
B2B2C Commerce Developer
Guide

Version 53.0, Winter ’22

 @salesforcedocs
Last updated: July 28, 2021

https://twitter.com/salesforcedocs

© Copyright 2000–2021 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: B2B2C Commerce Developer Guide . 1

Chapter 2: B2B2C Commerce Data Model . 2

Chapter 3: B2B2C Integration Architecture . 5

Chapter 4: B2B2C Checkout API Integration . 7

Shipping and Tax Integration . 8
B2B2C Shipping Reference Packages . 10
B2B2C Tax Reference Packages . 10

Payments Integration . 10
Payments Flow APIs . 12
Payments Gateway . 13
B2B2C Payments Reference Packages . 13

Chapter 5: B2B2C Product Import API . 14

Chapter 6: Set Up a B2B2C Commerce Development Environment 15

Install the Visual Studio Code Editor . 16
Get Salesforce Plug-ins for VS Code . 16
Install the SFDX CLI . 17
Install the SFDX Commerce B2B2C Plug-in . 17

Chapter 7: Creating B2B2C Payments Packages . 18

Enable Dev Hub . 19
Create an SFDX Package Project . 19
Authorize Your Dev Hub . 20
Create a Scratch Org . 20
Add Apex Adapter Classes . 21
Add Reference Package Code . 21
Create Named Credentials . 22
Deploying a B2B2C Package . 22

Deploy a Package with SFDX . 22
Deploy a Package from the B2B2C Commerce UI . 23
Deploy a Package with Workbench . 23
Deploy a Package with the SFDX Commerce B2B2C Plug-in . 24

Listing a B2B2C Package on AppExchange . 26

Chapter 8: Creating Custom Display Components for B2B2C Commerce 27

B2B2C Lightning Web Components . 28
B2B2C Commerce APIs for Custom Components . 28

Create an SFDX Project . 28
Authorize an Org for an SFDX Project . 29
Create a Sample Lightning Web Component . 29
Deploy a Custom Component to Your Org . 30
Add a Component to Your B2B2C Store . 31
Prebuilt Custom B2B2C Components . 31

Access Custom B2B2C Components . 33

Chapter 9: API End-of-Life . 34

Contents

CHAPTER 1 B2B2C Commerce Developer Guide

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Learn how to build integration packages and custom components
for Salesforce B2B2C Commerce. This guide introduces the B2B2C
data model, which you can augment with custom display headers,
footers, and cart badges. Create integration packages to add
third-party payments, taxes, and shipping rate providers.

B2B2C Commerce is built natively on the Salesforce Customer 360
Platform, the world’s most trusted commerce solution. B2B2C helps
you launch stores quickly with guided setup, low-code configuration
and branding, simplified data import, and shared workflows across
clouds. The B2B2C Commerce platform is open and extensible. Its
minimal configuration requirements and declarative programming layer let Commerce Admins and
Merchandisers quickly accomplish setup tasks so that developers can focus on enabling integrations
and extending platform capabilities.

Partners create personalized shopping experiences with drag-and-drop storefront theming and
Einstein-enabled search, all within an integrated data model for Order Management, CMS, Sales, and
Service. A rich and growing AppExchange includes integration packages from leading, third-party
partners.

1

CHAPTER 2 B2B2C Commerce Data Model

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

The B2B2C Commerce store template is built on a preconfigured
data model. The data model supports standard and customizable
business objects for a multitude of business relationships and
interoperability with Lightning B2B, Salesforce Order Management,
and Service Cloud.

The B2B2C data model connects the store objects. Default object
relationships support a full-featured B2C webstore experience.

Commerce Admins and Merchandisers fill out the experience by setting up shopper groups, importing
product lists, branding store pages, and linking third-party tax, shipping, and payment providers. They
perform these tasks by clicking through the B2B2C Commerce template in Experience Builder with little
or no coding.

Here’s a summary of the default Lightning B2C data model objects.

• For a functional definition of each object, see Key Concepts.

• For an introduction to comparable data model business objects, see B2B Commerce on Lighting
Data Model.

2

https://help.salesforce.com/articleView?id=sf.b2b_comm_lex_key_concepts.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=sf.b2b_comm_lex_schema_builder.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=sf.b2b_comm_lex_schema_builder.htm&type=5&language=en_US

DescriptionAPI NameData Model Object

Includes these fields: supported
currencies, languages, price

WebstoreStore

books, and results displayed per
page, which are customizable.

The Commerce Admin or
Merchandiser uses B2C data
import to set up.

ProductCatalogCatalog

The Commerce Admin or
Merchandiser uses B2C data

ProductCategoryCategory

import to fill in a default compact
layout, which includes name,
catalog, category, search order,
and so on. Layout is
customizable.

Filtered by BuyerGroup
membership. Includes

CommerceEntitlementPolicyEntitlement Policy

CanViewPrice and
CanViewProduct fields, which are
customizable.

The Commerce Admin or
Merchandiser uses B2C data

Product2Product

import to fill in a default compact
layout, which includes a variety
of customizable fields (name,
family, and so on).

The shopper’s financial
information, including credit and

BuyerAccountBuyer Account

order limits, some of which
pertain only to B2B. B2C Buyer
Account is established when a
shopper self-registers.

One per B2B2C webstore, created
by default during B2C data

BuyerGroupBuyer Group

import. BuyerGroup name and
description are customizable.

Established when shoppers
self-register or shop as guests.

BuyerGroupMemberBuyer Group Member

Buyer Account Name is
customizable.

Typically added during setup
with your store’s data import, but
you can add custom fields.

PriceBook2Price Book

3

B2B2C Commerce Data Model

DescriptionAPI NameData Model Object

Typically preset, conforming to
Price Book object when

PricebookEntryPrice Book Entry

imported, but supports custom
fields.

4

B2B2C Commerce Data Model

CHAPTER 3 B2B2C Integration Architecture

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

A predefined set of flows simplifies package integration for B2B2C
Commerce tax, shipping, and payment providers. B2B2C Commerce
integrations with external providers are asynchronous to provide
a consistent, quality customer journey. The integrations are
embedded into the cart and checkout experience, triggered by
shopper interactions with the storefront UI.

The B2B2C app supports these third-party integration points and
flows.

• Shipping—Calculates and writes shipping costs per delivery
group.

• Taxes—Calculates and adds tax prices for cart items.

• Payment—Uses the Salesforce Payment Adapter framework to fetch tokens and authorizations
(and manage exceptions, such as fraud and insufficient credit) from service providers during checkout
via a Payments Gateway. The integrated Salesforce Order Management module handles additional
services, including capture and refund.

Here’s how the various components work together to form the integration engine.

A predefined set of flows manages shipping, inventory, pricing, and tax integrations.

1. Cart and checkout processing—Entering a delivery address initiates shipping charges and tax
calculation. Order placement triggers payment processing. An integrated Salesforce Order
Management component processes refunds, capture, and more.

5

2. Connect REST API—Service for these discrete APIs for shipping, tax, and payment integrations
execute tasks asynchronously and is distinct from the Salesforce B2B Checkout Subflows
implementation.

3. Task handler—The task handler is implemented as an MQ handler and invoked by the queue
manager when the integration task is picked up for processing. The integration handler is responsible
for delegating the task to the integration implementation, which the Commerce Admin or
Merchandiser specifies when setting up the store.

4. Handler Factory—Responsible for creating an integration handler that maps to the implementation
chosen by the Commerce Admin during store setup.

5. Integration services—Using the store’s configured named credentials, a gateway conveys requests
for third-party tax and shipping calculations. The CCS (Core Commerce Services) Adapter and Service
Salesforce Payment Adapter request and receive authorizations, tokens, and exceptions from a
third-party service via a Payments Gateway.

6. API responses—Successful results and exceptions with UI-facing help messages are returned to
the shopper’s browser.

6

B2B2C Integration Architecture

CHAPTER 4 B2B2C Checkout API Integration

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Checkout APIs execute calls to native or third-party shipping,
tax—tax and shipping calculation share an API trigger—and
payment integrations.

The Checkout APIs provide integration points to third-party services.
Calls to the services are triggered when shoppers click Checkout
or revisit a checkout session from their browser. Store components
that embed the Checkout APIs are implemented in Lightning Web
Runtime.

In this chapter ...

• Shipping and Tax
Integration

• Payments Integration

7

Shipping and Tax Integration

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

A single API call fetches both shipping and tax costs for cart items.

Shoppers trigger an asynchronous shipping cost and tax API call to service providers when they
enter a shipping address. Because shipping and tax providers require the same inputs to make their
respective calculations, a single API call fetches both shipping and tax costs for cart items.

Here’s the structure of RetrieveDeliveryMethod, the triggering shipping and tax calculation API call.

{
“id” : ID : // the cart delivery group id
“deliveryMethods” : DeliveryMethodCollectionRepresentation :
“deliveryAddress” : AddressRepresentation : // selected delivery address
“cartItems” : CartItemCollectionRepresentation :

}

Here’s a sample DeliveryGroupRepresentation.

{
“id”:”2Dg456789012345678AAA”,
"cartItems":{

Total: 1,
carItems:
[
{
"cartItemId":"0a9456789012345678AAA",
"productId":"01txx0000006i44AAA",
"name":"shower bar",
"listPrice":"29.95",
"salesPrice":"20.00",
"totalTax":"1.85",
"totalAmount":"1",
"totalPrice":"31.80",
"totalAdjustmentAmount":"31.80"

8

Shipping and Tax IntegrationB2B2C Checkout API Integration

}
]

},
"deliveryMethods":{
“total: 2”,
“items” :
[
{
"id":"2Dm456789012345678AAA",
"shippingFee":14.00,
"currencyCode":"USD",
"carrier":"UPS",
"classOfService":"Next Day Shipping",
“timeOfArrival” : “2020-11-05T13:15:30Z”
"selected":true

},
{
"id":"2Dm123789012345678EAA",
"shippingFee":9.00,
"currencyCode":"USD",
"carrier":"UPS",
"classOfService":"Three Day Shipping",
“timeOfArrival” : “2020-11-07T16:15:30Z”
"selected":false

}
]},

"shippingAddress":{
"AddressType":"Shipping",
"City":"Boston",
"Country":"USA",
"Id":"81Wxx0000000001EAA",
"IsPrimary":true,
"Name":"Home Address",
"PostalCode":"01234",
"State":"MA",
"Street":"1 Milk Street"

}
}

B2B2C Shipping Reference Packages

A reference shipping integration package supports both B2B2C Commerce and Lightning B2B implementations. Use it as a template
to create your own shipping calculation package.

B2B2C Tax Reference Packages

A reference tax integration package supports both B2B2C Commerce and Lightning B2B implementations. Use it as a template to
create your own shipping calculation package..

9

Shipping and Tax IntegrationB2B2C Checkout API Integration

B2B2C Shipping Reference Packages

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

A reference shipping integration package supports both B2B2C Commerce and Lightning B2B
implementations. Use it as a template to create your own shipping calculation package.

Clone or download the package: Shipping Reference Integration Package.

This guide provides step-by-step procedures for creating and deploying a payments package to
your B2B2C store. The procedure for setting up a shipping package is similar.

B2B2C Tax Reference Packages

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience and is available
in Enterprise, Unlimited,
and Developer editions.

A reference tax integration package supports both B2B2C Commerce and Lightning B2B
implementations. Use it as a template to create your own shipping calculation package..

Clone or download the package: Tax Reference Integration Package

This guide describes how to set up development environments and provides step-by-step procedures
for creating and deploying a payments package to your B2B2C store. The procedure for setting up
a tax package is comparable.

Payments Integration

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

B2B2C Commerce, like Lightning B2B, uses the Salesforce Payment Adapter framework to fetch
tokens and authorizations from service providers during checkout.

A shopper UI action triggers the SetPaymentMethod, which interacts with an integrated third-party
payment provider to reserve funds.

10

B2B2C Shipping Reference PackagesB2B2C Checkout API Integration

https://github.com/forcedotcom/commerce-on-lightning/tree/main/examples/b2c/checkout/integrations
https://github.com/forcedotcom/commerce-on-lightning/tree/main/examples/b2c/checkout/integrations

After the shopper reviews and approves the order, the PlaceOrder API completes the sale.

Integration packages for payment providers are interoperable across the B2B2C Commerce solution and Salesforce Order Management
as well as Salesforce B2B. Here’s a more detailed look at the enabling payment APIs.

11

Payments IntegrationB2B2C Checkout API Integration

Payments Flow APIs

B2B2C Commerce implements a group of payment APIs to support tokenizing shopper credit cards without storing that information
natively.

Payments Gateway

The B2B2C Commerce Payments Gateway parses key object fields for tokenize, authorize, capture, refund, and other checkout API
requests.

B2B2C Payments Reference Packages

A reference payments integration package supports both B2B2C Commerce and B2B Lightning implementations. Use it as a template
to create your own payments package.

Payments Flow APIs

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

B2B2C Commerce implements a group of payment APIs to support tokenizing shopper credit cards
without storing that information natively.

Shopper actions trigger asynchronous payment API calls to a third-party service provider via the
Payment Adapter framework. The APIs support tokenizing shopper credit cards so that no personal
information is stored natively. Together with the licensed Salesforce Order Management (SOM) or
1C OM, the Payment Adapter framework exposes additional APIs. SOM manages the capture and
refund flows and provides an integrated customer order lifecycle, including fulfillment and service.

The following APIs initiate payments processing.

• SetPaymentMethod tokenizes the shopper’s credit card and returns a token.

• PlaceOrder (returns Auth Code) validates the cart, reserves inventory, converts cart to order, authorizes payment, and activates the
order in SOM. The payment authorization reserves funds from the available credit of the credit card, but it’s not a payment. To the
shopper, it can display as pending.

After the transaction is tokenized and the order placed, any of the following APIs and corresponding transactions can occur.

• Authorization Reversal releases the funds reserved by the payment authorization, removing them from “pending transactions.”

• Capture consumes the funds reserved by the payment authorization.

• Sale is a transaction type where Authorization and Capture are executed as part of a single request. If successful, the order is fulfilled
immediately.

• Void cancels the transfer of funds to the merchant account before settlement. When a payment is processed, funds are held. The
balance is deducted from the customer’s credit limit, but not yet transferred to the merchant account. At a later point all transactions
are batched for settlement and the funds are transferred to the merchant’s bank account. A transaction can be voided after purchase
but before settlement.

• Refund is a transaction request that transfers the amount from the merchant’s account to the customer’s account.

For more information on these APIs, see Commerce Connect REST Payment APIs.

12

Payments Flow APIsB2B2C Checkout API Integration

https://developer.salesforce.com/docs/atlas.en-us.234.0.chatterapi.meta/chatterapi/connect_resources_payments.htm?search_text=payment

Payments Gateway

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

The B2B2C Commerce Payments Gateway parses key object fields for tokenize, authorize, capture,
refund, and other checkout API requests.

Note: Payments Gateway uses the CommercePayments Apex namespace. For more
information, see the Apex Reference Guide.

The B2B2C Commerce Payments Gateway parses key object fields passed by the UI Checkout
components. These fields include data used to tokenize and authorize the payment request. For
example, the Payments Gateway requires a tokenize request to pass the following.

cardPaymentMethod: {
cardHolderName: <string>,
cardNumber: <string>,
expiryMonth: <string>,
expiryYear: <string>,
cvv: <string>

}
address: {

street: <string>,
city: <string>,
state: <string>,
postalCode: <string>,
country: <string>

}

Authorization, capture, refund, and other requests also pass these objects. Review the B2B2C Stripe adapter samples in the Payments
Reference Package on page 13 to see how the examples handle these objects for transmission to Stripe.

Examples for the Payments Adapter include:

• tokenizeRequest → commercePayments.PaymentMethodTokenizationRequest

• authRequest → commercePayments.AuthorizationRequest

• captureRequest → commercePayments.CaptureRequest

• refundRequest → commercePayments.ReferencedRefundRequest

B2B2C Payments Reference Packages

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience and in
Enterprise, Unlimited, and
Developer editions.

A reference payments integration package supports both B2B2C Commerce and B2B Lightning
implementations. Use it as a template to create your own payments package.

Clone or download the package: Payments Reference Integration Package

This guide describes how to set up development environments and provides step-by-step procedures
for creating and deploying a payments package to your B2B2C store.

13

Payments GatewayB2B2C Checkout API Integration

https://developer.salesforce.com/docs/atlas.en-us.234.0.apexcode.meta/apexcode/apex_namespace_commercepayments.htm
https://github.com/forcedotcom/commerce-on-lightning/tree/main/examples/b2c/checkout/payment-gateway-integration

CHAPTER 5 B2B2C Product Import API

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience and in
Enterprise, Unlimited, and
Developer editions.

After creating a B2B2C store, administrators and merchandisers
import product data by creating a CSV file formatted for B2B2C.
They then declaratively execute the import using the B2B2C
Commerce App, which calls the Product Import API. The B2B2C
Product Import API populates the store with available products and
associated entities, such as price books and categories.

No knowledge of the B2B2C data model is required for importing
data. The Import API creates the necessary relationships in the data
model.

To support custom requirements, B2B2C Commerce exposes the Product Import API, which is a standard
Connect Rest API. Its properties include IDs for entitlement policies, price books (including strikethrough
price books), catalogs, and versioning for the CSV source.

For developer reference information, see B2B2C Product Import API.

14

https://developer.salesforce.com/docs/atlas.en-us.234.0.chatterapi.meta/chatterapi/connect_resources_commerce_import_product.htm

CHAPTER 6 Set Up a B2B2C Commerce Development
Environment

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Salesforce recommends the Salesforce Developer Experience (SFDX)
environment for building your tax, shipping, and payment
integration packages and Lightning web components (LWC). SFDX
provides easy access to Salesforce extensions and GitHub
repositories containing LWC templates and reference packages.
SFDX also integrates with Salesforce CLI, the Visual Studio Code
editor with the Salesforce Extension Pack, and a B2C plug-in to
quickly deploy packages and components to scratch orgs and
stores.

In this chapter ...

• Install the Visual
Studio Code Editor

• Get Salesforce
Plug-ins for VS Code

• Install the SFDX CLI

• Install the SFDX
Commerce B2B2C
Plug-in

15

Install the Visual Studio Code Editor

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

The free Visual Studio (VS) Code editor is an ideal development environment for creating, compiling,
displaying, and debugging Salesforce Lightning web components and B2B2C integration packages.

The free VS Code editor is open source and optimized for cloud and web coding. The project folder
combines, compiles, and displays the output of the HTML, JavaScript, and CSS files for your
component.

• Install the open source Visual Studio Code editor

Get Salesforce Plug-ins for VS Code

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

The VS Code editor provides access to Salesforce plug-ins that support creating integration packages
and custom B2B2C components. The extensions include features for working with development
orgs (scratch orgs, sandboxes, and DE orgs), Lightning web components (LWC), and Visualforce.

For more information, see the Salesforce Extensions for VS Code Overview.

1. Open the VS Code app.

2. Navigate to View > Extensions.

3. In the search field, enter Salesforce.

4. To install the package, click Salesforce Extension Pack (v. 51.4.0 or later).

The Salesforce Extension Pack includes:

• Salesforce SFDX CLI integration for VS Code

• ESLint JavaScript integration for VS Code

• LWC for VS Code, which uses the VS Code HTML server to provide code editing features for the LWC program model, including
syntax highlighting, code completion, and file outlining

For an overview, see Salesforce Extensions for LWC.

16

Install the Visual Studio Code EditorSet Up a B2B2C Commerce Development Environment

https://code.visualstudio.com/download
https://developer.salesforce.com/tools/vscode/
https://developer.salesforce.com/tools/vscode/en/lwc/writing

Install the SFDX CLI

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

The Salesforce DX (SFDX) CLI synchronizes your source code between the Salesforce orgs that you
deploy to and your version control system.

Install the VS Code editor, and download the Salesforce extensions.

• Install the Salesforce SFDX CLI

Install the SFDX Commerce B2B2C Plug-in

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

The SFDX Commerce B2B2C plug-in helps you perform a variety of B2B2C development tasks. Use
it to set up and deploy integration packages to scratch environments for testing or to an org.

You configure a JSON file that defines store parameters. Then use the CLI to create and authorize
a Dev Hub, stand up a store or sandbox, deploy an integration package, import product data, and
more.

1. In the VS Code Editor, open the Command Palette by pressing Ctrl+Shift+P (Windows) or
Cmd+Shift+P (macOS).

2. Enter sfdx plugins:install @salesforce/commerce.

Note: Both SFDX and the Commerce B2B2C plug-in are automatically updated.

17

Install the SFDX CLISet Up a B2B2C Commerce Development Environment

https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.get_started_cli

CHAPTER 7 Creating B2B2C Payments Packages

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience and in
Enterprise, Unlimited, and
Developer editions.

Create and deploy an unmanaged payment package to your scratch
org or store using an SFDX Project in the VS Code editor.

In this chapter ...

• Enable Dev Hub

• Create an SFDX
Package Project

• Authorize Your Dev
Hub

• Create a Scratch Org

• Add Apex Adapter
Classes

• Add Reference
Package Code

• Create Named
Credentials

• Deploying a B2B2C
Package

• Listing a B2B2C
Package on
AppExchange

18

Enable Dev Hub

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience and in
Enterprise, Unlimited, and
Developer editions.

The Dev Hub org determines where scratch orgs are authorized for your package project.

Note: After you enable Dev Hub, you can’t disable it.

1. Log in as System Administrator to your org.

2. From Setup, in the Quick Find box, enter DevHub, and select DevHub. If you don't see DevHub
in the Setup menu, make sure that your org is one of the supported editions.

3. To enable Dev Hub, click Enable.

Create an SFDX Package Project

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience and in
Enterprise, Unlimited, and
Developer editions.

USER PERMISSIONS

To create a scratch org:
• System Administrator

Use SFDX in the VS Code editor to create a project for the package.

1. In the VS Code editor, open the Command Palette by pressing Ctrl+Shift+P (Windows) or
Cmd+Shift+P (macOS).

2. Enter SFDX.

3. Select SFDX: Create Project.

4. Name the project.

Example: <MyPayments|Shipping|Tax|Package>

5. Press Enter.

6. Select a folder to store the project.

7. Click Create Project.

8. Open sfdx-project.json and change the sfdcLoginURL field to contain the login URL to your Dev
Hub.

Example: "sfdcLoginUrl": "http://localhost.internal.salesforce.com:6109"

9. Under MyPaymentsPackage/config, add or edit project-scratch-def.json to prepend the Commerce namespace for the GitHub
containing the integration package.

Example: {1CommerceRepo}/config/project-scratch-def.json

19

Enable Dev HubCreating B2B2C Payments Packages

Example:

Authorize Your Dev Hub

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Link your Dev Hub to the package project.

1. In the VS Code editor, open the Command Palette by pressing Ctrl+Shift+P (Windows) or
Cmd+Shift+P (macOS).

2. Scroll down to select Authorize a Dev Hub.

3. To enable Dev Hub, click Enable.

4. After prompted to confirm, optionally log in to your store with your System Administrator
credentials.

Create a Scratch Org

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

After configuring an SFDX project and authorizing a Dev Hub, create a scratch org for testing the
package. SFDX uses your project-scratch-def.json to stand up the scratch org.

1. In the VS Code editor, open the Command Palette by pressing Ctrl+Shift+P (Windows) or
Cmd+Shift+P (macOS).

2. Enter SFDX.

3. Select SFDX: Create a Default Scratch Org.

20

Authorize Your Dev HubCreating B2B2C Payments Packages

Add Apex Adapter Classes

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Create the Apex classes that serve as templates for package objects.

1. In Visual Studio Code, open the Command Palette by pressing Ctrl+Shift+P (Windows) or
Cmd+Shift+P (macOS).

2. Enter SFDX.

3. Select SFDX: Create an Apex Class.

4. Enter

{1commercerepo}/examples/checkout/payment-gateway-integration/Stripe/classes/StripeAdapter.cls.

5. Press Enter.

6. For the directory, enter force-app/main/default/classes.

7. Press Enter.

8. Repeat steps 4 through 7 to name and choose a directory for each of the following.

• {1commerceRepo}/examples/checkout/payment-gateway-integration/Stripe/classes/StripeAdapter.cls-meta.xml
→ force-app/main/default/classes/StripeAdapter.cls-meta.xml

• {1commerceRepo}/examples/checkout/payment-gateway-integration/Stripe/classes/StripeValidationException.cls
→ force-app/main/default/classes/StripeValidationException.cls

• {1commerceRepo}/examples/checkout/payment-gateway-integration/Stripe/classes/StripeValidationException.cls-meta.xml
→ force-app/main/default/classes/StripeValidationException.cls-meta.xml

• {1commerceRepo}/examples/checkout/payment-gateway-integration/Stripe/classes/QueryUtils.cls
→ force-app/main/default/classes/QueryUtils.cls

• {1commerceRepo}/examples/checkout/payment-gateway-integration/Stripe/classes/QueryUtils.cls-meta.xml
→ force-app/main/default/classes/QueryUtils.cls-meta.xml

The Apex adapter and related classes reside in your project’s force-app/main/default/classes directory. Use the GitHub
file names for the adapter, metadata, and query utilities files.

Add Reference Package Code

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

From the reference package in GitHub, fetch and paste code to your SFDX integration project files.
Modify the code as needed.

• Copy and paste the code from the payments package (GitHub) files into the corresponding
Apex CLS and meta.xml files in the force-app/main/default/classes directory.

If you are creating your own unique package, modify file contents as required while retaining
the file structure.

21

Add Apex Adapter ClassesCreating B2B2C Payments Packages

Create Named Credentials

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Create named credentials to streamline authentication for the integration package.

1. In VS Code Explorer, under force-app/main/default, create a subdirectory called
namedCredentials.

2. In namedCredentials, create a file and name it stripe.namedCredential.

3. Navigate to the /namedCredentials folder in the public repo of the Stripe integration payments
package and copy the contents of the file:Stripe.namedCredential

4. Open stripe.namedCredential, and paste the contents copied in the previous step.

Deploying a B2B2C Package

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Use SFDX, the Commerce UI, Workbench, or the SFDX B2C plug-in to deploy a package to a scratch
org or store.

Deploy a Package with SFDX

Push and deploy package source code to your Dev Hub org using SFDX commands.

Deploy a Package from the B2B2C Commerce UI

You can use the B2B2C Commerce UI to install a package into an org or store.

Deploy a Package with Workbench

You can use Workbench to install a package to your org or store.

Deploy a Package with the SFDX Commerce B2B2C Plug-in

Install a package with the SFDX Commerce B2B2C plug-in and map the gateway from the Commerce UI.

Deploy a Package with SFDX

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Push and deploy package source code to your Dev Hub org using SFDX commands.

1. In Visual Studio Code, open the Command Palette by pressing Ctrl+Shift+P (Windows) or
Cmd+Shift+P (macOS).

2. Enter SFDX: Push Source to Default Scratch Org.

3. To create the package, enter sfdx force:package:create -n PACKAGENAME
-t Unlocked -r force-app —nonamespace.

4. To create the package version, from the command line inside the project directory, enter sfdx
force:package:version:create -p PACKAGENAME -d force-app -v
DEVHUBUSERNAME -k 123456 --skipvalidation —-wait 10, where
DEVHUBUSERNAME is the name of your authorized Dev Hub.

5. To install the package, enter sfdx force:package:install --package <PACKAGENAME> --targetusername
<jdoe@example.com>, where jdoe@example.com is the System Administrator’s username.

You can optionally install the package from the B2B2C Commerce app. To do so, for Step 4, create the package version and copy
the returned installation URL, which looks like this:
https://login.salesforce.com/packaging/installPackage.apexp?p0=04txx0000004JDCAA2.
Replace the host in the URL with the host of the scratch org you’re deploying to.

22

Create Named CredentialsCreating B2B2C Payments Packages

https://github.com/forcedotcom/commerce-on-lightning/tree/main/examples/b2c/checkout/payment-gateway-integration/Stripe/namedCredentials
https://github.com/forcedotcom/commerce-on-lightning/tree/main/examples/b2c/checkout/payment-gateway-integration/Stripe/namedCredentials

6. To retrieve the metadata in package format, enter sfdx force:mdapi:retrieve -s -r ~/Documents -u
MYSCRATCHORG -p PACKAGENAME.

Make sure that the -u variable is the name of the org where you installed the package in the previous step.

Deploy a Package from the B2B2C Commerce UI

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

You can use the B2B2C Commerce UI to install a package into an org or store.

All package components, Apex classes, named credentials, and payment gateway providers must
reside in the SFDX project.

1. From Salesforce Setup, in the Quick Find box, enter Packages, and then select Packages.

2. Click New and enter the package details.

3. Click Save.

4. To add package components, click Add Components.

5. From the component type dropdown, select the the Payment Gateway adapter, Apex classes,
the named credentials, and the Payment Gateway provider.

6. For each component, click Add to Package.

7. Click Upload.

When your package is uploaded successfully, you receive an email that includes an installation link. Wait five minutes for Salesforce
to activate the package.

8. To complete deployment, click the installation link in the email.

9. To retrieve the package, from the project directory of the VS Code SFDX environment, enter sfdx force:mdapi:retrieve
-s -r ~/FOLDERNAME -u MYSCRATCHORG -p PACKAGENAME.

Deploy a Package with Workbench

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

You can use Workbench to install a package to your org or store.

All package components, Apex classes, and payment gateway providers must reside in the SFDX
project.

1. Navigate to https://workbench.developerforce.com.

2. In the Environment field, select Production.

3. Select the latest API version.

4. Select I agree to the terms of service, and click Login With Salesforce.

5. From the Migration menu in the navigation bar, select Deploy.

6. Select the integration packager (MYPACKAGE.zip).

7. Select Single Package.

8. Click Next.

9. Click Deploy.

10. To add named credentials for the package, navigate to Setup > Security > Named Credentials.

11. Click New Named Credential.

23

Deploy a Package from the B2B2C Commerce UICreating B2B2C Payments Packages

https://workbench.developerforce.com

12. Enter the following information, and make a note of the name and label for future tasks.

a. Label: <AdapterName>_NC

b. Name: <AdapterName>_NC

c. URL: <URL for provider>, for example, https://api.stripe.com

d. Certificate: not required

e. Identity Type: Select Named Principal

f. Authentication Protocol: Select Password Authentication

g. Username: <sysasdminUsernameforOrg>

h. Password: <sysadminPasswordforOrg>

i. Select Generate Authorization Header

j. Select Allow Merge Fields in HTTP Header

k. Do not select Allow Merge Fields in HTTP Body

13. Click Save.

14. To create the gateway and assign it to your org or store:

a. In your org or store, select Quick Access > Developer Console.

b. To create the gateway to the store, in the console, enter PaymentGatewayPostInstall.run(String
<storeName>).

Deploy a Package with the SFDX Commerce B2B2C Plug-in

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Install a package with the SFDX Commerce B2B2C plug-in and map the gateway from the Commerce
UI.

All package components, Apex classes, named credentials, and payment gateway providers must
reside in the SFDX project. Deploying the adapter classes requires placing the Apex source in the
root B2B2C plug-in folder. The folder’s location depends on how you work with the GitHub repo.

• If you’re executing the Commerce B2B2C plug-in from a cloned copy of the Commerce repo,
the base folder resides in the cloned directory.

• If you installed the SFDX plug-ins in your CLI and VS Code development environment, the base
folder is in the root directory (for example, in UNIX, ~/.b2c).

Before deploying the Apex classes, make sure that the directory containing them has this structure in the PACKAGENAME folder (for
example, Stripe).

24

Deploy a Package with the SFDX Commerce B2B2C Plug-inCreating B2B2C Payments Packages

• <?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
<types>
<members>StripeAdapter</members>
<members>StripeValidationExeption</members>
<name>ApexClass</name>

</types>
<types>
<members>*</members>
<name>NamedCredential</name>

</types>
<version>49.0</version>

</Package>

Make sure the Classes folder includes:

• PACKAGENAMEAdapter.cls (for example, StripeAdapter.cls)

• PACKAGENAMEAdapter.cls-meta.xml (for example, StripeAdapter.cls-meta.xml)

Make sure the namedCredentials folder includes:

• PACKAGENAME.namedCredential (for example, Stripe.namedCredential)

1. In the VS Code editor, open the devhub-configuration.json file.

2. Set the store paymentAdapter variable to PACKAGENAME. For example: "paymentAdapter": "stripe".

3. Open the Command Palette by pressing Ctrl+Shift+P (Windows) or Cmd+Shift+P (macOS).

4. To install the adapter, enter sfdx b2c:payments:quickstart:setup.

5. To add named credentials, navigate to Setup > Security > Named Credentials.

6. Click New Named Credential.

7. Note: In substeps a and b, make a note of the name and label you enter for related tasks.

Enter the following information:

a. Label: <AdapterName>_NC

b. Name: <AdapterName>_NC

c. URL: <URL for provider>, for example, https://api.stripe.com

d. Certificate: not required

e. Identity Type: Select Named Principal

f. Authentication Protocol: Select Password Authentication

g. Username: <sysasdminUsernameforOrg>

h. Password: <sysadminPasswordforOrg>

i. Select Generate Authorization Header

j. Select Allow Merge Fields in HTTP Header

k. Do not select Allow Merge Fields in HTTP Body

8. Click Save.

9. To create the payment gateway, log in to Salesforce as an admin, and click Lightning App Launcher.

a. Search for and select Payment Gateways.

25

Deploy a Package with the SFDX Commerce B2B2C Plug-inCreating B2B2C Payments Packages

b. Click New.

c. Enter a payment gateway name, for example, Stripe.

d. Select the Payment Gateway Provider <AdapterName>Adapter that you specified in the devhub-configuration.json file (in step
2).

e. Select the merchant credential <AdapterName>_NC.

f. Set the Status to Active.

10. To map the payment gateway to the store:

a. Navigate to Store Home.

b. Click the Administration tile.

c. From the left navigation menu, select Card Payment Gateway.

d. Click Link Integration.

e. Select the <AdapterName>Adapter.

f. Click Next.

g. Click Confirm.

Listing a B2B2C Package on AppExchange

Make your integration package widely available by listing it on AppExchange. Vetted and tested shipping, tax, and payment packages
are eligible to be listed on AppExchange.

Find out how to get listed on Salesforce AppExchange.

26

Listing a B2B2C Package on AppExchangeCreating B2B2C Payments Packages

https://partners.salesforce.com/s/education/general/AppExchange_Listing

CHAPTER 8 Creating Custom Display Components for
B2B2C Commerce

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

The B2B2C Commerce App comes with standard components. The
components are part of the store template that Commerce Admins
and Merchandisers use to set up their customer experience.
However, you can quickly and easily build custom components,
such as headers, footers, and banners.

In this chapter ...

• B2B2C Lightning Web
Components

• B2B2C Commerce
APIs for Custom
Components

• Create an SFDX
Project

• Authorize an Org for
an SFDX Project

• Create a Sample
Lightning Web
Component

• Deploy a Custom
Component to Your
Org

• Add a Component to
Your B2B2C Store

• Prebuilt Custom
B2B2C Components

27

B2B2C Lightning Web Components

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Custom Lightning web components (LWC) are easy to build and perform well in the web browser
that hosts your B2B2C store.

You build a component using core web browser building blocks: HTML, JavaScript, and CSS.

• HTML provides the structure for your component.

• JavaScript defines the core business logic, event handling, API calls to fetch page data, and
related metadata.

• CSS provides the look, feel, and animation.

To build a custom component, you create an HTML file and a JavaScript file with the same name
in a shared folder, also with the same name).

You then deploy the component to Experience Builder with B2B2C-specific metadata. The metadata includes crucial declarations to
ensure that your component runs smoothly and safely. The Salesforce Lightning web runtime resolves, compiles, and bundles your files
and constructs your component automatically.

B2B2C Commerce APIs for Custom Components

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

B2B2C Commerce supports component API methods for custom branding and theming.

B2B2C Commerce includes a Commerce namespace that supports these component API methods
for fetching and displaying data.

• getAppContext()—Retrieves the application context that doesn’t rely on the current
user session, such as the web store ID, or other application-related parameters.

• getSessionContext()—Retrieves session-related context, such as user ID and mode.

• CartSummaryAdapter—A wire adapter that retrieves the current cart summary

In addition, your component can use any Experience Cloud APIs, including:

• getCommunityNavigationMenu()—Retrieves menus for display in banner headers and footers.

• cmsDeliveryApi—A wire adapter that retrieves published CMS content versions for an Experience Builder site.

Create an SFDX Project

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Create a Salesforce Developer Experience (SFDX) project to store your custom component files.

1. In the Visual Studio Code editor, open the Command Palette by pressing Ctrl+Shift+P (Windows)
or Cmd+Shift+P (macOS).

2. Enter SFDX.

3. Select SFDX: Create Project.

4. Click Enter.

5. Name the project (for example, HelloWorldLightningWebComponent), and click
Enter.

6. Select a folder to store the project.

7. Click Create Project.

28

B2B2C Lightning Web ComponentsCreating Custom Display Components for B2B2C Commerce

https://developer.salesforce.com/docs/atlas.en-us.234.0.chatterapi.meta/chatterapi/features_communities.htm

Example:

Authorize an Org for an SFDX Project

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Authorize the org to which SFDX deploys custom objects to streamline deployment.

1. In Visual Studio Code, open the Command Palette by pressing Ctrl+Shift+P (Windows) or
Cmd+Shift+P (macOS).

2. Enter SFDX.

3. Select SFDX: Authorize an Org.
SFDX opens the Salesforce login portal to your org in a separate browser window.

4. Log in using your Admin credentials.

5. If you're prompted to allow access, click Allow.
After you authenticate in the browser, the CLI remembers your credentials. The success message looks like this:

Example:

Create a Sample Lightning Web Component

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Create a sample custom component to deploy from SFDX to an authorized org.

This exercise creates a Lightning web component file structure where you can copy and paste
content from a component in a GitHub repository.

1. In the Visual Studio Code editor, open the Command Palette by pressing Ctrl+Shift+P (Windows)
or Cmd+Shift+P (macOS).

2. Enter SFDX.

3. Select SFDX: Create Lightning Web Component.

Don't select SFDX: Create Lightning Component, which creates an Aura component.

4. Name the component (for example, helloWorld).

5. To accept the default force-app/main/default/lwc location, press Enter.

6. To view the new files in Visual Studio Code Explorer, press Enter.

29

Authorize an Org for an SFDX ProjectCreating Custom Display Components for B2B2C Commerce

7. Open the HTML file (for example, helloWorld.html), and write or copy and paste the HTML code for your project.

8. Save the file.

9. Open the JavaScript file (for example, helloWorld.js), and write or copy and paste the JavaScript code for your project.

10. Save the file.

11. Open the XML file (for example, helloWorld.js-meta.xml), and write or copy and paste the XML code for your project.

Deploy a Custom Component to Your Org

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Deploy a Lightning web component to use it on your store pages.

1. From the component project directory in Visual Studio Code, right-click the default folder under
force-app/main, and select SFDX: Deploy Source to Org.

2. On the Output tab of the integrated terminal, view the results of your deployment. SFDX displays a deployment status notice that
includes an exit code, such as “SFDX: Deploy Source to Org ... ended with exit code 0”. Exit code 0 means that the command ran
successfully.

30

Deploy a Custom Component to Your OrgCreating Custom Display Components for B2B2C Commerce

Add a Component to Your B2B2C Store

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

After you add a component to your canvas, you can edit its properties to customize it.

Note: Before placing a custom component, assign a custom theme layout to the page in
Experience Builder.

1. In the VS Code editor, open the Command Palette by pressing Ctrl+Shift+P (Windows) or
Cmd+Shift+P (macOS).

2. Enter SFDX.

3. Select SFDX: Open Default Org.

Your B2B2C store opens in a separate browser.

4. In the left Navigation panel, click Components.

The custom component displays under Components > Custom Components.

5. From the Custom area of the Lightning Components list, drag your Lightning web component to the page canvas.

6. To edit the component properties, select the component on the page canvas, and enter changes in the floating component property
editor.

Prebuilt Custom B2B2C Components

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

Prebuilt custom B2B2C display components are not yet available, and we cannot provide a release
date. When they become available, this topic will be updated.

Each B2B2C component includes JavaScript, CSS, HTML, and metadata files. Deploy the components
to your store. Then, in Experience Builder, combine the components to create rich custom theming
and shopper-friendly features, such as banners, store logos, navigation menus, search boxes, and
linked lists for related products.

These components are ready to deploy components.

31

Add a Component to Your B2B2C StoreCreating Custom Display Components for B2B2C Commerce

customCommerceFooter
A footer for custom themed content that uses the SessionContext interface to update cached data.

After you deploy and place it on a store page canvas, the empty customCommerceFooter looks like this.

After rudimentary theming, this sample customCommerceFooter hosts a logo and link lists.

customCommerceHeader
A header container for placing a banner, logo, navigation, search, and cart badge. The component uses the SessionContext interface
to update cached data.

After you deploy and place it on a store page canvas, the empty customCommerceHeader looks like this.

Here’s a sample themed customCommerceHeader that features horizontal navigation, search, cartBadge, and logo custom components.

cartBadge
Use this component to extend store theming to the cart summary badge, which uses a wire adapter API to display the number of
items in the cart.

horizontalNavigation, verticalNavigation
After deployment to a store, you can drag these menu container components into a header, footer, or another component.

navigationMenu
A hamburger menu container for mobile presentation.

linksList
A container to add links to related products, and so on.

searchBox
A search box container.

storeLogo
A container to receive and display a logo.

Access Custom B2B2C Components

Prebuilt custom B2B2C display components are not yet available, and we cannot provide a release date. When they become available,
this topic will be updated.

32

Prebuilt Custom B2B2C ComponentsCreating Custom Display Components for B2B2C Commerce

Access Custom B2B2C Components

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

USER PERMISSIONS

To create a custom
component in an SFDX
project:
• System Administrator

Prebuilt custom B2B2C display components are not yet available, and we cannot provide a release
date. When they become available, this topic will be updated.

1. In the Visual Studio Code editor, open the Command Palette by pressing Ctrl+Shift+P (Windows)
or Cmd+Shift+P (macOS).

2. Enter SFDX.

3. Select SFDX: Create Lightning Web Component.

Don't select SFDX: Create Lightning Component, which creates an Aura component.

4. Name the component (for example, myCustomComponents).

5. To accept the default force-app/main/default/lwc location, press Enter.

6. To view the new files in Visual Studio Code Explorer, press Enter.

7. In a browser window, open the repository containing the B2B2C custom components.

8. Clone or download the repo to your SFDX project.

33

Access Custom B2B2C ComponentsCreating Custom Display Components for B2B2C Commerce

CHAPTER 9 API End-of-Life

Salesforce is committed to supporting each API version for a minimum of three years from the date of
first release. In order to mature and improve the quality and performance of the API, versions that are
more than three years old might cease to be supported.

When an API version is to be deprecated, advance notice is given at least one year before support ends.
Salesforce will directly notify customers using API versions planned for deprecation.

34

	B2B2C Commerce Developer Guide
	B2B2C Commerce Data Model
	B2B2C Integration Architecture
	B2B2C Checkout API Integration
	Shipping and Tax Integration
	B2B2C Shipping Reference Packages
	B2B2C Tax Reference Packages

	Payments Integration
	Payments Flow APIs
	Payments Gateway
	B2B2C Payments Reference Packages

	B2B2C Product Import API
	Set Up a B2B2C Commerce Development Environment
	Install the Visual Studio Code Editor
	Get Salesforce Plug-ins for VS Code
	Install the SFDX CLI
	Install the SFDX Commerce B2B2C Plug-in

	Creating B2B2C Payments Packages
	Enable Dev Hub
	Create an SFDX Package Project
	Authorize Your Dev Hub
	Create a Scratch Org
	Add Apex Adapter Classes
	Add Reference Package Code
	Create Named Credentials
	Deploying a B2B2C Package
	Deploy a Package with SFDX
	Deploy a Package from the B2B2C Commerce UI
	Deploy a Package with Workbench
	Deploy a Package with the SFDX Commerce B2B2C Plug-in

	Listing a B2B2C Package on AppExchange

	Creating Custom Display Components for B2B2C Commerce
	B2B2C Lightning Web Components
	B2B2C Commerce APIs for Custom Components
	Create an SFDX Project
	Authorize an Org for an SFDX Project
	Create a Sample Lightning Web Component
	Deploy a Custom Component to Your Org
	Add a Component to Your B2B2C Store
	Prebuilt Custom B2B2C Components
	Access Custom B2B2C Components

	API End-of-Life

