure that client applications
are forward compatible, it is recommended that they use this capability
where possible. Note that, for objects for which a stable URL is not available,
this field is returned empty.

Note: The properties with a Boolean value indicate whether certain API calls can be used for an object. However, other factors,
such as permissions, also affect whether such operations can be performed on the object.

ActionOverride
ActionOverride provides details about an action that replaces the default action pages for an object. For example, an object could be
configured to replace the new/create page with a custom page. This type is available in API version 32.0 and later.

DescriptionTypeName

Represents the environment to which the action override applies. For
example, a Large value in this field represents the Lightning

stringformFactor

Experience desktop environment, and is valid for Lightning pages and
Lightning components. A Small value represents the Salesforce
mobile app on a phone or tablet.

This field is available in API version 37.0 and later.

Indicates whether the action override is available in the Salesforce
mobile app (true) or not (false).

booleanisAvailableInTouch

The name of the action that overrides the default action. For example,
if the new/create page was overridden with a custom action, the name
might be “New”.

stringname

The ID of the page for the action override.referencepageId

The URL of the item being used for the action override, such as a
Visualforce page. Returns as null for Lightning page overrides.

stringurl

ChildRelationship
The name of the sObject that has a foreign key to the sObject being described.

278

DescribeSObjectResultDescribe Calls

DescriptionTypeName

Indicates whether the child object is deleted when the parent object
is deleted (true) or not (false).

booleancascadeDelete

The name of the object on which there is a foreign key back to the
parent sObject.

stringchildSObject

Reserved for future use.booleandeprecatedAndHidden

The name of the field that has a foreign key back to the parent sObject.stringfield

The names of the lists of junction IDs associated with an object. Each
ID represents an object that has a relationship with the associated
object.

For more information on JunctionIdList fields, see Field Types.

String[]junctionIdListNames

A collection of object names that the polymorphic keys in the
junctionIdListNames property can reference.

You can query these object names.

String[]junctionReferenceTo

The name of the relationship, usually the plural of the value in
childSObject.

stringrelationshipName

Indicates whether the parent object can’t be deleted because it is
referenced by a child object (true) or not (false).

booleanrestrictedDelete

Field
In the DescribeSObjectResult, the fields property contains an array of Field objects. Each field represents a field in an API object.
The array contains only the fields that the user can view, as defined by the user's field-level security settings.

DescriptionTypeName

Indicates whether this field is an autonumber field (true) or not (false).
Analogous to a SQL IDENTITY type, autonumber fields are read only,

booleanautonumber

non-createable text fields with a maximum length of 30 characters. Autonumber
fields are read-only fields used to provide a unique ID that is independent of the
internal object ID (such as a purchase order number or invoice number).
Autonumber fields are configured entirely in the Salesforce user interface. The API
provides access to this attribute so that client applications can determine whether
a given field is an autonumber field.

For variable-length fields (including binary fields), the maximum size of the field,
in bytes.

intbyteLength

Indicates whether the field is a custom formula field (true) or not (false). Note
that custom formula fields are always read-only.

booleancalculated

Indicates whether the field is case sensitive (true) or not (false).booleancaseSensitive

279

DescribeSObjectResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#JunctionIdList_Field_Type_title_ph

DescriptionTypeName

The name of the field that controls the values of this picklist. It only applies if type
is picklist or multipicklist and dependentPicklist is true.

stringcontrollerName

The mapping of controlling field to dependent field is stored in the validFor
attribute of each PicklistEntry for this picklist.

Indicates whether the field can be created (true) or not (false). If true, then
this field value can be set in a create() call.

booleancreateable

Indicates whether the field is a custom field (true) or not (false).booleancustom

Indicates whether data translation is enabled for the field (true) or not (false).
Available in API version 49.0 and later.

booleandataTranslationEnabled

Indicates whether this field is defaulted when created (true) or not (false). If
true, then Salesforce implicitly assigns a value for this field when the object is

booleandefaultedOnCreate

created, even if a value for this field is not passed in on the create() call. For
example, in the Opportunity object, the Probability field has this attribute
because its value is derived from the Stage field. Similarly, the Owner has this
attribute on most objects because its value is derived from the current user (if the
Owner field is not specified).

The default value specified for this field if the formula is not used. If no value has
been specified, this field is not returned.

stringdefaultValueFormula

Indicates whether a picklist is a dependent picklist (true) where available values
depend on the chosen values from a controlling field, or not (false). See About
Dependent Picklists.

booleandependentPicklist

Reserved for future use.booleandeprecatedAndHidden

For fields of type integer. Maximum number of digits. The API returns an error if
an integer value exceeds the number of digits.

intdigits

Indicates how the geolocation values of a Location custom field appears in the
user interface. If true, the geolocation values appear in decimal notation. If
false, the geolocation values appear as degrees, minutes, and seconds.

booleandisplayLocationInDecimal

booleanencrypted
Note: This page is about Shield Platform Encryption, not Classic Encryption.
What's the difference?

Indicates whether this field is encrypted. This value only appears in the results of
a describeSObjects() call when it is true; otherwise, it is omitted from
the results. This field is available in API version 31.0 and later.

If the field is a textarea field type, indicates if the text area is plain text
(plaintextarea) or rich text (richtextarea).

If the field is a url field type, if this value is imageurl, the URL references an
image file. Available on standard fields on standard objects only, for example,
Account.photoUrl, Contact.photoUrl, and so on.

stringextraTypeInfo

If the field is a reference field type, indicates the type of external object
relationship. Available on external objects only.

280

DescribeSObjectResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_opportunity.htm
https://help.salesforce.com/apex/HTViewHelpDoc?id=security_pe_vs_classic_encryption.htm&language=en_US#security_pe_vs_classic_encryption

DescriptionTypeName

• null—lookup relationship

• externallookup—external lookup relationship

• indirectlookup—indirect lookup relationship

Indicates whether the field is filterable (true) or not (false). If true, then
this field can be specified in the WHERE clause of a query string in a query()
call.

booleanfilterable

If the field is a reference field type with a lookup filter,
filteredLookupInfo contains the lookup filter information for the field.
If there is no lookup filter, or the filter is inactive, this field is null.

This field is available in API version 31.0 and later.

FilteredLookupInfofilteredLookupInfo

The formula specified for this field. If no formula is specified for this field, it is not
returned.

stringformula

Indicates whether the field can be included in the GROUP BY clause of a SOQL
query (true) or not (false). See GROUP BY in the Salesforce SOQL and SOSL
Reference Guide. Available in API version 18.0 and later.

booleangroupable

Indicates whether the field stores numbers to 8 decimal places regardless of what’s
specified in the field details (true) or not (false). Used to handle currencies

booleanhighScaleNumber

for products that cost fractions of a cent, in large quantities. If high-scale unit
pricing isn’t enabled in your organization, this field isn’t returned. Available in API
version 33.0 and later.

Indicates whether a field such as a hyperlink custom formula field has been
formatted for HTML and should be encoded for display in HTML (true) or not

booleanhtmlFormatted

(false). Also indicates whether a field is a custom formula field that has an
IMAGE text function.

Indicates whether the field can be used to specify a record in an upsert() call
(true) or not (false).

booleanidLookup

The text that displays in the field-level help hover text for this field.stringinlineHelpText

Note: This property is not returned unless at least one field on the object
contains a value. When at least one field has field-level help, all fields on
the object list the property with either the field-level help value or null for
fields that have blank field-level help.

Text label that is displayed next to the field in the Salesforce user interface. This
label can be localized.

stringlabel

Returns the maximum size of the field in Unicode characters (not bytes) or 255,
whichever is less. The maximum value returned by the getLength() property is
255. Available in API version 49.0 and later.

intlength

Reserved for future use.stringmask

Reserved for future use.stringmaskType

281

DescribeSObjectResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/

DescriptionTypeName

Field name used in API calls, such as create(), delete(), and query().stringname

Indicates whether this field is a name field (true) or not (false). Used to identify
the name field for standard objects (such as AccountName for an Account

booleannameField

object) and custom objects. Limited to one per object, except where FirstName
and LastName fields are used (such as in the Contact object).

If a compound name is present, for example the Name field on a person account,
nameField is set to true for that record. If no compound name is present,
FirstName and LastName have this field set to true.

Indicates whether the field's value is the Name of the parent of this object (true)
or not (false). Used for objects whose parents may be more than one type of
object, for example a task may have an account or a contact as a parent.

booleannamePointing

Indicates whether the field is nillable (true) or not (false). A nillable field can
have empty content. A non-nillable field must have a value in order for the object
to be created or saved.

booleannillable

Indicates whether FieldPermissions can be specified for the field (true) or not
(false).

booleanpermissionable

Provides the list of valid values for the picklist. Specified only if
restrictedPicklist is true.

PicklistEntry[]picklistValues

Indicates whether the foreign key includes multiple entity types (true) or not (false).booleanpolymorphicForeignKey

For fields of type double. Maximum number of digits that can be stored, including
all numbers to the left and to the right of the decimal point (but excluding the
decimal point character).

intprecision

The name of the relationship, if this is a master-detail relationship field.stringrelationshipName

The type of relationship for a master-detail relationship field. Valid values are:intrelationshipOrder

• 0 if the field is the primary relationship

• 1 if the field is the secondary relationship

Applies only to indirect lookup relationships on external objects. Name of the
custom field on the parent standard or custom object whose values are matched

stringreferenceTargetField

against the values of the child external object's indirect lookup relationship field.
This matching is done to determine which records are related to each other. This
field is available in API version 32.0 and later.

For fields that refer to other objects, this array indicates the object types of the
referenced objects.

string[]referenceTo

Indicates whether the field is a restricted picklist (true) or not (false).booleanrestrictedPicklist

For fields of type double. Number of digits to the right of the decimal point. The
API silently truncates any extra digits to the right of the decimal point, but it returns
a fault response if the number has too many digits to the left of the decimal point.

intscale

282

DescribeSObjectResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_name.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_fieldpermissions.htm

DescriptionTypeName

Indicates whether a foreign key can be included in prefiltering (true) or not
(false) when used in a SOSL WHERE clause. Prefiltering means to filter by a

booleansearchPrefilterable

specific field value before executing the full search query. Available in API version
40.0 and later.

See SOAPType for a list of allowable values.SOAPTypesoapType

Indicates whether a query can sort on this field (true) or not (false).booleansortable

See FieldType for a list of allowable values.FieldTypetype

Indicates whether the value must be unique true) or not false).booleanunique

Indicates one of the following:booleanupdateable

• Whether the field is updateable, (true) or not (false).

If true, then this field value can be set in an update() call.

• If the field is in a master-detail relationship on a custom object, indicates
whether the child records can be reparented to different parent records
(true), false otherwise.

This field only applies to master-detail relationships. Indicates whether a user
requires read sharing access (true) or write sharing access (false) to the parent

booleanwriteRequiresMasterRead

record to insert, update, and delete a child record. In both cases, a user also needs
Create, Edit, and Delete object permissions for the child object.

FieldType
In the Field object associated with DescribeSObjectResult, the type field can contain one of the following strings. For more
information about field types, see Field Types.

What the Field Object Containstype Field Value

String values.string

Boolean (true / false) values.boolean

Integer values.int

Double values.double

Date values.date

Date and time values.datetime

Base64-encoded arbitrary binary data (of type base64Binary). Used for Attachment, Document,
and Scontrol objects.

base64

Primary key field for the object. For information on IDs, see Field Types.ID

Cross-references to a different object. Analogous to a foreign key field in SQL.reference

Currency values.currency

283

DescribeSObjectResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_attachment.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_document.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_scontrol.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm

What the Field Object Containstype Field Value

String that is displayed as a multiline text field.textarea

Percentage values.percent

Phone numbers. Values can include alphabetic characters. Client applications are responsible
for phone number formatting.

phone

URL values. Client applications should commonly display these as hyperlinks.

If Field.extraTypeInfo is imageurl, the URL references an image, and can be
displayed as an image instead.

url

Email addresses.email

Comboboxes, which provide a set of enumerated values and allow the user to specify a value
not in the list.

combobox

Single-select picklists, which provide a set of enumerated values from which only one value
can be selected.

picklist

Multi-select picklists, which provide a set of enumerated values from which multiple values
can be selected.

multipicklist

Values can be any of these types: string, picklist, boolean, int, double,
percent, ID, date, dateTime, url, or email.

anyType

Geolocation values, including latitude and longitude, for custom geolocation fields on custom
objects.

location

FilteredLookupInfo
In the Field object associated with the DescribeSObjectResult, the filteredLookupInfo field contains information about the
lookup filter associated with the field.

This subtype is available in API version 31.0 and later.

DescriptionTypeName

Array of the field’s controlling fields when the lookup filter is dependent
on the source object.

string[]controllingFields

Indicates whether the lookup filter is dependent upon the source
object (true) or not (false).

booleandependent

Indicates whether the lookup filter is optional (true) or not (false).booleanoptionalFilter

SOAPType
The DescribeSObjectResult returns the fields property, which contains an array of fields whose value provides information about
the object being described. One of those fields, soapType, contains one of the following string values. All of the values preceded by
xsd: are XML schema primitive data types. For more information about the XML schema primitive data types, see the World Wide
Web Consortium’s publication XML Schema Part 2: Data Types at: http://www.w3.org/TR/xmlschema-2/.

284

DescribeSObjectResultDescribe Calls

http://www.w3.org/TR/xmlschema-2/

DescriptionValue

Unique ID associated with an sObject. For information on IDs, see Field Types.tns:ID

Can be ID, Boolean, double, integer, string, date, or dateTime.xsd:anyType

Base 64-encoded binary data.xsd:base64Binary

Boolean (true / false) values.xsd:boolean

Date values.xsd:date

Date/time values.xsd:dateTime

Double values.xsd:double

Integer values.xsd:int

Character strings.xsd:string

PicklistEntry
In the Field object associated with the DescribeSObjectResult, the picklistValues field contains an array of PicklistEntry
properties. Each PicklistEntry can contain any one of the following string values. For more information, see Field Types.

DescriptionTypeName

Indicates whether this item must be displayed (true) or not (false) in the
drop-down list for the picklist field in the user interface.

booleanactive

A set of bits where each bit indicates a controlling value for which this
PicklistEntry is valid. See About Dependent Picklists.

byte[]validFor

Indicates whether this item is the default item (true) in the picklist or not (false).
Only one item in a picklist can be designated as the default.

booleandefaultValue

Display name of this item in the picklist.stringlabel

Value of this item in the picklist.stringvalue

About Dependent Picklists
A dependent picklist works in conjunction with a controlling field to filter its values. The value chosen in the controlling field affects the
values available in the dependent picklist.

A dependent picklist can be any custom picklist or multi-select picklist field that displays available values based on the value selected
in its corresponding controlling field. A controlling field can be any standard or custom picklist (with at least one and less than 200 values)
or checkbox field whose values control the available values in one or more corresponding dependent fields.

In the following example, the controlling picklist Beverage has two values, which relate to the values of the dependent picklist
Beverage Variety:

Beverage VarietyBeverage

DecaffeinatedCoffee

285

DescribeSObjectResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm

Beverage VarietyBeverage

Regular

ChamomileTea

Earl Grey

English Breakfast

For each PicklistEntry that represents a value in a dependent picklist, the validFor attribute contains a set of bits. Each bit
indicates a controlling field value for which the PicklistEntry is valid. Read the bits from left to right.

For more information on dependent picklists, see the “Dependent Picklists” topic in the Salesforce online help.

Sample Java Code for Dependent Picklists
public void dependentPicklistSample() {
// inner class to decode a "validFor" bitset
class Bitset {
byte[] data;

public Bitset(byte[] data) {
this.data = data == null ? new byte[0] : data;

}

public boolean testBit(int n) {
return (data[n >> 3] & (0x80 >> n % 8)) != 0;

}

public int size() {
return data.length * 8;

}
}

try {
DescribeSObjectResult describeSObjectResult = connection.describeSObject("Case");
Field[] fields = describeSObjectResult.getFields();
// create a map of all fields for later lookup
Map fieldMap = new HashMap();
for (int i = 0; i < fields.length; i++) {
fieldMap.put(fields[i].getName(), fields[i]);

}
for (int i = 0; i < fields.length; i++) {
// check whether this is a dependent picklist
if (fields[i].getDependentPicklist()) {
// get the controller by name
Field controller = (Field)fieldMap.get(fields[i].getControllerName());
System.out.println("Field '" + fields[i].getLabel() + "' depends on '" +
controller.getLabel() + "'");
PicklistEntry[] picklistValues = fields[i].getPicklistValues();
for (int j = 0; j < picklistValues.length; j++) {
// for each PicklistEntry: list all controlling values for which it is valid

286

DescribeSObjectResultDescribe Calls

System.out.println("Item: '" + picklistValues[j].getLabel() +
"' is valid for: ");
Bitset validFor = new Bitset(picklistValues[j].getValidFor());
if (FieldType.picklist == controller.getType()) {
// if the controller is a picklist, list all
// controlling values for which this entry is valid
for (int k = 0; k < validFor.size(); k++) {
if (validFor.testBit(k)) {
// if bit k is set, this entry is valid for the
// for the controlling entry at index k
System.out.println(controller.getPicklistValues()[k].getLabel());

}
}

} else if (FieldType._boolean == controller.getType()) {
// the controller is a checkbox
// if bit 1 is set this entry is valid if the controller is checked
if (validFor.testBit(1)) {
System.out.println(" checked");

}
// if bit 0 is set this entry is valid if the controller is not checked
if (validFor.testBit(0)) {
System.out.println(" unchecked");

}
}

}
}

}
} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

RecordTypeInfo
Base class for the old RecordTypeMapping object. This object contains all of the existing fields of RecordTypeMapping except layoutId
and picklistForRecordType.

DescriptionTypeName

Indicates whether this record type is available (true) or not (false).
Availability is used to display a list of available record types to the user
when they are creating a new record.

booleanavailable

Indicates whether this is the default record type mapping (true) or not
(false).

booleandefaultRecordTypeMapping

Developer name of this record type. Available in API versions 43.0 and
later.

stringdeveloperName

Indicates whether this is the main record type (true) or not (false).
The main record type is the default record type that’s used when a record
has no custom record type associated with it.

booleanmaster

Name of this record type.stringname

287

DescribeSObjectResultDescribe Calls

DescriptionTypeName

ID of this record type.IDrecordTypeId

NamedLayoutInfo
The name of the named layout for the object. Standard objects can have defined named layouts which are separate from the primary
layout for both the profile and the record type. For more information on layout names, see describeLayout().

DescriptionTypeName

Name of this layout.stringname

ScopeInfo
A scope for an object that can be used to filter object records. For example, Account may have a supported ScopeInfo of “mine” (with
a UI label of “My accounts”) which filters only Account records for the current user.

DescriptionTypeName

UI label for this scope.stringlabel

Name of this scope.stringname

describeSoftphoneLayout()

Retrieves layout information for a Salesforce CRM Call Center Softphone.

Syntax
DescribeSoftphoneLayoutResult[] = connection.describeSoftphoneLayout();

Usage
Use this call to obtain information about the layout of a Softphone. Use only in the context of Salesforce CRM Call Center; do not call
directly from client programs.

Arguments
This call does not take any objects.

Response
The response is a DescribeSoftphoneLayoutResult object:

288

describeSoftphoneLayout()Describe Calls

DescriptionTypeName

A set of attributes associated with each allowed call type. A call type may
be Inbound, Outbound, or Internal.

DescribeSoftphoneLayoutCallType[]callTypes

ID of layout. Note that layout objects are not exposed via the API.IDid

Name of the call type: Inbound, Outbound, or Internal.stringname

DescribeSoftphoneLayoutCallType
Each DescribeSoftphoneLayoutResult object contains one or more call types:

DescriptionTypeName

A set of information field in the softphone layout.DescribeSoftphoneLayoutInfoField[]infoFields

Name of the layout.stringname

Settings in the softphone layout that specify how to display screen
pops when the details of calls match or don't match existing
records.

This field is available in API version 18.0 and later.

DescribeSoftphoneScreenPopOption[]screenPopOptions

Setting in the softphone layout that specify whether to display
screen pops in a new browser window or tab when the details of
calls match or don't match existing records.

This field is available in API version 18.0 and later.

stringscreenPopsOpenWithin

A set of object names and the corresponding item name in the
softphone layout. There is one section for each object in a call type.

DescribeSoftphoneLayoutSection[]sections

DescribeSoftphoneLayoutInfoField
An information field in the softphone layout.

DescriptionTypeName

The name of an information field in the softphone layout that does not
correspond to a Salesforce object. For example, caller ID may be specified in

stringname

an information field. Information fields hold static information about the call
type.

DescribeSoftphoneLayoutSection
Each call type returned in a DescribeSoftphoneLayoutResult object contains one section for each call type. Each section contains
object-item pairs:

289

describeSoftphoneLayout()Describe Calls

DescriptionTypeName

The name of an object in the Salesforce application that
corresponds to an item displayed in the softphone layout, for
example, a set of accounts or cases.

stringentityApiName

A set of softphone layout items.DescribeSoftphoneLayoutItem[]items

DescribeSoftphoneLayoutItem
Each layout item corresponds to a record in Salesforce:

DescriptionTypeName

The name of a record in the Salesforce application that corresponds to an item displayed in the
softphone layout, for example, the Acme account.

stringitemApiName

DescribeSoftphoneScreenPopOption
Each call type returned in a DescribeSoftphoneLayoutResult object contains one screenPopOptions field for each call type. Each
screenPopOptions field contains details about screen pop settings:

DescriptionTypeName

Setting on a softphone layout to pop a screen for call details that match a single record, multiple
records, or no records.

stringmatchType

Setting on a softphone layout for a specific object or page to pop for a call's matchType. For
example, pop a specified Visualforce page when the details of a call match a record.

stringscreenPopData

Setting that specifies how to pop a screen for a call's matchType. For example, pop a detail
page or don't pop any page when the details of a call match a record.

picklistscreenPopType

Sample Code—Java
This sample describes the soft phone layout and writes its properties to the console. It then gets the allowed call types. For each call
type, it gets its information fields, layout sections, and the layout items in the layout sections. It writes these values to the console.

public void describeSoftphoneLayout() {
try {
DescribeSoftphoneLayoutResult result =

connection.describeSoftphoneLayout();
System.out.println("ID of retrieved Softphone layout: " +

result.getId());
System.out.println("Name of retrieved Softphone layout: " +

result.getName());
System.out.println("\nContains following " +

"Call Type Layouts\n");
for (DescribeSoftphoneLayoutCallType type :

result.getCallTypes()) {

290

describeSoftphoneLayout()Describe Calls

System.out.println("Layout for " + type.getName() +
" calls");

System.out.println("\tCall-related fields:");
for (DescribeSoftphoneLayoutInfoField field :

type.getInfoFields()) {
System.out.println("\t\t{" + field.getName());

}
System.out.println("\tDisplayed Objects:");
for (DescribeSoftphoneLayoutSection section :

type.getSections()) {
System.out.println("\t\tFor entity " +

section.getEntityApiName() +
" following records are displayed:"

);
for (DescribeSoftphoneLayoutItem item :

section.getItems()) {
System.out.println("\t\t\t" + item.getItemApiName());

}
}

}
} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Sample Code—C#
This sample describes the soft phone layout and writes its properties to the console. It then gets the allowed call types. For each call
type, it gets its information fields, layout sections, and the layout items in the layout sections. It writes these values to the console.

/// Demonstrates how to retrieve the layout information
/// for a Salesforce CRM Call Center Softphone
public void DescribeSoftphoneLayoutSample()
{

try
{

DescribeSoftphoneLayoutResult dsplResult = binding.describeSoftphoneLayout();

// Display the ID and Name of the layout
Console.WriteLine("ID of retrieved Softphone layout: {0}", dsplResult.id);
Console.WriteLine("Name of retrieved Softphone layout: {0}", dsplResult.name);

// Display the contents of each Call Type
Console.WriteLine("\nContains following Call Type Layouts\n");
foreach (DescribeSoftphoneLayoutCallType dsplCallType in dsplResult.callTypes)
{

Console.WriteLine("Layout for {0} calls", dsplCallType.name);

// Display the call-related fields contained in the call type
Console.WriteLine("\tCall-related fields:");
foreach (DescribeSoftphoneLayoutInfoField dsplInfoField

in dsplCallType.infoFields)
{

291

describeSoftphoneLayout()Describe Calls

Console.WriteLine("\t\t{0}", dsplInfoField.name);
}

// Display the objects that are included in the layout
Console.WriteLine("\tDisplayed Objects:");
foreach (DescribeSoftphoneLayoutSection dsplSection

in dsplCallType.sections)
{

Console.WriteLine("\t\tFor entity {0} following records are displayed:",
dsplSection.entityApiName);

foreach (DescribeSoftphoneLayoutItem dsplItem in dsplSection.items)
{

Console.WriteLine("\t\t\t{0}", dsplItem.itemApiName);
}

}
}

}
catch (SoapException e)
{

Console.WriteLine(e.Message);
Console.WriteLine(e.StackTrace);
Console.WriteLine(e.InnerException);

}
}

describeSoqlListViews()

Retrieves the SOQL query and other information about a list view.

Syntax
connection.describeSoqlListViews(DescribeSoqlListViewsRequest request);

Usage
Use the describeSoqlListViews() call to retrieve information about a list view, including the ID, the columns, and the SOQL
query. This call is useful if you want to use the SOQL that drives an existing list view in your custom application. This call is available in
API version 32.0 and later.

Sample Code—Java
public void example() throws Exception {

DescribeSoqlListViewsRequest request =
createDescribeSoqlListViewsRequest(listViewId, null);

this.getClient().describeSoqlListViews(request);
}

292

describeSoqlListViews()Describe Calls

Arguments

DescriptionTypeName

The fully qualified name or the ID of the list view and the object with which
the list view is associated.

DescribeSoqlListViewsRequestrequest

Response
A DescribeSoqlListViewResult object that contains one or more DescribeSoqlListView objects.

Faults
InvalidSObjectFault

UnexpectedErrorFault

DescribeSoqlListView
Contains information about the specified list view, including the columns, sObject type, and SOQL query.

The DescribeSoqlListView object has the following properties:

DescriptionTypeName

The columns that are returned by the list view query.ListViewColumn[]columns

The list view’s fully qualified ID.IDid

A list of fields to sort results by, the sort order, and the position to which null
values should be sorted.

ListViewOrderBy[]orderBy

The fully composed SOQL query for the list view.stringquery

The ID of the campaign, if a campaign scope was used.IDrelatedEntityId

A filterScope to use for limiting the results.stringscope

The ID of the queue or price book, if a queue or price book scope was used.IDscopeEntityId

The object with which the list view is associated.stringsobjectType

Filter conditions on the list view. Filter conditions provide an additional level
of control over which records get shown in the list view.

SoqlWhereConditionwhereCondition

SEE ALSO:

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_using_scope.htm

DescribeSoqlListViewParams
Use the DescribeSoqlListViewParams object with describeSoqlListViews() to retrieve the SOQL from a list view.

293

DescribeSoqlListViewDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.232.0.api_meta.meta/api_meta/meta_listview.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_using_scope.htm

The DescribeSoqlListViewParams object has the following properties:

DescriptionTypeName

The list view’s ID or fully qualified developer name.stringdeveloperNameOrId

The API name of the sObject for the list view.stringsobjectType

DescribeSoqlListViewResult
Contains one or more DescribeSoqlListView objects, each of which contains information about one or more list views, including
the ID, sObject type, columns, and SOQL query of each.

The DescribeSoqlListViewResult object has the following properties:

DescriptionTypeName

Information about one or more list views, including the ID, sObject type,
columns, and SOQL query of each.

DescribeSoqlListView[]describeSoqlListViews

DescribeSoqlListViewsRequest

EDITIONS

Available in: Salesforce
Classic

Available in:

Use the DescribeSoqlListViewsRequest object with describeSoqlListViews()
to retrieve information about a list view.

The DescribeSoqlListViewsRequest object has the following properties:

DescriptionTypeName

A list of parameters that specify the list view to describe.DescribeSoqlListViewParams[]listViewParams

ListViewColumn
Contains metadata about a single list view column.

The ListViewColumn object is returned by the describeSoqlListViews() and executeListView() calls. It has
the following properties:

DescriptionTypeName

The localized type-specific label for sorting the column in ascending order. For
example: “A-Z” for a text field, or “Low to High” for a numeric field. Set to null if the
column isn’t sortable.

stringascendingLabel

The localized type-specific label for sorting the column in ascending order. For
example: “Z-A” for a text field, or “High to Low” for a numeric field. Set to null if the
column is not sortable.

stringdescendingLabel

The field name or SOQL field path for the column.stringfieldNameOrPath

If true, specifies that the column is not displayed, and is present only to support
the display of other columns or other client-side logic.

booleanhidden

294

DescribeSoqlListViewResultDescribe Calls

DescriptionTypeName

The localized display label for the column.stringlabel

Whether the column is searchable.booleansearchable

The SOQL SELECT item for the column. The item might differ from the field name
or path, due to display formatting (for example, toLabel for picklists).

stringselectListItem

An enumerated value, one of the following if the column is sortable:orderByDirectionsortDirection

• ascending

• descending

Set to null if the column is not sortable.

The zero-based index that indicates the column’s position within a multilevel sort,
or null if the records are not sorted by the column.

intsortIndex

Whether the column is sortable, in which case it might be referenced in the
ExecuteListView orderBy parameter.

booleansortable

The column data type.FieldTypetype

ListViewOrderBy
Use the ListViewOrderBy object with executeListView() to determine the order in which records are returned from a
list view.

The ListViewOrderBy object is returned by the describeSoqlListViews() call, is an optional input to the
executeListView() call, and has the following properties:

DescriptionTypeName

The field name or SOQL path of the field on which to sort the records.stringfieldNameOrPath

An enumerated value that determines where nulls are sorted in the results:orderByNullsPositionnullsPosition

• first

• last

An enumerated value that determines the sort order of the results:orderByDirectionsortDirection

• ascending

• descending

SoqlWhereCondition
Contains information about SOQL filter conditions for a list view.

Each condition listed in SoqlWhereCondition represents a condition expression in a SOQL WHERE clause that compares a field value to
a comparison value using a condition operator. Each condition contains the following properties.

295

ListViewOrderByDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.232.0.api_meta.meta/api_meta/meta_field_types.htm#meta_type_fieldtype

DescriptionTypeName

The object field used by the filter condition.stringfield

The filter operation. Operations include:soqlOperatoroperator

• equals—Condition is true if the field value equals the specified value.
String comparisons using the equals operator are case sensitive for unique
case-sensitive fields and case insensitive for all other fields.

• excludes—Condition is true for multi-select picklist fields if the selected
field values are not in the list of condition values.

• greaterThan—Condition is true if the field value is greater than the
specified value.

• greaterThenOrEqualTo—Condition is true if the field value is greater than
or equal to the specified value.

• in—Condition is true if the field value equals any specified value in the
values list.

• includes—Condition is true for multi-select picklist fields if the selected
field values are in the list of condition values.

• lessThan—Condition is true if the field value is less than the specified
value.

• lessThanOrEqualTo—Condition is true if the field value is less than or
equal to the specified value.

• like—Condition is true if the field value matches the specified value, using
character matching logic described in Comparison Operators in the SOQL
and SOSL Reference.

• notEquals—Condition is true if the field value doesn’t equal the specified
value.

• notIn—Condition is true if the field value doesn’t equal any specified
value in the values list.

• notLike—Condition is true if the field value doesn’t match the specified
value using the character matching logic described in Comparison
Operators in the SOQL and SOSL Reference. Available in API version 41.0
and later.

• within—Condition is true if the field value location is within the value
distance using a location-based comparison. For more information, see
Location-Based SOQL Queries in the SOQL and SOSL Reference.

A list of one or more values used to compare with the field value using the
operator comparison logic.

string[]values

Evaluating SoqlWhereConditions
In the SOAP API, Salesforce uses subclasses of SoqlWhereCondition to represent different categories of conditions. Use your development
language’s type comparison functionality (such as Java’s instanceof operator) to determine which subclass is used for a particular
instance of SoqlWhereCondition.

The SoqlConditionGroup subclass represents a group of SOQL WHERE clause conditions and uses the following properties.

296

SoqlWhereConditionDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_comparisonoperators.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_comparisonoperators.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_comparisonoperators.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_geolocate.htm

DescriptionTypeName

List of filter conditions. If the list view uses filter logic, each logical filter group
is represented with a conditions list.

condition[]conditions

A conjunction operation that describes the filter logic to use for multiple
conditions in a logical filter group. Values include:

soqlConjunctionconjunction

• and—All conditions must be true for the overall SoqlWhereCondition.

• or—One of the conditions must be true for the overall
SoqlWhereCondition.

The SoqlNotCondition subclass represents a special use of the like operator. In API version 40.0 and earlier, when evaluating a
SoqlWhereCondition that was created using a not like operator (displayed as does not contain in the UI), the operator value in
the condition is like. Salesforce also uses the SoqlNotCondition subclass of SoqlWhereCondition to represent the complete condition.
The following example uses Java’s instanceof operator to determine whether a not like operation is specified.

if (resultSoqlWhereCondition instanceof SoqlNotCondition) {
// condition is really NOT condition
// if operator is "like", this condition really means "not like"
...

}

In API version 41.0 and later, the notLike operator is used instead of SoqlNotCondition and a like operator. The notLike
operator is available only for list views. You can’t use it in SOQL queries used in other Salesforce features.

describeTabs()

Returns information about the Salesforce Classic standard and custom apps available to the logged-in user, as listed in the Lightning
Platform app menu at the top of the page. An app is a set of tabs that works as a unit to provide application functionality. For example,
two of the standard Salesforce apps are “Sales” and “Service.”

Syntax
describeTabSetResult [] = connection.describeTabs();

Usage
Use the describeTabs() call to obtain information about the Salesforce Classic standard and custom apps to which the logged-in
user has access. The describeTabs() call returns the minimum required metadata that can be used to render apps in another user
interface. Typically this call is used by partner applications to render Salesforce data in another user interface.

For each app, the call returns the app name, the URL of the logo, whether it’s the currently selected application for the user, and details
about the tabs included in that app.

Important: The describeTabs() call returns information only about tabs that display in the Salesforce user interface for
the logged-in user. If a user clicks the All Tabs (+) tab and hides some tabs from his Salesforce user interface, those user-hidden
tabs aren’t included in the set of tabs returned by describeTabs().

Use the describeAllTabs() call to obtain information about all the tabs that are available to the logged-in user.

297

describeTabs()Describe Calls

For each tab, the call returns the tab name, the primary sObject that’s displayed on the tab, whether it’s a custom tab, and the URL for
viewing that tab. Note that the “All Tabs” tab and Lightning page tabs aren’t included in the list of tabs.

Sample Code—Java
This sample calls describeTabs(), which returns an array of tab set results. Next, for each tab set result, which represents a Salesforce
Classic app, it retrieves some of its properties and gets all the tabs for this app. It writes all retrieved properties to the console.

public void describeTabsSample() {
try {
// Describe tabs
DescribeTabSetResult[] dtsrs = connection.describeTabs();
System.out.println("There are " + dtsrs.length +

" tab sets defined.");

// For each tab set describe result, get some properties
for (int i = 0; i < dtsrs.length; i++) {
System.out.println("Tab Set " + (i + 1) + ":");
DescribeTabSetResult dtsr = dtsrs[i];
System.out.println("Label: " + dtsr.getLabel());
System.out.println("\tLogo URL: " + dtsr.getLogoUrl());
System.out.println("\tTab selected: " +

dtsr.isSelected());

// Describe the tabs for the tab set
DescribeTab[] tabs = dtsr.getTabs();
System.out.println("\tTabs defined: " + tabs.length);

// Iterate through the returned tabs
for (int j = 0; j < tabs.length; j++) {
DescribeTab tab = tabs[j];
System.out.println("\tTab " + (j + 1) + ":");
System.out.println("\t\tName: " +

tab.getSobjectName());
System.out.println("\t\tLabel: " + tab.getLabel());
System.out.println("\t\tURL: " + tab.getUrl());
DescribeColor[] tabColors = tab.getColors();
// Iterate through tab colors as needed
DescribeIcon[] tabIcons = tab.getIcons();
// Iterate through tab icons as needed

}
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

298

describeTabs()Describe Calls

Sample Code—C#
This sample calls describeTabs(), which returns an array of tab set results. Next, for each tab set result, which represents a Salesforce
Classic app, it retrieves some of its properties and gets all the tabs for this app. It writes all retrieved properties to the console.

public void describeTabsSample() {
try {
// Describe tabs
DescribeTabSetResult[] dtsrs = binding.describeTabs();
Console.WriteLine("There are " + dtsrs.Length +

" tab sets defined.");

// For each tab set describe result, get some properties
for (int i = 0; i < dtsrs.Length; i++) {

Console.WriteLine("Tab Set " + (i + 1) + ":");
DescribeTabSetResult dtsr = dtsrs[i];
Console.WriteLine("Label: " + dtsr.label);
Console.WriteLine("\tLogo URL: " + dtsr.logoUrl);
Console.WriteLine("\tTab selected: " +

dtsr.selected);

// Describe the tabs for the tab set
DescribeTab[] tabs = dtsr.tabs;
Console.WriteLine("\tTabs defined: " + tabs.Length);

// Iterate through the returned tabs
for (int j = 0; j < tabs.Length; j++) {

DescribeTab tab = tabs[j];
Console.WriteLine("\tTab " + (j + 1) + ":");
Console.WriteLine("\t\tName: " +

tab.sobjectName);
Console.WriteLine("\t\tLabel: " + tab.label);
Console.WriteLine("\t\tURL: " + tab.url);
DescribeColor[] tabColors = tab.colors;
// Iterate through tab colors as needed
DescribeIcon[] tabIcons = tab.icons;
// Iterate through tab icons as needed

}
}

} catch (SoapException e) {
Console.WriteLine("An unexpected error has occurred: " +

e.Message + "\n" + e.StackTrace);
}

}

Arguments
None.

299

describeTabs()Describe Calls

Response
describeTabSetResult, DescribeTab

SEE ALSO:

API Call Basics

Using the Partner WSDL

DescribeTab

describeTabSetResult

describeTabSetResult
The describeTabs() call returns an array of DescribeTabSetResult objects for Salesforce Classic standard or custom apps
and has these properties:

DescriptionTypeName

The description for this standard or custom app.stringdescription

The display label for this standard or custom app. This value changes when tabs are renamed in
the Salesforce user interface. See Salesforce Help for more information.

stringlabel

A fully qualified URL to the logo image associated with the standard or custom app.stringlogoUrl

If this is a custom app, and a set of tabs in the custom app was installed as part of a managed
package, the value of this attribute is the developer namespace prefix that the creator of the

stringnamespace

package chose when the Developer Edition organization was enabled to allow publishing a
managed package. This attribute identifies elements of a Salesforce AppExchange package.

If true, then this standard or custom app is the user’s currently selected app.booleanselected

An array of tabs that are displayed for the specified standard app or custom app.DescribeTabtabs

DescribeColor
DescribeColor contains color metadata information for a tab. The describeTabs() call returns an array of DescribeTabSetResult
values. Each DescribeTabSetResult contains an array of DescribeTab values, and each DescribeTab contains an array of DescribeColor
values.

Each DescribeColor is associated with a Salesforce user interface theme. For more information on themes, see Identifying the Salesforce
Style Your Users See in the Visualforce Developer’s Guide.

Color information can also be retrieved via the describeTheme() and describeGlobalTheme() calls. These calls return
information on colors used for each object in your organization that can use theme icons and colors.

DescriptionTypeName

The color described in web color RGB format—for example,
“00FF00”.

stringcolor

300

describeTabSetResultDescribe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/primitive_data_types.htm#i1435021
https://developer.salesforce.com/docs/atlas.en-us.238.0.pages.meta/pages/pages_styling_salesforce.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.pages.meta/pages/pages_styling_salesforce.htm

DescriptionTypeName

The color context, which determines whether the color is
the main color (or primary) for the tab.

stringcontext

The associated theme. Possible values include:stringtheme

• theme2—Theme used prior to Spring ’10, called the
“Salesforce Classic 2005 user interface theme”

• theme3—Theme introduced in Spring ’10, called the
“Salesforce Classic 2010 user interface theme”

• theme4—Theme introduced in Winter ’14 for the
mobile touchscreen version of Salesforce, and in Winter
’16 for Lightning Experience

• custom—Theme associated with a custom icon

DescribeIcon
DescribeIcon contains icon metadata information for a tab. The describeTabs() call returns an array of DescribeTabSetResult
values. Each DescribeTabSetResult contains an array of DescribeTab values, and each DescribeTab contains an array of DescribeIcon
values.

Icon information can also be retrieved via the describeTheme() and describeGlobalTheme() calls. These calls return
information on icons used for each object in your organization that can use theme icons and colors.

DescriptionTypeName

The tab icon’s content type, for example, “image/png.”stringcontentType

The tab icon’s height in pixels. If the icon content type is an
SVG type, height and width values are not used.

intheight

The associated theme. Possible values include:stringtheme

• theme2—Theme used prior to Spring ’10, called the
“Salesforce Classic 2005 user interface theme”

• theme3—Theme introduced in Spring ’10, called the
“Salesforce Classic 2010 user interface theme”

• theme4—Theme introduced in Winter ’14 for the
mobile touchscreen version of Salesforce, and in Winter
’16 for Lightning Experience

• custom—Theme associated with a custom icon

The fully qualified URL for this icon.stringurl

The tab icon’s width in pixels. If the icon content type is an
SVG type, height and width values are not used.

stringwidth

301

describeTabSetResultDescribe Calls

DescribeTab
The describeTabs() call returns a describeTabSetResult object, of which DescribeTab is a property:

DescriptionTypeName

Array of color information used for a tab. This field is available in API version 29.0 and later.DescribeColor[]colors

true if this is a custom tab, false if this is a standard tab.booleancustom

The URL for the main 32x32 pixel icon for a tab. This icon appears next to the heading at the top
of most pages. This icon URL corresponds to the 32x32 icon used for the Salesforce Classic 2010
user interface theme.

stringiconUrl

Array of icon information used for a tab. This field is available in API version 29.0 and later.DescribeIcon[]icons

The display label for this tab.stringlabel

The URL for the 16x16 pixel icon that represents a tab. This icon appears in related lists and other
locations. This icon URL corresponds to the 16x16 icon used for the current Salesforce theme,
introduced in Spring ’10.

stringminiIconUrl

The API name of the tab.stringname

The name of the sObject that is primarily displayed on this tab (for tabs that display a particular
sObject). For a list of objects, see Standard Objects.

stringsobjectName

A fully qualified URL for viewing this tab.stringurl

SEE ALSO:

DescribeColor

DescribeIcon

describeTheme()

Returns information about themes available to the current logged-in user.

Syntax
DescribeThemeResult = connection.describeTheme(string sObjectType[]);

Usage
Use describeTheme() to get current theme information for a given array of objects. Theme information consists of colors and
icons for an object in Salesforce, used for a particular theme. For example, the Merchandise__c object might use the “computer32” icon
and a primary tab color of red for the regular Salesforce application theme, and a different set of colors and icons for the mobile touchscreen
version of Salesforce.

If you pass null instead of an array of objects, describeTheme() returns theme information for all objects in your organization
that use theme colors and icons.

302

describeTheme()Describe Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_list.htm

Your client application must be logged in with sufficient access rights to retrieve theme information about your organization’s data. For
more information, see Factors that Affect Data Access.

describeTheme() is available in API version 29.0 and later.

Sample
This Java sample calls describeTheme() to retrieve theme information for Account and Contact, and then iterates over the retrieved
theme information.

public static void describeThemeExample() {
try {

// Get current themes
DescribeTheme themeResult = connection.describeTheme(

new String[] { "Account", "Contact" });
DescribeThemeItem[] themeItems = themeResult.getThemeItems();
for (int i = 0; i < themeItems.length; i++) {

DescribeThemeItem themeItem = themeItems[i];
System.out.println("Theme information for object " + themeItem.getName());
// Get color and icon info for each themeItem
DescribeColor colors[] = themeItem.getColors();
System.out.println(" Number of colors: " + colors.length);
int k;
for (k = 0; k < colors.length; k++) {

DescribeColor color = colors[k];
System.out.println(" For Color #" + k + ":");
System.out.println(" Web RGB Color: " + color.getColor());
System.out.println(" Context: " + color.getContext());
System.out.println(" Theme: " + color.getTheme());

}
DescribeIcon icons[] = themeItem.getIcons();
System.out.println(" Number of icons: " + icons.length);
for (k = 0; k < icons.length; k++) {

DescribeIcon icon = icons[k];
System.out.println(" For Icon #" + k + ":");
System.out.println(" ContentType: " + icon.getContentType());
System.out.println(" Height: " + icon.getHeight());
System.out.println(" Theme: " + icon.getTheme());
System.out.println(" URL: " + icon.getUrl());
System.out.println(" Width: " + icon.getWidth());

}
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Response
DescribeThemeResult

303

describeTheme()Describe Calls

Faults
UnexpectedErrorFault

SEE ALSO:

DescribeThemeResult

DescribeThemeItem

DescribeColor

DescribeIcon

DescribeThemeResult
The describeTheme() and describeGlobalTheme() calls return DescribeThemeResult, which contains an array of
DescribeThemeItem values.

DescriptionTypeName

Array of themes. Theme information is provided for each object in the organization
that can use theme icons and colors.

DescribeThemeItem[]themes

DescribeThemeItem
The describeTheme() and describeGlobalTheme() calls return DescribeThemeResult, which contains an array of
DescribeThemeItem values. Each DescribeThemeItem contains an array of colors and icons used for themes, and the name of the object
the theme information applies to.

DescriptionTypeName

Array of colors.DescribeColor[]colors

Array of icons.DescribeIcon[]icons

Name of the object that the theme colors and icons are associated with.stringname

304

DescribeThemeResultDescribe Calls

CHAPTER 11 Utility Calls

This topic describes API calls that your client applications can invoke to obtain the system timestamp, user information, and change user
passwords.

Note: For a list of Apex-related calls, see Apex-Related Calls, for a list of core calls, see Core Calls, and for a list of describe calls,
see Describe Calls.

The following table lists the API utility calls described in this topic:

DescriptionTask / Call

Retrieves the current system timestamp from the API.getServerTimestamp()

Allows users to change their own passwords.changeOwnPassword()

Retrieves personal information for the user associated with the current session.getUserInfo()

Evaluates sObjects provided as an input for matches among Leads, using the matching rule specified
in the input MatchOptions. This call can be used only with the Standard Matching Rule for Leads on
Accounts.

match()

Replaces merge fields in text bodies of email templates with values from Salesforce records, even
for polymorphic fields. The email template bodies and their corresponding whoId and whatId
values are specified in the argument.

renderEmailTemplate()

Changes a user’s password to a system-generated value.resetPassword()

Immediately sends an email message.sendEmail()

Immediately sends up to 10 draft email messages.sendEmailMessage()

Sets the specified user’s password to the specified value.setPassword()

Samples

The samples in this section are based on the enterprise WSDL file. They assume that you have already imported the WSDL file and created
a connection. To learn how to do so, see the Quick Start tutorial.

changeOwnPassword()

Allows users to change their passwords from old values to new values that they specify.

305

Syntax
ChangeOwnPasswordResult changeOwnPasswordResult = connection.changeOwnPassword(string
oldPassword, string newPassword);

Usage
Use changeOwnPassword() to allow users to change their passwords to values that they specify. For example, a client application
prompts a user to specify a different password, and then invokes changeOwnPassword() to change the user’s password. Use
setPassword() if you want to set a different user’s password to a value you specify. Use resetPassword() if you want to
reset a target user's password with a random value generated by the API.

Sample Code—Java
This sample accepts old password and new password parameters, which it uses in the changeOwnPassword() call to set the new
password of the user.

public void doChangeOwnPassword(String oldPasswd, String newPasswd) {
try {

ChangeOwnPasswordResult result = connection.changeOwnPassword(oldPasswd, newPasswd);

System.out.println("Your password was changed to "
+ newPasswd);

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Sample Code—C#
This sample accepts old password and new password parameters, which it uses in the changeOwnPassword() call to set the new
password of the user.

public void doChangeOwnPassword(String oldPasswd, String newPasswd)
{

try
{

ChangeOwnPasswordResult result = binding.changeOwnPassword(oldPasswd, newPasswd);
Console.WriteLine("Your password was changed to "

+ newPasswd);
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

306

changeOwnPassword()Utility Calls

Arguments

DescriptionTypeName

The user’s previous password that is being replaced.stringoldPassword

The user’s new password.stringnewPassword

Response
ChangeOwnPasswordResult

Fault
InvalidOldPasswordFault

InvalidNewPasswordFault

UnexpectedErrorFault

SEE ALSO:

resetPassword()

Utility Calls

setPassword()

getServerTimestamp()

Retrieves the current system timestamp (Coordinated Universal Time (UTC) time zone) from the API.

Syntax
GetServerTimestampResult timestamp = connection.getServerTimestamp();

Usage
Use getServerTimestamp() to obtain the current system timestamp from the API. You might do this if, for example, you need
to use the exact timestamp for timing or data synchronization purposes. When you create() or update() an object, the API uses
the system timestamp to update the CreatedDate and LastModifiedDate fields, respectively, in the object.

The getServerTimestamp() call always returns the timestamp in Coordinated Universal Time (UTC) time zone. However, your
local system might automatically display the results in your local time based on your time zone settings.

Note: Development tools differ in the way that they handle time data. Some development tools report the local time, while others
report only the Coordinated Universal Time (UTC) time zone. To determine how your development tool handles time values, refer
to its documentation.

307

getServerTimestamp()Utility Calls

Sample Code—Java
This sample gets the server time and writes it to the console in the user’s local time zone.

public void doGetServerTimestamp() {
try {

GetServerTimestampResult result = connection.getServerTimestamp();
Calendar serverTime = result.getTimestamp();
System.out.println("Server time is: "

+ serverTime.getTime().toString());
} catch (ConnectionException ce) {

ce.printStackTrace();
}

}

Sample Code—C#
This sample gets the server time and writes it to the console in the user’s local time zone.

public void doGetServerTimestamp()
{

try
{

GetServerTimestampResult result =
binding.getServerTimestamp();

DateTime serverTime = result.timestamp;
Console.WriteLine("Server time is: " +

serverTime.ToLocalTime().ToString());
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments
None.

Response
getServerTimestampResult

Fault
UnexpectedErrorFault

SEE ALSO:

Utility Calls

308

getServerTimestamp()Utility Calls

getServerTimestampResult
The getServerTimestamp() call returns a GetServerTimestampResult object, which has the following properties:

DescriptionTypeName

System timestamp of the API when the getServerTimestamp() call was executed.dateTimetimestamp

getUserInfo()

Retrieves personal information for the user associated with the current session.

Syntax
getUserInfoResult result = connection.getUserInfo();

Usage
Use getUserInfo() to obtain personal information about the currently logged-in user. This convenience API call retrieves and
aggregates common profile information that your client application can use for display purposes, performing currency calculations, and
so on.

The getUserInfo() call applies only to the username under which your client application has logged in. To retrieve additional
personal information not found in the getUserInfoResult object, you can call retrieve() on the User object and pass in the userID
returned by this call. To retrieve personal information about other users, you could call retrieve() (if you know their user ID) or
query() on the User object.

Sample Code—Java
This sample calls getUserInfo() and writes information about the current user to the console.

public void doGetUserInfo() {
try {

GetUserInfoResult result = connection.getUserInfo();
System.out.println("\nUser Information");
System.out.println("\tFull name: " + result.getUserFullName());
System.out.println("\tEmail: " + result.getUserEmail());
System.out.println("\tLocale: " + result.getUserLocale());
System.out.println("\tTimezone: " + result.getUserTimeZone());
System.out.println("\tCurrency symbol: " + result.getCurrencySymbol());
System.out.println("\tOrganization is multi-currency: " +

result.isOrganizationMultiCurrency());
} catch (ConnectionException ce) {

ce.printStackTrace();
}

}

309

getServerTimestampResultUtility Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm

Sample Code—C#
This sample calls getUserInfo() and writes information about the current user to the console.

public void doGetUserInfo()
{

try
{

GetUserInfoResult result = binding.getUserInfo();
Console.WriteLine("\nUser Information");
Console.WriteLine("\tFull name: " + result.userFullName);
Console.WriteLine("\tEmail: " + result.userEmail);
Console.WriteLine("\tLocale: " + result.userLocale);
Console.WriteLine("\tTimezone: " + result.userTimeZone);
Console.WriteLine("\tCurrency symbol: " + result.currencySymbol);
Console.WriteLine("\tOrganization is multi-currency: " +

result.organizationMultiCurrency);
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments
None.

Response
getUserInfoResult

Fault
UnexpectedErrorFault

SEE ALSO:

Utility Calls

getUserInfoResult
The getUserInfo() call returns a GetUserInfoResult object.

DescriptionTypeName

Available in API version 7.0 and later. Indicates whether user interface
modifications for the visually impaired are on (true) or off (false). The
modifications facilitate the use of screen readers such as JAWS.

booleanaccessibilityMode

310

getUserInfoResultUtility Calls

DescriptionTypeName

Type of user license assigned to the Profile associated with the user. Indicates
whether a user is part of the org or external. Available in API 40.0 and later.

booleanchatterExternal

Currency symbol to use for displaying currency values. Applicable only when
organizationMultiCurrency is false.

stringcurrencySymbol

ID of the organization. Allows third-party tools to uniquely identify individual
organizations in Salesforce, which is useful for retrieving billing or
organization-wide setup information.

IDorganizationId

Indicates whether the user’s organization uses multiple currencies (true) or
not (false).

booleanorganizationMultiCurrency

Name of the user’s organization or company.stringorganizationName

Default currency ISO code. Applicable only when
organizationMultiCurrency is false. When the logged-in user

stringorgDefaultCurrencyIsoCode

creates any objects that have a currency ISO code, the API uses this currency
ISO code if it is not explicitly specified in the create() call.

ID of the profile associated with the role currently assigned to the user.IDprofileID

Role ID of the role currently assigned to the user.IDroleID

The number of seconds before the session expires, starting from the last update
time.

Available in API version 21.0 and later.

intsessionSecondsValid

Default currency ISO code. Applicable only when
organizationMultiCurrency is true. When the logged-in user

stringuserDefaultCurrencyIsoCode

creates any objects that have a currency ISO code, the API uses this currency
ISO code if it is not explicitly specified in the create() call.

User’s email address.stringuserEmail

User’s full name.stringuserFullName

User ID.IDuserID

User’s language, which controls the language for labels displayed in an
application. String is 2-5 characters long. The first two characters are always an

stringuserLanguage

ISO language code, for example “fr” or “en.” If the value is further qualified by
country, then the string also has an underscore (_) and another ISO country
code, for example “US” or “UK. For example, the string for the United States is
“en_US”, and the string for French Canadian is “fr_CA.”

For a list of the languages that Salesforce supports, see the Salesforce online
help topic “What languages does Salesforce support?”

User’s locale, which controls the formatting of dates and choice of symbols for
currency. The first two characters are always an ISO language code, for example

stringuserLocale

“fr” or “en.” If the value is further qualified by country, then the string also has

311

getUserInfoResultUtility Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_profile.htm

DescriptionTypeName

an underscore (_) and another ISO country code, for example “US” or “UK. For
example, the string for the United States is “en_US”, and the string for French
Canadian is “fr_CA.”

User’s login name.stringuserName

User’s time zone.stringuserTimeZone

Type of user license assigned to the Profile associated with the user.stringuserType

Available in API version 7.0 and later. Possible values are:stringuserUiSkin

• theme3—If the user is using the Salesforce Classic 2010 user interface
theme, also known as the Aloha interface

• theme2—If the user is using the Salesforce Classic 2005 user interface
theme

• theme1—If the user is using the oldest user interface theme (obsolete)

In the online app, this look and feel setting is configurable from Setup by entering
User Interface in the Quick Find box, then selecting User Interface.
See User Interface Themes.

match()

Evaluates sObjects provided as an input for matches among Leads, using the matching rule specified in the input MatchOptions. This
call can be used only with the Standard Matching Rule for Leads on Accounts.

This operation is available in API versions 42.0 and later, in Professional, Enterprise, Performance, and Unlimited Editions with Pardot
Pro or Pardot Ultimate Edition.

Syntax
MatchResult[] callResults = connection.match(SObject[] inputSObjectArray, MatchOptions

matchOptions);

Arguments

DescriptionTypeName

A list of sObjects to evaluate for matches.Array of sObjectinputSObjectArray

Options, such as the match rule, used during the match
operation.

MatchOptionsmatchOptions

312

match()Utility Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_profile.htm

Response
MatchResult

MatchOptions
Represents a type to be used with a match operation. It describes options to be used during the match operation. This type can be used
only with the Standard Matching Rule for Leads on Accounts.

This type is available in API versions 42.0 and later, in Professional, Enterprise, Performance, and Unlimited Editions with Pardot
Pro or Pardot Ultimate Edition.

Fields

DescriptionDetailsField

Comma-separated
list

stringFields

of
fields
to
be
used
in
the
match
operation
by
the
specified
rule.

Match
engine

stringMatchEngine

(exact
or
fuzzy)
to
be
used
in
the
match
operation.

Developer
name

stringRule

of
the
MatchingRule

313

MatchOptionsUtility Calls

DescriptionDetailsField

to
be
used
in
the
match
operation.

Type
of

stringSobjectType

object
to
evaluate
for
matches.

renderEmailTemplate()

Replaces merge fields in text bodies of email templates with values from Salesforce records, even for polymorphic fields. The email
template bodies and their corresponding whoId and whatId values are specified in the argument.

Syntax
RenderEmailTemplateResult = connection.renderEmailTemplate(RenderEmailTemplateRequest[]
renderRequests);

Usage
The renderEmailTemplate() call is equivalent to rendering merge fields when sending an email with a custom template
through the sendEmail() call.

The renderEmailTemplate() call can take up to 10 RenderEmailTemplateRequest elements in its array argument, and each
RenderEmailTemplateRequest can contain up to 10 template bodies. Each request is independent from the other requests in the array—an
error in one request doesn’t affect the other requests. Similarly, an error in one template body doesn’t cause an error in other text bodies
within the same request.

The renderEmailTemplate() call substitutes a merge field with the value of either the whatId or whoId in
RenderEmailTemplateRequest:

• If the merge field references a non-human object, it’s replaced with the corresponding value of whatId. For example, if a merge
field references an account or opportunity, the whatId value is substituted.

• If the merge field references a human object, it’s replaced with the corresponding value of whoId. For example, if a merge field
references a contact, lead, or user, the whoId value is substituted.

The whatId and whoId field values of RenderEmailTemplateRequest are validated for each request. If the whatId doesn’t reference
a valid what ID (a non-human object), or the whoId doesn’t reference a valid who ID (a human object), an error is set for the request.

314

renderEmailTemplate()Utility Calls

Sample Code—Java
In this sample, the renderEmailTemplate() call substitutes all contact merge fields with the value from the specified whoId
argument. Similarly, the call substitutes the opportunity merge field ({!Opportunity.Name}) with the specified whatId value.
The second template body in this sample has an incorrect merge field ({!Contact.SNARF}), which causes an error on the second
template. However, the entire template rendering request is successful.

public void renderTemplates(String whoId, String whatId)
throws ConnectionException, RemoteException, MalformedURLException {

// Array of three template bodies.
// The second template body generates an error.
final String[] TEMPLATE_BODIES = new String[] {

"This is a good template body {!Contact.Name}",
"This is a bad template body {!Opportunity.Name} {!Contact.SNARF} ",
"This is another good template body {!Contact.Name}"};

// Create request and add template bodies, whatId, and whoId.
RenderEmailTemplateRequest req = new RenderEmailTemplateRequest();
req.setTemplateBodies(TEMPLATE_BODIES);
req.setWhatId(whatId);
req.setWhoId(whoId);
// An array of results is returned, one for each request.
// We only have one request.
RenderEmailTemplateResult[] results = connection.renderEmailTemplate(

new RenderEmailTemplateRequest[] { req });
if (results != null) {

// Check results for our one and only request.
// Check request was processed successfully, and if not, print the errors.
if (!results[0].isSuccess()) {

System.out.println(
"The following errors were encountered while rendering email templates:");
for (Error err : results[0].getErrors()) {

System.out.println(err.getMessage());
}

} else {
// Check results for each body template and print merged body
RenderEmailTemplateBodyResult[] bodyResults = results[0].getBodyResults();
for(Integer i=0;i<bodyResults.length;i++) {

RenderEmailTemplateBodyResult result = bodyResults[i];
if (result.isSuccess()) {

System.out.println("\nMerged body: \n" + result.getMergedBody());
} else {

System.out.println("\nErrors were found for body[" + i + "]: ");
for (RenderEmailTemplateError err : result.getErrors()) {

System.out.println(err.getMessage() + " - Field name: "
+ err.getFieldName());

}
}

}
}

}
}

315

renderEmailTemplate()Utility Calls

Let’s say you run this sample by specifying a valid contact ID for the first argument (whoId) and null for the second argument
(whatId). The second template has one error set, for the incorrect merge field. The response looks like the following.

Merged body:
This is a good template body Howard Jones

Errors were found for body[1]:
Field Contact.SNARF does not exist. Check spelling. - Field name: Contact.SNARF

Merged body:
This is another good template body Howard Jones

RenderEmailTemplateRequest

DescriptionTypeName

An array of text bodies that can contain merge fields, such as
{!Account.Phone} or {!Contact.Name}.

string[]templateBodies

References a non-human object, such as an account, an opportunity, a campaign,
a case, or a custom object. The whatId is polymorphic, which means that it’s

referencewhatId

an ID that can refer to more than one type of object, such as a case or an
opportunity.

References a human object, such as a lead, contact, or user. The whoId is
polymorphic, which means that it’s an ID that can refer to more than one type of
object.

referencewhoId

Fault
The renderEmailTemplate() can return any of these API status codes.

EMAIL_TEMPLATE_FORMULA_ERROR

EMAIL_TEMPLATE_MERGEFIELD_ACCESS_ERROR

EMAIL_TEMPLATE_MERGEFIELD_ERROR

EMAIL_TEMPLATE_MERGEFIELD_VALUE_ERROR

EMAIL_TEMPLATE_PROCESSING_ERROR

RenderEmailTemplateResult
Contains status and error information for a request processed by the renderEmailTemplate() call, including individual results
of rendered email templates.

DescriptionTypeName

Contains status and error information for each template body
that renderEmailTemplate() processed in a request,
including merged body text of templates.

RenderEmailTemplateBodyResult[]bodyResults

316

RenderEmailTemplateResultUtility Calls

DescriptionTypeName

Contains one or more errors that occurred when
renderEmailTemplate() rendered a request.

Error[]errors

Indicates whether a request was successfully processed (true)
or not (false).

booleansuccess

RenderEmailTemplateBodyResult
Contains status and error information for each template body that renderEmailTemplate() processed in a request, including
merged body text of templates.

DescriptionTypeName

Contains one or more errors that are associated with a template
body that renderEmailTemplate() processed.

RenderEmailTemplateError[]errors

The text of the template body with the merge fields replaced
with their corresponding values from Salesforce objects. The

stringmergedBody

whatId and whoId fields on the request reference the
Salesforce objects to use.

The mergedBody field is populated only when the rendering
of the template was successful (success is equal to true).
If success is equal to false, mergedBody is null.

Indicates whether a template body was successfully rendered
(true) or not (false).

booleansuccess

RenderEmailTemplateError
An error that occurred when renderEmailTemplate() processed a template body.

DescriptionTypeName

The merge field that affected the error condition.string[]fieldName

Error message text.stringmessage

The offset in the template body text of the merge field that caused the error.
The offset is calculated as the number of characters from the start of the body

intoffset

text. The offset is -1 if it can’t be determined because of insufficient contextual
information.

A code that characterizes the error. The full list of status codes is available in the
WSDL file for your organization (see Generating the WSDL File for Your
Organization).

StatusCodestatusCode

317

RenderEmailTemplateResultUtility Calls

resetPassword()

Changes a user’s password to a temporary, system-generated value.

Syntax
string password = connection.resetPassword(ID userID);

Usage
Use resetPassword() to request that the API change the password of a User or SelfServiceUser, and return a system-generated
password string of random letters and numbers. Use setPassword() instead if you want to set the password to a specific value.

Your client application must be logged in with sufficient access rights to change the password for the specified user. For more information,
see Factors that Affect Data Access.

For information on IDs, see ID Field Type.

Sample Code—Java
This sample resets the password for the user specified by the userId parameter. It calls resetPassword() with this ID and gets
the temporary password from the call result. It writes this temporary password to the console and returns it.

public String doResetPassword(String userId) {
String result = "";
try {

ResetPasswordResult rpr = connection.resetPassword(userId);
result = rpr.getPassword();
System.out.println("The temporary password for user ID " + userId

+ " is " + result);
} catch (ConnectionException ce) {

ce.printStackTrace();
}
return result;

}

Sample Code—C#
This sample resets the password for the user specified by the userId parameter. It calls resetPassword() with this ID and gets
the temporary password from the call result. It writes this temporary password to the console and returns it.

public String doResetPassword(String userId)
{

String result = "";
try
{

ResetPasswordResult rpr = binding.resetPassword(userId);
result = rpr.password;
Console.WriteLine("The temporary password for user ID " + userId + " is " +

result);
}

318

resetPassword()Utility Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_selfserviceuser.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
return result;

}

Arguments

DescriptionTypeName

ID of the User or SelfServiceUser whose password you want to reset. For information on IDs,
see ID Field Type.

IDuserID

Response

DescriptionTypeName

New password generated by the API. Once the user logs in with this password, they will be
asked to provide a new password. This password is temporary, meaning that it cannot be
reused once the user has set his or her new password.

stringpassword

Fault
InvalidIdFault

UnexpectedErrorFault

SEE ALSO:

Utility Calls

sendEmail()

Immediately sends an email message.

Syntax
For single email messages:

SendEmailResult = connection.sendEmail(SingleEmailMessage emails[]);

For mass email messages:

SendEmailResult = connection.sendEmail(MassEmailMessage emails[]);

319

sendEmail()Utility Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_selfserviceuser.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

Usage
Use this call with Lightning Platform AppExchange applications, custom applications, or other applications outside of Salesforce to send
individual and mass email. The email can include all standard email attributes (such as subject line and blind carbon copy address), use
Salesforce email templates, and be in plain text or HTML format. You can use Salesforce to track the status of HTML email, including the
date the email was sent, first opened, last opened, and the total number of times it was opened. (See “Tracking HTML Email” in Salesforce
Help for more information.)

The email address of the logged-in user is inserted in the From Address field of the email header. All return email and out-of-office
replies go to the logged-in user. If bounce management is enabled and SingleEmailMessage.targetObjectId or
MassEmailMessage.targetObjectIds is set, bounces are processed by Salesforce automatically, and the appropriate records
are updated; otherwise, they go to the logged-in user. Bounce management works for contacts and leads only.

Note:

• Single email messages sent with this call count against the sending organization's daily single email limit. When this limit is
reached, sendEmail() calls using SingleEmailMessage are rejected, and the user receives a
SINGLE_EMAIL_LIMIT_EXCEEDED error code. However, single emails sent through the application are allowed.

• Mass email messages sent with this call count against the sending organization's daily mass email limit. When this limit is
reached, sendEmail() calls using MassEmailMessage are rejected, and the user receives a
MASS_MAIL_LIMIT_EXCEEDED error code.

• Starting in API version 35.0, you can enforce or ignore the Email Opt Out setting for contacts or leads with the optOutPolicy
field of SingleEmailMessage. The optOutPolicy field applies to recipients in the To, CC, and BCC lists of the email.
By default and in earlier versions, SingleEmailMessage ignores the Email Opt Out setting of recipients and the email
is sent to all recipients. When using MassEmailMessage, the Email Opt Out setting of the recipients is always
enforced—emails aren’t sent to recipients that have opted out and are sent to all other recipients.

SingleEmailMessage has an optional field called OrgWideEmailAddressId. This is an object ID to an OrgWideEmailAddress object.
If OrgWideEmailAddressId is set, the OrgWideEmailAddress DisplayName field is used in the email header, instead of the
logged-in user's Display Name. The sending email address in the header is also set to the field defined in
OrgWideEmailAddress.Address.

Note: If both the DisplayName in an OrgWideEmailAddress and senderDisplayName are defined, the user receives a
DUPLICATE_SENDER_DISPLAY_NAME error.

Sample Code—Java
This sample creates an email message and sets its fields, including the To, CC and BCC recipients, subject, and body text. It also sets a
recipient to the ID of the logged-in user using the setTargetObjectId method, which causes the email to be sent to the email
address of the specified user. The sample creates an attachment and sends the email message with the attachment. Finally, it writes a
status message or an error message, if any, to the console.

public void doSendEmail() {
try {

EmailFileAttachment efa = new EmailFileAttachment();
byte[] fileBody = new byte[1000000];
efa.setBody(fileBody);
efa.setFileName("attachment");
SingleEmailMessage message = new SingleEmailMessage();
message.setBccAddresses(new String[] {

"someone@salesforce.com"
});

320

sendEmail()Utility Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_orgwideemailaddress.htm

message.setCcAddresses(new String[] {
"person1@salesforce.com", "person2@salesforce.com", "003xx00000a1b2cAAC"

});
message.setBccSender(true);
message.setEmailPriority(EmailPriority.High);
message.setReplyTo("person1@salesforce.com");
message.setSaveAsActivity(false);
message.setSubject("This is how you use the " + "sendEmail method.");
// We can also just use an id for an implicit to address
GetUserInfoResult guir = connection.getUserInfo();
message.setTargetObjectId(guir.getUserId());
message.setUseSignature(true);
message.setPlainTextBody("This is the humongous body "

+ "of the message.");
EmailFileAttachment[] efas = { efa };
message.setFileAttachments(efas);
message.setToAddresses(new String[] { "person3@salesforce.com" });
SingleEmailMessage[] messages = { message };
SendEmailResult[] results = connection.sendEmail(messages);
if (results[0].isSuccess()) {

System.out.println("The email was sent successfully.");
} else {

System.out.println("The email failed to send: "
+ results[0].getErrors()[0].getMessage());

}
} catch (ConnectionException ce) {

ce.printStackTrace();
}

}

This example shows how to send an email with the opt-out setting enforced. Recipients are specified by their IDs. The
SendEmailOptOutPolicy.FILTER option causes the email to be sent only to recipients that haven’t opted out from email.

SingleEmailMessage message = new SingleEmailMessage();
// Set recipients to two contact IDs.
// Replace IDs with valid record IDs in your org.
message.setToAddresses(new String[] { "003D000000QDexS", "003D000000QDfW5" });
message.setOptOutPolicy(SendEmailOptOutPolicy.FILTER);
message.setSubject("Opt Out Test Message");
message.setPlainTextBody("This is the message body.");
SingleEmailMessage[] messages = { message };
SendEmailResult[] results = connection.sendEmail(messages);
if (results[0].isSuccess()) {

System.out.println("The email was sent successfully.");
} else {

System.out.println("The email failed to send: "
+ results[0].getErrors()[0].getMessage());

}

Sample Code—C#
This sample creates an email message and sets its fields, including the To, CC and BCC recipients, subject, and body text. It also sets a
recipient to the ID of the logged-in user using the setTargetObjectId method, which causes the email to be sent to the email

321

sendEmail()Utility Calls

address of the specified user. The sample creates an attachment and sends the email message with the attachment. Finally, it writes a
status message or an error message, if any, to the console.

public void doSendEmail()
{

try
{

EmailFileAttachment efa = new EmailFileAttachment();
byte[] fileBody = new byte[1000000];
efa.body = fileBody;
efa.fileName = "attachment";
SingleEmailMessage message = new SingleEmailMessage();
message.setBccAddresses(new String[] {

"someone@salesforce.com"
});
message.setCcAddresses(new String[] {

"person1@salesforce.com", "person2@salesforce.com", "003xx00000a1b2cAAC"
});
message.bccSender = true;
message.emailPriority = EmailPriority.High;
message.replyTo = "person1@salesforce.com";
message.saveAsActivity = false;
message.subject = "This is how you use the " + "sendEmail method.";
// We can also just use an id for an implicit to address
GetUserInfoResult guir = binding.getUserInfo();
message.targetObjectId = guir.userId;
message.useSignature = true;
message.plainTextBody = "This is the humongous body "

+ "of the message.";
EmailFileAttachment[] efas = { efa };
message.fileAttachments = efas;
message.toAddresses = new String[] { "person3@salesforce.com" };
SingleEmailMessage[] messages = { message };
SendEmailResult[] results = binding.sendEmail(messages);
if (results[0].success)
{

Console.WriteLine("The email was sent successfully.");
}
else
{

Console.WriteLine("The email failed to send: "
+ results[0].errors[0].message);

}
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

322

sendEmail()Utility Calls

This example shows how to send an email with the opt-out setting enforced. Recipients are specified by their IDs. The
SendEmailOptOutPolicy.FILTER option causes the email to be sent only to recipients that haven’t opted out from email.

SingleEmailMessage message = new SingleEmailMessage();
// Set recipients to two contact IDs.
// Replace IDs with valid record IDs in your org.
message.toAddresses = new String[] { "003D000000QDexS", "003D000000QDfW5" };
message.optOutPolicy = SendEmailOptOutPolicy.FILTER;
message.subject = "Opt Out Test Message";
message.plainTextBody = "This is the message body.";
SingleEmailMessage[] messages = { message };
SendEmailResult[] results = binding.sendEmail(messages);
if (results[0].success)
{

Console.WriteLine("The email was sent successfully.");
} else {

Console.WriteLine("The email failed to send: "
+ results[0].errors[0].message);

}

BaseEmail
The following table contains the arguments used in both single and mass email.

Note: If templates aren’t being used, all email content must be in plain text, HTML, or both.

DescriptionTypeName

Indicates whether the email sender receives a copy of the email that is sent. For a
mass mail, the sender is only copied on the first email sent.

booleanbccSender

Note: If the BCC compliance option is set at the organization level, the
user can’t add BCC addresses on standard messages. The following error
code is returned: BCC_NOT_ALLOWED_IF_BCC_ COMPLIANCE_
ENABLED. Contact your Salesforce representative for information on BCC
compliance.

Optional. The default value is true, meaning the email is saved as an activity.
This argument only applies if the recipient list is based on targetObjectId

booleansaveAsActivity

or targetObjectIds. If HTML email tracking is enabled for the organization,
you can track open rates.

Indicates whether the email includes an email signature if the user has one
configured. The default is true, meaning if the user has a signature it is included
in the email unless you specify false.

booleanuseSignature

Optional. The priority of the email.picklistemailPriority

• Highest

• High

• Normal

• Low

323

sendEmail()Utility Calls

DescriptionTypeName

• Lowest

The default is Normal.

Optional. The email address that receives the message when a recipient replies.
This can’t be set if you’re using a Visualforce email template that specifies a
replyTo value.

stringreplyTo

Optional. The email subject line. If you’re using an email template and attempt to
override the subject line, an error message is returned.

stringsubject

The ID of the template to be merged to create this email.IDtemplateId

Optional. The name that appears on the From line of the email. This can’t be set
if the object associated with a OrgWideEmailAddressId for a
SingleEmailMessage has defined its DisplayName field.

stringsenderDisplayName

SingleEmailMessage
The following table contains the arguments single email uses in addition to the base email arguments.

DescriptionTypeName

Optional. An array of blind carbon copy (BCC) addresses or object
IDs of the contacts, leads, and users you’re sending the email to.

string[]bccAddresses

This argument is allowed only when a template isn’t used. The
maximum size for this field is 4,000 bytes. The maximum total of
toAddresses, ccAddresses, and bccAddresses per
email is 150. All recipients in these three fields count against the
limit for email sent using Apex or the API.

You can specify opt-out email options with the optOutPolicy
field only for those recipients who were added by their IDs.

Email addresses are verified to ensure that they have the correct
format and haven’t been marked as bounced.

If the BCC COMPLIANCE option is set at the organization level, the
user can’t add BCC addresses on standard messages. The following
error code is returned:
BCC_NOT_ALLOWED_IF_BCC_COMPLIANCE_ENABLED.

All emails must have a recipient value in at least one of the
following fields:

• toAddresses

• ccAddresses

• bccAddresses

• targetObjectId

Optional. An array of carbon copy (CC) addresses or object IDs of
the contacts, leads, and users you’re sending the email to. This

string[]ccAddresses

324

sendEmail()Utility Calls

DescriptionTypeName

argument is allowed only when a template isn’t used. The
maximum size for this field is 4,000 bytes. The maximum total of
toAddresses, ccAddresses, and bccAddresses per
email is 150. All recipients in these three fields count against the
limit for email sent using Apex or the API.

You can specify opt-out email options with the optOutPolicy
field only for those recipients who were added by their IDs.

Email addresses are verified to ensure that they have the correct
format and haven’t been marked as bounced.

All emails must have a recipient value in at least one of the
following fields:

• toAddresses

• ccAddresses

• bccAddresses

• targetObjectId

Optional. The character set for the email. If this value is null, the
user's default value is used. Unavailable if specifying
templateId because the template specifies the character set.

stringcharset

Deprecated. Use entityAttachments instead. Optional.
An array listing the ID of each Document you want to attach to
the email.

ID[]documentAttachments

Optional. Array of IDs of Document, ContentVersion, or Attachment
items to attach to the email.

This field is available in API version 35.0 and later.

ID[]entityAttachments

Optional. An array listing the file names of the binary and text files
you want to attach to the email. You can attach multiple files as
long as the total size of all attachments doesn’t exceed 20 MB.

EmailFileAttachment[]fileAttachments

Optional. The HTML version of the email, specified by the sender.
The value is encoded according to the specification associated
with the organization.

stringhtmlBody

Optional. The In-Reply-To field of the outgoing email. Identifies
the emails to which this one is a reply (parent emails). Contains

stringinReplyTo

the parent emails' Message-IDs. See RFC2822 - Internet
Message Format.

Optional. If you add contact, lead, or person account recipients
by ID instead of email address, this field determines the behavior

SendEmailOptOutPolicy
(enumeration of type string)

optOutPolicy

of the sendEmail() call. By default, the opt-out settings for
recipients added by their email addresses aren’t checked and
those recipients always receive the email. Possible values of the
SendEmailOptOutPolicy enumeration are:

325

sendEmail()Utility Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_document.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_document.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contentversion.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_attachment.htm
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html

DescriptionTypeName

• SEND (default)—The email is sent to all recipients. The
recipients’ Email Opt Out setting is ignored. The setting
Enforce email privacy settings is ignored.

• FILTER—No email is sent to recipients that have the
Email Opt Out option set. Emails are sent to the other
recipients. The setting Enforce email privacy settings is
ignored.

• REJECT—If any of the recipients have the Email Opt
Out option set, sendEmail() throws an error and no
email is sent. The setting Enforce email privacy settings is
respected, as are the selections in the data privacy record
based on the Individual object. If any of the recipients have
Don’t Market, Don’t Process, or Forget this Individual selected,
sendEmail() throws an error and no email is sent.

Note: The Send Non-Commercial Email permission isn’t
respected.

This field is available in API version 35.0 and later.

Optional. The object ID of the OrgWideEmailAddress associated
with the outgoing email. OrgWideEmailAddress.DisplayName
can’t be set if the senderDisplayName field is already set.

IDorgWideEmailAddressId

Optional. The text version of the email, specified by the sender.stringplainTextBody

Optional. The References field of the outgoing email. Identifies an
email thread. Contains the parent emails' Message-ID and

stringreferences

References fields and possibly In-Reply-To fields. See RFC2822
- Internet Message Format.

Optional. The object ID of the contact, lead, or user the email will
be sent to. The object ID you enter sets the context and ensures
that merge fields in the template contain the correct data

All emails must have a recipient value in at least one of the
following fields:

IDtargetObjectId

• toAddresses

• ccAddresses

• bccAddresses

• targetObjectId

Optional. An array of email addresses or object IDs of the contacts,
leads, or users you’re sending the email to. This argument is

string[]toAddresses

allowed only when a template isn’t used. The maximum size for
this field is 4,000 bytes. The maximum total of toAddresses,
ccAddresses, and bccAddresses per email is 150. All
recipients in these three fields count against the limit for email
sent using Apex or the API.

326

sendEmail()Utility Calls

http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html

DescriptionTypeName

You can specify opt-out email options with the optOutPolicy
field only for those recipients who were added by their IDs.

Email addresses are verified to ensure that they have the correct
format and haven’t been marked as bounced.

All emails must have a recipient value in at least one of the
following fields:

• toAddresses

• ccAddresses

• bccAddresses

• targetObjectId

Optional. If set to true, the subject, plain text, and HTML text
bodies of the email are treated as template data. The merge fields

booleantreatBodiesAsTemplate

are resolved using the renderEmailTemplate() call.
Default is false.

This field is available in API version 35.0 and later.

Optional. If set to true, the targetObjectId (a contact,
lead, or user) is the recipient of the email. If set to false, the

booleantreatTargetObjectAsRecipient

targetObjectId is supplied as the WhoId field for template
rendering but isn’t a recipient of the email. The default is true.

This field is available in API version 35.0 and later. In prior versions,
the targetObjectId is always a recipient of the email.

Optional. If you specify a contact for the targetObjectId
field, you can specify a whatId as well. This field helps to further

IDwhatId

ensure that merge fields in the template contain the correct data.
The value must be one of the following types:

• Account

• Asset

• Campaign

• Case

• Contract

• Opportunity

• Order

• Product

• Solution

• Custom

327

sendEmail()Utility Calls

MassEmailMessage
The following table contains the arguments mass email uses in addition to the base email arguments.

DescriptionTypeName

A value used internally to identify the object in the mass email queue.stringdescription

An array of object IDs of the contacts, leads, or users the email will be sent to. The
object IDs you enter set the context and ensure that merge fields in the template

ID[]targetObjectIds

contain the correct data. The objects must be of the same type (either all contacts,
all leads, or all users). You can list up to 250 IDs per email. If you specify a value for
the targetObjectIds field, optionally specify a whatId as well to set the
email context to a user, contact, or lead. This ensures that merge fields in the
template contain the correct data.

Optional. If you specify an array of contacts for the targetObjectIds field,
you can specify an array of whatIds as well. This helps to further ensure that

ID[]whatIds

merge fields in the template contain the correct data. The values must be one of
the following types:

• Contract

• Case

• Opportunity

• Product

If you specify whatIds, specify one for each targetObjectId; otherwise,
you receive an INVALID_ID_FIELD error.

EmailFileAttachment
The following table contains properties that the EmailFileAttachment uses in the SingleEmailMessage object to specify attachments
passed in as part of the request, as opposed to a Document passed in using the documentAttachments argument.

DescriptionTypeProperty

The attachment itself.base64body

Optional. The attachment's Content-Type.stringcontentType

The name of the file to attach.stringfileName

Optional. Specifies a Content-Disposition of inline (true) or attachment (false).
In most cases, inline content is displayed to the user when the message is opened.
Attachment content requires user action to be displayed.

booleaninline

Response
SendEmailResult

328

sendEmail()Utility Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_document.htm

Fault
The following API status codes can be returned. Also, sendEmail() can return other errors when rendering email templates. See
renderEmailTemplate() Faults.

BCC_NOT_ALLOWED_IF_BCC_COMPLIANCE_ENABLED

BCC_SELF_NOT_ALLOWED_IF_BCC_COMPLIANCE_ENABLED

DUPLICATE_SENDER_DISPLAY_NAME

EMAIL_ADDRESS_BOUNCED

EMAIL_NOT_PROCESSED_DUE_TO_PRIOR_ERROR

EMAIL_OPTED_OUT

ERROR_IN_MAILER

INSUFFICIENT_ACCESS_ON_CROSS_REFERENCE_ENTITY

INVALID_CONTENT_TYPE

INVALID_EMAIL_ADDRESS

INVALID_ID_FIELD

INVALID_MESSAGE_ID_REFERENCE

INVALID_SAVE_AS_ACTIVITY_FLAG

LIMIT_EXCEEDED

MALFORMED_ID

MASS_MAIL_LIMIT_EXCEEDED

NO_MASS_MAIL_PERMISSION

REQUIRED_FIELD_MISSING

SINGLE_EMAIL_LIMIT_EXCEEDED

TEMPLATE_NOT_ACTIVE

UNVERIFIED_SENDER_ADDRESS

SendEmailResult
The sendEmail() call returns a list of SendEmailResult objects. Each SendEmailResult object has the following properties:

DescriptionTypeName

If sending single email: Indicates whether the email was successfully accepted for
delivery by the message transfer agent (true) or not (false). Even if success

booleansuccess

= true, it does not mean the intended recipients received the email, as it could
have bounced or been blocked by a spam blocker. Also, even if the email is successfully
accepted for delivery by the message transfer agent, there can still be errors in the
error array related to individual addresses within the email.

If sending mass email: Indicates whether the email was successfully added to the
queue for processing (true) or not (false). Even if the email was added to the

329

SendEmailResultUtility Calls

DescriptionTypeName

queue, there can still be processing errors that prevent delivery to the intended
recipients.

If an error occurred during the sendEmail() call, a list of SendEmailError
objects is returned. For single email, errors indicate that Salesforce wasn't able to

Error[]SendEmailError

deliver the email. For mass email, errors indicate that the email wasn't added to the
queue for processing.

SendEmailError
SendEmailError can have the following attributes:

DescriptionTypeName

Reserved for future use. Array of one or more field names. Identifies which
fields in the object, if any, affected the error condition.

Field[]Fields

Error message text.stringMessage

A code that characterizes the error. The full list of status codes is available
in the WSDL file for your organization.

statusCodeStatusCode

The object ID of the target for which the error occurred.IDTargetObjectId

Note: If an error occurs that prevents sendEmail() from sending the email to one or more targets, each TargetObjectId
for those targets has an associated error in SendEmailResult. A TargetObjectId that does not have an associated error in
SendEmailResult indicates the email was sent to the target. If SendEmailResult has an error that does not have an associated
TargetObjectId, no email was sent.

The following is an example of how to parse through a resulting set for errors:

Messaging.SingleEmailMessage email = new Messaging.SingleEmailMessage();
email.setToAddresses(new String[] { 'admin@acme.com' });
email.setSubject('my subject');
email.setPlainTextBody('plain text body');
List<Messaging.SendEmailResult> results =

Messaging.sendEmail(new Messaging.Email[] { email });
if (!results.get(0).isSuccess()) {

System.StatusCode statusCode = results.get(0).getErrors()[0].getStatusCode();
String errorMessage = results.get(0).getErrors()[0].getMessage();

}

sendEmailMessage()

Immediately sends up to 10 draft email messages.

330

sendEmailMessage()Utility Calls

Syntax
For Enterprise SOAP:

SendEmailResult[] = connection.sendEmailMessage(String[] draftEmailIds);

For Partner SOAP:

SendEmailResult[] = connection.sendEmailMessage(ID[] draftEmailIds);

Usage
Use this call with Lightning Platform AppExchange applications, custom applications, or other applications outside of Salesforce to send
up to 10 draft email messages. The messages can include all standard email attributes (such as subject line and blind carbon copy
address), use Salesforce email templates, and be in plain text or HTML format. You can use Salesforce to track the status of HTML email,
including the date the email was sent, first opened, last opened, and the total number of times it was opened. (See “Tracking HTML
Email” in the Salesforce online help for more information.)

The email address of the logged-in user is inserted in the From Address field of the email header. All return email and out-of-office
replies go to the logged-in user. If bounce management is enabled and SingleEmailMessage.targetObjectId or
MassEmailMessage.targetObjectIds is set, bounces are processed by Salesforce automatically, and the appropriate records
are updated; otherwise, they go to the logged-in user. Bounce management works for contacts and leads only.

Note:

• Email messages sent with this call count against the sending organization's daily single email limit. When this limit is reached,
sendEmailMessage() calls using SingleEmailMessage are rejected, and the user receives a
SINGLE_EMAIL_LIMIT_EXCEEDED error code. However, single emails sent through the application are allowed.

• Mass email messages sent with this call count against the sending organization's daily mass email limit. When this limit is
reached, sendEmail() calls using MassEmailMessage are rejected, and the user receives a
MASS_MAIL_LIMIT_EXCEEDED error code.

• The AllOrNone header is not honored by this call. sendEmailMessage() returns partial success even if the
AllOrNone header is set to true.

Sample Code—Java
This sample creates a case and a draft email message, and sets the message fields, including the From, To, CC, and BCC recipients,
subject, and body text. It also creates an attachment and sends the email message with the attachment. Finally, it writes a status message
or an error message, if any, to the console.

public void doSendEmail() {
try {

//Create a case
Case theCase = new Case();
theCase.setSubject("Sample Case");
SaveResult[] saveResult = connection.create(new SObject[] { theCase });
String caseId = saveResult[0].getId();

//Create a draft EmailMessage
EmailMessage message = new EmailMessage();
message.setParentId(theCase.getId());
message.setBccAddress("bcc@email.com");

331

sendEmailMessage()Utility Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_calls_sendemail_emailresult.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_calls_sendemail_emailresult.htm

message.setCcAddress("cc1@salesforce.com; cc2@email.com");
message.setSubject("This is how you use the sendEmailMessage method.");
message.setFromAddress("from@email.com");
message.setFromName("Sample Code");
message.setTextBody("This is the text body of the message.");
message.setStatus("5"); //"5" means Draft
message.setToAddress("to@email.com");
saveResult = connection.create(new SObject[] { message });
String emailMessageId = saveResult[0].getId();

//Create an attachment for the draft EmailMessage
Attachment att = new Attachment();
byte[] fileBody = new byte[1000000];
att.setBody(fileBody);
att.setName("attachment");
att.setParentId(emailMessageId);
connection.create(new SObject[] { att });

//Send the draft EmailMessage
SendEmailResult[] results = connection.sendEmailMessage(messages);
if (results[0].isSuccess()) {

System.out.println("The email was sent successfully.");
} else {

System.out.println("The email failed to send: " +
results[0].getErrors()[0].getMessage());

}
} catch (ConnectionException ce) {

ce.printStackTrace();
}

Arguments
None.

Response
SendEmailResult[]

Fault
BCC_NOT_ALLOWED_IF_BCC_COMPLIANCE_ENABLED

BCC_SELF_NOT_ALLOWED_IF_BCC_COMPLIANCE_ENABLED

EMAIL_NOT_PROCESSED_DUE_TO_PRIOR_ERROR

ERROR_IN_MAILER

INSUFFICIENT_ACCESS_ON_CROSS_REFERENCE_ENTITY

INVALID_CONTENT_TYPE

INVALID_EMAIL_ADDRESS

INVALID_ID_FIELD

332

sendEmailMessage()Utility Calls

INVALID_MESSAGE_ID_REFERENCE

LIMIT_EXCEEDED

MALFORMED_ID

REQUIRED_FIELD_MISSING

SINGLE_EMAIL_LIMIT_EXCEEDED

TEMPLATE_NOT_ACTIVE

UNVERIFIED_SENDER_ADDRESS

setPassword()

Sets the specified user’s password to the specified value.

Syntax
SetPasswordResult setPasswordResult = connection.setPassword(ID userID, string password);

Usage
Use setPassword() to change the password of a User or SelfServiceUser to a value that you specify. For example, a client application
might prompt a user to specify a different password, and then invokes setPassword() for an admin to change the user’s password.
Use resetPassword() instead if you want to reset the password with a random value generated by the API.

This call can be used to allow users to change their own passwords, as long as their org’s Password Policies setting Allow use of
setPassword() API for self-resets is enabled. Otherwise, use changeOwnPassword(), which is more secure because it verifies
the user’s current password before allowing the change.

Your client application must be logged in with sufficient access rights to change the password for the specified user. For more information,
see Factors that Affect Data Access.

For information on IDs, see ID Field Type.

This call can use the session ID returned in LoginResult if the password has expired. For more information, see passwordExpired.

Sample Code—Java
This sample accepts user ID and password parameters, which it uses in the setPassword() call to set the password of the specified
user.

public void doSetPassword(String userId, String newPasswd) {
try {

SetPasswordResult result = connection.setPassword(userId, newPasswd);
System.out.println("The password for user ID " + userId + " changed to "

+ newPasswd);
} catch (ConnectionException ce) {

ce.printStackTrace();
}

}

333

setPassword()Utility Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_selfserviceuser.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

Sample Code—C#
This sample accepts user ID and password parameters, which it uses in the setPassword() call to set the password of the specified
user.

public void doSetPassword(String userId, String newPasswd)
{

try
{

SetPasswordResult result = binding.setPassword(userId, newPasswd);
Console.WriteLine("The password for user ID " + userId + " changed to "

+ newPasswd);
}
catch (SoapException e)
{

Console.WriteLine("An unexpected error has occurred: " +
e.Message + "\n" + e.StackTrace);

}
}

Arguments

DescriptionTypeName

ID of the User or SelfServiceUser whose password you want to reset. For information on IDs,
see ID Field Type.

IDuserID

New password to use for the specified user.stringpassword

Response
SetPasswordResult (empty)

Fault
InvalidIdFault

UnexpectedErrorFault

SEE ALSO:

resetPassword()

Utility Calls

changeOwnPassword()

334

setPassword()Utility Calls

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_selfserviceuser.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

CHAPTER 12 SOAP Headers

The API provides SOAP headers to client applications.

DescriptionHeader

Specifies whether a call rolls back all changes unless all records are processed successfully.
This header is available in API version 20.0 and later.

AllOrNoneHeader

Specifies the truncation behavior for some field types in API version 15.0 and later.AllowFieldTruncationHeader

Specifies the assignment rule to use when creating or updating an Account, Case, or Lead.AssignmentRuleHeader

Specifies the call options for an API request.CallOptions

Returns the debug log in the output header, DebuggingInfo, and specifies the level of
detail in the debug log.

DebuggingHeader

Specifies whether the changes made in the current call are tracked in feeds.DisableFeedTrackingHeader

Determines options for using duplicate rules to detect duplicate records. Duplicate rules are
part of the Duplicate Management feature.

DuplicateRuleHeader

Sends an email notification when a request is processed. Provides equivalent functionality for
the Salesforce user interface.

EmailHeader

A response header returned from calls to SOAP API. This header returns limit information for
the organization. Use this header to monitor your API limits as you make calls against the
organization.

LimitInfoHeader

Specifies the language of the labels returned. The value must be a valid user locale (language
and country), such as de_DE or en_GB. For more information on locales, see the Language
field on the CategoryNodeLocalization object.

LocaleOptions

Specifies the organization ID so that you can authenticate Self-Service users for your
organization using the login() call.

LoginScopeHeader

Indicates whether to update the list of most recently used items (true) or not (false).MruHeader

Specifies ownership of attachments and notes.OwnerChangeOptions

Specifies the package version for each installed managed package in API version 16.0 and
later.

PackageVersionHeader

Specifies the batch size for query results.QueryOptions

Specifies the session ID returned from the login server after a successful login().SessionHeader

335

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_case.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_categorynodelocalization.htm#languagelocalekey_desc

DescriptionHeader

Specifies a user to whom open opportunities are assigned when the current owner is removed
from a territory.

UserTerritoryDeleteHeader

AllOrNoneHeader

Allows a call to roll back all changes unless all records are processed successfully.

Without the AllOrNoneHeader header, records without errors are committed, while records with errors are marked as failed in the call
results. This header is available in API version 20.0 and later.

Even if the header is enabled, it's still necessary to inspect the success field in the call result for each record to identify records with
errors. Each success field contains true or false indicating whether the call was processed successfully.

If there is an error associated with at least one record, the errors field in the call result for the record gives more information on the
error. If other records in the same call have no errors, their errors fields indicate that they were rolled back due to other errors.

API Calls
create(), delete(), undelete(), update(), upsert()

Fields

DescriptionTypeElement Name

If true, any failed records in a call cause all changes for the call to be rolled
back. Record changes aren't committed unless all records are processed
successfully.

The default is false. Some records can be processed successfully while
others are marked as failed in the call results.

booleanallOrNone

Sample Code—Java
This sample shows how to use the AllOrNoneHeader. It attempts to create two contacts. The second contact doesn’t have all
required fields set and causes a failure on creation. Next, the sample sets the allOrNone field to true, and then attempts to create
the contacts. Creating one of the contacts results in an error, so the entire transaction is rolled back and no contacts are created.

public void allOrNoneHeaderSample() {
try {
// Create the first contact.
SObject[] sObjects = new SObject[2];
Contact contact1 = new Contact();
contact1.setFirstName("Robin");
contact1.setLastName("Van Persie");

// Create the second contact. This contact doesn't
// have a value for the required

336

AllOrNoneHeaderSOAP Headers

// LastName field so the create will fail.
Contact contact2 = new Contact();
contact2.setFirstName("Ashley");
sObjects[0] = contact1;
sObjects[1] = contact2;

// Set the SOAP header to roll back the create unless
// all contacts are successfully created.
connection.setAllOrNoneHeader(true);
// Attempt to create the two contacts.
SaveResult[] sr = connection.create(sObjects);
for (int i = 0; i < sr.length; i++) {
if (sr[i].isSuccess()) {
System.out.println("Successfully created contact with id: " +
sr[i].getId() + ".");

}
else {
// Note the error messages as the operation was rolled back
// due to the all or none header.
System.out.println("Error creating contact: " +
sr[i].getErrors()[0].getMessage());

System.out.println("Error status code: " +
sr[i].getErrors()[0].getStatusCode());

}
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

}

AllowFieldTruncationHeader

Specifies that for some fields, when a string is too large, the operation fails. Without the header, strings for these fields are truncated.

The AllowFieldTruncationHeader header affects the following datatypes:

• anyType, if it represents one of the other datatypes in this list

• email

• encryptedstring

• multipicklist

• phone

• picklist

• string

• textarea

In API versions previous to 15.0, if a value for one of the listed fields is too large, the value is truncated.

For API version 15.0 and later, if a value is too large, the operation fails and the fault code STRING_TOO_LONG is returned.
AllowFieldTruncationHeader allows you to specify that the previous behavior, truncation, be used instead of the new
behavior in API versions 15.0 and later.

337

AllowFieldTruncationHeaderSOAP Headers

This header has no effect in versions 14.0 and earlier.

API Calls
convertLead(), create(), merge(), process(), undelete(), update(), and upsert()

Apex: executeanonymous()

Fields

DescriptionTypeElement Name

If true, truncate field values that are too long, which is the behavior in API versions
14.0 and earlier.

Default is false: no change in behavior. If a string or textarea value is too
large, the operation fails and the fault code STRING_TOO_LONG is returned.

booleanallowFieldTruncation

The following list shows the field types affected by truncation and this header:

• anyType, if it represents one of the other datatypes in this list

• email

• encryptedstring

• multipicklist

• phone

• picklist

• string

• textarea

Sample Code—Java
To create an account with a name that is too long for the Name field, use the AllowFieldTruncation header.

This sample:

1. Creates an Account object with a name that exceeds the field limit of 255 characters.

2. Sends the create call, which fails because of the name field length.

3. Sets the AllowFieldTruncationHeader to true and retries the account creation, which succeeds.

public void allowFieldTruncationSample() {
try {
Account account = new Account();
// Construct a string that is 256 characters long.
// Account.Name's limit is 255 characters.
String accName = "";
for (int i = 0; i < 256; i++) {
accName += "a";

}
account.setName(accName);
// Construct an array of SObjects to hold the accounts.

338

AllowFieldTruncationHeaderSOAP Headers

SObject[] sObjects = new SObject[1];
sObjects[0] = account;
// Attempt to create the account. It will fail in API version 15.0
// and above because the account name is too long.
SaveResult[] results = connection.create(sObjects);
System.out.println("The call failed because: "

+ results[0].getErrors()[0].getMessage());
// Now set the SOAP header to allow field truncation.
connection.setAllowFieldTruncationHeader(true);
// Attempt to create the account now.
results = connection.create(sObjects);
System.out.println("The call: " + results[0].isSuccess());

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

AssignmentRuleHeader

The AssignmentRuleHeader must be specified in the create() or update() call of a Case or Lead for the specified assignment rule
to be applied, and it must be specified in the update() call of an Account for the territory assignment rules to be applied.

API Calls
create(), merge(), update(), upsert()

Fields

DescriptionTypeElement Name

The ID of a specific assignment rule to run for the Case or Lead. The
assignment rule can be active or inactive. The ID can be retrieved by querying

IDassignmentRuleId

the AssignmentRule object. If specified, do not specify useDefaultRule.
This element is ignored for accounts, because all territory assignment rules
are applied.

If the value is not in correct ID format (15-character or 18-character Salesforce
ID), the call fails and a MALFORMED_ID exception is returned.

If true for a Case or Lead, uses the default (active) assignment rule for a
Case or Lead. If specified, do not specify an assignmentRuleId. If

booleanuseDefaultRule

true for an Account, all territory assignment rules are applied, and if
false, no territory assignment rules are applied.

339

AssignmentRuleHeaderSOAP Headers

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_case.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_assignmentrule.htm

Sample Code
For a code example, see Lead.

SEE ALSO:

AssignmentRule

CallOptions

Specifies the options needed to work with a specific client. This header is only available for use with the Partner WSDL.

API Calls
The defaultNamespace element supports the following calls: create(), merge(), queryAll(), query(), queryMore(),
retrieve(), search(), update(), and upsert().

The client element supports all of the above calls, plus the following: convertLead(), login(), delete(), describeGlobal(),
describeLayout(), describeTabs(), describeSObject(), describeSObjects(), getDeleted(),
getUpdated(), process(), undelete(), getServerTimestamp(), getUserInfo(), setPassword(), and
resetPassword().

Fields

DescriptionTypeElement Name

A string that identifies a client.stringclient

A string that identifies a developer namespace prefix. Use this field to resolve field names
in managed packages without having to fully specify the fieldName everywhere.

stringdefaultNamespace

For example, if the developer namespace prefix is battle, and you have a custom
field in your package called botId, you can set this header, and then queries such as
the following will succeed:

query("SELECT id, botId__c from Account");

In this case the actual field queried is the battle__botId__c field.

Using this field allows you to write client code without having to specify the namespace
prefix. Without this field specified, the full name of the field would have to be used for
the query to succeed. In the example above, you would have to specify
battle__botId__c.

Note that if this field is set, and the query specifies the namespace as well, the response
will not include the prefix. For example, if you set this header to battle, and issue a
query like query("SELECT id, battle__botId__c from Account");,
the response would use a botId__c element, not a battle_botId__c element.

Describe calls ignore this header, so there will be no ambiguity between fields with
namespace prefixes and customer fields of the same name without the prefix.

340

CallOptionsSOAP Headers

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_objects_assignmentrule.htm

Sample Code—C#
This sample shows how to use the CallOptions header. It sets a client ID and a developer namespace prefix, which is used to resolve
field names in managed packages. Next, the sample logs the specified user in.

public void CallOptionsSample()
{

// Web Reference to the imported Partner WSDL.
APISamples.partner.SforceService partnerBinding;

string username = "USERNAME";
string password = "PASSWORD";

// The real Client ID will be an API Token provided by Salesforce
// to partner applications following a security review.
// For more details, see the Security Review FAQ in the online help.
string clientId = "SampleCaseSensitiveToken/100";

partnerBinding = new SforceService();
partnerBinding.CallOptionsValue = new CallOptions();
partnerBinding.CallOptionsValue.client = clientId;

// Optionally, if a developer namespace prefix has been registered for
// your Developer Edition organization, it may also be specified.
string prefix = "battle";
partnerBinding.CallOptionsValue.defaultNamespace = prefix;

try
{

APISamples.partner.LoginResult lr =
partnerBinding.login(username, password);

}
catch (SoapException e)
{

Console.WriteLine(e.Code);
Console.WriteLine(e.Message);

}
}

DisableFeedTrackingHeader

Specifies that changes made in the current call are tracked in feeds.

Use this header if you want to process many records without tracking the changes in various feeds related to the records. This header
is available if the Chatter feature is enabled for your organization.

API Calls
convertLead(), create(), delete(), merge(), process(), undelete(), update(), upsert()

341

DisableFeedTrackingHeaderSOAP Headers

Fields

DescriptionTypeElement Name

If true, the changes made in the current call are not tracked in feeds.

The default is false.

booleandisableFeedTracking

Sample Code—Java
This sample shows how to use the DisableFeedTrackingHeader. It sets this header to true to disable feed tracking and
then creates many account records in bulk.

public void disableFeedTrackingHeaderSample() {
try {
// Insert a large number of accounts.
SObject[] sObjects = new SObject[500];
for (int i = 0; i < 500; i++) {

Account a = new Account();
a.setName("my-account-" + i);
sObjects[i] = a;

}
// Set the SOAP header to disable feed tracking to avoid generating a
// large number of feed items because of this bulk operation.
connection.setDisableFeedTrackingHeader(true);
// Perform the bulk create. This won't result in 500 feed items, which
// would otherwise be generated without the DisableFeedTrackingHeader.
SaveResult[] sr = connection.create(sObjects);
for (int i = 0; i < sr.length; i++) {
if (sr[i].isSuccess()) {
System.out.println("Successfully created account with id: " +
sr[i].getId() + ".");

} else {
System.out.println("Error creating account: " +
sr[i].getErrors()[0].getMessage());

}
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

SEE ALSO:

NewsFeed

EntitySubscription

DebuggingHeader

Return the debug log in the output header, DebuggingInfo, and specify the level of detail in the debug log.

342

DebuggingHeaderSOAP Headers

https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_objects_customobject__feed.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_objects_entitysubscription.htm

Note: Calls that include DebuggingHeader are limited to 1,000 in a 24-hour period. You can continue to make these calls even
after reaching the total request limit for an org.

API Calls
compileAndTest(), executeanonymous(), runTests()

Fields

DescriptionTypeElement Name

Specifies the type and amount of information to be returned in the debug log.LogInfo[]categories

Deprecated. This field is provided only for backward compatibility. If you provide values
for both debugLevel and categories, the categories value is used.

DebugLevel
(enumeration of
type string)

debugLevel

The debugLevel field specifies the type of information returned in the debug log.
The values are listed from the least amount of information returned to the most
information returned. Valid values include:

• None

• Debugonly

• Db

• Profiling

• Callout

• Detail

LogInfo
Specifies the type and amount of information to be returned in the debug log. The categories field takes a list of these objects.
LogInfo is a mapping of category to level.

Fields

DescriptionTypeElement Name

Specify the type of information returned in the debug log. Valid values are:LogCategorycategory

• Db

• Workflow

• Validation

• Callout

• Apex_code

• Apex_profiling

• Visualforce

343

DebuggingHeaderSOAP Headers

DescriptionTypeElement Name

• System

• All

Specifies the level of detail returned in the debug log.

Valid log levels are (listed from lowest to highest):

LogCategoryLevellevel

• NONE

• ERROR

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

DuplicateRuleHeader

Determines options for using duplicate rules to detect duplicate records. Duplicate rules are part of the Duplicate Management feature.

API Calls
create(), update(), upsert()

Fields

DescriptionTypeElement Name

For a duplicate rule, when the Alert option is enabled, bypass alerts and save
duplicate records by setting this property to true. Prevent duplicate records
from being saved by setting this property to false.

booleanallowSave

Get fields and values for records detected as duplicates by setting this property
to true. Get only record IDs for records detected as duplicates by setting
this property to false.

booleanincludeRecordDetails

Make sure that sharing rules for the current user are enforced when duplicate
rules run by setting this property to true. Use the sharing rules specified in

booleanrunAsCurrentUser

the class for the request by setting this property to false. If no sharing rules
are specified, Apex code runs in system context and sharing rules for the
current user are not enforced.

344

DuplicateRuleHeaderSOAP Headers

Java Sample
This sample shows how to use the DuplicateRuleHeader to set options for using duplicate rules. To see the entire sample
application, see DuplicateResult.

_DuplicateRuleHeader header = new _DuplicateRuleHeader();
header.setAllowSave(false);
header.setIncludeRecordDetails(true);
header.setRunAsCurrentUser(true);

binding.setHeader(new SforceServiceLocator().getServiceName().getNamespaceURI(),
"DuplicateRuleHeader", header);

SEE ALSO:

DuplicateResult

DuplicateRule

EmailHeader

The Salesforce user interface allows you to specify whether to send an email when these events occur:

• Create a Case

• Create a CaseComment

• Convert Case email to a Contact

• Send a New User email notification

• Make a resetPassword() call

In API versions 8.0 and later, you can also send an API request that sends email.

A group event is an Event for which IsGroupEvent is true. The EventRelation object tracks the users, leads, or contacts that are
invited to a group event. Note the following behaviors for group event email sent through the API:

• Sending a group event invitation to a IUser respects the triggerUserEmail option

• Sending a group event invitation to a Lead or Contact respects the triggerOtherEmail option

• Email sent when updating or deleting a group event also respect triggerUserEmail and triggerOtherEmail, as
appropriate

API Calls
create(), delete(), resetPassword(), update(), upsert()

Fields

DescriptionTypeElement Name

Indicates whether to trigger auto-response rules (true) or not (false), for
leads and cases. In the Salesforce user interface, this email can be automatically

booleantriggerAutoResponseEmail

triggered by a number of events, for example creating a case or resetting a

345

EmailHeaderSOAP Headers

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_duplicateresult.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_objects_duplicateresult.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_objects_duplicaterule.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_case.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_casecomment.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_event.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_eventattendee.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_lead.htm

DescriptionTypeElement Name

user password. If this value is set to true, when a Case is created, if there is
an email address for the contact specified in ContactId, the email is sent
to that address. If not, the email is sent to the address specified in
SuppliedEmail.

Indicates whether to trigger email outside the organization (true) or not
(false). In the Salesforce user interface, this email can be automatically
triggered by creating, editing, or deleting a contact for a case.

booleantriggerOtherEmail

Indicates whether to trigger email that is sent to users in the organization
(true) or not (false). In the Salesforce user interface, this email can be

booleantriggerUserEmail

automatically triggered by a number of events; resetting a password, creating
a new user, or adding comments to a case.

Sample Code—Java
This sample shows how to use the EmailHeader. It sets the triggerAutoResponseEmail email header field to true,
which triggers an email to be sent when a case is created. Next, it creates a case. This sample assumes an auto-response rule has been
set for cases, and an email address is specified in the contact referenced by ContactId.

public void createCaseWithAutoResponse(String contactId) {
try {
connection.setEmailHeader(true, false, false);
Case c = new Case();
c.setSubject("Sample Subject");
c.setContactId(contactId);
SaveResult[] sr = connection.create(new SObject[] { c });
// Parse sr array to see if case was created successfully.

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

LimitInfoHeader

A response header returned from calls to SOAP API. This header returns limit information for the organization. Use this header to monitor
your API limits as you make calls against the organization.

API Calls
All calls, except for login().

346

LimitInfoHeaderSOAP Headers

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_case.htm#i1444499
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_case.htm#case_suppliedemail
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_case.htm#i1444499

Fields

DescriptionTypeElement Name

The number of calls for the specified limit type that have already been used in the
organization.

stringcurrent

The organization’s limit for the specified limit type.stringlimit

The type of limit information specified in the header.stringtype

• API REQUESTS— the daily API usage for the organization against which the call
was made.

Sample Code
This example shows a response to a SOAP request for a Merchandise record. The LimitInfoHeader contains the API usage
information for the organization.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns="urn:partner.soap.sforce.com" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:sf="urn:sobject.partner.soap.sforce.com">
<soapenv:Header>

<LimitInfoHeader>
<limitInfo>

<current>5</current>
<limit>100000</limit>
<type>API REQUESTS</type>

</limitInfo>
</soapenv:Header>
<soapenv:Body>

<queryResponse>
<result xsi:type="QueryResult">

<done>true</done>
<queryLocator xsi:nil="true"/>
<records xsi:type="sf:sObject">

<sf:type>dev_ns__Merchandise__c</sf:type>
<sf:Id>a00D0000008pQSNIA2</sf:Id>
<sf:dev_ns__Description__c>Phone Case for iPhone

4/4S</sf:dev_ns__Description__c>
<sf:dev_ns__Price__c>16.99</sf:dev_ns__Price__c>
<sf:dev_ns__Stock_Price__c>12.99</sf:dev_ns__Stock_Price__c>
<sf:dev_ns__Total_Inventory__c>108.0</sf:dev_ns__Total_Inventory__c>
<sf:Id>a00D0000008pQSNIA2</sf:Id>

</records>
<size>1</size>

</result>
</queryResponse>

</soapenv:Body>
</soapenv:Envelope>

347

LimitInfoHeaderSOAP Headers

LocaleOptions

Specifies the language of the labels returned.

API Calls
describeSObject(), describeSObjects(), describeDataCategoryGroups(),
describeDataCategoryGroupStructures()

Fields

DescriptionTypeElement Name

Specifies the language of the labels returned. The value must be a valid user locale (language
and country), such as de_DE or en_GB. For more information on locales, see the Language
field on the CategoryNodeLocalization object.

stringlanguage

Sample Code—Java
This sample sets the LocaleOptions header to the locale of the logged-in user, and then performs a describe on Account.

public void localeOptionsExample() {
try {
connection.setLocaleOptions("en_US");
connection.describeSObject("Account");

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

LoginScopeHeader

Specifies your organization ID so that you can authenticate Self-Service users for your organization using the existing login().

Note: Starting with Spring ’12, the Self-Service portal isn’t available for new Salesforce orgs. Existing orgs continue to have access
to the Self-Service portal.

API Calls
login()

348

LocaleOptionsSOAP Headers

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_categorynodelocalization.htm#languagelocalekey_desc

Fields

DescriptionTypeElement Name

The ID of the organization against which you authenticate Self-Service users.IDorganizationId

Specify only if user is a Customer Portal user. The ID of the portal for this organization.
The ID is available in the Salesforce user interface:

IDportalId

• From Setup, enter Customer Portal Settings in the Quick Find
box, then select Customer Portal Settings

• Select a Customer Portal name, and on the Customer Portal detail page, the URL of
the Customer Portal displays. The Portal ID is in the URL.

Sample Code—C#
This sample shows how to use the LoginScopeHeader. It sets the organization ID and the portal ID for a Customer Portal user. It
also sets the CallOptions header. It then logs the specified user in.

/// Demonstrates how to set the LoginScopeHeader values.
public void LoginScopeHeaderSample()
{

// Web Reference to the imported Partner WSDL.
APISamples.partner.SforceService partnerBinding;

string username = "USERNAME";
string password = "PASSWORD";

// The real Client ID will be an API Token provided by Salesforce
// to partner applications following a security review. For more details,
// see the Security Review FAQ in the online help.
string clientId = "SampleCaseSensitiveToken/100";

partnerBinding = new SforceService();
partnerBinding.CallOptionsValue = new CallOptions();
partnerBinding.CallOptionsValue.client = clientId;

// To authenticate Self-Service users, we need to set the OrganizationId
// in the LoginScopeHeader.
string orgId = "00ID0000OrgFoo";
partnerBinding.LoginScopeHeaderValue = new LoginScopeHeader();
partnerBinding.LoginScopeHeaderValue.organizationId = orgId;
// Specify the Portal ID if the user is a Customer Portal user.
string portalId = "00ID0000FooPtl";
partnerBinding.LoginScopeHeaderValue.portalId = portalId;

try
{

APISamples.partner.LoginResult lr =
partnerBinding.login(username, password);

}

349

LoginScopeHeaderSOAP Headers

catch (SoapException e)
{

Console.WriteLine(e.Code);
Console.WriteLine(e.Message);

}
}

MruHeader

In API version 7.0 and later, the create(), update(), and upsert() calls do not update the list of most recently used (MRU) items
in the Recent Items section of the sidebar in the Salesforce user interface unless this header is used. Be advised that using this header
to update the Recent Items list may negatively impact performance.

API Calls
create(), merge(), query(), retrieve(), update(), upsert()

Fields

DescriptionTypeElement Name

Indicates whether to update the list of most recently used items (true) or not (false).booleanupdateMru

For retrieve(), if the result has only one row, the MRU is updated to the ID of the retrieve
result.

For query(), if the result has only one row and the ID field is selected, the MRU is updated
to the ID of the query result.

Sample Code—Java
This sample turns on the MRU list update option by setting the MruHeader to true. Next, it creates an account.

public void mruHeaderSample() {
connection.setMruHeader(true);
Account account = new Account();
account.setName("This will be in the MRU");
try {
SaveResult[] sr = connection.create(new SObject[]{account});
System.out.println("ID of account added to MRU: " +
sr[0].getId());

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

350

MruHeaderSOAP Headers

OwnerChangeOptions

Represents actions that can be performed when a record’s owner is changed. Available with these options in API version 35.0 and later.

API Calls
update(), upsert()

Fields

DescriptionTypeElement Name

Represents a flag for a specific action performed when changing a record owner through
an update or upsert call.

OwnerChangeOption[]options

OwnerChangeOption Fields

DescriptionTypeElement Name

If true, the action represented by the type field is performed. If false, the action
represented by the type field is skipped.

booleanexecute

Represents the action performed or skipped, according to the given value for the execute
field, when changing a record owner during an update or upsert call. The following types
can be used.

enum of a stringtype

EnforceNewOwnerHasReadAccess
If true, the record’s new owner must have at least read access on the record.
Available in API version 36.0 and later.

KeepAccountTeam
If true, the account team is kept with the account when the account owner is
changed. If false, the account team is deleted. Default is false. This action only
applies to team members added by a Salesforce admin, the account owner, or
someone higher in the role hierarchy. Team members added by users with
group-based access are removed even if true. Available for accounts in API version
45.0 and later.

KeepSalesTeam
If true, the opportunity team is kept with the opportunity when the account owner
is changed. If false, the opportunity team is deleted. Default is false. Available
for opportunities in API version 45.0 and later.

KeepSalesTeamGrantCurrentOwnerReadWriteAccess
If true, the opportunity’s previous owner retains read/write access after the owner
is changed. Default is false. Can be true only when KeepSalesTeam is true.
Available for opportunities in API version 44.0 and later.

351

OwnerChangeOptionsSOAP Headers

DescriptionTypeElement Name

SendEmail
If true, an email notification is sent to the new owner. Default is false.

TransferAllOwnedCases
If true, all cases (open and closed) owned by the account owner are transferred
to the new owner. Default is false. When TransferAllOwnedCases is true,
TransferOwnedOpenCases must also be true. Available for accounts in API version
45.0 and later.

TransferArticleOwnedPublishedVersion
If true and the record is a Knowledge article, the article owner's published version
for the language of the current draft is transferred to the new owner, in addition to
the current draft.

TransferArticleOwnedArchivedVersions
If true and the record is a Knowledge article, the article owner's archived versions
for the language of the current draft are transferred to the new owner, in addition
to the current draft.

TransferArticleAllVersions
If true and the record is a Knowledge article, all published and archived versions
owned by anyone for the language of the current draft are transferred to the new
owner, in addition to the current draft.

TransferContacts
If true and the record is a business account, contacts associated with the account
are transferred to the new owner.

TransferContracts
If true and the record is an account, contracts associated with the account and
owned by the account owner are transferred to the new owner.

TransferNotesAndAttachments
If true, the record’s notes, attachments, and Google Docs are transferred to the
new record owner. If false, the original record owner retains ownership.

TransferOpenActivities
If true, the record’s open activities are transferred to the new owner.

TransferOrders
If true and the record is an account, the draft standalone orders associated with
the account and draft orders associated with transferred contracts owned by the
account owner are transferred to the new owner.

TransferOthersOpenOpportunities
If true and the record is an account, open opportunities associated with the account
and not owned by the current owner are transferred to the new owner. When this
option is executed, TransferOwnedOpenOpportunities must be set to execute. Default
is false.

TransferOwnedClosedOpportunities
If true and the record is an account, closed opportunities owned by the account
owner are transferred to the new owner. Default is false. Available for API version
45.0 and later.

352

OwnerChangeOptionsSOAP Headers

DescriptionTypeElement Name

TransferOwnedOpenCases
If true and the record is an account, open cases owned by the account owner are
transferred to the new owner. Default is false. Available for API version 45.0 and
later.

TransferOwnedOpenOpportunities
If true and the record is an account, open opportunities associated with the account
and owned by the account owner are transferred to the new owner.

Usage
When changing the owners of multiple accounts, all accounts must have the same old owner and the same new owner. To change
ownership of accounts with different owners, use separate API requests.

Sample Code—Java
This sample creates an account, a note, an opportunity, and task for the account. It sets the owner change options so that the note,
opportunity, and task are transferred to the new owner along with the account.

public void ownerChangeOptionsHeaderSample() {

// Create account. Accounts don't transfer activities, notes, or attachments by default

Account account = new Account();
account.setName("Account");
com.sforce.soap.enterprise.SaveResult[] sr = connection.create(new

com.sforce.soap.enterprise.sobject.SObject[] { account });
String accountId = null;

if(sr[0].isSuccess()) {
System.out.println("Successfully saved the account");
accountId = sr[0].getId();

// Create a note, a task, and an opportunity for the account

Note note = new Note();
note.setTitle("Note Title");
note.setBody("Note Body");
note.setParentId(accountId);

Task task = new Task();
task.setWhatId(accountId);

Opportunity opportunity = new Opportunity();
opportunity.setName("Opportunity");
opportunity.setStageName("Prospecting");
Calendar dt = connection.getServerTimestamp().getTimestamp();

353

OwnerChangeOptionsSOAP Headers

dt.add(Calendar.DAY_OF_MONTH, 7);
opportunity.setCloseDate(dt);
opportunity.setAccountId(accountId);

sr = connection.create(new com.sforce.soap.enterprise.sobject.SObject[] { note,
task, opportunity });

if(sr[0].isSuccess()) {
System.out.println("Successfully saved the note, task, and opportunity");

com.sforce.soap.enterprise.QueryResult qr = connection.query("SELECT Id FROM
User WHERE FirstName = 'Jane' AND LastName = 'Doe'");

String newOwnerId = qr.getRecords()[0].getId();
account.setId(accountId);
account.setOwnerId(newOwnerId);

// Set owner change options so account's child note, task, and opportunity
transfer to new owner

OwnerChangeOption opt1 = new OwnerChangeOption();
opt1.setExecute(true);
opt1.setType(OwnerChangeOptionType.TransferOwnedOpenOpportunities); // Transfer

Open opportunities owned by the account's owner

OwnerChangeOption opt2 = new OwnerChangeOption();
opt2.setExecute(true);
opt2.setType(OwnerChangeOptionType.TransferOpenActivities);

OwnerChangeOption opt3 = new OwnerChangeOption();
opt3.setExecute(true);
opt3.setType(OwnerChangeOptionType.TransferNotesAndAttachments);

connection.setOwnerChangeOptions(new OwnerChangeOption[] {opt1, opt2, opt3});
connection.update(new com.sforce.soap.enterprise.sobject.SObject[] { account }

);

// The account's note, task, and opportunity should be transferred to the new
owner.

}

} else {
System.out.println("Account save failed: " + sr[0].getErrors().toString());

}
}

PackageVersionHeader

Specifies the package version for each installed managed package.

A managed package can have several versions with different content and behavior. This header allows you to specify the version used
for each package referenced by your API client.

354

PackageVersionHeaderSOAP Headers

If a package version isn't specified, the API client uses the version of the package specified in Setup. From Setup, enter API in the
Quick Find box, select API, and then click Configure Enterprise Package Version Settings under Enterprise Package
Version Settings.

This header is available in API version 16.0 and later.

Associated API Calls
convertLead(), create(), delete(), describeGlobal(), describeLayout(), describeSObject(),
describeSObjects(), describeSoftphoneLayout(), describeTabs(), merge(), process(), query(), retrieve(),
search(), undelete(), update(), upsert()

Fields

DescriptionTypeElement Name

A list of package versions for installed managed packages referenced by your API client.PackageVersion[]packageVersions

PackageVersion
Specifies a version of an installed managed package. A package version is majorNumber.minorNumber, for example 2.1.

Fields

DescriptionTypeField

The major version number of a package version.intmajorNumber

The minor version number of a package version.intminorNumber

The unique namespace of the managed package.stringnamespace

Sample Code—Java
This sample sets the package version for one installed package in the PackageVersionHeader. Next, it executes the code passed
into this method via the executeAnonymous Apex method.

public void PackageVersionHeaderSample(String code) throws Exception
{

_PackageVersionHeader pvh = new _PackageVersionHeader();
PackageVersion pv = new PackageVersion();
pv.setNamespace("installedPackageNamespaceHere");
pv.setMajorNumber(1);
pv.setMinorNumber(0);
// In this case, we are only referencing one installed package.
PackageVersion[] pvs = new PackageVersion[]{pv};
pvh.setPackageVersions(pvs);

apexBinding.setHeader(new SforceServiceLocator().getServiceName().getNamespaceURI(),
"PackageVersionHeader", pvh);

355

PackageVersionHeaderSOAP Headers

// Execute the code passed into the method.
ExecuteAnonymousResult r = apexBinding.executeAnonymous(code);
if (r.isSuccess()) {

System.out.println("Code executed successfully");
}
else {

System.out.println("Exception message: " + r.getExceptionMessage());
System.out.println("Exception stack trace: " + r.getExceptionStackTrace());

}
}

QueryOptions

Specifies the preferred batch size for queries. The system sometimes creates batches that are larger or smaller than the specified size to
maximize performance.

Associated API Calls
query(), queryMore(), retrieve()

Fields

DescriptionTypeElement Name

The batch size for the number of records returned in a query() or queryMore()
call. Child objects count toward the number of records for the batch size. For example,
in relationship queries, multiple child objects are returned per parent row returned.

intbatchSize

The default and the maximum are 2,000; the minimum is 200. There is no guarantee that
the requested batch size is the actual batch size. To maximize performance, the number
of results returned can vary based on the size and complexity of the records..

Sample Code
For code examples, see Change the Batch Size in Queries in the Salesforce SOQL and SOSL Reference Guide.

SessionHeader

Specifies the session ID returned from the login server after a successful login(). This session ID is used in all subsequent calls.

In version 12.0 and later, include the API namespace in the SOAP message associated with this header. The namespace is defined in the
enterprise or partner WSDL.

API Calls
All calls, including utility calls.

356

QueryOptionsSOAP Headers

https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/

Fields

DescriptionTypeElement Name

Session ID returned by the login() call to be used for subsequent call authentication.stringsessionId

Sample Code
See the examples provided for login().

UserTerritoryDeleteHeader

Note: The original territory management feature is now unavailable. For more information, see The Original Territory Management
Module Will Be Retired in the Summer ’21 Release. The information in this topic applies to the original territory management
feature only, and not to Enterprise Territory Management.

Specify a user to whom open opportunities are assigned when the current owner is removed from a territory. If this header is not used
or the value of its element is null, the opportunities are transferred to the forecast manager in the territory above, if one exists. If one
does not exist, the user being removed from the territory keeps the opportunities.

API Calls
delete()

Fields

DescriptionTypeElement Name

The ID of the user to whom open opportunities in that user's territory will be assigned
when an opportunity's owner (user) is removed from a territory.

IDtransferToUserId

357

UserTerritoryDeleteHeaderSOAP Headers

https://help.salesforce.com/articleView?id=The-original-Territory-Management-module-will-be-retired-in-the-Summer-20-release&language=en_US&type=1
https://help.salesforce.com/articleView?id=The-original-Territory-Management-module-will-be-retired-in-the-Summer-20-release&language=en_US&type=1

USING THE API WITH SALESFORCE FEATURES

CHAPTER 13 Implementation Considerations

Before you build an integration app or other client app, consider the data management, use limits, and
communication issues explained in this section.

In this chapter ...

• Choosing a User for
an Integration

• Login Server URL

• Log In to the Login
Server

• Typical API Call
Sequence

• Salesforce Sandbox

• Multiple Instances of
Salesforce Database
Servers

• Content Type
Requirement

• API Usage Metering

• Compression

• HTTP Persistent
Connections

• HTTP Chunking

• Internationalization
and Character Sets

• XML Compliance

• .NET, Non-String
Fields, and the
Enterprise WSDL

358

Choosing a User for an Integration

When your client app connects to the API, it must first log in. You must specify a user to log in to Salesforce when calling login().
Client apps run with the permissions and sharing of the logged-in user. Use the following sections to help decide how to configure a
user for your client app.

Permissions
As an org’s Salesforce admin, you control which features and views are available to users by configuring profiles and permission sets
and assigning users to them. To access the API to issue calls and receive the call results, a user must have the API Enabled permission.
Client apps can query or update only those objects and fields to which they have access via the permissions of the logged-in user.

If the client application logs in as a user who has access to data via a sharing rule, then the API must issue an extra query to check access.
To avoid this, log in as a user with the “Modify All Data” permission. This can speed up the call response time. If providing the Modify All
Data permission is too permissive for a particular user, consider using the Modify All object-level permission to restrict data access on
an object basis. For more information, see Factors that Affect Data Access.

Limits
Salesforce limits the number of queries that a user can execute concurrently. A user can have up to 10 query cursors open at a time. If
10 QueryLocator cursors are open when a client application, logged in as the same user, attempts to open a new one, then the
oldest of the 10 cursors is released. If the client application attempts to open the released query cursor, an error results.

Multiple client apps can log in using the same username argument. However, this approach increases your risk of getting errors due
to query limits.

If multiple client apps are logged in with the same user, they all share the same session. If one of the client apps calls logout(), it
invalidates the session for all the client apps. Using a different user for each client app makes it easier to avoid these limits.

Note: In addition to user limits, Salesforce limits for API requests for each org. For more information, see API Usage Metering.

Login Server URL

SOAP API provides a single login server. You can log in to any org from a single entry point without hard coding the instance. To access
an org via the API, first authenticate the session by sending a login() request to the login server at one of the following URLs,
depending on your choice of WSDL.

• https://MyDomainName.my.salesforce.com/services/Soap/c/55.0 or
https://login.salesforce.com/services/Soap/c/55.0 (enterprise WSDL)

• https://MyDomainName.my.salesforce.com/services/Soap/u/55.0 or
https://login.salesforce.com/services/Soap/u/55.0 (partner WSDL)

Note: HTTPS is required. login()requests that use HTTP, for example,
https://login.salesforce.com/services/Soap/u/54.0, aren’t supported.

All subsequent calls to the server during the session should be made to the URL returned in the login() response, which points to
the server instance for your org.

359

Choosing a User for an IntegrationImplementation Considerations

Log In to the Login Server

Before invoking any other calls, a client app must first invoke the login() call to establish a session with the login server. It then sets
the returned server URL as the target server for subsequent API requests and sets the returned session ID in the SOAP header to provide
server authorization for subsequent API requests. Salesforce checks the IP address from which the client app is logging in and blocks
logins from unknown IP addresses. For more information, see login() and Step 4: Walk Through the Sample Code.

If the API blocks the login, Salesforce returns a login fault. To log in, the user must add the security token at the end of the user’s password.
For example, if a user's password is mypassword and the security token is XXXXXXXXXX, the user enters
mypasswordXXXXXXXXXX. Users get their security token by changing their password or resetting their security token from the
Salesforce user interface. When users change their password or reset their security token, Salesforce sends a new security token to the
email address on the user’s Salesforce record. The security token is valid until the user resets the security token, or changes the password,
or you reset the user’s password. When the security token is invalid, the user must repeat the login process. To avoid another log in, add
the client's IP address to the org's list of trusted IP addresses. For more information, see Security Token.

When you are logged in, you can issue API calls. For each operation, client apps submit a synchronous request to the API, await the
response, and then process the results. The API commits changed data automatically.

API calls:

• Core Calls

• Describe Calls

• Utility Calls

Typical API Call Sequence

For each call, your client app typically:

1. Prepares the request by defining request parameters, if applicable.

2. Invokes the call, which passes the request with its parameters to the Lightning Platform Web Service for processing.

3. Receives the response from the API.

4. Handles the response, either by processing the returned data (for a successful invocation) or by handling the error (for a failed
invocation).

Salesforce Sandbox

Professional, Enterprise, Unlimited, and Performance Edition customers have access to the Salesforce Sandbox, which is a testing
environment that offers a full or partial copy of your Salesforce org’s live production data. For more information, visit the Salesforce
Community website at www.salesforce.com/community or see Sandbox Types and Templates in the Salesforce Help.

To access your org’s sandbox via the API, use the following URLs to make login requests.

• https://test.salesforce.com/services/Soap/c/55.0 (enterprise WSDL)

• https://test.salesforce.com/services/Soap/u/55.0 (partner WSDL)

Multiple Instances of Salesforce Database Servers

Although orgs are generally allocated by geographic regions, an org may be on any instance.

360

Log In to the Login ServerImplementation Considerations

Content Type Requirement

In the API version 7.0 and later, all requests must contain a correct content type HTTP header, for example: Content-Type:
text/xml; charset=utf-8. Earlier versions of the API do not enforce this requirement.

API Usage Metering

To maintain optimum performance and ensure that the Lightning Platform API is available to all our customers, Salesforce balances
transaction loads by imposing two types of limits:

• Concurrent API Request Limits

• Total API Request Allocations

When a call exceeds a request limit, an error is returned.

Concurrent API Request Limits
The following table lists the limits for various types of orgs for concurrent inbound requests (calls) with a duration of 20 seconds or
longer.

LimitOrg Type

5Developer Edition and Trial orgs

25Production orgs and Sandboxes

Total API Request Allocations
The following table lists the limits for the total inbound API requests (calls) per 24-hour period for an org.

Total Calls Per 24-Hour PeriodAPI Calls Per License Type Per
24-Hour Period

Salesforce Edition

15,000N/ADeveloper Edition

100,000 + (number of licenses x calls per
license type) + purchased API Call Add-Ons

•• Salesforce: 1,000Enterprise Edition

• •Professional Edition with API access
enabled

Salesforce Platform: 1,000

• Lightning Platform - One App: 200

• Customer Community: 0

• Customer Community Login: 0

• Customer Community Plus: 200

• Customer Community Plus Login: 10

• External Identity 25,000 SKU: 70,000

• External Identity 250,000 SKU, 750,000

• External Identity 1,000,000 SKU: 4,000,000

• Partner Community: 200

361

Content Type RequirementImplementation Considerations

Total Calls Per 24-Hour PeriodAPI Calls Per License Type Per
24-Hour Period

Salesforce Edition

• Partner Community Login: 10

• Lightning Platform Starter: 200 per
member for Enterprise Edition orgs

• Lightning Platform Plus: 1000 per
member for Enterprise Edition orgs

100,000 + (number of licenses x calls per
license type) + purchased API Call Add-Ons

•• Salesforce: 5,000Unlimited Edition

• •Performance Edition Salesforce Platform: 5,000

• Lightning Platform - One App: 200

• Customer Community: 0

• Customer Community Login: 0

• Customer Community Plus: 200

• Customer Community Plus Login: 10

• External Identity 25,000 SKU: 70,000

• External Identity 250,000 SKU, 750,000

• External Identity 1,000,000 SKU: 4,000,000

• Partner Community: 200

• Partner Community Login: 10

• Lightning Platform Starter: 200 per
member for Unlimited and Performance
Edition orgs

• Lightning Platform Plus: 5,000 per
member for Unlimited and Performance
Edition orgs

5,000,000N/ASandbox

For Experience Cloud limits, see Experience Cloud User Licenses.

Note: Load, performance, and other system issues can prevent you from using your entire allocation of calls in a 24–hour period.

APIs that count toward this allocation include the Lightning Platform REST API, the Lightning Platform SOAP API, Bulk API, and Bulk API
2.0. API calls issued by certain Salesforce connected apps (for example, the Salesforce mobile app) don’t count. To determine which APIs
affect the allocation, see Monitoring Your API Usage.

Calls that include DebuggingHeader have a separate allocation limit of 1,000 calls per 24-hour period. These calls can continue to be
made after the total request limit for an org is reached.

Limits and allocations are enforced against the aggregate of all API calls made to the org in a 24-hour period. Limits and allocations are
on a per-user basis.

362

API Usage MeteringImplementation Considerations

https://help.salesforce.com/s/articleView?id=sf.users_license_types_communities.htm&type=5&language=en_US

Monitoring Your API Usage
To better monitor your org’s API usage and limits, you can use these resources:

• The API Usage section of the System Overview page in Setup.

• The API Requests, Last 24 Hours item in the Organization Detail section of the System Overview page in Setup.

• The API Request Limit per Month usage-based entitlement, which shows you your org’s API calls aggregated over 30 days. This can
be found on the Company Information page in Setup.

• Information returned in the Sforce-Limit-Info response header for REST APIs.

• Information returned in the response body (in <type>API REQUESTS</type>) for SOAP APIs.

• The /limits call in the Lightning Platform REST API.

You can configure your org so that email is sent to a designated user when the number of API requests has exceeded a specified
percentage of the amount allotted. Perform this configuration from Setup by entering API Usage Notifications in the Quick
Find box and then selecting API Usage Notifications.

See also the Learn About Daily Rate Limits section in the App Development Without Limits Trailhead module.

What Happens If You Reach or Exceed Your API Request Limit
If your org reaches or exceeds its daily API request limit, Salesforce still allows the operations to proceed by a certain amount, if possible.
This helps avoid blocking your workflows during unexpected spikes in workloads and occasional peak periods. A hard cap is in place to
safeguard platform resources and prevent API requests from exceeding the daily limit unimpeded.

Note: The ability to go over your normal daily limit is always subject to restrictions to protect the overall health of the Salesforce
instance that hosts your org. (You can monitor the health of your instance on Salesforce Trust.)

This ability is designed to be used occasionally to help avoid interruptions in your workflow. Don’t rely on it on an ongoing basis.
To increase your allocation, contact your Salesforce account representative.

This ability only applies to paid orgs in active status. It does not apply to trial orgs, Developer Edition, or sandboxes.

API request activity is aggregated into 30 day periods, starting with your contract start date, and includes calls that exceed the org's
entitled limit.

Increasing Total API Request Allocations
The calculation of the API request amounts based on user licenses is designed to allow sufficient capacity for your org based on your
number of users. If you need a higher amount and you don’t want to purchase extra user licenses or upgrade to Performance Edition,
you can purchase extra API calls. For information, contact your account representative.

Before you purchase more API calls, perform due diligence of your API usage. You can optimize a client application, whether it’s your
own enterprise application or partner application, to use fewer API calls and still accomplish the same work. If you use a partner product,
consult with the vendor to verify that the product makes optimal use of the API. A product that makes inefficient use of the API incurs
unnecessary costs for your company. Use REST API composite resources to improve your application’s performance by minimizing the
number of round-trips between the client and server.

Example API Usage Metering Calculations
The following examples illustrate API usage metering calculations for several scenarios.

• For an Enterprise Edition org with 15 Salesforce licenses, the request limit is 115,000 requests (100,000 plus 15 licenses x 1,000 calls).

363

API Usage MeteringImplementation Considerations

https://developer.salesforce.com/docs/atlas.en-us.238.0.api_rest.meta/api_rest/resources_limits.htm
https://trailhead.salesforce.com/content/learn/modules/app-development-without-limits/app-development-without-limits-rate
https://trust.salesforce.com/en/
https://developer.salesforce.com/docs/atlas.en-us.238.0.api_rest.meta/api_rest/resources_composite.htm

• For a Developer Edition org that made 14,500 calls at 5:00 AM Wednesday, 499 calls at 11:00 PM Wednesday, only one more call can
successfully be made until 5:00 AM Thursday.

Length of Stored Third-Party Refresh and Access Tokens
Salesforce stores third-party access and refresh tokens of up to 10,000 characters in length.

Compression

The API allows the use of compression on the request and the response, using the standards defined by the HTTP 1.1 specification. This
is automatically supported by some SOAP/WSDL clients, and can be manually added to others. Visit
https://developer.salesforce.com/page/Tools for more information on particular clients.

Compression is not used unless the client specifically indicates that it supports compression. For better performance, we suggest that
clients accept and support compression as defined by the HTTP 1.1 specification.

To indicate that the client supports compression, you should include the HTTP header “Accept-Encoding: gzip, deflate” or a similar
heading. The API compresses the response if the client properly specifies this header. The response includes the header “Content-Encoding:
deflate” or “Content-Encoding: gzip,” as appropriate. You can also compress any request by including a “Content-Encoding: deflate” or
“gzip” header.

Most clients are partially constrained by their network connection, even on a corporate LAN. The API allows the use of compression to
improve performance. Almost all clients can benefit from response compression, and many clients may benefit from compression of
requests as well. The API supports deflate and gzip compression according the HTTP 1.1 specification.

Response Compression
The API can optionally compress responses. Responses are compressed only if the client sends an Accept-Encoding header with either
gzip or deflate compression specified. The API is not required to compress the response even if you have specified Accept-Encoding,
but it normally does. If the API compresses the response, it also specifies a Content-Encoding header with the name of the compression
algorithm used, either gzip or deflate.

Request Compression
Clients can also compress requests. The API decompresses any requests before processing. The client must send up a Content-Encoding
HTTP header with the name of the appropriate compression algorithm. For more information, see:

• Content-Encoding at: www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11

• Accept-Encoding at: www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3

• Content Codings at: www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.5

Note: To implement request SOAP compression in a Java client with WSC (Web Service Connector), call setCompression()
on the Config you use to instantiate a Connection object with. For an example, see login() sample on page 157 code.

HTTP Persistent Connections

Most clients achieve better performance if they use HTTP 1.1 persistent connection to reuse the socket connection for multiple requests.
Persistent connections are normally handled by your SOAP/WSDL client automatically. For more details, see the HTTP 1.1 specification
at:

364

CompressionImplementation Considerations

https://developer.salesforce.com/page/Tools
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.5

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1

HTTP Chunking

Clients that use HTTP 1.1 may receive chunked responses. Chunking is normally handled by your SOAP/WSDL client automatically.

Internationalization and Character Sets

The API supports either full Unicode characters or ISO-8859-1 characters. The character set depends on the Salesforce instance that your
org uses. If your org logs in to ssl.salesforce.com, your encoding is ISO-8859-1. All other instances use UTF-8. To
determine the character set, call describeGlobal() and inspect the encoding value returned in DescribeGlobalResult.

If your org uses ISO-8859-1 encoding, all data sent to the API must be encoded in ISO-8859-1. Characters outside the valid ISO-8859-1
range might be truncated or cause an error.

Note: The API response is encoded in the character set used by your org (UTF-8 or ISO-8859-1). Either way, the encoded data is
usually handled for you by the SOAP client.

XML Compliance

The API is based on XML, which requires all documents to be well formed. Part of that requirement is that certain Unicode characters
are not allowed in an XML document, even in an escaped form, and that others must be encoded according to their location. Normally
this is handled for you by any standard SOAP or XML client. Clients must be able to parse any normal XML escape sequence, and must
not pass up invalid XML characters.

Some characters, as mentioned, are illegal even if they are escaped. The illegal characters include unpaired Unicode surrogates and a
few other Unicode characters. All are seldom-used control characters that are usually not important in any data, and tend to cause
problems with many programs. Although they are not allowed in XML documents, they are allowed in HTML documents and may be
present in Salesforce data. The illegal characters will be stripped from any API response.

Illegal characters:

• 0xFFFE

• 0xFFFF

• Control characters 0x0 - 0x19, except the following characters, which are legal: 0x9, 0xA, 0xD, tab, newline, and carriage
return)

• 0xD800 - 0xDFFF, unless they’re used to form a surrogate pair

.NET, Non-String Fields, and the Enterprise WSDL

If you use .NET with the enterprise WSDL, .NET generates a Boolean field for each non-string field. For example, if you have a date value
in MyDateField__c, .NET generates a Boolean field called MyDateField__cSpecified.

The generated field value is false by default. If a Specified field value is false, then the values in the corresponding original field
are not be included in the SOAP message. For example, before the values in the currency field annualRevenue can be included in
a SOAP message generated by your client app, the value of annualRevenueSpecified must be set to true.

account.annualRevenue = 10000;
account.annualRevenueSpecified = true;

365

HTTP ChunkingImplementation Considerations

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1

CHAPTER 14 Objects and SOAP API Calls and Headers for Apex

These Salesforce Objects and SOAP API calls and headers are available by default for Apex. For information
on all other SOAP API calls, including those that can be used to extend or implement any existing Apex
IDEs, contact your Salesforce representative.

Apex class methods can be exposed as custom SOAP Web service calls. This allows an external application
to invoke an Apex Web service to perform an action in Salesforce. Use the webservice keyword to
define these methods. For more information, see Considerations for Using the webservice Keyword.

Any Apex code saved using SOAP API calls uses the same version of SOAP API as the endpoint of the
request. For example, if you want to use SOAP API version 55.0 , use endpoint 55.0:

https://MyDomain.salesforce.com/services/Soap/s/55.0

These Salesforce objects are available for Apex.

• ApexTestQueueItem

• ApexTestResult

• ApexTestResultLimits

• ApexTestRunResult

Use these SOAP API calls to deploy your Apex.

• compileAndTest()

• compileClasses()

• compileTriggers()

• executeanonymous()

• runTests()

All these calls take Apex code that contains the class or trigger, as well as the values for any fields that
need to be set.

These SOAP headers are available in SOAP API calls for Apex.

• DebuggingHeader

• PackageVersionHeader

SEE ALSO:

Apex Developer Guide

366

https://developer.salesforce.com/docs/atlas.en-us.238.0.apexcode.meta/apexcode/apex_web_services_methods_considerations.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_apextestqueueitem.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_apextestresult.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_apextestresultlimits.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_apextestrunresult.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_calls_compileandtest.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_calls_compileclasses.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_calls_compiletriggers.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_calls_executeanonymous.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_calls_runtests.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_header_debuggingheader.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.api.meta/api/sforce_api_header_packageversionheader.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.apexcode.meta/apexcode/apex_dev_guide.htm

CHAPTER 15 Outbound Messaging

Outbound messaging allows you to specify that changes to fields within Salesforce can cause messages
with field values to be sent to designated external servers.

In this chapter ...

• Understanding
Outbound
Messaging

Outbound messaging is part of the workflow rule functionality in Salesforce. Workflow rules watch for
specific kinds of field changes and trigger automatic Salesforce actions, such as sending email alerts,
creating task records, or sending an outbound message.

• Understanding
Notifications

• Setting Up Outbound
Messaging

• Considerations for
Security

• Understanding the
Outbound
Messaging WSDL

• Building a Listener

367

Understanding Outbound Messaging

Outbound messaging uses the notifications() call to send SOAP messages over HTTP(S) to a designated endpoint when triggered
by a workflow rule.

368

Understanding Outbound MessagingOutbound Messaging

After you set up outbound messaging, when a triggering event occurs, a message is sent to the specified endpoint URL. The message
contains the fields specified when you created the outbound message. After the endpoint URL receives the message, it can take the
information from the message and process it. To do that, you must examine the outbound messaging WSDL.

Understanding Notifications

A single SOAP message can include up to 100 notifications. Each notification contains the object ID and a reference to the associated
sObject data. If the information in the object changes after the notification is queued but before it’s sent, only the latest data is delivered
and not the intermediate changes.

If you issue multiple discrete calls, the calls are sometimes batched together into one or more SOAP messages.

Messages are queued locally. A separate background process performs the actual sending, to preserve message reliability:

• If the endpoint is unavailable, messages stay in the queue until sent successfully, or until they’re 24 hours old. After 24 hours, messages
are dropped from the queue.

• If a message can’t be delivered, the interval between retries increases exponentially, up to a maximum of two hours between retries.

• Messages are retried independent of their order in the queue. As a result, messages can be delivered out of order.

• You can’t build an audit trail using outbound messaging. While each message is usually delivered once, it can sometimes be delivered
more than once. If delivery can’t be done within 24 hours, a message isn’t delivered at all. Finally, if the source object changes after
a notification is queued but before it’s sent, the endpoint only receives the latest data, not any intermediate changes.

• Because a message can sometimes be delivered more than once, check the notification IDs in the notifications delivered to your
listener client before processing.

Note: Instead of polling, which was required in previous releases, you can now use outbound messaging to trigger execution
logic when Salesforce raises an event. In previous versions of the API, client applications had to poll Salesforce to find out if relevant
changes had occurred. Because most changes eventually trigger a workflow if a rule exists for it, you can use the workflow rule to
trigger actions based on Salesforce events.

The metadata needed for outbound messaging, including the definition of the notifications() call, which sends the outbound
SOAP message to an external service, is in a separate WSDL. The WSDL is created and available from the Salesforce user interface after
a workflow rule has been associated with an outbound message. The WSDL is bound to the outbound message and contains the
instructions about how to reach the endpoint service and what data is sent to it. For more information about setting up outbound
messaging, see Defining Outbound Messaging.

Setting Up Outbound Messaging

Before you can use outbound messaging, you must set it up via the Salesforce user interface.

• Setting Up User Profiles

• Defining Outbound Messaging

• Downloading the Salesforce Client Certificate

• Viewing Outbound Messages

• Tracking Outbound Message Status

369

Understanding NotificationsOutbound Messaging

Setting Up User Profiles
It’s possible to create circular changes with outbound messaging. For example, if a user is performing integrations that trigger workflow,
and the workflow actions trigger account updates, those account updates trigger new workflow, and so on. To prevent these circular
changes, you can disable a user’s ability to send outbound messages.

Here’s another example of a circular change scenario.

1. You configure an outbound message to include a sessionId and specify a user in the User to send as field. The user doesn’t have
outbound messaging disabled.

2. A change in a contact record triggers an outbound message from the specified user, with the sessionId to your outbound message
listener.

3. Your outbound message listener calls the Lightning Platform API and updates the same contact record which triggered the outbound
message.

4. The update triggers an outbound message.

5. Your outbound message listener updates the record.

6. The update triggers an outbound message.

7. Your outbound message listener updates the record.

To disable outbound message notifications for a user, deselect Send Outbound Messages in the user’s Profile. We recommend specifying
a single user to respond to outbound messages and disabling this user's ability to send outbound messages.

Defining Outbound Messaging
To define outbound messages, use this procedure in the Salesforce user interface:

1. From Setup, enter Outbound Messages in the Quick Find box, then select Outbound Messages.

2. Click New Outbound Message.

3. Choose the object that has the information you want included in the outbound message, and click Next.

4. Configure the outbound message.

a. Enter a name and description for this outbound message.

b. Enter an endpoint URL for the recipient of the message. Salesforce sends a SOAP message to this endpoint.

For security reasons, Salesforce restricts the outbound ports you can specify to one of the following:

• 80: This port only accepts HTTP connections.

• 443: This port only accepts HTTPS connections.

• 1024–66535 (inclusive): These ports accept HTTP or HTTPS connections.

c. Select the Salesforce user to use when sending the message by specifying a username in the User to send as field. The chosen
user controls data visibility for the message that is sent to the endpoint.

d. Select Send Session ID if you want a sessionId to be included in the outbound message. Include the sessionId in your
message if you intend to make API calls back to Salesforce from your listener. The sessionId represents the user defined in
the previous step and not the user who triggered the workflow.

e. Select the fields you want included in the outbound message and click Add.

5. Click Save, and review the outbound message detail page:

370

Setting Up User ProfilesOutbound Messaging

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_profile.htm

The API Version field is automatically generated and set to the current API version when the outbound message was
created. This API version is used in API calls back to Salesforce using the enterprise or partner WSDL. The API Version can
only be modified by using the Metadata API.

•

• Click Click for WSDL to view the WSDL associated with this message.

The WSDL is bound to the outbound message and contains the instructions about how to reach the endpoint service and what
data is sent to it.

Note: If you don’t have these options, your org doesn’t have outbound messaging enabled. Contact Salesforce to enable outbound
messaging for your org.

Downloading the Salesforce Client Certificate
Your application (endpoint) server's SSL/TLS can be configured to require client certificates (two-way SSL/TLS), in order to validate the
identity of the Salesforce server when it takes the role of client to your server. You can download the Salesforce client certificate from
the Salesforce application user interface. This certificate is the client certificate that Salesforce sends with each outbound message for
authentication.

1. From Setup, enter API in the Quick Find box, then select API.

2. On the API WSDL page, click Manage API Client Certificate.

3. On the Certificate and Key Management page, in the API Client Certificate section, click the API Client Certificate.

4. On the Certificates page, click Download Certificate. The .crt file is saved in the download location specified in your browser.

Import the downloaded certificate into your application server, and configure your application server to request the client certificate.
The application server then checks that the certificate used in the SSL/TLS handshake matches the one you downloaded.

Note: Your application (endpoint) server must send any intermediate certificates in the certificate chain, and the certificate chain
must be in the correct order. The correct order is:

1. Server certificate

2. Intermediate certificate that signed the server certificate if the server certificate wasn’t signed directly by a root certificate

3. Intermediate certificate that signed the certificate in step 2

4. Any remaining intermediate certificates

Don’t include the root certificate authority certificate. The root certificate isn’t sent by your server. Salesforce already has its
own list of trusted certificates on file, and a certificate in the chain must be signed by one of those root certificate authority
certificates.

Viewing Outbound Messages
To view existing outbound messages, from Setup, enter Outbound Messages in the Quick Find box, then select Outbound
Messages in the Salesforce user interface.

• Click New Outbound Message to define a new outbound message.

• Click View Message Delivery Status to track the status of an outbound message.

• Select an existing outbound message to view details about it or view workflow rules and approval processes that use it.

• Click Edit to make changes to an existing outbound message.

• Click Del to delete an outbound message.

371

Downloading the Salesforce Client CertificateOutbound Messaging

Tracking Outbound Message Status
To track the status of an outbound message, from Setup, enter Outbound Messages in the Quick Find box, select Outbound
Messages, and then click View Message Delivery Status. You can perform several tasks on this page.

• View the status of your outbound messages, including the total number of attempted deliveries.

• View the action that triggered the outbound message by clicking any workflow or approval process action ID.

• Click Retry to change the Next Attempt date to now. This action causes the message delivery to be immediately retried.

• Click Del to permanently remove the outbound message from the queue.

Considerations for Security

To use outbound messaging, ensure that no third party can send messages to the endpoint while pretending to be from Salesforce:

• Lock down the client application’s listener to accept requests only from Salesforce IP ranges. While this action guarantees that the
message came from Salesforce, it doesn’t guarantee that another customer isn’t pointing to your endpoint and sending messages.
For an up-to-date list of Salesforce IP ranges, see https://help.salesforce.com/articleView?id=000321501&type=1&mode=1

• Use SSL/TLS. Using SSL/TLS provides confidentiality while data is transported across the internet. Without it, a malicious third party
can eavesdrop on your data. This issue is especially important if you pass data with privacy requirements and you pass a SessionId
with the message. Also, we authenticate the certificate presented on connection, ensure that it is from a valid Certificate Authority,
and check that the domain in the certificate matches the one Salesforce is trying to connect. This validation prevents us from
communicating with the wrong endpoint.

• When you select Send Session ID, only HTTPS is supported for the endpoint URL to ensure secure transmission of the session ID.
For managed and unmanaged packages created before Spring ’19 with this option but without an HTTPS endpoint, subscribers can
still install them. Starting in Spring ’19, you can’t create packages with insecure outbound message options.

• The SessionId included in the outbound message is scoped only for API requests and doesn’t apply to UI requests.

• If the configuration of your application (endpoint) server's SSL/TLS allows, validate the identity of the Salesforce server when it takes
the role of a client to your server, using the Salesforce client certificate. For instructions to download the certificate, see Downloading
the Salesforce Client Certificate.

• The organization Id is included in each message. For more information about the Id field type, see ID Field Type. In your client
application, validate that messages contain your organization Id.

Understanding the Outbound Messaging WSDL

The rest of this topic examines relevant sections of the outbound messaging WSDL. Your WSDL can differ, depending on the choices
you made when you set up outbound messaging for a particular event on a particular object.

notifications()
This section defines the notifications() call, which creates an outbound message containing specified fields and values for a
particular object or objects, and sends the values to a specified endpoint URL:

<schema elementFormDefault="qualified" xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://soap.sforce.com/2005/09/outbound">

<import namespace="urn:enterprise.soap.sforce.com" />
<import namespace="urn:sobject.enterprise.soap.sforce.com" />

372

Tracking Outbound Message StatusOutbound Messaging

https://help.salesforce.com/articleView?id=000321501&type=1&mode=1&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

<element name="notifications">
<complexType>

<sequence>
<element name="OrganizationId" type="ent:ID" />
<element name="ActionId" type="ent:ID" />
<element name="SessionId" type="xsd:string" nillable="true" />
<element name="EnterpriseUrl" type="xsd:string" />
<element name="PartnerUrl" type="xsd:string" />
<element name="Notification" maxOccurs="100"
type="tns:OpportunityNotification" />

</sequence>
</complexType>

</element>
</schema>

Use this table to understand the elements named in the notifications method definition:

DescriptionTypeName

ID of the organization sending the message.IDOrganizationId

The workflow rule (action) that triggers the message.stringActionId

Optional, a session ID to be used by endpoint URL client that is responding to the
outbound message. It’s used by the receiving code to make calls back to Salesforce.

stringSessionId

URL to use to make API calls back to Salesforce using the enterprise WSDL.stringEnterpriseURL

URL to use to make API calls back to Salesforce using the partner WSDL.stringPartnerURL

Defined in the next section, contains the object datatype and its Id, for example
OpportunityNotification or ContactNotification.

NotificationNotification

The Notification datatype is defined in the WSDL. In the following example, a Notification for opportunities is defined, based on the
Notification entry of the notifications() call definition:

<complexType name="OpportunityNotification">
<sequence>

<element name="Id" type="ent:ID" />
<element name="sObject" type="ens:Opportunity" />

</sequence>
</complexType>

Each object element (in our example, opportunities) contains the subset of the fields that you selected when you created the outbound
message. Each message Notification also has the object ID. Use the object ID to track redelivery attempts of notifications you've already
processed.

notificationsResponse
This element is the schema for sending an acknowledgment (ack) response to Salesforce.

<element name="notificationsResponse">
<complexType>

<sequence>

373

Understanding the Outbound Messaging WSDLOutbound Messaging

<element name="Ack" type="xsd:boolean" />
</sequence>

</complexType>
</element> //This section is the last in the types definition section.

You acknowledge all notifications in the message if there’s more than one.

Building a Listener

After you’ve defined an outbound message and configured an outbound messaging endpoint, download the WSDL and create a listener:

1. Right-click Click for WSDL and select Save As to save the WSDL to a local directory with an appropriate file name. For example, for
an outbound message that deals with leads, you could name the WSDL file leads.wsdl.

2. Unlike the enterprise or partner WSDLs, which describe the messages the client sends to Salesforce, this WSDL defines the messages
that Salesforce sends to your client application.

3. Most Web services tools generate stub listeners for you, in much the same way as they generate a client stub for the enterprise or
partner WSDL. Look for a server-side stub option.

For example, for .NET 2.0:

a. Run wsdl.exe /serverInterface leads.wsdl with .NET 2.0. This command generates
NotificationServiceInterfaces.cs, which defines the notification interface.

b. Create a class that implements NotificationServiceInterfaces.cs.

c. You implement your listener by writing a class that implements this interface. There are a number of ways to do this. One simple
way is to compile the interface to a DLL first (DLLs must be in the bin directory in ASP.NET).

mkdir bin
csc /t:library /out:bin\nsi.dll NotificationServiceInterfaces.cs

Now write an ASMX-based Web service that implements this interface. For example, in MyNotificationListener.asmx:

<%@WebService class="MyNotificationListener" language="C#"%>
class MyNotificationListener : INotificationBinding
{ public notificationsResponse notifications(notifications n)

{
notificationsResponse r = new notificationsResponse();
r.Ack = true;
return r;

}
}

This example is a simple implementation, actual implementations are more complex.

d. Deploy the service by creating a new virtual directory in IIS for the directory that contains the
MyNotificationListener.asmx.

e. You can now test that the service is deployed by viewing the service page with a browser. For example, if you create a virtual
directory salesforce, you'd go to http://localhost/salesforce/MyNotificationListener.asmx.

The process for other Web service tools is similar. Consult the documentation for your Web service tool.

Your listener must meet these requirements:

• Must be reachable from the public Internet.

• For security reasons, Salesforce restricts the outbound ports you can specify to one of the following:

374

Building a ListenerOutbound Messaging

80: This port only accepts HTTP connections.–

– 443: This port only accepts HTTPS connections.

– 1024–66535 (inclusive): These ports accept HTTP or HTTPS connections.

• To be valid, the common name (CN) of the certificate must match the domain name for your endpoint's server, and the certificate
must be issued by a Certificate Authority trusted by Java 2 Platform, Standard Edition (J2SE) 5.0 (JDK 1.5).

• If your certificate expires, message delivery fails.

Warning: To avoid an infinite loop of outbound messages that trigger changes that trigger more outbound messages, ensure
that the user who updates the objects does not have the “Send Outbound Messages” permission.

375

Building a ListenerOutbound Messaging

CHAPTER 16 Data Loading and Integration

If you need to load large volumes of data (hundreds of thousands to millions of records), there are a
number of factors you must consider. Use the topics in this section to become familiar with issues of
client application design, organization configuration, and data loader best practices.

In this chapter ...

• Client Application
Design

• Salesforce Settings

• Best Practices with
Any Data Loader

• Integration and
Single Sign-On

376

Client Application Design

Although the Bulk API 2.0 is the best choice for loading large numbers of records, you can also use the SOAP-based API. There are many
ways you can design your application to improve the speed of data loads:

• Use persistent connections. Opening a socket takes time, mostly when opening a socket stems from the SSL/TLS negotiation.
Without SSL or TLS, the API request would not be secure. Included in the HTTP 1.1 specification is support for reusing sockets among
requests (persistent connections) instead of having to re-open a socket per request as in HTTP 1.0. Whether your client supports
persistent connections depends on the SOAP stack you are using. By default, .NET uses persistent connections. If you change the
configuration to use the Apache http-commons libraries, your client will be compliant with the HTTP 1.1 specification and use
persistent connections.

For information about HTTP 1.1, see HTTP Persistent Connections and
http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.

• Minimize the number of requests. There is some processing associated with each request, so to save time your client should
batch as many records per request as possible. Set batchSize to the limit of 2,000. If that is not the most efficient batch size, the
API will change it. For more information about setting batch sizes, see QueryOptions.

• Minimize the size of the requests. Your client application should send as many records per request as possible, but it should also
send as small a request as possible to reduce network transmission time. To minimize the request size, use compression on both
the request and the response. Gzip is the most popular type of compression, and there are multiple posts on the community boards
at the Lightning Platform Developer Boards that describe how to implement compression with different SOAP stacks. The full Gzip
analysis and discussion is available at Simon Fell's blog: http://www.pocketsoap.com/weblog/2005/12/1583.html.

• Do Not Design a Multi-Threaded Client Application. Multi-threading is not allowed for a single client application using the
SOAP-based API.

Salesforce Settings

Most processing takes place in the database. Setting these parameters correctly will help the database process as quickly as possible:

• Enable or Disable the Most Recently Used (MRU) functionality. Records marked as most recently used (MRU) are listed in the
“Recent Items” section of the sidebar in the Salesforce user interface. Check that you are not enabling it for calls where it is not
needed.

In API version 7.0 and above, MRU functionality is disabled by default. To enable the MRU functionality, create this header and set
the updateMru to true. The following sample shows how to use MRU functionality:

public void mruHeaderSample() {
connection.setMruHeader(true);
Account account = new Account();
account.setName("This will be in the MRU");
try {
SaveResult[] sr = connection.create(new SObject[]{account});
System.out.println("ID of account added to MRU: " +
sr[0].getId());

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

• Log in as a user with the “Modify All Data” permission to avoid sharing rules. If the client application logs in as a user who
has access to data via a sharing rule, then the API must issue an extra query to check access. To avoid this, log in as a user with the

377

Client Application DesignData Loading and Integration

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1
http://community.salesforce.com/sforce?category.id=developers
http://www.pocketsoap.com/weblog/2005/12/1583.html

“Modify All Data” permission. In general, fewer sharing rules quickens load speeds, as there are fewer operations that have to be
performed when setting properties such as ownership.

Alternatively, you can set organization-wide defaults for some objects as public read/write for the duration of the load. For more
information, see “Set Your Internal Organization-Wide Sharing Defaults” in the Salesforce online help.

• Avoid workflow or assignment rules. Anything that causes a post-operation action slows down the load. You can temporarily
disable automatic rules if the loaded objects are exempt from them.

• Avoid triggering cascading updates. For example, if you update the owner of an account, the contacts and opportunities associated
with that account may also require updates. Instead of updating a single object, the client application must access multiple objects,
which slows down the load.

The Lightning Platform Data Loader is a good reference for data loading. It disables the MRU, uses HTTP/1.1 persistent connections, and
applies GZIP compression on the request and response. If you are performing a data load, or are looking at a place to start when writing
your own Java integration, the Lightning Platform Data Loader can serve as a fast and reliable solution. For more information about the
Lightning Platform Data Loader, see: Data Loader in the Salesforce online help.

Best Practices with Any Data Loader

While this section presents a best practice process using the Lightning Platform Data Loader, the general principles apply to any client
data loader:

1. Identify which data you will migrate.

You may not want or need to migrate a whole set of data—choose which objects you wish to migrate. For example, you may want
to migrate only the contact information from each account, or only migrate account information from a particular division.

2. Create templates for the data.

Create one template for each object, for example in an Excel worksheet.

Identify the required fields for each object. In addition to the required fields for each standard object, there may be additional required
fields such as those needed to follow business rules, or legacy ID fields. Use this guide or see the page layout definitions in the
Salesforce user interface to find out which fields are required on standard objects.

You may wish to highlight the required fields in red for easier review of the data after you populate the templates.

You should also identify any ordering dependencies. Objects may have mandatory relationships, for example all accounts have an
owner, and all opportunities are associated with an account. The dependencies in these relationships dictate the order of data
migration. For Salesforce data, for example, you should load users first, then accounts, then opportunities.

To identify dependencies, review the related lists and lookup fields in the page layout of the given object, and IDs (foreign keys) in
the database.

3. Populate the templates.

Clean your data before populating the template, and review the data in the templates.

4. Migrate the data.

Create custom fields to store legacy ID information. Optionally, give the custom field the External ID attribute so it will be
indexed. This will help maintain relationships, and help you build custom reports for validation.

Load one record, check the results, then load all records.

5. Validate the data.

Use all of these techniques to validate your migration:

378

Best Practices with Any Data LoaderData Loading and Integration

• Create custom reports that validate record counts and provide an overall snapshot of migration.

• Spot check the data.

• Review exception reports to see what data was not migrated.

6. Re-migrate or update data as needed.

Integration and Single Sign-On

Warning: To avoid getting into an unrecoverable state, do not enable single sign-on for your system administrator account. If
you do, and then perform a single sign-on integration that fails, you may not be able to log in again to recover.

379

Integration and Single Sign-OnData Loading and Integration

CHAPTER 17 Data Replication

The API supports data replication, which allows you to store and maintain an external, separate copy of
your organization’s pertinent Salesforce data for specialized uses, such as data warehousing, data mining,

In this chapter ...

• API Calls for Data
Replication

custom reporting, analytics, and integration with other applications. Data replication provides you with
local control and the ability to run large or ad hoc analytical queries across the entire data set without
transmitting all that data across the network.• Scope of Data

Replication
Note: To get real-time notifications of Salesforce record changes, use Change Data Capture
instead. By subscribing to a Change Data Capture channel, you receive a stream of change event

• Data Replication
Steps

messages for record changes, including insertions, updates, deletions, and undeletions. With
• Object-Specific

Requirements for
Data Replication

Change Data Capture, you get broad access to data and can perform updates in your target store
using transaction boundaries. Change Data Capture provides a versioned event schema and retains
change events temporarily for later retrieval. For more information, see the Change Data Capture

• Polling for Changes Basics Trailhead module, or for a complete reference, see the Change Data Capture Developer
Guide.• Checking for

Structural Changes in
the Object Use the topics in this section to better understand the best practices for data replication.

380

https://trailhead.salesforce.com/en/content/learn/modules/change-data-capture
https://trailhead.salesforce.com/en/content/learn/modules/change-data-capture
https://developer.salesforce.com/docs/atlas.en-us.238.0.change_data_capture.meta/change_data_capture/cdc_what.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.change_data_capture.meta/change_data_capture/cdc_what.htm

API Calls for Data Replication

The API supports data replication with the following API calls:

DescriptionAPI Call

Retrieves the list of objects that have been updated (added or changed) during the specified
timespan for the specified object.

getUpdated()

Retrieves the list of objects that have been deleted during the specified timespan for the
specified object.

getDeleted()

Client applications can invoke these API calls to determine which objects in your organization’s data have been updated or deleted
during a given time period. These API calls return a set of IDs for objects that have been updated (added or changed) or deleted, as well
as the timestamp (Coordinated Universal Time (UTC)—not local—timezone) indicating when they were last updated or deleted. It is
the responsibility of the client application to process these results and to incorporate the required changes into the local copy of the
data.

Scope of Data Replication

This feature provides a mechanism that targets data replication (one-way copying of data). It does not provide data synchronization
(two-way copying of data) or data mirroring capabilities.

Data Replication Steps

The following is a typical data replication procedure for an object:

1. Optionally, determine whether the structure of the object has changed since the last replication request, as described in Checking
for Structural Changes in the Object.

2. Call getUpdated(), passing in the object and timespan for which to retrieve data.

Note that getUpdated() retrieves the IDs for data to which the logged in user has access. Data that is outside of the user’s sharing
model is not returned. The API returns the ID of every changed object that is visible to you, regardless of what change occurred in
the object. For information on IDs, see ID Field Type.

3. Pass in all IDs in an array. For each ID element in the array, call retrieve() to obtain the latest information you want from the
associated object. You must then take the appropriate action on the local data, such as inserting new rows or updating existing ones
with the latest information.

4. Call getDeleted(), passing in the object and timespan for which to retrieve data. Like getUpdated(), getDeleted()
retrieves the IDs for data to which the logged-in user has access. Data that is outside of the user’s sharing model is not returned. The
API returns the ID of every changed object that is visible to you, regardless of what change occurred in the object, based on
SystemModstamp field information if available. For information on IDs, see ID Field Type.

5. Iterate through the returned array of IDs. Your client application must then take the appropriate action on the local data to remove
(or flag as deleted) the deleted objects. If your client application cannot match rows in the local data using the retrieved object ID,
then the local data rows either were deleted or were never created, in which case there is nothing to do.

6. Optionally, save the request time spans for future reference. You can do this with the getDeleted() latestDateCovered value
or the getUpdated() latestDateCovered value.

381

API Calls for Data ReplicationData Replication

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

Object-Specific Requirements for Data Replication

The API objects have the following requirements for data replication:

• The getUpdated() and getDeleted() calls filter the results so that the client application receives IDs for only those created
or updated objects to which the logged-in user has access. For information on IDs, see ID Field Type.

• Your client application can replicate any objects to which it has sufficient permissions. For example, to replicate all data for your
organization, your client application must be logged in with the “View All Data” permission. For more information, see Factors that
Affect Data Access.

• The logged-in user must have read access to the object. For more information, see “Set Your Internal Organization-Wide Sharing
Defaults” in Salesforce Help.

• The object must be configured to be replicateable (replicateable is true). To determine whether a given object can be
replicated, your application can invoke the describeSObject() call on the object and inspect the replicateable
property in the describeSObjectResult.

Polling for Changes

Client applications typically poll for changed data periodically. Polling involves the following considerations:

• The polling frequency depends on business requirements for how quickly changes in your organization’s Salesforce data need to
be reflected in the local copy. Some client applications might poll once a day to retrieve changes, while other client applications
might poll every five minutes to achieve closer accuracy.

• Deleted records are written to a delete log, which getDeleted() accesses. A background process that runs every two hours
purges records that have been in an organization's delete log for more than two hours if the number of records is above a certain
limit. Starting with the oldest records, the process purges delete log entries until the delete log is back below the limit. This is done
to protect Salesforce from performance issues related to massive delete logs. The limit is calculated using this formula:

5000 * number of licenses in the organization

For example, an organization with 1,000 licenses could have up to 5,000,000 (five million) records in the delete log before any purging
took place. If purging has been performed before your getDeleted() call is executed, an INVALID_REPLICATION_DATE
error is returned. If you get this exception, you should do a full pull of the table.

• The API truncates the seconds portion of dateTime values. For example, if a client application submits a timespan between 12:30:15
and 12:35:15 (Coordinated Universal Time (UTC) time), then the API retrieves information about items that have changed between
12:30:00 and 12:35:00 (UTC), inclusive.

Note: Development tools differ in the way that they handle time data. Some development tools report the local time, while
others report only the Coordinated Universal Time (UTC) time. To determine how your development tool handles time values,
refer to its documentation.

• We recommend polling no more frequently than every five minutes. There are built in controls to prevent errant applications from
invoking the data replication API calls too frequently.

• Client applications should save the timespan used in previous data replication API calls so that the application knows the last time
period for which data replication was successfully completed.

• To ensure data integrity on the local copy of the data, a client application needs to capture all of the relevant changes during
polling—even if it requires processing data redundantly to ensure that there are no gaps. Your client application can contain business
logic to skip processing objects that have already been integrated into your local data.

382

Object-Specific Requirements for Data ReplicationData Replication

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/field_types.htm#i1435616

• Gaps can also occur if the client application somehow fails to poll the data as expected (for example, due to a hardware crash or
network connection failure). Your client application can contain business logic that determines the last successful replication and
polls for the next consecutive timespan.

• If for any reason the local data is compromised, your client application might also provide business logic for rebuilding the local data
from scratch.

Note: You can now use Outbound Messaging to trigger actions instead of polling for them.

Checking for Structural Changes in the Object

In the API, data replication only reflects changes made to object records. It does not determine whether changes have been made to
the structure of objects (for example, fields added to—or removed from—a custom object). It is the responsibility of the client application
to check whether the structure of a given object has changed since the last update. Before replicating data, client applications can call
describeSObjects() on the object, and then compare the data returned in the DescribeSObjectResult with the data returned
and saved from previous describeSObjects() invocations.

383

Checking for Structural Changes in the ObjectData Replication

CHAPTER 18 Feature-Specific Considerations

Some Salesforce features require special consideration when accessed via the API. Use the topics in this
section to learn about the special considerations for activities, person accounts, forecast override business
rules, the Call Center, and creating your own apps.

In this chapter ...

• Archived Activities

• Person Account
Record Types

• External Objects

• Call Centers and the
API

• Implementing
Salesforce
Integrations on
Lightning Platform

• Knowledge

384

Archived Activities

Salesforce archives activities (tasks and events) that are over a year old.

You can use queryAll() to query on all Task and Event records, archived or not. You can also filter on the isArchived field to
find only the archived objects. You cannot use query() as it automatically filters out all records where isArchived is set to true.
You can update or delete archived records, though you cannot update the isArchived field. If you use the API to insert activities
that meet the criteria listed below, the activities will be archived during the next run of the archival background process.

Older Events and Tasks are archived according to the criteria listed below. In the Salesforce user interface, users can view archived activities
in several locations.

• Click View All in the Activity History related list to open the Activity History tab. In the Activity History tab, you can sort entries and
open, edit, or delete activities.

• Click View All in the activity timeline to open the All Activity History list. Up to 2,000 records appear, including archived records. The
All Activity History list is ideal for printing.

In the API, archived activities can only be queried via queryAll().

Activity archive criteria:

• Events with an ActivityDateTime or ActivityDate value greater than or equal to 365 days old

• Tasks with an IsClosed value of true and an ActivityDate value greater than or equal to 365 days old

• Tasks with an IsClosed value of true, a blank ActivityDate field, and a create date greater than or equal to 365 days
ago

For more information, see View Archived Activities in Salesforce Help.

Person Account Record Types

Beginning with API version 8.0, a new family of record types on Account objects is available: “person account” record types. The person
account record types enable specialized business-to-consumer functionality for users who sell to or do business with individuals. For
example, a doctor, hairdresser, or real estate agent whose clients are individuals. For more information about person accounts, see
“Person Accounts” and “Considerations for Using Person Accounts” in the Salesforce Help.

Record types are person account record types if the Account field IsPersonAccount is set to true. Salesforce provides one default
person account record type, PersonAccount, but an administrator can create additional person account record types. Conversely, record
types with the Account field IsPersonAccount set to false are “business account” record types, which are traditional
business-to-business (B2B) Salesforce accounts.

When a person account is created (or an existing business account is changed to a person account), a corresponding contact record is
also created. This contact record is referred to as a “person contact.” The person contact enables the person account to function
simultaneously as both an account and a contact. This record is the only contact record that can be associated directly with the person
account. Also, the ID of the corresponding person contact record is stored in the PersonContactId field on the person account.

Review this list of facts about person account record types before working with them.

• Contact your account representative to enable the person account feature, if the feature isn’t enable yet.

• You can use a query similar to the following example to find all records with a person account record type:

SELECT Name, SobjectType,IsPersonType
FROM RecordType
WHERE SobjectType='Account' AND IsPersonType=True

385

Archived ActivitiesFeature-Specific Considerations

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_task.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_event.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_event.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_task.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_event.htm#i1450287
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_event.htm#i1450257
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_task.htm#i1467379
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_task.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm#i1438064
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm#i1438064
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm#i1438646

• If you issue a query() call against an account, the results return the root object type in the SojbectType field. The returned
value is always Account.

• A person contact can be modified, but cannot be created or deleted. Since these kinds of contacts do not have their own record
detail page, clients must redirect users to the corresponding person account (Account) page. SOSL results don’t include any of the
contact fields enabled when IsPersonAccount is set to true. The contact ReportsToId field is not visible.

• If you delete the account, the contact is also deleted. You cannot directly delete the contact; you must delete the account.

• You can change the record type of an account across record type families (typically performed when migrating business accounts
to person accounts, but the reverse operation is also supported). When you change the record type from a business account to a
person account, the person contact is created. When you change the record type from a person account to a business account, the
person fields are set to null, and the person contact becomes a regular contact with the same parent account it had before the
change.

Note: You cannot change record types across record type families in the Salesforce user interface.

• If you change the record type of a business account to a person account using either update() or upsert(), you cannot make
any other changes to fields in that account in the same call; if attempted, the fault INVALID_FIELD_FOR_INSERT_UPDATE
results. However, you can change record type values from one person account record type to another, or from one business account
record type to another, in the same call with other changes.

• When converting a business account to a person account, there must be a one-to-one relationship between each business account
record and its corresponding contact record. Furthermore, fields common to both records such as Owner and Currency must
have identical values.

• Workflow and validation formulas do not fire during a change in record types from or to person accounts.

• When you change a business account to a person account, valid records are changed and invalid records show an error in the results
array.

• When you change a person account to a business account, no validation is performed.

• describeLayout() for version 7.0 and below returns the default business account record type as the default record type even
if the tab default is a person account record type. In version 8.0 and after, it will always be the tab default.

• describeLayout() for version 7.0 and below doesn’t return any person account record types.

• describeSObject() for version 7.0 and below show Account objects as not creatable if the profile does not have access to
any business record types.

• After conversion, the new person accounts will have unique one-to-one relationships with the contact records that formed them.
As is true for all person accounts, no other contacts can be associated to a person account.

• After conversion, any existing account field history information remains on the person accounts. Any existing contact field history
information is retained on the contact, but is not added to the person accounts field history.

For more information about person accounts, see the Salesforce Help.

External Objects

Special behaviors and limitations apply to queryAll() and queryMore() calls on external data.

queryAll()
Because Salesforce doesn’t track changes to external data, queryAll() behaves the same as query() for external objects.

386

External ObjectsFeature-Specific Considerations

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm#i1438064
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_contact.htm#i1447142
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_account.htm

queryMore()
It's common for Salesforce Connect queries of external data to have a large result set that's broken into smaller batches or pages. When
querying external objects, Salesforce Connect accesses the external data in real time via Web service callouts. Each queryMore()
call results in a Web service callout. The batch boundaries and page sizes depend on your adapter and how you set up the external data
source.

We recommend the following:

• When possible, avoid paging by filtering your queries of external objects to return fewer rows than the batch size, which by default
is 500 rows. Remember, obtaining each batch requires a queryMore() call, which results in a Web service callout.

• If the external data frequently changes, avoid using queryMore() calls. If the external data is modified between queryMore()
calls, you can get an unexpected QueryResult.

If the primary or “driving” object for a SELECT statement is an external object, queryMore() supports only that primary object
and doesn’t support subqueries.

By default, the OData 2.0 and 4.0 adapters for Salesforce Connect use client-driven paging. With client-driven paging, OData adapters
convert each queryMore() call into an OData query that uses the $skip and $top system query options to specify the batch
boundary and page size. These options are similar to using LIMIT and OFFSET clauses to page through a result set.

If you enable server-driven paging on an external data source, Salesforce ignores the requested page sizes, including the default
queryMore() batch size of 500 rows. The pages returned by the external system determine the batches, but each page can’t exceed
2,000 rows.

Call Centers and the API

The API provides access to information about computer–telephony integration (CTI) call centers with the
describeSoftphoneLayout() call. You must have the CTI feature enabled for your organization. Contact your account
representative for assistance.

The API supports limited access to call center-related objects, including being able to create call centers, and create or modify additional
numbers for the call center.

DescriptionTopic

Call Center object description, including fields and usage.CallCenter

Configuration settings that allow you to add an additional number if it cannot easily be categorized as a
user, contact, lead, account, or any other object. Examples include phone queues or conference rooms.

AdditionalNumber

In addition, several fields have been added to existing objects to support call centers. The following fields provide configuration settings
for operation of a call center.

DescriptionField
Properties

Field TypeField NameObject Name

Represents the result of a given call, for example,
“we'll call back,” or “call unsuccessful.” Limit is
255 characters.

Create
(Task
only)

Filter

stringCallDispositionOpenActivity

ActivityHistory

Task

387

Call Centers and the APIFeature-Specific Considerations

DescriptionField
Properties

Field TypeField NameObject Name

For the Task object, corresponds to the Salesforce
user interface label Call Result. You can also
create and update values for this field in Task.

Nillable

Update
(Task
only)

Duration of the call in seconds.Create
(Task
only)

Filter

intCallDurationIn
Seconds

OpenActivity

ActivityHistory

Task

For Task, you can also create and update values
for this field.

Nillable

Update
(Task
only)

Name of a call center. Limit is 255 characters.Filter

Nillable

stringCallObjectOpenActivity

ActivityHistory For Task, you can also create and update values
for this field.Update

(Task
only)

Task

The type of call being answered: Inbound,
Internal, or Outbound.

Create
(Task
only)

Filter

picklistCallTypeOpenActivity

ActivityHistory

Task For Task, you can also create and update values
for this field.

Nillable

Restricted
picklist

Update

The unique identifier for the call center
associated with this user.

Create

Filter

Nillable

referenceCallCenterIdUser

Update

Indicates whether a user will be automatically
logged in to a call center when logging in to the
Salesforce application (true) or not (false).

Create

Update

booleanUserPermissionsCall
CenterAutoLogin

User

388

Call Centers and the APIFeature-Specific Considerations

Implementing Salesforce Integrations on Lightning Platform

You can implement your Salesforce integrations or other client applications, on the Lightning Platform by creating a Salesforce
AppExchange app.

1. Create a WebLink that passes the user session ID and the API server URL to an external site:

https://www.your_tool.com/test.jsp?sessionid={!API_Session_ID}&url={!API_Partner_Server_URL_80}

Use https to ensure that your session ID cannot be detected.

2. The page pointed to in the preceding step takes the session ID and uses it to call back to the API. Use getUserInfo() to return
the userID associated with the session and related information. If needed, you can also use retrieve on the User object to retrieve
any additional information you need about the user.

3. Maintain a cross-reference between the UserId or username and the corresponding user ID in your system, which you can do
using a WebLink that is executed when the user clicks a tab, or a WebLink on the page layout.

4. Package and upload this app using the instructions in Salesforce Help topic “Prepare Your Apps for Distribution.”

Accessing Salesforce Data Using the API and OAuth
Salesforce supports OAuth 1.0.A and 2.0 for SOAP API requests.

Using an already defined connected app and the OAuth protocol, a third party can implement an OAuth authentication flow to integrate
with the Salesforce API.

For detailed steps about integrating with the Salesforce API using OAuth, see Authenticating Apps with OAuth in Salesforce Help.

Partners, who wish to get an OAuth consumer Id for authentication, can contact Salesforce

Knowledge

Articles Overview
Articles capture information about your company's products and services that you want to make available in your knowledge base.
Articles in the knowledge base can be classified using data categories to make it easy for users to find the articles they need. Administrators
can use data categories to control access to articles.

Knowledge Articles vs. Knowledge Article Versions
When working with articles, keep in mind that the KnowledgeArticle represents the parent record of all article versions.
KnowledgeArticleVersion records represent each version of a given article.

Record Types vs. Article Types
The article structure is represented differently between Lightning Experience and Salesforce Classic. In Lightning Knowledge, you
use the same record types available in other custom objects (see the RecordTypeId field on Knowledge__kav) to structure
different types of articles. For example, you can use different layouts for different record types. In Salesforce Classic, you get this
functionality through article types (see the ArticleType field on KnowledgeArticleVersion). Each unique type of article has a
unique object in Salesforce Classic (for example, FAQ__kav for FAQ article types). Lightning Knowledge does not have a unique
object for each type because it is handled using the record type.

389

Implementing Salesforce Integrations on Lightning PlatformFeature-Specific Considerations

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_weblink.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_weblink.htm
https://help.salesforce.com/apex/HTViewHelpDoc?id=remoteaccess_authenticate.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_knowledgearticle.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_knowledgearticleversion.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_knowledge__kav.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_knowledgearticleversion.htm

Audience Channel
An audience, sometimes called a channel, refers to the types of users who can access an article. Salesforce Knowledge offers four
channels where you can make articles available.

• Internal App: Salesforce users can access articles depending on their role visibility.

• Customer: Customers can access articles in a community, site, or customer portal. Customer users inherit the role visibility of the
manager on the account. In a community, the article is only available to users with Customer Community or Customer Community
Plus licenses.

• Partner: Partners can access articles in a community, site, or partner portal. Partner users inherit the role visibility of the manager
on the account. In a community, the article is only available to users with Partner Community licenses.

• Public Knowledge Base: Articles can be made available to anonymous users by creating a public knowledge base. With Lightning
Knowledge, most Salesforce orgs use Communities to create a knowledge base. Creating a public knowledge base for Salesforce
Knowledge in Salesforce Classic requires Sites and Visualforce.

Publishing Cycle
Salesforce Knowledge Articles move through a publishing cycle from their creation to their deletion. The publishing cycle includes
three different statuses: Draft is the stage when a new article is being created or an existing one is being updated. Articles with
the Online status are draft articles that have been published and are now available to their different channels. Eventually, when
a published article is at the end of its life, it can be moved to the Archived status or sent back to Draft to be updated in a
subsequent version.

Working with Articles in the API
Articles are available through the KnowledgeArticleVersion and KnowledgeArticle objects in the API. They both represent an article but
provide different capabilities.

KnowledgeArticleVersion
Every new draft article in Salesforce Knowledge has a version number. When an article is published and you want to update it, you
can create a new Draft with a distinct version number. Each version has its own ID. Once the updated version is ready to be
published, it replaces the former one and updates the version number. You can access the content of an article version using the
KnowledgeArticleVersion object and filter on its Draft or Online status. For example, the following query returns the title of the Draft
version of all the articles across all article types in United States English:

SELECT Title
FROM KnowledgeArticleVersion
WHERE PublishStatus='Draft'
AND language ='en_US'

Articles are also auto-assigned an Article Number, which is not a unique identifier to an individual article, but an identifier to a master
article and all of its available translations.

Note: Both the master version (the knowledge article with IsMasterLanguage = 1) and the translations are
KnowledgeArticleVersion objects.

KnowledgeArticle
Unlike KnowledgeArticleVersion, the ID of a KnowledgeArticle record is identical irrespective of the article's version (status). Where
the KnowledgeArticleVersion object provides API access to an article's custom field values, the KnowledgeArticle object provides
API access to an article's metadata fields.

The article record is the parent container of all versions of an article, whatever the publishing status (draft, published, archived) and the
language. While KnowledgeArticle and KnowledgeArticleVersion represent any article in the knowledge base, use the concrete
representation of these objects for the specific articles. In Lightning Knowledge, these concrete representations default to Knowledge__ka

390

KnowledgeFeature-Specific Considerations

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_knowledgearticleversion.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_knowledgearticle.htm

(for the Knowledge article) and Knowledge__kav (for the Knowledge article version). In Salesforce Classic, use <Article Type>__ka and
<Article Type>__kav.

The following Lightning Knowledge query returns the title for all the published FAQ articles in United States English:

SELECT Title
FROM Knowledge__kav
WHERE PublishStatus='online'
AND Language = 'en_US'
AND RecordTypeId = '<specify RecordTypeId for FAQ here>'

The following Salesforce Classic query returns the title for all the published offers in United States English:

SELECT Title
FROM FAQ__kav
WHERE PublishStatus='online'
AND language ='en_US'

Data Categories Overview
Data categories are organized by category group and let:

• Users classify and find records.

• Administrators control access to records.

Salesforce Knowledge uses data categories to classify articles and make them easier to find. For example, to classify articles by sales
regions and products, create two category groups: Sales Regions, Products. The Sales Regions category group could consist of a
geographical hierarchy, such as All Sales Regions as the top level and North America, Europe, and Asia at the second level. The Products
group could have All Products as the top level and Phones, Computers, and Printers at the second.

Working with Data Categories in the API
The following table lists API resources for working with data categories.

DescriptionTypeName

Gives access to article categorization in Lightning Knowledge.ObjectKnowledge__DataCategorySelection

Gives access to article categorization in Knowledge for Salesforce
Classic.

ObjectArticle
Type__DataCategorySelection

Gives access to question categorization.ObjectQuestionDataCategorySelection

Filters articles depending on their status in the publishing cycle and
their data categories. For more information, see the Salesforce SOQL
and SOSL Reference Guide.

SOQL clauseWITH DATA CATEGORY
filteringExpression

Finds articles based on their categorization. For more information, see
the Salesforce SOQL and SOSL Reference Guide.

SOSL clauseWITH DATA CATEGORY
DataCategorySpec

Retrieves available category groups for objects specified in the request.CalldescribeDataCategoryGroups()

Retrieves available category groups along with their data category
structure for objects specified in the request.

CalldescribeDataCategoryGroupStructures()

391

KnowledgeFeature-Specific Considerations

https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_knowledge__datacategoryselection.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_articletype__datacategoryselection.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_articletype__datacategoryselection.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/sforce_api_objects_questiondatacategoryselection.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/
https://developer.salesforce.com/docs/atlas.en-us.238.0.soql_sosl.meta/soql_sosl/

DescriptionTypeName

Returns a list of the category groups associated with the specified
objects. See the Apex Developer Guide.

Apex methoddescribeDataCategoryGroups

Returns available category groups along with their data category
structure for objects specified in the request. See the Apex Developer
Guide.

Apex methoddescribeDataCategoryGroupStructures

Salesforce Knowledge Objects
This entity relationship diagram (ERD) illustrates relationships between the Salesforce Knowledge objects in Lightning Knowledge.

This ERD illustrates the relationship between objects in Salesforce Classic.

392

KnowledgeFeature-Specific Considerations

https://developer.salesforce.com/docs/atlas.en-us.238.0.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.238.0.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.238.0.apexcode.meta/apexcode/

Additional Information
To learn more about managing your knowledge base using the API, see the Knowledge Developer Guide.

393

KnowledgeFeature-Specific Considerations

https://developer.salesforce.com/docs/atlas.en-us.238.0.knowledge_dev.meta/knowledge_dev/knowledge_development_intro.htm

GLOSSARY

A |B |C |D |E |F |G |H |I |J |K |L |M |N |O |P |Q |R |S |T |U |V |W |X |Y |Z

A

AJAX Toolkit
A JavaScript wrapper around the API that allows you to execute any API call and access any object you have permission to view from
within JavaScript code. For more information, see the AJAX Toolkit Developer's Guide.

Anonymous Block, Apex
Apex code that does not get stored in Salesforce, but that can be compiled and executed by using the
ExecuteAnonymousResult() API call, or the equivalent in the AJAX Toolkit.

Anti-Join
An anti-join is a subquery on another object in a NOT IN clause in a SOQL query. You can use anti-joins to create advanced queries.
See also Semi-Join.

Apex
Apex is a strongly typed, object-oriented programming language that allows developers to execute flow and transaction control
statements on the Lightning platform server in conjunction with calls to the Lightning Platform API. Using syntax that looks like Java
and acts like database stored procedures, Apex enables developers to add business logic to most system events, including button
clicks, related record updates, and Visualforce pages. Apex code can be initiated by Web service requests and from triggers on objects.

Apex-Managed Sharing
Enables developers to programmatically manipulate sharing to support their application’s behavior. Apex-managed sharing is only
available for custom objects.

App
Short for “application.” A collection of components such as tabs, reports, dashboards, and Visualforce pages that address a specific
business need. Salesforce provides standard apps such as Sales and Service. You can customize the standard apps to match the way
you work. In addition, you can package an app and upload it to the AppExchange along with related components such as custom
fields, custom tabs, and custom objects. Then, you can make the app available to other Salesforce users from the AppExchange.

AppExchange
The AppExchange is a sharing interface from Salesforce that allows you to browse and share apps and services for the Lightning
Platform.

AppExchange Upgrades
Upgrading an app is the process of installing a newer version.

Application Programming Interface (API)
The interface that a computer system, library, or application provides to allow other computer programs to request services from it
and exchange data.

394

https://developer.salesforce.com/docs/atlas.en-us.238.0.ajax.meta/ajax/sforce_api_ajax_introducing.htm

B

Boolean Operators
You can use Boolean operators in report filters to specify the logical relationship between two values. For example, the AND operator
between two values yields search results that include both values. Likewise, the OR operator between two values yields search results
that include either value.

Bulk API 2.0
The REST-based Bulk API 2.0 is optimized for processing large sets of data. It allows you to query, insert, update, upsert, or delete a
large number of records asynchronously by submitting a job that is processed in the background by Salesforce. See also SOAP API.

C

Callout, Apex
An Apex callout enables you to tightly integrate your Apex with an external service by making a call to an external Web service or
sending a HTTP request from Apex code and then receiving the response.

Child Relationship
A relationship that has been defined on an sObject that references another sObject as the “one” side of a one-to-many relationship.
For example, contacts, opportunities, and tasks have child relationships with accounts.

See also sObject.

Class, Apex
A template or blueprint from which Apex objects are created. Classes consist of other classes, user-defined methods, variables,
exception types, and static initialization code. In most cases, Apex classes are modeled on their counterparts in Java.

Client App
An app that runs outside the Salesforce user interface and uses only the Lightning Platform API or Bulk API 2.0. It typically runs on a
desktop or mobile device. These apps treat the platform as a data source, using the development model of whatever tool and
platform for which they are designed.

Component, Visualforce
Something that can be added to a Visualforce page with a set of tags, for example, <apex:detail>. Visualforce includes a
number of standard components, or you can create your own custom components.

Component Reference, Visualforce
A description of the standard and custom Visualforce components that are available in your organization. You can access the
component library from the development footer of any Visualforce page or the Visualforce Developer's Guide.

Controller, Visualforce
An Apex class that provides a Visualforce page with the data and business logic it needs to run. Visualforce pages can use the standard
controllers that come by default with every standard or custom object, or they can use custom controllers.

Controlling Field
Any standard or custom picklist or checkbox field whose values control the available values in one or more corresponding dependent
fields.

Custom App
See App.

Custom Field
A field that can be added in addition to the standard fields to customize Salesforce for your organization’s needs.

395

Glossary

https://developer.salesforce.com/docs/atlas.en-us.238.0.pages.meta/pages/pages_intro.htm

Custom Help
Custom text administrators create to provide users with on-screen information specific to a standard field, custom field, or custom
object.

Custom Links
Custom links are URLs defined by administrators to integrate your Salesforce data with external websites and back-office systems.
Formerly known as Web links.

Custom Object
Custom records that allow you to store information unique to your organization.

Custom S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created
s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can
still be edited.

Custom Web content for use in custom links. Custom s-controls can contain any type of content that you can display in a browser,
for example a Java applet, an Active-X control, an Excel file, or a custom HTML Web form.

D

Database
An organized collection of information. The underlying architecture of the Lightning Platform includes a database where your data
is stored.

Database Table
A list of information, presented with rows and columns, about the person, thing, or concept you want to track. See also Object.

Data Loader
A Lightning Platform tool used to import and export data from your Salesforce organization.

Data Manipulation Language (DML)
An Apex method or operation that inserts, updates, or deletes records.

Date Literal
A keyword in a SOQL or SOSL query that represents a relative range of time such as last month or next year.

Decimal Places
Parameter for number, currency, and percent custom fields that indicates the total number of digits you can enter to the right of a
decimal point, for example, 4.98 for an entry of 2. Note that the system rounds the decimal numbers you enter, if necessary. For
example, if you enter 4.986 in a field with Decimal Places of 2, the number rounds to 4.99. Salesforce uses the round half-up
rounding algorithm. Half-way values are always rounded up. For example, 1.45 is rounded to 1.5. –1.45 is rounded to –1.5.

Delegated Authentication
A security process where an external authority is used to authenticate Lightning Platform users.

Dependent Field
Any custom picklist or multi-select picklist field that displays available values based on the value selected in its corresponding
controlling field.

Developer Edition
A free, fully-functional Salesforce organization designed for developers to extend, integrate, and develop with the Lightning Platform.
Developer Edition accounts are available on developer.salesforce.com.

396

Glossary

https://developer.salesforce.com

Salesforce Developers
The Salesforce Developers website at developer.salesforce.com provides a full range of resources for platform developers, including
sample code, toolkits, an online developer community, and the ability to obtain limited Lightning Platform environments.

Document Library
A place to store documents without attaching them to accounts, contacts, opportunities, or other records.

E

Email Alert
Email alerts are actions that send emails, using a specified email template, to specified recipients.

Email Template
A form email that communicates a standard message, such as a welcome letter to new employees or an acknowledgment that a
customer service request has been received. Email templates can be personalized with merge fields, and can be written in text,
HTML, or custom format.

Note: Lightning email templates aren’t packageable.

Enterprise Edition
A Salesforce edition designed for larger, more complex businesses.

Enterprise WSDL
A strongly-typed WSDL for customers who want to build an integration with their Salesforce organization only, or for partners who
are using tools like Tibco or webMethods to build integrations that require strong typecasting. The downside of the Enterprise WSDL
is that it only works with the schema of a single Salesforce organization because it is bound to all of the unique objects and fields
that exist in that organization's data model.

Entity Relationship Diagram (ERD)
A data modeling tool that helps you organize your data into entities (or objects, as they are called in the Lightning Platform) and
define the relationships between them. ERDs for key Salesforce objects are published in the Salesforce Object Reference.

F

Field
A part of an object that holds a specific piece of information, such as a text or currency value.

Field-Level Security
Settings that determine whether fields are hidden, visible, read only, or editable for users. Available in Professional, Enterprise,
Unlimited, Performance, and Developer Editions.

Filter Condition/Criteria
Condition on particular fields that qualifies items to be included in a list view or report, such as “State equals California.”

Foreign Key
A field whose value is the same as the primary key of another table. You can think of a foreign key as a copy of a primary key from
another table. A relationship is made between two tables by matching the values of the foreign key in one table with the values of
the primary key in another.

Formula Field
A type of custom field. Formula fields automatically calculate their values based on the values of merge fields, expressions, or other
values.

397

Glossary

https://developer.salesforce.com
https://developer.salesforce.com/docs/atlas.en-us.238.0.object_reference.meta/object_reference/data_model.htm

Function
Built-in formulas that you can customize with input parameters. For example, the DATE function creates a date field type from a
given year, month, and day.

G

Gregorian Year
A calendar based on a 12-month structure used throughout much of the world.

Group Edition
A product designed for small businesses and workgroups with a limited number of users.

H

HTTP Debugger
An application that can be used to identify and inspect SOAP requests that are sent from the AJAX Toolkit. They behave as proxy
servers running on your local machine and allow you to inspect and author individual requests.

I

ID
See Salesforce Record ID.

Inline S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created
s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can
still be edited.

An s-control that displays within a record detail page or dashboard, rather than on its own page.

Instance
The cluster of software and hardware represented as a single logical server that hosts an organization's data and runs their applications.
The Lightning Platform runs on multiple instances, but data for any single organization is always stored on a single instance.

Integration User
A Salesforce user defined solely for client apps or integrations. Also referred to as the logged-in user in a SOAP API context.

ISO Code
The International Organization for Standardization country code, which represents each country by two letters.

J

Junction Object
A custom object with two master-detail relationships. Using a custom junction object, you can model a “many-to-many” relationship
between two objects. For example, you create a custom object called “Bug” that relates to the standard case object such that a bug
could be related to multiple cases and a case could also be related to multiple bugs.

398

Glossary

K

No Glossary items for this entry.

L

License Management Application (LMA)
A free AppExchange app that allows you to track sales leads and accounts for every user who downloads your managed package
(app) from the AppExchange.

License Management Organization (LMO)
The Salesforce organization that you use to track all the Salesforce users who install your package. A license management organization
must have the License Management Application (LMA) installed. It automatically receives notification every time your package is
installed or uninstalled so that you can easily notify users of upgrades. You can specify any Enterprise, Unlimited, Performance, or
Developer Edition organization as your license management organization. For more information, go to Managing Licenses for
Managed Packages.

Lightning Platform
The Salesforce platform for building applications in the cloud. Lightning Platform combines a powerful user interface, operating
system, and database to allow you to customize and deploy applications in the cloud for your entire enterprise.

List View
A list display of items (for example, accounts or contacts) based on specific criteria. Salesforce provides some predefined views.

In the Agent console, the list view is the top frame that displays a list view of records based on specific criteria. The list views you
can select to display in the console are the same list views defined on the tabs of other objects. You cannot create a list view within
the console.

Locale
The country or geographic region in which the user is located. The setting affects the format of date and number fields, for example,
dates in the English (United States) locale display as 06/30/2000 and as 30/06/2000 in the English (United Kingdom) locale.

In Professional, Enterprise, Unlimited, Performance, and Developer Edition organizations, a user’s individual Locale setting overrides
the organization’s Default Locale setting. In Personal and Group Editions, the organization-level locale field is called Locale,
not Default Locale.

Logged-in User
In a SOAP API context, the username used to log into Salesforce. Client applications run with the permissions and sharing of the
logged-in user. Also referred to as an integration user.

M

Managed Package
A collection of application components that is posted as a unit on the AppExchange and associated with a namespace and possibly
a License Management Organization. To support upgrades, a package must be managed. An organization can create a single
managed package that can be downloaded and installed by many different organizations. Managed packages differ from unmanaged
packages by having some locked components, allowing the managed package to be upgraded later. Unmanaged packages do not
include locked components and cannot be upgraded. In addition, managed packages obfuscate certain components (like Apex) on
subscribing organizations to protect the intellectual property of the developer.

399

Glossary

https://developer.salesforce.com/docs/atlas.en-us.238.0.workbook_lma.meta/workbook_lma/lma_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.238.0.workbook_lma.meta/workbook_lma/lma_intro.htm

Manual Sharing
Record-level access rules that allow record owners to give read and edit permissions to other users who might not have access to
the record any other way.

Many-to-Many Relationship
A relationship where each side of the relationship can have many children on the other side. Many-to-many relationships are
implemented through the use of junction objects.

Master-Detail Relationship
A relationship between two different types of records that associates the records with each other. For example, accounts have a
master-detail relationship with opportunities. This type of relationship affects record deletion, security, and makes the lookup
relationship field required on the page layout.

Master Picklist
A complete list of picklist values available for a record type or business process.

Metadata
Information about the structure, appearance, and functionality of an organization and any of its parts. Lightning Platform uses XML
to describe metadata.

Metadata WSDL
A WSDL for users who want to use the Lightning Platform Metadata API calls.

Multitenancy
An application model where all users and apps share a single, common infrastructure and code base.

N

Namespace
In a packaging context, a one- to 15-character alphanumeric identifier that distinguishes your package and its contents from packages
of other developers on AppExchange, similar to a domain name. Salesforce automatically prepends your namespace prefix, followed
by two underscores (“__”), to all unique component names in your Salesforce organization.

Native App
An app that is built exclusively with setup (metadata) configuration on Lightning Platform. Native apps do not require any external
services or infrastructure.

O

Object
An object allows you to store information in your Salesforce organization. The object is the overall definition of the type of information
you are storing. For example, the case object allow you to store information regarding customer inquiries. For each object, your
organization will have multiple records that store the information about specific instances of that type of data. For example, you
might have a case record to store the information about Joe Smith's training inquiry and another case record to store the information
about Mary Johnson's configuration issue.

Object-Level Help
Custom help text that you can provide for any custom object. It displays on custom object record home (overview), detail, and edit
pages, as well as list views and related lists.

Object-Level Security
Settings that allow an administrator to hide whole objects from users so that they don't know that type of data exists. Object-level
security is specified with object permissions.

400

Glossary

onClick JavaScript
JavaScript code that executes when a button or link is clicked.

One-to-Many Relationship
A relationship in which a single object is related to many other objects. For example, an account may have one or more related
contacts.

Organization-Wide Defaults
Settings that allow you to specify the baseline level of data access that a user has in your organization. For example, you can set
organization-wide defaults so that any user can see any record of a particular object that is enabled via their object permissions, but
they need extra permissions to edit one.

Outbound Call
Any call that originates from a user to a number outside of a call center in Salesforce CRM Call Center.

Outbound Message
An outbound message sends information to a designated endpoint, like an external service. Outbound messages are configured
from Setup. You must configure the external endpoint and create a listener for the messages using the SOAP API.

Overlay
An overlay displays additional information when you hover your mouse over certain user interface elements. Depending on the
overlay, it will close when you move your mouse away, click outside of the overlay, or click a close button.

Owner
Individual user to which a record (for example, a contact or case) is assigned.

P

PaaS
See Platform as a Service.

Package
A group of Lightning Platform components and applications that are made available to other organizations through the AppExchange.
You use packages to bundle an app along with any related components so that you can upload them to AppExchange together.

Package Dependency
This is created when one component references another component, permission, or preference that is required for the component
to be valid. Components can include but are not limited to:

• Standard or custom fields

• Standard or custom objects

• Visualforce pages

• Apex code

Permissions and preferences can include but are not limited to:

• Divisions

• Multicurrency

• Record types

Package Installation
Installation incorporates the contents of a package into your Salesforce organization. A package on the AppExchange can include
an app, a component, or a combination of the two. After you install a package, you may need to deploy components in the package
to make it generally available to the users in your organization.

401

Glossary

Package Publication
Publishing your package makes it publicly available on the AppExchange.

Package Version
A package version is a number that identifies the set of components uploaded in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a chosen
value during every major release. The patchNumber is generated and updated only for a patch release.

Unmanaged packages are not upgradeable, so each package version is simply a set of components for distribution. A package version
has more significance for managed packages. Packages can exhibit different behavior for different versions. Publishers can use
package versions to evolve the components in their managed packages gracefully by releasing subsequent package versions without
breaking existing customer integrations using the package. See also Patch and Patch Development Organization.

Parent Account
An organization or company that an account is affiliated. By specifying a parent for an account, you can get a global view of all
parent/subsidiary relationships using the View Hierarchy link.

Partner WSDL
A loosely-typed WSDL for customers, partners, and ISVs who want to build an integration or an AppExchange app that can work
across multiple Salesforce organizations. With this WSDL, the developer is responsible for marshaling data in the correct object
representation, which typically involves editing the XML. However, the developer is also freed from being dependent on any particular
data model or Salesforce organization. Contrast this with the Enterprise WSDL, which is strongly typed.

Patch
A patch enables a developer to change the functionality of existing components in a managed package, while ensuring subscribing
organizations that there are no visible behavior changes to the package. For example, you can add new variables or change the
body of an Apex class, but you may not add, deprecate, or remove any of its methods. Patches are tracked by a patchNumber
appended to every package version. See also Patch Development Organization and Package Version.

Patch Development Organization
The organization where patch versions are developed, maintained, and uploaded. Patch development organizations are created
automatically for a developer organization when they request to create a patch. See also Patch and Package Version.

Personal Edition
Product designed for individual sales representatives and single users.

Personal Information
User information including personal contact information, quotas, personal group information, and default opportunity team.

Picklist
Selection list of options available for specific fields in a Salesforce object, for example, the Industry field for accounts. Users can
choose a single value from a list of options rather than make an entry directly in the field. See also Master Picklist.

Picklist (Multi-Select)
Selection list of options available for specific fields in a Salesforce object. Multi-select picklists allow users to choose one or more
values. Users can choose a value by double clicking on it, or choose additional values from a scrolling list by holding down the CTRL
key while clicking a value and using the arrow icon to move them to the selected box.

Picklist Values
Selections displayed in drop-down lists for particular fields. Some values come predefined, and other values can be changed or
defined by an administrator.

Platform as a Service (PaaS)
An environment where developers use programming tools offered by a service provider to create applications and deploy them in
a cloud. The application is hosted as a service and provided to customers via the Internet. The PaaS vendor provides an API for
creating and extending specialized applications. The PaaS vendor also takes responsibility for the daily maintenance, operation, and
support of the deployed application and each customer's data. The service alleviates the need for programmers to install, configure,

402

Glossary

and maintain the applications on their own hardware, software, and related IT resources. Services can be delivered using the PaaS
environment to any market segment.

Platform Edition
A Salesforce edition based on Enterprise, Unlimited, or Performance Edition that does not include any of the standard Salesforce
apps, such as Sales or Service & Support.

Primary Key
A relational database concept. Each table in a relational database has a field in which the data value uniquely identifies the record.
This field is called the primary key. The relationship is made between two tables by matching the values of the foreign key in one
table with the values of the primary key in another.

Production Organization
A Salesforce organization that has live users accessing data.

Professional Edition
A Salesforce edition designed for businesses who need full-featured CRM functionality.

Q

Queue
A holding area for items before they are processed. Salesforce uses queues in a number of different features and technologies.

Query Locator
A parameter returned from the query() or queryMore() API call that specifies the index of the last result record that was
returned.

Query String Parameter
A name-value pair that's included in a URL, typically after a '?' character. For example:

https://yourInstance.salesforce.com/001/e?name=value

R

Record
A single instance of a Salesforce object. For example, “John Jones” might be the name of a contact record.

Record Name
A standard field on all Salesforce objects. Whenever a record name is displayed in a Lightning Platform application, the value is
represented as a link to a detail view of the record. A record name can be either free-form text or an autonumber field. Record
Name does not have to be a unique value.

Record Type
A record type is a field available for certain records that can include some or all of the standard and custom picklist values for that
record. You can associate record types with profiles to make only the included picklist values available to users with that profile.

Record-Level Security
A method of controlling data in which you can allow a particular user to view and edit an object, but then restrict the records that
the user is allowed to see.

Recycle Bin
A page that lets you view and restore deleted information. Access the Recycle Bin either by using the link in the sidebar in Salesforce
Classic or from the App Launcher in Lightning Experience.

403

Glossary

Related Object
Objects chosen by an administrator to display in the Agent console's mini view when records of a particular type are shown in the
console's detail view. For example, when a case is in the detail view, an administrator can choose to display an associated account,
contact, or asset in the mini view.

Relationship
A connection between two objects, used to create related lists in page layouts and detail levels in reports. Matching values in a
specified field in both objects are used to link related data; for example, if one object stores data about companies and another
object stores data about people, a relationship allows you to find out which people work at the company.

Relationship Query
In a SOQL context, a query that traverses the relationships between objects to identify and return results. Parent-to-child and
child-to-parent syntax differs in SOQL queries.

Report Type
A report type defines the set of records and fields available to a report based on the relationships between a primary object and its
related objects. Reports display only records that meet the criteria defined in the report type. Salesforce provides a set of pre-defined
standard report types; administrators can create custom report types as well.

Role Hierarchy
A record-level security setting that defines different levels of users such that users at higher levels can view and edit information
owned by or shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.

Roll-Up Summary Field
A field type that automatically provides aggregate values from child records in a master-detail relationship.

Running User
Each dashboard has a running user, whose security settings determine which data to display in a dashboard. If the running user is a
specific user, all dashboard viewers see data based on the security settings of that user—regardless of their own personal security
settings. For dynamic dashboards, you can set the running user to be the logged-in user, so that each user sees the dashboard
according to his or her own access level.

S

SaaS
See Software as a Service (SaaS).

S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created
s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can
still be edited.

Custom Web content for use in custom links. Custom s-controls can contain any type of content that you can display in a browser,
for example a Java applet, an Active-X control, an Excel file, or a custom HTML Web form.

Salesforce Record ID
A unique 15- or 18-character alphanumeric string that identifies a single record in Salesforce.

Salesforce SOA (Service-Oriented Architecture)
A powerful capability of Lightning Platform that allows you to make calls to external Web services from within Apex.

Sandbox
A nearly identical copy of a Salesforce production organization for development, testing, and training. The content and size of a
sandbox varies depending on the type of sandbox and the edition of the production organization associated with the sandbox.

404

Glossary

Search Layout
The organization of fields included in search results, in lookup dialogs, and in the key lists on tab home pages.

Search Phrase
Search phrases are queries that users enter when searching on www.google.com.

Semi-Join
A semi-join is a subquery on another object in an IN clause in a SOQL query. You can use semi-joins to create advanced queries,
such as getting all contacts for accounts that have an opportunity with a particular record type. See also Anti-Join.

Session ID
An authentication token that is returned when a user successfully logs in to Salesforce. The Session ID prevents a user from having
to log in again every time they want to perform another action in Salesforce. Different from a record ID or Salesforce ID, which are
terms for the unique ID of a Salesforce record.

Session Timeout
The time after login before a user is automatically logged out. Sessions expire automatically after a predetermined length of inactivity,
which can be configured in Salesforce from Setup by clicking Security Controls. The default is 120 minutes (two hours). The inactivity
timer is reset to zero if a user takes an action in the web interface or makes an API call.

Setup
A menu where administrators can customize and define organization settings and Lightning Platform apps. Depending on your
organization’s user interface settings, Setup may be a link in the user interface header or in the dropdown list under your name.

Sharing
Allowing other users to view or edit information you own. There are different ways to share data:

• Sharing Model—defines the default organization-wide access levels that users have to each other’s information and whether
to use the hierarchies when determining access to data.

• Role Hierarchy—defines different levels of users such that users at higher levels can view and edit information owned by or
shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.

• Sharing Rules—allow an administrator to specify that all information created by users within a given group or role is automatically
shared to the members of another group or role.

• Manual Sharing—allows individual users to share records with other users or groups.

• Apex-Managed Sharing—enables developers to programmatically manipulate sharing to support their application’s behavior.
See Apex-Managed Sharing.

Sharing Model
Behavior defined by your administrator that determines default access by users to different types of records.

Sharing Rule
Type of default sharing created by administrators. Allows users in a specified group or role to have access to all information created
by users within a given group or role.

Sites
Salesforce Sites enables you to create public websites and applications that are directly integrated with your Salesforce
organization—without requiring users to log in with a username and password.

Snippet

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created
s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can
still be edited.

A type of s-control that is designed to be included in other s-controls. Similar to a helper method that is used by other methods in
a piece of code, a snippet allows you to maintain a single copy of HTML or JavaScript that you can reuse in multiple s-controls.

405

Glossary

SOAP (Simple Object Access Protocol)
A protocol that defines a uniform way of passing XML-encoded data.

SOAP API
A SOAP-based Web services application programming interface that provides access to your Salesforce organization's information.

sObject
The abstract or parent object for all objects that can be stored in the Lightning Platform.

Software as a Service (SaaS)
A delivery model where a software application is hosted as a service and provided to customers via the Internet. The SaaS vendor
takes responsibility for the daily maintenance, operation, and support of the application and each customer's data. The service
alleviates the need for customers to install, configure, and maintain applications with their own hardware, software, and related IT
resources. Services can be delivered using the SaaS model to any market segment.

SOQL (Salesforce Object Query Language)
A query language that allows you to construct simple but powerful query strings and to specify the criteria that selects data from
the Lightning Platform database.

SOSL (Salesforce Object Search Language)
A query language that allows you to perform text-based searches using the Lightning Platform API.

Standard Object
A built-in object included with the Lightning Platform. You can also build custom objects to store information that is unique to your
app.

Syndication Feeds
Give users the ability to subscribe to changes within Salesforce Sites and receive updates in external news readers.

System Log
Part of the Developer Console, a separate window console that can be used for debugging code snippets. Enter the code you want
to test at the bottom of the window and click Execute. The body of the System Log displays system resource information, such as
how long a line took to execute or how many database calls were made. If the code did not run to completion, the console also
displays debugging information.

T

Test Method
An Apex class method that verifies whether a particular piece of code is working properly. Test methods take no arguments, commit
no data to the database, and can be executed by the runTests() system method either through the command line or in an
Apex IDE, such as the Salesforce extensions for Visual Studio Code.

Translation Workbench
The Translation Workbench lets you specify languages you want to translate, assign translators to languages, create translations for
customizations you’ve made to your Salesforce organization, and override labels and translations from managed packages. Everything
from custom picklist values to custom fields can be translated so your global users can use Salesforce in their language.

Trigger
A piece of Apex that executes before or after records of a particular type are inserted, updated, or deleted from the database. Every
trigger runs with a set of context variables that provide access to the records that caused the trigger to fire, and all triggers run in
bulk mode—that is, they process several records at once, rather than just one record at a time.

Trigger Context Variable
Default variables that provide access to information about the trigger and the records that caused it to fire.

406

Glossary

U

Unit Test
A unit is the smallest testable part of an application, usually a method. A unit test operates on that piece of code to make sure it
works correctly. See also Test Method.

Unlimited Edition
Unlimited Edition is Salesforce’s solution for maximizing your success and extending that success across the entire enterprise through
the Lightning Platform.

Unmanaged Package
A package that cannot be upgraded or controlled by its developer.

URL (Uniform Resource Locator)
The global address of a website, document, or other resource on the Internet. For example, https://salesforce.com.

URL S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created
s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can
still be edited.

An s-control that contains an external URL that hosts the HTML that should be rendered on a page. When saved this way, the HTML
is hosted and run by an external website. URL s-controls are also called web controls.

V

Validation Rule
A rule that prevents a record from being saved if it does not meet the standards that are specified.

Visualforce
A simple, tag-based markup language that allows developers to easily define custom pages and components for apps built on the
platform. Each tag corresponds to a coarse or fine-grained component, such as a section of a page, a related list, or a field. The
components can either be controlled by the same logic that is used in standard Salesforce pages, or developers can associate their
own logic with a controller written in Apex.

W

Web Control
See URL S-Control.

Web Links
See Custom Links.

Web Service
A mechanism by which two applications can easily exchange data over the Internet, even if they run on different platforms, are
written in different languages, or are geographically remote from each other.

Web Services API
Term describing the original Salesforce Platform web services application programming interface (API) that provides access to your
Salesforce org's information. See relevant developer guides for SOAP, REST, or Bulk APIs of interest.

407

Glossary

WebService Method
An Apex class method or variable that external systems can use, like a mash-up with a third-party application. Web service methods
must be defined in a global class.

Web Tab
A custom tab that allows your users to use external websites from within the application.

Automated Actions
Automated actions, such as email alerts, tasks, field updates, and outbound messages, can be triggered by a process, workflow rule,
approval process, or milestone.

Workflow Action
A workflow action, such as an email alert, field update, outbound message, or task, fires when the conditions of a workflow rule are
met.

Workflow Email Alert
A workflow action that sends an email when a workflow rule is triggered. Unlike workflow tasks, which can only be assigned to
application users, workflow alerts can be sent to any user or contact, as long as they have a valid email address.

Workflow Field Update
A workflow action that changes the value of a particular field on a record when a workflow rule is triggered.

Workflow Outbound Message
A workflow action that sends data to an external Web service, such as another cloud computing application. Outbound messages
are used primarily with composite apps.

Workflow Queue
A list of workflow actions that are scheduled to fire based on workflow rules that have one or more time-dependent workflow actions.

Workflow Rule
A workflow rule sets workflow actions into motion when its designated conditions are met. You can configure workflow actions to
execute immediately when a record meets the conditions in your workflow rule, or set time triggers that execute the workflow
actions on a specific day.

Workflow Task
A workflow action that assigns a task to an application user when a workflow rule is triggered.

Wrapper Class
A class that abstracts common functions such as logging in, managing sessions, and querying and batching records. A wrapper class
makes an integration more straightforward to develop and maintain, keeps program logic in one place, and affords easy reuse across
components. Examples of wrapper classes in Salesforce include the AJAX Toolkit, which is a JavaScript wrapper around the Salesforce
SOAP API, wrapper classes such as CCritical Section in the CTI Adapter for Salesforce CRM Call Center, or wrapper classes
created as part of a client integration application that accesses Salesforce using the SOAP API.

WSC (Web Service Connector)
An XML-based Web service framework that consists of a Java implementation of a SOAP server. With WSC, developers can develop
client applications in Java by using Java classes generated from Salesforce Enterprise WSDL or Partner WSDL.

WSDL (Web Services Description Language) File
An XML file that describes the format of messages you send and receive from a Web service. Your development environment's SOAP
client uses the Salesforce Enterprise WSDL or Partner WSDL to communicate with Salesforce using the SOAP API.

X

No Glossary items for this entry.

408

Glossary

Y

No Glossary items for this entry.

Z

No Glossary items for this entry.

409

Glossary

	Get Started with SOAP API
	Introduction to SOAP API
	Customize, Integrate, and Extend Your Salesforce Solutions
	Supported Salesforce Editions
	Standards Compliance
	Development Platforms
	SOAP API Support Policy
	API End-of-Life
	Choosing a WSDL
	Related Resources
	Quick Start: SOAP API
	Step 1: Sign up for Salesforce Developer Edition
	Step 2: Generate or Obtain the Web Service WSDL
	Step 3: Import the WSDL File Into Your Development Platform
	Step 4: Walk Through the Sample Code

	Core Data Types Used in API Calls
	sObject
	API Fault Element
	ExceptionCode
	Error
	StatusCode
	ExtendedErrorDetails
	ExtendedErrorCode
	Duplicate Management Data Types
	DuplicateError
	DuplicateResult
	MatchResult
	MatchRecord
	FieldDiff
	AdditionalInformationMap

	Tooling API Objects in the Enterprise WSDL
	API Call Basics
	Characteristics of API Calls
	Factors that Affect Data Access
	Package Version Settings

	Error Handling
	Error Handling for Session Expiration
	More About Error Handling

	Security and the API
	User Authentication
	User Profile and Permission Sets Configuration
	Security Token
	Sharing
	Implicit Restrictions for Objects and Fields
	API Access in Salesforce AppExchange Packages
	Outbound Port Restrictions

	Using the Partner WSDL
	Obtaining the Partner WSDL File
	Calls and the Partner WSDL
	Objects, Fields, and Field Data and the Partner WSDL
	Queries and the Partner WSDL
	Namespaces in the Partner WSDL
	Package Versions and the Partner WSDL
	User Interface Themes
	Examples Using the Partner WSDL
	Sample query and queryMore Calls
	Sample search Call
	Sample create Call
	Sample update Call

	Reference
	Apex-Related Calls
	compileAndTest()
	CompileAndTestRequest
	CompileAndTestResult
	CompileClassResult
	CompileTriggerResult
	DeleteApexResult

	compileClasses()
	compileTriggers()
	executeanonymous()
	ExecuteAnonymousResult

	runTests()
	RunTestsRequest
	RunTestsResult
	CodeCoverageResult
	CodeCoverageWarning
	RunTestFailure
	FlowCoverageResult
	FlowCoverageWarning
	RunTestSuccess
	CodeLocation

	Core Calls
	convertLead()
	LeadConvertResult

	create()
	SaveResult

	delete()
	DeleteResult

	deleteByExample()
	DeleteByExampleResult

	emptyRecycleBin()
	EmptyRecycleBinResult

	executeListView()
	ExecuteListViewRequest
	ExecuteListViewResult
	ListViewColumn
	ListViewRecord
	ListViewRecordColumn

	findDuplicates()
	findDuplicatesByIds()
	getDeleted()
	GetDeletedResult
	deletedRecords

	getUpdated()
	GetUpdatedResult

	invalidateSessions()
	InvalidateSessionsResult

	login()
	LoginResult

	logout()
	merge()
	MergeResult

	performQuickActions()
	PerformQuickActionResult

	process()
	ProcessResult

	query()
	QueryResult
	AggregateResult

	QueryLocator

	queryAll()
	queryMore()
	QueryResult
	QueryLocator

	retrieve()
	search()
	SearchResult

	undelete()
	UndeleteResult

	update()
	SaveResult

	upsert()
	UpsertResult

	Describe Calls
	describeAllTabs()
	describeAppMenu()
	DescribeAppMenuResult

	describeApprovalLayout()
	DescribeApprovalLayoutResult

	describeAvailableQuickActions()
	DescribeAvailableQuickActionResult

	describeCompactLayouts()
	DescribeCompactLayoutsResult

	describeDataCategoryGroups()
	DescribeDataCategoryGroupResult

	describeDataCategoryGroupStructures()
	describeDataCategoryGroupStructures()

	describeGlobal()
	DescribeGlobalResult

	describeGlobalTheme()
	DescribeGlobalTheme

	describeKnowledge()
	describeLayout()
	DescribeLayoutResult

	describePrimaryCompactLayouts()
	describeQuickActions()
	DescribeQuickActionResult

	describeSearchScopeOrder()
	DescribeSearchScopeOrderResult

	describeSearchLayouts()
	DescribeSearchLayoutResult

	describeSObject()
	describeSObjectResult

	describeSObjects()
	DescribeSObjectResult

	describeSoftphoneLayout()
	describeSoqlListViews()
	DescribeSoqlListView
	DescribeSoqlListViewParams
	DescribeSoqlListViewResult
	DescribeSoqlListViewsRequest
	ListViewColumn
	ListViewOrderBy
	SoqlWhereCondition

	describeTabs()
	describeTabSetResult
	DescribeColor
	DescribeIcon
	DescribeTab

	describeTheme()
	DescribeThemeResult
	DescribeThemeItem

	Utility Calls
	changeOwnPassword()
	getServerTimestamp()
	getServerTimestampResult

	getUserInfo()
	getUserInfoResult

	match()
	MatchOptions

	renderEmailTemplate()
	RenderEmailTemplateResult

	resetPassword()
	sendEmail()
	SendEmailResult

	sendEmailMessage()
	setPassword()

	SOAP Headers
	AllOrNoneHeader
	AllowFieldTruncationHeader
	AssignmentRuleHeader
	CallOptions
	DisableFeedTrackingHeader
	DebuggingHeader
	DuplicateRuleHeader
	EmailHeader
	LimitInfoHeader
	LocaleOptions
	LoginScopeHeader
	MruHeader
	OwnerChangeOptions
	PackageVersionHeader
	QueryOptions
	SessionHeader
	UserTerritoryDeleteHeader

	Using the API with Salesforce Features
	Implementation Considerations
	Choosing a User for an Integration
	Login Server URL
	Log In to the Login Server
	Typical API Call Sequence
	Salesforce Sandbox
	Multiple Instances of Salesforce Database Servers
	Content Type Requirement
	API Usage Metering
	Compression
	HTTP Persistent Connections
	HTTP Chunking
	Internationalization and Character Sets
	XML Compliance
	.NET, Non-String Fields, and the Enterprise WSDL

	Objects and SOAP API Calls and Headers for Apex
	Outbound Messaging
	Understanding Outbound Messaging
	Understanding Notifications
	Setting Up Outbound Messaging
	Setting Up User Profiles
	Defining Outbound Messaging
	Downloading the Salesforce Client Certificate
	Viewing Outbound Messages
	Tracking Outbound Message Status

	Considerations for Security
	Understanding the Outbound Messaging WSDL
	Building a Listener

	Data Loading and Integration
	Client Application Design
	Salesforce Settings
	Best Practices with Any Data Loader
	Integration and Single Sign-On

	Data Replication
	API Calls for Data Replication
	Scope of Data Replication
	Data Replication Steps
	Object-Specific Requirements for Data Replication
	Polling for Changes
	Checking for Structural Changes in the Object

	Feature-Specific Considerations
	Archived Activities
	Person Account Record Types
	External Objects
	Call Centers and the API
	Implementing Salesforce Integrations on Lightning Platform
	Knowledge

	Glossary

