
Analytics SAQL Reference
Salesforce, Summer ’20

 @salesforcedocs
Last updated: August 20, 2020

https://twitter.com/salesforcedocs

© Copyright 2000–2020 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

OVERVIEW . 1
Introduction . 1
Use SAQL in the Analytics Dashboard . 2
Enable SAQL Logs in the Browser . 4

QUICK START . 5
Write Your First Query . 5
Create a Derived Measure . 6
Create a Derived Dimension . 7

EXAMPLES . 8
Analyze Your Data Over Time . 8
Calculate How Long Activities Take . 9
Display the Opportunities Closed This Month . 10
Forecast Future Data Points with timeseries . 11
Combine Data from Multiple Data Streams with cogroup . 12
Replace Null Values with coalesce() . 14
Dynamically Display Your Top Five Reps with Windowing . 15
Append Datasets using union . 16
Calculate the Slope of the Regression Line . 17
Show the Top and Bottom Quartile . 18
Calculate Grand Totals and Subtotals with the rollup Modifier and grouping() Function 19

SAQL REFERENCE . 22
SAQL Basic Elements . 22
SAQL Operators . 25
SAQL Statements . 32
SAQL Functions . 53

QUERY PERFORMANCE . 101
Projection is Important . 101
Network Traffic and Latency . 102
Redundant Filters . 102
Use the ELT Process . 103
Multi-Value Dimensions . 104
Limit the use of Unique() . 104

OVERVIEW

Use SAQL (Salesforce Analytics Query Language) to access data in Analytics datasets. Analytics uses SAQL behind the scenes in lenses,
dashboards, and explorer to gather data for visualizations.

Developers can write SAQL to directly access Analytics data via:

• Analytics REST API

Build your own app to access and analyze Analytics data or integrate data with existing apps.

• Dashboard JSON

Create advanced dashboards. A dashboard is a curated set of charts, metrics, and tables.

• Compare Table

Use SAQL to perform calculations on data in your tables and add the results to a new column.

• Transformations During Data Flow

Use SAQL to perform manipulations or calculations on data when bringing it in to Analytics.

Introduction

Most actions you take in Analytics result in one or more SAQL queries. Every lens, dashboard, and explorer action generates and
executes a SAQL query to build the data needed for the visualization.

Use SAQL in the Analytics Dashboard

Use the Analytics Studio user interface to modify existing SAQL queries or write new ones. Writing SAQL queries in the user interface
is the easiest way to get started.

Enable SAQL Logs in the Browser

If you’re using Google Chrome to work with SAQL and Einstein Analytics, you can turn on SAQL logs.

SEE ALSO:

Analytics REST API Developer's Guide

Analytics Dashboard JSON Reference

Introduction

Most actions you take in Analytics result in one or more SAQL queries. Every lens, dashboard, and explorer action generates and executes
a SAQL query to build the data needed for the visualization.

Analytics evaluates queries, widgets, and layouts to render a dashboard. Behind every widget is a SAQL query which is sent the query
engine for execution. The resulting data is passed to the charting library, which renders it using corresponding widget definitions. SAQL
is influenced by the Apache Pig Latin (pigql) syntax, but their implementations differ, and they are not compatible.

1

https://developer.salesforce.com/docs/atlas.en-us.226.0.bi_dev_guide_rest.meta/bi_dev_guide_rest/
https://developer.salesforce.com/docs/atlas.en-us.226.0.bi_dev_guide_json.meta/bi_dev_guide_json/

How the components fit together

Developers can write SAQL to access Analytics data, either via the Analytics REST API, or by creating and editing SAQL queries contained
in the dashboard JSON.

A SAQL query loads an input dataset, operates on it, and outputs a results dataset. Each SAQL statement has an input stream, an operation,
and an output stream. Statements can span multiple lines and must end with a semicolon. Each query line is assigned to a named stream.
A named stream can be used as input to any subsequent statement in the same query. The only exception to this rule is the last line in
a query, which you don’t need to assign explicitly.

Use SAQL in the Analytics Dashboard

Use the Analytics Studio user interface to modify existing SAQL queries or write new ones. Writing SAQL queries in the user interface is
the easiest way to get started.

Every component in Einstein Analytics uses SAQL behind the scenes. You can build a widget in a dashboard, then switch to the SAQL
view to see the SAQL query for the widget. Or, you can create a lens while exploring a dataset, then switch to the SAQL view to see the
SAQL query for the lens.

Let’s look at the query generated by a widget in a dashboard.

Note: After you edit the SAQL for a widget, you may not be able to go back to the dashboard view, depending on how complex
the SAQL query is.

1. In your Salesforce org, open Analytics Studio, then open a dashboard. For example, open Opportunity Details.

2. Click Edit.

2

Use SAQL in the Analytics DashboardOverview

3. Click a query to edit, for example Amount_1, then click Edit in the dropdown list.

4. Click SAQL Mode to display the SAQL query.

5. View the SAQL query.

Here is the SAQL query for our example:

q = load "DTC_Opportunity_SAMPLE";
q = filter q by 'Closed' == "false";
q = group q by all;

3

Use SAQL in the Analytics DashboardOverview

q = foreach q generate sum('Amount') as 'sum_Amount';
q = limit q 2000;

6. Edit the query, then click Run Query to run the new query. For example, you could change the sum to average.

Enable SAQL Logs in the Browser

If you’re using Google Chrome to work with SAQL and Einstein Analytics, you can turn on SAQL logs.

Note: SAQL Logs in the browser are no longer supported. To see how your SAQL queries run in the dashboard, use the Dashboard
Inspector. You can also right-click the dashboard in the browser and select Inspect.

Turning on SAQL logs in the browser prints queries in the Developer Tools Console. This lets you see what SAQL is generated by Einstein
Analytics dashboards and lenses. This action doesn’t change server-side logs.

1. In Google Chrome, open an Einstein Analytics dashboard.

2. In Google Chrome, open Developer Tools.

3. In Developer Tools, select Console.

4. In the Einstein Analtyics dashboard, elect the explore (wave.apexp) frame.

5. In the developer tools console, enter edge.log.enabled = true

6. In the developer tools console, enter edge.log.query = true

SAQL logs are enabled. The logs are displayed when a query is sent from the dashboard or lens, for example when you drill into a chart.

4

Enable SAQL Logs in the BrowserOverview

QUICK START

Get up to speed quickly with these easy SAQL examples.

Write Your First Query

Let's walk through each part of a simple SAQL query.

Create a Derived Measure

Perform calculations on existing measures and use the result to create a new, or derived, measure.

Create a Derived Dimension

Perform string manipulations on existing dimensions to create a new, or derived, dimension.

Write Your First Query

Let's walk through each part of a simple SAQL query.

We’ll create a new dashboard in an Einstein Analytics org. Then we’ll add a simple chart and look at the resulting SAQL.

Note: These instructions assume you are using the sample Salesforce Developer org, which includes sample datasets. If you are
using a different org, you can still follow the same general instructions with your own dataset.

1. In your Einstein Analytics org, create a new dashboard:

a. Click Create.

b. Click Dashboard.

2. In the window Choose a dashboard template, click Blank Dashboard, then click Continue.

3. Drag a chart widget to the dashboard canvas.

4. In the chart widget, click Chart, then select DTC Opportunity dataset.

5. Click the SAQL Mode button to launch the SAQL editor.

The SAQL editor displays the SAQL query used to fetch the data and render the chart:

1 q = load "DTC_Opportunity_SAMPLE";
2 q = group q by all;
3 q = foreach q generate count() as 'count';
4 q = limit q 2000;

Let’s take a look at each line in the query.

DescriptionLine Number

q = load "DTC_Opportunity_SAMPLE";1

This loads the dataset that you chose when you created the chart widget. You can use the variable q to access
the dataset in the rest of your SAQL statements.

5

DescriptionLine Number

q = group q by all;

In some queries, you want to group by a certain field, for example Account ID. In our case we didn’t specify a
grouping when we created the chart. Use group by all when you don’t want to group data.

2

q = foreach q generate count() as 'count';

This generates the output for our query. In this simple example, we just count the number of lines in the DTC
Opportunity dataset.

3

q = limit q 2000

This limits the number of results that are returned to 2000. Limiting the number of results can improve performance.
However if you want q to contain more than 2000 results, you can increase this number.

4

You can click Back to go back to the chart. You can use the UI to make modifications to the chart, then view the resulting SAQL.

Create a Derived Measure

Perform calculations on existing measures and use the result to create a new, or derived, measure.

Analytics calculates the value of derived measures at run time using the values from other fields.

Note: You can also create a derived measure in a dataflow rather than at runtime using SAQL. Measures created during a dataflow
are calculated when the data is imported and may result in better performance.

Example - Calculate the Time to Win
Suppose that you have an Opportunities dataset with the Close Date and Open Date fields. You want to see the number of days it took
to win the opportunity. Use Close_Date_day_epoch and Created_Date_day_epoch to create a derived measure called Time to Win:
('Close_Date_day_epoch'- 'Created_Date_day_epoch') as 'Time to Win'.

The field Time to Win is calculated at run time:

q = load "Opportunities";
q = foreach q generate 'Close_Date_day_epoch' as 'Close_Date_day_epoch',
'Created_Date_day_epoch' as 'Created_Date_day_epoch', 'Opportunity_Name' as
'Opportunity_Name', ('Close_Date_day_epoch'- 'Created_Date_day_epoch') as 'Time to Win';

The resulting table contains the number of days to win each opportunity:

6

Create a Derived MeasureQuick Start

Create a Derived Dimension

Perform string manipulations on existing dimensions to create a new, or derived, dimension.

Analytics creates derived dimensions at run time.

Note: You can also create a derived dimension in a dataflow rather than at runtime.

Example - Create a Field with City and State
Suppose that you have an Opportunities dataset with a City and a State field. You want to create a single field containing both city and
state. Use SAQL to create a derived dimension.

q = load "Ops";
q = foreach q generate 'Account' as 'Account', 'Amount' as 'Amount', 'City' + "-" + 'State'
as 'City - State';

The resulting table contains city and state in the same field.

7

Create a Derived DimensionQuick Start

EXAMPLES

These hands-on SAQL examples walk you through writing a query to retrieve data

Analyze Your Data Over Time

Use SAQL date functions for advanced time-based analysis.

Calculate How Long Activities Take

Use daysBetween() and date_diff() to calculate the difference between two dates or times.

Display the Opportunities Closed This Month

Use relative date ranges to filter opportunities closed in the current month.

Forecast Future Data Points with timeseries

Use existing data to predict what might happen in the future.

Combine Data from Multiple Data Streams with cogroup

You can combine data from two or more data streams into a single data stream using cogroup. The data streams must have at
least one common field.

Replace Null Values with coalesce()

When you use a left outer or full outer cogroup, unmatched data comes through as null. Use coalesce() to replace null
values with the value of your choice.

Dynamically Display Your Top Five Reps with Windowing

Windowing functions perform calculations over a dynamic range.

Append Datasets using union

You can append data from two or more data streams into a single data stream using union. The data streams must have the same
field names and structure.

Calculate the Slope of the Regression Line

Use SAQL to perform linear analysis on your data to find the line that best fits the data. Then use .regr_slope to return the slope
of this line.

Show the Top and Bottom Quartile

Use SAQL to calculate percentiles, like the top and bottom quartile of your data.

Calculate Grand Totals and Subtotals with the rollup Modifier and grouping() Function

Calculate subtotals of grouped data in your SAQL query using the rollup modifier on the group by statement, then work
with subtotaled data using grouping(). For example, to see the subtotaled value of opportunities by type and lead source, roll
up the type and lead source groups. Then, label the subtotals with the grouping function.

Analyze Your Data Over Time

Use SAQL date functions for advanced time-based analysis.

Note: You can use date filters in the dashboard for basic time-based analysis, for example to calculate month-to-date amounts.
You can also use window functions in the dashboard for basic date range calculations, such as calculating the change in
year-over-year earnings

8

Example - on Which Weekday Do Customers Send the Most Emails?
Suppose that you want to see which day of the week your customers are most active on email. This information allows you to better
target your email campaigns. Use day_in_week() on the Mail_sent_sec_epoch field to calculate the day of the week, then count
the number of records for each day.

q = load "DTC_Opportunity_SAMPLE";
q = foreach q generate day_in_week(toDate(Mail_sent_sec_epoch)) as 'Day in Week';
q = group q by 'Day in Week';
q = foreach q generate 'Day in Week', count() as 'count';

In this case, email traffic is slightly higher on day 4 (Wednesday) and day 7 (Sunday).

SEE ALSO:

Date Functions

Calculate How Long Activities Take

Use daysBetween() and date_diff() to calculate the difference between two dates or times.

Example: Display the Number of Days Since an Opportunity Opened
Suppose that you have an opportunity dataset with the account name and the epoch seconds fields:

You want to see how many days ago an opportunity was opened. Use daysBetween() and now(). Use toDate() to convert
the order date epoch seconds to a date format that can be passed to daysBetween().

q = load "OpsDates1";

q = foreach q generate Account, daysBetween(toDate(OrderDate_sec_epoch), now()) as
'daysOpened';

The resulting data stream displays the number of days since the opportunity was opened.

9

Calculate How Long Activities TakeExamples

Example - How Many Weeks Did Each Opportunity Take to Close?
Use date_diff() with datepart = week to calculate how long, in weeks, it took to close each opportunity.

q = load "DTC_Opportunity";
q = foreach q generate date_diff("week", toDate(Created_Date_sec_epoch),
toDate(Close_Date_sec_epoch)) as 'Weeks to Close';
q = order q by 'Weeks to Close';

SEE ALSO:

daysBetween()

date_diff()

Display the Opportunities Closed This Month

Use relative date ranges to filter opportunities closed in the current month.

Example: Display Opportunities Closed This Month
Suppose that you want to see which opportunities closed this month. Your data includes the account name, the close date fields, and
the epoch seconds field.

Use date() to generate the close date in date format. Then use relative date ranges to filter opportunities closed in the current month.

q = load "OpsDates1";
q = filter q by date(’CloseDate_Year’, ‘CloseDate_Month’, ‘CloseDate_Day’) in ["current
month" .. "current month"];
q = foreach q generate Account;

If the query is run in May 2018, the resulting data stream contains one entry:

10

Display the Opportunities Closed This MonthExamples

To add the close date in a readable format, use toDate().

q = load "OpsDates1";
q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["current
month" .. "current month"];
q = foreach q generate Account, toDate('CloseDate_sec_epoch') as 'Close Date';

The resulting data stream includes the full date and time of the close date.

You can also display just the month and day of the close date.

q = load "OpsDates1";
q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["current
month" .. "current month"];
q = foreach q generate Account, 'CloseDate_Month' + "/" + 'CloseDate_Day' as 'Close Date';

The resulting data stream contains the month and day of the close date.

SEE ALSO:

Time-Based Filtering

Forecast Future Data Points with timeseries

Use existing data to predict what might happen in the future.

Example - How Many Tourists Will Visit Next Year?
Suppose that you run a chain of retail stores, and the number of tourists in your city affect your sales. Use timeseries to predict
how many tourists will come to your city next year:

q = load "TouristData";
q = group q by ('Visit_Year', 'Visit_Month');
q = foreach q generate 'Visit_Year', 'Visit_Month', sum('NumTourist') as 'sum_NumTourist';

-- If your data is missing some dates, use fill() before using timeseries()
-- Make sure that the dateCols parameter in fill() matches the dateCols parameter in
timerseries()
q = fill q by (dateCols=('Visit_Year','Visit_Month', "Y-M"));

11

Forecast Future Data Points with timeseriesExamples

-- Use timeseries() to predict the number of tourists.
q = timeseries q generate 'sum_NumTourist' as Tourists with (length=12,
dateCols=('Visit_Year','Visit_Month', "Y-M"));

q = foreach q generate 'Visit_Year' + "~~~" + 'Visit_Month' as 'Visit_Year~~~Visit_Month',
Tourists;

Use a timeline chart and set a predictive line to see the calculated future data. The resulting graph shows the likely number of tourists
in the future.

SEE ALSO:

timeseries

Combine Data from Multiple Data Streams with cogroup

You can combine data from two or more data streams into a single data stream using cogroup. The data streams must have at least
one common field.

Example - Inner cogroup
Suppose that you want to understand how much time your reps spend meeting with each account. Is there a relationship between
spending more time and winning an account? Are some reps spending much more or much less time than average? To answer these
questions, first combine meeting data with account data using cogroup.

Suppose that you have a dataset of meeting information from the Salesforce Event object. In this example, your reps have had six
meetings with four different companies. The Meetings dataset has a MeetingDuration column, which contains the meeting duration in
hours.

12

Combine Data from Multiple Data Streams with cogroupExamples

The account data exists in the Salesforce Opportunity object. The Ops dataset has an Account, Won, and Amount column. The Amount
column contains the dollar value of the opportunity, in millions.

To see the effect of meeting duration on opportunities, you start by combining these two datasets into a single data stream using
cogroup.

q = cogroup ops by 'Account', meetings by 'Company';

Internally (you cannot see these results yet), the resulting cogrouped data stream contains the following data. Note how the data streams
are rolled up on one or more dimensions.

(1,{(Shoes2Go,2,), (Shoes2Go,5)},{(Shoes2Go,1,1.5), (Shoes2Go,0,3})

(2,{(FreshMeals,3), (FreshMeals, 5)},{(FreshMeals,1,2) (FreshMeals, 1, 1.4)})

(3,{(ZipBikeShare,4)},{(ZipBikeShare,1, 1.1)})

(4,{(ZenRetreats,6)},{(ZenRetreats,0, 2)})

Now the datasets are combined. To see the data, you create a projection using foreach:

ops = load "Ops";
meetings = load "Meetings";
q = cogroup ops by 'Account', meetings by 'Company';
q = foreach q generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum_Amount',
sum(meetings.'MeetingDuration') as 'TimeSpent';

The resulting data stream contains the sum of amount and total meeting time for each company. The sum of amount is the sum of the
dollar value for every opportunity for the company.

13

Combine Data from Multiple Data Streams with cogroupExamples

Now that you have combined the data into a single data stream, you can analyze the effects that total meeting time has on your
opportunities.

SEE ALSO:

cogroup

Replace Null Values with coalesce()

When you use a left outer or full outer cogroup, unmatched data comes through as null. Use coalesce() to replace null values
with the value of your choice.

Example: Left Outer Cogroup with coalesce()
A left outer cogroup combines the right data stream with the left data stream. If a record on the left stream does not have a match on
the right stream, the missing right value comes through as null. To replace null values with a different value, use coalesce().

For example, suppose that you have a dataset of meeting information from the Salesforce Event object, and you join it with data from
the Salesforce Opportunity object. This shows amount won with the total time spent in meetings.

ops = load "Ops";
meetings = load "Meetings";
q = cogroup ops by 'Account' left, meetings by 'Company' ;
q = foreach q generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum_Amount',
sum(meetings.'MeetingDuration') as 'TimeSpent';

It looks like we had no meetings with Zen Retreats.

Let’s use coalesce() to change that null value to a zero.

ops = load "Ops";
meetings = load "Meetings";
q = cogroup ops by 'Account' left, meetings by 'Company' ;

–-use coalesce() to replace null values with zero
q = foreach q generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum_Amount',
coalesce(sum(meetings.'MeetingDuration'), 0) as 'TimeSpent';

14

Replace Null Values with coalesce()Examples

SEE ALSO:

cogroup

Dynamically Display Your Top Five Reps with Windowing

Windowing functions perform calculations over a dynamic range.

Example - Dynamically Display Your Top Five Reps
Use windowing to create a chart that dynamically displays your top-five reps for each country. The chart updates continuously as
opportunities are won. The example uses windowing to calculate:

• Percentage contribution that each rep made to the total amount, partitioned by country

• Ranking of the rep’s contribution, partitioned by country

These calculations let us display the top-five reps in each country.

q = load "DTC_Opportunity_SAMPLE";
q = group q by ('Billing_Country', 'Account_Owner');

q = foreach q generate 'Billing_Country', 'Account_Owner',

-- sum(Amount) is the total amount for a single rep in the current country
-- sum(sum('Amount') is the total amount for ALL reps in the current country
-- sum(Amount) / sum(sum('Amount') calculates the percentage that each rep contributed
-- to the total amount in the current country
((sum('Amount')/sum(sum('Amount'))

-- [..] means "include all records in the partition"
-- "by Billing_Country" means partition, or group, by country
over ([..] partition by 'Billing_Country')) * 100) as 'Percent_AmountContribution',

-- rank the percent contribution and partition by the country
rank() over ([..] partition by ('Billing_Country') order by sum('Amount') desc) as
'Rep_Rank';

-- filter to include only the top 5 reps
q = filter q by 'Rep_Rank' <=5;

The resulting graph shows the top-five reps in each country and displays each rep’s ranking.

15

Dynamically Display Your Top Five Reps with WindowingExamples

Append Datasets using union

You can append data from two or more data streams into a single data stream using union. The data streams must have the same
field names and structure.

To use union, first load the dataset and then use foreach to do the projection. Repeat the process with another dataset. If the two
resulting data streams have an identical structure, you can append them using union.

Let’s say that you have two opportunity datasets from different regions that you brought together using the Salesforce mulit-org
connector. You want to add these datasets together to look at your pipeline as a whole.

The OppsRegion1 data stream contains these fields.

The OppsRegion2 data stream contains these fields.

16

Append Datasets using unionExamples

Use union to combine the two data streams.

ops1 = load "OppsRegion1";

ops1 = foreach ops1 generate 'Account_Owner', 'Account_Type', 'Amount';

ops2 = load "OppsRegion2";
ops2 = foreach ops2 generate 'Account_Owner', 'Account_Type', 'Amount';

-- ops1 and ops2 have the same structure, so we can use union
opps_total = union ops1, ops2;

The resulting data stream contains both sets of data.

SEE ALSO:

union

Calculate the Slope of the Regression Line

Use SAQL to perform linear analysis on your data to find the line that best fits the data. Then use .regr_slope to return the slope of
this line.

17

Calculate the Slope of the Regression LineExamples

Example - Calculate the Relationship Between Number of Activities and
Deal Amount
Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

How much bigger with the deal size be for each extra activity? regr_slope performs a linear analysis on your data then calculates
the slope (that is, the increased amount you win for each extra activity).

q = load "data/sales";
q = group q by all;

--trunc() truncates the result to two decimal places
q = foreach q generate trunc(regr_slope('Amount', 'NumActivities'),2) as 'Gain per Activity';

Based on your existing data, every extra activity that you have tends to increase the deal size by $1.45 million, on average.

SEE ALSO:

regr_slope()

Show the Top and Bottom Quartile

Use SAQL to calculate percentiles, like the top and bottom quartile of your data.

18

Show the Top and Bottom QuartileExamples

Example - Show Top Quartile and Bottom Quartile Deal Size by Country
Suppose that you want to see the top and bottom quartile deal size, by country. You want to see the size of the actual deal, not the
interpolated (or 'average') deal size. Use percentile_disc(.25) and percentile_disc(.75).

q = load "Data";
q = group q by 'Billing_Country';
q = foreach q generate 'Billing_Country' as 'Billing_Country', percentile_disc(0.25) within
group (order by 'Amount' desc) as '25th Percentile', percentile_disc(0.75) within group
(order by 'Amount' desc) as '75th Percentile';
q = order q by '25th Percentile' asc;

Use a bar chart and select Axis Mode > Single Axis to show the top and bottom quartiles together.

SEE ALSO:

percentile_disc()

Calculate Grand Totals and Subtotals with the rollup Modifier and
grouping() Function

Calculate subtotals of grouped data in your SAQL query using the rollup modifier on the group by statement, then work with
subtotaled data using grouping(). For example, to see the subtotaled value of opportunities by type and lead source, roll up the
type and lead source groups. Then, label the subtotals with the grouping function.

Invoking rollup adds rows to your query results with null values for dimensions and subtotaled results for measures. Invoking
grouping() returns 1 if null dimension values are due to higher-level aggregates (which usually means the row is a subtotal),
otherwise it returns 0.

Using grouping() alongside rollup lets you work with subtotaled data. After subtotaling data, common next steps include
logically evaluating subtotaled data with a case statement. Or filtering on subtotaled data with a filter statement.

19

Calculate Grand Totals and Subtotals with the rollup Modifier
and grouping() Function

Examples

Suppose that you have an opportunity dataset, and want to see the value of deals by lead source and type. Plus, you want to see the
total value of all lead sources and all types. Write a query that returns the sum of opportunity amount grouped by type and lead source.
To see the value of all lead sources and all types, use rollup to subtotal opportunities, then use grouping() to label the subtotaled
rows.

Example: rollup
Open the SAQL editor in the dashboard. Instead of grouping data by a field, specify the rollup modifier as the group and pass the
fields you want subtotaled - Type and Lead Source - as parameters. Set q = group q by rollup('Type',
'LeadSource');. Here's the full query.

q = load "opportunityData";
q = group q by rollup('Type', 'LeadSource');
q = order q by ('Type', 'LeadSource');
q = foreach q generate

'Type' as 'Type',
'LeadSource' as 'LeadSource',
sum('Amount') as 'sum_Amount';

The query results show sum of amount by opportunity type and then by lead source. Subtotaled and grand totaled rows have null values
for dimensions.

20

Calculate Grand Totals and Subtotals with the rollup Modifier
and grouping() Function

Examples

Example: grouping()
Null values in place of labeled totals can confuse query results. Avoid this confusion by labeling totals as All Types or All Lead
Sources using case statements with grouping() functions.

q = load "opportunityData";
q = group q by rollup('Type', 'LeadSource');
q = order q by ('Type', 'LeadSource');
q = foreach q generate

(case
when grouping('Type') == 1 then "All Types"
else 'Type'

end) as 'Type',
(case

when grouping('LeadSource') == 1 then "All Lead Sources"
else 'LeadSource'

end) as 'LeadSource',
sum('Amount') as 'sum_Amount';

Now the query results include labeled totals.

21

Calculate Grand Totals and Subtotals with the rollup Modifier
and grouping() Function

Examples

SAQL REFERENCE

These hands-on SAQL examples walk you through writing a query to retrieve data

SAQL Basic Elements

Basic elements are the building blocks of your SAQL query.

SAQL Operators

Use operators to perform mathematical calculations or comparisons.

SAQL Statements

A query is made up of statements. Each SAQL statement has an input stream, an operation, and an output stream.

SAQL Functions

Use functions to perform complex operations on your data.

SAQL Basic Elements

Basic elements are the building blocks of your SAQL query.

Statements

A SAQL query loads input data, operates on it, and outputs the result data. A query is made up of statements. Each SAQL statement
has an input stream, an operation, and an output stream.

Keywords

Keywords are case-sensitive and must be lowercase.

Identifiers

SAQL identifiers are case-sensitive and must be enclosed in single quotation marks (').

Number Literals

A number literal represents a number in your script.

String Literals

A string is a set of characters inside double quotes (").

Boolean Literals

A boolean literal represents true or false (yes or no) in your script.

Quoted String Escape Sequences

Strings can be escaped with the backslash character.

Special Characters

Certain characters have special meanings in SAQL.

Comments

Two sequential hyphens (--) indicate the beginning of a single-line comment in SAQL.

22

Statements
A SAQL query loads input data, operates on it, and outputs the result data. A query is made up of statements. Each SAQL statement has
an input stream, an operation, and an output stream.

A statement is made up of keywords (such as filter, group, and order), identifiers, literals, and special characters. Statements
can span multiple lines and must end with a semicolon.

Assign each query line to an identifier called a stream. The only exception is the last line in a query, which doesn't have to be assigned
explicitly.

The output stream is on the left side of the = operator and the input stream is on the right side of the = operator.

Example
Each line in this SAQL query is a SAQL statement.

q = load "Dataset1";
q = group q by all;
q = foreach q generate sum('Amount') as 'sum_Amount';

SEE ALSO:

filter

foreach

limit

offset

order

Keywords
Keywords are case-sensitive and must be lowercase.

Identifiers
SAQL identifiers are case-sensitive and must be enclosed in single quotation marks (').

Identifiers that are enclosed in quotation marks can contain any character that a string can contain.

This example uses valid syntax:

q = load "Opportunity";

--'Stage' is enclosed in single quotes because it is a field. "08 - Closed Won" is enclosed
in double quotes because it is a string.
q = filter q by 'Stage' == "08 - Closed Won";
q = group q by 'Account_Owner';
q = foreach q generate 'Account_Owner' as 'Account_Owner', count() as 'count';

This example is not valid because you can't use double quotes for an identifier.

--this should be 'Account_Owner' in single quotes
q = group q by "Account_Owner";

23

StatementsSAQL Reference

Number Literals
A number literal represents a number in your script.

Some examples of number literals are 16 and 3.14159. You can’t explicitly assign a type (for example, integer or floating point) to a
number literal. Scientific E notation isn’t supported.

The responses to queries are in JSON. Therefore, the returned numeric field is a “number” class.

String Literals
A string is a set of characters inside double quotes (").

Example: "This is a string."

This example uses valid syntax:

accounts = load "Data";
opps = load "0Fcyy000000002qCAA/0Fcyy000000002WCAQ";
c = group accounts by 'Year', opps by 'Year';
d = foreach c generate opps.Year as 'Year';
e = filter d by Year == "2002";

Note: Identifiers are either unquoted or enclosed in single quotation marks.

Boolean Literals
A boolean literal represents true or false (yes or no) in your script.

Boolean literals true and false are supported in SAQL.

Quoted String Escape Sequences
Strings can be escaped with the backslash character.

You can use the following string escape sequences:

MeaningSequence

New line\n

Carriage return\r

Tab\t

One single-quote character\'

One double-quote character\"

One backslash character\\

Special Characters
Certain characters have special meanings in SAQL.

24

Number LiteralsSAQL Reference

DescriptionNameCharacter

Used to terminate statements.Semicolon;

Used to quote identifiers.Single quote'

Used to quote strings.Double quote"

Used for function calls, to enforce precedence, for order clauses, and to group
expressions. Parentheses are mandatory when you’re defining more than one group or
order field.

Parentheses()

Used to denote arrays. For example, this is an array of strings:Brackets[]

["this", "is", "a", "string", "array"]

Also used for referencing a particular member of an object. For example,
em['miles'], which is the same as em.miles.

Used for referencing a particular member of an object. For example, em.miles, which
is the same as em['miles'].

Period.

Used to explicitly specify the dataset that a measure or dimension belongs to, by placing
it between a dataset name and a column name. Using two colons is the same as using
a period (.) between names. For example:

Two colons::

data = foreach data generate left::airline as airline

Used to separate a range of values. For example:Two periods..

c = filter b by "the_date" in
["2011-01-01".."2011-01-31"];

Comments
Two sequential hyphens (--) indicate the beginning of a single-line comment in SAQL.

You can put a comment on its own line:

--Load a data stream.
a = load "myData";

You can put a comment at the end of a line:

a = load "myData"; --Load a data stream.

You can comment out a SAQL statement:

--The following line is commented out:
--a = load "myData";

SAQL Operators

Use operators to perform mathematical calculations or comparisons.

25

CommentsSAQL Reference

Arithmetic Operators

Use arithmetic operators to perform addition, subtraction, multiplication, division, and modulo operations.

Comparison Operators

Use comparison operators to compare values.

String Operators

To concatenate strings, use the plus sign (+).

Logical Operators

Use logical operators to perform AND, OR, and NOT operations.

Simple case Operator

Use case in a foreach statement to assign different field values in different situations. case supports two syntax forms:
searched case and simple case. This section explains simple case.

Searched case Operator

Use case in a foreach statement to assign different field values in different situations. case supports two syntax forms:
searched case and simple case. This section shows searched case.

Null Operators

Use null operators to select records that have (or do not have) fields with null values.

Arithmetic Operators
Use arithmetic operators to perform addition, subtraction, multiplication, division, and modulo operations.

DescriptionOperator

Plus+

Minus-

Multiplication*

Division/

Modulo%

Comparison Operators
Use comparison operators to compare values.

Comparisons are defined for values of the same type only. For example, strings can be compared with strings and numbers compared
with numbers.

DescriptionNameOperator

True if the operands are equal. String comparisons that use the equals operator are
case-sensitive.

Equals==

True if the operands aren’t equal.Not equals!=

True if the left operand is less than the right operand.Less than<

26

Arithmetic OperatorsSAQL Reference

DescriptionNameOperator

True if the left operand is less than or equal to the right operand.Less or equal<=

True if the left operand is greater than the right operand.Greater than>

True if the left operand is greater than or equal to the right operand.Greater or equal>=

True if the left operand contains the string on the right. Wildcards and regular
expressions aren’t supported. This operator is not case-sensitive. Single-character matches
are not supported.

For example, the following query matches airport codes such as LAX, LAS, ALA, and
BLA:

my_matches = filter a by origin matches "LA";

Matchesmatches

Use with ! to exclude records. For example, the following query shows all opportunities
that do not have Stage equal to Closed Lost or Closed Won:

q = filter q by !('Stage' matches "Closed");

If the left operand is a dimension, true if the left operand has one or more of the
values in the array on the right. For example:

a1 = filter a by origin in ["ORD", "LAX", "LGA"];

Inin

If the left operand is a measure, true if the left operand is in the array on the right.
You can use the date() function to filter by date ranges.

If the array is empty, everything is filtered and the results are empty.

Ranges that are out of order (for example, in ["20 years ago" ..
"2016-01-11"] or in ["Z" .. "A"]), evaluate to false.

True if the left operand isn’t equal to any of the values in an array on the right. The
results include rows for which the origin key doesn’t exist. For example:

a1 = filter a by origin not in ["ORD", "LAX", "LGA"];

Not innot in

Example: Given a row for a flight with the origin “SFO” and the destination “LAX” and weather of “rain” and “snow,” here are the
results for each type of "in" operator:

weather in ["rain", "wind"] = true

weather not in ["rain", "wind"] = false

SEE ALSO:

filter

String Operators
To concatenate strings, use the plus sign (+).

27

String OperatorsSAQL Reference

DescriptionOperator

Concatenate+

Example: To combine the year, month, and day into a value that’s called CreatedDate:

q = foreach q generate Id as Id, Year + "-" + Month + "-" + Day as CreatedDate;

Logical Operators
Use logical operators to perform AND, OR, and NOT operations.

Logical operators can return true, false, or null.

DescriptionNameOperator

See table.Logical AND&& (and)

See table.Logical OR|| (or)

See table.Logical NOT! (not)

The following tables show how nulls are handled in logical operations.

x || yx && yyx

TrueTrueTrueTrue

TrueFalseFalseTrue

TrueNullNullTrue

TrueFalseTrueFalse

FalseFalseFalseFalse

NullFalseNullFalse

TrueNullTrueNull

NullFalseFalseNull

NullNullNullNull

!xx

FalseTrue

TrueFalse

NullNull

28

Logical OperatorsSAQL Reference

Simple case Operator
Use case in a foreach statement to assign different field values in different situations. case supports two syntax forms: searched
case and simple case. This section explains simple case.

Syntax

case
primary_expr
when test_expr then result_expr
[when test_expr2 then result_expr2]
[else default_expr]

end

case...end opens and closes the case operator.

primary_expr is any expression that takes a single input value and returns a single output value. May contain values, identifiers,
and scalar functions (including date and math functions). The expression can return a number, string, or date.

when...then defines a conditional statement. A case expression can contain one or more conditional statements.

test_expr is any expression that takes a single input value and returns a single output value. May contain values, identifiers, and
scalar functions (including date and math functions). The expression must return the same data type as primary_expr.

result_expr is any expression that takes a single input value and returns a single output value. May contain values, identifiers, and
scalar functions (including date and math functions). The expression must return the same data type as primary_expr.

else default_expr (optional) is any expression that takes a single input value and returns a single output value. May contain
values, identifiers, and scalar functions (including date and math functions). The expression can return a number, string, or date.

Usage
Statements are evaluated in the order that they are given. If test_expr returns true, the corresponding result_expr is
returned. You can specify any number of when/then statements.

You can use else to specify a default expression. For example, if no industry is specified then use the string "No Industry Specified". If
you don't specify a default statement then null is returned.

You can use case expressions in foreach statements. You cannot use case in order, group, or filter statements.

Example
Suppose that you want to create a dimension that displays the meaning of industry codes. Use case to parse the Industry_Code field
and specify the corresponding string.

q = foreach q generate Amount as 'Amount', 'Industry_Code' as 'Industry_Code', (case
'Industry_Code'

when 541611 then "Consulting services"
when 541800 then "Advertising"
when 561400 then "Support services"
else "Unspecified"

end) as 'Industry';

The resulting data displays the meaning of industry codes:

29

Simple case OperatorSAQL Reference

Handling Null Values
In general, null values can’t be compared. When primary_expr or test_expr evaluates to null, the default_expr
is returned. If no default expression is specified, null is returned.

Searched case Operator
Use case in a foreach statement to assign different field values in different situations. case supports two syntax forms: searched
case and simple case. This section shows searched case.

Syntax

case
when search_condition then result_expr
[when search_condition2 then result_expr2]
[else default_expr]

end

case...end opens and closes the case operator.

when...then defines a conditional statement. A case expression can contain one or more conditional statements.

search_condition can be any scalar expression that returns a boolean value. It can be a complex boolean expression or a nested
case, as long as the result is boolean. For a list of supported operators, see Comparison Operators on page 26.

result_expr is any expression that takes a single input value and returns a single output value. Can contain values, identifiers, and
scalar functions (including date and math functions). The expression must return the same data type as specified in the search condition.

else default_expr (optional) is any expression that takes a single input value and returns a single output value. Can contain
values, identifiers, and scalar functions (including date and math functions). The expression can return a number, string, or date.

Usage
Statements are evaluated in the order that they are given. If the condition is primary_expr == test_expr, then the corresponding
result_expr is returned. You can specify any number of when/then statements.

30

Searched case OperatorSAQL Reference

You can use else to specify a default expression. For example, if no industry is specified, you can use the string "No Industry Specified".
If you don't specify a default statement, then null is returned.

You can use case expressions in foreach statements. You cannot use case in order, group, or filter statements.

Example
Suppose that you want to see the median deal size for each of your reps. You want to bin their median deal size into the buckets "Small",
"Medium", and "Large". Use case to assign values to the median deal size.

q = load "data";
q = group q by 'Account_Owner';
q = foreach q generate 'Account_Owner' as 'Account_Owner', median('Amount') as 'Median
Amount', (case

when median('Amount') < 1000000 then "Small"
when median('Amount') > 1600000 then "Large"
else "Medium"

end) as 'Category';

The resulting data shows the median deal size for each rep, along with the appropriate bin label.

Handling Null Values
In general, null values can’t be compared. When the search condition evaluates to null, the default_expr is returned. If no
default expression is specified, null is returned.

Null Operators
Use null operators to select records that have (or do not have) fields with null values.

Null operators return true or false.

31

Null OperatorsSAQL Reference

DescriptionOperator

True when the value is null.is null

True when the value is not null.is not null

Use is null and is not null in projections and in post-projection filters. You can't use them in pre-projection filters.

For example, display all the accounts that your reps have met with at least once.

q = load "Meetings";
q = group q by 'Company';
q = foreach q generate 'Company' as 'Company', sum('MeetingDuration') as 'TotalMeetings';

--filter out fields with no meetings
q = filter q by 'TotalMeetings' is not null;

Or, you can use case to replace null values with a value of your choice.

q = load "dataset";
q = foreach q generate (case when Name is null then "john doe" else Name end) as Name;

This example is not valid because you can't use is not null or is null before a projection:

a = load "dataset";
a = filter a by Year is not null;
a = foreach a generate Name as Name, Year as Year;

Use is null with cogroup
A left outer cogroup combines the right data stream with the left data stream. If a record on the left side does not have a match on the
right, the missing right value is null in the resulting data stream.

For example, suppose that you have a Meeting data set containing information about your rep's meetings with each account. You want
to see all accounts that reps have not met with. Use a left outer cogroup between Ops and Meetings, then use is null to filter results.

ops = load "Ops";
meetings = load "Meetings";
q = cogroup ops by 'Account' left, meetings by 'Company' ;
q = foreach q generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum_Amount',
sum(meetings.'MeetingDuration') as 'TimeSpent';

--use is null to get records with no time time spent
q = filter q by 'TimeSpent' is null;

SEE ALSO:

group

SAQL Statements

A query is made up of statements. Each SAQL statement has an input stream, an operation, and an output stream.

32

SAQL StatementsSAQL Reference

cogroup

Use cogroup to combine data from two or more data streams into a single data stream. The data streams must have at least one
common field.

load

Loads a dataset. All SAQL queries start with a load statement.

fill

Fills missing date values by adding rows in data stream.

filter

Selects rows from a dataset based on a filter condition called a predicate.

foreach

Applies a set of expressions to every row in a dataset. This action is often referred to as projection.

group

Groups the data in a data stream by one or more fields.

union

Combines multiple result sets into one result set. The result sets must have the same field names and structure. You can use a different
dataset to create each result set, or you can use the same dataset.

order

Sorts in ascending or descending order on one or more fields.

limit

Limits the number of results that are returned. If you don’t set a limit, queries return a maximum of 10,000 rows.

offset

Use offset to page through the results of your query.

timeseries

Uses existing data to predict future data points.

cogroup
Use cogroup to combine data from two or more data streams into a single data stream. The data streams must have at least one
common field.

cogroup is similar to relational database joins, but with some important differences. Unlike a relational database join, in a cogroup
the datasets are grouped first, and then the groups are joined. You can use cogroup in these ways:

• inner cogroup

• left outer cogroup

• right outer cogroup

• full outer cogroup

Note: The statements cogroup and group are interchangeable. For clarity, we use group for statements involving one
data stream and cogroup for statements involving two or more data streams.

Inner cogroup
Inner cogroup combines data from two or more data streams into a resulting data stream. The resulting data stream only contains
values that exist in both data streams. That is, unmatched records are dropped.

33

cogroupSAQL Reference

Syntax

result = cogroup data_stream_1 by field1, data_stream_2 by field2;

field1 and field2 must be the same type, but can have different names. For example, q=group ops by 'Owner',
quota by 'Name';

Example - Inner cogroup
Suppose that you want to understand how much time your reps spend meeting with each account. Is there a relationship between
spending more time and winning an account? Are some reps spending much more or much less time than average? To answer these
questions, first combine meeting data with account data using cogroup.

Suppose that you have a dataset of meeting information from the Salesforce Event object. In this example, your reps have had six
meetings with four different companies. The Meetings dataset has a MeetingDuration column, which contains the meeting duration in
hours.

The account data exists in the Salesforce Opportunity object. The Ops dataset has an Account, Won, and Amount column. The Amount
column contains the dollar value of the opportunity, in millions.

34

cogroupSAQL Reference

To see the effect of meeting duration on opportunities, you start by combining these two datasets into a single data stream using
cogroup.

q = cogroup ops by 'Account', meetings by 'Company';

Internally (you cannot see these results yet), the resulting cogrouped data stream contains the following data. Note how the data streams
are rolled up on one or more dimensions.

(1,{(Shoes2Go,2,), (Shoes2Go,5)},{(Shoes2Go,1,1.5), (Shoes2Go,0,3})

(2,{(FreshMeals,3), (FreshMeals, 5)},{(FreshMeals,1,2) (FreshMeals, 1, 1.4)})

(3,{(ZipBikeShare,4)},{(ZipBikeShare,1, 1.1)})

(4,{(ZenRetreats,6)},{(ZenRetreats,0, 2)})

Now the datasets are combined. To see the data, you create a projection using foreach:

ops = load "Ops";
meetings = load "Meetings";
q = cogroup ops by 'Account', meetings by 'Company';
q = foreach q generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum_Amount',
sum(meetings.'MeetingDuration') as 'TimeSpent';

The resulting data stream contains the sum of amount and total meeting time for each company. The sum of amount is the sum of the
dollar value for every opportunity for the company.

Now that you have combined the data into a single data stream, you can analyze the effects that total meeting time has on your
opportunities.

Left Outer cogroup
Left outer cogroup combines data from the right data stream with the left data stream. The resulting data stream only contains values
that exist in the left data stream. If the left data stream has a value that the right data stream does not, the missing value is null in the
resulting data stream.

Tip: Use coalesce to replace a null value with the value of your choice.

Syntax

result = cogroup data_stream_1 by field1 left, data_stream_2 by field2;

field1 and field2 must be the same type, but can have different names. For example, q=group ops by 'Owner' left,
quota by 'Name';

35

cogroupSAQL Reference

Example - Left Outer cogroup With coalesce
Suppose that you want to see what percentage of quota that your reps have obtained. Your quota dataset shows each employee's quota
(notice that Farah does not have a quota):

Your opportunities data shows the opportunity amount that each employee has won (notice that Jonathan does not have a won
opportunity).

Use a left outer cogroup to show only employees that have quotas. Also show the percentage of quota attained.

quota = load "Quota";
opp = load "Opportunity";
q = group quota by 'Employee' left, opp by 'Employee';
q = foreach q generate quota.'Employee' as 'Employee',
trunc(sum(opp.'Amount')/sum(quota.'Quota')*100, 2) as 'Percent Attained';

Jonathan has not won any opportunities yet, so his percent attained is null.

Use coalesce to replace the null opportunities with a zero.

quota = load "Quota";
opp = load "Opportunity";

36

cogroupSAQL Reference

q = group quota by 'Employee' left, opp by 'Employee';
q = foreach q generate quota.'Employee' as 'Employee',
trunc(coalesce(sum(opp.'Amount'),0)/sum(quota.'Quota')*100, 2) as 'Percent Attained';

Now Jonathan's percent attained is displayed as zero.

Right Outer cogroup
Right outer cogroup combines data from the left data stream with the right data stream. The resulting data stream only contains
values that exist in the right data stream. If the right data stream has a value that the left data stream does not, the missing value is null
in the resulting data stream.

Tip: Use coalesce to replace a null value with the value of your choice.

Syntax

result = cogroup data_stream_1 by field1 right, data_stream_2 by field2;

field1 and field2 must be the same type, but can have different names. For example, q=group ops by 'Owner'
right, quota by 'Name';

Full Outer cogroup
Full outer cogroup combines data from the left and right data streams. The resulting data stream contains all values. If one data stream
has a value that the other data stream does not, the missing value is null in the resulting data stream.

Tip: Use coalesce to replace a null value with the value of your choice.

Syntax

result = cogroup data_stream_1 by field1 full, data_stream_2 by field2;

field1 and field2 must be the same type, but can have different names. For example, q=group ops by 'Owner' full,
quota by 'Name';

SEE ALSO:

union

Combine Data from Multiple Data Streams with cogroup

Replace Null Values with coalesce()

37

cogroupSAQL Reference

load
Loads a dataset. All SAQL queries start with a load statement.

Syntax

result = load dataset;

If you’re working in Dashboard JSON, dataset must be the dataset name from the UI. Use of the dataset name (also called an alias)
means the app can substitute it with the correct version of the dataset.

If you’re working in the Analytics REST API, dataset must be the containerId/versionId.

Usage
After being loaded, the data is not grouped. The columns are the columns of the loaded dataset.

Example: Load the Accounts dataset to the stream 'b'. b = load "Accounts";

fill
Fills missing date values by adding rows in data stream.

Syntax

result = fill resultSet by (datecols, [partition]);

• dateCols are the date fields to check, plus the date column type string. For example, to fill gaps in the dates for the close date
month and year, use dateCols=(CloseDate_Year, CloseDate_Month, "Y-M"). Allowed values are:

– YearField, MonthField, "Y-M"

– YearField, QuarterField, "Y-Q"

– YearField, "Y"

– YearField, WeekField "Y-W"

– YearField, MonthField, DayField "Y-M-D"

• partition (optional) the dimension field used to partition the data stream. For example, partition='Type'

Usage
fill uses the specified date field in a data stream to fill any gaps in the specified date fields. For example, suppose that you have a
data stream of closed accounts grouped by year and month. Nobody closed an account in September so no row exists for that month.
These gaps in your dates can cause problems when graphing or using statements like timeseries. fill creates a row for September
that contains null data, ensuring that at least one row for every month exists in your result set.

Use fill with timeseries or other statements that require a complete set of date values.

38

loadSAQL Reference

Example
Suppose that you manage a chain of apparel stores. You want to analyze total sales by month. However, in July and August 2017, your
stores shut down for renovations and you had no sales for those months. Use fill to add rows with the missing dates:

q = load "data";
q = foreach q generate 'Amount' as 'Amount', 'Date_Year' as 'Date_Year', 'Date_Month' as
'Date_Month';
q = fill q by (dateCols=(Date_Year, Date_Month, "Y-M"));

fill added rows with null data for July and August 2017.

Example
Suppose that you want to analyze future sales for each type of apparel that you sell. However, your store did not sell any coats in the
third quarter of 2017. Group your data by type then use fill to add rows with the missing dates.

q = load "data";
q = foreach q generate 'Amount' as 'Amount', 'Type' as 'Type', 'Date_Year' as 'Date_Year',
'Date_Quarter' as 'Date_Quarter';
q = fill q by (dateCols=(Date_Year, Date_Quarter, "Y-Q"), partition='Type');

fill added rows with null data for the third quarter of 2017.

39

fillSAQL Reference

Example
Suppose that you want to use timeseries, but you know that your data is likely to be missing some dates. Use fill

q = load "TouristData";
q = group q by ('Visit_Year', 'Visit_Month');
q = foreach q generate 'Visit_Year', 'Visit_Month', sum('NumTourist') as 'sum_NumTourist';

-- use fill() to generate null rows for any missing dates. Then you can use timeseries().
q = fill q by (dateCols=('Visit_Year','Visit_Month', "Y-M"));

q = timeseries q generate 'sum_NumTourist' as Tourists with (length=12,
dateCols=('Visit_Year','Visit_Month', "Y-M"));
q = foreach q generate 'Visit_Year' + "~~~" + 'Visit_Month' as 'Visit_Year~~~Visit_Month',
Tourists;

filter
Selects rows from a dataset based on a filter condition called a predicate.

Syntax

result = filter rows by predicate;

Usage
A predicate is a Boolean expression that uses comparison or logical operators. The predicate is evaluated for every row. If the predicate
is true, the row is included in the result. Comparisons on dimensions are lexicographic, and comparisons on measures are numerical.

When a filter is applied to grouped data, the filter is applied to the rows in the group. If all member rows are filtered out, groups are
eliminated. You can run a filter statement before or after group to filter out members of the groups.

Note: With results binding, an error may occur if the results from a previous query exceed the values supported by SAQL. For
example, if something like filter q by dim1 in {{results(Query_1)}}; produces a filter tree with a depth
greater than 10,000 values, SAQL will fail with an error.

Example: The following example returns only rows where the origin is ORD, LAX, or LGA: a1 = filter a by origin
in ["ORD", "LAX", "LGA"];

40

filterSAQL Reference

Example: The following example returns only rows where the destination is LAX or the number of miles is greater than 1,500:
y = filter x by dest == "LAX" || miles > 1500;

Example: When in operates on an empty array in a filter operation, everything is filtered and the results are empty. The
second statement filters everything and returns empty results:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
a = filter a by Year in [];
c = group a by ('Year', 'Name');
d = foreach c generate 'Name' as 'group::AName', 'Year' as 'group::Year',
sum(accounts::Revenue) as 'sRev';

SEE ALSO:

Comparison Operators

Logical Operators

Statements

foreach
Applies a set of expressions to every row in a dataset. This action is often referred to as projection.

Syntax

q = foreach q generate expression as alias[, expression as alias ...];

The output column names are specified with the as keyword. The output data is ungrouped.

Using foreach with Ungrouped Data
When used with ungrouped data, the foreach statement maps the input rows to output rows. The number of rows remains the
same.

Example: a2 = foreach a1 generate carrier as carrier, miles as miles;

Using foreach with Grouped Data
When used with grouped data, the foreach statement behaves differently than it does with ungrouped data.

Fields can be directly accessed only when the value is the same for all group members. For example, the fields that were used as the
grouping keys have the same value for all group members. Otherwise, use aggregate functions to access the members of a group. The
type of the column determines which aggregate functions you can use. For example, if the column type is numeric, you can use the
sum() function.

Example: z = foreach y generate day as day, unique(origin) as uorg, count() as n;

Using foreach with a case Expression
To create logic in a foreach statement that chooses between conditional statements, use a case expression.

41

foreachSAQL Reference

Projected Field Names
Each field name in a projection must be unique and not have the name 'none'. Invalid field names throw an error.

For example, the last line in this query is invalid because the same name is used for multiple projected fields:

l = load "0Fabb000000002qCAA/0Fabb000000002WCAQ";
r = load "0Fcyy000000002qCAA/0Fcyy000000002WCAQ";
l = foreach l generate 'value'/'divisor' as 'value' , category as category;
r = foreach r generate 'value'/'divisor' as 'value' , category as category;
cg = cogroup l by category right, r by category;
cg = foreach cg generate r.category as 'category', sum(r.value) as sumrval, sum(l.value)
as sumrval;

The following query is also invalid because the projected field name can't be 'none'.

q = load "Products";
q = group q by all;
q = foreach q generate count() as 'none';
q = limit q 2000;

SEE ALSO:

Statements

group
Groups the data in a data stream by one or more fields.

Syntax

Note: The statements cogroup and group are interchangeable. For clarity, we use group for statements involving one
data stream and cogroup for statements involving two or more data streams.

The cogroup statement does not support the rollup modifier.

result = group data_stream_1 by rollup(field1, [field2]);

• rollup - Optional. Calculates totals of grouped data. Adds rows to your query results with null values for dimensions and totaled
results for measures.

The rollup modifier must include all fields in the group statement. Not supported: q = group q by rollup('Type'),
'LeadSource'; Supported: q = group q by rollup('Type', 'LeadSource');

The rollup modifier supports these aggregates:

– Count

– Sum

– Average

– Min

– Max

– Unique

Using rollup with other aggregates or windowing functions returns an error.

42

groupSAQL Reference

• field - Field by which data is grouped.

Example - Group by One Field
Suppose that you want to see how many opportunities each account owner has. Group by account owner:

q = load "DTCOpps";
q = group q by 'Account_Owner';
q = foreach q generate 'Account_Owner' as 'Account_Owner', count() as 'count';
q = order q by 'count' asc;

Example - Calculate Totals of Grouped Data
Suppose that you want to see the total value of opportunities by stage. Group by stage name, and roll up the group.

q = load "opportunityData";
q = group q by rollup('StageName');
q = order q by ('Stage Name');
q = foreach q generate

'StageName' as 'Stage Name',
sum('Amount') as 'sum_Amount';

The query results show total sum of amount for all opportunities below the sum of amount for each opportunity stage name grouping.
The total row has a null value for a dimension.

43

groupSAQL Reference

Sometimes, null values in place of labeled totals can confuse query results. Avoid this confusion by labeling the total All Stages
using a case statement with a grouping() function.

q = load "opportunityData";
q = group q by rollup('StageName');
q = order q by ('Stage Name');
q = foreach q generate

(case
when grouping('StageName') == 1 then "All Stages"
else 'StageName'

end) as 'Stage Name';

Now the query results include labeled totals.

SEE ALSO:

Null Operators

union
Combines multiple result sets into one result set. The result sets must have the same field names and structure. You can use a different
dataset to create each result set, or you can use the same dataset.

44

unionSAQL Reference

Syntax

result = union resultSetA, resultSetB [, resultSetC ...];

Example
q = union q1, q2, q3;

Example
You want to see how each rep compares to the average for deals won. You can make this comparison by appending these two result
sets together:

• Total amount of opportunities won for each rep

• Average amount of opportunities won for all reps

Then use union to append the two result sets.

First, show the total amount of won opportunities for each rep.

opt = load "DTC_Opportunity_SAMPLE";
opt = filter opt by 'Won' == "true";

-- group by owner
rep = group opt by 'Account_Owner';

-- project the sum of amount for each rep
rep = foreach rep generate 'Account_Owner' as 'Account_Owner', sum('Amount') as 'sum_Amount';

rep = order rep by 'sum_Amount' asc;

The resulting graph shows the sum of amount for each rep.

Next, calculate the average of the sum of the amounts for each rep using the average function.

-- grouping rep by all returns all the data in a single row.
avg_rep = group rep by all;

-- Calculate the average of the Sum of Amount column.
-- Use the text ‘Average Deal Size’ in the ‘Account Owner’ column
avg_rep = foreach avg_rep generate "Average deal size" as 'Account_Owner', avg('sum_Amount')
as 'sum_Amount';

45

unionSAQL Reference

Because the two data streams have the same field names and structure, you can use union to combine them.

q = union rep, avg_rep;

The resulting graph contains the sum of amounts by each rep together with the average amount per rep.

Combine the SAQL fragments to get the complete SAQL statement.

opt = load "DTC_Opportunity_SAMPLE";
opt = filter opt by 'Won' == "true";

-- group by owner
rep = group opt by 'Account_Owner';

-- project the sum of amount for each rep
rep = foreach rep generate 'Account_Owner' as 'Account_Owner', sum('Amount') as 'sum_Amount';

rep = order rep by 'sum_Amount' desc;

-- grouping rep by all returns all the data in a single row.
avg_rep = group rep by all;

-- Calculate the average of the Sum of Amount column.
-- Use the text ‘Average Deal Size’ in the ‘Account Owner’ column
avg_rep = foreach avg_rep generate "Average deal size" as 'Account_Owner', avg('sum_Amount')
as 'sum_Amount';

q = union rep, avg_rep;

SEE ALSO:

cogroup

Append Datasets using union

order
Sorts in ascending or descending order on one or more fields.

46

orderSAQL Reference

Syntax

result = order rows by field [asc | desc];
result = order rows by (field [asc | desc], field [asc | desc]);
result = order rows by field [asc | desc] nulls [first | last];

asc or desc specifies whether the results are ordered in ascending (asc) or descending (desc) order. The default order is ascending.

Usage
Use order to sort the results in a data stream for display. You can use order with ungrouped data. You can also use order to
sort grouped data by an aggregated value.

Do not use order to specify the order that another SAQL statement or function will process records in. For example, do not use order
before timeseries to change the order of processing. Instead, use timeseries parameters.

By default, nulls are sorted last when sorting in ascending order and first when sorting in descending order. You can change the ordering
of nulls using nulls [first | last].

Note: Applying labels to dimension values in the XMD changes the displayed values, but doesn’t change the sort order.

Example: q = order q by 'count' desc;

Example: To order a stream by multiple fields, use this syntax:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = group a by (year, month);
c = foreach b generate year as year, month as month;
d = order c by (year desc, month desc);

Example: You can order a cogrouped stream before a foreach statement:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = load "0Fayy000000002qCAA/0Fbyy000000002WCAQ";
c = cogroup a by year, b by year;
c = order c by a.airlineName;
c = foreach c generate year as year;

Example: By default, nulls are sorted first when sorting in descending order. To change the null sort order to last, use this syntax:

q = order q by last_shipping_cost desc nulls last;

Example: You can’t reference a preprojection ID in a postprojection order operation. (Projection is another term for a foreach
operation.) This code throws an error:

q = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";

q = group q by 'FirstName';

q = foreach q generate sum('mea_mm10M') as 'sum_mm10M';

q = order q by 'FirstName' desc;

47

orderSAQL Reference

This code is valid:

q = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";

q = group q by 'FirstName';

q = foreach q generate 'FirstName' as 'User_FirstName', sum('mea_mm10M') as 'sum_mm10M';

q = order q by 'User_FirstName' desc;

SEE ALSO:

Statements

limit
Limits the number of results that are returned. If you don’t set a limit, queries return a maximum of 10,000 rows.

Syntax

result = limit rows number;

Usage
Use this statement only on data that has been ordered with the order statement. The results of a limit operation aren’t automatically
ordered, and their order can change each time that statement is called.

You can use the limit statement with ungrouped data.

You can use the limit statement to limit grouped data by an aggregated value. For example, to find the top 10 regions by revenue:
group by region, call sum(revenue) to aggregate the data, order by sum(revenue) in descending order, and limit the
number of results to the first 10.

Note: The limit statement isn’t a top() or sample() function.

Example: This example limits the number of returned results to 10:

b = limit a 10;

The expression can’t contain any columns from the input. For example, this query is not valid:

b = limit OrderDate 10;

SEE ALSO:

Statements

order

offset
Use offset to page through the results of your query.

48

limitSAQL Reference

Syntax

result = offset rows number;

Usage
Skips over the specified number of rows when returning the results of a query. You typically use offset to paginate the query results.

When using offset in your SAQL statements, be aware of these rules:

• The order of filter and order can be swapped because it doesn't change the results

• offset must be after order

• offset must be before limit

• There can be no more than one offset statement after a foreach statement

Example - Return Rows 51–101
This example loads the opportunity dataset, sorts the rows in alphabetical order by account owner, and returns rows 51–101:

q = load "DTC_Opportunity";
q = order q by 'Account_Owner';
q = foreach q generate 'Account_Owner' as 'Account_Owner', 'Account_Type' as 'Account_Type',
'Amount' as 'Amount';
q = offset q 50;
q = limit q 50;

SEE ALSO:

Statements

timeseries
Uses existing data to predict future data points.

Usage
timeseries crunches your data and selects the forecasting model that gives the best fit. You can let timeseries select the best
model or specify the model you want. timeseries detects seasonality in your data. It considers periodic cycles when predicting
what your data will look like in the future. You can specify the type of seasonality or let timeseries choose the best fit.

The amount of data required to make a prediction depends on how your data is filtered and grouped. For example, for a non-seasonal
monthly model, 2 data points are sufficient, whereas for a seasonal monthly model, at least 24 data points (two seasonal cycles) are
required. If you don't have enough data to make a good prediction, timeseries returns nulls in the data. If no data is passed to
timeseries, an empty dataset is returned.

Syntax

result = timeseries resultSet generate (measure1 as fmeasure1 [, measure2 as
fmeasure2...]) with (parameters);

49

timeseriesSAQL Reference

measure1, measure2 and so on are the measures that you want to predict future values for. You can predict measures from
grouping queries or from simple values queries. The predicted values and the original values are projected together. The columns from
the previous foreach statement are also projected.

parameters can have the following values:

• length (required) Number of points to predict. For example, if length is 6 and the dateCols type string is Y-M, timeseries
predicts data for 6 months.

Note: If you want to use dateCols but your data stream has missing dates, use fill before using timeseries.

timeseries makes the most accurate prediction possible by choosing the best algorithm for your data. Predictive algorithms
are more accurate for shorter time periods.

• dateCols (optional) Date fields to use for grouping the data, plus the date column type string. For example,
dateCols=(CloseDate_Year, CloseDate_Month, "Y-M"). Date columns are projected automatically. Allowed
values are:

– YearField, MonthField, "Y-M"

– YearField, QuarterField, "Y-Q"

– YearField, "Y"

– YearField, MonthField, DayField "Y-M-D"

– YearField, WeekField "Y-W"

• ignoreLast (optional) If true, timeseries doesn't use the last time period in the calculations. The default is false.

Set this parameter to true to improve the accuracy of the forecast if the last time period contains incomplete data. For example,
if you are partway through the quarter, timeseries forecasts more accurately if you set this parameter to true.

• order (optional) Specify the field to use for ordering the data. Mandatory if dateCols is not used. By default, this field is sorted
in ascending order. Use desc to specify descending order, for example order=('Type' desc). You can also order by
multiple fields, for example order=('Type' desc, 'Group' asc).

For example, suppose that your data has no date columns, but it has a measure column called Week. Use order='Week'.

Note: Specify either dateCols or order.

• partition (optional) Specify the column used to partition the data. The column must be a dimension. The timeseries
calculation is done separately for each partition to ensure that each partition uses the most accurate algorithm. For example, data
in one partition might have a seasonal variation while data in another partition doesn't. The partition columns are projected
automatically.

For example, suppose that your sales data for raw materials contains the date sold, type of raw material, and the weight sold. To
predict the future weight sold for each type of raw material, use partition='Type'.

• predictionInterval (optional) Specify the uncertainty, or confidence interval, to display at each point. Allowed values are
80 and 95. The upper and lower bounds of the confidence interval are projected in columns named column_name_low_95
and column_name_high_95.

• model (optional) Specify which prediction model to use. If unspecified, timeseries calculates the prediction for each model
and selects the best model using Bayesian information criterion (BIC).

Allowed values are:

– None timeseries selects the best algorithm for the data

– Additive uses Holt's Linear Trend or Holt-Winters method with additive components.

50

timeseriesSAQL Reference

– Multiplicative uses Holt's Linear Trend or Holt-Winters method with multiplicative components

• seasonality (optional) Use with dateCols to specify the seasonality for your prediction. Allowed values are:

– 0 No seasonality

– any integer between 2 and 24

If unspecified, timeseries calculates the prediction once for each type of seasonality and select the results with the smallest
error.

Example

Type of SeasonalitydateColsseasonality

Yearly seasonality, because there are four
quarters in a year.

dateCols="Y-Q"seasonality=4

Yearly seasonality, because there are 12
months in a year.

dateCols="Y-M"seasonality=12

Weekly seasonality, because there are
seven days in a week.

dateCols="Y-M-D"seasonality=7

Tips
Here's how you can make the most of using timeseries:

• Are you currently part way through the month, quarter, or year? Consider setting ignoreLast to true so that timeseries
doesn't use the partial data in the current time period, leading to a more accurate prediction.

• Is timeseries not returning any data? If there aren't enough data points to make a good prediction, timeseries returns
null. Try increasing the number of data points.

• Is timeseries returning an error? You could have gaps in your dates or times. Like all good forecasting algorithms, timeseries
needs a continuous set of dates with no gaps, including in each partition. If you think your data has date gaps, try using fill first.

Example - How Many Tourists Will Visit Next Year?
Suppose that you run a chain of retail stores, and the number of tourists in your city affect your sales. Use timeseries to predict
how many tourists will come to your city next year:

q = load "TouristData";
q = group q by ('Visit_Year', 'Visit_Month');
q = foreach q generate 'Visit_Year', 'Visit_Month', sum('NumTourist') as 'sum_NumTourist';

-- If your data is missing some dates, use fill() before using timeseries()
-- Make sure that the dateCols parameter in fill() matches the dateCols parameter in
timerseries()
q = fill q by (dateCols=('Visit_Year','Visit_Month', "Y-M"));

-- Use timeseries() to predict the number of tourists.
q = timeseries q generate 'sum_NumTourist' as Tourists with (length=12,
dateCols=('Visit_Year','Visit_Month', "Y-M"));

51

timeseriesSAQL Reference

q = foreach q generate 'Visit_Year' + "~~~" + 'Visit_Month' as 'Visit_Year~~~Visit_Month',
Tourists;

Use a timeline chart and set a predictive line to see the calculated future data. The resulting graph shows the likely number of tourists
in the future.

Example - Predict a Range With 95% Accuracy
Suppose that you wanted to predict the number of tourists in your city next year with 95% accuracy. Use predictionInterval=95
to set a 95% confidence interval for the number of tourists. The upper and lower bounds are projected as the fields
Tourists_high_95 and Tourists_low_95.

q = load "TouristData";
q = group q by ('Visit_Year', 'Visit_Month');
q = foreach q generate 'Visit_Year', 'Visit_Month', sum('NumTourist') as 'sum_NumTourist';

-- If your data is missing some dates, use fill() before using timeseries()
-- Make sure that the dateCols parameter in fill() matches the dateCols parameter in
timerseries()
q = fill q by (dateCols=('Visit_Year','Visit_Month', "Y-M"));

-- use timeseries() to predict the number of tourists
q = timeseries q generate 'sum_NumTourist' as 'fTourists' with (length=12,
predictionInterval=95, dateCols=('Visit_Year','Visit_Month', "Y-M"));
q = foreach q generate 'Visit_Year' + "~~~" + 'Visit_Month' as 'Visit_Year~~~Visit_Month',
coalesce(sum_NumTourist,fTourists) as 'Tourists', fTourists_high_95, fTourists_low_95;

Use a timeline chart and set a predictive line to see the calculated future data. In the timeline chart options, select Single Axis for the
Axis Mode, fTourists_high_95 for Measure 1, and fTourists_low_95 for Measure 2. The resulting graph shows the likely number of
tourists in the future and the 95% confidence interval.

52

timeseriesSAQL Reference

Example - Predict Seasonal Data
Suppose that you want to predict the revenue for each type of account. You know that your account revenue has yearly seasonality and
that you want to group dates by quarter, so you specify dateCols=('Date_Sold_Year','Date_Sold_Quarter',
"Y-Q") and seasonality = 4. To see the predicted values over the next year, use length=4 to specify four quarters.

q = load "Account";
q = group q by ('Date_Sold_Year', 'Date_Sold_Quarter', 'Type');
q = foreach q generate 'Date_Sold_Year', 'Date_Sold_Quarter', 'Type', sum('Amount') as
'sum_Amount';

-- If your data is missing some dates, use fill() before using timeseries()
-- Make sure that the dateCols parameter in fill() matches the dateCols parameter in
timerseries()
q = fill q by (dateCols=('Date_Sold_Year','Date_Sold_Quarter', "Y-Q"));

-- use timeseries() to predict the amount sold
q = timeseries q generate 'sum_Amount' as Amount with (partition='Type',length=4,
dateCols=('Date_Sold_Year','Date_Sold_Quarter', "Y-Q"), seasonality = 4);
q = foreach q generate 'Date_Sold_Year' + "~~~" + 'Date_Sold_Quarter' as
'Date_Sold_Year~~~Date_Sold_Quarter','Type', Amount ;

Use a timeline chart and set a predictive line to see the calculated future data. The resulting graph shows the likely sum of revenue for
each account, taking into account the quarterly seasonal variation.

SEE ALSO:

Forecast Future Data Points with timeseries

SAQL Functions

Use functions to perform complex operations on your data.

Aggregate Functions

Aggregate functions perform computations across all values of a grouped field.

Date Functions

Use SAQL date functions to perform time-based analysis.

String Functions

Use SAQL string functions to format your measure and dimension fields.

Math Functions

To perform numeric operations in a SAQL query, use math functions.

53

SAQL FunctionsSAQL Reference

Windowing Functions

Use SAQL windowing functionality to calculate common business cases such as percent of grand total, moving average, year and
quarter growth, and ranking.

coalesce

Use coalesce() to get the first non-null value from a list of parameters, or to replace nulls with a different value.

Aggregate Functions
Aggregate functions perform computations across all values of a grouped field.

If you don't precede an aggregate function by a group by statement, it treats each line as its own group. Using an aggregate function
on an empty set returns null.

avg() or average()

Returns the average of the values of a measure field.

count()

Returns the number of rows that match the query criteria.

first()

Returns the first value for the specified field.

last()

Returns the last value in the tuple for the specified field.

max()

Returns the maximum value of a measure field.

median()

Returns the median value of a measure field.

min()

Returns the minimum value of a measure field.

sum()

Returns the sum of a numeric field.

unique()

Returns the count of unique values.

stddev()

Returns the standard deviation of the values in a field. Accepts measure fields (but not expressions) as input.

stddevp()

Returns the population standard deviation of the values in a field. Accepts measure fields as input but not expressions.

var()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

varp()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

percentile_cont()

Calculates a percentile based on a continuous distribution of the column value.

54

Aggregate FunctionsSAQL Reference

percentile_disc()

Returns the value corresponding to the specified percentile.

regr_intercept()

Uses two numerical fields to calculate a trend line, then returns the y-intercept value. Use this function to find out the likely value of
field_y when field_x is zero.

regr_slope()

Uses two numerical fields to calculate a trend line, then returns the slope. Use this function to learn more about the relationship
between two numerical fields.

regr_r2()

Uses two numerical fields to calculate R-squared, or goodness of fit. Use regr_r2() to understand how well the trend line fits
your data.

grouping()

Returns 1 if null dimension values are due to higher-level aggregates (which usually means the row is a subtotal or grand total),
otherwise returns 0.

avg() or average()
Returns the average of the values of a measure field.

Example - Calculate the Average Amount of an Opportunity Grouped by Type
Use avg() to compare the average size of opportunities for each account type.

q = load "DTC_Opportunity";
q = group q by 'Account_Type';
q = foreach q generate 'Account_Type' as 'Account_Type', avg('Amount') as 'avg_Amount';

SEE ALSO:

median()

count()

Returns the number of rows that match the query criteria.

For example, to calculate the number of carriers:

q = foreach q generate 'carrier' as 'carrier', count() as 'count';

count() operates on the stream that is input to the group or cogroup statement. It doesn’t operate on the newly grouped
stream or on an ungrouped stream.

q = load "Carriers";
q = group q by (Year);
q = foreach a1 generate count(q) as countYear, count() as count, Year as year;

first()

Returns the first value for the specified field.

55

Aggregate FunctionsSAQL Reference

Use first() to return the first value of a measure or dimension. You can also use first() used to return the value of a field
without grouping by that field.

Note: If the values are not sorted, the 'first' value could be any value in the tuple.

Example - Return the First Industry for an Account Owner
Your reps own opportunities in several industries. You need a list of rep names with their first industry, where industry is sorted
alphabetically. Group by account owner and industry, sort by industry, then use first() to get the first industry.

q = load "DTC_Opportunity_SAMPLE";
q = group q by ('Account_Owner', 'Industry');
q = foreach q generate 'Account_Owner' as 'Account_Owner', 'Industry' as 'Industry';
q = order q by 'Industry';

q = foreach q generate 'Account_Owner' as 'Account_Owner', first('Industry') as 'One
Industry';

Example - Return Any Industry for an Account Owner
Your reps own opportunities in several industries. You need a list of rep names with any one of a rep's industry - it doesn't matter which
one. In this case. Group by account owner then use first() to get the first industry from an unsorted collection.

q = load "DTC_Opportunity_SAMPLE";
q = group q by 'Account_Owner';
q = foreach q generate 'Account_Owner' as 'Account_Owner', first('Industry') as 'One
Industry';

The resulting table displays each rep along with one of their industries (basically the first industry from an unsorted collection).

56

Aggregate FunctionsSAQL Reference

SEE ALSO:

last()

last()

Returns the last value in the tuple for the specified field.

Use last() to return the last value of a measure or dimension. You can also use last() used to return the value of a field without
grouping by that field.

Note: If the values are not sorted, the 'last' value could be any value in the tuple.

SEE ALSO:

first()

max()

Returns the maximum value of a measure field.

Example - Find the Largest Opportunity for Each Account

q = load "Ops";
q = group q by 'Account_Name';
q = foreach q generate 'Company' as 'Company', max('Amount') as 'Largest Deal';

SEE ALSO:

min()

median()

Returns the median value of a measure field.

57

Aggregate FunctionsSAQL Reference

Example - Find the Median Time to Close a Case
Use median() to find the median amount of time it takes to resolve a case, grouped by company.

q = load "Case";
q = group q by 'Account_Name';
q = foreach q generate 'Account_Name' as 'Account_Name', median('CallDuration') as
'median_CallDuration';
q = order q by 'Account_Name' asc;

SEE ALSO:

avg() or average()

min()

Returns the minimum value of a measure field.

Example - Find the Smallest Opportunity For Each Account

q = load "Ops";
q = group q by 'Account_Name';
q = foreach q generate 'Company' as 'Company', min('Amount') as 'Smallest Deal';

SEE ALSO:

max()

sum()

Returns the sum of a numeric field.

Example - Calculate the Total Meeting Time
Suppose that you have a database of meeting information. Use sum() to see that the total time spent meeting with each account.

q = load "Meetings";
q = group q by 'Company';
q = foreach q generate 'Company' as 'Company', sum('MeetingDuration') as 'sum_meetings';

unique()

Returns the count of unique values.

Example - Count the Number of Industries
Use unique() to count the number of different industries that you have opportunities with.

q = load "DTC_Opportunity_SAMPLE";
q = group q by all;
q = foreach q generate unique('Industry') as 'unique_Industry';

58

Aggregate FunctionsSAQL Reference

stddev()

Returns the standard deviation of the values in a field. Accepts measure fields (but not expressions) as input.

Example - Look at Variability in Amount
Use stddev() to get a feel for the amount of spread, or dispersion, in the size of your deals.

q = load "DTCOpps";
q = group q by all;
q = foreach q generate stddev('Amount') as 'stddev_Amount';

Should I Use stddev() or stddevp()?

Use stddev() when the values in your field are a partial sample of the entire set of values (that is, a partial sampling of the whole
population). Use stddevp() when your field contains the complete set of values (that is, the entire population of values).

SEE ALSO:

stddevp()

stddevp()

Returns the population standard deviation of the values in a field. Accepts measure fields as input but not expressions.

Example - Calculate the Population Standard Deviation of Amount
Use stddevp() to calculate the population standard deviation of the amount of each opportunity. Group by product family to see
which type of product has the greatest variability in deal size.

q = load "DTC_Opportunity_SAMPLE";
q = group q by 'Product_Family';
q = foreach q generate 'Product_Family' as 'Product_Family', stddevp('Amount') as
'stddevp_Amount';

SEE ALSO:

stddev()

var()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

59

Aggregate FunctionsSAQL Reference

Example - Calculate the Variance of Deal Amount

q = load "DTC_Opportunity_SAMPLE";
q = group q by all;
q = foreach q generate var('Amount') as 'var_Amount';

SEE ALSO:

varp()

varp()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

Example - Calculate the Population Variance of Deal Amount

q = load "DTC_Opportunity_SAMPLE";
q = group q by all;
q = foreach q generate varp('Amount') as 'var_Amount';

SEE ALSO:

var()

percentile_cont()

Calculates a percentile based on a continuous distribution of the column value.

percentile_cont(p) within group (order by expr [asc | desc])

percentile_cont() accepts a numeric grouped expression expr and sorts it in the specified order. If order is not specified, the
default order is ascending. It returns the value behind which (100*p)% of values in the group fall in the sorted order, ignoring null values.

p can be any real numeric value between 0 and 1. expr can be any identifier, such as 'xInt' or 'price', but cannot be a complex expression,
such as price/100 or ceil(distance), or a literal, such as 2.5.

If expr contains no value that falls exactly at the 100*p-th percentile mark, percentile_cont() returns a value interpolated
from the two closest values in expr.

For example, if Mea1 contains the values [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] then:

percentile_cont(0.25) within group (order by Mea1 asc) = 3.25
percentile_cont(0.25) within group (order by Mea1 desc) = 9.75
percentile_cont(0) within group (order by Mea1 asc) = 0
percentile_cont(1) within group (order by Mea1 asc) = 13

Example - Display the Interpolated Value of the Bottom 15% of Deals
Suppose that you want to see the bottom 15% of deals for each rep. You don't need to see the actual deal size - just the 'average' size
of the bottom 15%. Use percentile_cont(.15).

60

Aggregate FunctionsSAQL Reference

SEE ALSO:

percentile_disc()

percentile_disc()

Returns the value corresponding to the specified percentile.

percentile_disc(p) within group (order by expr [asc | desc])

percentile_disc() accepts a numeric grouped expression expr and sorts it in the specified order. If order is not specified, the
default order is ascending. It returns the value behind which (100*p)% of values in the group fall in the sorted order, ignoring null values.

p can be any real numeric value between 0 and 1, and is accurate to 8 decimal places of precision. expr can be any identifier, such
as 'xInt' or 'price', but cannot be a complex expression, such as price/100 or ceil(distance), or a literal, such as 2.5.

If expr contains no value that falls exactly at the 100*p-th percentile mark, percentile_disc() returns the next value from
expr in the sort order.

For example, if Mea1 contains the values [54, 35, 15, 15, 76, 87, 78] then:

percentile_disc(0.5) within group (order by Mea1) == 54
percentile_disc(0.72) within group (order by Mea1) == 78

Example - Rank Your Reps by Top Quartile of Deal Size
Suppose that you want to see which reps close the biggest deals. (The result may be different than the sum of deal amount, if some
reps close a lot of smaller deals). You also want the chart to display the size of actual deals, not an average of deal size. Use
percentile_disc(.25) to look at the top quarter of the deal size for each rep.

q = load "DTC_Opportunity_SAMPLE";
q = group q by 'Account_Owner';
q = foreach q generate 'Account_Owner' as 'Account_Owner', percentile_disc(0.25) within
group (order by 'Amount' desc) as 'Amount';
q = order q by 'Amount' desc;

You can see that 25% of Julie Chavez's deals are bigger than $2.4 million, and 25% of Kelly Frazier's deals are bigger than $2.2 million.
You also know that Julie closed a deal worth$2.4 million, and that number isn't an average.

61

Aggregate FunctionsSAQL Reference

SEE ALSO:

percentile_cont()

Show the Top and Bottom Quartile

regr_intercept()

Uses two numerical fields to calculate a trend line, then returns the y-intercept value. Use this function to find out the likely value of
field_y when field_x is zero.

regr_intercept(field_y, field_x)

field_y is a grouped dependent numeric expression and field_x is a grouped independent numeric expression.
regr_intercept(field_y, field_x) uses simple linear regression to calculate the trend line. The input fields (field_y,
field_x) must contain at least two pairs of non-null values. This function works with simple grouped values but not with cogroups.

Example - What Is the Likely Amount Won If the Number of Activities Is Zero?
Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

62

Aggregate FunctionsSAQL Reference

What size of deal can you expect to win if you don't have any activities with an account? regr_intercept performs a linear analysis
on your data then calculates the y-intercept (that is, the value of Amount Won when Number of Activities is zero).

q = load "Data";
q = group q by all;

--trunc() truncates the result to two decimal places
q = foreach q generate trunc(regr_intercept('Amount', 'NumActivities'),2) as intercept;

The projected deal size with no activities is $15.04 million dollars.

SEE ALSO:

regr_slope()

regr_slope()

Uses two numerical fields to calculate a trend line, then returns the slope. Use this function to learn more about the relationship between
two numerical fields.

regr_slope(field_y, field_x)

field_y is a grouped dependent numeric expression and field_x is a grouped independent numeric expression.
regr_slope(field_y, field_x) uses simple linear regression to calculate the trend line. The input fields (field_y,
field_x) must contain at least two pairs of non-null values. This function works with simple grouped values but not with cogroups.

Example - Calculate the Relationship Between Number of Activities and Deal Amount
Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

63

Aggregate FunctionsSAQL Reference

How much bigger with the deal size be for each extra activity? regr_slope performs a linear analysis on your data then calculates
the slope (that is, the increased amount you win for each extra activity).

q = load "data/sales";
q = group q by all;

--trunc() truncates the result to two decimal places
q = foreach q generate trunc(regr_slope('Amount', 'NumActivities'),2) as 'Gain per Activity';

Based on your existing data, every extra activity that you have tends to increase the deal size by $1.45 million, on average.

SEE ALSO:

regr_intercept()

Calculate the Slope of the Regression Line

regr_r2()

Uses two numerical fields to calculate R-squared, or goodness of fit. Use regr_r2() to understand how well the trend line fits your
data.

regr_r2(field_y, field_x)

field_y is a grouped dependent numeric expression and field_x is a grouped independent numeric expression.
regr_r2(field_y, field_x) uses simple linear regression to calculate a trend line, then calculates R-squared. If the returned
value is small, then functions like regr_slope() and regr_intercept() are likely to return accurate results.

The input fields (field_y, field_x) must contain at least two pairs of non-null values. This function works with simple grouped
values but not with cogroups.

64

Aggregate FunctionsSAQL Reference

Example - How Well Does the Calculated Trend Line Fit My Data
Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

You want to check the calculated trend line for 'goodness of fit' to see how accurate the results from other statistical functions are.

q = load "regression";
q = group q by all;

q = foreach q generate trunc(regr_r2('Amount', 'NumActivities'),2) as 'R Squared';

The value of R squared is 0.95.

grouping()

Returns 1 if null dimension values are due to higher-level aggregates (which usually means the row is a subtotal or grand total), otherwise
returns 0.

The grouping() function is most useful when paired with the rollup modifier on the group statement. Invoking grouping()
lets work with subtotaled data.

Example - Label Subtotaled Data
Suppose that you have a dataset of opportunity information with amounts totaled by lead source and type. Calculate totals with rollup.
Then use grouping() with a case statement to check whether a row is a total and if it is then label it as "all" values.

q = load "opportunityData";

--Modify the group statement with rollup to calculate subtotals of grouped measures
q = group q by rollup('Type', 'LeadSource');

q = order q by ('Type', 'LeadSource');

65

Aggregate FunctionsSAQL Reference

--Determine which rows are totals with grouping(), which returns 1 if a row is a total
q = foreach q generate

(case
when grouping('Type') == 1 then "All Types"
else 'Type'

end) as 'Type',
(case

when grouping('LeadSource') == 1 then "All Lead Sources"
else 'LeadSource'

end) as 'LeadSource',
sum('Amount') as 'sum_Amount';

Date Functions
Use SAQL date functions to perform time-based analysis.

Understanding How Date Information is Uploaded to Einstein Analytics
When you upload a date field to Einstein Analytics, it creates dimension and measure fields to contain the date and time information.
You can use SAQL date functions to convert the dimensions and measures to dates. You can then use the dates to sort, filter, and group
data in your SAQL queries.

For example, suppose that you upload a dataset that contains the CloseDate date field.

66

Date FunctionsSAQL Reference

During the dataflow, Einstein Analytics creates these fields. All the fields are dimensions, except for the epoch fields, which are measures.

DescriptionField

A dimension containing the date and time. For example, 2018-02-25T00:00:03.000Z. You can’t use this
string in a date filter. Instead, ‘cast’ it to a date type using toDate().

CloseDate

Dimension containing the day in the month, for example 30.CloseDate (Day)

Dimension containing the hour, for example, 11. If the original date did not contain the hour, this field
contains 00.

CloseDate (Hour)

Dimension containing the minute, for example, 59. If the original date did not contain the minute, this
field contains 00

CloseDate (Minute)

Dimension containing the month, for example, 12.CloseDate (Month)

Dimension containing the quarter, for example, 4.CloseDate(Quarter)

Dimension containing the second, for example, 59. If the original date did not contain the second, this
field contains 00.

CloseDate (Second)

Dimension containing the week, for example, 52.CloseDate (Week)

Measure containing the UNIX epoch time, which is the number of days that have elapsed since 00:00:00,
Thursday, 1 January 1970.

CloseDate_day_epoch

Measure containing the Unix epoch time in seconds. Seconds epoch time is the number of seconds
that have elapsed since 00:00:00, Thursday, 1 January 1970.

CloseDate_sec_epoch

67

Date FunctionsSAQL Reference

daysBetween()

Returns the number of days between two dates. This function is only valid in a foreach statement.

date_diff()

Returns the amount of time between two dates. This function is only valid in a foreach statement.

now()

Returns the current datetime in UTC. This function is only valid in a foreach statement.

date()

Returns a date that can be used in a filter. This function takes a year, a month, and a day dimension as input.

toDate()

Converts a string or Unix epoch seconds to a date. Returns a date that can be used in another function such as daysBetween(
). The returned date cannot be used in a filter.

date_to_epoch()

Converts a date to Unix epoch seconds.

date_to_string()

Converts a date to a string.

toString()

Converts a date to a string.

Time-Based Filtering

SAQL gives you many ways to specify the range of dates that you want to look at, such as "all ops from the last fiscal quarter" or "all
cases from the last seven days".

Day in the Week, Month, Quarter, or Year

Returns the day in the specified time period for a given date. These functions answer questions like "do we close more deals at the
beginning or end of a quarter?".

Last Day in the Week, Month, Quarter, or Year

Returns the date of the last day in the specified week, month, quarter, or year.

Number of Days in the Month, Quarter, or Year

Returns the number of days in the month, quarter, or year for the specified date.

SEE ALSO:

Analyze Your Data Over Time

daysBetween()

Returns the number of days between two dates. This function is only valid in a foreach statement.

Syntax
daysBetween(date1, date2)

date1 specifies the start date.

date2 specifies the end date.

68

Date FunctionsSAQL Reference

Usage
If date1 is after date2, the number of days returned is a negative number.

You must use daysBetween() in a foreach() statement. You cannot use this function in group by, order by, or filter
statements.

Example
How many days did it take to close each opportunity? Use daysBetween().

q = load "DTC_Opportunity";
q = foreach q generate daysBetween(toDate(Created_Date_sec_epoch),
toDate(Close_Date_sec_epoch)) as 'Days to Close';
q = order q by 'Days to Close';

Example
How long has each opportunity been open for, in days? Use daysBetween() and now().

q = load "DTC_Opportunity";
q = filter q by 'Closed' == "false";
q = foreach q generate daysBetween(toDate(Created_Date_sec_epoch), now()) as 'Days to
Close';
q = order q by 'Days to Close';

SEE ALSO:

date_diff()

Calculate How Long Activities Take

date_diff()

Returns the amount of time between two dates. This function is only valid in a foreach statement.

Syntax
date_diff(datepart,startdate,enddate)

datepart specifies how you want to measure the time interval:

• year

• month

• quarter

• day

• week

• hour

• minute

• second

startdate specifies the start date.

enddate specifies the end date.

69

Date FunctionsSAQL Reference

Usage
Returns the time difference between two dates in years, months, or days. For example,

date_diff("year", toDate("31-12-2015", "dd-MM-yyyy"), toDate("1-1-2016", "dd-MM-yyyy"))
returns 1.

If startdate is after enddate, the difference is returned as a negative number.

You must use date_diff() in a foreach() statement. You cannot use this function in group by, order by, or filter
statements.

The maximum amount of time returned is 9,223,372,036,854,775,807 nanoseconds. This maximum amount of time can be measured
in any supported datepart value (nanoseconds aren't supported). For example, in days, the maximum amount of time returned is
106,751.99 days (excluding leap seconds).

Example - How Many Weeks Did Each Opportunity Take to Close?
Use date_diff() with datepart = week to calculate how long, in weeks, it took to close each opportunity.

q = load "DTC_Opportunity";
q = foreach q generate date_diff("week", toDate(Created_Date_sec_epoch),
toDate(Close_Date_sec_epoch)) as 'Weeks to Close';
q = order q by 'Weeks to Close';

Example - How Long Ago Was an Opportunity Closed?
Use date_diff() with datepart = month to calculate how many months have passed since each opportunity closed. Use
now() as the end date.

q = load "DTC_Opportunity";
q = foreach q generate date_diff("month", toDate(Close_Date_sec_epoch), now()) as 'Months
Since Close';
q = order q by 'Months Since Close';

SEE ALSO:

daysBetween()

now()

Calculate How Long Activities Take

now()

Returns the current datetime in UTC. This function is only valid in a foreach statement.

Syntax
now()

Usage
This function is commonly used with daysBetween(), date_diff(), and date_to_string().

70

Date FunctionsSAQL Reference

Example
How long ago was each opportunity created, in weeks? Use date_diff(), datepart = week, and now().

q = load "DTC_Opportunity";
q = foreach q generate date_diff("week", toDate(Created_Date_sec_epoch), now()) as 'Weeks
to Close';
q = order q by 'Weeks to Close';

Example
What is the date today? Use now() inside date_to_string().

q = load "DTC_Opportunity";

-- Notice how the ' character is escaped with the \ character in 'Today\'s
q = foreach q generate date_to_string(now(), "yyyy-MM-dd") as 'Today\'s Date';

SEE ALSO:

date_diff()

date()

Returns a date that can be used in a filter. This function takes a year, a month, and a day dimension as input.

Syntax
date(year, month, day)

Usage
Specify the year, month, and day. For example:

date('OrderDate_Year', 'OrderDate_Month', 'OrderDate_Day')

Example
Which opportunities have your reps closed in the past 30 days? Use date() to select records with a close date in the past 30 days.

q = load "DTC_Opportunity";

-- use date() to create a date that you can use in a filter
-- 'Close_Date_Year', 'Close_Date_Month', and 'Close_Date_Day' are date fields in the
DTC_Opportunity data set

q = filter q by date('Close_Date_Year', 'Close_Date_Month', 'Close_Date_Day') in ["30 days
ago".."current day"];
q = group q by 'Account_Owner';

71

Date FunctionsSAQL Reference

q = foreach q generate 'Account_Owner' as 'Account_Owner', sum('Amount') as 'sum_Amount';
q = order q by 'Account_Owner' asc;

SEE ALSO:

toDate()

Time-Based Filtering

toDate()

Converts a string or Unix epoch seconds to a date. Returns a date that can be used in another function such as daysBetween().
The returned date cannot be used in a filter.

Syntax
toDate(string [,formatString])

If a formatString argument isn’t provided, the function uses the format yyyy-MM-dd HH:mm:ss

toDate(epoch_seconds)

Note: Be sure to use the sec_epoch field and not the day_epoch field.

Example: Display the Number of Days Since an Opportunity Opened
Suppose that you have an opportunity dataset with the account name and the epoch seconds fields:

You want to see how many days ago an opportunity was opened. Use daysBetween() and now(). Use toDate() to convert
the order date epoch seconds to a date format that can be passed to daysBetween().

q = load "OpsDates1";

q = foreach q generate Account, daysBetween(toDate(OrderDate_sec_epoch), now()) as
'daysOpened';

The resulting data stream displays the number of days since the opportunity was opened.

72

Date FunctionsSAQL Reference

SEE ALSO:

date()

date_to_epoch()

Converts a date to Unix epoch seconds.

Syntax
date_to_epoch(date)

date_to_string()

Converts a date to a string.

Syntax
date_to_string(date, formatString)

Note: This function is identical to toString().

Usage
This function must take a toDate() or now() function as its first argument.

Example

q = foreach q generate date_to_string(now(), "yyyy-MM-dd HH:mm:ss") as ds1;

toString()

Converts a date to a string.

Syntax
toString(date, formatString)

Note: This function is identical to date_to_string().

73

Date FunctionsSAQL Reference

Usage
This function must take a toDate() or now() function as its first argument.

Example

q = foreach q generate toString(now(), "yyyy-MM-dd HH:mm:ss") as ds1;

Time-Based Filtering
SAQL gives you many ways to specify the range of dates that you want to look at, such as "all ops from the last fiscal quarter" or "all cases
from the last seven days".

Using Date Ranges in Filters
Use these filters to specify the date range you want to look at:

• Fixed date range, for example between August 1, 2018 and June 2, 2017

• Relative date range, for example between two years ago and last month

• Open-ended ranges, for example before 04/2/2018

• Add and subtract dates, for example all records from three months before yesterday

Example: Display Opportunities Closed This Month
Suppose that you want to see which opportunities closed this month. Your data includes the account name, the close date fields, and
the epoch seconds field.

Use date() to generate the close date in date format. Then use relative date ranges to filter opportunities closed in the current month.

q = load "OpsDates1";
q = filter q by date(’CloseDate_Year’, ‘CloseDate_Month’, ‘CloseDate_Day’) in ["current
month" .. "current month"];
q = foreach q generate Account;

If the query is run in May 2018, the resulting data stream contains one entry:

To add the close date in a readable format, use toDate().

q = load "OpsDates1";
q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["current

74

Date FunctionsSAQL Reference

month" .. "current month"];
q = foreach q generate Account, toDate('CloseDate_sec_epoch') as 'Close Date';

The resulting data stream includes the full date and time of the close date.

You can also display just the month and day of the close date.

q = load "OpsDates1";
q = filter q by date('CloseDate_Year', 'CloseDate_Month', 'CloseDate_Day') in ["current
month" .. "current month"];
q = foreach q generate Account, 'CloseDate_Month' + "/" + 'CloseDate_Day' as 'Close Date';

The resulting data stream contains the month and day of the close date.

Fixed Date Ranges
Use dateRange() to specify a fixed range of dates in a filter:

dateRange(startArray_y_m_d, endArray_y_m_d)

startArray_y_m_d is an array that specifies the start date

endArray_y_m_d is an array that specifies the end date

For example, return all records between October 2, 2014 and August 16, 2016:

q = filter q by date('Created_Date_Year', 'Created_Date_Month', 'Created_Date_Day') in
[dateRange([2014,10,2], [2016,8,16])];

Relative Date Ranges
Use relative date ranges to answer questions such as "how many opportunities did each rep close in the past fiscal quarter"? To specify
a relative date range, use the in operator on an array with relative date keywords. For example, return all records from one year ago
up to and including the current year.

q = filter q by date('Close_Date_Year', 'Close_Date_Month', 'Close_Date_Day') in ["1 year
ago".."current year"];

Return all records from two quarters ago, up to and including two quarters from now.

q = filter q by date('Close_Date_Year', 'Close_Date_Month', 'Close_Date_Day') in ["2
quarters ago".."2 quarters ahead"];

Return all records from the last two fiscal years, up to and including today.

q = filter q by date('Close_Date_Year', 'Close_Date_Month', 'Close_Date_Day') in ["2
fiscal_years ago".."current day"];

Use these relative date keywords:

75

Date FunctionsSAQL Reference

• current day

• n day(s) ago

• n day(s) ahead

• current week

• n week(s) ago

• n week(s) ahead

• current month

• n month(s) ago

• n month(s) ahead

• current quarter

• n quarter(s) ago

• n quarter(s) ahead

• current fiscal_quarter

• n fiscal_quarter(s) ago

• n fiscal_quarter(s) ahead

• current year

• n year(s) ago

• n year(s) ahead

• current fiscal_year

• n fiscal_year(s) ago

• n fiscal_year(s) ahead

Note: Only standard fiscal periods are supported. See "About Fiscal Years" in Salesforce Help.

Open-Ended Date Ranges
Use open-ended date ranges for queries such as "List all opportunities closed after 12/23/2014". For example, return all records up to
and including the current month.

q = filter q by date('Close_Date_Year', 'Close_Date_Month', 'Close_Date_Day') in [.."1
year ago"];

You can also specify a closed relative date range. For example, return all records from three years ago up to and including today.

q = filter q by date('Close_Date_Year', 'Close_Date_Month', 'Close_Date_Day') in ["3 years
ago"..];

Add and Subtract Dates
You can add and subtract dates using the relative date keywords. For example, return all records from one year ago, up to and including
today.

q = filter q by date('Close_Date_Year', 'Close_Date_Month', 'Close_Date_Day') in ["current
day - 1 year"..];

76

Date FunctionsSAQL Reference

Return all records from today up to two years and three months from now.

q = filter q by date('Close_Date_Year', 'Close_Date_Month', 'Close_Date_Day') in ["current
day".."2 years ahead + 3 months"];

SEE ALSO:

date()

Display the Opportunities Closed This Month

Day in the Week, Month, Quarter, or Year
Returns the day in the specified time period for a given date. These functions answer questions like "do we close more deals at the
beginning or end of a quarter?".

Example
Suppose that you want to see on which day of the week most deals are closed. Use day_in_week(date).

q = load "Data";

q = foreach q generate day_in_week(toDate('Close_Date_sec_epoch')) as 'Day In Week Closed';

q = group q by 'Day In Week Closed';
q = foreach q generate 'Day In Week Closed' as 'Day In Week Closed', count() as 'count';
q = order q by 'count' desc;

The resulting data displays the number of opportunities closed, grouped by the day of the week that the opportunities were closed on.

It looks like most opportunities are closed on Thursday (day 5).

77

Date FunctionsSAQL Reference

day_in_week(date)

Returns an integer representing the day of the week for a specific date. For example, 1 = Sunday, 2 = Monday.

q = foreach q generate day_in_week(toDate('Close_Date_sec_epoch')) as 'Day In Week Closed';

day_in_month(date)

Returns an integer representing the day of the month for a specific date.

q = foreach q generate day_in_month(toDate('Close_Date_sec_epoch')) as 'Day in Month
Closed';

day_in_quarter(date)

Returns an integer representing the day of the quarter for a specific date.

q = foreach q generate day_in_quarter(toDate('Close_Date_sec_epoch')) as 'Day in Quarter
Closed';

day_in_year(date)

Returns an integer representing the day of the year for a specific date.

q = foreach q generate day_in_year(toDate('Close_Date_sec_epoch')) as 'Day in Year Closed';

Last Day in the Week, Month, Quarter, or Year
Returns the date of the last day in the specified week, month, quarter, or year.

Usage
Use these functions in a foreach() statement. You cannot use them in group by, order by, or filter statements.

week_last_day(date)

Returns the date of the last day of the week for the specified date.

q = foreach q generate week_last_day(toDate('Close_Date_sec_epoch')) as 'Week Last Day';

year_last_day(date)

Returns the date of the last day of the year for the specified date.

q = foreach q generate year_last_day(toDate('Close_Date_sec_epoch')) as 'Year last day';

Note: This function always returns 31st December. You can use it to find the number of days to the year end.

78

Date FunctionsSAQL Reference

month_last_day(date)

Returns the date of the last day of the month for the specified date.

q = foreach q generate month_last_day(toDate('Close_Date_sec_epoch')) as 'Month Last Day';

quarter_last_day(date)

Returns the date of the last day of the quarter for the specified date.

q = foreach q generate quarter_last_day(toDate('Close_Date_sec_epoch')) as 'Quarter Last
Day';

Number of Days in the Month, Quarter, or Year
Returns the number of days in the month, quarter, or year for the specified date.

month_days(date)

Returns the number of days in the month for the specified date.

q = foreach q generate month_days(toDate('Close_Date_sec_epoch')) as 'Billing Days In
Month';

quarter_days(date)

Returns the number of days in the quarter for the specified date.

q = foreach q generate quarter_days(toDate('Close_Date_sec_epoch')) as 'Billing Days In
Quarter;

year_days(date)

Returns the number of days in the year for the specified date.

q = foreach q generate year_days(toDate('Close_Date_sec_epoch')) as 'Billing Days In Year;

String Functions
Use SAQL string functions to format your measure and dimension fields.

ends_with()

Returns true if the string ends with the specified characters.

starts_with()

Returns true if the string starts with the specified characters.

replace()

Replaces a substring with the specified characters.

trim()

Removes the specified substring from the beginning and the end of a string.

79

String FunctionsSAQL Reference

ltrim()

Removes the specified characters from the beginning of a string.

rtrim()

Removes the specified characters from the end of a string.

index_of()

Returns the location (index) of the specified characters.

len()

Returns the number of characters in the string.

lower()

Returns a copy of the string with all characters in lower case.

upper()

Returns a copy of the string with all characters in upper case.

number_to_string

Converts a number literal to a string literal.

string_to_number

Converts a string literal to a number literal.

substr()

Returns a substring that starts at the specified position. You can also specify the length of the substring to return.

ends_with()

Returns true if the string ends with the specified characters.

Syntax
ends_with(string, suffix)

Usage
Returns true if ends with suffix, otherwise returns false. String comparison is case-sensitive. If any of the parameters are null,
then the function returns null. If suffix is an empty string, then the function returns null.

Example

ends_with("FIT", "T") == true
ends_with("FIT", "BIT") == false

starts_with()

Returns true if the string starts with the specified characters.

Syntax
starts_with(string, prefix)

80

String FunctionsSAQL Reference

Usage
Returns true if string starts with prefix, otherwise returns false. String comparison is case-sensitive. If any of the parameters
are null, then the function returns null. If prefix is an empty string, then the function returns null.

Example
Suppose that you want to count the opportunities where the owner role starts with "Sales". Use starts_with() in a case
statement.

q = load "DTC_Opportunity";

-- Select rows where the owner roles starts with "Sales"
q = foreach q generate count() as 'count', (case
when starts_with('Owner_Role', "Sales") then 'Owner_Role'
end) as 'Owner_Role';

q = group q by 'Owner_Role';
q = foreach q generate count() as 'count', 'Owner_Role' as 'Owner_Role';

The resulting chart shows the number of opportunities where the owner role starts with "Sales", grouped by owner role.

replace()

Replaces a substring with the specified characters.

Syntax
replace(string, searchStr, replaceStr)

Usage
This function replaces searchStr with replaceStr, then returns the modified string. If any of the parameters are null, then
the function returns null. If searchStr is an empty string, the function returns null. This function is case-sensitive.

Example

replace("Watson, come quickly.", "quickly", "slowly") == "Watson, come slowly."
replace("Watson, come quickly.", "o", "a") == "Watsan, came quickly."
replace("Watson, come quickly.", "", "Mr.") == null

81

String FunctionsSAQL Reference

trim()

Removes the specified substring from the beginning and the end of a string.

Syntax
trim(string,substr)

Usage
This function removes substr from the beginning and end of string, then returns the result. To remove leading and trailing spaces,
do not specify a value for substr.

Example

–- the resulting string in both cases is 'MyString';
q = foreach q generate trim("abcMyStringabc","abc") as 'Trimmed String';
q = foreach q generate trim(" MyString ") as 'Trimmed String';

ltrim()

Removes the specified characters from the beginning of a string.

Syntax
ltrim(string,substr)

Usage
Removes every instance of each character in substr from the beginning of string. This function is case-sensitive. To remove
leading spaces, do not specify a value for substr.

Example
This example shows that ltrim removes the specified characters from the beginning of a string. This function is case-sensitive.

q = load "test";
q = foreach q generate 'Company' as 'Company', ltrim('Company',"abc") as 'ltrim abc',

ltrim('Company',"cba") as 'ltrim cba', ltrim('Company',"ab") as 'ltrim ab',
ltrim('Company',"bc") as 'ltrim bc';

82

String FunctionsSAQL Reference

rtrim()

Removes the specified characters from the end of a string.

Syntax
rtrim(string,substr)

Usage
Removes every instance of each character in substr from the end of string. This function is case-sensitive. To remove trailing
spaces, do not specify a value for substr.

Example
This example shows that rtrim removes the specified characters from the end of a string. This function is case-sensitive.

q = load "test";
q = foreach q generate 'Company' as 'Company', rtrim('Company',"abc") as 'rtrim abc',

rtrim('Company',"cba") as 'rtrim cba', rtrim('Company',"ab") as 'rtrim ab',
rtrim('Company',"ac") as 'rtrim ac';

index_of()

Returns the location (index) of the specified characters.

83

String FunctionsSAQL Reference

Syntax
index_of(string, searchStr [,position [, occurence]])

Usage
This function returns the index of searchStr in string, beginning at the specified position. The function returns 0 if
searchStr is not found. This function is case-sensitive. If any of the parameters are null, then the function returns null.

The default value of position is 1, which means that the function begins searching at the first character of string. An error results
if position is negative or zero.

occurrence is an optional integer, with a default value of 1 . You can use this parameter to specify which occurrence of searchStr
to search for. For example, if there is more than one occurrence of searchStr, and occurence is 2, the index of the second
occurrence is returned.

Constant values are supported for position and occurrence, not arbitrary expressions.

If searchStr is an empty string, then the function returns null.

Example

-- return the first occurrence of "a", starting at the beginning.
-- The result is 2.
q = foreach q generate index_of("Hawaii", "a") as 'Index';

-- return the second occurrence of "a", starting at the beginning
-- the result is 4
q = foreach q generate index_of("Hawaii", "a",1, 2) as 'Index';

-- return the first occurrence of "a", starting at the third position
-- the result is 4
q = foreach q generate index_of("Hawaii", "a",3) as 'Index';

len()

Returns the number of characters in the string.

Syntax
len(string)

Usage
Leading and trailing whitespace characters are included in the length returned. Returns null if string is null.

Example

len("starfox") == 7
len(" rocket ") == 8
len("�") == 1
len("") == 0

84

String FunctionsSAQL Reference

lower()

Returns a copy of the string with all characters in lower case.

Syntax
lower(string)

Usage
Returns null if string is null.

Example

lower("JAVA") == "java"

upper()

Returns a copy of the string with all characters in upper case.

Syntax
upper(string)

Usage
Returns null if string is null.

Example

upper("java") == "JAVA"

number_to_string

Converts a number literal to a string literal.

Syntax
number_to_string(number, number_format)

Usage
Returns the string representation of number. Use number_format to specify the format of the string, for example as currency or
with two decimal places. number_format can specify seperate formats for positive and negative numbers:

• number_to_string(number, number_format)

The format specified by number_format is used for both positive and negative numbers.

• number_to_string(number, <POSITIVE>;<NEGATIVE>)

85

String FunctionsSAQL Reference

If number is positive, the number format specified by <POSITIVE> is used. If number is negative, the number format specified
by <NEGATIVE> is used. Note the semicolon separating the two specified formats.

You can specify the format with these characters:

• 0, #, decimal point (.)

• Thousands separator (,)

• Percentage (%)

• Leading and trailing characters: $, +, -, (,), :, !, ^,&,’,~,{,}

Example
Display the number amount as a string, formatted as currency:

q = foreach q generate 'Amount' as 'Amount', number_to_string('Amount',"$#,###.00") as
'NumberAmount';

Example
Suppose that you have a measure field with the format shown in Number You Start With. Use the format shown in number_format
to display this number as a shown in Resulting String.

Resulting Stringnumber_formatInitial Number

1234.6####.#1234.56

8.900#.0008.9

0.60.#.631

12.0#.0#12

1234.57#.0#1234.568

12,000#,###12000

12#,12000

12.20.0,,12200000

000120000012

3.46%#.00%0.03457

12.30#.00;($#.00)12.3

($12.30)$#.00;($#.00)-12.3

++;-32

-+;--32

86

String FunctionsSAQL Reference

string_to_number

Converts a string literal to a number literal.

Syntax
string_to_number(string)

Usage
If the string can't be parsed as a number, the query fails.

Example

-- creates a field called "Number" that contains the number 12345

q = foreach q generate string_to_number("12345") as 'Number';

substr()

Returns a substring that starts at the specified position. You can also specify the length of the substring to return.

Syntax
substr(string,position[, length])

Usage
substr returns the characters in string, starting at position position. If you specify length, this function returns length
number of characters. If any of the parameters are null, then the function returns null. length is optional.

The first character in string is at position 1. If position is negative then the position is relative to the end of the string. So a
position of -1 denotes the last character.

If length is negative, then the function returns null. If position > len (string) or position < -len(string) or
position = 0, then the empty string is returned.

Example

-- we want a substring that is one character long, starting at position 1.
-- The character "C" is returned.
substr("CRM", 1, 1)

-- we want a substring that is 2 characters long, starting at position 1
-- The string "CR" is returned
substr("CRM", 1, 2) == "CR"

-- we want a substring that is two characters long, starting from the *end* of the string
-- The string "RM" is returned
substr("CRM", -2, 2) == "RM"

-- we want to get the first 10 characters from this string

87

String FunctionsSAQL Reference

-- the string "2018-03-16" is returned
substr("2018-03-16T00:00:03.000Z",10)

Example
Suppose that you want to display the current time, but not the current date. Use substr() to return the last 11 characters from
date_to_string() .

q = foreach q generate substr(date_to_string(now(), "yyyy-MM-dd HH:mm:ss"), 11) as 'Time
Now';

Math Functions
To perform numeric operations in a SAQL query, use math functions.

You can use SAQL math functions in foreach statements and in the filter by clause after a foreach statement.

You can't use math functions in a group by clause or in an order by clause. You also can't use math functions in the filter
by clause before a foreach statement.

abs(n)

Returns the absolute number of n as a numeric value. n can be any real numeric value in the range of -1e308 <= n <= 1e308.

ceil(n)

Returns the nearest integer of equal or greater value to n. n can be any real numeric value in the range of -1e308 <= n <= 1e308.

exp(n)

Returns the value of Euler's number e raised to the power of n, where e = 2.71828183… The smallest value for n that doesn’t
result in 0 is 3e-324. n can be any real numeric value in the range of -1e308 <= n <= 700.

floor(n)

Returns the nearest integer of equal or lesser value to n. n can be any real numeric value in the range of -1e308 <= n <= 1e308.

log(m, n)

Returns the natural logarithm (base m) of a number n. The values m and n can be any positive, non-zero numeric value in the
range 0 < m, n <= 1e308 and m ≠ 1.

power(m, n)

Returns m raised to the nth power. m, n can be any numeric value in the range of -1e308 <= m, n <= 1e308. Returns null if m =
0 and n < 0.

round(n[, m])

Returns the value of n rounded to m decimal places. m can be negative, in which case the function returns n rounded to -m places
to the left of the decimal point. If m is omitted, it returns n rounded to the nearest integer. For tie-breaking, it follows round half
way from zero convention. n can be any real numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value
between -15 and 15, inclusive.

sqrt(n)

Returns the square root of a number n. The value n can be any non-negative numeric value in the range of 0 <= n <= 1e308.

trunc(n[, m])

Returns the value of the numeric expression n truncated to m decimal places. m can be negative, in which case the function returns
n truncated to -m places to the left of the decimal point. If m is omitted, it returns n truncated to the integer place. n can be any
real numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value between -15 and 15 inclusive.

88

Math FunctionsSAQL Reference

abs(n)

Returns the absolute number of n as a numeric value. n can be any real numeric value in the range of -1e308 <= n <= 1e308.

This example is valid:

q = foreach q generate abs(pct_change) as pct_magnitude;

These examples are invalid:

q = group q by abs(pct_change);
q = order q by abs(pct_change);

ceil(n)

Returns the nearest integer of equal or greater value to n. n can be any real numeric value in the range of -1e308 <= n <= 1e308.

This example is valid:

q = foreach q generate ceil(miles) as distance;

These examples are invalid:

q = group q by ceil(miles);
q = order q by ceil(miles);

exp(n)

Returns the value of Euler's number e raised to the power of n, where e = 2.71828183… The smallest value for n that doesn’t result
in 0 is 3e-324. n can be any real numeric value in the range of -1e308 <= n <= 700.

These examples are valid:

q = foreach q generate exp(value) as value;
q = filter q by exp(value) < 5;

These examples are invalid:

q = group q by exp(value);
q = order q by exp(value);

floor(n)

Returns the nearest integer of equal or lesser value to n. n can be any real numeric value in the range of -1e308 <= n <= 1e308.

This example is valid:

q = foreach q generate floor(miles) as distance;

These examples are invalid:

q = group q by floor(miles);
q = order q by floor(miles);

89

Math FunctionsSAQL Reference

log(m, n)

Returns the natural logarithm (base m) of a number n. The values m and n can be any positive, non-zero numeric value in the range
0 < m, n <= 1e308 and m ≠ 1.

The smallest number input allowed for m is >0, m!=1. The smallest number for m or n that will not produce 0 is log(10, 0.3e-323).

These examples are valid:

q = foreach q generate log(10, Population) as Population;
q = filter q by log(10, Population) < 15;

These examples are invalid:

q = group q by log(10, Population);
q = order q by log(10, Population);

power(m, n)

Returns m raised to the nth power. m, n can be any numeric value in the range of -1e308 <= m, n <= 1e308. Returns null if m = 0
and n < 0.

• If m = 0, n must be a non-negative value.

• If m < 0, n must be an integer value.

• The result of power(m, n) must be within the range expressed by a float64 number.

These examples are valid:

q = foreach q generate power(length, 2) as area, length;
q = filter q by power(length, 2) > 10;

These examples are invalid:

q = group q by power(length, 2);
q = order q by power(length, 2);

round(n[, m])

Returns the value of n rounded to m decimal places. m can be negative, in which case the function returns n rounded to -m places to
the left of the decimal point. If m is omitted, it returns n rounded to the nearest integer. For tie-breaking, it follows round half way from
zero convention. n can be any real numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value between -15 and
15, inclusive.

This example is valid:

q = foreach q generate round(Price, 2) as Price;

These examples are invalid:

q = group q by round(Price, 2);
q = order q by round(Price, 2);

sqrt(n)

Returns the square root of a number n. The value n can be any non-negative numeric value in the range of 0 <= n <= 1e308.

90

Math FunctionsSAQL Reference

These examples are valid:

q = foreach q generate sqrt(value) as value;
q = filter q by sqrt(value) < 10;

These examples are invalid:

q = group q by sqrt(value);
q = order q by sqrt(value);

trunc(n[, m])

Returns the value of the numeric expression n truncated to m decimal places. m can be negative, in which case the function returns
n truncated to -m places to the left of the decimal point. If m is omitted, it returns n truncated to the integer place. n can be any real
numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value between -15 and 15 inclusive.

This example is valid:

q = foreach q generate trunc(Price, 2) as Price;

These examples are invalid:

q = group q by trunc(Price, 2);
q = order q by trunc(Price, 2);

Windowing Functions
Use SAQL windowing functionality to calculate common business cases such as percent of grand total, moving average, year and quarter
growth, and ranking.

Windowing functions allow you to calculate data for a single group using aggregated data from adjacent groups. Windowing does not
change the number of rows returned by the query. Windowing aggregates across groups rather than within groups and accepts any
valid numerical projection on which to aggregate.

Windowing with an aggregate function uses the following syntax:

<windowfunction>(<projection expression>) over (<row range> partition by <reset groups>
order by <order clause>) as <label>

When using ranking functions, use the following syntax:

<rankfunction> over([..] partition by <reset groups> order by <order clause>) as <label>

Where:

windowfunction
An aggregate function that supports windowing. Currently supported functions are avg, sum, min, max, count, median,
percentile_disc, and percentile_cont.

rankfunction
Returns a rank value for each row in a partition. The following ranking functions are supported: rank(), dense_rank(),
cume_dist() and row_number(). Refer to the Ranking Functions section for examples.

projection expression

The expression used to generate a projection from the values of specified columns.

91

Windowing FunctionsSAQL Reference

row range

Row ranges are specified using the following syntax.

MeaningRange

From beginning to current row in the reset group.[.. 0]

From current row to the last row in the reset group.[0 ..]

From two rows prior to current row. Window covers 3 rows.[-2 .. 0]

From current row to 2 rows ahead of current row. Windows covers 3 rows.[0 .. 2]

One row prior to current row. Window includes a single row.[-1 .. -1]

From beginning of reset group to 2 rows prior to current row.[.. -2]

Aggregates the entire reset group.[..]

reset groups
The column(s) which reset windowing aggregation when their value(s) change. A reset group of all indicates no reset boundaries
for the window aggregation.

order clause
Specify column(s) by which to sort. This orders the rows before the window function gets evaluated.

Note: The order clause is not allowed on expressions where the row range is [..] and the window function is sum, avg,
min, or max. For example, sum(sum(Sales)) over([..] partition by Year order by Quarter)
is invalid.

label
The output column name.

Notes
Grouped Queries

Windowing functionality is enabled only for grouped queries. The following is not valid:

a = load "dataset";
b = foreach a generate sum(sum(sales)) over([.. 0] partition by all order by all);

Multiple Resets and Multiple Orders

Multiple resets and multiple orders are valid. For example:

sum(sum(Sales)) over([-2 .. 0] partition by (OrderDate_Year, OrderDate_Quarter) order
by OrderDate_Year)

sum(sum(Sales)) over([-2 .. 0] partition by (Year, Quarter) order by (Year asc, sum(Sales)
desc))

Cogroups

Windowing functions can be used with cogroup queries. For example:

92

Windowing FunctionsSAQL Reference

sum(sum(a[Sales])) over([-2 .. 0] partition by (a[Year], a[Quarter]) order by (a[Year]
asc, sum(a[Sales]) desc))

Note: Each Windowing function can be used with only 1 cogroup stream. The following is not valid:

a = load "dataset1";
b = load "dataset2";
c = group a by column1, b by column2;
d = foreach c generate sum(sum(a[sales])) over([.. 0] partition by b[column2] order
by all)

Refer to the Aggregate Functions topic for details on function usage.

Example - Dynamically Display Your Top Five Reps
Use windowing to create a chart that dynamically displays your top-five reps for each country. The chart updates continuously as
opportunities are won. The example uses windowing to calculate:

• Percentage contribution that each rep made to the total amount, partitioned by country

• Ranking of the rep’s contribution, partitioned by country

These calculations let us display the top-five reps in each country.

q = load "DTC_Opportunity_SAMPLE";
q = group q by ('Billing_Country', 'Account_Owner');

q = foreach q generate 'Billing_Country', 'Account_Owner',

-- sum(Amount) is the total amount for a single rep in the current country
-- sum(sum('Amount') is the total amount for ALL reps in the current country
-- sum(Amount) / sum(sum('Amount') calculates the percentage that each rep contributed
-- to the total amount in the current country
((sum('Amount')/sum(sum('Amount'))

-- [..] means "include all records in the partition"
-- "by Billing_Country" means partition, or group, by country
over ([..] partition by 'Billing_Country')) * 100) as 'Percent_AmountContribution',

-- rank the percent contribution and partition by the country
rank() over ([..] partition by ('Billing_Country') order by sum('Amount') desc) as
'Rep_Rank';

-- filter to include only the top 5 reps
q = filter q by 'Rep_Rank' <=5;

The resulting graph shows the top-five reps in each country and displays each rep’s ranking.

93

Windowing FunctionsSAQL Reference

Examples
Running Total (No Reset)

The following query calculates the running total of sum of sales every quarter, with "partition by all" denoting that the sum is not reset
by any column.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sum_amt, sum(sum(Sales)) over([.. 0] partition by all order by (OrderDate_Year,
OrderDate_Quarter)) as r_sum;

r_sumsum_amtQuarterYear

1000100012013

3000200022013

6000300032013

8000200042013

9000100012014

950050022014

18500900032014

94

Windowing FunctionsSAQL Reference

r_sumsum_amtQuarterYear

21500300042014

2200050012015

2250050022015

2270020032015

2310040042015

Running Totals By Year

Running total resets on every year.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sum_amt, sum(sum(Sales)) over([.. 0] partition by OrderDate_Year order by (OrderDate_Year,
OrderDate_Quarter)) as r_sum;

r_sumsum_amtQuarterYear

1000100012013

3000200022013

6000300032013

8000200042013

1000100012014

150050022014

10500900032014

13500300042014

50050012015

10050022015

120020032015

160040042015

Min Sales Trailing 3 Quarters (Moving Min)

Finds the moving minimum values in the window of last two rows to current row.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sumSales, min(sum(Sales)) over([-2 .. 0] partition by OrderDate_Year order by
(OrderDate_Year, OrderDate_Quarter)) as m_min;

95

Windowing FunctionsSAQL Reference

m_minsumSalesQuarterYear

1000100012013

1000200022013

1000300032013

2000200042013

1000100012014

50050022014

500900032014

500300042014

4000400012015

50050022015

20020032015

20040042015

Percentage Total

This query calculates the percentage of the quarter’s sales for the year. Row range [..] calculates the subtotals of each year, which is used
in the formula to calculate the percentage.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sumSales, (sum(Sales) * 100) / sum(sum(Sales)) over([..] partition by OrderDate_Year)
as p_tot;

p_totsumSalesQuarterYear

12.5%100012013

25%200022013

37.5%300032013

25%200042013

7.41%100012014

3.70%50022014

66.67%900032014

22.22%300042014

31.25%50012015

31.25%50022015

96

Windowing FunctionsSAQL Reference

p_totsumSalesQuarterYear

12.50%20032015

25%40042015

Differences Along Year

This query calculates the growth of sales compared with the previous quarter, with [-1 .. -1] referring to the quarter before the quarter
on the row. The blank spaces in the result table represent null values.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sumSales, sum(Sales) - sum(sum(Sales)) over([-1 .. -1] partition by OrderDate_Year order
by (OrderDate_Year, OrderDate_Quarter)) as diff;

diffsumSalesQuarterYear

100012013

1000200022013

1000300032013

-1000200042013

100012014

-50050022014

8500900032014

-6000300042014

50012015

050022015

-30020032015

20040042015

Ranking Functions

rank()
Assigns rank based on order. Repeats rank when the value is the same, and skips as many on the next non-match.

dense_rank()
Same as rank() but doesn’t skip values on previous repetitions.

cume_dist()
Calculates the cumulative distribution (relative position) of the data in the reset group.

row_number()
Assigns a number incremented by 1 for every row in the reset group.

97

Windowing FunctionsSAQL Reference

Examples

q = load "dataset";
q = group q by (Year, Quarter);
q = foreach q generate Year, Quarter, sum(Sales) as sum_amt, rank() over([..] partition
by Year order by sum(Sales)) as rank;

The following table also shows result columns as if the dense_rank(), cume_dist() and row_number() functions were
substituted for rank() in the previous code.

row_numbercume_distdense_rankranksum_amtQuarterYear

10.2511100012013

20.7522200022013

30.7522200042013

4134300032013

10.251150022014

20.522100012014

30.7533300042014

4144900032014

10.51150012015

20.51150022015

30.752360042015

413470032015

This query shows the top 3 performing quarters in a year.

q = load "dataset";
q = group q by (Year, Quarter);
q = foreach q generate Year, Quarter, sum(Sales) as sum_amt, rank() over([..] partition
by Year order by sum(Sales)) as rank;
q = filter q by rank <= 3;

ranksumSalesQuarterYear

1100012013

2200022013

2200042013

150022014

2100012014

3300042014

98

Windowing FunctionsSAQL Reference

ranksumSalesQuarterYear

150012015

160022015

360042015

This query shows the 95th percentile.

q = load "Oppty_Products_Scored";
q = group q by (ProductName);
q = foreach q generate ProductName, sum(TotalPrice) as sum_Price, percentile_cont(0.95)
within group (order by 'TotalPrice') as 'sum_95Percentile';
q = limit q 5;

Refer to the Aggregate Functions topic for details on function usage.

SEE ALSO:

Windowing Functions

Windowing Functions

coalesce
Use coalesce() to get the first non-null value from a list of parameters, or to replace nulls with a different value.

coalesce(value1 , value2 , value3 , ...)

Example: Left Outer Cogroup with coalesce()
A left outer cogroup combines the right data stream with the left data stream. If a record on the left stream does not have a match on
the right stream, the missing right value comes through as null. To replace null values with a different value, use coalesce().

99

coalesceSAQL Reference

For example, suppose that you have a dataset of meeting information from the Salesforce Event object, and you join it with data from
the Salesforce Opportunity object. This shows amount won with the total time spent in meetings.

ops = load "Ops";
meetings = load "Meetings";
q = cogroup ops by 'Account' left, meetings by 'Company' ;
q = foreach q generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum_Amount',
sum(meetings.'MeetingDuration') as 'TimeSpent';

It looks like we had no meetings with Zen Retreats.

Let’s use coalesce() to change that null value to a zero.

ops = load "Ops";
meetings = load "Meetings";
q = cogroup ops by 'Account' left, meetings by 'Company' ;

–-use coalesce() to replace null values with zero
q = foreach q generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum_Amount',
coalesce(sum(meetings.'MeetingDuration'), 0) as 'TimeSpent';

100

coalesceSAQL Reference

QUERY PERFORMANCE

To optimize performance, learn how to structure your query to take advantage of the different stages a SAQL query passes through.

These topics explain common query performance problems and will help you write more efficient queries.

Projection is Important

See how changing the order of the functions in your query can give remarkable performance improvements.

Network Traffic and Latency

You might not think there’s much you can do about network latency, but there are ways to reduce traffic.

Redundant Filters

Is your query doing more work than it needs to? Check to see if you have redundant filters.

Use the ELT Process

Is your dataset set up correctly for what you’re trying to do? You could be doing unnecessary work in your queries.

Multi-Value Dimensions

If you use picklists, and find your queries are slow, consider the impact of multi-value dimensions.

Limit the use of Unique()

Sometimes you need to use unique() in a query, but be aware that it can affect performance if there is a large number of unique
values.

Projection is Important

See how changing the order of the functions in your query can give remarkable performance improvements.

Think Projection
With behind-the-scenes knowledge of how data is queried, it quickly becomes apparent that writing queries to take advantage of the
super-fast and efficiently indexed layer is key to maximize performance. This before-and-after concept essentially relates to projection.

Tip: What is projection? When a query creates a new stream with a foreach statement—and it’s the first foreach in the query—that
is a projection.

Pre-projection queries, particularly those dealing with rows numbering in the hundreds of thousands or more, will execute much faster
than post-projection queries dealing with the same number of rows as tabular data. So, instead of:

q = load "something";
q = foreach q generate ‘col1’+’col2’ as ‘key’, col3;
q = filter q by ‘key’;
q = filter q by ‘col3’;
q = group q by ‘col3’;

..where the filtering and grouping occur after projection (foreach), change the order so the filtering and grouping occur before projection:

q = load "something";
q = filter q by ‘col1’;

101

q = filter q by ‘col2’;
q = filter q by ‘col3’;
q = group q by ‘col3’;
q = foreach q generate ‘col1’+’col2’ as ‘key’, col3;

So a good practice is to ensure that the most demanding part of your query is tackled by the appropriate layer—the layer able to process
that filter or grouping most efficiently.

A great many "slow query" cases addressed by support and development teams are ultimately resolved by rewriting the query to perform
grouping and filtering before projection.

Note: If you need to filter or group by an expression (e.g. key=col1+col2), the best option for performance is to create the column
in the dataset so that it is calculated at ETL time and indexed. See Use the ELT Process.

Network Traffic and Latency

You might not think there’s much you can do about network latency, but there are ways to reduce traffic.

Reduce Network Round Trips
Consider the number of network round trips your query might initiate. There are techniques to reduce network usage. This is especially
important for mobile, where network latency can be high.

An example is faceting in a dashboard. Say you are using SAQL queries to display grouped values in a list selector, but you want the
displayed values to look different (for example, you might want to show dates differently). You might choose to add an intermediate
query to filter the stream based on the list selector values in order to display your prefered text. However, this adds an extra network
round trip, so it’s not an optimal solution.

In this case, a better solution might be to ensure your data values—those used in the list selector—are those you actually want, and
have the data transformed appropriately at load time via the ELT process. See Use the ELT Process.

Redundant Filters

Is your query doing more work than it needs to? Check to see if you have redundant filters.

Optimizing Multiple Filters
Logically, it’s easy to write multiple filters to achieve your goal, but often you end up with redundant filters. It’s even possible to generate
redundant filters when setting up binding and faceting.

q = load "something";
q = filter q by date('ProcDate_Day') in ["current year".."current year"];
q = filter q by date('ProcDate_Day') in ["5 years ago".."current year"];
q = group q by 'ProdDescrip';
q = foreach q generate 'ProdDescrip' as 'Prod Desc', sum('CC_cost') as 'Cost';
q = limit q 2000;

Even though the filters in this example occur before projection—before the foreach statement—and so are highly optimized, the second
filter is redundant and so causes unnecessary work for the query engine. Why is it redundant? The results will be the same even without
the "5 years ago" filter.

102

Network Traffic and LatencyQuery Performance

Note: Analytics does have a sophisticated algorithm for removing redundancy in filters, but it can’t catch all cases so it’s good
practice to avoid redundancy.

Use the ELT Process

Is your dataset set up correctly for what you’re trying to do? You could be doing unnecessary work in your queries.

The Extract, Load, and Transform Process Can Set Your Queries up for
Success
When importing your dataset via the ELT process, it’s important to ensure that your dataset is optimized for likely queries. The ELT process
allows the creation of derived fields using calculations based on the current dataset, or even other derived fields.

If you find yourself writing queries with a case statement in the foreach projection, then it’s possible your dataset could be optimized.
For example, the following query changes the value JP to JAPAN in the output stream:

q1 = foreach q1 generate (case when 'GEO' == \"JP\" then \"Japan\" else 'GEO' end) as 'GEO;

Executing this query multiple times can affect performance. It makes better sense to have the dataset reflect the required data accurately.
In your ELT process, use the computeExpression transformation, and add your case statement in the saqlExpression SAQL
query. For example:

"action": "computeExpression",
"parameters": {
"source": "Opportunity_Data",
"mergeWithSource": true,
"computedFields": [
{
"name": "GEO",
"type": "Text",
"label": "GEO"
"saqlExpression":
"case
when ‘GEO’ == \"JP" then \"Japan\"
else ‘GEO’
end"}
]
}

Now the GEO field in your dataset contains Japan rather than JP. Your queries no longer need the CASE statement, and execute more
efficiently.

Reduce the Number of Decimal Places
When setting up your dataflow, try to minimize the number of decimal places in your data. Using fewer decimal places generates more
compact data that is faster to query.

103

Use the ELT ProcessQuery Performance

Consider Sorting Your Data Before Running a Dataflow
SAQL searches ordered data much more efficiently than random data, so consider ordering your data before loading it into a dataflow.
Order the data by a field that is commonly used in filter and group by statements to make those statements more efficient.

For example, suppose that you frequently perform time-based analysis on your data. In this case, ordering your data chronologically
before running the dataflow makes time-based queries faster.

Multi-Value Dimensions

If you use picklists, and find your queries are slow, consider the impact of multi-value dimensions.

Multi-Value Dimensions in Projections or Grouping
Multi-valued dimensions (for example, those used in multi-select picklists) may cause poor performance because multi-value field
behavior is undefined for group by or foreach. Also, multi-value dimensions are not indexed, so queries that reference multi-valued
dimensions will therefore require scanning of dimensions, which could slow performance. This is especially true when using multi-level
grouping.

For these reasons, use of multi-value fields in anything other than filters is strongly discouraged.

Important: If you have bad performance due to multi-value fields used in foreach or group by, rewrite your query so multi-value
fields are referenced only in filters.

Limit the use of Unique()

Sometimes you need to use unique() in a query, but be aware that it can affect performance if there is a large number of unique
values.

For example, suppose you want to count the number of different industries that you have opportunities with.

q = load "DTC_Opportunity_SAMPLE";
q = group q by all;
q = foreach q generate unique('Industry') as 'unique_Industry';

If your data contains a few thousand industries, this query will not negatively affect performance.

However, suppose you want to count the number of unique customers (accounts):

q = load "AcquiredAccount";
q = group q by all;
q = foreach q generate unique('Account_Id') as 'unique_Account_Id';

If your company has millions of customers, be aware that this query will have some affect on performance.

Note: While counting the number of unique values might impact performance, counting the total number of rows in a table has
almost no impact.

104

Multi-Value DimensionsQuery Performance

	Overview
	Introduction
	Use SAQL in the Analytics Dashboard
	Enable SAQL Logs in the Browser

	Quick Start
	Write Your First Query
	Create a Derived Measure
	Create a Derived Dimension

	Examples
	Analyze Your Data Over Time
	Calculate How Long Activities Take
	Display the Opportunities Closed This Month
	Forecast Future Data Points with timeseries
	Combine Data from Multiple Data Streams with cogroup
	Replace Null Values with coalesce()
	Dynamically Display Your Top Five Reps with Windowing
	Append Datasets using union
	Calculate the Slope of the Regression Line
	Show the Top and Bottom Quartile
	Calculate Grand Totals and Subtotals with the rollup Modifier and grouping() Function

	SAQL Reference
	SAQL Basic Elements
	Statements
	Keywords
	Identifiers
	Number Literals
	String Literals
	Boolean Literals
	Quoted String Escape Sequences
	Special Characters
	Comments

	SAQL Operators
	Arithmetic Operators
	Comparison Operators
	String Operators
	Logical Operators
	Simple case Operator
	Searched case Operator
	Null Operators

	SAQL Statements
	cogroup
	load
	fill
	filter
	foreach
	group
	union
	order
	limit
	offset
	timeseries

	SAQL Functions
	Aggregate Functions
	avg() or average()
	count()
	first()
	last()
	max()
	median()
	min()
	sum()
	unique()
	stddev()
	stddevp()
	var()
	varp()
	percentile_cont()
	percentile_disc()
	regr_intercept()
	regr_slope()
	regr_r2()
	grouping()

	Date Functions
	daysBetween()
	date_diff()
	now()
	date()
	toDate()
	date_to_epoch()
	date_to_string()
	toString()
	Time-Based Filtering
	Day in the Week, Month, Quarter, or Year
	Last Day in the Week, Month, Quarter, or Year
	Number of Days in the Month, Quarter, or Year

	String Functions
	ends_with()
	starts_with()
	replace()
	trim()
	ltrim()
	rtrim()
	index_of()
	len()
	lower()
	upper()
	number_to_string
	string_to_number
	substr()

	Math Functions
	abs(n)
	ceil(n)
	exp(n)
	floor(n)
	log(m, n)
	power(m, n)
	round(n[, m])
	sqrt(n)
	trunc(n[, m])

	Windowing Functions
	coalesce

	Query Performance
	Projection is Important
	Network Traffic and Latency
	Redundant Filters
	Use the ELT Process
	Multi-Value Dimensions
	Limit the use of Unique()

