salesforce

Analytics SAQL Reference

20

Y @salesforcedocs
Last updated: August 20, 2020

https://twitter.com/salesforcedocs

© Copyright 20002020 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

OVERVIEW . . . 1
INrodUCtioN . . . o oo 1
Use SAQL in the Analytics Dashboard 2
Enable SAQL Logs in the Browser o 4
QUICK START e 5
Write Your First QUENY oo e 5
Create a Derived MEASUIE 6
Create a Derived DIMENSION oo oot e 7
EXAMPLES 8
Analyze Your Data Over TIMe . . . o oottt e et e e e e e 8
Calculate How Long Activities TaKe e e 9
Display the Opportunities Closed ThisMonth i 10
Forecast Future Data Points with timeseries n
Combine Data from Multiple Data Streams with cogroup oo oo oo 12
Replace Null Values with coalescel) 14
Dynamically Display Your Top Five Reps with Windowing 15
Append Datasets USING UNIONo oottt 16
Calculate the Slope of the Regression Line 17
Show the Top and Bottom Quartile 18
Calculate Grand Totals and Subtotals with the rollup Modifier and groupingl) Function 19
SAQL REFERENCE i, 22
SAQL Basic Elements 22
SAQL Operatorso e 25
SAQL Statements e 32
SAQL FUNCHIONS . . . o o e 53
QUERY PERFORMANCE e 101
Projection is Important e 101
Network Traffic and Latencyo o 102
Redundant Filters e 102
UsSethe ELT PrOCESS . .« . o o vttt e e e e e e e e e e e e e e 103
Multi-Value DIMENSIONS oot e e e e 104

Limitthe use of Uniquel)o 104

OVERVIEW

Use SAQL (Salesforce Analytics Query Language) to access data in Analytics datasets. Analytics uses SAQL behind the scenes in lenses,
dashboards, and explorer to gather data for visualizations.

Developers can write SAQL to directly access Analytics data via:
e Analytics REST AP

Build your own app to access and analyze Analytics data or integrate data with existing apps.

e Dashboard JSON

Create advanced dashboards. A dashboard is a curated set of charts, metrics, and tables.

e Compare Table

Use SAQL to perform calculations on data in your tables and add the results to a new column.

e Transformations During Data Flow

Use SAQL to perform manipulations or calculations on data when bringing it in to Analytics.

Introduction

Most actions you take in Analytics result in one or more SAQL queries. Every lens, dashboard, and explorer action generates and
executes a SAQL query to build the data needed for the visualization.

Use SAQL in the Analytics Dashboard

Use the Analytics Studio user interface to modify existing SAQL queries or write new ones. Writing SAQL queries in the user interface
is the easiest way to get started.

Enable SAQL Logs in the Browser
If you're using Google Chrome to work with SAQL and Einstein Analytics, you can turn on SAQL logs.

SEE ALSO:

Analytics REST API Developer's Guide
Analytics Dashboard JSON Reference

Introduction

Most actions you take in Analytics resultin one or more SAQL queries. Every lens, dashboard, and explorer action generates and executes
a SAQL query to build the data needed for the visualization.

Analytics evaluates queries, widgets, and layouts to render a dashboard. Behind every widget is a SAQL query which is sent the query
engine for execution. The resulting data is passed to the charting library, which renders it using corresponding widget definitions. SAQL
is influenced by the Apache Pig Latin (pigqgl) syntax, but their implementations differ, and they are not compatible.

https://developer.salesforce.com/docs/atlas.en-us.226.0.bi_dev_guide_rest.meta/bi_dev_guide_rest/
https://developer.salesforce.com/docs/atlas.en-us.226.0.bi_dev_guide_json.meta/bi_dev_guide_json/

Overview Use SAQL in the Analytics Dashboard

How the components fit together

1. Auto-facet steps added using the builder
2. Resolve Mustache templates and custom bindings

a ¢ 3. Generate SAQL for each step
H 4. Dispatch queries to the Wave Engine
;. “m = L Rendering ;
—> Engine H
—l
Query | ¢35 | Dataset
¢ Engine 2
PP m— : i
‘ Runtime i

5. Execute query

6. Build resuits
7. Return them as JSON

8. Render results using widget definition

Developers can write SAQL to access Analytics data, either via the Analytics REST API, or by creating and editing SAQL queries contained
in the dashboard JSON.

A SAQL query loads an input dataset, operates on it, and outputs a results dataset. Each SAQL statement has an input stream, an operation,
and an output stream. Statements can span multiple lines and must end with a semicolon. Each query line is assigned to a named stream.
A named stream can be used as input to any subsequent statement in the same query. The only exception to this rule is the last line in
a query, which you don't need to assign explicitly.

Use SAQL in the Analytics Dashboard

Use the Analytics Studio user interface to modify existing SAQL queries or write new ones. Writing SAQL queries in the user interface is
the easiest way to get started.

Every component in Einstein Analytics uses SAQL behind the scenes. You can build a widget in a dashboard, then switch to the SAQL
view to see the SAQL query for the widget. Or, you can create a lens while exploring a dataset, then switch to the SAQL view to see the
SAQL query for the lens.

Let’s look at the query generated by a widget in a dashboard.

@ Nofte: After you edit the SAQL for a widget, you may not be able to go back to the dashboard view, depending on how complex
the SAQL query is.
1. Inyour Salesforce org, open Analytics Studio, then open a dashboard. For example, open Opportunity Details.

2. Click Edit.

Overview

9::'19@-*@

Opportunity Details

Open Pip...

Sales Rep Opportunit . Account Close Date
m Won Lost o - Al v All w 1112 w

Won Opp... Opportunity Amount

m o
| oz . £ ———

03-] s
B o g \H
m os- ¢
| o0&
| o7 Aug Sep Oct HNov Dec

Clese Date (Year-banth)

3. Clicka query to edit, for example Amount_1, then click Edit in the dropdown list.

Search Steps
Show Al (12) «

+ @ DTC Opportunity + -

= Account_Name_1

= Amount_1 ‘_T
L3 Amolmt_J Edit

Clone
¥ Amount_3

Properties

4. Click SAQL Mode to display the SAQL query.

Amount_1 >
. Armount_1 Dataset Fields © fod
Measures =
I Sumof.. Sum of Amount Mpasune
— _— — T Sumof Amourt @
+ =
Group by

5. View the SAQL query.

Here is the SAQL query for our example:

q = load "DTC Opportunity SAMPLE";
g = filter g by 'Closed' == "false";
g = group g by all;

Use SAQL in the Analytics Dashboard

Overview

= foreach g generate sum('Amount') as
limit g 2000;

Q
|

'sum_ Amount';

Enable SAQL Logs in the Browser

6. Edit the query, then click Run Query to run the new query. For example, you could change the sum to average.

Enable SAQL Logs in the Browser

If you're using Google Chrome to work with SAQL and Einstein Analytics, you can turn on SAQL logs.

@ Nofe: SAQL Logs in the browser are no longer supported. To see how your SAQL queries run in the dashboard, use the Dashboard
Inspector. You can also right-click the dashboard in the browser and select Inspect.

Turning on SAQL logs in the browser prints queries in the Developer Tools Console. This lets you see what SAQL is generated by Einstein

Analytics dashboards and lenses. This action doesn’t change server-side logs.
1. In Google Chrome, open an Einstein Analytics dashboard.
In Google Chrome, open Developer Tools.

In Developer Tools, select Console.

.

In the Einstein Analtyics dashboard, elect the explore (wave.apexp) frame.

. Inthe developer tools console, enter edge. log.enabled = true

. Inthe developer tools console, enter edge. 1og.query = true

SAQL logs are enabled. The logs are displayed when a query is sent from the dashboard or lens, for example when you drill into a chart.

Responsive ¥ 720 |x 516 100% ¥ Onling ¥

all Analytics Studio Opportunity Details b1

4+ Follow Data updat L) ra = =] Py o e

Opportunity Details

. Sales Oppt Cl
Stage A PRy Account o
Rep Type Date
Sales Rep Opportun... Account Cliose Date
P v Al W Al W Al W 1M1~

Opportunity Amount

artunity Armount

& wave, apexptald=00uf SOO000 -

L e The specified value "I"

ol = azl ¢ x

top ¥ | Filter [

erTyL:l
The S5L certificate used
to load resources from hit
ps://nas9, salesforce, com
will be distrusted in MG5.
Once distrusted, users
will be prevented from
loading these resources.
See hitps://g.cofchrome/sy
pantecpkicerts for more

information.

InsightsExtDeps . {5 sourcen
ap: 7440
does not conform to the
required format. The
format is "#rrgghb” where
rr, g8, bb are two-digit
hexadecimal numbers.

=

-

edge.log.enabled = true
true

edge.log.query = true
true

: IConsc 2 I What's New x

QUICK START

Get up to speed quickly with these easy SAQL examples.

Write Your First Query
Let's walk through each part of a simple SAQL query.

Create a Derived Measure
Perform calculations on existing measures and use the result to create a new, or derived, measure.

Create a Derived Dimension
Perform string manipulations on existing dimensions to create a new, or derived, dimension.

Write Your First Query

Let's walk through each part of a simple SAQL query.

We'll create a new dashboard in an Einstein Analytics org. Then we'll add a simple chart and look at the resulting SAQL.

@ Nofe: These instructions assume you are using the sample Salesforce Developer org, which includes sample datasets. If you are
using a different org, you can still follow the same general instructions with your own dataset.

1. Inyour Einstein Analytics org, create a new dashboard:
a. Click Create.
b. Click Dashboard.

In the window Choose a dashboard template, click Blank Dashboard, then click Continue.
Drag a chart widget to the dashboard canvas.

In the chart widget, click Chart, then select DTC Opportunity dataset.

Click the SAQL Mode button to launch the SAQL editor.

The SAQL editor displays the SAQL query used to fetch the data and render the chart:

ok wWwN

1 q = load "DTC Opportunity SAMPLE";

2 g = group d by all;

3 g = foreach g generate count() as 'count';
4 g = limit g 2000;

Let's take a look at each line in the query.

Line Number Description

! g = load "DTC Opportunity SAMPLE";

This loads the dataset that you chose when you created the chart widget. You can use the variable g to access
the dataset in the rest of your SAQL statements.

Quick Start Create a Derived Measure

Line Number Description
2 q = group g by all;

In some queries, you want to group by a certain field, for example Account ID. In our case we didn't specify a
grouping when we created the chart. Use group by all when you don't want to group data.

3 g = foreach g generate count() as 'count';

This generates the output for our query. In this simple example, we just count the number of lines in the DTC
Opportunity dataset.

4 q = limit g 2000

This limits the number of results that are returned to 2000. Limiting the number of results can improve performance.
However if you want g to contain more than 2000 results, you can increase this number.

You can click Back to go back to the chart. You can use the Ul to make modifications to the chart, then view the resulting SAQL.

Create a Derived Measure

Perform calculations on existing measures and use the result to create a new, or derived, measure.
Analytics calculates the value of derived measures at run time using the values from other fields.

@ Note: You canalso create a derived measure in a dataflow rather than at runtime using SAQL. Measures created during a dataflow
are calculated when the data is imported and may result in better performance.

Example - Calculate the Time to Win

Suppose that you have an Opportunities dataset with the Close Date and Open Date fields. You want to see the number of days it took
to win the opportunity. Use Close_Date_day_epoch and Created_Date_day_epoch to create a derived measure called Time to Win:
("Close_Date day epoch'- 'Created Date day epoch') as 'Time to Win'.

The field Time to Win is calculated at run time;

g = load "Opportunities";

e} foreach g generate 'Close Date day epoch' as 'Close Date day epoch',
'Created Date day epoch' as 'Created Date day epoch', 'Opportunity Name' as
'Opportunity Name', ('Close Date day epoch'- 'Created Date day epoch') as 'Time to Win';

The resulting table contains the number of days to win each opportunity:

Close Date (Epoch days) Created Date (Epoch days) Opportunity Name Time to Win
16,762 16,707 Opportunity for Wood9 55
16,886 16,750 Opportunity for Jeffersonl7 136
17,066 16,942 Opportunity for McLaughlin130 124

Quick Start Create a Derived Dimension

Create a Derived Dimension

Perform string manipulations on existing dimensions to create a new, or derived, dimension.

Analytics creates derived dimensions at run time.

@ Nofe: You can also create a derived dimension in a dataflow rather than at runtime.

Example - Create a Field with City and State

Suppose that you have an Opportunities dataset with a City and a State field. You want to create a single field containing both city and
state. Use SAQL to create a derived dimension.

= load "Ops";
= foreach g generate 'Account' as 'Account', 'Amount' as 'Amount',6 'City' + "-" + 'State'
as 'City - State';

q
q

The resulting table contains city and state in the same field.

Account Armount City - State
Shoes2Go 1.5 Springfield-Illinois
FreshMeals 2 Springfield-Alabama
ZipBikeShare 1.1 Springfield-Missouri
Shoes2Go 3 Springfield-Georgia

EXAMPLES

These hands-on SAQL examples walk you through writing a query to retrieve data

Analyze Your Data Over Time
Use SAQL date functions for advanced time-based analysis.

Calculate How Long Activities Take
Use daysBetween () and date diff () to calculate the difference between two dates or times.

Display the Opportunities Closed This Month
Use relative date ranges to filter opportunities closed in the current month.

Forecast Future Data Points with timeseries
Use existing data to predict what might happen in the future.

Combine Data from Multiple Data Streams with cogroup

You can combine data from two or more data streams into a single data stream using cogroup. The data streams must have at
least one common field.

Replace Null Values with coalesce()
When you use a left outer or full outer cogroup, unmatched data comes through as null. Use coalesce () toreplace null
values with the value of your choice.

Dynamically Display Your Top Five Reps with Windowing
Windowing functions perform calculations over a dynamic range.

Append Datasets using union

You can append data from two or more data streams into a single data stream using union. The data streams must have the same
field names and structure.

Calculate the Slope of the Regression Line
Use SAQL to perform linear analysis on your data to find the line that best fits the data. Then use .regr _slope toreturn the slope
of this line.

Show the Top and Bottom Quartile
Use SAQL to calculate percentiles, like the top and bottom quartile of your data.

Calculate Grand Totals and Subtotals with the rollup Modifier and grouping() Function

Calculate subtotals of grouped data in your SAQL query using the rollup modifier on the group by statement, then work
with subtotaled data using grouping () . For example, to see the subtotaled value of opportunities by type and lead source, roll
up the type and lead source groups. Then, label the subtotals with the grouping function.

Analyze Your Data Over Time

Use SAQL date functions for advanced time-based analysis.

@ Nofe: You can use date filters in the dashboard for basic time-based analysis, for example to calculate month-to-date amounts.
You can also use window functions in the dashboard for basic date range calculations, such as calculating the change in
year-over-year earnings

Examples Calculate How Long Activities Take

Example - on Which Weekday Do Customers Send the Most Emails?

Suppose that you want to see which day of the week your customers are most active on email. This information allows you to better
target your email campaigns. Use day_in week () on the Mail_sent_sec_epoch field to calculate the day of the week, then count
the number of records for each day.

load "DTC Opportunity SAMPLE";
foreach g generate day in week(toDate(Mail sent sec epoch)) as 'Day in Week';

= group g by 'Day in Week';
foreach g generate 'Day in Week', count() as 'count';

Q Q9 Q Q

In this case, email traffic is slightly higher on day 4 (Wednesday) and day 7 (Sunday).

120
103
ol 97
30
4} I I
1 2 3 4 5 & T

Day In Week

SEE ALSO:

Date Functions

Calculate How Long Activities Take

Use daysBetween () and date diff () to calculate the difference between two dates or times.

Example: Display the Number of Days Since an Opportunity Opened

Suppose that you have an opportunity dataset with the account name and the epoch seconds fields:

Account OrderDate_sec_epoch
Shoes2Go 1,521,504,003
FreshMeals 1,521,158,403
ZipBikeShare 1,518,739,203

You want to see how many days ago an opportunity was opened. Use daysBetween () and now ().Use toDate () toconvert
the order date epoch seconds to a date format that can be passed to daysBetween ().

e} load "OpsDatesl";

q foreach g generate Account, daysBetween (toDate (OrderDate sec epoch), now()) as

'daysOpened’';

The resulting data stream displays the number of days since the opportunity was opened.

Examples

Display the Opportunities Closed This Month

Account daysOpened
Shoes2Go 66
FreshMeals 70
ZipBikeShare 98

Example - How Many Weeks Did Each Opportunity Take to Close?

Use date diff () with datepart = week to calculate how long, in weeks, it took to close each opportunity.

q = load "DTC Opportunity";

q = foreach g generate date diff ("week",
toDate (Close Date sec epoch)) as
q = order g by 'Weeks to Close';

toDate (Created Date sec epoch),
'Weeks to Close';

SEE ALSO:
daysBetween()
date_diff()

Display the Opportunities Closed This Month

Use relative date ranges to filter opportunities closed in the current month.

Example: Display Opportunities Closed This Month

Suppose that you want to see which opportunities closed this month. Your data includes the account name, the close date fields, and

the epoch seconds field.

Account CloseDate (Year) CloseDate (Month) CloseDate_sec_epoch CloseDate (Day)
Shoes2Go 2018 05 1,526,774.403 20
FreshiMeals 2018 03 1,522,368,003 30
ZipBikeShare 2018 02 1,519,516,803 25

Use date () togenerate the close date in date format. Then use relative date ranges to filter opportunities closed in the current month.

g = load "OpsDatesl";

g = filter g by date(’CloseDate Year’, ‘CloseDate Month’, ‘CloseDate Day’)
month" "current month"];

g = foreach g generate Account;

If the query is run in May 2018, the resulting data stream contains one entry:

10

in ["current

Examples Forecast Future Data Points with timeseries

Account

Shoes2Go

To add the close date in a readable format, use toDate ().

g = load "OpsDatesl";

q = filter g by date('CloseDate Year', 'CloseDate Month', 'CloseDate Day') in ["current
month" .. "current month"];

q = foreach g generate Account, toDate('CloseDate sec epoch') as 'Close Date';

The resulting data stream includes the full date and time of the close date.

Account Close Date

Shoes2Go 2018-05-20 00:00:03

You can also display just the month and day of the close date.

g = load "OpsDatesl";

g = filter g by date('CloseDate Year', 'CloseDate Month', 'CloseDate Day') in ["current
month" .. "current month"];

q = foreach g generate Account, 'CloseDate Month' + "/" + 'CloseDate Day' as 'Close Date';

The resulting data stream contains the month and day of the close date.

Account Close Date

Shoes2Go 05/20

SEE ALSO:
Time-Based Filtering

Forecast Future Data Points with timeseries

Use existing data to predict what might happen in the future.

Example - How Many Tourists Will Visit Next Year?

Suppose that you run a chain of retail stores, and the number of tourists in your city affect your sales. Use timeseries to predict
how many tourists will come to your city next year:

= load "TouristData";

q
q group q by ('Visit Year', 'Visit Month');

q = foreach g generate 'Visit Year', 'Visit Month', sum('NumTourist') as 'sum NumTourist';
-- If your data is missing some dates, use fill() before using timeseries|()

-- Make sure that the dateCols parameter in fill () matches the dateCols parameter in
timerseries ()

g = fill g by (dateCols=('Visit Year',6 'Visit Month', "Y-M"));

n

Examples Combine Data from Multiple Data Streams with cogroup

-- Use timeseries () to predict the number of tourists.
q = timeseries g generate 'sum NumTourist' as Tourists with (length=12,
dateCols=('Visit Year',6 'Visit Month', "vY-M"));

q = foreach g generate 'Visit Year' + "~~~" 4+ 'Visit Month' as 'Visit Year~~~Visit Month',
Tourists;

Use a timeline chart and set a predictive line to see the calculated future data. The resulting graph shows the likely number of tourists
in the future.

]
7}
2
2015 May Sep 2016 May Sep 2017 May Sep 2018 May Sep 2019
Visit (Year-Month)
SEE ALSO:
timeseries

Combine Data from Multiple Data Streams with cogroup

You can combine data from two or more data streams into a single data stream using cogroup. The data streams must have at least
one common field.

Example - Inner cogroup

Suppose that you want to understand how much time your reps spend meeting with each account. Is there a relationship between
spending more time and winning an account? Are some reps spending much more or much less time than average? To answer these
questions, first combine meeting data with account data using cogroup.

Suppose that you have a dataset of meeting information from the Salesforce Event object. In this example, your reps have had six
meetings with four different companies. The Meetings dataset has a MeetingDuration column, which contains the meeting duration in

hours.
Company MeetingDuration
1 Shoes2Go 2
2 FreshMeals 3
3 ZipBikeShare 4
4 Shoes2Go 5
5 FreshMeals 1
6 ZenRetreats 6

12

Examples Combine Data from Multiple Data Streams with cogroup

The account data exists in the Salesforce Opportunity object. The Ops dataset has an Account, Won, and Amount column. The Amount
column contains the dollar value of the opportunity, in millions.

Account Won Amount
1 Shoes2Go 1 15
2 FreshMeals 1 2
3 ZipBikeShare 1 11
&4 Shoes2Go 0 3
5 FreshMeals 1 1.4
6 ZenRetreats 0 2

To see the effect of meeting duration on opportunities, you start by combining these two datasets into a single data stream using
cogroup

g = cogroup ops by 'Account', meetings by 'Company';

Internally (you cannot see these results yet), the resulting cogrouped data stream contains the following data. Note how the data streams
are rolled up on one or more dimensions.

(1, { (Shoes2Go,2,), (Shoes2Go,5)},{(Shoes2Go,1,1.5), (Shoes2Go,0,3})
(2, { (FreshMeals, 3), (FreshMeals, 5)}, { (FreshMeals,1,2) (FreshMeals, 1, 1.4)})
(3,{(ZipBikeShare,4)},{ (ZipBikeShare,1, 1.1)1})

(4, { (ZenRetreats, 6) }, { (ZenRetreats, 0, 2)})

Now the datasets are combined. To see the data, you create a projection using foreach:

ops = load "Ops";

meetings = load "Meetings";

g = cogroup ops by 'Account', meetings by 'Company';

q = foreach g generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum Amount',
sum (meetings. 'MeetingDuration') as 'TimeSpent';

The resulting data stream contains the sum of amount and total meeting time for each company. The sum of amount is the sum of the
dollar value for every opportunity for the company.

Account Sum of Amount = TimeSpent
Companyl 45 7
Company2 34 4
Company3 11 &4
Company& 2 6

13

Examples Replace Null Values with coalescel()

Now that you have combined the data into a single data stream, you can analyze the effects that total meeting time has on your
opportunities.

SEE ALSO:

cogroup

Replace Null Values with coalesce ()

When you use a left outer or full outer cogroup, unmatched data comes through as null. Use coalesce () to replace null values
with the value of your choice.

Example: Left Outer Cogroup with coalesce ()

A left outer cogroup combines the right data stream with the left data stream. If a record on the left stream does not have a match on
the right stream, the missing right value comes through as null. To replace null values with a different value, use coalesce ().

For example, suppose that you have a dataset of meeting information from the Salesforce Event object, and you join it with data from
the Salesforce Opportunity object. This shows amount won with the total time spent in meetings.

ops = load "Ops";

meetings = load "Meetings";

g = cogroup ops by 'Account' left, meetings Dby 'Company' ;

q = foreach g generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum Amount',
sum (meetings. 'MeetingDuration') as 'TimeSpent';

It looks like we had no meetings with Zen Retreats.

Account Sum of Amount TimeSpent
FreshMeals 3.4 -
Shoes2Go 4.5 7
ZenRetreats ! 2 -
ZipBikeShare | 1.1 4

Let's use coalesce () tochange that null value to a zero.

ops = load "Ops";
meetings = load "Meetings";
g = cogroup ops by 'Account' left, meetings by 'Company' ;

—--use coalesce() to replace null values with zero

q = foreach g generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum Amount',
coalesce (sum(meetings. 'MeetingDuration'), 0) as 'TimeSpent';

14

Examples Dynamically Display Your Top Five Reps with Windowing

Account Sum of Amount TimeSpent

FreshMeals 3.4 4

Shoes2Go 4.5 7
)

ZenRetreats 2 0
1

ZipBikeShare 1.1 4

SEE ALSO:
cogroup

Dynamically Display Your Top Five Reps with Windowing

Windowing functions perform calculations over a dynamic range.

Example - Dynamically Display Your Top Five Reps
Use windowing to create a chart that dynamically displays your top-five reps for each country. The chart updates continuously as
opportunities are won. The example uses windowing to calculate:

e Percentage contribution that each rep made to the total amount, partitioned by country

e Ranking of the rep’s contribution, partitioned by country

These calculations let us display the top-five reps in each country.

= load "DTC Opportunity SAMPLE";
group q by ('Billing Country', 'Account Owner');

Q Q
([t

q = foreach g generate 'Billing Country', 'Account Owner',

-- sum(Amount) 1is the total amount for a single rep in the current country

-- sum(sum('Amount') is the total amount for ALL reps in the current country

-- sum(Amount) / sum(sum('Amount') calculates the percentage that each rep contributed
-- to the total amount in the current country

((sum('Amount') /sum(sum('Amount'))

-- [..] means "include all records in the partition"
-— "by Billing Country" means partition, or group, by country
over ([..] partition by 'Billing Country')) * 100) as 'Percent AmountContribution',

-- rank the percent contribution and partition by the country
rank () over ([..] partition by ('Billing Country') order by sum('Amount') desc) as

'Rep Rank';

-- filter to include only the top 5 reps
q = filter g by 'Rep Rank' <=5;

The resulting graph shows the top-five reps in each country and displays each rep’s ranking.

15

Examples

Append Datasets using union

Australia

Belgium

Brazil

Canada

Dennis Howard
Johnny Green
John Williams

Bruce Kennedy

Chris Riley

Julie Chavez
Johnny Green
Laura Garza

Eric Gutierrez
Evelyn Williamson

Bruce Kennedy
Eric Gutierrez
Eric Sanchez

Percent_AmountContribution

§31

Laura Garza l 58
Irene Kelley I 3.8
Laura Garza - 11

chris Riley [93

Eric Gutierrez . 8.1
Bruce Kennedy . 77
Johnny Green . 7.6

o
=
B
H!
¥

e 1 A
:)I\J J.I_‘Il_.l

P
)

Rep_Rank

[¥¥)

Append Datasets using union

You can append data from two or more data streams into a single data stream using union. The data streams must have the same
field names and structure.

To use union,first load the dataset and then use foreach to do the projection. Repeat the process with another dataset. If the two

resulting data streams have an identical structure, you can append them using union.

Let’s say that you have two opportunity datasets from different regions that you brought together using the Salesforce mulit-org

connector. You want to add these datasets together to look at your pipeline as a whole.

The OppsRegion1 data stream contains these fields.

Account Owner Account Type Amount

1 Laura Palmer Customer 8,577,295
2 Laura Garza Customer 5,839,810
3 Dennis Howard Customer 5,423,800
4 Micolas Weaver Customer 5,335,150

The OppsRegion2 data stream contains these fields.

16

Examples

Account Owner
1 Bruce Kennedy
2 Laura Garza
3 Julie Chavez

Account Type
Partner
Customer

Customer

Amount

14,260

18,178

20,493

Use union to combine the two data streams.

opsl = load "OppsRegionl";

opsl = foreach opsl generate

ops2 = load "OppsRegion2";

ops2 = foreach ops2 generate

-- opsl and ops2 have the same structure,

opps_total = union opsl,

ops2;

The resulting data stream contains both sets of data.

'Account Owner',

'Account Owner',

Account Owner Account Type Amount

1 Laura Palmer Customer 8,577,295
2 Laura Garza Customer 5,839,810
3 Dennis Howard Customer 5,423,800
4 Micolas Weaver Customer 5,335,150
5 Bruce Kennedy Partner 14,260
6 Laura Garza Customer 18,178
7 Julie Chavez Customer 20,493

SEE ALSO:
union

'Account Type',

'Account Type',

SO we can use union

Calculate the Slope of the Regression Line

Calculate the Slope of the Regression Line

'Amount’';

'Amount’';

Use SAQL to perform linear analysis on your data to find the line that best fits the data. Then use .regr_slope toreturn the slope of

this line.

17

Examples

Show the Top and Bottom Quartile

Example - Calculate the Relationship Between Number of Activities and

Deal Amount

Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

35

30

25

20

15 @

Amount Won
®

10

6

Number of Activities

10 12

How much bigger with the deal size be for each extra activity? regr slope performs alinear analysis on your data then calculates

the slope (that is, the increased amount you win for each extra activity).

g = load "data/sales";

a group g by all;

-—-trunc () truncates the result to two decimal places

q = foreach g generate trunc(regr_ slope ('Amount',

'"NumActivities'), 2)

as 'Gain per Activity';

Based on your existing data, every extra activity that you have tends to increase the deal size by $1.45 million, on average.

Gain per Activity

1.45

SEE ALSO:

regr_slope()

Show the Top and Bottom Quartile

Use SAQL to calculate percentiles, like the top and bottom quartile of your data.

18

Examples Calculate Grand Totals and Subtotals with the rollup Modifier
and grouping() Function

Example - Show Top Quartile and Bottom Quartile Deal Size by Country

Suppose that you want to see the top and bottom quartile deal size, by country. You want to see the size of the actual deal, not the
interpolated (or 'average') deal size. Use percentile disc(.25) and percentile disc(.75).

g = load "Data";

q group q by 'Billing Country';

q = foreach g generate 'Billing Country' as 'Billing Country', percentile disc(0.25) within
group (order by 'Amount' desc) as '25th Percentile', percentile disc(0.75) within group
(order by 'Amount' desc) as '75th Percentile';

g = order g by '25th Percentile' asc;

Use a bar chart and select Axis Mode > Single Axis to show the top and bottom quartiles together.

25th Percentile, 75th Percentile
1m 2m 3m

South Africa

Germany

France

Italy

Sweden

Thailand

Russia

Hong Kong

Mexico

Belgium

India

Japan

Singapore

Canada

United Kingdom

Billing Country

SEE ALSO:

percentile_disc()

Calculate Grand Totals and Subtotals with the ro11up Modifier and
grouping () Function

Calculate subtotals of grouped data in your SAQL query using the rollup modifier on the group by statement, then work with
subtotaled data using grouping () . For example, to see the subtotaled value of opportunities by type and lead source, roll up the
type and lead source groups. Then, label the subtotals with the grouping function.

Invoking rollup adds rows to your query results with null values for dimensions and subtotaled results for measures. Invoking
grouping () returns 1 if null dimension values are due to higher-level aggregates (which usually means the row is a subtotal),
otherwise it returns 0.

Using grouping () alongside rollup lets you work with subtotaled data. After subtotaling data, common next steps include
logically evaluating subtotaled data with a case statement. Or filtering on subtotaled data with a filter statement.

19

Examples

Calculate Grand Totals and Subtotals with the rollup Modifier
and grouping() Function

Suppose that you have an opportunity dataset, and want to see the value of deals by lead source and type. Plus, you want to see the
total value of all lead sources and all types. Write a query that returns the sum of opportunity amount grouped by type and lead source.
To see the value of all lead sources and all types, use rol1lup to subtotal opportunities, then use grouping () tolabelthe subtotaled

rows.

Example: rollup

Open the SAQL editor in the dashboard. Instead of grouping data by a field, specify the ro11up modifier as the group and pass the

fields you want subtotaled - Type and Lead Source - as parameters. Set q =

'LeadSource') ;. Here's the full query.

g = load "opportunityData";
g = group g by rollup('Type', 'LeadSource');
g = order g by ('Type', 'LeadSource');
q = foreach g generate
'Type' as 'Type',
'LeadSource' as 'LeadSource',

sum ('Amount') as 'sum Amount';

group gq by rollup('Type',

The query results show sum of amount by opportunity type and then by lead source. Subtotaled and grand totaled rows have null values

for dimensions.

Type LeadSource Sum of Amount
Existing Business ~ Advertisement 6,870,000
Internet 6,660,000
Partner 9,500,000
Trade Show 39,860,000
Word of mouth 23,400,000
- 86,290,000
~ A
New Business Advertisement 87,760,000
Partner 6,750,000
Trade Show 7,200,000
Word of mouth 24,310,000
o N
- 126,020,000
- - 212,310,000
LS v

20

Examples Calculate Grand Totals and Subtotals with the rollup Modifier

and grouping() Function

Example: grouping ()

Null values in place of labeled totals can confuse query results. Avoid this confusion by labeling totalsas 211 Types or A11 Lead
Sources using case statements with grouping () functions.

= load "opportunityData";
= group g by rollup('Type',
order g by ('Type', 'LeadSource');
= foreach g generate
(case
when grouping('Type') == 1 then "All Types"
else 'Type'
end) as 'Type',
(case
when grouping('LeadSource') == 1 then "All Lead Sources"
else 'LeadSource'
end) as 'LeadSource',
sum ('Amount') as 'sum Amount';

'LeadSource’') ;

Q Q9 Q \Q
Il

Now the query results include labeled totals.

21

Type LeadSource Sum of Amount
Existing Business Advertisement 6,870,000
Internet 6,660,000
Partner 9 500,000
Trade Show 39,860,000
Word of mouth 23,400,000
All Lead Sour... 86,290,000
. e
Mew Business Advertisement 87,760,000
Partner 6,750,000
Trade Show 7,200,000
Word of mouth 24,310,000
r A
All Lead Sour... 126,020,000
All Types All Lead Sour... 212,310,000

SAQL REFERENCE

These hands-on SAQL examples walk you through writing a query to retrieve data

SAQL Basic Elements
Basic elements are the building blocks of your SAQL query.

SAQL Operators

Use operators to perform mathematical calculations or comparisons.

SAQL Statements

A query is made up of statements. Each SAQL statement has an input stream, an operation, and an output stream.

SAQL Functions
Use functions to perform complex operations on your data.

SAQL Basic Elements

Basic elements are the building blocks of your SAQL query.

Statements

A SAQL query loads input data, operates on it, and outputs the result data. A query is made up of statements. Each SAQL statement
has an input stream, an operation, and an output stream.

Keywords
Keywords are case-sensitive and must be lowercase.

Identifiers
SAQL identifiers are case-sensitive and must be enclosed in single quotation marks ().

Number Literals
A number literal represents a number in your script.

String Literals
A string is a set of characters inside double quotes (").

Boolean Literals
A boolean literal represents true or false (yes or no) in your script.

Quoted String Escape Sequences
Strings can be escaped with the backslash character.

Special Characters
Certain characters have special meanings in SAQL.

Comments
Two sequential hyphens (--) indicate the beginning of a single-line comment in SAQL.

22

SAQL Reference Statements

Statements

A SAQL query loads input data, operates on it, and outputs the result data. A query is made up of statements. Each SAQL statement has
an input stream, an operation, and an output stream.

A statement is made up of keywords (such as filter, group, and order), identifiers, literals, and special characters. Statements
can span multiple lines and must end with a semicolon.

Assign each query line to an identifier called a stream. The only exception is the last line in a query, which doesn't have to be assigned
explicitly.

The output stream is on the left side of the = operator and the input stream is on the right side of the = operator.

Example
Each line in this SAQL query is a SAQL statement.

g = load "Datasetl";

q
q

group g by all;
foreach g generate sum('Amount') as 'sum Amount';

SEE ALSO:
filter
foreach
limit
offset

order

Keywords

Keywords are case-sensitive and must be lowercase.

Identifiers
SAQL identifiers are case-sensitive and must be enclosed in single quotation marks ().
Identifiers that are enclosed in quotation marks can contain any character that a string can contain.
This example uses valid syntax:
g = load "Opportunity";

--'Stage' is enclosed in single quotes because it is a field. "08 - Closed Won" is enclosed
in double quotes because it is a string.

g = filter g by 'Stage' == "08 - Closed Won";
g = group ¢q by 'Account Owner';
q = foreach g generate 'Account Owner' as 'Account Owner', count() as 'count';

This example is not valid because you can't use double quotes for an identifier.

--this should be 'Account Owner' in single quotes
q = group g by "Account Owner";

23

SAQL Reference Number Literals

Number Literals

A number literal represents a number in your script.

Some examples of number literals are 16 and 3.14159. You can't explicitly assign a type (for example, integer or floating point) to a
number literal. Scientific E notation isn't supported.

The responses to queries are in JSON. Therefore, the returned numeric field is a “number” class.

String Literals

A string is a set of characters inside double quotes (").

Example: "This is a string."

This example uses valid syntax:

accounts = load "Data";

opps = load "O0Fcyy000000002qCAA/0Fcyy000000002WCAQ" ;
c = group accounts by 'Year', opps by 'Year';

d foreach ¢ generate opps.Year as 'Year';
e = filter d by Year == "2002";

@ Note: Identifiers are either unquoted or enclosed in single quotation marks.

Boolean Literals

Aboolean literal represents true or false (yes or no) in your script.

Boolean literals t rue and false are supported in SAQL.

Quoted String Escape Sequences

Strings can be escaped with the backslash character.

You can use the following string escape sequences:

Sequence Meaning

\n New line

\r Carriage return

\t Tab

\' One single-quote character
\" One double-quote character
A\ One backslash character

Special Characters

Certain characters have special meanings in SAQL.

24

SAQL Reference Comments

Character Name Description

; Semicolon Used to terminate statements.

' Single quote Used to quote identifiers.

" Double quote Used to quote strings.

() Parentheses Used for function calls, to enforce precedence, for order clauses, and to group
expressions. Parentheses are mandatory when you're defining more than one group or
order field.

[Brackets

Used to denote arrays. For example, this is an array of strings:
["thisll, "iS", lla", "String"’ "array"]

Also used for referencing a particular member of an object. For example,
em['miles'],whichisthesameas em.miles.

Period Used for referencing a particular member of an object. For example, em.mi les, which
isthesameas em['miles'].

Two colons Used to explicitly specify the dataset that a measure or dimension belongs to, by placing
it between a dataset name and a column name. Using two colons is the same as using
a period (.) between names. For example:
data = foreach data generate left::airline as airline
Two periods

Used to separate a range of values. For example:

c = filter b by "the date" in
[("2011-01-01".."2011-01-31"];

Comments

Two sequential hyphens (--) indicate the beginning of a single-line comment in SAQL.

You can put a comment on its own line:

--Load a data stream.
a = load "myData";

You can put a comment at the end of a line:
a = load "myData"; --Load a data stream.
You can comment out a SAQL statement:

--The following line is commented out:
-—-a = load "myData";

SAQL Operators

Use operators to perform mathematical calculations or comparisons.

25

SAQL Reference Arithmetic Operators

Arithmetic Operators
Use arithmetic operators to perform addition, subtraction, multiplication, division, and modulo operations.

Comparison Operators

Use comparison operators to compare values.

String Operators

To concatenate strings, use the plus sign (+).

Logical Operators

Use logical operators to perform AND, OR, and NOT operations.

Simple case Operator

Use case ina foreach statement to assign different field values in different situations. case supports two syntax forms:
searched case and simple case. This section explains simple case.

Searched case Operator

Use case ina foreach statement to assign different field values in different situations. case supports two syntax forms:
searched case and simple case. This section shows searched case.

Null Operators
Use null operators to select records that have (or do not have) fields with null values.

Arithmetic Operators

Use arithmetic operators to perform addition, subtraction, multiplication, division, and modulo operations.

Operator Description
+ Plus

- Minus

* Multiplication
/ Division

% Modulo

Comparison Operators

Use comparison operators to compare values.

Comparisons are defined for values of the same type only. For example, strings can be compared with strings and numbers compared
with numbers.

Operator Name Description

== Equals True if the operands are equal. String comparisons that use the equals operator are
case-sensitive.

1= Not equals True if the operands aren't equal.

< Less than True if the left operand is less than the right operand.

26

SAQL Reference

Operator Name

<= Less or equal

> Greater than
>= Greater or equal
matches Matches

in In

not in Notin

String Operators

Description

True if the left operand is less than or equal to the right operand.
True if the left operand is greater than the right operand.

True if the left operand is greater than or equal to the right operand.

True if the left operand contains the string on the right. Wildcards and regular
expressions aren't supported. This operator is not case-sensitive. Single-character matches
are not supported.

For example, the following query matches airport codes such as LAX, LAS, ALA, and
BLA:

my matches = filter a by origin matches "LA";

Use with ! toexclude records. For example, the following query shows all opportunities
that do not have Stage equal to Closed Lost or Closed Won:

qg = filter g by ! ('Stage' matches "Closed");
If the left operand is a dimension, t rue if the left operand has one or more of the

values in the array on the right. For example:

al = filter a by origin in ["ORD", "LAX", "LGA"];

If the left operand is a measure, true if the left operand is in the array on the right.
You can use the date () function to filter by date ranges.

If the array is empty, everything is filtered and the results are empty.

Ranges that are out of order (for example, in ["20 years ago"
"2016-01-11"] orin ["Z" "A"]), evaluateto false.

True if the left operand isn't equal to any of the values in an array on the right. The
results include rows for which the origin key doesn't exist. For example:

al = filter a by origin not in ["ORD", "LAX", "LGA"];

@ Example: Given a row for a flight with the origin “SFO” and the destination “LAX" and weather of “rain” and “snow,” here are the

results for each type of "in" operator:
weather in ["rain",
weather not in ["rain",

SEE ALSO:
filter

String Operators

To concatenate strings, use the plus sign (+).

"wind"] =

"Wil’ld"]

true

= false

27

SAQL Reference

Operator

+

@ Example: To combine the year, month, and day into a value that's called CreatedDate:

q =

Logical Operators

Use logical operators to perform AND, OR, and NOT operations.

Logical operators can return true, false, or null.

Operator

&& (and)

[l (or)

' (not)

Name
Logical AND
Logical OR
Logical NOT

Description

See table.
See table.

See table.

Description

Concatenate

The following tables show how nulls are handled in logical operations.

X
True
True
True
False
False
False
Null
Null

Null

True
False

Null

y

True
False
Null

True
False
Null

True
False

Null

x &&y
True
False
Null
False
False
False
Null
False

Null

False
True

Null

28

x|y

True
True
True
True
False
Null

True
Null

Null

Logical Operators

foreach g generate Id as Id, Year + "-" + Month + "-" + Day as CreatedDate;

SAQL Reference Simple case Operator

Simple case Operator

Use case ina foreach statement to assign different field values in different situations. case supports two syntax forms: searched
case and simple case. This section explains simple case.

Syntax

case
primary expr
when test expr then result expr
[when test _expr2 then result expr2]
[else default expr]

end

case. ..end opensand closes the case operator.

primary expr isany expression that takes a single input value and returns a single output value. May contain values, identifiers,
and scalar functions (including date and math functions). The expression can return a number, string, or date.

when. . . then defines a conditional statement. A case expression can contain one or more conditional statements.

test expr isany expression that takes a single input value and returns a single output value. May contain values, identifiers, and
scalar functions (including date and math functions). The expression must return the same data type as primary expr.

result expr isany expression that takes a single input value and returns a single output value. May contain values, identifiers, and
scalar functions (including date and math functions). The expression must return the same data type as primary expr.

else default expr (optional)isany expression that takes a single input value and returns a single output value. May contain
values, identifiers, and scalar functions (including date and math functions). The expression can return a number, string, or date.

Usage

Statements are evaluated in the order that they are given. If test expr retumns true, the corresponding result expr is
returned. You can specify any number of when/then statements.

You can use else to specify a default expression. For example, if no industry is specified then use the string "No Industry Specified". If
you don't specify a default statement then nul1l is returned.

You can use case expressionsin foreach statements. You cannot use case in order, group, or £ilter statements.

Example

Suppose that you want to create a dimension that displays the meaning of industry codes. Use case to parse the Industry_Code field
and specify the corresponding string.

q = foreach g generate Amount as 'Amount', 'Industry Code' as 'Industry Code', (case
'Industry Code'

when 541611 then "Consulting services"

when 541800 then "Advertising"

when 561400 then "Support services"

else "Unspecified"
end) as 'Industry';

The resulting data displays the meaning of industry codes:

29

SAQL Reference Searched case Operator

Amount Industry Code Industry
637,520 541,611 Consulting services
1,750,200 541,800 Advertising
1,935,980 561,400 Support services
4,067,300 541,611 Consulting services
219,000 541,800 Advertising
1,005,200 561,400 Support services

Handling Null Values

Ingeneral, null values can't be compared. When primary expr or test expr evaluatesto null,the default expr
is returned. If no default expression is specified, nul1 is returned.

Searched case Operator

Use case ina foreach statement to assign different field values in different situations. case supports two syntax forms: searched
case and simple case. This section shows searched case.

Syntax

case
when search condition then result expr
[when search condition2 then result expr2]
[else default expr]

end

case. . .end opens and closes the case operator.
when. . . then defines a conditional statement. A case expression can contain one or more conditional statements.

search condition canbeany scalar expression that returns a boolean value. It can be a complex boolean expression or a nested
case, as long as the result is boolean. For a list of supported operators, see Comparison Operators on page 26.

result expr isany expression that takes a single input value and returns a single output value. Can contain values, identifiers, and
scalar functions (including date and math functions). The expression must return the same data type as specified in the search condition.

else default expr (optional)is any expression that takes a single input value and returns a single output value. Can contain
values, identifiers, and scalar functions (including date and math functions). The expression can return a number, string, or date.

Usage

Statements are evaluated in the order that they are given. If the condition is primary expr == test_expr, thenthe corresponding
result expr isretuned. You can specify any number of when/then statements.

30

SAQL Reference

You can use else tospecifyadefa
If you don't specify a default statem

Null Operators

ult expression. For example, if no industry is specified, you can use the string "No Industry Specified".
ent, then null isreturned.

You can use case expressionsin foreach statements. You cannot use case in order, group, or £ilter statements.

Example

Suppose that you want to see them
"Medium", and "Large". Use case

g = load "data";

edian deal size for each of your reps. You want to bin their median deal size into the buckets "Small",
to assign values to the median deal size.

g = group gq by 'Account Owner';

a foreach g generate
Amount', (case

when median ('Amount')
when median ('Amount')
else "Medium"

end) as 'Category';

The resulting data shows the media

'Account Owner' as 'Account Owner', median('Amount') as 'Median

< 1000000 then "Small"
> 1600000 then "Large"

n deal size for each rep, along with the appropriate bin label.

Account Owner Category | Median Amount
Bruce Kennedy Medium 1373900
Catherine Brown Small 399740
Chris Riley Medium 1373900
Dennis Howard Small 517301
Doroth Gardner Medium 1079956.15
Eric Gutierrez Small 771320

Handling Null Values

In general, null values can't be compared. When the search condition evaluates to null,the default expr isreturned.If no

default expression is specified, nul

Null Operators

1 isreturned.

Use null operators to select records that have (or do not have) fields with null values.

Null operators return true or false.

31

SAQL Reference SAQL Statements

Operator Description
is null True when the value is null.
is not null True when the value is not null.

Use is null and is not null in projectionsand in post-projection filters. You can't use them in pre-projection filters.

For example, display all the accounts that your reps have met with at least once.

g = load "Meetings";
g = group g by 'Company';
g = foreach g generate 'Company' as 'Company', sum('MeetingDuration') as 'TotalMeetings';

—-—filter out fields with no meetings
g = filter g by 'TotalMeetings' is not null;

Or, you can use case to replace null values with a value of your choice.

q = load "dataset";
g = foreach g generate (case when Name is null then "john doe" else Name end) as Name;

This example is not valid because you can'tuse is not null or is null before a projection:

load "dataset";
filter a by Year is not null;

o)
Il

a = foreach a generate Name as Name, Year as Year;

Use is null with cogroup

A left outer cogroup combines the right data stream with the left data stream. If a record on the left side does not have a match on the
right, the missing right value is null in the resulting data stream.

Forexample, suppose that you have a Meeting data set containing information about your rep's meetings with each account. You want
to see all accounts that reps have not met with. Use a left outer cogroup between Ops and Meetings, then use is null tofilter results.

ops = load "Ops";

meetings = load "Meetings";

g = cogroup ops by 'Account' left, meetings Dby 'Company' ;

q = foreach g generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum Amount',
sum (meetings. 'MeetingDuration') as 'TimeSpent';

--use is null to get records with no time time spent
g = filter g by 'TimeSpent' is null;

SEE ALSO:
group

SAQL Statements

A query is made up of statements. Each SAQL statement has an input stream, an operation, and an output stream.

32

SAQL Reference cogroup

cogroup

Use cogroup to combine data from two or more data streams into a single data stream. The data streams must have at least one
common field.

load

Loads a dataset. All SAQL queries start with a 1oad statement.

fill

Fills missing date values by adding rows in data stream.

filter

Selects rows from a dataset based on a filter condition called a predicate.

foreach

Applies a set of expressions to every row in a dataset. This action is often referred to as projection.

group

Groups the data in a data stream by one or more fields.

union

Combines multiple result sets into one result set. The result sets must have the same field names and structure. You can use a different
dataset to create each result set, or you can use the same dataset.

order

Sorts in ascending or descending order on one or more fields.

limit

Limits the number of results that are returned. If you don't set a limit, queries return a maximum of 10,000 rows.
offset

Use offset to page through the results of your query.

timeseries
Uses existing data to predict future data points.

cogroup

Use cogroup to combine data from two or more data streams into a single data stream. The data streams must have at least one
common field.

cogroup is similar to relational database joins, but with some important differences. Unlike a relational database join, in a cogroup
the datasets are grouped first, and then the groups are joined. You can use cogroup in these ways:

inner cogroup
left outer cogroup
right outer cogroup

full outer cogroup

@ Nofe: The statements cogroup and group are interchangeable. For clarity, we use group for statements involving one

data stream and cogroup for statements involving two or more data streams.

Inner cogroup

Inner cogroup combines data from two or more data streams into a resulting data stream. The resulting data stream only contains
values that exist in both data streams. That is, unmatched records are dropped.

33

SAQL Reference cogroup

Syntax
result = cogroup data_stream 1 by fieldl, data stream 2 by field2;

fieldland field2 must be the same type, but can have different names. For example, g=group ops by 'Owner',
quota by 'Name';

Example - Inner cogroup

Suppose that you want to understand how much time your reps spend meeting with each account. Is there a relationship between
spending more time and winning an account? Are some reps spending much more or much less time than average? To answer these
questions, first combine meeting data with account data using cogroup.

Suppose that you have a dataset of meeting information from the Salesforce Event object. In this example, your reps have had six
meetings with four different companies. The Meetings dataset has a MeetingDuration column, which contains the meeting duration in

hours.
1# Company MeetingDuration
1 Shoes2Go 2
2 FreshMeals 3
3 ZipBikeShare 4
- Shoes2Go 5
5 FreshMeals 1
6 ZenRetreats 6

The account data exists in the Salesforce Opportunity object. The Ops dataset has an Account, Won, and Amount column. The Amount
column contains the dollar value of the opportunity, in millions.

Account Won Amount
1 Shoes2Go 1 15
2 FreshMeals 1 2
3 ZipBikeShare 1 11
&4 Shoes2Go 0 3
5 FreshMeals 1 1.4
6 ZenRetreats 0 2

34

SAQL Reference cogroup

To see the effect of meeting duration on opportunities, you start by combining these two datasets into a single data stream using
cogroup

g = cogroup ops by 'Account', meetings by 'Company';

Internally (you cannot see these results yet), the resulting cogrouped data stream contains the following data. Note how the data streams
are rolled up on one or more dimensions.

(1, { (Shoes2Go,2,), (Shoes2Go,5)}, {(Shoes2Go,1,1.5), (Shoes2Go,0,3})
(2, { (FreshMeals,3), (FreshMeals, 5)}, {(FreshMeals,1,2) (FreshMeals, 1, 1.4)})
(3, { (ZipBikeShare,4) }, { (ZipBikeShare, 1, 1.1)})

(4, { (ZenRetreats, 6) }, { (ZenRetreats, 0, 2)})
Now the datasets are combined. To see the data, you create a projection using foreach:

ops = load "Ops";

meetings = load "Meetings";

g = cogroup ops by 'Account', meetings by 'Company';

q = foreach g generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum Amount',
sum (meetings. 'MeetingDuration') as 'TimeSpent';

The resulting data stream contains the sum of amount and total meeting time for each company. The sum of amount is the sum of the
dollar value for every opportunity for the company.

Account Sum of Amount = TimeSpent
Companyl 45 7
Company2 34 &4
Company3 11 i
Company 2 [

Now that you have combined the data into a single data stream, you can analyze the effects that total meeting time has on your
opportunities.

Left Outer cogroup

Left outer cogroup combines data from the right data stream with the left data stream. The resulting data stream only contains values
that exist in the left data stream. If the left data stream has a value that the right data stream does not, the missing value is null in the
resulting data stream.

O Tip: Use coalesce toreplace a null value with the value of your choice.
Syntax
result = cogroup data_stream 1 by fieldl left, data stream 2 by field2;

fieldland field2 mustbethesametype, butcan have differentnames.Forexample, g=group ops by 'Owner' left,
quota by 'Name';

35

SAQL Reference

Example - Left Outer cogroup With coalesce

Suppose that you want to see what percentage of quota that your reps have obtained. Your quota dataset shows each employee's quota

(notice that Farah does not have a quota):

Employee Quota
Lilly Chow 18,000,000
Emily Dickinson 15,000,000

Jonathan James 17,000,000

Your opportunities data shows the opportunity amount that each employee has won (notice that Jonathan does not have a won

opportunity).
Employee Amount
Lilly Chow 6,000,000

Emily Dickinson 5,000,000
Farah Khan 15,000,000

Lilly Chow 10,000,000

Emily Dickinson 11,000,000

Use a left outer cogroup to show only employees that have quotas. Also show the percentage of quota attained.

quota = load "Quota";

opp = load "Opportunity";

g = group quota by 'Employee' left, opp by 'Employee';

g = foreach g generate quota.'Employee' as 'Employee',

trunc (sum (opp. 'Amount') /sum(quota. 'Quota') *100, 2) as 'Percent Attained';

Jonathan has not won any opportunities yet, so his percent attained is null.

Employee Percent Attained
Emily Dickinson 106.66
Jonathan James -

Lilly Chow 88.88

Use coalesce toreplace the null opportunities with a zero.

quota = load "Quota";
opp = load "Opportunity";

36

SAQL Reference cogroup

g = group quota by 'Employee' left, opp by 'Employee';
g = foreach g generate quota.'Employee' as 'Employee',
trunc (coalesce (sum(opp. 'Amount'),0) /sum(quota. 'Quota') *100, 2) as 'Percent Attained';

Now Jonathan's percent attained is displayed as zero.

Employee Percent Attained
Emily Dickinson 106.66
Jonathan James 0
Lilly Chow 88.88

Right Outer cogroup

Right outer cogroup combines data from the left data stream with the right data stream. The resulting data stream only contains
values that exist in the right data stream. If the right data stream has a value that the left data stream does not, the missing value is null
in the resulting data stream.

O Tip: Use coalesce toreplace a null value with the value of your choice.
Syntax
result = cogroup data stream 1 by fieldl right, data stream 2 by field2;

fieldland field2 must be the same type, but can have different names. For example, g=group ops by 'Owner'
right, quota by 'Name';

Full Outer cogroup

Full outer cogroup combines data from the left and right data streams. The resulting data stream contains all values. If one data stream
has a value that the other data stream does not, the missing value is null in the resulting data stream.

O Tip: Use coalesce toreplace a null value with the value of your choice.
Syntax
result = cogroup data_ stream 1 by fieldl full, data_ stream 2 by field2;

fieldland field2 mustbethesametype, butcan have differentnames.Forexample, g=group ops by 'Owner' full,
quota by 'Name';

SEE ALSO:
union
Combine Data from Multiple Data Streams with cogroup

Replace Null Values with coalesce()

37

SAQL Reference load

load

Loads a dataset. All SAQL queries start with a 1oad statement.

Syntax

result = load dataset;

If you're working in Dashboard JSON, dataset must be the dataset name from the Ul. Use of the dataset name (also called an alias)
means the app can substitute it with the correct version of the dataset.

If you're working in the Analytics REST AP, dataset must be the containerld/versionld.

Usage
After being loaded, the data is not grouped. The columns are the columns of the loaded dataset.

@ Example: Load the Accounts dataset to the stream 'b. b = load "Accounts";

fill

Fills missing date values by adding rows in data stream.

Syntax

result = fill resultSet by (datecols, [partition]);
e dateCols are the date fields to check, plus the date column type string. For example, to fill gaps in the dates for the close date
month and year, use dateCols=(CloseDate Year, CloseDate Month, "Y-M").Allowed valuesare:
- YearField, MonthField, "Y-M"
- YearField, QuarterField, "Y-Q"
- YearField, "Y"
- YearField, WeekField "Y-W"
- YearField, MonthField, DayField "Y-M-D"

e partition (optional) the dimension field used to partition the data stream. For example, partition="Type"

Usage

£i11 uses the specified date field in a data stream to fill any gaps in the specified date fields. For example, suppose that you have a
data stream of closed accounts grouped by year and month. Nobody closed an account in September so no row exists for that month.
These gaps in your dates can cause problems when graphing or using statements like timeseries. £i11 createsarow for September
that contains null data, ensuring that at least one row for every month exists in your result set.

Use £111 with timeseries or other statements that require a complete set of date values.

38

SAQL Reference fill

Example

Suppose that you manage a chain of apparel stores. You want to analyze total sales by month. However, in July and August 2017, your
stores shut down for renovations and you had no sales for those months. Use £111 to add rows with the missing dates:

e} load "data";

q = foreach g generate 'Amount' as 'Amount', 'Date Year' as 'Date Year', 'Date Month' as
'Date Month';

g = fill g by (dateCols=(Date Year, Date Month, "Y-M"));

£i11 added rows with null data for July and August 2017.

Amount Date (Year) Date (Month)

18,050 2017 02
17.05 2017 03
16,050 2017 04
15.05 2017 05
14,050 2017 06
2017 o7

2017 08

11.05 2017 09

Example

Suppose that you want to analyze future sales for each type of apparel that you sell. However, your store did not sell any coats in the
third quarter of 2017. Group your data by type then use £i11 to add rows with the missing dates.

g = load "data";

q = foreach g generate 'Amount' as 'Amount', 'Type' as 'Type', 'Date Year' as 'Date Year',
'Date Quarter' as 'Date Quarter';

g = fill g by (dateCols=(Date Year, Date Quarter, "Y-Q"), partition='Type');

£i11 added rows with null data for the third quarter of 2017.

39

SAQL Reference filter

Amount Type Date (Year) Date (Quarter)
15.05 coats 2017 2
coats 2017 3
9.1 coats 2017 4
6,050 coats 2018 1
Example

Suppose that you want to use timeseries, but you know that your data is likely to be missing some dates. Use fill

g = load "TouristData";
q = group q by ('Visit Year', 'Visit Month');
q = foreach g generate 'Visit Year', 'Visit Month', sum('NumTourist') as 'sum NumTourist';

-- use fill() to generate null rows for any missing dates. Then you can use timeseries().
qg = fill g by (dateCols=('Visit Year', 'Visit Month', "Y-M"));

q = timeseries g generate 'sum NumTourist' as Tourists with (length=12,
dateCols=('Visit Year',6 'Visit Month', "Y-M"));

g = foreach g generate 'Visit Year' + "~~~" + 'Visit Month' as 'Visit Year~~~Visit Month',
Tourists;

filter

Selects rows from a dataset based on a filter condition called a predicate.

Syntax

result = filter rows by predicate;

Usage

A predicate is a Boolean expression that uses comparison or logical operators. The predicate is evaluated for every row. If the predicate
is true, the rowisincluded in the result. Comparisons on dimensions are lexicographic, and comparisons on measures are numerical.

When afilter is applied to grouped data, the filter is applied to the rows in the group. If all member rows are filtered out, groups are
eliminated. You canruna filter statement before or after group to filter out members of the groups.

Note: With results binding, an error may occur if the results from a previous query exceed the values supported by SAQL. For
example, if something like filter g by diml in {{results(Query 1)}}; produces afilter tree with a depth
greater than 10,000 values, SAQL will fail with an error.

Example: The following example returns only rows where the origin is ORD, LAX, or LGA: a1l = filter a by origin
in ["ORD", "LAX", "LGA"] ;

40

SAQL Reference foreach

@ Example: The following example returns only rows where the destination is LAX or the number of miles is greater than 1,500:
y = filter x by dest == "LAX" || miles > 1500;

@ Example: When in operates on an empty array ina £ilter operation, everything is filtered and the results are empty. The
second statement filters everything and returns empty results:

load "OFbxx000000002gCAA/0Fcxx000000002WCAQ" ;
filter a by Year in [];

= group a by ('Year', 'Name');
= foreach c generate 'Name' as 'group::AName', 'Year' as 'group::Year',
sum (accounts: :Revenue) as 'sRev';

Q Q o o
|

SEE ALSO:
Comparison Operators
Logical Operators

Statements

foreach

Applies a set of expressions to every row in a dataset. This action is often referred to as projection.

Syntax

q = foreach g generate expression as alias|[, expression as alias ...];

The output column names are specified with the as keyword. The output data is ungrouped.

Using foreach with Ungrouped Data

When used with ungrouped data, the foreach statement maps the input rows to output rows. The number of rows remains the
same.

@ Example: az = foreach al generate carrier as carrier, miles as miles;

Using foreach with Grouped Data
When used with grouped data, the foreach statement behaves differently than it does with ungrouped data.

Fields can be directly accessed only when the value is the same for all group members. For example, the fields that were used as the
grouping keys have the same value for all group members. Otherwise, use aggregate functions to access the members of a group. The
type of the column determines which aggregate functions you can use. For example, if the column type is numeric, you can use the
sum () function.

@ Example: z = foreach y generate day as day, unique(origin) as uorg, count() as n;

Using foreach with a case Expression

To create logicina foreach statement that chooses between conditional statements, use a case expression.

4

SAQL Reference group

Projected Field Names

Each field name in a projection must be unique and not have the name 'none’. Invalid field names throw an error.

For example, the last line in this query is invalid because the same name is used for multiple projected fields:

1 load "0Fabb000000002gCAA/0Fabb000000002WCAQ";
r = load "0Fcyy000000002gCAA/0Fcyy000000002WCAQ";
1
r

foreach 1 generate 'value'/'divisor' as 'value' , category as category;
foreach r generate 'value'/'divisor' as 'value' , category as category;

cg = cogroup 1 by category right, r by category;
foreach cg generate r.category as 'category', sum(r.value) as sumrval, sum(l.value)
as sumrval;

Q
Q
Il

The following query is also invalid because the projected field name can't be 'none'.

g = load "Products";
q = group g by all;
g = foreach g generate count() as 'none';
g = limit g 2000;
SEE ALSO:
Statements
q}]f()llr)

Groups the data in a data stream by one or more fields.

Syntax
@ Nofe: The statements cogroup and group are interchangeable. For clarity, we use group for statements involving one
data stream and cogroup for statements involving two or more data streams.

The cogroup statement does not support the rollup modifier.

result = group data _stream 1 by rollup(fieldl, [field2]);
e rollup - Optional. Calculates totals of grouped data. Adds rows to your query results with null values for dimensions and totaled
results for measures.

The rollup modifiermustinclude allfieldsinthe group statement. Not supported: g = group g by rollup ('Type'),
'LeadSource'; Supported: g = group g by rollup('Type', 'LeadSource');

The rol1lup modifier supports these aggregates:
- Count

= Sum

- Average

- Min

- Max

- Unique

Using rol1lup with other aggregates or windowing functions returns an error.

42

SAQL Reference

e field -Field by which data is grouped.

Example - Group by One Field

Suppose that you want to see how many opportunities each account owner has. Group by account owner:

Q Q9 Q Q

= load "DTCOpps";

group q by 'Account Owner';

foreach g generate 'Account Owner' as

order g by 'count' asc;

'Account Owner', count ()

as

'count';

Account Owner

o

Laura Garza
Chris Riley

Irene Kelley
Bruce Kennedy
Dennis Howard
Eric Gutierrez
Harold Campbell
Julie Chavez

Eric Sanchez
Irene McCoy
Laura Palmer
Doroth Gardner
John Williams
Johnny Green
Catherine Brown
Evelyn Williamson
Kelly Frazier
MNicolas Weaver

fd

]

Count of Rows

ay]

s

=
(]

e
[

Example - Calculate Totals of Grouped Data

Suppose that you want to see the total value of opportunities by stage. Group by stage name, and roll up the group.

Q Q9 Q \Q

The query results show total sum of amount for all opportunities below the sum of amount for each opportunity stage name grouping.

load "opportunityData";

group g by rollup('StageName');

order g by ('Stage Name');
foreach g generate

'StageName' a

]

'Stage Name',

sum ('Amount') as 'sum Amount';

The total row has a null value for a dimension.

group

SAQL Reference union

Stage Name Sum of Amount
Closed Won 56,870,000
Id. Decision Makers 16,610,000
Needs Analysis 9,030,000
MNegotiation/Review 60,700,000
Prospecting 10,400,000
Walue Proposition 58,700,000

212,310,000

o "

Sometimes, null values in place of labeled totals can confuse query results. Avoid this confusion by labeling the total 211 Stages
using a case statement with a grouping () function.

= load "opportunityData";

group q by rollup('StageName');

order g by ('Stage Name');

foreach g generate

(case
when grouping('StageName') == 1 then "All Stages"
else 'StageName'

Q Q9 Q Q

end) as 'Stage Name';

Now the query results include labeled totals.

Stage Name Sum of Amount
Closed Won 56,870,000
Id. Decision Makers 16,610,000
MNeeds Analysis 9,030,000
Megotiation/Review £0,700,000
Prospecting 10,400,000
Walue Proposition 58,700,000

| All Stages 22[2,3’_LC|,{)C|'.'_‘rJ

SEE ALSO:

Null Operators

union

Combines multiple result sets into one result set. The result sets must have the same field names and structure. You can use a different
dataset to create each result set, or you can use the same dataset.

44

SAQL Reference union

Syntax

result = union resultSetA, resultSetB [, resultSetC ...];

Example

g = union gl, g2, g3;

Example

You want to see how each rep compares to the average for deals won. You can make this comparison by appending these two result
sets together:

e Total amount of opportunities won for each rep

e Average amount of opportunities won for all reps
Then use union to append the two result sets.

First, show the total amount of won opportunities for each rep.

opt = load "DTC Opportunity SAMPLE";
opt = filter opt by 'Won' == "true";

-- group by owner
rep = group opt by 'Account Owner';

-- project the sum of amount for each rep
rep = foreach rep generate 'Account Owner' as 'Account Owner', sum('Amount') as 'sum Amount';

rep = order rep by 'sum Amount' asc;

The resulting graph shows the sum of amount for each rep.

Account Owner Sum of Amount
Laura Garza 31,605,866
Doroth Gardner 29,543,120
Johnny Green 25,672,424
Irene Kelley 25,308,421

Next, calculate the average of the sum of the amounts for each rep using the average function.

-- grouping rep by all returns all the data in a single row.
avg_rep = group rep by all;

-— Calculate the average of the Sum of Amount column.
-- Use the text ‘Average Deal Size’ in the ‘Account Owner’ column

avg_rep = foreach avg rep generate "Average deal size" as 'Account Owner', avg('sum Amount')
as 'sum Amount';

45

SAQL Reference order

Because the two data streams have the same field names and structure, you can use union to combine them.
g = union rep, avg rep;

The resulting graph contains the sum of amounts by each rep together with the average amount per rep.

Sum of Amount
Sm 10m 15m 20m 25m 30m

0

Laura Garza

Doroth Gardner

Johnny Green

Account Owner

Irene Kelley

Average deal size

Combine the SAQL fragments to get the complete SAQL statement.

opt
opt

load "DTC Opportunity SAMPLE";
filter opt by 'Won' == "true";

-- group by owner
rep = group opt by 'Account Owner';

-- project the sum of amount for each rep
rep = foreach rep generate 'Account Owner' as 'Account Owner', sum('Amount') as 'sum Amount';

rep = order rep by 'sum Amount' desc;
-- grouping rep by all returns all the data in a single row.

avg_rep = group rep by all;

-- Calculate the average of the Sum of Amount column.

-- Use the text ‘Average Deal Size’ in the ‘Account Owner’ column

avg_rep = foreach avg rep generate "Average deal size" as 'Account Owner', avg('sum Amount')
as 'sum Amount';

g = union rep, avg_ rep;
SEE ALSO:

cogroup

Append Datasets using union

order

Sorts in ascending or descending order on one or more fields.

46

SAQL Reference order

Syntax

result = order rows by field [asc | desc 1;
result = order rows by (field [asc | desc], field [asc | desc]);
result = order rows by field [asc | desc] nulls [first | last];

asc or desc specifies whether the results are ordered in ascending (a s c) or descending (de s c) order. The default order is ascending.

Usage

Use order to sort the results in a data stream for display. You can use order with ungrouped data. You can also use order to
sort grouped data by an aggregated value.

Donotuse order to specify the order that another SAQL statement or function will process records in. For example, do not use order
before timeseries to change the order of processing. Instead, use timeseries parameters.

By default, nulls are sorted last when sorting in ascending order and first when sorting in descending order. You can change the ordering
of nullsusingnulls [first | last].

@ Note: Applying labels to dimension values in the XMD changes the displayed values, but doesn't change the sort order.
Example: g = order g by 'count' desc;

Example: To order astream by multiple fields, use this syntax:

load "0Fbxx000000002gCAA/0Fcxx000000002WCAQ";
group a by (year, month);

foreach b generate year as year, month as month;
order c by (year desc, month desc);

O Q O W
[

Example: You can order a cogrouped stream before a foreach statement:

= load "0Fbxx000000002gCAA/0Fcxx000000002WCAQ" ;
= load "0Fayy000000002gCAA/0Fbyy000000002WCAQ";
cogroup a by year, b by year;

= order c by a.airlineName;

Q Q Q O W
I

= foreach ¢ generate year as year;

Example: By default, nulls are sorted first when sorting in descending order. To change the null sort order to last, use this syntax:
q = order q by last shipping cost desc nulls last;

Example: You can't reference a preprojection ID in a postprojection order operation. (Projection is anothertermfora foreach
operation.) This code throws an error:

= load "0Fbxx000000002gCAA/0Fcxx000000002WCAQ";
= group g by 'FirstName';

foreach g generate sum('mea mmlOM') as 'sum mmlOM';

Q Q9 Q \Q
Il

order g by 'FirstName' desc;

47

SAQL Reference limit

This code is valid:

= load "0Fbxx000000002gCAA/0Fcxx000000002WCAQ";
= group gq by 'FirstName';

= foreach g generate 'FirstName' as 'User FirstName', sum('mea mmlOM') as 'sum mmlOM';

Q Q9 Q \Q
|

order q by 'User FirstName' desc;

SEE ALSO:

Statements

limit

Limits the number of results that are returned. If you don't set a limit, queries return a maximum of 10,000 rows.

Syntax

result = 1limit rows number;

Usage

Use this statement only on data that has been ordered with the order statement. Theresultsof a 1 imi t operation aren’t automatically
ordered, and their order can change each time that statement is called.

You can use the 1imit statement with ungrouped data.

You can use the 1imit statement to limit grouped data by an aggregated value. For example, to find the top 10 regions by revenue:
group by region, call sum (revenue) toaggregate the data, order by sum (revenue) indescendingorder,and 1imit the
number of results to the first 10.

@ Note: The 1imit statementisnta top () or sample () function.
@ Example: This example limits the number of returned results to 10:
b = 1limit a 10;

The expression can't contain any columns from the input. For example, this query is not valid:

b = limit OrderDate 10;

SEE ALSO:
Statements

order

offset

Use offset to page through the results of your query.

48

SAQL Reference fimeseries

Syntax

result = offset rows number;

Usage
Skips over the specified number of rows when returning the results of a query. You typically use of fset to paginate the query results.
When using of£set in your SAQL statements, be aware of these rules:

e Theorderof filter and order can be swapped because it doesn't change the results
e offset mustbe after order
e offset mustbebefore 1imit

e There can be no more than one of fset statement aftera foreach statement

Example - Return Rows 51-101

This example loads the opportunity dataset, sorts the rows in alphabetical order by account owner, and returns rows 51-101:

Q
|

= load "DTC Opportunity";
order g by 'Account Owner';

Q
Il

q = foreach g generate 'Account Owner' as 'Account Owner', 'Account Type' as 'Account Type',
'Amount' as 'Amount';

offset g 50;

limit g 50;

q
q

SEE ALSO:

Statements

timeseries

Uses existing data to predict future data points.

Usage

timeseries crunchesyourdataand selects the forecasting model that gives the best fit. You can let timeseries select the best
model or specify the model you want. timeseries detects seasonality in your data. It considers periodic cycles when predicting
what your data will ook like in the future. You can specify the type of seasonality or let timeseries choose the best fit.

The amount of data required to make a prediction depends on how your data is filtered and grouped. For example, for a non-seasonal
monthly model, 2 data points are sufficient, whereas for a seasonal monthly model, at least 24 data points (two seasonal cycles) are
required. If you don't have enough data to make a good prediction, timeseries returns nulls in the data. If no data is passed to
timeseries, an empty dataset is returned.

Syntax

result = timeseries resultSet generate (measurel as fmeasurel [, measurel2 as
fmeasure2...]) with (parameters);

49

SAQL Reference fimeseries

measurel, measure2 and so on are the measures that you want to predict future values for. You can predict measures from
grouping queries or from simple values queries. The predicted values and the original values are projected together. The columns from
the previous foreach statement are also projected.

parameters can have the following values:

® length (required) Number of points to predict. Forexample, if lengthis 6 and the dateCo1ls typestringis Y-M, timeseries
predicts data for 6 months.
@ Nofe: If you want to use dateCols but your data stream has missing dates, use £111 before using timeseries.

timeseries makesthe mostaccurate prediction possible by choosing the best algorithm for your data. Predictive algorithms
are more accurate for shorter time periods.

® dateCols (optional) Date fields to use for grouping the data, plus the date column type string. For example,
dateCols=(CloseDate Year, CloseDate Month, "Y-M").Datecolumns are projected automatically. Allowed
values are:

- YearField, MonthField, "Y-M"

- YearField, QuarterField, "Y-Q"

- YearField, "Y"

- YearField, MonthField, DayField "Y-M-D"
- YearField, WeekField "Y-W"

e ignorelLast (optional) If true, timeseries doesn't use the last time period in the calculations. The defaultis false.
Set this parameter to true to improve the accuracy of the forecast if the last time period contains incomplete data. For example,
if you are partway through the quarter, timeseries forecasts more accurately if you set this parameter to t rue.

e order (optional) Specify the field to use for ordering the data. Mandatory if dateCo1ls is not used. By default, this field is sorted
in ascending order. Use desc to specify descending order, for example order=('Type' desc).You can also order by
multiple fields, for example order=('Type' desc, 'Group' asc).

For example, suppose that your data has no date columns, but it has a measure column called Week. Use order="wWeek'.

@ Nofte: Specify either dateCols or order.

® partition (optional) Specify the column used to partition the data. The column must be a dimension. The timeseries
calculation is done separately for each partition to ensure that each partition uses the most accurate algorithm. For example, data
in one partition might have a seasonal variation while data in another partition doesn't. The partition columns are projected
automatically.

For example, suppose that your sales data for raw materials contains the date sold, type of raw material, and the weight sold. To

predict the future weight sold for each type of raw material, use partition="'Type".

e predictionInterval (optional) Specify the uncertainty, or confidence interval, to display at each point. Allowed values are
80 and 95. The upper and lower bounds of the confidence interval are projected in columns named column_name low 95
and column_name high 95.

* model (optional) Specify which prediction model to use. If unspecified, timeseries calculates the prediction for each model
and selects the best model using Bayesian information criterion (BIC).
Allowed values are:

- None timeseries selectsthe best algorithm for the data

- Additive uses Holt's Linear Trend or Holt-Winters method with additive components.

50

SAQL Reference fimeseries

- Multiplicative usesHolt's Linear Trend or Holt-Winters method with multiplicative components

* seasonality (optional) Use with dateCols to specify the seasonality for your prediction. Allowed values are:
— 0 No seasonality

- anyinteger between 2 and 24

If unspecified, timeseries calculates the prediction once for each type of seasonality and select the results with the smallest

error.

Example

seasonality dateCols Type of Seasonality

seasonality=4 dateCols="Y-Q" Yearly seasonality, because there are four
quartersin a year.

seasonality=12 dateCols="Yy-M" Yearly seasonality, because there are 12
months in a year.

seasonality=7 dateCols="Y-M-D" Weekly seasonality, because there are

seven days in a week.

Tips
Here's how you can make the most of using timeseries:

e Areyou currently part way through the month, quarter, or year? Consider setting ignoreLast t0 true sothat timeseries
doesn't use the partial data in the current time period, leading to a more accurate prediction.

e Is timeseries notreturning any data? If there aren't enough data points to make a good prediction, timeseries returns
null. Try increasing the number of data points.

* Is timeseries returninganerror? You could have gaps in your dates or times. Like all good forecasting algorithms, t imeseries
needs a continuous set of dates with no gaps, including in each partition. If you think your data has date gaps, try using £111 first.

Example - How Many Tourists Will Visit Next Year?

Suppose that you run a chain of retail stores, and the number of tourists in your city affect your sales. Use timeseries to predict
how many tourists will come to your city next year:

g = load "TouristData";
g = group g by ('Visit Year', 'Visit Month');
q = foreach g generate 'Visit Year', 'Visit Month', sum('NumTourist') as 'sum NumTourist';

-- If your data is missing some dates, use fill() before using timeseries ()

-- Make sure that the dateCols parameter in fill () matches the dateCols parameter in
timerseries ()

g = fill g by (dateCols=('Visit Year',6 'Visit Month', "Y-M"));

-- Use timeseries () to predict the number of tourists.

q = timeseries g generate 'sum NumTourist' as Tourists with (length=12,
dateCols=('Visit Year',6 'Visit Month', "Y-M"));

51

SAQL Reference

q = foreach g generate 'Visit Year' + "~~~" + 'Visit Month' as 'Visit Year~~~Visit Month',
Tourists;

Use a timeline chart and set a predictive line to see the calculated future data. The resulting graph shows the likely number of tourists
in the future.

Tourists

2015 May Sep 2016 May Sep 2017 May Sep 2018 May Sep 2019
Visit (Year-Month)

Example - Predict a Range With 95% Accuracy

Suppose that you wanted to predict the number of tourists in your city next year with 95% accuracy. Use predictionInterval=95
to set a 95% confidence interval for the number of tourists. The upper and lower bounds are projected as the fields
Tourists _high 95 and Tourists low_95.

g = load "TouristData";
q = group q by ('Visit Year', 'Visit Month');
q = foreach g generate 'Visit Year', 'Visit Month', sum('NumTourist') as 'sum NumTourist';

-- If your data is missing some dates, use fill() before using timeseries ()

—-- Make sure that the dateCols parameter in fill () matches the dateCols parameter in
timerseries ()

g = fill g by (dateCols=('Visit Year',6 'Visit Month', "Y-M"));

-- use timeseries() to predict the number of tourists

g = timeseries g generate 'sum NumTourist' as 'fTourists' with (length=12,

predictionInterval=95, dateCols=('Visit Year',6 'Visit Month', "Y-M"));

g = foreach g generate 'Visit Year' + "~~~" + 'Visit Month' as 'Visit Year~~~Visit Month',
coalesce (sum NumTourist, fTourists) as 'Tourists', fTourists high 95, fTourists low 95;

Use a timeline chart and set a predictive line to see the calculated future data. In the timeline chart options, select Single Axis for the
Axis Mode, fTourists_high_95 for Measure 1, and fTourists_low_95 for Measure 2. The resulting graph shows the likely number of
tourists in the future and the 95% confidence interval.

Tourists -

Tourists

2015 May Sep 2016 May Sep 2017 May Sep 2018 May Sep 2019

Visit (Year-Month)

52

fimeseries

SAQL Reference SAQL Functions

Example - Predict Seasonal Data

Suppose that you want to predict the revenue for each type of account. You know that your account revenue has yearly seasonality and
that you want to group dates by quarter, so you specify dateCols=('Date Sold Year', 'Date Sold Quarter',
"y-Q") and seasonality = 4.To see the predicted values over the next year, use 1ength=4 to specify four quarters.

= load "Account";

group q by ('Date Sold Year', 'Date Sold Quarter', 'Type');

foreach g generate 'Date Sold Year', 'Date Sold Quarter', 'Type', sum('Amount') as
sum_Amount';

-9 Q9 Q
Il

-- If your data is missing some dates, use fill() before using timeseries ()

-— Make sure that the dateCols parameter in fill () matches the dateCols parameter in
timerseries|()

g = fill g by (dateCols=('Date Sold Year', 'Date Sold Quarter',6 "Y-Q"));

-— use timeseries () to predict the amount sold

q = timeseries g generate 'sum Amount' as Amount with (partition='Type', length=4,
dateCols=('Date Sold Year', 'Date Sold Quarter', "Y-Q"), seasonality = 4);

q = foreach g generate 'Date Sold Year' + "~~~" + 'Date Sold Quarter' as

'Date Sold Year~~~Date Sold Quarter', 'Type', Amount ;

Use a timeline chart and set a predictive line to see the calculated future data. The resulting graph shows the likely sum of revenue for
each account, taking into account the quarterly seasonal variation.

Amount

2015 Q2 Q3 Q4 2016 Q2 Q3 7= Q4 2018 Q2 Q3 Q4 2019
Date Sold (Year-Quarter)

SEE ALSO:

Forecast Future Data Points with timeseries

SAQL Functions

Use functions to perform complex operations on your data.

Aggregate Functions
Aggregate functions perform computations across all values of a grouped field.

Date Functions
Use SAQL date functions to perform time-based analysis.

String Functions
Use SAQL string functions to format your measure and dimension fields.

Math Functions
To perform numeric operations in a SAQL query, use math functions.

53

SAQL Reference Aggregate Functions

Windowing Functions
Use SAQL windowing functionality to calculate common business cases such as percent of grand total, moving average, year and
quarter growth, and ranking.

coalesce
Use coalesce () toget the first non-null value from a list of parameters, or to replace nulls with a different value.

Aggregate Functions

Aggregate functions perform computations across all values of a grouped field.

If you don't precede an aggregate function bya group by statement, ittreats each line as its own group. Using an aggregate function
on an empty set returns null.

avg() or average()
Returns the average of the values of a measure field.

count()

Returns the number of rows that match the query criteria.

first()

Returns the first value for the specified field.

last()

Returns the last value in the tuple for the specified field.

max()

Returns the maximum value of a measure field.

median()

Returns the median value of a measure field.

min()

Returns the minimum value of a measure field.

sum()

Returns the sum of a numeric field.

unique()

Returns the count of unique values.

stddev()

Returns the standard deviation of the values in a field. Accepts measure fields (but not expressions) as input.
stddevp()

Returns the population standard deviation of the values in a field. Accepts measure fields as input but not expressions.
var()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.
varp()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

percentile_cont()
Calculates a percentile based on a continuous distribution of the column value.

54

SAQL Reference Aggregate Functions

percentile_disc()
Returns the value corresponding to the specified percentile.

regr_intercept()
Uses two numerical fields to calculate a trend line, then returns the y-intercept value. Use this function to find out the likely value of
field y when field xiszero.

regr_slope()
Uses two numerical fields to calculate a trend line, then returns the slope. Use this function to learn more about the relationship
between two numerical fields.

regr_r2()
Uses two numerical fields to calculate R-squared, or goodness of fit. Use regr r2 () to understand how well the trend line fits
your data.

grouping()
Returns 1 if null dimension values are due to higher-level aggregates (which usually means the row is a subtotal or grand total),
otherwise returns 0.

avg () Or average ()

Returns the average of the values of a measure field.

Example - Calculate the Average Amount of an Opportunity Grouped by Type

Use avg () tocompare the average size of opportunities for each account type.

g = load "DTC Opportunity";

g = group gq by 'Account Type';
q = foreach g generate 'Account Type' as 'Account Type', avg('Amount') as 'avg Amount';
SEE ALSO:
median()
count ()

Returns the number of rows that match the query criteria.

For example, to calculate the number of carriers:
g = foreach g generate 'carrier' as 'carrier', count() as 'count';

count () operates on the stream that is input to the group or cogroup statement. It doesn't operate on the newly grouped
stream or on an ungrouped stream.

g = load "Carriers";
g = group g by (Year);
a foreach al generate count(gq) as countYear, count() as count, Year as year;

first()

Returns the first value for the specified field.

55

SAQL Reference

Use first () toreturn the first value of a measure or dimension. You can also use first () used to return the value of a field
without grouping by that field.

@ Note: If the values are not sorted, the 'first' value could be any value in the tuple.

Example - Return the First Industry for an Account Owner

Your reps own opportunities in several industries. You need a list of rep names with their first industry, where industry is sorted
alphabetically. Group by account owner and industry, sort by industry, then use £irst () to get the first industry.

= load "DTC Opportunity SAMPLE";
group q by ('Account Owner', 'Industry');
= foreach g generate 'Account Owner' as 'Account Owner', 'Industry' as 'Industry';

Q Q9 Q \Q
I

= order g by 'Industry';

q = foreach g generate 'Account Owner' as 'Account Owner', first('Industry') as 'One

Industry';
Account Owner One Industry
Bruce Kennedy Agriculture
Chris Riley Agriculture
Dennis Howard Agriculture
Eric Gutierrez Agriculture
Eric Sanchez Agriculture
Evelyn Williamson Agriculture

Example - Return Any Industry for an Account Owner

Your reps own opportunities in several industries. You need a list of rep names with any one of a rep's industry - it doesn't matter which
one. In this case. Group by account owner then use first () to get the first industry from an unsorted collection.

a load "DTC Opportunity SAMPLE";
g = group gq by 'Account Owner';
q = foreach g generate 'Account Owner' as 'Account Owner', first('Industry') as 'One

Industry';

The resulting table displays each rep along with one of their industries (basically the first industry from an unsorted collection).

56

Aggregate Functions

SAQL Reference Aggregate Functions

Account Owner One Industry
Bruce Kennedy Agriculture
Catherine Brown Engineering
Chris Riley Agriculture
Dennis Howard Healthcare
Doroth Gardner Utilities
Eric Gutierrez Education
SEE ALSO:
last()
last()

Returns the last value in the tuple for the specified field.

Use last () toreturnthe last value of a measure or dimension. You canalso use last () used to return the value of a field without
grouping by that field.

@ Nofte: If the values are not sorted, the 'last' value could be any value in the tuple.

SEE ALSO:
first()

max ()

Returns the maximum value of a measure field.

Example - Find the Largest Opportunity for Each Account

load "Ops";
group q by 'Account Name';

d

q
g = foreach g generate 'Company' as 'Company', max('Amount') as 'Largest Deal';

SEE ALSO:

min()

median ()

Returns the median value of a measure field.

57

SAQL Reference Aggregate Functions

Example - Find the Median Time to Close a Case

Use median () tofind the median amount of time it takes to resolve a case, grouped by company.

g = load "Case";

g = group g by 'Account Name';

q = foreach g generate 'Account Name' as 'Account Name', median('CallDuration') as
'median CallDuration';

q = order g by 'Account Name' asc;

SEE ALSO:

avg() or average()

min ()

Returns the minimum value of a measure field.

Example - Find the Smallest Opportunity For Each Account

g = load "Ops";
q = group g by 'Account Name';
foreach g generate 'Company' as 'Company', min('Amount') as 'Smallest Deal';

Q
Il

SEE ALSO:

max()

sum ()

Returns the sum of a numeric field.

Example - Calculate the Total Meeting Time

Suppose that you have a database of meeting information. Use sum () to see that the total time spent meeting with each account.

g = load "Meetings";

g = group g by 'Company';
q = foreach g generate 'Company' as 'Company', sum('MeetingDuration') as 'sum meetings';
unique ()

Returns the count of unique values.

Example - Count the Number of Industries

Use unique () tocount the number of different industries that you have opportunities with.

q = load "DTC Opportunity SAMPLE";
g = group g by all;
q

foreach g generate unique ('Industry') as 'unique Industry';

58

SAQL Reference Aggregate Functions

stddev ()

Returns the standard deviation of the values in a field. Accepts measure fields (but not expressions) as input.

Example - Look at Variability in Amount

Use stddev () togeta feel for the amount of spread, or dispersion, in the size of your deals.

g = load "DTCOpps";
g = group g by all;
q foreach g generate stddev('Amount') as 'stddev Amount';

Should | Use stddev () or stddevp()?

Use stddewv () when the values in your field are a partial sample of the entire set of values (that is, a partial sampling of the whole
population). Use stddevp () when your field contains the complete set of values (that is, the entire population of values).

SEE ALSO:
stddevp()

stddevp ()

Returns the population standard deviation of the values in a field. Accepts measure fields as input but not expressions.

Example - Calculate the Population Standard Deviation of Amount

Use stddevp () to calculate the population standard deviation of the amount of each opportunity. Group by product family to see
which type of product has the greatest variability in deal size.

= load "DTC Opportunity SAMPLE";

= group g by 'Product Family';

foreach g generate 'Product Family' as 'Product Family', stddevp ('Amount') as
'stddevp Amount';

Q Q9 Q

SEE ALSO:
stddev()

var ()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

59

SAQL Reference Aggregate Functions

Example - Calculate the Variance of Deal Amount

q = load "DTC Opportunity SAMPLE";

g = group g by all;
q = foreach g generate var('Amount') as 'var Amount';
SEE ALSO:
varp()
varp ()

Returns the variance of the values in a field. Accepts measure fields as input but not expressions.

Example - Calculate the Population Variance of Deal Amount

q = load "DTC Opportunity SAMPLE";

q = group g by all;
q = foreach g generate varp('Amount') as 'var Amount';
SEE ALSO:

var()

percentile_cont()
Calculates a percentile based on a continuous distribution of the column value.
percentile cont (p) within group (order by expr [asc | desc])
percentile cont () acceptsanumeric grouped expression expr and sorts it in the specified order. If order is not specified, the
default orderis ascending. It returns the value behind which (100 p)% of values in the group fall in the sorted order, ignoring null values.

p can be any real numeric value between 0 and 1. expr can be any identifier, such as 'xInt' or 'price’, but cannot be a complex expression,
such as price/100 or ceil(distance), or a literal, such as 2.5.

If expr contains no value that falls exactly at the 100*p-th percentile mark, percentile cont () returns a value interpolated
from the two closest values in expr.

Forexample, if Meal contains the values [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] then:

percentile cont (0.25) within group (order by Meal asc) = 3.25
percentile cont(0.25) within group (order by Meal desc) = 9.75
percentile cont(0) within group (order by Meal asc) = 0
percentile cont(1l) within group (order by Meal asc) = 13

Example - Display the Interpolated Value of the Bottom 15% of Deals

Suppose that you want to see the bottom 15% of deals for each rep. You don't need to see the actual deal size - just the 'average' size
of the bottom 15%. Use percentile cont (.15).

60

SAQL Reference Aggregate Functions

Armount
160K
Eric Gutierrez
John Williams
Nicolas Weaver
Kelly Frazier
Evelyn Williamson
Chris Riley

Catherine Brown

SEE ALSO:

percentile_disc()

percentile_disc()

Returns the value corresponding to the specified percentile.

percentile disc(p) within group (order by expr [asc | desc])

percentile disc () acceptsanumeric grouped expression expr and sortsitin the specified order. If order is not specified, the
default orderis ascending. It returns the value behind which (100 p)% of values in the group fall in the sorted order, ignoring null values.

p can be any real numeric value between 0 and 1, and is accurate to 8 decimal places of precision. expr can be any identifier, such
as 'xInt' or 'price’, but cannot be a complex expression, such as price/100 or ceil(distance), or a literal, such as 2.5.

If expr contains no value that falls exactly at the 100*p-th percentile mark, percentile disc () retumns the next value from
expr inthe sort order.

Forexample, if Meal contains the values [54, 35, 15, 15, 76, 87, 78] then:

percentile disc(0.5) within group (order by Meal) == 54
percentile disc(0.72) within group (order by Meal) == 78

Example - Rank Your Reps by Top Quartile of Deal Size

Suppose that you want to see which reps close the biggest deals. (The result may be different than the sum of deal amount, if some
reps close a lot of smaller deals). You also want the chart to display the size of actual deals, not an average of deal size. Use
percentile disc(.25) tolookatthe top quarter of the deal size for each rep.

q = load "DTC Opportunity SAMPLE";

q = group q by 'Account Owner';

q foreach g generate 'Account Owner' as 'Account Owner', percentile disc(0.25) within
group (order by 'Amount' desc) as 'Amount';

q = order g by 'Amount' desc;

You can see that 25% of Julie Chavez's deals are bigger than $2.4 million, and 25% of Kelly Frazier's deals are bigger than $2.2 million.
You also know that Julie closed a deal worth$2.4 million, and that number isn't an average.

SAQL Reference Aggregate Functions

Amount Measure

Julie Chavez 2.4M

Kelly Frazier

Irene McCoy
Doroth Gardner
John Williams
Eric Sanchez
Laura Garza

Chris Riley

Evelyn Williamson

0

1.9m

=
)
=

Account Owner

Dennis Howard
Johnny Green

SEE ALSO:
percentile_cont()

Show the Top and Bottom Quartile

regr_intercept()

Uses two numerical fields to calculate a trend line, then returns the y-intercept value. Use this function to find out the likely value of
field y when field x iszero.

regr intercept(field y, field x)

field y isagrouped dependent numeric expressionand field x isa grouped independent numeric expression.
regr intercept (field y, field x) usessimplelinear regression to calculate the trendline. The inputfields (field y,
field x)mustcontain atleast two pairs of non-null values. This function works with simple grouped values but not with cogroups.

Example - What Is the Likely Amount Won If the Number of Activities Is Zero?

Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

62

SAQL Reference Aggregate Functions

35

30 o

25 ®

20

15 @

Amount Won
®

10

0 2 < 6 8 10 12

Number of Activities

What size of deal can you expect to win if you don't have any activities with anaccount? regr_intercept performsa linearanalysis
on your data then calculates the y-intercept (that is, the value of Amount Won when Number of Activities is zero).

g = load "Data";
g = group g by all;

-—-trunc () truncates the result to two decimal places
q = foreach g generate trunc(regr intercept ('Amount’', 'NumActivities'),2) as intercept;

The projected deal size with no activities is $15.04 million dollars.

Amount with No Activities 1504

SEE ALSO:

regr_slope()

regr_slope ()

Uses two numerical fields to calculate a trend line, then returns the slope. Use this function to learn more about the relationship between
two numerical fields.

regr_slope(field y, field x)

field y isagrouped dependent numeric expressionand field x isa grouped independent numeric expression.
regr_slope(field y, field x) usessimplelinear regression to calculate the trend line. The input fields (field y,
field x)mustcontain atleast two pairs of non-null values. This function works with simple grouped values but not with cogroups.

Example - Calculate the Relationship Between Number of Activities and Deal Amount

Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

63

SAQL Reference Aggregate Functions

35

30 L

25 ®

20

15 ®

Amount Won
@

10

0 2 < 6 8 10 12

Number of Activities

How much bigger with the deal size be for each extra activity? regr slope performs alinear analysis on your data then calculates
the slope (that is, the increased amount you win for each extra activity).

q load "data/sales";
g = group g by all;

-—-trunc () truncates the result to two decimal places
q = foreach g generate trunc(regr slope('Amount', 'NumActivities'),2) as 'Gain per Activity';

Based on your existing data, every extra activity that you have tends to increase the deal size by $1.45 million, on average.

Gain per Activity 145

SEE ALSO:

regr_intercept()

Calculate the Slope of the Regression Line

regr_r2()

Uses two numerical fields to calculate R-squared, or goodness of fit. Use regr r2 () to understand how well the trend line fits your
data.

regr r2(field y, field x)

field y isagrouped dependent numeric expression and field x isa grouped independent numeric expression.
regr r2(field y, field x) usessimplelinearregression to calculate a trend line, then calculates R-squared. If the returned
value is small, then functions like regr _slope () and regr_intercept () are likely to return accurate results.

Theinputfields (field y, field x)mustcontain atleast two pairs of non-null values. This function works with simple grouped
values but not with cogroups.

64

SAQL Reference Aggregate Functions

Example - How Well Does the Calculated Trend Line Fit My Data

Suppose that you have a dataset that includes the number of activities (such as meetings) and the won opportunity amount.

35

30 Cr

25 O

20

15 O

Amount Won
O

10

0 2 < 6 8 10 12

Number of Activities

You want to check the calculated trend line for 'goodness of fit' to see how accurate the results from other statistical functions are.

g = load "regression";
q = group g by all;

q foreach g generate trunc(regr r2('Amount', 'NumActivities'),2) as 'R Squared';

The value of R squared is 0.95.

R Squared 095

grouping ()

Returns 1if null dimension values are due to higher-level aggregates (which usually means the row is a subtotal or grand total), otherwise
returns 0.

The grouping () functionis most useful when paired with the ro11up modifieronthe group statement.Invoking grouping ()
lets work with subtotaled data.

Example - Label Subtotaled Data

Suppose that you have a dataset of opportunity information with amounts totaled by lead source and type. Calculate totals with rol1up.
Then use grouping () witha case statement to check whether a row is a total and if it is then label it as "all" values.

g = load "opportunityData";

--Modify the group statement with rollup to calculate subtotals of grouped measures
g = group g by rollup('Type', 'LeadSource');

q order gq by ('Type', 'LeadSource');

65

SAQL Reference

--Determine which rows are totals with grouping(),

g = foreach g generate
(case

end)

when grouping('Type')
else 'Type'
as 'Type',

(case
when grouping ('LeadSource') ==

else 'LeadSource'

== 1 then "All Types"

end) as 'LeadSource',
sum ('Amount') as 'sum Amount';
Type LeadSource Sum of Amount
Existing Business Advertisement 6,870,000
Internet 6,660,000
Partner 9,500,000
Trade Show 39,860,000
Word of mouth 23,400,000
All Lead Sour... 86,290,000
Mew Business | Advertisement S?,?ESO.DDO‘
Partner 6,750,000
Trade Show 7,200,000
Word of mouth 24,310,000
[All Lead Sour... 126,020.00(;
.;AII Types All Lead Sour... 212,310,[)00;

Date Functions

Use SAQL date functions to perform time-based analysis.

Understanding How Date Information is Uploaded to Einstein Analytics

1 then

"All Lead Sources"

Date Functions

which returns 1 if a row is a total

When you upload a date field to Einstein Analytics, it creates dimension and measure fields to contain the date and time information.
You can use SAQL date functions to convert the dimensions and measures to dates. You can then use the dates to sort, filter, and group

data in your

SAQL queries.

For example, suppose that you upload a dataset that contains the CloseDate date field.

66

SAQL Reference Date Functions

"
K4
2018-05-20T00:00:03.000Z Shoes2Go =
ield Label
2018-03-30T00:00:03.000Z FreshMeals
CloseDate
2018-02-25T00:00:03.000Z ZipBikeShare
1 | Field Type
Date w
Date Format
yyyy-MM-dd T HH:mimiss. 555, o
Apply to All Dates
Upload File

During the dataflow, Einstein Analytics creates these fields. All the fields are dimensions, except for the epoch fields, which are measures.

Field Description

CloseDate A dimension containing the date and time. For example, 2018-02-25T00:00:03.000Z. You can't use this
string in a date filter. Instead, ‘cast’ it to a date type using toDate ().

CloseDate (Day) Dimension containing the day in the month, for example 30.

CloseDate (Hour) Dimension containing the hour, for example, 11. If the original date did not contain the hour, this field
contains 00.

CloseDate (Minute) Dimension containing the minute, for example, 59. If the original date did not contain the minute, this

field contains 00

CloseDate (Month) Dimension containing the month, for example, 12.
CloseDate(Quarter) Dimension containing the quarter, for example, 4.
CloseDate (Second) Dimension containing the second, for example, 59. If the original date did not contain the second, this

field contains 00.
CloseDate (Week) Dimension containing the week, for example, 52.

CloseDate_day_epoch Measure containing the UNIX epoch time, which is the number of days that have elapsed since 00:00:00,
Thursday, 1 January 1970.

CloseDate_sec_epoch Measure containing the Unix epoch time in seconds. Seconds epoch time is the number of seconds
that have elapsed since 00:00:00, Thursday, 1 January 1970.

67

SAQL Reference Date Functions

daysBetween()
Returns the number of days between two dates. This function is only valid ina foreach statement.

date_diff()
Returns the amount of time between two dates. This function is only valid ina foreach statement.

now()
Returns the current datetime in UTC. This function is only valid ina foreach statement.

date()
Returns a date that can be used in a filter. This function takes a year, a month, and a day dimension as input.

toDate()

Converts a string or Unix epoch seconds to a date. Returns a date that can be used in another function such as daysBetween (
). The returned date cannot be used in a filter.

date_to_epoch()
Converts a date to Unix epoch seconds.

date_to_string()
Converts a date to a string.

toString()
Converts a date to a string.

Time-Based Filtering

SAQL gives you many ways to specify the range of dates that you want to look at, such as "all ops from the last fiscal quarter" or "all
cases from the last seven days".

Day in the Week, Month, Quarter, or Year

Returns the day in the specified time period for a given date. These functions answer questions like "do we close more deals at the
beginning or end of a quarter?".

Last Day in the Week, Month, Quarter, or Year
Returns the date of the last day in the specified week, month, quarter, or year.

Number of Days in the Month, Quarter, or Year
Returns the number of days in the month, quarter, or year for the specified date.

SEE ALSO:

Analyze Your Data Over Time

daysBetween ()

Returns the number of days between two dates. This function is only valid in a foreach statement.

Syntax
daysBetween (datel, date2)
datel specifies the start date.

date2 specifies the end date.

68

SAQL Reference Date Functions

Usage
If datel isafter date2, the number of days returned is a negative number.

Youmust use daysBetween () ina foreach () statement. You cannotuse thisfunctionin group by, order by,or filter
Statements.

Example

How many days did it take to close each opportunity? Use daysBetween ().

q = load "DTC Opportunity";

q = foreach g generate daysBetween (toDate (Created Date sec epoch),
toDate (Close Date sec epoch)) as 'Days to Close';

q = order g by 'Days to Close';

Example

How long has each opportunity been open for, in days? Use daysBetween () and now ().

q = load "DTC Opportunity";

g = filter g by 'Closed' == "false";
q = foreach g generate daysBetween (toDate (Created Date sec epoch), now()) as 'Days to
Close';

g = order g by 'Days to Close';

SEE ALSO:
date_diff()

Calculate How Long Activities Take

date_diff ()

Returns the amount of time between two dates. This function is only valid ina foreach statement.

Syntax

date diff (datepart,startdate,enddate)
datepart specifies how you want to measure the time interval:
® vyear

® month

® quarter

® day

® week

® hour

® minute

® second

startdate specifies the start date.

enddate specifies the end date.

69

SAQL Reference Date Functions

Usage
Returns the time difference between two dates in years, months, or days. For example,

date diff ("year", toDate("31-12-2015", "dd-MM-yyyy"), toDate("1-1-2016", "dd-MM-yyyy"))
returns 1.

If startdate is after enddate, the difference is returned as a negative number.

Youmustuse date diff () ina foreach () statement. You cannot use thisfunctionin group by, order by,or filter
statements.

The maximum amount of time returned is 9,223,372,036,854,775,807 nanoseconds. This maximum amount of time can be measured
in any supported datepart value (nanoseconds aren't supported). For example, in days, the maximum amount of time returned is
106,751.99 days (excluding leap seconds).

Example - How Many Weeks Did Each Opportunity Take to Close?
Use date diff () with datepart = week to calculate how long, in weeks, it took to close each opportunity.

q = load "DTC Opportunity";

q foreach g generate date diff ("week", toDate(Created Date sec epoch),
toDate (Close Date sec epoch)) as 'Weeks to Close';

g = order g by 'Weeks to Close';

Example - How Long Ago Was an Opportunity Closed?

Use date diff () with datepart = month to calculate how many months have passed since each opportunity closed. Use
now () asthe end date.

= load "DTC Opportunity";
= foreach g generate date_diff("month", toDate (Close Date sec epoch), now()) as 'Months
Since Close';

q
q
g = order g by 'Months Since Close';

SEE ALSO:
daysBetween()
now()

Calculate How Long Activities Take

now ()

Returns the current datetime in UTC. This function is only valid ina foreach statement.

Syntax

now ()

Usage

This function is commonly used with daysBetween (), date diff (),and date to string().

70

SAQL Reference Date Functions

Example

How long ago was each opportunity created, in weeks? Use date diff (), datepart = week,and now ().

g = load "DTC Opportunity";

q = foreach g generate date_diff("week", toDate (Created Date sec epoch), now()) as 'Weeks
to Close';

g = order g by 'Weeks to Close';

Example

What is the date today? Use now () inside date to string().

q = load "DTC Opportunity";

-- Notice how the ' character is escaped with the \ character in 'Today\'s
g = foreach g generate date to string(now(), "yyyy-MM-dd") as 'Today\'s Date';

SEE ALSO:
date_diff()

date ()

Returns a date that can be used in a filter. This function takes a year, a month, and a day dimension as input.

Syntax

date (year, month, day)

Usage
Specify the year, month, and day. For example:

date ('OrderDate Year', 'OrderDate Month', 'OrderDate Day')

Example

Which opportunities have your reps closed in the past 30 days? Use date () to select records with a close date in the past 30 days.

q = load "DTC Opportunity";

-- use date() to create a date that you can use in a filter
-— 'Close Date Year', 'Close Date Month', and 'Close Date Day' are date fields in the
DTC Opportunity data set

q = filter g by date('Close Date Year', 'Close Date Month', 'Close Date Day') in ["30 days

ago".."current day"];
q = group q by 'Account Owner';

71

SAQL Reference Date Functions

Q
1

foreach g generate 'Account Owner' as 'Account Owner', sum('Amount') as 'sum Amount';
q = order g by 'Account Owner' asc;

SEE ALSO:
toDate()

Time-Based Filtering

toDate ()

Converts a string or Unix epoch seconds to a date. Returns a date that can be used in another function such as daysBetween ().
The returned date cannot be used in a filter.

Syntax
toDate (string [, formatString])
Ifa formatString argumentisn't provided, the function uses the format yyyy-MM-dd HH:mm:ss

toDate (epoch_seconds)

@ Nofe: Be sure to use the sec_epoch field and not the day_epoch field.

Example: Display the Number of Days Since an Opportunity Opened

Suppose that you have an opportunity dataset with the account name and the epoch seconds fields:

Account OrderDate_sec_epoch
Shoes2Go 1,521,504,003
FreshMeals 1,521,158, 403
ZipBikeShare 1,518,739,203

You want to see how many days ago an opportunity was opened. Use daysBetween () and now () .Use toDate () toconvert
the order date epoch seconds to a date format that can be passed to daysBetween ().

q load "OpsDatesl";

q = foreach g generate Account, daysBetween (toDate (OrderDate sec epoch), now()) as
'daysOpened’';

The resulting data stream displays the number of days since the opportunity was opened.

72

SAQL Reference Date Functions

Account daysOpened
Shoes2Go 66
FreshiMeals 70
ZipBikeShare 98
SEE ALSO:
date()

date_to_epoch()

Converts a date to Unix epoch seconds.

Syntax

date to epoch (date)

date_to_string()

Converts a date to a string.

Syntax

date to string(date, formatString)

@ Note: This function is identical to toString ().

Usage

This function must take a toDate () or now () function as its first argument.

Example

q = foreach g generate date to string(now(), "yyyy-MM-dd HH:mm:ss") as dsl;

toString()

Converts a date to a string.

Syntax

toString (date, formatString)

@ Note: This function is identical to date to string().

73

SAQL Reference Date Functions

Usage

This function must take a toDate () or now () function as its first argument.

Example

g = foreach g generate toString(now(), "yyyy-MM-dd HH:mm:ss") as dsl;

Time-Based Filtering

SAQL gives you many ways to specify the range of dates that you want to look at, such as "all ops from the last fiscal quarter” or "all cases
from the last seven days".

Using Date Ranges in Filters
Use these filters to specify the date range you want to look at:

e Fixed date range, for example between August 1, 2018 and June 2, 2017
e Relative date range, for example between two years ago and last month
e Open-ended ranges, for example before 04/2/2018

e Add and subtract dates, for example all records from three months before yesterday

Example: Display Opportunities Closed This Month

Suppose that you want to see which opportunities closed this month. Your data includes the account name, the close date fields, and
the epoch seconds field.

Account CloseDate (Year) CloseDate (Month) CloseDate_sec_epoch CloseDate (Day)
Shoes2Go 2018 05 1,526,774,403 20
FreshMeals 2018 03 1,522,368,003 30
ZipBikeShare 2018 02 1,519,516,803 25

Use date () togenerate the close date in date format. Then use relative date ranges to filter opportunities closed in the current month.

g = load "OpsDatesl";

q = filter g by date(’CloseDate Year’, ‘CloseDate Month’, ‘CloseDate Day’) in ["current
month" .. "current month"];

g = foreach g generate Account;

If the query is run in May 2018, the resulting data stream contains one entry:

Account

Shoes2Go

To add the close date in a readable format, use toDate ().

q = load "OpsDatesl";
e} filter g by date('CloseDate Year', 'CloseDate Month', 'CloseDate Day') in ["current

74

SAQL Reference Date Functions

month" .. "current month"];
q = foreach g generate Account, toDate('CloseDate sec epoch') as 'Close Date';

The resulting data stream includes the full date and time of the close date.

Account Close Date

Shoes2Go 2018-05-20 00:00:03

You can also display just the month and day of the close date.

q load "OpsDatesl";

g = filter g by date('CloseDate Year', 'CloseDate Month', 'CloseDate Day') in ["current
month" .. "current month"];

g = foreach g generate Account, 'CloseDate Month' + "/" + 'CloseDate Day' as 'Close Date';

The resulting data stream contains the month and day of the close date.

Account Close Date

Shoes2Go 05/20

Fixed Date Ranges

Use dateRange () to specify a fixed range of dates in a filter:
dateRange (startArray y m d, endArray y m d)

startArray y m_disanarray that specifies the start date
endArray y m_d isan array that specifies the end date

For example, return all records between October 2, 2014 and August 16, 2016:

q = filter g by date('Created Date Year',K 'Created Date Month', 'Created Date Day') in
[dateRange ([2014,10,2], [2016,8,16]1)1;

Relative Date Ranges

Use relative date ranges to answer questions such as "how many opportunities did each rep close in the past fiscal quarter"? To specify
arelative date range, use the in operator on an array with relative date keywords. For example, return all records from one year ago
up to and including the current year.

q = filter g by date('Close Date Year', 'Close Date Month', 'Close Date Day') in ["1 year
ago".."current year"];

Return all records from two quarters ago, up to and including two quarters from now.

g = filter g by date('Close Date Year', 'Close Date Month', 'Close Date Day') in ["2
quarters ago".."2 quarters ahead"];

Return all records from the last two fiscal years, up to and including today.

g = filter g by date('Close Date Year', 'Close Date Month', 'Close Date Day') in ["2
fiscal years ago".."current day"];

Use these relative date keywords:

75

SAQL Reference Date Functions

e current day

e nday(s)ago

® nday(s) ahead

e current week

e nweek(s) ago

e nweek(s) ahead

e current month

e nmonth(s) ago

e nmonth(s) ahead

e current quarter

e nquarter(s) ago

e nquarter(s) ahead

e current fiscal_quarter
e nfiscal_quarter(s) ago
e nfiscal_quarter(s) ahead
e current year

® nyear(s) ago

® nyear(s) ahead

e current fiscal_year

e nfiscal_year(s) ago

e nfiscal_year(s) ahead

@ Note: Only standard fiscal periods are supported. See "About Fiscal Years" in Salesforce Help.

Open-Ended Date Ranges

Use open-ended date ranges for queries such as "List all opportunities closed after 12/23/2014". For example, return all records up to
and including the current month.

q = filter g by date('Close Date Year', 'Close Date Month', 'Close Date Day') in [.."1
year ago"l];

You can also specify a closed relative date range. For example, return all records from three years ago up to and including today.

q = filter g by date('Close Date Year', 'Close Date Month', 'Close Date Day') in ["3 years
ago"..];

Add and Subtract Dates

You can add and subtract dates using the relative date keywords. For example, return all records from one year ago, up to and including
today.

q = filter g by date('Close Date Year', 'Close Date Month', 'Close Date Day') in ["current
day - 1 year"..];

76

SAQL Reference Date Functions

Return all records from today up to two years and three months from now.

q = filter g by date('Close_Date Year', 'Close Date Month', 'Close Date Day') in ["current
day".."2 years ahead + 3 months"];

SEE ALSO:
date()
Display the Opportunities Closed This Month

Day in the Week, Month, Quarter, or Year

Returns the day in the specified time period for a given date. These functions answer questions like "do we close more deals at the
beginning or end of a quarter?".

Example

Suppose that you want to see on which day of the week most deals are closed. Use day in week (date).

a load "Data";

q = foreach g generate day in week (toDate('Close Date sec epoch')) as 'Day In Week Closed';
g = group g by 'Day In Week Closed';

g = foreach g generate 'Day In Week Closed' as 'Day In Week Closed', count() as 'count';
order g by 'count' desc;

Q
1

The resulting data displays the number of opportunities closed, grouped by the day of the week that the opportunities were closed on.

Count of Rows Measure

o

10 20 30 40 CountofRows B

2

Day In Week Closed
[
I I
&

It looks like most opportunities are closed on Thursday (day 5).

SAQL Reference Date Functions

day in week (date)
Returns an integer representing the day of the week for a specific date. For example, 1 = Sunday, 2 = Monday.

q = foreach g generate day in week(toDate('Close Date sec epoch')) as 'Day In Week Closed';

day in month (date)
Returns an integer representing the day of the month for a specific date.

q = foreach g generate day in month(toDate('Close Date sec epoch')) as 'Day in Month
Closed';

day in quarter (date)
Returns an integer representing the day of the quarter for a specific date.

q = foreach g generate day in quarter (toDate('Close Date sec epoch')) as 'Day in Quarter
Closed';

day in year (date)
Returns an integer representing the day of the year for a specific date.

q = foreach g generate day in year (toDate('Close Date sec epoch')) as 'Day in Year Closed';

Last Day in the Week, Month, Quarter, or Year

Returns the date of the last day in the specified week, month, quarter, or year.

Usage

Use these functionsina foreach () statement. You cannot use themin group by, order by, or filter statements.

week last day(date)

Returns the date of the last day of the week for the specified date.

q = foreach g generate week last day(toDate('Close Date sec epoch')) as 'Week Last Day';

year last day(date)

Returns the date of the last day of the year for the specified date.

q = foreach g generate year last day(toDate('Close Date sec epoch')) as 'Year last day';

@ Nofte: This function always returns 31st December. You can use it to find the number of days to the year end.

78

SAQL Reference String Functions

month last day(date)
Returns the date of the last day of the month for the specified date.

q = foreach g generate month last day(toDate('Close Date sec epoch')) as 'Month Last Day';

quarter last day(date)

Returns the date of the last day of the quarter for the specified date.

q = foreach g generate quarter last day(toDate('Close Date sec epoch')) as 'Quarter Last
Day';

Number of Days in the Month, Quarter, or Year

Returns the number of days in the month, quarter, or year for the specified date.

month days (date)
Returns the number of days in the month for the specified date.

g = foreach g generate month days(toDate('Close Date sec epoch')) as 'Billing Days In
Month';

quarter days (date)
Returns the number of days in the quarter for the specified date.

q = foreach g generate quarter days(toDate('Close Date sec epoch')) as 'Billing Days In
Quarter;

year days (date)
Returns the number of days in the year for the specified date.

q = foreach g generate year days(toDate('Close Date sec epoch')) as 'Billing Days In Year;

String Functions

Use SAQL string functions to format your measure and dimension fields.

ends_with()
Returns true if the string ends with the specified characters.

starts_with()
Returns true if the string starts with the specified characters.

replace()
Replaces a substring with the specified characters.

trim()
Removes the specified substring from the beginning and the end of a string.

79

SAQL Reference String Functions

[trim()
Removes the specified characters from the beginning of a string.

rtrim()
Removes the specified characters from the end of a string.

index_of()
Returns the location (index) of the specified characters.

len()
Returns the number of characters in the string.

lower()
Returns a copy of the string with all characters in lower case.

upper()
Returns a copy of the string with all characters in upper case.

number_to_string
Converts a number literal to a string literal.

string_to_number
Converts a string literal to a number literal.

substr()
Returns a substring that starts at the specified position. You can also specify the length of the substring to return.

ends with()

Returns true if the string ends with the specified characters.

Syntax

ends with (string, suffix)

Usage

Returns true ifendswith suffix,otherwisereturns £alse. String comparison is case-sensitive. If any of the parameters are nul1,
then the function returns null.If suffix isanempty string, then the function returns null.

Example
ends with ("FIT", "T") == true
ends_with ("FIT", "BIT") == false

starts_with()

Returns true if the string starts with the specified characters.

Syntax

starts with(string, prefix)

80

SAQL Reference String Functions

Usage

Returns true if string startswith prefix,otherwise returns false. String comparison is case-sensitive. If any of the parameters
are null, then the function returns null.|f prefix isan empty string, then the function returns null.

Example

Suppose that you want to count the opportunities where the owner role starts with "Sales". Use starts _with () ina case
statement.

q = load "DTC Opportunity";

-- Select rows where the owner roles starts with "Sales"
g = foreach g generate count() as 'count', (case

when starts with('Owner Role', "Sales") then 'Owner Role'
end) as 'Owner Role';

g = group g by 'Owner Role';
q

foreach g generate count() as 'count', 'Owner Role' as 'Owner Role';

The resulting chart shows the number of opportunities where the owner role starts with "Sales", grouped by owner role.

Owner Role | Count of Rows

Sales AMER 27

Sales EMEA 28

Sales WW 45
replace ()

Replaces a substring with the specified characters.

Syntax

replace(string, searchStr, replaceStr)

Usage

This function replaces searchStr with replaceStr, then returns the modified string. If any of the parameters are nul1, then
the function returns null.lf searchStr isan empty string, the function returns nul1. This function is case-sensitive.

Example

replace ("Watson, come quickly.", "quickly", "slowly") == "Watson, come slowly."
replace ("Watson, come quickly.", "o", "a") == "Watsan, came quickly."

replace ("Watson, come quickly.", "", "Mr.") == null

81

SAQL Reference String Functions

trim()

Removes the specified substring from the beginning and the end of a string.

Syntax

trim(string,substr)

Usage

This function removes substr from the beginning and end of string,thenreturnsthe result. To remove leading and trailing spaces,
do not specify a value for substr.

Example

—- the resulting string in both cases is 'MyString';

g = foreach g generate trim("abcMyStringabc","abc") as 'Trimmed String';
g = foreach g generate trim(" MyString ") as 'Trimmed String';
ltrim()

Removes the specified characters from the beginning of a string.

Syntax

ltrim(stringsubstr)

Usage

Removes every instance of each character in substr from the beginning of string. This function is case-sensitive. To remove
leading spaces, do not specify a value for substr.

Example

This example shows that 1t rim removes the specified characters from the beginning of a string. This function is case-sensitive.

load "test";
foreach g generate 'Company' as 'Company', ltrim('Company',"abc") as 'ltrim abc',
ltrim('Company',"cba") as 'ltrim cba', ltrim('Company',"ab") as 'ltrim ab',

q
q

ltrim('Company',"bc") as 'ltrim bc';

82

SAQL Reference String Functions
Company Itrim abc Itrim cba Itrim ab It
CompanyABCABC CompanyABCABC CompanyABCABC CompanyABCABC C
abcabcCompany Company Company cabcCompany a
ABCABCCompany ABCABCCompany ABCABCCompany ABCABCCompany A

rtrim()
Removes the specified characters from the end of a string.
Syntax
rtrim(stringsubstr)
Usage
Removes every instance of each character in substr from the end of string. This function is case-sensitive. To remove trailing
spaces, do not specify a value for substr.
Example
This example shows that rtrim removes the specified characters from the end of a string. This function is case-sensitive.
g = load "test";
g = foreach g generate 'Company' as 'Company', rtrim('Company',"abc") as 'rtrim abc',
rtrim('Company',"cba") as 'rtrim cba', rtrim('Company',"ab") as 'rtrim ab',
rtrim('Company',"ac") as 'rtrim ac';
Company rtrim abc rtrim cba rtrim ab rt
Companyabcabc Company Company Companyabcabc C
CompanyABCABC CompanyABCABC CompanyABCABC CompanyABCABC C

index of()

Returns the location (index) of the specified characters.

83

SAQL Reference String Functions

Syntax

index of(string, searchStr [position |, occurencel))

Usage

This function returns the index of searchStrin string, beginning at the specified posi tion. The function returns 0 if
searchStr isnot found. This function is case-sensitive. If any of the parameters are nul 1, then the function returns nul11.

The default value of position is 1, which means that the function begins searching at the first character of string. Anerrorresults
if position isnegative or zero.

occurrence isan optional integer, with a default value of 1 . You can use this parameter to specify which occurrence of searchStr
to search for. For example, if there is more than one occurrence of searchStr,and occurence is 2, the index of the second
occurrence is returned.

Constant values are supported for position and occurrence, not arbitrary expressions.

If searchStr isan empty string, then the function returns null.

Example

-- return the first occurrence of "a", starting at the beginning.
-- The result is 2.
q = foreach g generate index of ("Hawaii", "a") as 'Index';

-- return the second occurrence of "a", starting at the beginning
-- the result is 4
q = foreach g generate index of ("Hawaii", "a",1, 2) as 'Index';

-- return the first occurrence of "a", starting at the third position
-- the result is 4
q = foreach g generate index of ("Hawaii", "a",3) as 'Index';

len()

Returns the number of characters in the string.

Syntax

len(string)

Usage

Leading and trailing whitespace characters are included in the length returned. Returns null if stringis null.

Example
len("starfox") == 7
len (" rocket ") == 8
len("O") == 1
len("") == 0

84

SAQL Reference String Functions

lower ()

Returns a copy of the string with all characters in lower case.

Syntax

lower(string)

Usage

Returns null if stringis null.

Example

lower ("JAVA") == "java"

upper ()

Returns a copy of the string with all characters in upper case.

Syntax

upper(string)

Usage

Returns null if stringis null.

Example

upper ("java") == "JAVA"

number to_string

Converts a number literal to a string literal.

Syntax

number to_string(number, number format)

Usage

Returns the string representation of number. Use number format to specify the format of the string, for example as currency or
with two decimal places. number format can specify seperate formats for positive and negative numbers:

®* number to string(number, number format)

The format specified by number format is used for both positive and negative numbers.

®* number to string(number, <POSITIVE><NEGATIVE>)

85

SAQL Reference

String Functions

If number is positive, the number format specified by <POSTITIVE> isused.If number is negative, the number format specified

by <NEGATIVE> is used. Note the semicolon separating the two specified formats.

You can specify the format with these characters:

e (Q,# decimal point ()

e Thousands separator (,)

e Percentage (%)

e Leading and trailing characters: S, +, -, (,), 3, |, A&',~{}

Example

Display the number amount as a string, formatted as currency:

g = foreach g generate 'Amount' as 'Amount', number to string('Amount', "S#,###.00") as
'NumberAmount';

Armount

MNurmberAmount

397,280 5397.280.00

Example

Suppose that you have a measure field with the format shown in Number You Start With. Use the format shown in number_format
to display this number as a shown in Resulting String.

Initial Number

1234.56
89

631

12
1234.568
12000
12000
12200000
12
0.03457
123
-123

32

-32

number_format

B H
#000

0#

#0#

#0#

#

#,

00,

00000
#00%
$#.00;(5#.00)
$#.00;(5#.00)
+;-

+-

86

Resulting String
1234.6
8.900
0.6

12.0
1234.57
12,000
12

12.2
00012
3.46%
$12.30
($12.30)

SAQL Reference String Functions

string to number

Converts a string literal to a number literal.

Syntax

string to number (string)

Usage

If the string can't be parsed as a number, the query fails.

Example

-— creates a field called "Number" that contains the number 12345

q = foreach g generate string to number ("12345") as 'Number';

substr ()

Returns a substring that starts at the specified position. You can also specify the length of the substring to return.

Syntax

substr (string, position[, length])

Usage

substr returns the characters in st ring, starting at position position.If you specify 1ength, this function returns 1ength
number of characters. If any of the parameters are nul1, then the function returns null. length is optional.

The first character in string is at position 1. If position is negative then the position is relative to the end of the string. So a
position of -1 denotes the last character.

If Iength is negative, then the function returns null.If position > len(string)or position <-len(string)or
position =0,then the empty string is returned.

Example

-- we want a substring that is one character long, starting at position 1.
—-- The character "C" is returned.
substr ("CRM", 1, 1)

-- we want a substring that is 2 characters long, starting at position 1

-- The string "CR" is returned

substr ("CRM", 1, 2) == "CR"

-- we want a substring that is two characters long, starting from the *end* of the string
-— The string "RM" is returned

substr ("CRM", -2, 2) == "RM"

-- we want to get the first 10 characters from this string

87

SAQL Reference Math Functions

-- the string "2018-03-16" is returned
substr("2018-03-16T00:00:03.000Z",10)

Example

Suppose that you want to display the current time, but not the current date. Use substr () toreturn the last 11 characters from
date to string() .

q = foreach g generate substr(date to string(now(), "yyyy-MM-dd HH:mm:ss"), 11) as 'Time
Now';

Math Functions

To perform numeric operations in a SAQL query, use math functions.
You can use SAQL math functions in foreach statementsandinthe filter by clause aftera foreach statement.

You can't use math functionsina group by clause orinan order by clause. You also can't use math functionsinthe filter
by clause beforea foreach statement.

abs(n)

Returns the absolute number of n as a numeric value. n can be any real numeric value in the range of -1e308 <= n <= 1e308.
ceil(n)

Returns the nearest integer of equal or greater value to n. n can be any real numeric value in the range of -1e308 <= n <= 1e308.

exp(n)

Returns the value of Euler's number e raised to the power of n, where e =2.71828183... The smallest value for n that doesn’t
resultin 0 is 3e-324. n can be any real numeric value in the range of -1€308 <= n <= 700.

floor(n)

Returns the nearest integer of equal or lesser value to n. n can be any real numeric value in the range of -1e308 <=n <= 1e308.

log(m, n)

Returns the natural logarithm (base m) of a number n. The values m and n can be any positive, non-zero numeric value in the
range0<m,n<=1e308andm=1.

power(m, n)

Returns m raised to the nth power. m, n can be any numeric value in the range of -1e308 <= m, n <= 1e308. Returns null if m =
O0and n <0.

round(n[, m])

Returns the value of n rounded to m decimal places. m can be negative, in which case the function returns n rounded to -m places
to the left of the decimal point. If m is omitted, it returns n rounded to the nearest integer. For tie-breaking, it follows round half
way from zero convention. n can be any real numeric value in the range of -1e308 <=n <= 1e308. m can be an integer value
between -15 and 15, inclusive.

sqrt(n)

Returns the square root of a number n. The value n can be any non-negative numeric value in the range of 0 <= n <= 1e308.
trunc(n[, m])

Returns the value of the numeric expression n truncated to m decimal places. m can be negative, in which case the function returns
n truncated to -m places to the left of the decimal point. If m is omitted, it returns n truncated to the integer place. n can be any
real numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value between -15 and 15 inclusive.

88

SAQL Reference Math Functions

abs (n)
Returns the absolute number of n asa numeric value. n can be any real numeric value in the range of -1e308 <= n <= 1e308.

This example is valid:
q = foreach g generate abs(pct change) as pct magnitude;
These examples are invalid:

g = group g by abs(pct change);
q = order g by abs(pct change);

ceil (n)

Returns the nearest integer of equal or greater value to n. n can be any real numeric value in the range of -1e308 <=n <= 1e308.
This example is valid:

g = foreach g generate ceil (miles) as distance;

These examples are invalid:

g = group gq by ceil (miles);
g = order g by ceil (miles);

exp (n)

Returns the value of Euler's number e raised to the power of n, where e =2.71828183... The smallest value for n that doesn’t result
in 0is 3e-324. n can be any real numeric value in the range of -1e308 <= n <= 700.

These examples are valid:

g = foreach g generate exp(value) as value;
g = filter g by exp(value) < 5;

These examples are invalid:

g = group g by exp(value);
g = order g by exp(value);

floor (n)

Returns the nearest integer of equal or lesser value to n. n can be any real numeric value in the range of -1e308 <=n <= 1e308.

This example is valid:
g = foreach g generate floor(miles) as distance;
These examples are invalid:

g = group g by floor(miles);
q

order g by floor (miles);

89

SAQL Reference Math Functions

log(m, n)

Returns the natural logarithm (base m) of a number n. The values m and n can be any positive, non-zero numeric value in the range
0<m,n<=1e308and m=1.

The smallest number input allowed for m is >0, m!=1. The smallest number for m or n that will not produce 0 is log(10, 0.3e-323).

These examples are valid:

g = foreach g generate log (10, Population) as Population;
g = filter g by log (10, Population) < 15;

These examples are invalid:

g = group g by log (10, Population);
g = order g by log (10, Population);

power (m, n)

Returns m raised to the nth power. m, n can be any numeric value in the range of -1e308 <= m, n <= 1e308. Returns null if m =0
and n <0.

e If m =0, n must be a non-negative value.
e If m <0, n mustbe aninteger value.

e The result of power(m, n) must be within the range expressed by a float64 number.

These examples are valid:

g = foreach g generate power (length, 2) as area, length;
g = filter g by power (length, 2) > 10;

These examples are invalid:

g = group g by power (length, 2);
g = order g by power (length, 2);

round (n[, m])

Returns the value of n rounded to m decimal places. m can be negative, in which case the function returns n rounded to -m places to
the left of the decimal point. If m is omitted, it returns n rounded to the nearest integer. For tie-breaking, it follows round half way from
zero convention. n can be any real numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value between -15 and
15, inclusive.

This example is valid:
g = foreach g generate round(Price, 2) as Price;
These examples are invalid:

g = group g by round(Price, 2);
q order g by round(Price, 2);

sgrt (n)

Returns the square root of a number n. The value n can be any non-negative numeric value in the range of 0 <= n <= 1e308.

90

SAQL Reference Windowing Functions

These examples are valid:

q = foreach g generate sqgrt(value) as value;
g = filter g by sqgrt(value) < 10;

These examples are invalid:

g = group d by sqgrt(value);
g = order g by sgrt(value);

trunc(n[, m])

Returns the value of the numeric expression n truncated to m decimal places. m can be negative, in which case the function returns
n truncated to -m places to the left of the decimal point. If m is omitted, it returns n truncated to the integer place. n can be any real
numeric value in the range of -1e308 <=n <= 1e308. m can be an integer value between -15 and 15 inclusive.

This example is valid:
g = foreach g generate trunc(Price, 2) as Price;
These examples are invalid:

g = group g by trunc(Price, 2);
q

order g by trunc(Price, 2);

Windowing Functions

Use SAQL windowing functionality to calculate common business cases such as percent of grand total, moving average, year and quarter
growth, and ranking.

Windowing functions allow you to calculate data for a single group using aggregated data from adjacent groups. Windowing does not
change the number of rows returned by the query. Windowing aggregates across groups rather than within groups and accepts any
valid numerical projection on which to aggregate.

Windowing with an aggregate function uses the following syntax:

<windowfunction> (<projection expression>) over (<row range> partition by <reset groups>
order by <order clause>) as <label>

When using ranking functions, use the following syntax:
<rankfunction> over ([..] partition by <reset groups> order by <order clause>) as <label>

Where:

windowfunction
An aggregate function that supports windowing. Currently supported functions are avg, sum, min, max, count, median,
percentile disc,andpercentile cont.

rankfunction
Returns a rank value for each row in a partition. The following ranking functions are supported: rank (), dense_rank (),
cume _dist () and row number (). Refer to the Ranking Functions section for examples.

projection expression

The expression used to generate a projection from the values of specified columns.

91

SAQL Reference Windowing Functions

row range

Row ranges are specified using the following syntax.

Range Meaning
[..0] From beginning to current row in the reset group.
[0.] From current row to the last row in the reset group.
[-2..0] From two rows prior to current row. Window covers 3 rows.
[0.2] From current row to 2 rows ahead of current row. Windows covers 3 rows.
[-1.-1] One row prior to current row. Window includes a single row.
[.-2] From beginning of reset group to 2 rows prior to current row.
[.] Aggregates the entire reset group.
reset groups

The column(s) which reset windowing aggregation when their value(s) change. A reset group of a11 indicates no reset boundaries
for the window aggregation.

order clause
Specify column(s) by which to sort. This orders the rows before the window function gets evaluated.

@ Nofte: The order clause is not allowed on expressions where the row range is [. .] and the window function is sum, avg,
minxxlnaxFOH%ampm,sum(sum(Sales)) over ([..] partition by Year order by Quarter)
is invalid.

label

The output column name.

Notes

Grouped Queries

Windowing functionality is enabled only for grouped queries. The following is not valid:

load "dataset";
foreach a generate sum(sum(sales)) over([.. 0] partition by all order by all);

a
b

Multiple Resets and Multiple Orders

Multiple resets and multiple orders are valid. For example:

sum(sum(Sales)) over([-2 .. 0] partition by (OrderDate Year, OrderDate Quarter) order
by OrderDate Year)

sum(sum(Sales)) over([-2 .. 0] partition by (Year, Quarter) order by (Year asc, sum(Sales)
desc))

Cogroups

Windowing functions can be used with cogroup queries. For example:

92

SAQL Reference Windowing Functions

sum(sum(a[Sales])) over([-2 .. 0] partition by (a[Year], al[Quarter]) order by (al[Year]

asc, sum(a[Sales]) desc))

@ Nofte: Each Windowing function can be used with only 1 cogroup stream. The following is not valid:

a = load "datasetl";

b = load "dataset2";

c = group a by columnl, b by column2;

d = foreach ¢ generate sum(sum(a[sales])) over([.. 0] partition by b[column2] order
by all)

Refer to the Aggregate Functions topic for details on function usage.

Example - Dynamically Display Your Top Five Reps
Use windowing to create a chart that dynamically displays your top-five reps for each country. The chart updates continuously as

opportunities are won. The example uses windowing to calculate:

e Percentage contribution that each rep made to the total amount, partitioned by country

e Ranking of the rep’s contribution, partitioned by country

These calculations let us display the top-five reps in each country.

= load "DTC Opportunity SAMPLE";
group q by ('Billing Country', 'Account Owner');

Q Q
LI

q = foreach g generate 'Billing Country', 'Account Owner',

-- sum(Amount) 1is the total amount for a single rep in the current country

-—- sum(sum('Amount') is the total amount for ALL reps in the current country

-- sum(Amount) / sum(sum('Amount') calculates the percentage that each rep contributed
-- to the total amount in the current country

((sum('Amount') /sum(sum('Amount'))

-- [..] means "include all records in the partition"
-— "by Billing Country" means partition, or group, by country
over ([..] partition by 'Billing Country')) * 100) as 'Percent AmountContribution',

-- rank the percent contribution and partition by the country
rank () over ([..] partition by ('Billing Country') order by sum('Amount') desc) as
'Rep Rank';

-- filter to include only the top 5 reps
q = filter g by 'Rep Rank' <=5;

The resulting graph shows the top-five reps in each country and displays each rep’s ranking.

93

SAQL Reference Windowing Functions

Percent_AmountContribution Rep_Rank

0

50 100

(=]
[¥¥)

Australia Dennis Howard
Johnny Green

John Williams

Bruce Kennedy

Chris Riley

Belgium Julie Chavez
Johnny Green

Laura Garza

Eric Gutierrez

Evelyn Williamson

Brazil Bruce Kennedy
Eric Gutierrez

Eric Sanchez

Laura Garza

Irene Kelley

Canada Laura Garza
Chris Riley

Eric Gutierrez

Bruce Kennedy

Johnny Green

Examples
Running Total (No Reset)

The following query calculates the running total of sum of sales every quarter, with "partition by all" denoting that the sum is not reset
by any column.

g = load "dataset";

q = group q by (OrderDate Year, OrderDate Quarter);

q = foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)
as sum_amt, sum(sum(Sales)) over([.. 0] partition by all order by (OrderDate Year,
OrderDate Quarter)) as r_ sum;

Year Quarter sum_amt r_sum
2013 1 1000 1000
2013 2 2000 3000
2013 3 3000 6000
2013 4 2000 8000
2014 1 1000 9000
2014 2 500 9500
2014 3 9000 18500

94

SAQL Reference

Windowing Functions

Year Quarter sum_amt r_sum
2014 4 3000 21500
2015 1 500 22000
2015 2 500 22500
2015 3 200 22700
2015 4 400 23100

Running Totals By Year

Running total resets on every year.

q = load "dataset";

q = group q by (OrderDate Year, OrderDate Quarter);
q
as sum_amt, sum(sum(Sales)) over([.. O] partition by OrderDate Year order by (OrderDate Year,
OrderDate Quarter)) as r_ sum;

foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)

Year Quarter sum_amt r_sum
2013 1 1000 1000
2013 2 2000 3000
2013 3 3000 6000
2013 4 2000 8000
2014 1 1000 1000
2014 2 500 1500
2014 3 9000 10500
2014 4 3000 13500
2015 1 500 500
2015 2 500 100
2015 3 200 1200
2015 4 400 1600

Min Sales Trailing 3 Quarters (Moving Min)

Finds the moving minimum values in the window of last two rows to current row.

g = load "dataset";

g = group gq by (OrderDate Year, OrderDate Quarter);

q = foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)
as sumSales, min(sum(Sales)) over([-2 .. 0] partition by OrderDate Year order by
(OrderDate Year, OrderDate Quarter)) as m min;

95

SAQL Reference Windowing Functions

Year Quarter sumSales m_min
2013 1 1000 1000
2013 2 2000 1000
2013 3 3000 1000
2013 4 2000 2000
2014 1 1000 1000
2014 2 500 500
2014 3 9000 500
2014 4 3000 500
2015 1 4000 4000
2015 2 500 500
2015 3 200 200
2015 4 400 200
Percentage Total

This query calculates the percentage of the quarter’s sales for the year. Row range [..] calculates the subtotals of each year, which is used
in the formula to calculate the percentage.

g = load "dataset";
q = group q by (OrderDate Year, OrderDate Quarter);
q = foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)

as sumSales, (sum(Sales) * 100) / sum(sum(Sales)) over([..] partition by OrderDate Year)
as p tot;

Year Quarter sumSales p_tot
2013 1 1000 12.5%
2013 2 2000 25%
2013 3 3000 37.5%
2013 4 2000 25%
2014 1 1000 741%
2014 2 500 3.70%
2014 3 9000 66.67%
2014 4 3000 22.22%
2015 1 500 31.25%
2015 2 500 31.25%

96

SAQL Reference Windowing Functions

Year Quarter sumSales p_tot
2015 3 200 12.50%
2015 4 400 25%

Differences Along Year

This query calculates the growth of sales compared with the previous quarter, with [-1 .. -1] referring to the quarter before the quarter
on the row. The blank spaces in the result table represent null values.

g = load "dataset";

q = group q by (OrderDate Year, OrderDate Quarter);

q foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)
as sumSales, sum(Sales) - sum(sum(Sales)) over([-1 .. -1] partition by OrderDate Year order
by (OrderDate Year, OrderDate Quarter)) as diff;

Year Quarter sumSales diff
2013 1 1000

2013 2 2000 1000
2013 3 3000 1000
2013 4 2000 -1000
2014 1 1000

2014 2 500 -500
2014 3 9000 8500
2014 4 3000 -6000
2015 1 500

2015 2 500 0
2015 3 200 -300
2015 4 400 200

Ranking Functions

rank()
Assigns rank based on order. Repeats rank when the value is the same, and skips as many on the next non-match.

dense_rank()
Same as rank() but doesn’t skip values on previous repetitions.

cume_dist()
Calculates the cumulative distribution (relative position) of the data in the reset group.

row_number()
Assigns a number incremented by 1 for every row in the reset group.

97

SAQL Reference

Examples

q = load "dataset";

g = group g by (Year,
q =

b

Quarter) ;

foreach g generate Year, Quarter,

y Year order by sum(Sales)) as rank;

sum(Sales) as sum_amt,

rank ()

over ([..

]

Windowing Functions

partition

The following table also shows result columns as if the dense rank (), cume dist () and row number () functions were
substituted for rank () in the previous code.

Year
2013
2013
2013
2013
2014
2014
2014
2014
2015
2015
2015

2015

This query shows the top 3 performing quarters in a year.

q =

Q

\Q

q =

Year
2013
2013
2013
2014
2014

2014

Quarter
1

2

load "dataset";

group g by (Year,

sum_amt
1000
2000
2000
3000
500
1000
3000
9000
500
500
600

700

Quarter) ;

foreach g generate Year, Quarter,
by Year order by sum(Sales)) as rank;
filter g by rank <= 3;

Quarter

1

2

rank
1

2

sum(Sales) as sum amt,

sumSales
1000

2000

2000

500

1000

3000

98

dense_rank cume_dist

1

2

rank ()

0.25

0.75

0.75

1

0.25

05

0.75

05

0.5

0.75

over ([..

rank

]

row_number
1

2

partition

SAQL Reference

Year
2015
2015
2015

Quarter

This query shows the 95th percentile.

q = load "Oppty Products Scored";

q

g = limit g 5;

Percentile functions: 95th Percentile

Product Name

Books
Cables

Cases
Certifications

Courses

group g by (ProductName) ;
g = foreach g generate ProductName,
within group (order by

sum of Profit

'TotalPrice')

sum(TotalPrice) as sum_ Price, percentile cont (0.95)
as 'sum 95Percentile’;

95th Percentile of Profit

sumSales
500
600
600

Refer to the Aggregate Functions topic for details on function usage.

SEE ALSO:

Windowing Functions

Windowing Functions

coalesce

Use coalesce () toget the first non-null value from a list of parameters, or to replace nulls with a different value.

coalesce (valuel

Example: Left Outer Cogroup with coalesce ()

, value?2

, value3

’

)

rank

coalesce

A left outer cogroup combines the right data stream with the left data stream. If a record on the left stream does not have a match on

the right stream, the missing right value comes through as null. To replace null values with a different value, use coalesce ().

99

SAQL Reference coalesce

For example, suppose that you have a dataset of meeting information from the Salesforce Event object, and you join it with data from
the Salesforce Opportunity object. This shows amount won with the total time spent in meetings.

ops = load "Ops";

meetings = load "Meetings";

g = cogroup ops by 'Account' left, meetings by 'Company'
q = foreach g generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum Amount',
sum (meetings. 'MeetingDuration') as 'TimeSpent';

’

It looks like we had no meetings with Zen Retreats.

Account Sum of Amount TimeSpent
FreshMeals 3.4 -
Shoes2Go 4.5 7
ZenRetreats ! 2 -
ZipBikeShare | 1.1 4

Let's use coalesce () tochange that null value to a zero.

ops = load "Ops";
meetings = load "Meetings";
g = cogroup ops by 'Account' left, meetings Dby 'Company' ;

—-use coalesce() to replace null values with zero

q = foreach g generate ops.'Account' as 'Account', sum(ops.'Amount') as 'sum Amount',
coalesce (sum(meetings. 'MeetingDuration'), 0) as 'TimeSpent';

Account Sum of Amount TimeSpent

FreshiVleals 3.4 4

Shoes2Go 4.5 T
]

ZenRetreats 2 0
]

ZipBikeShare 1.1 4

100

QUERY PERFORMANCE

To optimize performance, learn how to structure your query to take advantage of the different stages a SAQL query passes through.

These topics explain common query performance problems and will help you write more efficient queries.

Projection is Important
See how changing the order of the functions in your query can give remarkable performance improvements.

Network Traffic and Latency
You might not think there’s much you can do about network latency, but there are ways to reduce traffic.

Redundant Filters
Is your query doing more work than it needs to? Check to see if you have redundant filters.

Use the ELT Process

Is your dataset set up correctly for what you're trying to do? You could be doing unnecessary work in your queries.
Multi-Value Dimensions

If you use picklists, and find your queries are slow, consider the impact of multi-value dimensions.

Limit the use of Unique()
Sometimes you need to use unique () inaquery, but be aware that it can affect performance if there is a large number of unique
values.

Projection is Important

See how changing the order of the functions in your query can give remarkable performance improvements.

Think Projection

With behind-the-scenes knowledge of how data is queried, it quickly becomes apparent that writing queries to take advantage of the
super-fast and efficiently indexed layer is key to maximize performance. This before-and-after concept essentially relates to projection.

0 Tip: Whatis projection? When a query creates a new stream with a foreach statement—and it's the first foreach in the query—that
is a projection.

Pre-projection queries, particularly those dealing with rows numbering in the hundreds of thousands or more, will execute much faster
than post-projection queries dealing with the same number of rows as tabular data. So, instead of:

= load "something";

= foreach g generate ‘coll’+’col2’ as ‘key’, col3;
filter g by ‘key’;

= filter g by ‘col3’;

= group g by ‘col3’;

Q Q9 Q Q Q
Il

.where the filtering and grouping occur after projection (foreach), change the order so the filtering and grouping occur before projection:

load "something";
filter g by ‘coll’;

Q Q
[

101

Query Performance Network Traffic and Latency

filter g by ‘col2’;

filter g by ‘col3’;

group g by ‘col3’;

foreach g generate ‘coll’+’col2’ as ‘key’, col3;

Q Q9 Q \Q
|

So a good practice is to ensure that the most demanding part of your query is tackled by the appropriate layer—the layer able to process
that filter or grouping most efficiently.

Agreat many "slow query" cases addressed by support and development teams are ultimately resolved by rewriting the query to perform
grouping and filtering before projection.

@ Note: Ifyou need tofilter or group by an expression (e.q. key=col1+col2), the best option for performance is to create the column
in the dataset so that it is calculated at ETL time and indexed. See Use the ELT Process.

Network Traffic and Latency

You might not think there’s much you can do about network latency, but there are ways to reduce traffic.

Reduce Network Round Trips

Consider the number of network round trips your query might initiate. There are techniques to reduce network usage. This is especially
important for mobile, where network latency can be high.

An example is faceting in a dashboard. Say you are using SAQL queries to display grouped values in a list selector, but you want the
displayed values to look different (for example, you might want to show dates differently). You might choose to add an intermediate
query to filter the stream based on the list selector values in order to display your prefered text. However, this adds an extra network
round trip, 50 it's not an optimal solution.

In this case, a better solution might be to ensure your data values—those used in the list selector—are those you actually want, and
have the data transformed appropriately at load time via the ELT process. See Use the ELT Process.

Redundant Filters

Is your query doing more work than it needs to? Check to see if you have redundant filters.

Optimizing Multiple Filters

Logically, it's easy to write multiple filters to achieve your goal, but often you end up with redundant filters. It's even possible to generate
redundant filters when setting up binding and faceting.

g = load "something";

q = filter g by date('ProcDate Day') in ["current year".."current year"];

g = filter g by date('ProcDate Day') in ["5 years ago".."current year"];

g = group g by 'ProdDescrip';

q = foreach g generate 'ProdDescrip' as 'Prod Desc', sum('CC cost') as 'Cost';
qg = limit g 2000;

Even though the filters in this example occur before projection—before the foreach statement—and so are highly optimized, the second
filter is redundant and so causes unnecessary work for the query engine. Why is it redundant? The results will be the same even without
the "5 years ago" filter.

102

Query Performance Use the ELT Process

@ Nofe: Analytics does have a sophisticated algorithm for removing redundancy in filters, but it can't catch all cases so it's good
practice to avoid redundancy.

Use the ELT Process

Is your dataset set up correctly for what you're trying to do? You could be doing unnecessary work in your queries.

The Extract, Load, and Transform Process Can Set Your Queries up for
Success

When importing your dataset via the ELT process, it'simportant to ensure that your dataset is optimized for likely queries. The ELT process
allows the creation of derived fields using calculations based on the current dataset, or even other derived fields.

If you find yourself writing queries with a case statementinthe foreach projection, thenit's possible your dataset could be optimized.
For example, the following query changes the value JP to JAPAN in the output stream:

gl = foreach gl generate (case when 'GEO' == \"JP\" then \"Japan\" else 'GEO' end) as 'GEO;

Executing this query multiple times can affect performance. It makes better sense to have the dataset reflect the required data accurately.
Inyour ELT process, use the computeExpression transformation,and add your case statementinthe saglExpression SAQL
query. For example:

"action": "computeExpression",
"parameters": {
"source": "Opportunity Data",
"mergeWithSource": true,

"computedFields": [
{

"name": "GEO",

"type": "Text",

"label": "GEO"

"saglExpression":

"case

when ‘GEO’ == \"JP" then \"Japan\"
else ‘GEO’

end"}

]
}

Now the GEO field in your dataset contains Japan rather than JP. Your queries no longer need the CASE statement, and execute more
efficiently.

Reduce the Number of Decimal Places

When setting up your dataflow, try to minimize the number of decimal places in your data. Using fewer decimal places generates more
compact data that is faster to query.

103

Query Performance Multi-Value Dimensions

Consider Sorting Your Data Before Running a Dataflow

SAQL searches ordered data much more efficiently than random data, so consider ordering your data before loading it into a dataflow.
Order the data by a field that is commonly used in filter and group by Statements to make those statements more efficient.

For example, suppose that you frequently perform time-based analysis on your data. In this case, ordering your data chronologically
before running the dataflow makes time-based queries faster.

Multi-Value Dimensions

If you use picklists, and find your queries are slow, consider the impact of multi-value dimensions.

Multi-Value Dimensions in Projections or Grouping

Multi-valued dimensions (for example, those used in multi-select picklists) may cause poor performance because multi-value field
behavior is undefined for group by or foreach. Also, multi-value dimensions are not indexed, so queries that reference multi-valued
dimensions will therefore require scanning of dimensions, which could slow performance. This is especially true when using multi-level

grouping.
For these reasons, use of multi-value fields in anything other than filters is strongly discouraged.

@ Important: If you have bad performance due to multi-value fields used in foreach or group by, rewrite your query so multi-value
fields are referenced only in filters.

Limit the use of Uniquel|)

Sometimes you need to use unique () ina query, but be aware that it can affect performance if there is a large number of unique
values.

For example, suppose you want to count the number of different industries that you have opportunities with.
q = load "DTC Opportunity SAMPLE";

g = group g by all;
e} foreach g generate unique('Industry') as 'unique Industry';

If your data contains a few thousand industries, this query will not negatively affect performance.

However, suppose you want to count the number of unique customers (accounts):
g = load "AcquiredAccount";

g = group d by all;
q

foreach g generate unique ('Account Id') as 'unique Account Id';
If your company has millions of customers, be aware that this query will have some affect on performance.

@ Note: While counting the number of unique values might impact performance, counting the total number of rows in a table has
almost no impact.

104

	Overview
	Introduction
	Use SAQL in the Analytics Dashboard
	Enable SAQL Logs in the Browser

	Quick Start
	Write Your First Query
	Create a Derived Measure
	Create a Derived Dimension

	Examples
	Analyze Your Data Over Time
	Calculate How Long Activities Take
	Display the Opportunities Closed This Month
	Forecast Future Data Points with timeseries
	Combine Data from Multiple Data Streams with cogroup
	Replace Null Values with coalesce()
	Dynamically Display Your Top Five Reps with Windowing
	Append Datasets using union
	Calculate the Slope of the Regression Line
	Show the Top and Bottom Quartile
	Calculate Grand Totals and Subtotals with the rollup Modifier and grouping() Function

	SAQL Reference
	SAQL Basic Elements
	Statements
	Keywords
	Identifiers
	Number Literals
	String Literals
	Boolean Literals
	Quoted String Escape Sequences
	Special Characters
	Comments

	SAQL Operators
	Arithmetic Operators
	Comparison Operators
	String Operators
	Logical Operators
	Simple case Operator
	Searched case Operator
	Null Operators

	SAQL Statements
	cogroup
	load
	fill
	filter
	foreach
	group
	union
	order
	limit
	offset
	timeseries

	SAQL Functions
	Aggregate Functions
	avg() or average()
	count()
	first()
	last()
	max()
	median()
	min()
	sum()
	unique()
	stddev()
	stddevp()
	var()
	varp()
	percentile_cont()
	percentile_disc()
	regr_intercept()
	regr_slope()
	regr_r2()
	grouping()

	Date Functions
	daysBetween()
	date_diff()
	now()
	date()
	toDate()
	date_to_epoch()
	date_to_string()
	toString()
	Time-Based Filtering
	Day in the Week, Month, Quarter, or Year
	Last Day in the Week, Month, Quarter, or Year
	Number of Days in the Month, Quarter, or Year

	String Functions
	ends_with()
	starts_with()
	replace()
	trim()
	ltrim()
	rtrim()
	index_of()
	len()
	lower()
	upper()
	number_to_string
	string_to_number
	substr()

	Math Functions
	abs(n)
	ceil(n)
	exp(n)
	floor(n)
	log(m, n)
	power(m, n)
	round(n[, m])
	sqrt(n)
	trunc(n[, m])

	Windowing Functions
	coalesce

	Query Performance
	Projection is Important
	Network Traffic and Latency
	Redundant Filters
	Use the ELT Process
	Multi-Value Dimensions
	Limit the use of Unique()

