
Salesforce DX Developer Guide
Version 46.0, Summer ’19

 @salesforcedocs
Last updated: July 17, 2019

https://twitter.com/salesforcedocs

© Copyright 2000–2019 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: How Salesforce Developer Experience Changes the Way You Work 1

Use a Sample Repo to Get Started . 2
Create an Application . 2
Migrate or Import Existing Source . 3

Chapter 2: Salesforce CLI Configuration and Tips . 4

CLI Runtime Configuration Values . 5
Environment Variables . 6
Salesforce DX Usernames and Orgs . 9
Override or Add Definition File Options at the Command Line . 12
CLI Parameter Resolution Order . 13
Support for JSON Responses . 13
Log Messages and Log Levels . 13
CLI Deprecation Policy . 14

Chapter 3: Project Setup . 15

Sample Repository on GitHub . 16
Create a Salesforce DX Project . 16
Create a Salesforce DX Project from Existing Source . 18
Retrieve Source from an Existing Managed Package . 18
Retrieve Unpackaged Source Defined in a package.xml File . 19
Convert the Metadata Source to Source Format . 20
Link a Namespace to a Dev Hub Org . 21
Salesforce DX Project Configuration . 22

Chapter 4: Authorization . 24

Authorize an Org Using the Web-Based Flow . 25
Authorize an Org Using the JWT-Based Flow . 25

Authorize a Scratch Org . 27
Create a Private Key and Self-Signed Digital Certificate . 28
Create a Connected App . 28
Use an Existing Access Token Instead of Authorizing . 30
Authorization Information for an Org . 30
Log Out of an Org . 31

Chapter 5: Metadata Coverage . 32

Chapter 6: Scratch Orgs . 34

Scratch Org Definition File . 37
Scratch Org Definition Configuration Values . 40

Create Scratch Orgs . 49
Select the Salesforce Release for a Scratch Org . 51
Salesforce DX Project Structure and Source Format . 52
Push Source to the Scratch Org . 57

How to Exclude Source When Syncing or Converting . 60
Assign a Permission Set . 61
Ways to Add Data to Your Scratch Org . 62

Example: Export and Import Data Between Orgs . 63
Pull Source from the Scratch Org to Your Project . 64
Track Changes Between the Project and Scratch Org . 65
Scratch Org Users . 66

Create a Scratch Org User . 67
User Definition File for Customizing a Scratch Org User . 68
Generate or Change a Password for a Scratch Org User . 69

Manage Scratch Orgs from Dev Hub . 70

Chapter 7: Sandboxes . 71

Authorize in to Your Production Org . 72
Create a Sandbox Definition File (Beta) . 72
Create, Clone, or Delete a Sandbox (Beta) . 74

Chapter 8: Development . 77

Develop Against Any Org . 79
Create Lightning Apps and Aura Components . 82
Create Lightning Web Components . 82
Create an Apex Class . 83
Create an Apex Trigger . 83
Testing . 83
View Apex Debug Logs . 84
Apex Debugger . 85

Chapter 9: Build and Release Your App . 86

Build and Release Your App with Metadata API . 88
Develop and Test Changes Locally . 90
Build and Test the Release Artifact . 91
Test the Release Artifact in a Staging Environment . 91
Release Your App to Production . 92
Cancel a Metadata Deployment . 93

Chapter 10: First-Generation Managed Packages . 94

Build and Release Your App with Managed Packages . 95
Packaging Checklist . 95
Deploy the Package Metadata to the Packaging Org . 96
Create a Beta Version of Your App . 97
Install the Package in a Target Org . 98

Contents

Create a Managed Package Version of Your App . 98
View Information About a Package . 99

View All Package Versions in the Org . 100
Package IDs . 100

Chapter 11: Unlocked Packages (Generally Available) and Second-Generation
Managed Packages (Beta) . 101

Second-Generation Packaging . 102
What’s a Package? . 102
Types of Packaging Projects . 102

Packaging for ISVs . 103
Enterprise Customers . 103

Before You Create Second-Generation Packages . 103
Know Your Orgs . 104
Sample Repository . 104
Review Org Setup . 105

Workflow for Second-Generation Packages . 106
Plan Second-Generation Packages . 107

Namespaces . 107
Package Types . 109
Best Practices for Second-Generation Packages . 109
Package IDs . 110

Configure Packages . 111
Project Configuration File for Packages . 111
Keywords . 115
Package Installation Key . 115
Extract Dependency Information from Unlocked Packages . 116

Create a Package . 117
Generate the Package . 118
Generate a Package Version . 119
Package Ancestors . 120
Release a Second-Generation Package . 120
Update a Package Version . 121
View Package Details . 121

Install a Package . 122
Install Packages with the CLI . 122
Install Packages from a URL . 123
Upgrade a Package Version . 124
Sample Script for Installing Packages with Dependencies . 124

Migrate Deprecated Metadata from Unlocked Packages . 127
Uninstall a Package . 127

Chapter 12: Continuous Integration . 128

Continuous Integration Using CircleCI . 129

Contents

Configure Your Environment for CircleCI . 129
Connect CircleCI to Your DevHub . 130

Continuous Integration Using Jenkins . 131
Configure Your Environment for Jenkins . 132
Jenkinsfile Walkthrough . 133
Sample Jenkinsfile . 137

Continuous Integration with Travis CI . 138
Sample CI Repos for Org Development Model . 139
Sample CI Repos for Package Development Model . 139

Chapter 13: Troubleshoot Salesforce DX . 141

CLI Version Information . 142
Run CLI Commands on macOS Sierra (Version 10.12) . 142
Error: No defaultdevhubusername org found . 142
Unable to Work After Failed Org Authorization . 143
Error: Lightning Experience-Enabled Custom Domain Is Unavailable 143

Chapter 14: Limitations for Salesforce DX . 145

Contents

CHAPTER 1 How Salesforce Developer Experience Changes the
Way You Work

Salesforce Developer Experience (DX) is a new way to manage and develop apps on the Lightning
Platform across their entire life cycle. It brings together the best of the Lightning Platform to enable
source-driven development, team collaboration with governance, and new levels of agility for custom
app development on Salesforce.

In this chapter ...

• Use a Sample Repo
to Get Started

• Create an
Application

Highlights of Salesforce DX include:

• Your tools, your way. With Salesforce DX, you use the developer tools you already know.• Migrate or Import
Existing Source • The ability to apply best practices to software development. Source code and metadata exist outside

of the org and provide more agility to develop Salesforce apps in a team environment. Instead of
the org, your version control system is the source of truth.

• A powerful command-line interface (CLI) removes the complexity of working with your Salesforce
org for development, continuous integration, and delivery.

• Flexible and configurable scratch orgs that you build for development and automated environments.
This new type of org makes it easier to build your apps and packages.

• You can use any IDE or text editor you want with the CLI and externalized source.

• Salesforce Extensions for VS Code to accelerate app development. These tools provide features for
working with scratch orgs, Apex, Lightning components, and Visualforce.

Are You Ready to Begin?

Here’s the basic order for doing your work using Salesforce DX. These workflows include the most
common CLI commands. For all commands, see the Salesforce CLI Command Reference.

• Use a Sample Repo to Get Started on page 2

• Create an Application on page 2

• Migrate or Import Existing Source on page 3

SEE ALSO:

Salesforce DX (Salesforce Developer Center Web Site)

Salesforce DX = UX for Developers (Salesforce Developer Blog)

Salesforce CLI Command Reference

1

https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode
https://developer.salesforce.com/platform/dx
https://developer.salesforce.com/blogs/developer-relations/2016/10/salesforce-dx-ux-developers.html
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

Use a Sample Repo to Get Started

The quickest way to get going with Salesforce DX is to clone the sfdx-simple GitHub repo. Use its configuration files and Salesforce
application to try some commonly used Salesforce CLI commands.

1. Open a terminal or command prompt window, and clone the sfdx-simple GitHub sample repo using HTTPS or SSH.

git clone https://github.com/forcedotcom/sfdx-simple.git
--or--
git clone git@github.com:forcedotcom/sfdx-simple.git

2. Change to the sfdx-simple project directory.

cd sfdx-simple

3. Authorize your Developer Hub (Dev Hub) org, set it as your default, and assign it an alias.

sfdx force:auth:web:login --setdefaultdevhubusername --setalias DevHub

Enter your Dev Hub org credentials in the browser that opens. After you log in successfully, you can close the browser.

4. Create a scratch org using the config/project-scratch-def.json file, set the username as your default, and assign it
an alias.

sfdx force:org:create --setdefaultusername -f config/project-scratch-def.json --setalias
my-scratch-org

5. Push source and tests, located in the force-app directory, to the scratch org.

sfdx force:source:push

6. Run Apex tests.

sfdx force:apex:test:run --resultformat human

7. Open the scratch org and view the pushed metadata under Most Recently Used.

sfdx force:org:open

SEE ALSO:

Sample Repository on GitHub

Authorization

Create Scratch Orgs

Push Source to the Scratch Org

Testing

Create an Application

Follow the basic workflow when you are starting from scratch to create and develop an app that runs on the Lightning Platform.

1. Set up your project. on page 15

2

Use a Sample Repo to Get StartedHow Salesforce Developer Experience Changes the Way You
Work

2. Authorize the Developer Hub org for the project. on page 24

3. Configure your local project. on page 22

4. Create a scratch org. on page 49

5. Push the source from your project to the scratch org. on page 57

6. Develop the app. on page 77

7. Pull the source to keep your project and scratch org in sync. on page 64

8. Run tests. on page 83

9. Add, commit, and push changes. Create a pull request.

Deploy your app using one of the following methods:

• Build and release your app with managed packages on page 95

• Build and release your app using the Metadata API on page 88

Migrate or Import Existing Source

Use the Metadata API to retrieve the code, and then convert your source for use in a Salesforce DX project.

Tip: If your current repo follows the directory structure that is created from a Metadata API retrieve, you can skip the retrieve step
and go directly to converting the source.

1. Set up your project. on page 15

2. Retrieve your metadata. on page 18

3. Convert the metadata formatted source you just retrieved to source format. on page 20

4. Authorize the Developer Hub org for the project. on page 24

5. Configure your local project. on page 22

6. Create a scratch org. on page 49

7. Push the source from your project to the scratch org. on page 57

8. Develop the app. on page 77

9. Pull the source to sync your project and scratch org. on page 64

10. Run tests. on page 83

11. Add, commit, and push changes. Create a pull request.

Deploy your app using one of the following methods:

• Build and release your app with managed packages. on page 95

• Build and release your app using the Metadata API. on page 88

3

Migrate or Import Existing SourceHow Salesforce Developer Experience Changes the Way You
Work

CHAPTER 2 Salesforce CLI Configuration and Tips

Use the Salesforce command-line interface (CLI) for most Salesforce DX tasks. These tasks include
authorizing a Dev Hub org, creating a scratch org, synchronizing source code between your scratch orgs
and VCS, and running tests.

In this chapter ...

• CLI Runtime
Configuration Values

You can start using the CLI right after you install it.
• Environment

Variables The CLI commands are grouped into top-level topics. For example, the force top-level topic is divided
into topics that group commands by functionality, such as the force:org commands to manage
your orgs.

• Salesforce DX
Usernames and Orgs

Run --help at each level to get more information.

sfdx --help // lists all top-level topics
sfdx force --help // lists all the topics under force

• Override or Add
Definition File Options
at the Command Line

• CLI Parameter
Resolution Order

sfdx force:org --help // lists all the commands in the topic
force:org
sfdx force:org:open --help // detailed info about the
force:org:open command

• Support for JSON
Responses

• Log Messages and
Log Levels

Run this command to view all available commands in the force topic.

sfdx force:doc:commands:list

SEE ALSO:

Salesforce DX Setup Guide

• CLI Deprecation
Policy

4

https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_setup.meta/sfdx_setup

CLI Runtime Configuration Values

You can set CLI runtime configuration values for your current project or for all projects. You can set two kinds of configuration values:
global and local. Global values apply to all projects on your computer. Local values apply to a specific project. Local values override global
values when commands are run from within a Salesforce DX project directory.

To set a configuration value for the current project:

sfdx force:config:set name=<value>

For local configuration values, you must issue this command from within the Salesforce DX project directory.

To set the value for all your projects:

sfdx force:config:set name=<value> --global

You can issue global commands anywhere or within any project, yet they apply to all the Salesforce CLI commands you run.

You can view the local and global configuration values that you have set. The output lists the local values for the project directory from
which you are running the command and all global values.

sfdx force:config:list

To return one or more previously set configuration values, use force:config:get. It is often useful to specify JSON output for this
command for easier parsing in a continuous integration (CI) environment. For example, to return the value of defaultusername
and defaultdevhubusername:

sfdx force:config:get defaultusername defaultdevhubusername --json

To unset a configuration value, set it to no value. For example, to unset the instanceUrl configuration value:

sfdx force:config:set instanceUrl=

You can set these CLI configuration values.

Note: Alternately, you can set all CLI configuration values as environment variables. Environment variables override configuration
values.

Environment VariableDescriptionConfiguration
Value Name

SFDX_API_VERSION

Example:

SFDX_API_VERSION=42.0

The API version for a specific project or all projects.
Normally, the Salesforce CLI assumes that you’re
using the same version of the CLI as the Dev Hub
org. However, let’s say you decide to use the
pre-release version of the CLI (v43 in Summer ‘18),

apiVersion

but your Dev Hub org is running the current API
version (v42 in Spring ‘18). In this case, you’d want
to set this value to match the API version of your
Dev Hub org (v42).

This examples sets the API version for all projects
(globally).

sfdx force:config:set
apiVersion=42.0 --global

5

CLI Runtime Configuration ValuesSalesforce CLI Configuration and Tips

Environment VariableDescriptionConfiguration
Value Name

Be sure not to confuse this CLI configuration value
with the sourceApiVersion on page 22
project configuration value, which has a similar
name.

SFDX_DEFAULTUSERNAME

Example:

SFDX_DEFAULTUSERNAME=me@my.org

The username for an org that all commands run
against by default.

defaultusername

SFDX_DEFAULTDEVHUBUSERNAME

Example:

SFDX_DEFAULTDEVHUBUSERNAME=me@devhub.org

The username of your Dev Hub org that the
force:org:create command defaults to.

defaultdevhubusername

SFDX_INSTANCE_URL

Example:

SFDX_INSTANCE_URL=https://yoda.my.salesforce.com

The URL of the Salesforce instance that is hosting
your org.

instanceUrl

SEE ALSO:

Salesforce DX Usernames and Orgs

Authorization

Use an Existing Access Token Instead of Authorizing

Environment Variables

You can set environment variables to configure some values that Salesforce CLI and Salesforce DX tooling use.

Environment variables override CLI runtime configuration values. (Linux and Mac only) To set an environment variable for only the
command you’re running:

SFDX_API_VERSION=44.0 sfdx force:org:create -<options>

Salesforce CLI Environment Variables

DescriptionEnvironment Variable

Specifies the web page that opens in your browser when you run
force:org:open. For example, to open Lightning Experience,
set to lightning.

Equivalent to the --path parameter of force:org:open.

FORCE_OPEN_URL

6

Environment VariablesSalesforce CLI Configuration and Tips

DescriptionEnvironment Variable

Set to true to show a spinner animation on the command line
when running asynchronous CLI commands. Default is false.

FORCE_SHOW_SPINNER

Specifies the speed of the spinner in milliseconds. Default is 60.FORCE_SPINNER_DELAY

The API version for a specific project or all projects. Normally, the
Salesforce CLI assumes that you’re using the same version of the

SFDX_API_VERSION

CLI as your production org. However, let’s say you decide to use
the pre-release version of the CLI (v43 in Summer ‘18), but your
production org is running the current API version (v42 in Spring
‘18). In this case, you’d want to set this value to match the API
version of your production org (v42).

Specifies the code coverage percentages that are displayed in
green when you run force:apex:test:run or

SFDX_CODE_COVERAGE_REQUIREMENT

force:apex:test:report with the --codecoverage
parameter.

If the code coverage percentage for an Apex test is equal to or
higher than this setting, it is displayed in green. If the percent is
lower, it is displayed in red. Applies only to human-readable output.
Default is 70%.

All CLI commands output results in JSON format.SFDX_CONTENT_TYPE

Specifies the username of your default org so you don’t have to
use the --targetusername CLI parameter. Overrides the
value of the defaultusername runtime configuration value.

SFDX_DEFAULTUSERNAME

Set to true to disable the auto-update feature of the CLI. By
default, the CLI periodically checks for and installs updates.

SFDX_DISABLE_AUTOUPDATE or SFDX_AUTOUPDATE_DISABLE
(either var works)

Specifies the time, in seconds, that the CLI waits for the Lightning
Experience custom domain to resolve and become available in a
newly-created scratch org.

The default value is 240 (4 minutes). Set the variable to 0 to bypass
the Lightning Experience custom domain check entirely.

SFDX_DOMAIN_RETRY

Sends messages when Salesforce CLI commands fail to stdout
instead of stderr. Setting this environment variable to true is
particularly helpful for scripting use cases.

Example:

SFDX_JSON_TO_STDOUT=true

SFDX_JSON_TO_STDOUT

Sets the level of messages that the CLI writes to the log file.SFDX_LOG_LEVEL

Places the files (in metadata format) in the specified directory when
you run some CLI commands, such as

SFDX_MDAPI_TEMP_DIR

force:source:<name>. Retaining these files can be useful
for several reasons. You can debug problems that occur during

7

Environment VariablesSalesforce CLI Configuration and Tips

DescriptionEnvironment Variable

command execution. You can use the generated package.xml
when running subsequent commands, or as a starting point for
creating a manifest that includes all the metadata you care about.

SFDX_MDAPI_TEMP_DIR=/users/myName/myDXProject/metadata

Sets the URL to a private npm server, where all packages that you
publish are private. We support only repositories that don’t require
authentication.

SFDX_NPM_REGISTRY=<full_URL>

SFDX_NPM_REGISTRY

Example:

SFDX_NPM_REGISTRY=http://mypkgs.myclient.com/npm/my_npm_pkg

Verdaccio is an example of a lightweight private npm proxy registry.

Set to true to enable Apex pre-compile before the tests are run.
This variable works with the force:apex:test:run
command. Default is false.

SFDX_PRECOMPILE_ENABLE

Important: The duration of an Apex test pre-compilation
can be inconsistent. As a result, runs of the same Apex tests
are sometimes quick and other times they time out. We
recommend that you set this variable to true only if your
Apex tests (without pre-compile) activate multiple
concurrent Apex compilations that consume many system
resources.

For force:package:create, disables automatic updates
to the sfdx-project.json file.

SFDX_PROJECT_AUTOUPDATE_DISABLE_FOR_PACKAGE_CREATE

For force:package:version:create, disables automatic
updates to the sfdx-project.json file.

SFDX_PROJECT_AUTOUPDATE_DISABLE_FOR_PACKAGE_VERSION_CREATE

(Linux and macOS only) Set to true if you want to use the generic
UNIX keychain instead of the Linux libsecret library or macOS

SFDX_USE_GENERIC_UNIX_KEYCHAIN

keychain. Specify this variable when using the CLI with ssh or
"headless" in a CI environment.

General Environment Variables

DescriptionEnvironment Variable

If you receive an error when you install or update the Salesforce
CLI on a computer that’s behind a firewall or web proxy, set this

HTTP_PROXY

environment variable. Use the URL and port of your company proxy,
for example:

8

Environment VariablesSalesforce CLI Configuration and Tips

https://www.verdaccio.org/

DescriptionEnvironment Variable

http://username:pwd@proxy.company.com:8080

If you receive an error when you install or update the Salesforce
CLI on a computer that’s behind a firewall or web proxy, set this

HTTPS_PROXY

environment variable. Use the URL and port of your company proxy,
for example:

http://username:pwd@proxy.company.com:8080

Installs your self-signed certificate. Indicate the fully qualified path
to the certificate file name. Then run sfdx update.

See NODE_EXTRA_CA_CERTS=file for more details.

NODE_EXTRA_CA_CERTS

Indicate 0 to allow Node.js to use the self-signed certificate in the
certificate chain.

NODE_TLS_REJECT_UNAUTHORIZED

SEE ALSO:

Log Messages and Log Levels

Support for JSON Responses

Salesforce DX Usernames and Orgs

Many CLI commands connect to an org to complete their task. For example, the force:org:create command, which creates a
scratch org, connects to a Dev Hub org. The force:source:push|pull commands synchronize source code between your
project and a scratch org. In each case, the CLI command requires a username to determine which org to connect to. Usernames are
unique within the entire Salesforce ecosystem and have a one-to-one association with a specific org.

Note: The examples in this topic might refer to CLI commands that you are not yet familiar with. For now, focus on how to specify
the usernames, configure default usernames, and use aliases. The CLI commands are described later.

When you create a scratch org, the CLI generates a username. The username looks like an email address, such as
test-wvkpnfm5z113@example.com. You do not need a password to connect to or open a scratch org, although you can generate one
later with the force:user:password:generate command.

Salesforce recommends that you set a default username for the orgs that you connect to the most during development. The easiest way
to do this is when you authorize a Dev Hub org or create a scratch org. Specify the --setdefaultdevhubusername or
--setdefaultusername parameter, respectively, from within a project directory. You can also create an alias to give the usernames
more readable names. You can use usernames or their aliases interchangeably for all CLI commands that connect to an org.

These examples set the default usernames and aliases when you authorize an org and then when you create a scratch org.

sfdx force:auth:web:login --setdefaultdevhubusername --setalias my-hub-org
sfdx force:org:create --definitionfile my-org-def.json --setdefaultusername --setalias
my-scratch-org

To verify whether a CLI command requires an org connection, look at its parameter list with the --help parameter. Commands that
have the --targetdevhubusername parameter connect to the Dev Hub org. Similarly, commands that have

9

Salesforce DX Usernames and OrgsSalesforce CLI Configuration and Tips

https://nodejs.org/api/cli.html#cli_node_extra_ca_certs_file

--targetusername connect to scratch orgs, sandboxes, and so on. This example displays the parameter list and help information
about force:org:create.

sfdx force:org:create --help

When you run a CLI command that requires an org connection and you don’t specify a username, the command uses the default. To
see your default usernames, run force:org:list to display all the orgs you've authorized or created. The default Dev Hub and
scratch orgs are marked on the left with (D) and (U), respectively.

Let's run through a few examples to see how this works. This example pushes source code to the scratch org that you've set as the
default.

sfdx force:source:push

To specify an org other than the default, use --targetusername. For example, let’s say you created another scratch org with alias
my-other-scratch-org. It’s not the default but you still want to push source to it.

sfdx force:source:push --targetusername my-other-scratch-org

This example shows how to use the --targetdevhubusername parameter to specify a non-default Dev Hub org when creating
a scratch org.

sfdx force:org:create --targetdevhubusername jdoe@mydevhub.com --definitionfile
my-org-def.json --setalias yet-another-scratch-org

More About Setting Default Usernames
If you’ve already created a scratch org, you can set the default username with the force:config:set command from your project
directory.

sfdx force:config:set defaultusername=test-wvkpnfm5z113@example.com

The command sets the value locally, so it works only for the current project. To use the default username for all projects on your computer,
specify the --global parameter. You can run this command from any directory. Local project defaults override global defaults.

sfdx force:config:set defaultusername=test-wvkpnfm5z113@example.com --global

The process is similar to set a default Dev Hub org, except you use the defaultdevhubusername config value.

sfdx force:config:set defaultdevhubusername=jdoe@mydevhub.com

More About Aliasing
Use the force:alias:set command to set an alias for an org or after you’ve authorized an org. You can create an alias for any
org: Dev Hub, scratch, production, sandbox, and so on. So when you issue a command that requires the org username, using an alias
for the org that you can easily remember can speed up things.

sfdx force:alias:set my-scratch-org=test-wvkpnfm5z113@example.com

An alias also makes it easy to set a default username. The previous example of using force:config:set to set
defaultusername now becomes much more digestible when you use an alias rather than the username.

sfdx force:config:set defaultusername=my-scratch-org

10

Salesforce DX Usernames and OrgsSalesforce CLI Configuration and Tips

Set multiple aliases with a single command by separating the name-value pairs with a space.

sfdx force:alias:set org1=<username> org2=<username>

You can associate an alias with only one username at a time. If you set it multiple times, the alias points to the most recent username.
For example, if you run the following two commands, the alias my-org is set to test-ymmlqf29req5@your_company.net.

sfdx force:alias:set my-org=test-blahdiblah@whoanellie.net
sfdx force:alias:set my-org=test-wvkpnfm5z113@example.com

To view all aliases that you’ve set, use one of the following commands.

sfdx force:alias:list
sfdx force:org:list

To remove an alias, set it to nothing.

sfdx force:alias:set my-org=

List All Your Orgs
Use the force:org:list command to display the usernames for the orgs that you’ve authorized and the active scratch orgs that
you’ve created.

sfdx force:org:list
=== Orgs

ALIAS USERNAME ORG ID CONNECTED STATUS
----------- -------------------- -------- ----------------
DD-ORG jdoe@dd-204.com 00D...OEA Connected

(D) devhuborg jdoe@mydevhub.com 00D...MAC Connected

ALIAS SCRATCH ORG NAME USERNAME ORG ID EXPIRATION DATE
---------- ------------ -------------------------- --------- ----------
my-scratch Your Company test-wvkm5z113@example.com 00D...UAI 2017-06-13

(U) scratch208 Your Company test-wvkm5z113@example.com 00D...UAY 2017-06-13

The top section of the output lists the non-scratch orgs that you’ve authorized, including Dev Hub orgs, production orgs, and sandboxes.
The output displays the usernames that you specified when you authorized the orgs, their aliases, their IDs, and whether the CLI can
connect to it. A (D) on the left points to the default Dev Hub org username.

The lower section lists the active scratch orgs that you’ve created and their usernames, org IDs, and expiration dates. A (U) on the left
points to the default scratch org username.

To view more information about scratch orgs, such as the create date, instance URL, and associated Dev Hub org, use the --verbose
parameter.

sfdx force:org:list --verbose

11

Salesforce DX Usernames and OrgsSalesforce CLI Configuration and Tips

Use the --clean parameter to remove non-active scratch orgs from the list. The command prompts you before it does anything.

sfdx force:org:list --clean

SEE ALSO:

Authorization

Scratch Org Definition File

Create Scratch Orgs

Generate or Change a Password for a Scratch Org User

Push Source to the Scratch Org

Override or Add Definition File Options at the Command Line

Some CLI commands, such as force:org:create and force:user:create, use a JSON definition file to determine the
characteristics of the org or user they create. The definition file contains one or more options. You can override some options by specifying
them as name-value pairs at the command line. You can also specify options that aren’t in the definition file. This technique allows
multiple users or continuous integration jobs to share a base definition file and then customize options when they run the command.

Let’s say you use the following JSON definition file to create a scratch org. You name the file project-scratch-def.json.

{
"orgName": "Acme",
"country": "US",
"edition": "Enterprise",
"hasSampleData": "true",
"features": ["MultiCurrency", "AuthorApex"],
"orgPreferences": {
"enabled": ["S1DesktopEnabled", "ChatterEnabled"],
"disabled": ["IsNameSuffixEnabled"]

}
}

To create an Enterprise Edition scratch org that uses all the options in the file, run this command.

sfdx force:org:create --definitionfile project-scratch-def.json

You can then use the same definition file to create a Developer Edition scratch org that doesn’t have sample data by overriding the
edition and hasSampleData options.

sfdx force:org:create --definitionfile project-scratch-def.json edition=Developer
hasSampleData=false

Use commas to separate multiple array values, and enclose them in double quotes. For example, to change the features option:

sfdx force:org:create --definitionfile project-scratch-def.json
features="MultiCurrency,PersonAccounts"

This example shows how to add the adminEmail option, which doesn’t exist in the definition file.

sfdx force:org:create --definitionfile project-scratch-def.json adminEmail=john@doe.org

12

Override or Add Definition File Options at the Command LineSalesforce CLI Configuration and Tips

Note: You can’t override options whose values are JSON objects, such as orgPreferences.

SEE ALSO:

Create Scratch Orgs

Create a Scratch Org User

CLI Parameter Resolution Order

Because you can specify parameters for a given CLI command in several ways, it’s important to know the order of parameter resolution.

The order of precedence for parameter resolution is:

1. Command-line parameters, such as --loglevel, --targetusername, or --targetdevhubusername.

2. Parameters listed in a file specified by the command line. An example is a scratch org definition in a file specified by the
--definitionfile parameter of force:org:create.

3. Environment variables, such as SFDX_LOG_LEVEL.

4. Local CLI configuration values, such as defaultusername or defaultdevhubusername. To view the local values, run
force:config:list from your project directory.

5. Global CLI configuration values. To view the global values, run force:config:list from any directory.

For example, if you set the SFDX_LOG_LEVEL environment variable to INFO but specify --loglevel DEBUG for a command, the
log level is DEBUG. This behavior happens because command-line parameters are at the top of the precedence list.

If you specify the --targetusername parameter for a specific CLI command, the CLI command connects to an org with that
username. It does not connect to an org using the defaultusername, assuming that you set it previously with the
force:config:set command.

Support for JSON Responses

Salesforce CLI commands typically display their output to the console (stdout) in non-structured, human-readable format. Messages
written to the log file (stderr) are always in JSON format.

To view the console output in JSON format, specify the --json parameter for a particular CLI command.

sfdx force:org:display --json

Most CLI commands support JSON output. To confirm, run the command with the --help parameter to view the supported parameters.

To get JSON responses to all Salesforce CLI commands without specifying the --json option each time, set the SFDX_CONTENT_TYPE
environment variable.

export SFDX_CONTENT_TYPE=JSON

Log Messages and Log Levels

Salesforce CLI writes all log messages to the USER_HOME_DIR/.sfdx/sfdx.log file. CLI invocations append log messages to
this running log file. Only errors are output to the terminal or command window from which you run the CLI.

13

CLI Parameter Resolution OrderSalesforce CLI Configuration and Tips

Important: The files in the USER_HOME_DIR/.sfdx directory are used internally by Salesforce CLI. Do not remove or edit
them.

The default level of log messages is warn. You can set the log level to one of the following, listed in order of least to most information.
The level is cumulative: for the debug level. The --loglevel parameter supports parameter values in only lowercase (due to the
migration to oclif). To assist you with the transition, we support uppercase parameters in Spring ’19 but plan to deprecate support for
them in Summer ’19.

• error

• warn

• info

• debug

• trace

• fatal

You can change the log level in two ways, depending on what you want to accomplish.

To change the log level for the execution of a single CLI command, use the --loglevel parameter. Changing the log level in this
way does not affect subsequent CLI use. This example specifies debug-level log messages when you create a scratch org.

sfdx force:org:create --definitionfile config/project-scratch-def.json --loglevel debug
--setalias my-scratch-org

To globally set the log level for all CLI commands, set the SFDX_LOG_LEVEL environment variable. For example, on UNIX:

export SFDX_LOG_LEVEL=debug

Note: Salesforce CLI gathers diagnostic information about its use and reports it to Salesforce so that the development team can
investigate issues. The type of information includes command duration and command invocation counts.

CLI Deprecation Policy

Salesforce deprecates CLI commands and parameters when, for example, the underlying API changes.

The Salesforce CLI deprecation policy is:

• Salesforce can deprecate a command or parameter in any major update of the salesforcedx plug-in.

• Salesforce removes the deprecated command or parameter in the next major release of the salesforcedx plug-in. For example,
if Salesforce deprecates a command in version 41, it does not appear in version 42.

• If you use a command or parameter that’s been deprecated but not yet removed, you get a warning message in stderr when
you specify human-readable output. If you specify JSON output, the warning is presented as a property. The message includes the
plug-in version of when the command or parameter will be removed. The command help also includes deprecation information
when appropriate.

• When possible, Salesforce provides a functional alternative to the deprecated command or parameter.

• Salesforce announces new and upcoming deprecated commands and parameters in the release notes.

14

CLI Deprecation PolicySalesforce CLI Configuration and Tips

CHAPTER 3 Project Setup

Salesforce DX introduces a new project structure for your org’s metadata (code and configuration), your
org templates, your sample data, and all your team’s tests. Store these items in a version control system
(VCS) to bring consistency to your team’s development processes. Retrieve the contents of your team’s
repository when you’re ready to develop a new feature.

In this chapter ...

• Sample Repository
on GitHub

• Create a Salesforce
DX Project

You can use your preferred VCS. Most of our examples use Git.

You have different options to create a Salesforce DX project depending on how you want to begin.• Create a Salesforce
DX Project from
Existing Source Explore the features of Salesforce DX using one of

our sample repos and your own VCS and toolset.
Use the Sample Repository on GitHub on page 16

• Retrieve Source from
an Existing Managed
Package

Start with an existing Salesforce app to create a
Salesforce DX project.

Create a Salesforce DX Project from Existing Source
on page 18

• Retrieve Unpackaged
Source Defined in a
package.xml File

Create an app on the Lightning Platform using a
Salesforce DX project.

Create a Salesforce DX Project on page 16

• Convert the
Metadata Source to
Source Format

• Link a Namespace to
a Dev Hub Org

• Salesforce DX Project
Configuration

15

Sample Repository on GitHub

If you want to check out Salesforce DX features quickly, start with the sfdx-simple GitHub repo. It contains an example of the
project configuration file (sfdx-project.json), a simple Salesforce app, and Apex tests.

Cloning this repo creates the directory sfdx-simple. See the repo’s Readme for more information.

Assuming that you’ve already set up Git, use the git clone command to clone the master branch of the repo from the command
line.

To use HTTPS:

git clone https://github.com/forcedotcom/sfdx-simple.git

To use SSH:

git clone git@github.com:forcedotcom/sfdx-simple.git

If you don’t want to use Git, download a .zip file of the repository’s source using Clone, or download on the GitHub website. Unpack the
source anywhere on your local file system.

Tip: To check out more complex examples, see the Sample Gallery.

It contains sample apps that show what you can build on the Salesforce platform. They’re continuously updated to incorporate
the latest features and best practices.

SEE ALSO:

sfdx-simple Sample GitHub Repo

dreamhouse-sfdx Sample GitHub Repo

Create a Salesforce DX Project

A Salesforce DX project has a specific structure and a configuration file that identifies the directory as a Salesforce DX project.

You can create a project with minimal (empty) or expanded (standard) scaffolding. The default is standard, which provides extended
scaffolding to facilitate moving source to and from your orgs.

1. Change to the directory where you want the DX project located.

2. Create the DX project.

force:project:create -n MyProject --template standard

If you don’t indicate an output directory, the project directory is created in the current location. You can also specify the default
package directory to target when syncing source to and from the scratch org. If you don’t indicate a default package directory, this
command creates a default package directory, force-app.

The default --template value, empty, creates a project with these sample configuration files to get you started.

• .forceignore

• config/project-scratch-def.json

• sfdx-project.json

If you select expanded scaffolding (--template standard), you get a complete directory structure that takes the guesswork
out of where to put your source. It also provides these files that are especially helpful when using Salesforce Extensions for VS Code.

16

Sample Repository on GitHubProject Setup

https://trailhead.salesforce.com/sample-gallery
https://github.com/forcedotcom/sfdx-simple
https://github.com/DreamhouseApp/dreamhouse-sfdx

• .gitignore: Makes it easier to start using Git for version control.

• .prettierrc and .prettierignore: Make it easier to start using Prettier to format your Aura components.

• .vscode/extensions.json: Causes Visual Studio Code, when launched, to prompt you to install the recommended
extensions for your project.

• .vscode/launch.json: Configures Replay Debugger, making it more discoverable and easier to use.

• .vscode/settings.json: By default, this file has one setting, for push or deploy on save, which is set to false. You can
change this value or add other settings.

Example:

sfdx force:project:create --projectname mywork --template standard

sfdx force:project:create --projectname mywork --defaultpackagedir myapp

Next steps:

• (Optional) Register the namespace with the Dev Hub org.

• Configure the project (sfdx-project.json). If you use a namespace, update this file to include it.

17

Create a Salesforce DX ProjectProject Setup

• Create a scratch org definition that produces scratch orgs that mimic the shape of another org you use in development, such as
sandbox, packaging, or production. The config directory of your new project contains a sample scratch org definition file
(project-scratch-def.json).

SEE ALSO:

Create a Salesforce DX Project from Existing Source

Salesforce DX Project Configuration

Link a Namespace to a Dev Hub Org

Scratch Org Definition File

How to Exclude Source When Syncing or Converting

Create a Salesforce DX Project from Existing Source

If you are already a Salesforce developer or ISV, you likely have existing source in a managed package in your packaging org or some
application source in your sandbox or production org. Before you begin using Salesforce DX, retrieve the existing source and convert it
to the source format.

Tip: If your current repo follows the directory structure that is created from a Metadata API retrieve, you can skip to converting
the metadata format after you create a Salesforce DX project.

1. Create a Salesforce DX project.

2. Create a directory for the metadata retrieve. You can create this directory anywhere.

mkdir mdapipkg

3. Retrieve your metadata source.

How to Retrieve Your Source for ConversionFormat of Current Source

Retrieve Source from an Existing Managed Package on page 18You are a partner who has your source already defined as a
managed package in your packaging org.

Retrieve Unpackaged Source Defined in a package.xml File on
page 19

You have a package.xml file that defines your unpackaged
source.

SEE ALSO:

Convert the Metadata Source to Source Format

Create a Salesforce DX Project

Retrieve Source from an Existing Managed Package

If you’re a partner or ISV who already has a managed package in a packaging org, you’re in the right place. You can retrieve that package,
unzip it to your local project, and then convert it to source format, all from the CLI.

Before you begin, create a Salesforce DX project.

1. In the project, create a folder to store what’s retrieved from your org, for example, mdapipkg.

18

Create a Salesforce DX Project from Existing SourceProject Setup

2. Retrieve the metadata.

sfdx force:mdapi:retrieve -s -r ./mdapipkg -u <username> -p <package name>

The username can be a username or alias for the target org (such as a packaging org) from which you’re pulling metadata. The -s
parameter indicates that you’re retrieving a single package. If your package name contains a space, enclose the name in single
quotes.

-p 'Test Package'

3. Check the status of the retrieve.

When you run force:mdapi:retrieve, the job ID, target username, and retrieve directory are stored, so you don’t have to
specify these required parameters to check the status. These stored values are overwritten when you run the
force:mdapi:retrieve again.

sfdx force:mdapi:retrieve:report

If you want to check the status of a different retrieve operation, specify the retrieve directory and job ID on the command line, which
overrides any stored values.

4. Unzip the zip file.

5. (Optional) Delete the zip file.

After you finish, convert the metadata to source format.

SEE ALSO:

Create a Salesforce DX Project

Convert the Metadata Source to Source Format

Retrieve Unpackaged Source Defined in a package.xml File

If you already have a package.xml file, you can retrieve it, unzip it in your local project, and convert it to source format. You can do
all these tasks from the CLI. The package.xml file defines the source you want to retrieve.

But what if you don’t have a package.xml file already created? See Sample package.xml Manifest Files in the Metadata API Developer
Guide.

Note: If you already have the source in metadata format, you can skip these steps and go directly to converting it to source format.

1. In the project, create a folder to store what’s retrieved from your org, for example, mdapipkg.

2. Retrieve the metadata.

sfdx force:mdapi:retrieve -r ./mdapipkg -u <username> -k ./package.xml

The username can be the scratch org username or an alias. The -k parameter indicates the path to the package.xml file, which
is the unpackaged manifest of components to retrieve.

3. Check the status of the retrieve.

When you run force:mdapi:retrieve, the job ID, target username, and retrieve directory are stored, so you don’t have to
specify these required parameters to check the status. These stored values are overwritten when you run the
force:mdapi:retrieve again.

sfdx force:mdapi:retrieve:report

19

Retrieve Unpackaged Source Defined in a package.xml FileProject Setup

https://developer.salesforce.com/docs/atlas.en-us.220.0.api_meta.meta/api_meta/manifest_samples.htm

If you want to check the status of a different retrieve operation, specify the retrieve directory and job ID on the command line, which
overrides any stored values.

4. Unzip the zip file.

5. (Optional) Delete the zip file.

After you retrieve the source and unzip it, you no longer need the zip file, so you can delete it.

After you finish, convert from metadata format to source format.

SEE ALSO:

Convert the Metadata Source to Source Format

Convert the Metadata Source to Source Format

After you retrieve the source from your org, you can complete the configuration of your project and convert the metadata source to
source format.

The convert command ignores all files that start with a “dot,” such as .DS_Store. To exclude more files from the convert process,
add a .forceignore file.

1. Convert metadata format to source format. Let’s say you created a directory called mdapi_project when you retrieved the
metadata.

sfdx force:mdapi:convert --rootdir mdapi_project --outputdir tmp_convert

The --rootdir parameter is the name of the directory that contains the metadata source.

If you don’t indicate an output directory with the --outputdir parameter, the converted source is stored in the default package
directory indicated in the sfdx-project.json file. If the output directory is located outside of the project, you can indicate
its location using an absolute path.

2. To indicate which package directory is the default, update the sfdx-project.json file.

If there are two or more files with the same file name yet they contain different contents, the output directory contains duplicate files.
Duplicate files can occur if you convert the same set of metadata more than once. The mdapi:convert process identifies these files
with a .dup file extension. The source:push and source:pull commands ignore duplicate files, so you’ll want to resolve
them. You have these options:

• Choose which file to keep, then delete the duplicate.

• Merge the files, then delete the other.

Next steps:

• Authorize the Dev Hub org and set it as the default

• Configure the Salesforce DX project

• Create a scratch org

SEE ALSO:

How to Exclude Source When Syncing or Converting

Salesforce DX Project Configuration

Authorization

Create Scratch Orgs

20

Convert the Metadata Source to Source FormatProject Setup

Link a Namespace to a Dev Hub Org

To use a namespace with a scratch org, you must link the Developer Edition org where the namespace is registered to a Dev Hub org.

Complete these tasks before you link a namespace.

• If you don’t have an org with a registered namespace, create a Developer Edition org that is separate from the Dev Hub or scratch
orgs. If you already have an org with a registered namespace, go to Step 1.

• In the Developer Edition org, create and register the namespace.

Important: Choose namespaces carefully. If you’re trying out this feature or need a namespace for testing purposes, choose
a disposable namespace. Don’t choose a namespace that you want to use in the future for a production org or some other
real use case. Once you associate a namespace with an org, you can't change it or reuse it.

1. Log in to your Dev Hub org as the System Administrator or as a user with the Salesforce DX Namespace Registry permissions.

Tip: Make sure your browser allows pop-ups from your Dev Hub org.

2. (Required) If you have not already done so, define and deploy a My Domain name.

Tip: Why do you need a My Domain? A My Domain adds a subdomain to your Salesforce org URL so that it’s unique. As part
of the Namespace Registry linking process, you’ll be logging into two distinct orgs simultaneously (your Dev Hub org and your
Developer Edition org), and your browser can’t reliably distinguish between the two without a My Domain.

You receive an email when your domain name is ready for testing. It can take a few minutes.

3. From the App Launcher menu, select Namespace Registries.

4. Click Link Namespace.

If you don’t see the Link Namespace button, make sure your My Domain is deployed to users.

a. From Setup, enter My Domain in the Quick Find box, then select My Domain.

b. Do you see the status as Domain Deployed to Users? If not, click Deploy to Users.

Log out of your Dev Hub org, then open it again.

5. Log in to the Developer Edition org in which your namespace is registered using the org's System Administrator's credentials.

You cannot link orgs without a namespace, sandboxes, scratch orgs, patch orgs, and branch orgs to the Namespace Registry.

To view all the namespaces linked to the Namespace Registry, select the All Namespace Registries view.

SEE ALSO:

Create a Developer Edition Org

Lightning Aura Components Developer Guide: Create a Namespace in Your Org

Salesforce DX Setup Guide: Add Salesforce DX Users

Salesforce Help: Define Your Domain Name

Salesforce Help: My Domain

Salesforce Help: Test and Deploy Your New My Domain Subdomain

21

Link a Namespace to a Dev Hub OrgProject Setup

https://developer.salesforce.com/gettingstarted
https://developer.salesforce.com/docs/atlas.en-us.220.0.lightning.meta/lightning/namespaces_creating.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_add_users.htm
https://help.salesforce.com/articleView?id=domain_name_define.htm&language=en_US
https://help.salesforce.com/articleView?id=domain_name_overview.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=domain_name_testing_and_rollout.htm&language=en_US

Salesforce DX Project Configuration

The project configuration file sfdx-project.json indicates that the directory is a Salesforce DX project. The configuration file
contains project information and facilitates the authentication of scratch orgs and the creation of second-generation packages. It also
tells the CLI where to put files when syncing between the project and scratch org.

We provide sample sfdx-project.json files in the sample repos for creating a project using the CLI or Extensions for VS Code.

Note: Are you planning to create second-generation packages? When you’re ready, add packaging-specific configuration options
to support package creation. See Configure Packages.

We recommend that you check in this file with your source.

{
"packageDirectories" : [

{ "path": "force-app", "default": true},
{ "path" : "unpackaged" },
{ "path" : "utils" }

],
"namespace": "",
"sfdcLoginUrl" : "https://login.salesforce.com",
"sourceApiVersion": "44.0"
}

You can manually edit these parameters.

oauthLocalPort (optional)
By default, the OAuth port is 1717. However, change this port if this port is already in use, and you plan to create a connected app
in your Dev Hub org to support JWT-based authorization. Also, don’t forget to follow the steps in Create a Connected App to change
the callback URL.

packageDirectories (required)

Package directories indicate which directories to target when syncing source to and from the scratch org. These directories can
contain source from your managed package, unmanaged package, or unpackaged source, for example, ant tool or change set.

Keep these things in mind when working with package directories.

• The location of the package directory is relative to the project. Don’t specify an absolute path. The following two examples are
equivalent.

"path": "helloWorld"
"path" : "./helloWorld"

• You can have only one default path (package directory). If you have only one path, we assume it’s the default, so you don’t have
to explicitly set the default parameter. If you have multiple paths, you must indicate which one is the default.

• The CLI uses the default package directory as the target directory when pulling changes in the scratch org to sync the local
project. This default path is also used when creating second-generation packages.

• If you do not specify an output directory, the default package directory is also where files are stored during source conversions.
Source conversions are both from metadata format to source format, and from source format to metadata format.

22

Salesforce DX Project ConfigurationProject Setup

plugins (optional)

To use the plug-ins you develop using the Salesforce Plugin Generator with your Salesforce DX project, add a plugins section to the
sfdx-project.json file. In this section, add configuration values and settings to change your plug-ins’ behavior.

"plugins": {
"yourPluginName": {
"timeOutValue": "2"

},
"yourOtherPluginName": {
"yourCustomProperty": true

}
}

Store configuration values for only those values that you want to check in to source control for the project. These configuration
values affect your whole development team.

namespace (optional)

The global namespace that is used with a package. The namespace must be registered with an org that is associated with your Dev
Hub org. This namespace is assigned to scratch orgs created with the org:create command. If you’re creating an unlocked
package, you have the option to create a package with no namespace.

Important: Register the namespace with Salesforce and then connect the org with the registered namespace to the Dev
Hub org.

sfdcLoginUrl (optional)

The login URL that the force:auth commands use. If not specified, the default is login.salesforce.com. Override the
default value if you want users to authorize to a specific Salesforce instance. For example, if you want to authorize into a sandbox
org, set this parameter to test.salesforce.com.

If you do not specify a default login URL here, or if you run force:auth outside the project, you specify the instance URL when
authorizing the org.

sourceApiVersion (optional)

The API version that the source is compatible with. The default is the same version as the Salesforce CLI.

The sourceApiVersion determines the fields retrieved for each metadata type during source:push, source:pull,
or source:convert. This field is important if you’re using a metadata type that has changed in a recent release. You’d want to
specify the version of your metadata source. For example, an icon field was added to the CustomTab for API version 14.0. If you
retrieve components for version 13.0 or earlier, you’ll see errors when running the source commands because the components do
not include the icon field.

Be sure not to confuse this project configuration value with the apiVersion on page 22 CLI runtime configuration value, which
has a similar name.

SEE ALSO:

Link a Namespace to a Dev Hub Org

Authorization

How to Exclude Source When Syncing or Converting

Pull Source from the Scratch Org to Your Project

Push Source to the Scratch Org

23

Salesforce DX Project ConfigurationProject Setup

https://github.com/forcedotcom/sfdx-plugin-generate

CHAPTER 4 Authorization

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Dev Hub available in:
Developer,Enterprise,
Performance, and
Unlimited Editions

Scratch orgs available in:
Developer, Enterprise,
Group, and Professional
Editions

The Dev Hub org allows you to create, delete, and manage your
Salesforce scratch orgs. After you set up your project on your local
machine, you authorize with the Dev Hub org before you can create
a scratch org.

You can also authorize other existing orgs, such as sandbox or
packaging orgs, to provide more flexibility when using CLI
commands. For example, after developing and testing an
application using scratch orgs, you can deploy the changes to a
centralized sandbox. Or, you can export a subset of data from an
existing production org and import it into a scratch org for testing
purposes.

You authorize an org only once. To switch between orgs during
development, specify your username for the org. Use either the
--targetusername (or --targetdevhubusername)
CLI command parameter, set a default username, or use an alias.

In this chapter ...

• Authorize an Org
Using the
Web-Based Flow

• Authorize an Org
Using the JWT-Based
Flow

• Create a Private Key
and Self-Signed
Digital Certificate

• Create a Connected
App

• Use an Existing
Access Token Instead
of Authorizing

You have some options when configuring authentication depending on what you’re trying to accomplish.• Authorization
Information for an
Org

• We provide the OAuth Refresh Token flow, also called web-based flow, through a global
out-of-the-box connected app. When you authorize an org from the command line, you enter your

• Log Out of an Org credentials and authorize the global connected app through the Salesforce web browser
authentication flow.

• For continuous integration or automated environments in which you don’t want to manually enter
credentials, use the OAuth JSON Web Tokens (JWT) Bearer Token flow, also called JWT-based flow.
This authentication flow is ideal for scenarios where you cannot interactively log in to a browser,
such as a continuous integration script.

Important: If your Dev Hub org is configured with high assurance (stepped up) authentication,
Salesforce prompts the user to verify identity. This verification process means that you can’t use
the JWT flow and Salesforce CLI for headless authentication.

SEE ALSO:

Authorize an Org Using the Web-Based Flow

Authorize an Org Using the JWT-Based Flow

Salesforce DX Usernames and Orgs

24

Authorize an Org Using the Web-Based Flow

To authorize an org with the web-based flow, all you do is run a CLI command. Enter your credentials in a browser, and you’re up and
running!

Authorization requires a connected app. We provide a connected app that is used by default. If you need more security or control, such
as setting the refresh token timeout or specifying IP ranges, you can optionally create a connected app.

1. (Optional) Create a connected app if you require more security and control than offered by the provided connected app. Enable
OAuth settings for the new connected app. Make note of the consumer key because you need it later.

2. If the org you are authorizing is on a My Domain subdomain, update your project configuration file (sfdx-project.json). Set
the sfdcLoginUrl parameter to your My Domain login URL. If you are authorizing a sandbox, set the parameter to
https://test.salesforce.com. For example:

"sfdcLoginUrl" : "https://test.salesforce.com"

"sfdcLoginUrl" : "https://somethingcool.my.salesforce.com"

Alternatively, use the --instanceurl parameter of the force:auth:web:login command, as shown in the next step,
to specify the URL.

3. Run the force:auth:web:login CLI command. If you are authorizing a Dev Hub org, use the
--setdefaultdevhubusername parameter if you want the Dev Hub org to be the default for commands that accept the
--targetdevhubusername parameter.

sfdx force:auth:web:login --setdefaultdevhubusername --setalias my-hub-org
sfdx force:auth:web:login --setalias my-sandbox

If you are using your own connected app, use the --clientid parameter. For example, if your client identifier (also called the
consumer key) is 04580y4051234051 and you are authorizing a Dev Hub org:

sfdx force:auth:web:login --clientid 04580y4051234051 --setdefaultdevhubusername
--setalias my-hub-org

To specify a login URL other than the default, such as https://test.salesforce.com:

sfdx force:auth:web:login --setalias my-hub-org --instanceurl https://test.salesforce.com

Important: Use the --setdefaultdevhubusername parameter only when authorizing a Dev Hub org. Do not use
it when authorizing to other orgs, such as a sandbox.

4. In the browser window that opens, sign in to your org with your credentials.

5. Close the browser window, unless you want to explore the org.

SEE ALSO:

Create a Connected App

Salesforce DX Project Configuration

Authorize an Org Using the JWT-Based Flow

Continuous integration (CI) environments are fully automated and don’t support the human interactivity of a web-based flow. In these
environments, you must use the JSON web tokens (JWT) to authorize an org.

25

Authorize an Org Using the Web-Based FlowAuthorization

The JWT-based authorization flow requires first generating a digital certificate and creating a connected app. You execute these tasks
only once. After that, you can authorize the org in a script that runs in your CI environment.

For information about using JWT-based authorization with Travis CI, see the Continuous Integration Using Salesforce DX Trailhead
module.

Important: If your Dev Hub org is configured with high assurance (stepped up) authentication, Salesforce prompts the user to
verify identity. This verification process means that you can’t use the JWT flow and Salesforce CLI for headless authentication.

1. If you do not have your own private key and digital certificate, use OpenSSL to create the key and a self-signed certificate.

It is assumed in this task that your private key file is named server.key and your digital certificate is named server.crt.

2. Create a connected app, and configure it for Salesforce DX.

This task includes uploading the server.crt digital certificate file. Make note of the consumer key when you save the connected
app because you need it later.

3. If the org you are authorizing is not hosted on https://login.salesforce.com, update your project configuration file
(sfdx-project.json).

Set the sfdcLoginUrl parameter to the login URL. Examples of other login URLs are your custom subdomain or
https://test.salesforce.com for sandboxes. For example:

"sfdcLoginUrl": "https://test.salesforce.com"

Important: If you specify a My Domain subdomain for the login URL, use the version that ends in my.salesforce.com
instead of the URL you see in Lightning Experience (.lightning.force.com). To verify the valid My Domain URL, from
Setup, enter My Domain in the Quick Find box, then select My Domain.

Alternatively, you can use the --instanceurl parameter of the force:auth:jwt:grant command to specify the URL.
This value overrides the login URL you specified in the sfdx-project.json file. See the next step for an example.

4. Run the force:auth:jwt:grant CLI command.
Specify the client identifier from your connected app (also called the consumer key), the path to the private key file (server.key),
and the JWT authentication username. When you authorize a Dev Hub org, set it as the default with the
--setdefaultdevhubusername parameter. For example:

sfdx force:auth:jwt:grant --clientid 04580y4051234051 \
--jwtkeyfile /Users/jdoe/JWT/server.key --username jdoe@acdxgs0hub.org \
--setdefaultdevhubusername --setalias my-hub-org

This example shows how to use the --instanceurl parameter to specify an org hosted on
https://test.salesforce.com rather than the default https://login.salesforce.com:

sfdx force:auth:jwt:grant --clientid 04580y4051234051 \
--jwtkeyfile /Users/jdoe/JWT/server.key --username jdoe@acdxgs0hub.org \
--instanceurl https://test.salesforce.com

You can authorize a scratch org using the same client identifier (consumer key) and private key file that you used to authorize its
associated Dev Hub org. Set the --instanceurl parameter to https://test.salesforce.com and the --username
parameter to the administrator user displayed after you create the scratch org with

26

Authorize an Org Using the JWT-Based FlowAuthorization

https://trailhead.salesforce.com/en/trails/sfdx_get_started/modules/sfdx_travis_ci

Authorize a Scratch Org

If you configured your Dev Hub to support the JWT-based authorization flow, you can use the same digital certificate and private
key to authorize an associated scratch org. This method is useful for continuous integration (CI) systems that must authorize scratch
orgs after creating them, but don’t have access to the scratch org’s access token.

SEE ALSO:

Create a Private Key and Self-Signed Digital Certificate

Create a Connected App

Salesforce DX Project Configuration

Trailhead: Create Your Connected App (Continuous Integration Using Salesforce DX Module)

Salesforce Help: Set up Two-Factor Authentication

Create, Clone, or Delete a Sandbox (Beta)

Authorize a Scratch Org
If you configured your Dev Hub to support the JWT-based authorization flow, you can use the same digital certificate and private key to
authorize an associated scratch org. This method is useful for continuous integration (CI) systems that must authorize scratch orgs after
creating them, but don’t have access to the scratch org’s access token.

It is assumed in this task that:

• You previously authorized your Dev Hub org using the JWT-based flow.

• The private key file you used when authorizing your Dev Hub org is accessible and located in /Users/jdoe/JWT/server.key.

• You’ve created a scratch org and have its administration user’s username, such as test-wvkpnfm5z113@example.com.

1. Copy the consumer key from the connected app that you created in your Dev Hub org.

a. Log in to your Dev Hub org.

b. From Setup, enter App Manager in the Quick Find box to get to the Lightning Experience App Manager.

c. Locate the connected app in the apps list, then click , and select View.

d. In the API (Enable OAuth Settings) section, copy the Consumer Key to your clipboard. The consumer key is a long string of
numbers, letters, and characters, such as 3MVG9szVa2Rx_sqBb444p50Yj (example shortened for clarity.)

2. Run the force:auth:jwt:grant CLI command. The --clientid and --jwtkeyfile parameter values are the same
as when you ran the command to authorize a Dev Hub org. Set --username to the scratch org’s admin username and set
--instanceurl to https://test.salesforce.com. For example:

sfdx force:auth:jwt:grant --clientid 3MVG9szVa2Rx_sqBb444p50Yj \
--jwtkeyfile /Users/jdoe/JWT/server.key --username test-wvkpnfm5z113@example.com \
--instanceurl https://test.salesforce.com

If you get an error that the user is not approved, it means that the scratch org information has not yet been replicated to
https://test.salesforce.com. Wait a short time and try again.

SEE ALSO:

Authorize an Org Using the JWT-Based Flow

Connected Apps

Create Scratch Orgs

27

Authorize a Scratch OrgAuthorization

https://trailhead.salesforce.com/modules/sfdx_travis_ci/units/sfdx_travis_ci_connected_app
https://help.salesforce.com/articleView?id=security_2fa_config.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US

Create a Private Key and Self-Signed Digital Certificate

The JWT-based authorization flow requires a digital certificate and the private key used to sign the certificate. You upload the digital
certificate to the custom connected app that is also required for JWT-based authorization. You can use your own private key and certificate
issued by a certification authority. Alternatively, you can use OpenSSL to create a key and a self-signed digital certificate.

This process produces two files.

• server.key—The private key. You specify this file when you authorize an org with the force:auth:jwt:grant command.

• server.crt—The digital certification. You upload this file when you create the connected app required by the JWT-based flow.

1. If necessary, install OpenSSL on your computer.

To check whether OpenSSL is installed on your computer, run this command.

which openssl

2. In Terminal or a Windows command prompt, create a directory to store the generated files, and change to the directory.

mkdir /Users/jdoe/JWT

cd /Users/jdoe/JWT

3. Generate a private key, and store it in a file called server.key.

openssl genrsa -des3 -passout pass:SomePassword -out server.pass.key 2048

openssl rsa -passin pass:SomePassword -in server.pass.key -out server.key

You can delete the server.pass.key file because you no longer need it.

4. Generate a certificate signing request using the server.key file. Store the certificate signing request in a file called server.csr.
Enter information about your company when prompted.

openssl req -new -key server.key -out server.csr

5. Generate a self-signed digital certificate from the server.key and server.csr files. Store the certificate in a file called
server.crt.

openssl x509 -req -sha256 -days 365 -in server.csr -signkey server.key -out server.crt

SEE ALSO:

OpenSSL: Cryptography and SSL/TLS Tools

Create a Connected App

Authorize an Org Using the JWT-Based Flow

Create a Connected App

If you use JWT-based authorization, you must create your own connected app in your Dev Hub org. You can also create a connected
app for web-based authorization if you require more security than provided with our connected app. For example, you can create a
connected app to set the refresh token timeout or specify IP ranges.

You create a connected app using Setup in your Dev Hub org. These steps assume that you are using Lightning Experience.

28

Create a Private Key and Self-Signed Digital CertificateAuthorization

https://www.openssl.org/

JWT-based authorization requires a digital certificate, also called a digital signature. You can use your own certificate or create a self-signed
certificate using OpenSSL.

Note: The steps marked JWT only are required only if you are creating a connected app for JWT-based authorization. They are
optional for web-based authorization.

1. Log in to your Dev Hub org.

2. From Setup, enter App Manager in the Quick Find box to get to the Lightning Experience App Manager.

3. In the top-right corner, click New Connected App.

4. Update the basic information as needed, such as the connected app name and your email address.

5. Select Enable OAuth Settings.

6. For the callback URL, enter http://localhost:1717/OauthRedirect.

If port 1717 (the default) is already in use on your local machine, specify an available one instead. Make sure to also update your
sfdx-project.json file by setting the oauthLocalPort property to the new port. For example, if you set the callback
URL to http://localhost:1919/OauthRedirect:

"oauthLocalPort" : "1919"

7. (JWT only) Select Use digital signatures.

8. (JWT only) Click Choose File and upload the server.crt file that contains your digital certificate.

9. Add these OAuth scopes:

• Access and manage your data (api)

• Perform requests on your behalf at any time (refresh_token, offline_access)

• Provide access to your data via the Web (web)

10. Click Save.

Important: Make note of the consumer key because you need it later when you run a force:auth command.

11. (JWT only) Click Manage.

12. (JWT only) Click Edit Policies.

13. (JWT only) In the OAuth Policies section, select Admin approved users are pre-authorized for Permitted Users, and click OK.

14. (JWT only) Click Save.

15. (JWT only) Click Manage Profiles and then click Manage Permission Sets. Select the profiles and permission sets that are
pre-authorized to use this connected app. Create permission sets if necessary.

SEE ALSO:

Create a Private Key and Self-Signed Digital Certificate

Trailhead: Create Your Connected App (Continuous Integration Using Salesforce DX Module)

Connected Apps

Authorization

Salesforce Help: Set up Two-Factor Authentication

29

Create a Connected AppAuthorization

https://trailhead.salesforce.com/modules/sfdx_travis_ci/units/sfdx_travis_ci_connected_app
https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US
https://help.salesforce.com/articleView?id=security_2fa_config.htm&language=en_US

Use an Existing Access Token Instead of Authorizing

When you authorize into an org using the force:auth commands, the Salesforce CLI takes care of generating and refreshing all
tokens, such as the access token. But sometimes you want to run a few CLI commands against an existing org without going through
the entire authorization process. In this case, you must provide the access token and instance URL of the org.

1. Use force:config:set to set the instanceUrl config value to the Salesforce instance that hosts the existing org to
which you want to connect.

sfdx force:config:set instanceUrl=https://na35.salesforce.com

2. When you run the CLI command, use the org’s access token as the value for the --targetusername parameter rather than
the org’s username.

sfdx force:mdapi:deploy --deploydir <md-dir> --targetusername <access-token>

The CLI does not store the access token in its internal files. It uses it only for this CLI command run.

Authorization Information for an Org

You can view information for all orgs that you have authorized and the scratch orgs that you have created.

Use this command to view authentication information about an org.

sfdx force:org:display --targetusername <username>

If you have set a default username, you don’t have to specify the --targetusername parameter. To display the usernames for all
the active orgs that you’ve authorized or created, use force:org:list.

If you have set an alias for an org, you can specify it with the --targetusername parameter. This example uses the my-scratch
alias.

sfdx force:org:display --targetusername my-scratch-org

=== Org Description
KEY VALUE
─────────────── ───
Access Token <long-string>
Alias my-scratch-org
Client Id SalesforceDevelopmentExperience
Created By joe@mydevhub.org
Created Date 2017-06-07T00:51:59.000+0000
Dev Hub Id jdoe@fabdevhub.org
Edition Developer
Expiration Date 2017-06-14
Id 00D9A0000008cKm
Instance Url https://page-power-5849-dev-ed.cs46.my.salesforce.com
Org Name Your Company
Status Active
Username test-apraqvkwhcml@example.com

30

Use an Existing Access Token Instead of AuthorizingAuthorization

To get more information, such as the Salesforce DX authentication URL, include the --verbose parameter. However, --verbose
displays the Sfdx Auth Url only if you authenticated to the org using force:auth:web:login and not
force:auth:jwt:grant.

sfdx force:org:display -u my-scratch-org --verbose

=== Org Description
KEY VALUE
─────────────── ───
Access Token <long-string>
Alias my-scratch-org
Client Id SalesforceDevelopmentExperience
Created By joe@mydevhub.org
Created Date 2017-06-07T00:51:59.000+0000
Dev Hub Id jdoe@fabdevhub.org
Edition Developer
Expiration Date 2017-06-14
Id 00D9A0000008cKm
Instance Url https://page-power-5849-dev-ed.cs46.my.salesforce.com
Org Name Your Company
Sfdx Auth Url force://SalesforceDevelopmentExperience:xxx@xxx.my.salesforce.com
Status Active
Username test-apraqvkwhcml@example.com

Note: To help prevent security breaches, the force:org:display output doesn’t include the org’s client secret or refresh
token. If you need these values, perform an OAuth flow outside of the Salesforce CLI.

SEE ALSO:

OAuth 2.0 Web Server Authentication Flow

Salesforce DX Usernames and Orgs

Log Out of an Org

For security purposes, you can use the Salesforce CLI to log out of any org you’ve previously authorized. This practice prevents other
users from accessing your orgs if you don’t want them to.

Important: The only way to access an org after you log out of it is with a password. By default, new scratch orgs contain one
administrator with no password. Therefore, to access a scratch org again after you log out of it, set a password for at least one user.
Otherwise, you lose all access to the scratch org. If you don’t want to access the scratch org again, rather than log out of it, we
recommend that you delete it with force:org:delete.

To log out of an org, use force:auth:logout. This example uses the alias my-hub-org to log out.

sfdx force:auth:logout --targetusername my-hub-org

To log out of all your orgs, including scratch orgs, use the --all parameter.

sfdx force:auth:logout --all

To access an org again, other than a scratch org, reauthorize it.

When you log out of an org, it no longer shows up in the force:org:list output. If you log out of a Dev Hub org, the associated
scratch orgs show up only if you specify the --all parameter.

31

Log Out of an OrgAuthorization

https://help.salesforce.com/articleView?id=remoteaccess_oauth_web_server_flow.htm&language=en_US

CHAPTER 5 Metadata Coverage

Launch the Metadata Coverage report to determine supported metadata for scratch org source tracking
purposes. The Metadata Coverage report is the ultimate source of truth for metadata coverage across
several channels. These channels include Metadata API, scratch org source tracking, unlocked packages,
second-generation managed packages, classic managed packages, and more.

You are no longer required to log in to an org to see the Metadata Coverage report.

For more information, see Metadata Types in the Metadata API Developer Guide.

Hard-Deleted Components in Unlocked Packages

Components of these metadata types are hard-deleted from the target install org when deleted from
an unlocked package.

• ApexClass

• ApexComponent

• ApexPage

• ApexTrigger

• AuraDefinitionBundle

• BrandingSet

• CompactLayout

• CustomPermission

• Dashboard

• Document

• EmailServicesFunction

• EmailTemplate

• EmbeddedServiceBranding

• EmbeddedServiceConfig

• EmbeddedServiceLiveAgent

• ExternalServiceRegistration

• FeatureParameterBoolean

• FeatureParameterDate

• FeatureParameterInteger

• FlexiPage

• HomePageLayout

• InstalledPackage

32

https://mdcoverage.secure.force.com/docs/metadata-coverage
https://developer.salesforce.com/docs/atlas.en-us.220.0.api_meta.meta/api_meta/meta_types_list.htm

• IntegrationHubSettings

• IntegrationHubSettingsType

• Layout

• LicenseDefinition

• LightningComponentBundle

• LightningExperienceTheme

• ListView

• LiveChatAgentConfig

• LiveChatButton

• LiveChatSensitiveDataRule

• NamedCredential

• NetworkBranding

• MatchingRule

• PermissionSet

• Profile

• PermissionSetGroup

• PermissionSetLicense

• QuickAction

• RemoteSiteSetting

• Report

• StaticResource

• UserLicense

• WaveApplication

• WaveDashboard

• WaveDataflow

• WaveDataset

• WaveLens

• WaveRecipe

• WaveTemplateBundle

• WaveXmd

• WorkflowFlowAction

• WorkflowRule

• WorkflowTask(Task)

SEE ALSO:

Components Available in Managed Packages (ISVForce Guide)

Metadata Types (Metadata API Developer Guide)

33

Metadata Coverage

https://developer.salesforce.com/docs/atlas.en-us.220.0.packagingGuide.meta/packagingGuide/packaging_packageable_components.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.api_meta.meta/api_meta/meta_types_list.htm

CHAPTER 6 Scratch Orgs

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Dev Hub available in:
Developer, Enterprise,
Performance, and
Unlimited Editions

Scratch orgs available in:
Developer, Enterprise,
Group, and Professional
Editions

The scratch org is a source-driven and disposable deployment of
Salesforce code and metadata. A scratch org is fully configurable,
allowing developers to emulate different Salesforce editions with
different features and preferences. You can share the scratch org
configuration file with other team members, so you all have the
same basic org in which to do your development.

Scratch orgs drive developer productivity and collaboration during
the development process, and facilitate automated testing and
continuous integration. You can use the CLI or IDE to open your
scratch org in a browser without logging in. You might spin up a
new scratch org when you want to:

In this chapter ...

• Scratch Org Definition
File

• Scratch Org Definition
Configuration Values

• Create Scratch Orgs

• Select the Salesforce
Release for a Scratch
Org

• Salesforce DX Project
Structure and Source
Format

• Start a new project.

• Start a new feature branch.
• Push Source to the

Scratch Org • Test a new feature.

• Start automated testing.• Assign a Permission
Set • Perform development tasks directly in an org.

• Ways to Add Data to
Your Scratch Org

• Start from “scratch” with a fresh new org.

Note: Partners can create partner edition scratch orgs: Partner Developer, Partner Enterprise,
Partner Group, and Partner Professional. This feature is available only if creating scratch orgs from

• Pull Source from the
Scratch Org to Your
Project a Dev Hub in a partner business org. See Supported Scratch Org Editions for Partners in the ISVforce

Guide for details.• Track Changes
Between the Project
and Scratch Org Scratch Orgs Created in Government Cloud or Public

Cloud

The Dev Hub org instance determines where scratch orgs are created.

• Scratch Org Users

• Manage Scratch
Orgs from Dev Hub

• Scratch orgs created from a Dev Hub org in Government Cloud are created in a Government Cloud
instance.

• Scratch orgs created from a Dev Hub org in Public Cloud are created on a Public Cloud instance.

Scratch Org Allocations and Considerations

To ensure optimal performance, your Dev Hub org edition determines your scratch org allocations. These
allocations determine how many scratch orgs you can create daily, and how many can be active at a

34

https://developer.salesforce.com/docs/atlas.en-us.220.0.packagingGuide.meta/packagingGuide/isv_partner_scratch_org_editions.htm

given point. By default, Salesforce deletes scratch orgs and their associated ActiveScratchOrg records
from your Dev Hub org when a scratch org expires. A scratch org expires in 7 days unless you set a
duration when you create it.

Scratch orgs have these storage limits:

• 200 MB for data

• 50 MB for files

To try out scratch orgs, sign up for a Developer Edition org on Salesforce Developers, then enable Dev
Hub.

Daily Scratch Org AllocationActive Scratch Org
Allocation

Edition

63Developer Edition or trial

8040Enterprise Edition

200100Unlimited Edition

200100Performance Edition

Note: If you are a partner or ISV, your scratch org allocations might be different. See the ISVforce
Guide for details.

List Active and Daily Scratch Orgs

To view how many scratch orgs you have allocated, and how many you have remaining:

sfdx force:limits:api:display -u <Dev Hub username or alias>

NAME REMAINING MAXIMUM
───────────────────────────────────── ───────── ─────────
ActiveScratchOrgs 25 40
ConcurrentAsyncGetReportInstances 200 200
ConcurrentSyncReportRuns 20 20
DailyApiRequests 14994 15000
DailyAsyncApexExecutions 250000 250000
DailyBulkApiRequests 10000 10000
DailyDurableGenericStreamingApiEvents 10000 10000
DailyDurableStreamingApiEvents 10000 10000
DailyGenericStreamingApiEvents 10000 10000
DailyScratchOrgs 80 80
DailyStreamingApiEvents 10000 10000
DailyWorkflowEmails 75 75
DataStorageMB 1073 1073
DurableStreamingApiConcurrentClients 20 20
FileStorageMB 1073 1073
HourlyAsyncReportRuns 1200 1200
HourlyDashboardRefreshes 200 200
HourlyDashboardResults 5000 5000

35

Scratch Orgs

https://developer.salesforce.com/signup?d=70130000000td6N
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_enable_devhub.htm

HourlyDashboardStatuses 999999999 999999999
HourlyODataCallout 10000 10000
HourlySyncReportRuns 500 500
HourlyTimeBasedWorkflow 50 50
MassEmail 10 10
PermissionSets 1489 1500
SingleEmail 15 15
StreamingApiConcurrentClients 20 20

36

Scratch Orgs

Scratch Org Definition File

The scratch org definition file is a blueprint for a scratch org. It mimics the shape of an org that you use in the development life cycle,
such as sandbox, packaging, or production.

The settings and configuration options associated with a scratch org determine its shape, including:

• Edition—The Salesforce edition of the scratch org, such as Developer, Enterprise, Group, or Professional.

• Add-on features—Functionality that is not included by default in an edition, such as multi-currency.

• Settings—Org and feature settings used to configure Salesforce products, such as Chatter and Communities.

By default, scratch orgs are empty. They don’t contain much of the sample metadata that you get when you sign up for an org, such as
a Developer Edition org, the traditional way. Some of the things not included in a scratch org are:

• Custom objects, fields, indexes, tabs, and entity definitions

• Sample data

• Sample Chatter feeds

• Dashboards and reports

• Workflows

• Picklists

• Profiles and permission sets

• Apex classes, triggers, and pages

Setting up different scratch org definition files allows you to easily create scratch orgs with different shapes for testing. For example, you
can turn Chatter on or off in a scratch org by setting the ChatterEnabled org preference in the definition file. If you want a scratch org
with sample data and metadata like you’re used to, add this option: hasSampleData.

We recommend that you keep this file in your project and check it in to your version control system. For example, create a team version
that you check in for all team members to use. Individual developers could also create their own local version that includes the scratch
org definition parameters. Examples of these parameters include email and last name, which identify who is creating the scratch org.

Scratch Org Definition File Name
You indicate the path to the scratch org configuration file when you create a scratch org with the force:org:create CLI command.

• If you’re using Salesforce CLI on the command line, you can name this file whatever you like and locate it anywhere the CLI can
access.

• If you’re using Salesforce Extensions for VS Code, make sure that the scratch org definition file is located in the config folder and
its name ends in scratch-def.json.

If you’re using a sample repo or creating a Salesforce DX project, the sample scratch org definition files are located in the config
directory. You can create different configuration files for different org shapes or testing scenarios. For easy identification, name the file
something descriptive, such as devEdition-scratch-def.json or packaging-org-scratch-def.json.

Scratch Org Definition File Options
Here are the options you can specify in the scratch org definition file:

Default If Not SpecifiedRequired?Name

CompanyNoorgName

37

Scratch Org Definition FileScratch Orgs

Default If Not SpecifiedRequired?Name

Dev Hub's country. If you want to override this value, enter the
two-character, upper-case ISO-3166 country code (Alpha-2 code).

Nocountry

You can find a full list of these codes at several sites, such as:
https://www.iso.org/obp/ui/#search. This value sets the locale of
the scratch org.

test-unique_identifier@example.comNousername

Email address of the Dev Hub user making the scratch org creation
request

NoadminEmail

None. Valid entries are Developer, Enterprise, Group, or ProfessionalYesedition

None. 2000-character free-form text field.

The description is a good way to document the scratch org’s
purpose. You can view or edit the description in the Dev Hub. From

Nodescription

App Launcher, select Scratch Org Info or Active Scratch Orgs,
then click the scratch org number.

Valid values are true and false. False is the default, which
creates an org without sample data.

NohasSampleData

Default language for the country. To override the language set by
the Dev Hub locale, see Supported Languages for the codes to use
in this field.

Nolanguage

NoneNofeatures

NoneNoorgPreferences (to be deprecated soon)

Same Salesforce release as the Dev Hub org. Options are
preview or previous. Can use only during Salesforce release
transition periods.

Norelease

NoneNosettings

None. Useful for Dev Ops use cases where you want to track extra
information on the ScratchOrgInfo object. First, create the custom
field, then reference it in the scratch org definition by its API name.

No<custom field API name>

Sample Scratch Org Definition File
Here’s what the scratch org definition JSON file looks like. For more information on features and settings, see Scratch Org Definition
Configuration Values.

{
"orgName": "Acme",
"edition": "Enterprise",
"features": ["Communities", "ServiceCloud", "Chatbot"],
"settings": {

"orgPreferenceSettings": {

38

Scratch Org Definition FileScratch Orgs

https://www.iso.org/obp/ui/#search
https://help.salesforce.com/articleView?id=faq_getstart_what_languages_does.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.220.0.api.meta/api/sforce_api_objects_scratchorginfo.htm

"networksEnabled": true,
"s1DesktopEnabled": true,
"s1EncryptedStoragePref2": false

},
"omniChannelSettings": {

"enableOmniChannel": true
},

"caseSettings": {
"systemUserEmail": "support@acme.com"

}
}

}

Some features, such as Communities, can require a combination of a feature and a setting to work correctly for scratch orgs. This code
snippet sets both the feature and associated setting.

"features": ["Communities"],
"settings": {

""networksEnabled": true
...

Create a Custom Field for ScratchOrgInfo
You can add more options to the scratch org definition to manage your Dev Ops process. To do so, create a custom field on the
ScratchOrgInfo object. (ScratchOrgInfo tracks scratch org creation and deletion.)

Important: If you’re making these changes directly in your production org, proceed with the appropriate levels of caution. The
ScratchOrgInfo object is not available in sandboxes or scratch orgs.

1. In the Dev Hub org, create the custom field.

a. From Setup, enter Object Manager in the Quick Find box, then select Object Manager.

b. Click Scratch Org Info.

c. In Fields & Relationships, click New.

d. Define the custom field, then click Save.

2. After you create the custom field, you can pass it a value in the scratch org definition file by referencing it with its API name.

Let’s say you create two custom fields called workitem and release. Add the custom fields and associated values to the
scratch org definition:

{
"orgName": "MyCompany",
"edition": "Developer",
"workitem__c": "W-12345678",
"release__c": "June 2018 pilot",

"settings": {
"orgPreferenceSettings": {

"s1DesktopEnabled": true
}

}

39

Scratch Org Definition FileScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.220.0.api.meta/api/sforce_api_objects_scratchorginfo.htm

3. Create the scratch org.

Scratch Org Definition Configuration Values

The scratch org definition file contains the configuration values that determine the shape of the scratch org.

Supported Editions
The Salesforce edition of the scratch org. Possible values are:

• Developer

• Enterprise

• Group

• Professional

Supported Features
You can enable these add-on features in a scratch org. Features aren’t case-sensitive. You can indicate them as all-caps, or how we define
them here (for readability purposes). If a feature is followed by <value>, it requires that you specify a value as an incremental allocation
or limit (see next section).

Note: Some scratch org features require additional configuration.

• For Group and Professional Edition orgs, the AuthorApex feature is disabled by default. Enabling the AuthorApex feature lets
you edit and test your Apex classes.

• To use the Chatbot feature, turn on Enable Einstein Features in the Dev Hub org to accept the Terms of Service.

• Enterprise Territory Management (Territory2) is a scratch org setting. See Metadata Coverage report for implementation details.

• DeferSharingCalc requires additional configuration using the Setup menu in the scratch org. See Defer Sharing Rule Calculations
in Salesforce Help.

• ActionPlans

• AddCustomApps:<value>

• AddCustomObjects:<quantity> (Min 1: Max 30)

• AddCustomRelationships:<quantity> (Min 1: Max 30: Multiplier 5)

• AddCustomTabs:<value>

• AddDatacomCrmRecordCredit:<quantity> (Min 1: Max 30)

• AddInsightsQueryLimit:<quantity> (Min 1: Max 30: Multiplier 10)

• AddHistoryFieldsPerEntity:<value>

• AnalyticsAdminPerms

• API

• AuthorApex (see Note)

• CascadeDelete

• Chatbot (see Note)

• ChatterAnswers

• ChatterAnswersUser

40

Scratch Org Definition Configuration ValuesScratch Orgs

https://developer.salesforce.com/docs/metadata-coverage
https://help.salesforce.com/articleView?id=security_sharing_rule_recalculation.htm&language=en_US

• Communities

• ContactsToMultipleAccounts

• ContractApprovals

• CPQ

• CustomerSelfService

• CustomNotificationType

• DatacomDnbAccounts

• DatacomFullClean

• DebugApex

• DefaultWorkflowUser

• DeferSharingCalc (see Note)

• DevelopmentWave

• EinsteinAnalyticsPlus

• EinsteinAssistant

• EinsteinBuilderFree

• Entitlements

• EventLogFile

• ExternalIdentityLogin

• ExternalSharing (not available in Group Edition)

• FieldService

• FlowSites

• ForceComPlatform

• HealthCloudUser

• IndustriesManufacturing

• InsightsPlatform

• Interaction

• IoT

• JigsawUser

• Knowledge

• LightningSalesConsole

• LightningServiceConsole

• LiveAgent

• LiveMessage

• MarketingUser

• MaxApexCodeSize:<value>

• MaxCustomLabels:<value>

• MobileUser

• MultiCurrency

• OfflineUser

• Pardot

41

Scratch Org Definition Configuration ValuesScratch Orgs

• PersonAccounts

• PlatformCache

• PlatformEncryption

• ProcessBuilder

• ProductsAndSchedules

• RecordTypes

• RetainFieldHistory

• SalesUser

• ServiceCloud

• ServiceUser

• SiteDotCom

• SiteForceContributor

• Sites

• StateAndCountryPicklist

• SurveyCreatorUser

• TerritoryManagement (see Note)

• TimeSheetTemplateSettings

• UiPlugin

• WavePlatform

• Workflow

You can specify multiple feature values in a comma-delimited list in the scratch org definition file.

"features": ["MultiCurrency", "AuthorApex"],

Scratch Org Feature Allocations and Limits
For some features, you need to specify a quantity you want to provision.

NotesMaximumAdditional Allocation or
Limit

Feature Name

Replaces CustomApps30AllocationAddCustomApps

30AllocationAddCustomObjects

Multiplier is 5. Setting the
quantity to 5 increases the limit
by 25.

30AllocationAddCustomRelationships

Replaces CustomTabs30AllocationAddCustomTabs

30AllocationAddDatacomCrmRecords

Multiplier is 10. Setting the
quantity to 6 increases the query
limit by 60.

30AllocationAddInsightsQueryLimit

42

Scratch Org Definition Configuration ValuesScratch Orgs

NotesMaximumAdditional Allocation or
Limit

Feature Name

25AllocationAddHistoryFieldsPerEntity

Measured in millions. Setting this
limit to 10 is equal to 10 million
characters of code.

To use a value greater than the
default value of 10, contact
Salesforce Customer Support.

LimitMaxApexCodeSize

Measured in thousands. Setting
the limit to 10 enables the

15LimitMaxCustomLabels

scratch org to have 10,000
custom labels.

Example scratch org definition file:

{
"orgName": "Acme",
"edition": "Enterprise",
"features": ["AddCustomApps:25", "MaxCustomLabels:10"]

}

Scratch Org Settings
In Winter ’19 and later, scratch org settings are the format for defining org preferences in the scratch org definition. Because you can
use all Metadata API settings, they are the most comprehensive way to configure a scratch org. If a setting is supported in Metadata API,
it’s supported in scratch orgs. Settings provide you with fine-grained control because you can define values for all fields for a setting,
rather than just enabling or disabling it.

Important: In Winter 19, you can specify scratch org settings or org preferences in your scratch org definition file, but not both.
We encourage you to convert org preferences to scratch org settings in your scratch org definition. Scratch org settings provide
more settings that aren’t currently available as org preferences. We plan to deprecate support for org preferences in Winter ’20.

For information on Metadata API settings and their supported fields, see Settings in Metadata API Developer Guide.

Important: Although the Settings are upper camel case in the Metadata API Developer Guide, be sure to indicate them as lower
camel case in the scratch org definition.

When converting existing org prefs to settings, the org prefs that start with “Is” have a corresponding setting that starts with “enable”.
For example, “IsOrdersEnabled” is “enableOrders” that takes a Boolean value of true or false.

{
"orgName": "Acme",
"edition": "Enterprise",
"features": ["Communities", "ServiceCloud", "Chatbot"],
"settings": {

"orgPreferenceSettings": {
"networksEnabled": true,
"s1DesktopEnabled": true,
"s1EncryptedStoragePref2": false

},
"omniChannelSettings": {

"enableOmniChannel": true

43

Scratch Org Definition Configuration ValuesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.220.0.api_meta.meta/api_meta/meta_settings.htm

},

"caseSettings": {
"systemUserEmail": "support@acme.com"

}
}

}

Here’s an example of how to configure SecuritySettings in your scratch org. In this case, to define session timeout, you nest the field
values.

{
"orgName": "Acme",
"edition": "Enterprise",
"features": [],
"settings": {

"orgPreferenceSettings": {
"s1EncryptedStoragePref2": false

},
"securitySettings": {

"sessionSettings":{
"sessionTimeout": "TwelveHours"

}
}

}

Here’s an example of how to configure the IoT feature in your scratch org. It requires a combination of indicating the IoT feature and IoT
scratch org settings.

{
"orgName": "Acme",
"edition": "Enterprise",
"features": [],
"settings": {

"orgPreferenceSettings": {
"s1EncryptedStoragePref2": false

},
"iotSettings": {

"enableIoT": true,{
"iotInsights": true

}
}

}

Metadata Coverage Report
The Metadata Coverage report is now available from the Salesforce Developer site rather than from your org. You can select a release
version from within the coverage report to view different release versions. We provide coverage information for Summer 18/v43 onward.

The sample scratch definition is available starting in Winter 19/v44. In this example, to work with the Network metadata type in a
Developer Edition scratch org, your scratch org definition must include the Communities feature and the networksEnabled setting.

44

Scratch Org Definition Configuration ValuesScratch Orgs

https://developer.salesforce.com/docs/metadata-coverage

Supported Org Preferences
Before Winter ’19, you indicate scratch org settings using org preferences in the scratch org definition file. Use the scratch org settings
format if creating a new scratch org definition file. We plan to deprecate org preferences in Winter ’20.

It’s now easier than ever to move to scratch org settings. If your scratch org definition file still contains org preferences, you see a warning
message that provides the format for settings. Just copy and paste, and you’re good to go!

WARNING: We're deprecating orgPreferences in Summer ’19. You can continue to use them
until they are replaced by settings in Winter ’20. But why wait? Here's exactly what you
need
to update in the scratch org definition file.

Replace the orgPreferences section:
{

"orgPreferences" : {
"enabled": [
"S1DesktopEnabled"

],
"disabled": [
"IsActivitiesRemindersEnabled"

]
}

}
With settings:

45

Scratch Org Definition Configuration ValuesScratch Orgs

{
"settings": {

"orgPreferenceSettings": {
"s1DesktopEnabled": true

},
"activitySettings": {

"enableActivitiesReminder": false
}

}
}

Important: As of Winter 19, you can specify scratch org settings or org preferences in your scratch org definition file, but not
both. We encourage you to convert org preferences to scratch org settings in your scratch org definition. Scratch org settings
provide more settings that aren’t currently available as org preferences.

Org preferences are settings that a user can configure in the org. For example, preferences control which Chatter, Knowledge, and
Opportunities settings are enabled, among many others. These settings are enabled (or disabled) in the orgPreferences section of the
configuration file, in JSON format.

"orgPreferences": {
"enabled": ["S1DesktopEnabled", "ChatterEnabled", "IsOpportunityTeamEnabled"],
"disabled": ["IsOrdersEnabled"]

}

Warning: Exercise caution when using DisableParallelApexTesting. Your tests could run noticeably slower. Try these Testing Best
Practices in the Apex Developer Guide so that you can run your Apex tests in parallel.

You can set the following org preferences in the configuration file. You indicate org preferences using upper camel case, as indicated
in the following lists.

Important: To prepare for the deprecation of org preferences, we strongly suggest you switch to settings. The values for settings
are similar yet different from the values in the following lists. Another difference is that you must indicate settings using lower
camel case. For information on settings and their supported fields, see Settings in Metadata API Developer Guide.

General Settings

• AnalyticsSharingEnable

• AsyncSaveEnabled

• ChatterEnabled

• DisableParallelApexTesting

• EnhancedEmailEnabled

• EventLogWaveIntegEnabled

• LoginForensicsEnabled

• NetworksEnabled

• NotesReservedPref01

• OfflineDraftsEnabled

• PathAssistantsEnabled

• S1DesktopEnabled

• S1EncryptedStoragePref2

• S1OfflinePref

• SelfSetPasswordInApi

46

Scratch Org Definition Configuration ValuesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.220.0.apexcode.meta/apexcode/apex_testing_best_practices.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.apexcode.meta/apexcode/apex_testing_best_practices.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.api_meta.meta/api_meta/meta_settings.htm

• SendThroughGmailPref

• SocialProfilesEnable

• Translation

• VoiceEnabled

Account Settings

• IsAccountTeamsEnabled

• ShowViewHierarchyLink

Activities Settings

• IsActivityRemindersEnabled

• IsDragAndDropSchedulingEnabled

• IsEmailTrackingEnabled

• IsGroupTasksEnabled

• IsMultidayEventsEnabled

• IsRecurringEventsEnabled

• IsRecurringTasksEnabled

• IsSidebarCalendarShortcutEnabled

• IsSimpleTaskCreateUIEnabled

• ShowEventDetailsMultiUserCalendar

• ShowHomePageHoverLinksForEvents

• ShowMyTasksHoverLinks

Contract Settings

• AutoCalculateEndDate

• IsContractHistoryTrackingEnabled

• NotifyOwnersOnContractExpiration

Entitlement Settings

• AssetLookupLimitedToActiveEntitlementsOnAccount

• AssetLookupLimitedToActiveEntitlementsOnContact

• AssetLookupLimitedToSameAccount

• AssetLookupLimitedToSameContact

• IsEntitlementsEnabled

• EntitlementLookupLimitedToActiveStatus

• EntitlementLookupLimitedToSameAccount

• EntitlementLookupLimitedToSameAsset

• EntitlementLookupLimitedToSameContact

Forecasting Settings

• IsForecastsEnabled

Ideas Settings

• IsChatterProfileEnabled

• IsIdeaThemesEnabled

47

Scratch Org Definition Configuration ValuesScratch Orgs

• IsIdeasEnabled

• IsIdeasReputationEnabled

Knowledge Settings

• IsCreateEditOnArticlesTabEnabled

• IsExternalMediaContentEnabled

• IsKnowledgeEnabled

• ShowArticleSummariesCustomerPortal

• ShowArticleSummariesInternalApp

• ShowArticleSummariesPartnerPortal

• ShowValidationStatusField

Chat Settings

• IsLiveAgentEnabled

Marketing Action Settings

• IsMarketingActionEnabled

Name Settings

• IsMiddleNameEnabled

• IsNameSuffixEnabled

Opportunity Settings

• IsOpportunityTeamEnabled

Order Settings

• IsNegativeQuantityEnabled

• IsOrdersEnabled

• IsReductionOrdersEnabled

Personal Journey Settings

• IsExactTargetForSalesforceAppsEnabled

Product Settings

• IsCascadeActivateToRelatedPricesEnabled

• IsQuantityScheduleEnabled

• IsRevenueScheduleEnabled

Quote Settings

• IsQuoteEnabled

Search Settings

• DocumentContentSearchEnabled

• OptimizeSearchForCjkEnabled

• RecentlyViewedUsersForBlankLookupEnabled

• SidebarAutoCompleteEnabled

• SidebarDropDownListEnabled

• SidebarLimitToItemsIownCheckboxEnabled

48

Scratch Org Definition Configuration ValuesScratch Orgs

• SingleSearchResultShortcutEnabled

• SpellCorrectKnowledgeSearchEnabled

SEE ALSO:

Salesforce Editions

Settings (Metadata API Developer Guide)

Create Scratch Orgs

After you create the scratch org definition file, you can easily spin up a scratch org and open it directly from the command line.

Before you create a scratch org:

• Set up your Salesforce DX project

• Authorize the Dev Hub org

• Create the scratch org definition file

You can create scratch orgs for different functions, such as for feature development, for development of packages that contain a
namespace, or for user acceptance testing.

Tip: Delete any unneeded or malfunctioning scratch orgs in the Dev Hub org or via the command line so that they don’t count
against your active scratch org allocations.

1. Create the scratch org.

Run This CommandTo

The scratch org definition defines the org edition, features, org preferences, and some
other options.

sfdx force:org:create -f project-scratch-def.json

Create a scratch org for development using
a scratch org definition file

sfdx force:org:create adminEmail=me@email.com
edition=Developer \

username=admin_user@orgname.org

Specify scratch org definition values on the
command line using key=value pairs

Scratch org usernames are long and unintuitive. Setting an alias each time you create
a scratch org is a great way to track the scratch org’s function. And it’s much easier to
remember when issuing subsequent CLI commands.

sfdx force:org:create -f project-scratch-def.json -a
MyScratchOrg

Create a scratch org with an alias

In this case, you don’t want to create a scratch org with a namespace. You can use this
command to override the namespace value in the scratch org definition file.

sfdx force:org:create -f project-scratch-def.json
--nonamespace

Create a scratch org for user acceptance
testing or to test installations of packages

49

Create Scratch OrgsScratch Orgs

https://help.salesforce.com/articleView?id=overview_edition.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.220.0.api_meta.meta/api_meta/meta_settings.htm

Run This CommandTo

CLI commands that are run from within the project use the default scratch org, and
you don’t have to manually enter the username parameter each time.

sfdx force:org:create -f project-scratch-def.json
--setdefaultusername

Indicate that this scratch org is the default

The default is 7 days. Valid values are from 1-30.

sfdx force:org:create -f config/project-scratch-def.json
--durationdays 30

sfdx force:org:create -f config/project-scratch-def.json
-d 3

Specify the scratch org’s duration, which
indicates when the scratch org expires (in
days)

During the Salesforce release transition, you can specify the release (preview or previous)
when creating a scratch org. See Select the Salesforce Release for a Scratch Org.

Specify the Salesforce release for the
scratch org

Indicate the path to the scratch definition file relative to your current directory. For sample repos, this file is located in the config
directory.

Stdout displays two important pieces of information: the org ID and the username.

Successfully created scratch org: 00D3D0000000PE5UAM,
username: test-b4agup43oxmu@example.com

If the create command times out before the scratch org is created (the default wait time is 6 minutes), you see an error. Issue this
command to see if it returns the scratch org ID, which confirms the existence of the scratch org:

sfdx force:data:soql:query -q "SELECT ID, Name, Status FROM ScratchOrgInfo \
WHERE CreatedBy.Name = '<your name>' \
AND CreatedDate = TODAY" -u <Dev Hub org>

This example assumes that your name is Jane Doe, and you created an alias for your Dev Hub org called DevHub:

sfdx force:data:soql:query -q "SELECT ID, Name, Status FROM ScratchOrgInfo \
WHERE CreatedBy.Name = 'Jane Doe' AND CreatedDate = TODAY" -u DevHub

If that doesn’t work, create another scratch org and increase the timeout value using the --wait parameter. Don’t forget to delete
the malfunctioning scratch org.

2. Open the org.

sfdx force:org:open -u <username/alias>

If you want to open the scratch org in Lightning Experience or open a Visualforce page, use the --path parameter.

sfdx force:org:open --path lightning

50

Create Scratch OrgsScratch Orgs

3. Push local project source to your scratch org.

SEE ALSO:

Project Setup

Authorization

Scratch Org Definition File

Push Source to the Scratch Org

Select the Salesforce Release for a Scratch Org

During the Salesforce release transition, you can specify the release (preview or previous) when creating a scratch org.

What is Salesforce Preview?
During every major Salesforce release, you have the opportunity to get early access to the release in your scratch orgs and sandboxes
to test new customizations and features before your production org is upgraded. This is called the Salesforce Preview, and scratch orgs
created on the upcoming release are called preview scratch orgs.

Normally, you create scratch orgs that are the same version as the Dev Hub. However, during the major Salesforce release transition that
happens three times a year, you can select the Salesforce release version, Preview or Previous, based on the version of your Dev
Hub.

To try out new features in an upcoming release, you no longer have to create a trial Dev Hub on the upcoming version to create preview
scratch orgs. You can use your existing Dev Hub that includes your existing scratch org active and daily limits.

For example, you can select a version over the next three releases during these release transition dates. Preview start date is when
sandbox instances are upgraded. Preview end date is when all instances are on the GA release.

Preview End DatePreview Start DateRelease Version

October 12, 2019September 6, 2019Winter ‘20

February 15, 2020January 3, 2020Spring ‘20

June 13, 2020May 8, 2020Summer ‘20

Because previous and preview are all relative terms, your Dev Hub org version during the release transition determines their relative
significance. Here’s what happens when you try to create a scratch org with one of the release values.

PreviousPreviewDev Hub Version

Prior Dev Hub versionError (Dev Hub is already on the latest
version)

Dev Hub has upgraded to the latest version

Error (Dev Hub is on the GA version;
previous version unavailable)

Version following the Dev Hub version
(newly released Salesforce version)

Dev Hub is still on the GA version

Note: If you don’t specify a release value, the scratch org version is the same version as the Dev Hub org.

51

Select the Salesforce Release for a Scratch OrgScratch Orgs

Create a Scratch Org for a Specific Release
You can specify the release version in the scratch org definition file or directly on the command line. Any option you issue on the
command line overrides what you have defined in your scratch definition file.

1. Find out which instance your Dev Hub org is on: https://status.salesforce.com.

2. Add the release option to your scratch org definition file.

{
"orgName": "Dreamhouse",
"edition": "Developer",
"release": "Preview",
"settings": {
"orgPreferenceSettings": {
"s1DesktopEnabled": true,
"selfSetPasswordInApi": true,
"s1EncryptedStoragePref2": false

}
}

}

Alternatively, you can specify the release value directly on the command line. Any values you specify on the command line override
the values in the scratch org definition.

3. Create the scratch org.

In this example, we’re creating a scratch org on the preview release.

sfdx force:org:create -f config/project-scratch-def.json -a PreviewOrg -v DevHub
release=Preview

If you’re creating a previous scratch org and you have upgraded the CLI to the pre-release version, be sure to set the apiVersion
to match the scratch org version.

To set it globally for all DX projects:

sfdx force:config:set apiVersion=46.0 --global

To set it on the command line:

SFDX_API_VERSION=46.0 sfdx force:org:create -f config/project-scratch-def.json -a PreviewOrg
-v DevHub release=Preview

What If I Want to Create a Pre-Release Scratch Org?
Pre-release is a very early build of the latest version of Salesforce that’s available before Salesforce Preview. It's not built to handle scale
and doesn't come with any Salesforce Support service-level agreements (SLAs). For this reason, the only way to create a pre-release
scratch org is to sign up for a pre-release trial Dev Hub org (subject to availability).

Salesforce DX Project Structure and Source Format

A Salesforce DX project has a specific project structure and source format. Salesforce DX source uses a different set of files and file
extensions from what you’re accustomed when using Metadata API.

52

Salesforce DX Project Structure and Source FormatScratch Orgs

https://status.salesforce.com
https://sfdc.co/RR-Pre-Release

Source Transformation
It’s not uncommon for metadata formatted source to be very large, making it difficult to find what you want. If you work on a team with
other developers who update the same metadata at the same time, you have to deal with merging multiple updates to the file. If you’re
thinking that there has to be a better way, you’re right.

Before, all custom objects and object translations were stored in one large metadata file.

We solve this problem by providing a new source shape that breaks down these large source files to make them more digestible and
easier to manage with a version control system. It’s called source format.

A Salesforce DX project stores custom objects and custom object translations in intuitive subdirectories. Source format makes it much
easier to find what you want to change or update. And you can say goodbye to messy merges.

Static Resources
Static resources must reside in the /main/default/staticresources directory. The force:source:push and
force:source:pull commands support auto-expanding or compressing archive MIME types within your project. These behaviors

53

Salesforce DX Project Structure and Source FormatScratch Orgs

support both the .zip and .jar MIME types. This way, the source files are more easily integrated in your Salesforce DX project and
version control system.

If, for example, you upload a static resource archive through the scratch org’s Setup UI, force:source:pull expands it into its
directory structure within the project. To mimic this process from the file system, add the directory structure to compress directly into
the static resources directory root, then create the associated .resource-meta.xml file. If an archive exists as a single file in your
project, it’s always treated as a single file and not expanded.

This example illustrates how different types of static resources are stored in your local project. You can see an expanded .zip archive
called expandedzippedresource and its related .resource-meta.xml file. You also see a couple .jpg files being stored
with their MIME type, and a single file being stored with the legacy .resource extension

File Extensions
When you convert existing metadata format to source format, we create an XML file for each bit. All files that contain XML markup now
have an .xml extension. You can then look at your source files using an XML editor. To sync your local projects and scratch orgs,
Salesforce DX projects use a particular directory structure for custom objects, custom object translations, Lightning web components,
Aura components, and documents.

For example, if you had an object called Case.object, source format provides an XML version called Case.object-meta.xml. If
you have an app call DreamHouse.app, we create a file called DreamHouse.app-meta.xml. You get the idea. For Salesforce DX
projects, all source format files have a companion file with the “-meta.xml” extension.

Traditionally, static resources are stored on the file system as binary objects with a .resource extension. Source format handles static
resources differently by supporting content MIME types. For example, .gif files are stored as a .gif instead of .resource. By
storing files with their MIME extensions, you can manage and edit your files using the associated editor on your system.

54

Salesforce DX Project Structure and Source FormatScratch Orgs

You can have a combination of existing static resources with their .resource extension, and newly created static resources with
their MIME content extensions. Existing static resources with .resource extensions keep that extension, but any new static resources
show up in your project with their MIME type extensions. We allow .resource files to support the transition for existing customers.
Although you get this additional flexibility, we recommend storing your files with their MIME extensions.

Custom Objects
When you convert from metadata format to source format, your custom objects are placed in the <package
directory>/main/default/objects directory. Each object has its own subdirectory that reflects the type of custom object.

Some parts of the custom objects are extracted into in these subdirectories:

• businessProcesses

• compactLayouts

• fields

• fieldSets

• listViews

• recordTypes

• sharingReasons

• validationRules

• webLinks

The parts of the custom object that are not extracted are placed in a file.

• For objects, <object>.object-meta.xml

• For fields, <field_name>.field-meta.xml

Custom Object Translations
Custom object translations reside in the <package directory>/main/default/objectTranslations directory, each
in their own subdirectory named after the custom object translation. Custom object translations and field translations are extracted into
their own files within the custom object translation’s directory.

• For field names, <field_name>.fieldTranslation-meta.xml

• For object names, <object_name>.objectTranslation-meta.xml

The remaining pieces of the custom object translation are placed in a file called
<objectTranslation>.objectTranslation-meta.xml.

Aura Components
Aura bundles and components must reside in a directory named aura under the <package directory> directory.

55

Salesforce DX Project Structure and Source FormatScratch Orgs

Lightning Web Components
Lightning web components must reside in a directory named lwc under the <package directory> directory.

56

Salesforce DX Project Structure and Source FormatScratch Orgs

Documents
Documents must be inside the directories of their parent document folder. The parent document folder must be in a directory called
documents. Each document has a corresponding metadata XML file that you can view with an XML editor.

Push Source to the Scratch Org

After changing the source, you can sync the changes to your scratch org by pushing the changed source to it.

The first time you push metadata to the org, all source in the folders you indicated as package directories is pushed to the scratch org
to complete the initial setup. At this point, we start change-tracking locally on the file system and remotely in the scratch org to determine
which metadata has changed. Let’s say you pushed an Apex class to a scratch org and then decide to modify the class in the scratch org
instead of your local file system. The CLI tracks in which local package directory the class was created, so when you pull it back to your
project, it knows where it belongs.

Warning: You can use force:source:push for scratch orgs only. If you’re synchronizing source to another org, use the
Metadata API.

During development, you change files locally in your file system and change the scratch org directly using the builders and editors that
Salesforce supplies. Usually, these changes don’t cause a conflict and involve unique files.

57

Push Source to the Scratch OrgScratch Orgs

The push command doesn’t handle merges. Projects and scratch orgs are meant to be used by one developer. Therefore, we don’t
anticipate file conflicts or the need to merge. However, if the push command detects a conflict, it terminates the operation and displays
the conflict information to the terminal. You can rerun the push command and force the changes in your project to the scratch org.

Before running the push command, you can get a list of what’s new, changed, and the conflicts between your local file system and the
scratch org by using force:source:status. This way you can choose ahead of time which version you want to keep and manually
address the conflict.

Pushing Source to a Scratch Org
To push changed source to your default scratch org:

sfdx force:source:push

STATE FULL NAME TYPE PROJECT PATH
─────── ───────────── ───────── ────────────────────────────────────
Changed MyWidgetClass ApexClass /classes/MyWidgetClass.cls-meta.xml
Changed MyWidgetClass ApexClass /classes/MyWidgetClass.cls

To push changed source to a scratch org that’s not the default, you can indicate it by its username or alias:

sfdx force:source:push --targetusername test-b4agup43oxmu@example.com

sfdx force:source:push -u test-b4agup43oxmu@example.com

sfdx force:source:push -u MyGroovyScratchOrg

Tip: You can create an alias for an org using force:alias:set. Run force:org:list to display the usernames of all
the scratch orgs you have created.

Selecting Files to Ignore During Push
It’s likely that you have some files that you don’t want to sync between the project and scratch org. You can have the push command
ignore the files you indicate in .forceignore.

If Push Detects Warnings
If you run force:source:push, and warnings occur, the CLI doesn’t push the source. Warnings can occur, for example, if your
project source is using an outdated version. If you want to ignore these warnings and push the source to the scratch org, run:

sfdx force:source:push --ignorewarnings

Tip: Although you can successfully push using this option, we recommend addressing the issues in the source files. For example,
if you see a warning because a Visualforce page is using an outdated version, consider updating your page to the current version
of Visualforce. This way, you can take advantage of new features and performance improvements.

If Push Detects File Conflicts
If you run force:source:push, and conflicts are detected, the CLI doesn’t push the source.

STATE FULL NAME TYPE PROJECT PATH

58

Push Source to the Scratch OrgScratch Orgs

─────── ───────────── ───────── ─────────────────────────────────
Conflict NewClass ApexClass /classes/CoolClass.cls-meta.xml
Conflict NewClass ApexClass /classes/CoolClass.cls

Notice that you have a conflict. CoolClass exists in your scratch org but not in the local file system. In this new development paradigm,
the local project is the source of truth. Consider if it makes sense to overwrite the conflict in the scratch org.

If conflicts have been detected and you want to override them, here’s how you use the power of the force (overwrite) to push the source
to a scratch org.

sfdx force:source:push --forceoverwrite

If Push Detects a Username Reference in the Source
Some metadata types include a username in their source. When you run force:source:push to push this source to a scratch
org, the push command replaces the username with the scratch org’s administrator username. This behavior ensures that the push
succeeds, even if the scratch org does not contain the original username.

For example, let’s say that you create a scratch org and use Lightning Experience to create a report folder. You then create a report and
save it to the new folder. You run force:source:pull to pull down the source from the scratch org to your project. The
*.reportFolder-meta.xml source file for the new ReportFolder is similar to this example; note the <sharedTo> element
that contains the username test-ymmlqf5@example.com.

<?xml version="1.0" encoding="UTF-8"?>
<ReportFolder xmlns="http://soap.sforce.com/2006/04/metadata">

<folderShares>
<accessLevel>Manage</accessLevel>
<sharedTo>test-ymmlqf5@example.com</sharedTo>
<sharedToType>User</sharedToType>

</folderShares>
<name>TestFolder</name>

</ReportFolder>

You then create a different scratch org whose administrator’s username is test-zuwlxy321@example.com. If you push the
ReportFolder’s source file to the new scratch org, force:source:push replaces the test-ymmlqf5@example.com username
with test-zuwlxy321@example.com.

This behavior applies only to force:source:push and scratch orgs. If you use force:mdapi:deploy to deploy metadata
to a regular production org, for example, the deploy uses the username referenced in the source.

Next steps:

• Verify that the source was uploaded successfully to the scratch org, open the org in a browser.

• Add some sample test data.

59

Push Source to the Scratch OrgScratch Orgs

How to Exclude Source When Syncing or Converting

When syncing metadata between your local file system and a scratch org, you often have source files you want to exclude. Similarly,
you often want to exclude certain files when converting source to Salesforce DX project format. In both cases, you can exclude
individual files or all files in a specific directory with a .forceignore file.

SEE ALSO:

How to Exclude Source When Syncing or Converting

Track Changes Between the Project and Scratch Org

Assign a Permission Set

Ways to Add Data to Your Scratch Org

Pull Source from the Scratch Org to Your Project

How to Exclude Source When Syncing or Converting
When syncing metadata between your local file system and a scratch org, you often have source files you want to exclude. Similarly,
you often want to exclude certain files when converting source to Salesforce DX project format. In both cases, you can exclude individual
files or all files in a specific directory with a .forceignore file.

Use your favorite text editor to create a .forceignore file to specify the files or directories you want to exclude.

The .forceignore file excludes files when running the source commands: force:source:convert, force:source:push,
force:source:pull, and force:source:status.

Other Files That the Source Commands Ignore
The source commands ignore these files even if they aren’t included in your .forceignore file.

• Any source file or directory that begins with a “dot”, such as .DS_Store or .sfdx

• Any file that ends in .dup

• package2-descriptor.json

• package2-manifest.json

Exclude Remote Changes Not Yet Synced with Your Local Source
Sometimes, you make a change directly in a scratch org but you don’t want to pull that change into your local DX project. To exclude
remote metadata changes, use the format <api name>.<metadata type> in .forceignore.

If you have a permission set named “dreamhouse,” add dreamhouse.permissionset to .forceignore.

Exclude the Same Metadata for Source Tracking Commands
To exclude the same metadata in your local DX project (file system) and in a scratch org, create two entries to cover source:status,
source:push, and source:pull. For example, if you have a custom profile called Marketing Profile, include these two entries
in .forceignore:

• force-app/main/default/profiles/Marketing Profile.profile-meta.xml (ignores it during
source:push or source:status)

• Marketing Profile.profile (ignores it during source:pull or source:status)

60

How to Exclude Source When Syncing or ConvertingScratch Orgs

Metadata with Special Characters
If a metadata name has special characters (such as forward slashes, backslashes, or quotation marks), we encode the file name on the
local file system for all operating systems. For example, if you pull a custom profile called Custom: Marketing Profile, the colon is encoded
in the resulting file name.

Custom%3A Marketing Profile.profile-meta.xml

If you reference a file name with special characters in .forceignore, use the encoded file name.

Where to Put .forceignore
Be sure the paths that you specify in .forceignore are relative to the directory containing the .forceignore file. For the
.forceignore file to work its magic, you must put it in the proper location, depending on which command you are running.

• Add the .forceignore file to the root of your project for the source tracking commands: force:source:push,
force:source:pull, force:source:status, and force:source:convert.

• Add the file to the Metadata retrieve directory (with package.xml) for force:mdapi:convert.

Sample Syntax
The .forceignore file has similar functionality to .gitignore. Here are some options for indicating which source to exclude.
In this example, all paths are relative to the project root directory.

Specify a relative path to a directory from the project root
helloWorld/main/default/classes

Specify a wildcard directory - any directory named “classes” is excluded
**classes

Specify file extensions
**.cls
**.pdf

Specify a specific file
helloWorld/main/default/HelloWorld.cls

Assign a Permission Set

After creating your scratch org and pushing the source, you must sometimes give your users access to your application, especially if your
app contains custom objects.

1. If needed, create the permission set in the scratch org.

a. Open the scratch org in your browser.

sfdx force:org:open -u <scratch org username/alias>

b. From Setup, enter Perm in the Quick Find box, then select Permission Sets.

c. Click New.

d. Enter a descriptive label for the permission set, then click Save.

e. Under Apps, click Assigned Apps > Edit.

61

Assign a Permission SetScratch Orgs

f. Under Available Apps, select your app, then click Add to move it to Enabled Apps.

g. Click Save.

2. Pull the permission set from the scratch org to your project.

sfdx force:source:pull -u <scratch org username/alias>

3. Assign the permission set to one or more users of the org that contains the app:

sfdx force:user:permset:assign --permsetname <permset_name> --targetusername
<username/alias>

The target username must have permission to assign a permission set. Use the --onbehalfof parameter to assign a permission
set to non-administrator users.

sfdx force:user:permset:assign --permsetname <permset_name> --targetusername <admin-user>
--onbehalfof <non-admin-user>

Ways to Add Data to Your Scratch Org

Orgs for development need a small set of stock data for testing. Scratch orgs come with the same set of data as the edition on which
they are based. For example, Developer Edition orgs typically include 10–15 records for key standard objects, such as Account, Contact,
and Lead. These records come in handy when you’re testing something like a new trigger, workflow rule, Lightning web component,
Aura component, or Visualforce page.

Sometimes, the stock data doesn’t meet your development needs. Scratch orgs have many uses, so we provide you the flexibility to add
the data you need for your use cases. Apex tests generally create their own data. Therefore, if Apex tests are the only tests you’re running
in a scratch org, you can probably forget about data for the time being. However, other tests, such as UI, API, or user acceptance tests,
do need baseline data. Make sure that you use consistent data sets when you run tests of each type.

The following sections describe the Salesforce CLI commands you can use to populate your scratch orgs. The commands you use depend
on your current stage of development.

You can also use the force:data:soql:query CLI command to run a SOQL query against a scratch org. While the command
doesn’t change the data in an org, it’s useful for searching or counting the data. You can also use it with other data manipulation
commands.

force:data:tree Commands
The SObject Tree Save API drives the force:data:tree commands for exporting and importing data. The commands use JSON
files to describe objects and relationships. The export command requires a SOQL query to select the data in an org that it writes to the
JSON files. Rather than loading all records of each type and establishing relationships, the import command loads parents and children
already in the hierarchy.

Note: These commands are intended for developers to test with small datasets. The query for export can return a maximum of
2000 records. The files for import can have a maximum of 200 records.

force:data:bulk Commands
Bulk API drives the force:bulk commands for exporting a basic data set from an org and storing that data in source control. You
can then update or augment the data directly rather than in the org from where it came. The force:data:bulk commands use

62

Ways to Add Data to Your Scratch OrgScratch Orgs

CSV files to import data files into scratch orgs or to delete sets of data that you no longer want hanging around. Use dot notation to
establish child-to-parent relationships.

force:data:record Commands
Everyone’s process is unique, and you don’t always need the same data as your teammates. When you want to create, modify, or delete
individual records quickly, use the force:data:record:create|delete|get|update commands. No data files are
needed.

Example: Export and Import Data Between Orgs

Let’s say you’ve created the perfect set of data to test your application, and it currently resides in your default scratch org. You finished
coding a new feature that you want to test in a new scratch org. You create the scratch org, push your source code, and assign the
needed permission sets. Now you want to populate the scratch org with your perfect set of data from the other org. How? Read on!

SEE ALSO:

SObject Tree Request Body (REST API Developer Guide)

Create Multiple Records (REST API Developer Guide)

Create Nested Records (REST API Developer Guide)

Salesforce Object Query Language (SOQL)

Sample CSV File (Bulk API Developer Guide)

Salesforce CLI Command Reference

Example: Export and Import Data Between Orgs
Let’s say you’ve created the perfect set of data to test your application, and it currently resides in your default scratch org. You finished
coding a new feature that you want to test in a new scratch org. You create the scratch org, push your source code, and assign the
needed permission sets. Now you want to populate the scratch org with your perfect set of data from the other org. How? Read on!

This use case refers to the Broker and Properties custom objects of the Salesforce DX Github DreamHouse example. It’s assumed that,
in the first scratch org from which you are exporting data, you’ve created the two objects by pushing the DreamHouse source. It’s also
assumed that you’ve assigned the permission set and populated the objects with the data. In the second scratch org, however, it’s
assumed that you’ve created the two objects and assigned the permission set but not yet populated them with data. See the README
of the dreamhouse-sfdx GitHub example for instructions on these tasks.

1. Export the data in your default scratch org.

Use the force:data:soql:query command to fine-tune the SELECT query so that it returns the exact set of data you want
to export. This command outputs the results to your terminal or command window, but it doesn’t change the data in the org.
Because the SOQL query is long, the command is broken up with backslashes for easier reading. You can still cut and paste the
command into your terminal window and run it.

sfdx force:data:soql:query --query \
"SELECT Id, Name, Title__c, Phone__c, Mobile_Phone__c, \

Email__c, Picture__c, \
(SELECT Name, Address__c, City__c, State__c, Zip__c, \

Price__c, Title__c, Beds__c, Baths__c, Picture__c, \
Thumbnail__c, Description__c \

FROM Properties__r) \
FROM Broker__c"

63

Example: Export and Import Data Between OrgsScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.220.0.api_rest.meta/api_rest/requests_composite_sobject_tree.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.api_rest.meta/api_rest/dome_composite_sobject_tree_flat.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.api_rest.meta/api_rest/dome_composite_sobject_tree_create.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.api_asynch.meta/api_asynch/datafiles_csv_sample_file.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

2. When you’re satisfied with the SELECT statement, use it to export the data into a set of JSON files.

sfdx force:data:tree:export --query \
"SELECT Id, Name, Title__c, Phone__c, Mobile_Phone__c, \

Email__c, Picture__c, \
(SELECT Name, Address__c, City__c, State__c, Zip__c, \

Price__c, Title__c, Beds__c, Baths__c, Picture__c, \
Thumbnail__c, Description__c \

FROM Properties__r) \
FROM Broker__c" \

--prefix export-demo --outputdir sfdx-out --plan

The export command writes the JSON files to the sfdx-out directory (in the current directory) and prefixes each file name with
the string export-demo. The files include a plan definition file, which refers to the other files that contain the data, one for each
exported object.

3. Import the data into the new scratch org by specifying the plan definition file.

sfdx force:data:tree:import --targetusername test-wvkpnfm5z113@example.com \
--plan sfdx-out/export-demo-Broker__c-Property__c-plan.json

Use the --plan parameter to specify the full path name of the plan execution file generated by the
force:data:tree:export command. Plan execution file names always end in -plan.json.

In the previous example, you must use the --targetusername option because you are importing into a scratch org that is not
your default. Use the force:org:list command to view all your scratch orgs along with their usernames and aliases. You can
also use force:config:set to set the new scratch org as your default.

4. (Optional) Open the new scratch org and query the imported data using the Salesforce UI and SOQL.

sfdx force:org:open --targetusername test-wvkpnfm5z113@example.com

If you set an alias for the scratch org username, you can pass it to the --targetusername parameter.

sfdx force:org:open --targetusername <alias>

Example: Looking for a more complicated example? The easy-spaces-lwc sample app has a data plan showing how to import
Accounts, related Contacts and a 3-level deep custom object chain.

SEE ALSO:

CLI Runtime Configuration Values

dreamhouse-sfdx Sample GitHub Repo

Salesforce CLI Command Reference

Pull Source from the Scratch Org to Your Project

After you do an initial push, Salesforce DX tracks the changes between your local file system and your scratch org. If you change your
scratch org, you usually want to pull those changes to your local project to keep both in sync.

During development, you change files locally in your file system and change the scratch org using the builders and editors that Salesforce
supplies. Usually, these changes don’t cause a conflict and involve unique files.

64

Pull Source from the Scratch Org to Your ProjectScratch Orgs

https://github.com/trailheadapps/easy-spaces-lwc/blob/develop/data/Plan2.json
https://github.com/DreamhouseApp/dreamhouse-sfdx
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

Important: You can use force:source:pull for scratch orgs only. If you’re synchronizing source to any other org, use
the Metadata API (force:mdapi:retrieve or force:mdapi:deploy).

By default, only changed source is synced back to your project.

The pull command does not handle merges. Projects and scratch orgs are meant to be used by one developer. Therefore, we don’t
anticipate file conflicts or the need to merge. However, if the pull command detects a conflict, it terminates the operation and displays
the conflict information to the terminal. You can rerun the command with the force option if you want to pull changes from your scratch
org to the project despite any detected conflicts.

Before you run the pull command, you can get a list of what’s new, changed, and any conflicts between your local file system and the
scratch org by using force:source:status. This way you can choose ahead of time which files to keep.

To pull changed source from the scratch org to the project:

sfdx force:source:pull

You can indicate either the full scratch org username or an alias. The terminal displays the results of the pull command. This example
adds two Apex classes to the scratch org. The classes are then pulled to the project in the default package directory. The pull also indicates
which files have changed since the last push and if a conflict exists between a version in your local project and the scratch org.

STATE FULL NAME TYPE PROJECT PATH
─────── ───────────── ───────── ─────────────────────────────────
Changed MyWidgetClass ApexClass /classes/MyWidgetClass.cls-meta.xml
Changed MyWidgetClass ApexClass /classes/MyWidgetClass.cls
Changed CoolClass ApexClass /classes/CoolClass.cls-meta.xml
Changed CoolClass ApexClass /classes/CoolClass.cls

To pull source to the project if a conflict has been detected:

sfdx force:source:pull --forceoverwrite

SEE ALSO:

Track Changes Between the Project and Scratch Org

Track Changes Between the Project and Scratch Org

When you start developing, you can change local files in your project directory or remotely in your scratch org. Before you push local
changes to the scratch org or pull remote changes to the local Salesforce DX project, it’s helpful to see what changes you’ve made.

1. To view the status of local or remote files:

sfdx force:source:status

STATE FULL NAME TYPE PROJECT PATH
───────────── ───────── ─────────
───
Local Deleted MyClass ApexClass /MyClass.cls-meta.xml
Local Deleted MyClass ApexClass /MyClass.cls
Local Add OtherClass ApexClass /OtherClass.cls-meta.xml
Local Add OtherClass ApexClass /OtherClass.cls
Local Add Event QuickAction /Event.quickAction-meta.xml
Remote Deleted MyWidgetClass ApexClass /MyWidgetClass.cls-meta.xml

65

Track Changes Between the Project and Scratch OrgScratch Orgs

Remote Deleted MyWidgetClass ApexClass /MyWidgetClass.cls
Remote Changed (Conflict) NewClass ApexClass /NewClass.cls-meta.xml
Remote Changed (Conflict) NewClass ApexClass /NewClass.cls

Scratch Org Users

A scratch org includes one administrator user by default. The admin user is typically adequate for all your testing needs. But sometimes
you need other users to test with different profiles and permission sets.

You can create a user by opening the scratch org in your browser and navigating to the Users page in Setup. You can also use the
force:user:create CLI command to easily integrate the task into a continuous integration job.

Scratch Org User Limits, Defaults, and Considerations
• You can create a user only for a specific scratch org. If you try to create a user for a non-scratch org, the command fails. Also specify

your Developer Hub, either explicitly or by setting it as your default, so that Salesforce can verify that the scratch org is active.

• Your scratch org edition determines the number of available user licenses. Your number of licenses determines the number of users
you can create. For example, a Developer Edition org includes a maximum of two Salesforce user licenses. Therefore, in addition to
the default administrator user, you can create one standard user.

• The new user’s username must be unique across all Salesforce orgs and in the form of an email address. The username is active only
within the bounds of the associated scratch org.

• You can’t delete a user. The user is deactivated when you delete the scratch org with which the user is associated. Deactivating a
user frees up the user license. But you can’t reuse usernames, even if the associated user has been deactivated.

• The simplest way to create a user is to let the force:user:create command assign default or generated characteristics to
the new user. If you want to customize your new user, create a definition file and specify it with the --definitionfile (-f)
parameter. In the file, you can include all the User sObject fields and a set of Salesforce DX-specific options, described in User Definition
File for Customizing a Scratch Org User on page 68. You can also specify these options on the command line.

• If you do not customize your new user, the force:user:create command creates a user with the following default
characteristics.

– The username is the existing administrator’s username prepended with a timestamp. For example, if the administrator username
is test-wvkpnfm5z113@example.com, the new username is something like 1505759162830_test-wvkpnfm5z113@example.com.

– The user’s profile is Standard User.

– The values of the required fields of the User sObject are the corresponding values of the administrator user. For example, if the
administrator’s locale (specifically the LocaleSidKey field of User sObject) is en_US, the new user’s locale is also en_US.

Create a Scratch Org User

Sometimes you need other users to test with different profiles and permission sets.

User Definition File for Customizing a Scratch Org User

To customize a new user, rather than use the default and generated values, create a definition file.

66

Scratch Org UsersScratch Orgs

Generate or Change a Password for a Scratch Org User

By default, new scratch orgs contain one administrator user with no password. You can optionally set a password when you create
a new user. Use the CLI to generate or change a password for any scratch org user. Once set, you can’t unset a password, you can
only change it.

SEE ALSO:

User sObject API Reference

Create a Scratch Org User
Sometimes you need other users to test with different profiles and permission sets.

Use the force:user:create command to create a user. Specify the --setalias parameter to assign a simple name to the
user that you can reference in later CLI commands. When the command completes, it outputs the new username and user ID.

sfdx force:user:create --setalias qa-user

Successfully created user "test-b4agup43oxmu@example.com" with ID [0059A000000U0psQAC] for
org 00D9A0000000SXKUA2.
You can see more details about this user by running "sfdx force:user:display -u
test-b4agup43oxmu@example.com".

Users are associated with a specific scratch org and Developer Hub. Specify the scratch org or Developer Hub username or alias at the
command line if they aren’t already set by default in your environment. If you try to create a user for a non-scratch org, the
force:user:create command fails.

sfdx force:user:create --setalias qa-user --targetusername my-scratchorg
--targetdevhubusername my-dev-hub

The force:user:create command uses default and generated values for the new user, such as the user’s username, profile, and
locale. You can customize the new user by creating a definition file and specifying it with the --definitionfile parameter.

sfdx force:user:create --setalias qa-user --definitionfile config/user-def.json

View the list of users associated with a scratch org with the force:user:list command. The (A) on the left identifies the
administrator user that was created at the same time that the scratch org was created.

sfdx force:user:list

ALIAS USERNAME PROFILE NAME USER ID
─── ────────── ────────────────────────────────── ──────────────────── ──────────────────
(A) admin-user test-b4agup43oxmu@example.com System Administrator 005xx000001SvBPAA0

ci-user wonder@example.com Standard User 005xx000001SvBaAAK

Display details about a user with the force:user:display command.

sfdx force:user:display --targetusername ci-user

=== User Description
KEY VALUE
─────────────── ───
Access Token <long-string>

67

Create a Scratch Org UserScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.220.0.object_reference.meta/object_reference/sforce_api_objects_user.htm

Alias ci-user
Id 005xx000001SvBaAAK
Instance Url https://innovation-ability-4888-dev-ed.cs46.my.salesforce.com
Login Url https://innovation-ability-4888-dev-ed.cs46.my.salesforce.com
Org Id 00D9A0000000SXKUA2
Profile Name Standard User
Username test-b4agup43oxmu@example.com

User Definition File for Customizing a Scratch Org User
To customize a new user, rather than use the default and generated values, create a definition file.

The user definition file uses JSON format and can include any Salesforce User sObject field and these Salesforce DX-specific options.

Default If Not SpecifiedDescriptionSalesforce DX Option

NoneAn array of permission sets assigned to the
user. Separate multiple values with commas,
and enclose in square brackets.

You must have previously pushed the
permission sets to the scratch org with
force:source:push.

permsets

FalseBoolean. Specifies whether to generate a
random password for the user.

If set to true, force:user:create
displays the generated password after it

generatePassword

completes. You can also view the password
using force:user:describe.

Standard UserName of a profile to associate with the user.
Similar to the ProfileId field of the User

profileName

sObject except that you specify the name
of the profile and not its ID. Convenient
when you know only the name of the
profile.

The user definition file options are case-insensitive. However, we recommend that you use lower camel case for the Salesforce DX-specific
options and upper camel case for the User sObject fields. This format is consistent with other Salesforce DX definition files.

This user definition file includes some User sObject fields and three Salesforce DX options (profileName, permsets, and
generatePassword).

{
"Username": "tester1@sfdx.org",
"LastName": "Hobbs",
"Email": "tester1@sfdx.org",
"Alias": "tester1",
"TimeZoneSidKey": "America/Denver",
"LocaleSidKey": "en_US",

68

User Definition File for Customizing a Scratch Org UserScratch Orgs

"EmailEncodingKey": "UTF-8",
"LanguageLocaleKey": "en_US",
"profileName": "Standard Platform User",
"permsets": ["Dreamhouse", "Cloudhouse"],
"generatePassword": true

}

In the example, the username tester1@sfdx.org must be unique across the entire Salesforce ecosystem; otherwise, the
force:user:create command fails. The alias in the Alias option is different from the alias you specify with the --setalias
parameter of force:user:create. You use the Alias option alias only with the Salesforce UI. The --setalias alias is local to
the computer from which you run the CLI, and you can use it with other CLI commands.

You indicate the path to the user definition file with the --definitionfile parameter of the force:user:create CLI
command. You can name this file whatever you like and store it anywhere the CLI can access.

sfdx force:user:create --setalias qa-user --definitionfile config/user-def.json

You can override an option in the user definition file by specifying it as a name-value pair at the command line when you run
force:user:create. This example overrides the username, list of permission sets, and whether to generate a password.

sfdx force:user:create --setalias qa-user --definitionfile config/user-def.json
permsets="Dreamy,Cloudy" Username=tester345@sfdx.org generatePassword=false

You can also add options at the command line that are not in the user definition file. This example adds the City option.

sfdx force:user:create --setalias qa-user --definitionfile config/user-def.json City=Oakland

SEE ALSO:

User sObject API Reference

Generate or Change a Password for a Scratch Org User
By default, new scratch orgs contain one administrator user with no password. You can optionally set a password when you create a
new user. Use the CLI to generate or change a password for any scratch org user. Once set, you can’t unset a password, you can only
change it.

1. Generate a password for a scratch org user with this command:

sfdx force:user:password:generate --targetusername <username>

You can run this command for scratch org users only. The command outputs the generated password.

The target username must be an administrator user. The --onbehalfof parameter lets you assign permsets to multiple users
at once, including admin users, or to users who don’t have permissions to do it themselves. Specify multiple users by separating
them with commas; enclose them in quotes if you include spaces. The command still requires an administrator user which you
specify with the --targetusername parameter. For example, let’s say the administrator user has alias admin-user and
you want to generate a password for users with aliases ci-user and qa-user:

sfdx force:user:password:generate --targetusername admin-user --onbehalfof ci-user,qa-user

2. View the generated password and other user details:

sfdx force:user:display --targetusername ci-user

69

Generate or Change a Password for a Scratch Org UserScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.220.0.object_reference.meta/object_reference/sforce_api_objects_user.htm

=== User Description
KEY VALUE
─────────────── ───
Access Token <long-string>
Alias ci-user
Id 005xx000001SvBaAAK
Instance Url https://innovation-ability-4888-dev-ed.cs46.my.salesforce.com
Login Url https://innovation-ability-4888-dev-ed.cs46.my.salesforce.com
Org Id 00D9A0000000SXKUA2
Profile Name Standard User
Username test-b4agup43oxmu@example.com

3. Log in to the scratch org with the new password:

a. From the force:user:display output, copy the value of Instance URL and paste it into your browser. In our example,
the instance URL is https://site-fun-3277.cs46.my.salesforce.com.

b. If you’ve already opened the scratch org with the force:org:open command, you’re automatically logged in again. To try
out the new password, log out and enter the username and password listed in the output of the force:user:display
command.

c. Click Log In to Sandbox.

Note: If you change a scratch org user’s password using the Salesforce UI, the new password doesn’t show up in the
force:user:display output.

Manage Scratch Orgs from Dev Hub

You can view and delete your scratch orgs and their associated requests from the Dev Hub.

In Dev Hub, ActiveScratchOrgs represent the scratch orgs that are currently in use. ScratchOrgInfos represent the requests that were
used to create scratch orgs and provide historical context.

1. Log in to Dev Hub org as the System Administrator or as a user with the Salesforce DX permissions.

2. From the App Launcher, select Active Scratch Org to see a list of all active scratch orgs.

To view more details about a scratch org, click the link in the Number column.

3. To delete an active scratch org from the Active Scratch Org list view, choose Delete from the dropdown.

Deleting an active scratch org does not delete the request (ScratchOrgInfo) that created it, but it does free up a scratch org so that
it doesn’t count against your allocations.

4. To view the requests that created the scratch orgs, select Scratch Org Info from the App Launcher.

To view more details about a request, click the link in the Number column. The details of a scratch org request include whether it's
active, expired, or deleted.

5. To delete the request that was used to create a scratch org, choose Delete from the dropdown.

Deleting the request (ScratchOrgInfo) also deletes the active scratch org.

SEE ALSO:

Add Salesforce DX Users (Salesforce DX Setup Guide)

70

Manage Scratch Orgs from Dev HubScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_add_users.htm

CHAPTER 7 Sandboxes

USER PERMISSIONS

To view a sandbox:
• View Setup and

Configuration

To create, refresh, activate,
and delete a sandbox:
• Manage Sandbox

Sandboxes are copies of your Salesforce org that you can use for
development, testing, and training, without compromising the
data and applications in your production org.

Salesforce offers sandboxes and a set of deployment tools, so you
can:

In this chapter ...

• Authorize in to Your
Production Org

• Create a Sandbox
Definition File (Beta)

• Isolate customization and development work from your
production environment until you’re ready to deploy changes.

• Create, Clone, or
Delete a Sandbox
(Beta) • Test changes against copies of your production data and users.

• Provide a training environment.

• Coordinate individual changes into one deployment to production.

Traditionally, you or your Admin has created and managed your sandboxes through the Setup UI. But
we realize that many developers want the ability to create and manage their developer and testing
environments programmatically, and to automate their CI processes. Salesforce CLI enables you to do
both.

Where Do Sandboxes Fit in the Application
Development Lifecycle?

The development model you use determines in which stages you use sandboxes. For more information
on our development models and where sandboxes fit, see Determine Which Application Lifecycle Model
Is Right for You (Trailhead).

71

https://trailhead.salesforce.com/content/learn/trails/determine-which-application-lifecycle-management-model-is-right-for-you
https://trailhead.salesforce.com/content/learn/trails/determine-which-application-lifecycle-management-model-is-right-for-you

Authorize in to Your Production Org

Right now, to run the sandbox operations commands, we support only the JWT-based flow for authorizing to your production org. This
flow requires a production org with sandbox licenses instead of a Dev Hub. However, it’s okay if your production org is also a Dev Hub
org.

Important: If you authenticated to your production org already using the web-based flow, you must authenticate again using
the JWT-based flow to use the sandbox operations CLI commands.

The examples in Authorize an Org Using the JWT-Based Flow are geared toward scratch orgs. Follow these tips to successfully authorize
to your production org.

• Be sure to use https://login.salesforce.com for sfdcLoginUrl in sfdx-project.json file. Alternatively,
you can use force:auth:jwt:grant --instanceurl to specify the URL directly on the command line. This value
overrides the login URL you specified in the sfdx-project.json file.

• Specify the username for your production org when running the force:auth:jwt:grant command. No need to specify a
Dev Hub or indicate a default Dev Hub.

• The JWT authorization flow requires that you create a connected app. When you create the connected app, log in to your production
org, not a Dev Hub org.

Create a Sandbox Definition File (Beta)

Before you can create a sandbox using Salesforce CLI, you must create a sandbox definition file. The sandbox definition file is a blueprint
for the sandbox. You can create different definition files for each sandbox type that you use in the development process.

Note: As a beta feature, Salesforce CLI for sandbox operations is a preview and isn’t part of the “Services” under your master
subscription agreement with Salesforce. Use this feature at your sole discretion, and make your purchase decisions only on the
basis of generally available products and features. Salesforce doesn’t guarantee general availability of this feature within any
particular time frame or at all, and we can discontinue it at any time. This feature is for evaluation purposes only, not for production
use. It’s offered as is and isn’t supported, and Salesforce has no liability for any harm or damage arising out of or in connection
with it. All restrictions, Salesforce reservation of rights, obligations concerning the Services, and terms for related Non-Salesforce
Applications and Content apply equally to your use of this feature. You can provide feedback and suggestions for Salesforce CLI
for sandbox operations in the Salesforce DX Trailblazer Community.

Sandbox Configuration Values

DescriptionRequired?Option

A reference to the ID of an Apex class that runs after
each copy of the sandbox. Allows you to perform
business logic on the sandbox to prepare it for use.

NoapexClassId

If true, you can activate a sandbox refresh
immediately.

NoautoActivate

Full sandboxes only. This field is visible if your
organization has purchased an option to copy

NocopyArchivedActivities

archived activities for sandbox. To obtain this option,
contact Salesforce Customer Support.

72

Authorize in to Your Production OrgSandboxes

https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_jwt_flow.htm#sfdx_dev_auth_jwt_flow
https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000HTp1

DescriptionRequired?Option

If true, archived Chatter data is copied to the
sandbox.

NocopyChatter

A description of the sandbox (1000 or fewer
characters), which helps you distinguish it from other
sandboxes.

Nodescription

Full sandboxes only. Represents the number of days
of object history to be copied in the sandbox.

Valid values:

NohistoryDays

• -1, which means all available days

• 0 (default)

• 10

• 20

• 30

• 60

• 90

• 120

• 150

• 180

Valid values are Developer, Developer_Pro,
Partial, and Full.

YeslicenseType

A unique alphanumeric string (10 or fewer characters)
to identify the sandbox. You can’t reuse a name while
a sandbox is in the process of being deleted.

YessandboxName

Name of the sandbox being cloned.Yes (for sandbox cloning)sourceSandbox

Optional for Full sandboxes. Not available for
Developer and Developer Pro sandboxes.

A reference to the sandbox template as identified by
the 15-character ID beginning with 1ps in the URL

Yes (for Partial sandboxes)templateId

when viewing a sandbox template in a browser. A
sandbox template lets you select which objects to
copy in a sandbox.

73

Create a Sandbox Definition File (Beta)Sandboxes

Sample Sandbox Definition File
Although you can place the sandbox definition file anywhere, we recommend keeping it in your Salesforce DX project in the config
directory. When naming the file, we suggest providing a descriptive name that ends in sandbox-def.json, for example,
developer-sandbox-def.json.

{
"sandboxName": "dev1",
"licenseType": "Developer"

}

SEE ALSO:

Tooling API: SandboxInfo

Create, Clone, or Delete a Sandbox (Beta)

Create a sandbox to use for development, testing, or training. Clone a sandbox to copy its data and metadata to another sandbox.

Note: As a beta feature, Salesforce CLI for sandbox operations is a preview and isn’t part of the “Services” under your master
subscription agreement with Salesforce. Use this feature at your sole discretion, and make your purchase decisions only on the
basis of generally available products and features. Salesforce doesn’t guarantee general availability of this feature within any
particular time frame or at all, and we can discontinue it at any time. This feature is for evaluation purposes only, not for production
use. It’s offered as is and isn’t supported, and Salesforce has no liability for any harm or damage arising out of or in connection
with it. All restrictions, Salesforce reservation of rights, obligations concerning the Services, and terms for related Non-Salesforce
Applications and Content apply equally to your use of this feature. You can provide feedback and suggestions for Salesforce CLI
for sandbox operations in the Salesforce DX Trailblazer Community.

Before you create or clone a sandbox:

• Create a Salesforce DX project with a manifest file.

• Authorize to a production org with available sandbox licenses.

• Create the sandbox definition file.

Why We Recommend Using Aliases
When you create or clone a sandbox, the usernames generated in the sandbox are based on the usernames present in the production
org or sandbox. The username looks like an email address, such as username@company.com.dev1. If the resulting username is
not unique, we prepend some characters and digits to the username. The modified username looks something like
00x7Vqusername@company.com.dev1.

As you can imagine, remembering these usernames can be challenging, especially if you have several sandboxes you’re managing.
Aliasing is a powerful way to manage and track your orgs, and we consider it a best practice. So when you issue a command that requires
the username, using an alias that you can remember can speed up things.

If you didn’t set an alias when you created the sandbox, you can set one later.

sfdx force:alias:set MyDevSandbox=username@company.com.dev1

74

Create, Clone, or Delete a Sandbox (Beta)Sandboxes

https://developer.salesforce.com/docs/atlas.en-us.220.0.api_tooling.meta/api_tooling/tooling_api_objects_sandboxinfo.htm
https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000HTp1

Create a Sandbox
When you create a sandbox, Salesforce copies the metadata and optionally data from your production org to a sandbox org.

sfdx force:org:create --type sandbox --targetusername prodOrg --definitionfile
config/dev-sandbox-def.json -a MyDevSandbox -s -w 30

The -s flag indicates that this sandbox is your default org for all CLI commands. If you’re working with several orgs and you don’t want
this one to be the default, exclude this flag.

To override the values defined in the sandbox definition file, specify key=value pairs on the command line.

sfdx force:org:create -t sandbox sandboxName=FullSbx licenseType=Full -u prodOrg -a
MyFullSandbox -w 30

Tip: Because the sandbox is processed in a queue, the sandbox creation process can take longer than the default wait time of 6
minutes. We recommend setting a larger value for --wait, for example, 30 minutes.

How long the creation process takes depends on the size and complexity of your production org. You see status messages posted to
output:

Sandbox request dev1(0GXQ0000000CftJOWS) is Pending (0% completed). Sleeping 30 seconds.
Will wait 30 minutes more before timing out.
Sandbox request dev1(0GXQ0000000CftJOWS) is Processing (0% completed). Sleeping 30 seconds.
Will wait 29 minutes 30 seconds more before timing out.

Once the wait period is over, you can run the force:org:status command to check the status of the sandbox creation process.
If the sandbox is created within the wait time, the CLI automatically authenticates in to the sandbox. And the sandbox appears in the
output of the force:org:list command. Team members can authenticate to the sandbox by running the auth:web:login
command and providing their usernames and passwords.

sfdx force:auth:web:login -r https://test.salesforce.com

Clone a Sandbox
You can create a sandbox by cloning an existing sandbox rather than using your production org as your source. You can save time by
customizing a sandbox with a set of data and metadata and then replicating it.

Sandbox cloning simplifies having multiple concurrent streams of work in your application life cycle. You can set up a sandbox for each
type of work, such as development, testing, and staging. Your colleagues can easily clone individual sandboxes instead of sharing one
sandbox and stepping on each other’s toes.

sfdx force:org:clone -t sandbox -f config/dev-sandbox-def.json -u prodOrg -a MyDevSandbox
-s -w 30

To override the configuration values defined in the sandbox definition file, specify key=value pairs on the command line.

sfdx force:org:clone -t sandbox sandboxName=DevSbx1 sourceSandboxName=Sbx2Clone -u prodOrg
-a MyDevSandbox -w 30

Tip: Because the sandbox is processed in a queue, the sandbox cloning process can take longer than the default wait time of 6
minutes. We recommend setting a larger value for --wait, for example, 30 minutes.

Once the wait period is over, you can run the force:org:status command to check the status of the sandbox cloning process.
If the sandbox is cloned within the wait time, the CLI automatically authenticates in to the sandbox. And the sandbox appears in the

75

Create, Clone, or Delete a Sandbox (Beta)Sandboxes

output of the force:org:list command. Team members can authenticate to the sandbox by running the auth:web:login
command and providing their usernames and passwords.

sfdx force:auth:web:login -r https://test.salesforce.com

Check the Sandbox Status
Creating or cloning a sandbox can take several minutes. Once the command times out, you can run the force:org:status
command to report on creation or cloning status. When the sandbox is ready, this command authenticates to the sandbox.

If the org:create or org:clone command times out, the alias isn’t set. However, you can set it using the org:status
command:

sfdx force:org:status -n DevSbx1 -a MyDevSandbox -u prodOrg

Open a Sandbox
Once the sandbox is ready, you can open it by specifying its username or alias. However, you don’t have to provide its password because
the CLI manages the authentication details for you.

sfdx force:org:open -u MyDevSandbox

Delete a Sandbox
You can delete a sandbox using the CLI if it was authenticated when running org:create, org:clone, or org:status. Other
sandboxes that you authenticated using force:auth:web:login or force:auth:jwt:grant also appear on the org list,
but must be deleted using the sandbox detail page in your production org.

sfdx force:org:delete -u MyDevSandbox

Next:
• Retrieve metadata from your sandbox to your local DX project.

• Develop directly in your sandbox, then retrieve the changes to your local DX project.

• Deploy local changes to a sandbox.

SEE ALSO:

Salesforce Help: Deploy Enhancements from Sandboxes

Salesforce Help: Create, Clone, or Refresh a Sandbox Using Setup UI

Authorize an Org Using the JWT-Based Flow

76

Create, Clone, or Delete a Sandbox (Beta)Sandboxes

https://help.salesforce.com/articleView?id=deploy_sandboxes_parent.htm&language=en_US
https://help.salesforce.com/articleView?id=data_sandbox_create_parent.htm&language=en_US

CHAPTER 8 Development

After you import some test data, you’ve completed the process of setting up your project. Now, you’re
ready to start the development process.

In this chapter ...

• Develop Against Any
Org

Create Source Files from the CLI

To add source files from the CLI, make sure that you’re working in an appropriate directory. For example,
if your package directory is called force-app, create Apex classes in

• Create Lightning
Apps and Aura
Components

• Create Lightning Web
Components force-app/main/default/classes. You can organize your source as you want underneath

each package directory except for documents, custom objects, and custom object translations.• Create an Apex
Class As of API version 45.0, you can build Lightning components using two programming models: Lightning

Web Components and Aura Components. To organize your components’ source files, your Aura• Create an Apex
Trigger components must be in the aura directory. Your Lightning web components must be in the lwc

directory.• Testing

• View Apex Debug
Logs

Execute one of these commands.

• apex:class:create
• Apex Debugger

• apex:trigger:create

• lightning:app:create

• lightning:component:create

• lightning:event:create

• lightning:interface:create

• lightning:test:create

• visualforce:component:create

• visualforce:page:create

Consider using these two powerful optional flags:

DescriptionOption

The directory for saving the created files. If you don’t indicate
a directory, your source is added to the current folder.

-d, --outputdir

Template used for the file creation.-t, --template

Tip: If you want to know more information about a command, run it with the --help option.
For example, sfdx apex:class:create --help.

77

Edit Source Files

Use your favorite code editor to edit Apex classes, Visualforce pages and components, Lightning web
components, and Aura components in your project. You can also make edits in your default scratch org
and then use force:source:pull to pull those changes down to your project. For Lightning
pages (FlexiPage files) that are already in your scratch org, use the shortcut to open Lightning App Builder
in a scratch org from your default browser. Lightning Pages are stored in the flexipages directory.

To edit a FlexiPage in your default browser—for example, to edit the Property_Record_Page
source—execute this command.

sfdx force:source:open -f Property_Record_Page.flexipage-meta.xml

If you want to generate a URL that loads the .flexipage-meta.xml file in Lightning App Builder
but does not launch your browser, use the --urlonly flag.

sfdx force:source:open -f Property_Record_Page.flexipage-meta.xml -r

SEE ALSO:

Salesforce CLI Command Reference

78

Development

https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

Develop Against Any Org

Regardless of the development model you're using, you eventually test and validate your changes in a non-source-tracked org. For those
of you who don’t use scratch orgs, we provide a similar experience for developing and unit testing in other environments, such as
sandboxes.

You can use Salesforce CLI to retrieve and deploy metadata to non-source-tracked orgs with the same ease of pushing and pulling source
to and from scratch orgs. And best of all, no extra conversion steps are required! After you retrieve the metadata, you don't have to
convert it to source format. When you're ready to deploy it back to the org, you don't have to convert it to metadata format. If you’re
new to Salesforce CLI, Salesforce DX Project Structure and Source File Format explains the difference between source format and metadata
format.

Using force:source:retrieve, you can retrieve the metadata you need in source format to your local file system (DX project).
When your changes are ready for testing or production, you can use force:source:deploy to deploy your local files directly to
a non-source-tracked org.

So, how do these source commands differ from the scratch org commands, source:push and source:pull? Because the
changes aren't tracked, you retrieve or deploy all the specified metadata instead of only what's changed. The source you retrieve or
deploy overwrites what’s you have locally or in your org, respectively.

Not sure what metadata types are supported or which metadata types support wild cards in package.xml? See Metadata Types in
the Metadata API Developer Guide.

Before You Begin
Before you begin, don't forget to:

• Create a Salesforce DX project.

• Authorize your non-source-tracked org. If connecting to a sandbox, edit your sfdx-project.json file to set sfdcLoginUrl
to https://test.salesforce.com before you authorize the org. Don't forget to create aliases for your non-source-tracked
orgs.

Metadata Names That Require Encoding on the Command Line
When retrieving or deploying metadata using the --metadata option, commas in metadata names require encoding to work
properly.

Don’t: sfdx force:source:deploy -m "Profile:Standard User,Layout:Page,Console"

Do: sfdx force:source:deploy -m "Profile:Standard User,Layout:Page%2CConsole"

Retrieve Source from a Non-Source-Tracked Org
Use the force:source:retrieve command to retrieve source from orgs that don’t have source tracking, such as a sandbox or
your production org. If you already have the source code and metadata in a VCS, you might be able to skip this step. If you're starting
anew, you retrieve the metadata associated with the feature, project, or customization you're working on.

Note: The source:retrieve command works differently from source:pull for scratch orgs. This command doesn’t
notify you if there’s a conflict. Instead, the source you retrieve overwrites the corresponding source files in your local project. To
retrieve metadata that’s in the metadata format, use force:mdapi:retrieve.

You can retrieve metadata in source format using one of these methods:

• Specify a package.xml that lists the components to retrieve.

79

Develop Against Any OrgDevelopment

https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_source_file_format.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.api_meta.meta/api_meta/meta_types_list.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_cli_usernames_orgs.htm

• Specify a comma-separated list of metadata component names.

• Specify a comma-separated list of source file paths to retrieve. You can use the source path option when source exists locally, for
example, after you've done an initial retrieve.

• Specify a comma-separated list of package names.

If the comma-separated list you’re supplying contains spaces, enclose the entire comma-separated list in one set of double quotes.

Command ExampleTo Retrieve:

sfdx force:source:retrieve -x path/to/package.xmlAll metadata components listed in a manifest

sfdx force:source:retrieve -p path/to/sourceSource files in a directory

sfdx force:source:retrieve -p
path/to/apex/classes/MyClass.cls,path/to/source/objects

A specific Apex class and the objects whose source
is in a directory

sfdx force:source:retrieve -p
"path/to/objects/MyCustomObject/fields/MyField.field-meta.xml,
path/to/apex/classes"

Source files in a comma-separated list that contains
spaces

sfdx force:source:retrieve -m ApexClassAll Apex classes

sfdx force:source:retrieve -m ApexClass:MyApexClassA specific Apex class

sfdx force:source:retrieve -m "Layout:Page%2C
Console"

A layout name that contains a comma (Layout: Page,
Console)

sfdx force:source:retrieve -n DreamHouseAll the metadata related to a specific package or
packages

You can specify only one scoping parameter when retrieving metadata: --metadata, --sourcepath, or --manifest. If you
indicate --packagenames, you can include one additional scoping parameter.

sfdx force:source:retrieve -n DreamHouse, -x manifest/package.xml

Deploy Source to a Non-Source-Tracked Org
Use the force:source:deploy command to deploy source to orgs that don’t have source tracking, such as a sandbox or
production org.

Note: The source:deploy command works differently from source:push for scratch orgs. The source you deploy
overwrites the corresponding metadata in your org, similar to running source:push with the --force option. To deploy
metadata that’s in the metadata format, use force:mdapi:deploy.

You can deploy metadata in source format using these methods:

• Specify a package.xml that lists the components to deploy

• Specify a comma-separated list of metadata component names

• Specify a comma-separated list of source file paths to deploy

If the comma-separated list you’re supplying contains spaces, enclose the entire comma-separated list in one set of double quotes.

80

Develop Against Any OrgDevelopment

Command ExampleTo Deploy:

sfdx force:source:deploy -x path/to/package.xmlAll components listed in a manifest

sfdx force:source:deploy -p path/to/sourceSource files in a directory

sfdx force:source:deploy -p
path/to/apex/classes/MyClass.cls,path/to/source/objects

A specific Apex class and the objects whose source
is in a directory

sfdx force:source:deploy -p
"path/to/objects/MyCustomObject/fields/MyField.field-meta.xml,
path/to/apex/classes"

Source files in a comma-separated list that contains
spaces

sfdx force:source:deploy -m ApexClassAll Apex classes

sfdx force:source:deploy -m ApexClass:MyApexClassA specific Apex class

sfdx force:source:deploy -m CustomObject,ApexClassAll custom objects and Apex classes

sfdx force:source:deploy -m "ApexClass,
Profile:Content Experience Profile"

All Apex classes and a profile that has a space in its
name

sfdx force:source:deploy -q VALIDATEDDEPLOYREQUESTID

You can run this option after you have run tests, passed code coverage
requirements, and performed a check-only deployment using the -c |
--checkonly option.

A recently validated set of components without
running Apex tests (often referred to as a quick
deploy)

sfdx force:source:deploy -gEven if the deployment contains warnings

sfdx force:source:deploy -oRegardless of whether the deployment contains
errors (not recommended if deploying to a
production org)

Delete Non-Tracked Source
Use the force:source:delete command to delete components from orgs that don’t have source tracking, such as sandboxes.

Note: Run this command from within a Salesforce DX project. To remove deleted items from scratch orgs, which have change
tracking, use force:source:push.

You can delete metadata by specifying the path to the source or by listing individual metadata components, if the source already exists
locally in a DX project. If the comma-separated list you’re supplying contains spaces, enclose the entire comma-separated list in one set
of double quotes.

Command ExampleTo Delete:

sfdx force:source:delete -p path/to/sourceSource files in a directory

sfdx force:source:delete -m
FlexiPage:Broker_Record_Page

A specific component, such as a FlexiPage

81

Develop Against Any OrgDevelopment

Do You Want to Retain the Generated Metadata?
Normally, when you run some CLI commands, a temporary directory with all the metadata is created then deleted upon successful
completion of the command. However, retaining these files can be useful for several reasons. You can debug problems that occur during
command execution. You can use the generated package.xml when running subsequent commands, or as a starting point for
creating a manifest that includes all the metadata you care about.

To retain all the metadata in a specified directory path when you run these commands, set the SFDX_MDAPI_TEMP_DIR environment
variable:

• force:source:deploy

• force:source:retrieve

• force:source:delete

• force:source:push

• force:source:pull

• force:source:convert

• force:org:create (if your scratch org definition contains scratch org settings, not org preferences)

Example:

SFDX_MDAPI_TEMP_DIR=/users/myName/myDXProject/metadata

Create Lightning Apps and Aura Components

To create Lightning apps and Aura components from the CLI, you must have an aura directory in your Salesforce DX project.

1. In <app dir>/main/default, create the aura directory .

2. Change to the aura directory.

3. In the aura directory, create a Lightning app or an Aura component.

sfdx force:lightning:app:create -n myAuraapp

sfdx force:lightning:component:create --type aura -n myAuraComponent

SEE ALSO:

Create Lightning Web Components

Create Lightning Web Components

To create a Lightning web component from the CLI, you must have an lwc directory in your Salesforce DX project.

1. In <app dir>/main/default, create the lwc directory.

2. Change to the lwc directory.

82

Create Lightning Apps and Aura ComponentsDevelopment

3. In the lwc directory, create the Lightning web component.

sfdx force:lightning:component:create --type lwc -n myLightningWebComponent

SEE ALSO:

Create Lightning Apps and Aura Components

Create an Apex Class

You can create Apex classes from the CLI.

1. If the classes directory doesn’t exist in <app dir>/main/default, create it.

2. In the classes directory, create the class.

sfdx force:apex:class:create -n myclass

Create an Apex Trigger

Use Apex triggers to perform custom actions before or after a change to a Salesforce record, such as an insertion, update, or deletion.
You can create Apex triggers from the CLI.

1. If the triggers directory doesn’t exist in <app-dir>/main/default, create it.

2. Generate skeleton trigger files by executing force:apex:trigger:create.

• Use the -s parameter to specify the sObject associated with this trigger, such as Account.

• Use the -e parameter to specify the triggering events, such as before delete or after upsert.

• Specify that the command generate its output into the triggers directory with the -d parameter.

sfdx force:apex:trigger:create -n mytrigger -s Account -e 'before insert, after upsert'
-d <app-dir>/main/default/triggers

The command generates two files.

• mytrigger.trigger-meta.xml—metadata format

• mytrigger.trigger—Apex source file

3. Update the generated Apex and metadata format file with your code.

SEE ALSO:

Triggers (Apex Developer Guide)

Apex Triggers (Trailhead Module)

Testing

When you’re ready to test changes to your Salesforce app source code, you can run Apex tests from the Salesforce DX CLI. Apex tests
are run in your scratch org.

83

Create an Apex ClassDevelopment

https://developer.salesforce.com/docs/atlas.en-us.220.0.apexcode.meta/apexcode/apex_triggers.htm
https://trailhead.salesforce.com/en/modules/apex_triggers

You can also execute the CLI command for running Apex tests (force:apex:test:run) from within third-party continuous
integration tools, such as Jenkins.

To run Apex tests from the command line:

sfdx force:apex:test:run

This command runs all Apex tests in the scratch org asynchronously and then outputs a job ID. Pass the ID to the
force:apex:test:report command to view the results. The results include the outcome of individual tests, how long each
test ran, and the overall pass and fail rate.

sfdx force:apex:test:report --testrunid 7074C00000988ax

Use the --synchronous parameter to run tests from a single class synchronously. The command waits to display the test results
until all tests have completed.

sfdx force:apex:test:run --synchronous --classnames TestA

Use parameters to list the test classes or suites to run, specify the output format, view code coverage results, and more. For example,
the following command runs the TestA and TestB test classes, provides results in Test Anything Protocol (TAP) format, and requests code
coverage results.

sfdx force:apex:test:run --classnames TestA,TestB --resultformat tap --codecoverage

Use the --tests parameter to run specific test methods using the standard notation Class.method. If you are testing a managed
package, use namespace.Class.method. If you specify a test class without a method, the command runs all methods in the
class. This example shows how to run two methods in the TestA class and all methods in the TestB class.

sfdx force:apex:test:run --tests TestA.excitingMethod,TestA.boringMethod,TestB

Here’s the same example but with a namespace.

sfdx force:apex:test:run --tests ns.TestA.excitingMethod,ns.TestA.boringMethod,ns.TestB

You can specify either --tests or --classnames with force:apex:test:run but not both.

SEE ALSO:

Test Anything Protocol (TAP)

Salesforce CLI Command Reference

View Apex Debug Logs

Apex debug logs can record database operations, system processes, and errors that occur when executing a transaction or running unit
tests in your scratch org. You can use the Salesforce CLI to view the debug logs.

1. Open your scratch org by running force:org:open. If you have not set a default username, specify the scratch org’s username
or alias with the -u parameter.

2. Under the quick access menu (Lightning Experience) or your name (Salesforce Classic), click Developer Console. Opening the
Developer Console starts a listener that is required by the force:apex:log commands.

3. If necessary, run Apex tests to generate some debug logs.

sfdx force:apex:test:run

84

View Apex Debug LogsDevelopment

https://testanything.org/
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

4. Get a list of the debug logs.

sfdx force:apex:log:list

APPLICATION DURATION (MS) ID LOCATION SIZE (B) LOG USER OPERATION REQUEST
START TIME STATUS
─────────── ───────────── ─────── ───────── ──────── ───────── ─────────────── ───────
─────────── ───────
Unknown 1143 07L9Axx SystemLog 23900 User User ApexTestHandler Api
2017-09-05x Success

5. View a debug log by passing its ID to the force:apex:log:get command.

sfdx force:apex:log:get --logid 07L9A000000aBYGUA2

38.0
APEX_CODE,FINEST;APEX_PROFILING,INFO;CALLOUT,INFO;DB,INFO;SYSTEM,DEBUG;VALIDATION,INFO;VISUALFORCE,INFO;WAVE,INFO;WORKFLOW,INFO
15:58:57.3
(3717091)|USER_INFO|[EXTERNAL]|0059A000000TwPM|test-ktjauhgzinnp@example.com|Pacific
Standard Time|GMT-07:00
15:58:57.3 (3888677)|EXECUTION_STARTED
15:58:57.3
(3924515)|CODE_UNIT_STARTED|[EXTERNAL]|01p9A000000FmMN|RejectDuplicateFavoriteTest.acceptNonDuplicate()
15:58:57.3 (5372873)|HEAP_ALLOCATE|[72]|Bytes:3
...

SEE ALSO:

Debug Log (Apex Developer Guide)

Apex Debugger

If you use Visual Studio Code (VSC) to develop Lightning Platform applications, you can use the Apex Debugger extension to debug
your Apex code. Set breakpoints in your Apex classes and step through their execution to inspect your code in real time to find bugs.

You must have at least one available Apex Debugger session in your Dev Hub org.

• Trial and Developer Edition orgs do not include any Apex Debugger sessions.

• Performance Edition and Unlimited Edition orgs include one Apex Debugger session.

• To purchase Apex Debugger sessions for Enterprise Edition orgs, or to purchase more sessions for orgs that already have allocated
sessions, contact Salesforce.

Enable the Apex Debugger in your scratch orgs by adding the DebugApex feature to your scratch org definition file:

"features": "DebugApex"

SEE ALSO:

Scratch Org Definition File

Apex Debugger for Visual Studio Code

85

Apex DebuggerDevelopment

https://developer.salesforce.com/docs/atlas.en-us.220.0.apexcode.meta/apexcode/apex_debugging_debug_log.htm
https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode-apex-debugger

CHAPTER 9 Build and Release Your App

When you finish writing your code, the next step is to deploy it. We offer different deployment options
based on your role and needs as a customer, system integrator, or independent software vendor (ISV)
partner.

In this chapter ...

• Build and Release
Your App with
Metadata API To learn about the benefits of the different development models, review these Trailhead modules:

• Org Development Model

• Package Development Model

• Quick Start: Unlocked Packages

• Unlocked Packages for Customers

Based on your adoption readiness, review this table for your recommended options:

Ready To Create Packages to Deliver Apps

ISV PartnersCustomers and Non-ISV Partners

First-Generation (1GP) managed package

If you are an ISV that develops apps and lists them
on AppExchange, Salesforce recommends

Unlocked package

An unlocked package is for customers who want
to organize metadata into a package and deploy

managed packages. Second-Generation (2GP)the metadata (via packages) to different orgs.
managed packages are in beta, and many ISVs areUnlocked packages were previously called

developer-controlled packages. testing them in their internal development stages.
However, we recommend that you continue using

Note: An unlocked package offers a
super-set of the capabilities of an

1GP managed packages for customer distribution
until 2GP is generally available. 2GP doesn’t yet

unmanaged package. Therefore, include certain key parity features with managed
unmanaged packages aren’t listed in this
table.

packages, such as push upgrades, LMA, ability to
list on AppExchange, and patch versions.

For more information, see Unlocked Packages
(Generally Available) and Second-Generation
Managed Packages (Beta).

For more information on 1GP managed packages,
see First-Generation Managed Packages. For more
information on 2GP managed packages, see
Unlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

N/AChange sets, or org development via Salesforce
CLI

86

https://trailhead.salesforce.com/content/learn/modules/org-development-model
https://trailhead.salesforce.com/content/learn/modules/sfdx_dev_model
https://trailhead.salesforce.com/projects/quick-start-unlocked-packages
https://trailhead.salesforce.com/trails/sfdx_get_started/modules/unlocked-packages-for-customers

Not Ready for Package Development

If you or your team isn’t ready for package development, you can continue to use change sets, or try to
the org development model, where you deploy changes using Salesforce CLI. For more information, see
Build and Release Your App with Metadata API.

87

Build and Release Your App

Build and Release Your App with Metadata API

Develop and test your app in your sandboxes. Use Salesforce CLI or Salesforce Extensions for VS Code to retrieve and deploy your source.
This development work flow is called the org development model.

Develop and Test in a Sandbox Using the Org Development Model
With the org development model, you develop and test your changes in a sandbox using Salesforce CLI, then use Metadata API to deploy
to production. Similar to change sets, the release artifact is a set of changed metadata to update in the production org. If you want to
know more about this development model, see the Org Development Model module in Trailhead.

Development and Release Environments
1. Develop and test: Each team member has their own Developer sandbox to create their assigned customization. Developer sandboxes

contain no production data.

2. Build release: Team members each migrate their customizations from their respective developer sandboxes to a shared Developer
Pro sandbox for integration. Developer Pro sandboxes don’t contain production data, but you can seed them with testing data.

3. Test release: For user-acceptance testing, the team uses a Partial sandbox to create a complete replica of production.

4. Release: After the release is in production, the team can use the Full sandbox to train users without the risk of altering production
data. A Full sandbox includes a copy of production data.

88

Build and Release Your App with Metadata APIBuild and Release Your App

https://trailhead.salesforce.com/content/learn/modules/org-development-model

What Tools Do I Need?

DescriptionTool

The Salesforce DX project contains the metadata and source files
that comprise your changes. A DX project has a specific project
structure and source format.

In addition to source files, the project contains a configuration file,
sfdx-project.json. This file contains project information

Salesforce DX project

and enables you to leverage Salesforce DX tools for many of your
development tasks.

After testing the changes, you create the deployment artifact, a
.zip file that contains changed files to deploy. Deploy the release

Deployment artifact

artifact to the full (staging) sandbox first, and then finally to
production. You can think of the deployment artifact as the
inbound change set. The changes don’t take effect until they are
deployed.

All changes are merged and stored in a source control system,
which contains the Salesforce DX project.

Source control system

You can use Salesforce CLI for every phase of the org development
life cycle. It improves productivity by providing a single interface
for all your development, testing, and automation use cases.

Salesforce CLI

Salesforce Extensions for VS Code is built on top of Salesforce CLI
and Visual Studio Code. Together, they are an integrated

Salesforce Extensions for VS Code

development environment for custom development on Lightning
Platform. You can run Salesforce CLI commands directly from the
command palette or terminal.

It’s still important to capture your changes externally using formal
change-tracking tools, such as a change list, a deployment run list,
and other project management tools.

Change management mechanisms

Considerations for Deploying Apex Code
To deploy Apex to production, unit tests of your Apex code must meet coverage requirements. Code coverage indicates how many
executable lines of code in your classes and triggers are covered by your test methods. Write test methods to test your triggers and
classes, and then run those tests to generate code coverage information.

If you don’t specify a test level when initiating a deployment, the default test execution behavior depends on the contents of your
deployment package.

• If your deployment package contains Apex classes or triggers, when you deploy to production, all tests are executed, except tests
that originate from a managed package.

• If your package doesn’t contain Apex code, no tests are run by default.

You can run tests for a deployment of non-Apex components. You can override the default test execution behavior by setting the test
level in your deployment options. Test levels are enforced regardless of the types of components present in your deployment package.

89

Build and Release Your App with Metadata APIBuild and Release Your App

We recommend that you run all local tests in your development environment, such as a sandbox, before deploying to production.
Running tests in your development environment reduces the number of tests required in a production deployment.

Develop and Test Changes Locally

Develop changes in source format, deploying to and retrieving from your Developer sandbox.

Build and Test the Release Artifact

After your team has finished its development tasks, transition to the build release phase to integrate your changes in a Developer
Pro sandbox. Then build the release artifact.

Test the Release Artifact in a Staging Environment

Stage the changes and run regression tests in a Full sandbox.

Release Your App to Production

Now that all your tests have passed in the Full sandbox, you’re ready to deploy to production.

Cancel a Metadata Deployment

You can cancel a metadata deployment from the CLI and specify a wait time for the command to complete.

SEE ALSO:

Metadata API Developer Guide

Salesforce CLI Command Reference

Develop and Test Changes Locally
Develop changes in source format, deploying to and retrieving from your Developer sandbox.

These steps provide the high-level work flow.

1. Create the source control repository.

2. Create a DX project.

3. Add the DX project files to your source control repository.

4. Authorize the Developer sandbox.

5. Perform development tasks in your developer sandbox.

6. Retrieve the changes from the developer sandbox. If you have a few changes, you can indicate a comma-separated list of metadata
component names. If you have many changes, you can use a manifest (package.xml).

sfdx force:source:retrieve --manifest path/to/package.xml

7. Commit the changes to the source control repository.

Next: Deploy all changes the team has made to the Developer Pro sandbox, then test those changes.

SEE ALSO:

Metadata API Developer Guide

Salesforce CLI Command Reference

90

Develop and Test Changes LocallyBuild and Release Your App

https://developer.salesforce.com/docs/atlas.en-us.220.0.api_meta.meta/api_meta
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://developer.salesforce.com/docs/atlas.en-us.220.0.api_meta.meta/api_meta
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

Build and Test the Release Artifact
After your team has finished its development tasks, transition to the build release phase to integrate your changes in a Developer Pro
sandbox. Then build the release artifact.

In the early testing phases, you use the source commands to deploy and retrieve metadata to and from your Developer sandboxes.
The source:deploy command is not transactional and attempts to deploy all components. If any change in your project has errors
but other changes are valid, the command deploys all changes that are valid and compile. Those changes that can’t compile are not
deployed, but the overall command completes successfully. Therefore, when building and testing your release artifact, use the
mdapi:deploy command.

Here are the high-level steps in the work flow to create the release artifact.

1. Pull the changes from the repo so your local project contains all the changes your team has made.

2. Authorize the Developer Pro sandbox.

3. Build the release artifact so you can deploy the changes to the sandbox.

a. Convert the source to metadata format.

sfdx force:source:convert --rootdir force-app --outputdir tmp_convert

This command also creates a manifest in the output directory. The manifest indicates what changes to include in the build
artifact.

b. Create a .zip file of the contents in the tmp_convert directory.

4. Delete the output directory, for example, tmp_convert.

5. Run the deploy command that mimics what you’ll deploy to production, for example:

sfdx force:mdapi:deploy --zipfile winter19.zip --targetusername dev-pro-sandbox \
--testlevel RunSpecifiedTests --runtests TestMyCode

6. Open the sandbox.

7. Perform testing.

8. If the testing passes, continue to the test release phase where you deploy the release artifact to the partial sandbox. Then perform
user-acceptance testing.

After the testing passes, move to the release phase and perform regression tests in the Full sandbox.

Test the Release Artifact in a Staging Environment
Stage the changes and run regression tests in a Full sandbox.

After you have made all your changes based on the integration testing, the next step is to stage the changes in a Full sandbox. The
process of deploying changes to the Full sandbox is similar to the process you used to deploy changes to your Developer Pro sandbox.
This phase includes regression testing and mimics how you release the changes to production.

These steps provide the high-level work flow.

1. Authorize the Full sandbox.

2. (Optional) If you made any changes based on your testing in the Developer Pro sandbox, create a new release artifact (.zip). If
not, use the existing release artifact.

91

Build and Test the Release ArtifactBuild and Release Your App

3. To validate the deployment without saving the components in the target org, run all local (regression) tests. A validation enables
you to verify the results of tests that would be executed during a deployment, but doesn’t commit any changes.

sfdx force:mdapi:deploy --checkonly --zipfile mdapi_output/winter19.zip --targetusername
full-sandbox --testlevel RunLocalTests

4. Test the actual production deployment steps in the staging sandbox. Set up the same quick deploy that you plan to execute against
the production org.

sfdx force:mdapi:deploy --checkonly --zipfile mdapi_output/winter19.zip --targetusername
full-sandbox --testlevel RunSpecifiedTests TestLanguageCourseTrigger

This command returns a job ID that you reference in the quick deploy.

5. Next, test the quick deploy using the job ID returned in the previous step.

sfdx force:mdapi:deploy --targetusername full-sandbox --validateddeployrequestid jobID

After you run the quick deploy, you have 10 days to perform the deployment to production.

Release Your App to Production
Now that all your tests have passed in the Full sandbox, you’re ready to deploy to production.

You have two options to deploy your metadata to production using Salesforce CLI. For information on all command options, view the
command --help.

• Deploy your metadata directly to your production org using the source:deploy command.

• Convert your local DX project files to metadata format, then use the mdapi:deploy command.

1. In your deployment run list, complete any pre-deployment tasks.

2. Authorize your production org.

3. If you plan to use the mdapi:deploy command, convert your files from source format to metadata format.

sfdx force:source:convert

4. Set up the quick deploy.

Command-Line ExampleSalesforce CLI Command

sfdx force:source:deploy --checkonly \
--sourcepath force-app --targetusername

sfdx force:source:deploy

production-org \
--testlevel RunLocalTests

sfdx force:mdapi:deploy --checkonly \
--zipfile winter19.zip --targetusername

sfdx force:mdapi:deploy

production-org \
--testlevel RunLocalTests

This command returns a job ID that you reference in the quick deploy.

92

Release Your App to ProductionBuild and Release Your App

5. After the tests are run, verify that all the Apex tests have passed. Be sure that the tests cover at least 75% of the code being deployed.

6. Run the quick deploy:

Command-Line ExampleSalesforce CLI Command

sfdx force:source:deploy \
--targetusername production-org \
--validateddeployrequestid jobID

sfdx force:source:deploy

sfdx force:mdapi:deploy \
--targetusername production-org \
--validateddeployrequestid jobID

sfdx force:mdapi:deploy

7. Open the production org, then perform any post-deployment tasks listed in the deployment run list.

SEE ALSO:

Metadata API Developer Guide

Salesforce CLI Command Reference

Cancel a Metadata Deployment
You can cancel a metadata deployment from the CLI and specify a wait time for the command to complete.

To cancel your most recent deployment, run force:mdapi:deploy:cancel. You can cancel earlier deployments by adding
the -i (JOBID) parameter to specify the deployment that you want to cancel.

$ sfdx force:mdapi:deploy:cancel -i <jobid>

The default wait time for the cancel command to complete and display its results in the terminal window is 33 minutes. If the command
isn’t completed by the end of the wait period, the CLI returns control of the terminal window to you. You can adjust the wait time as
needed by specifying the number of minutes in the -w (WAIT) parameter, as shown in the following example:

$ sfdx force:mdapi:deploy:cancel -w 20

Curious about the status of a canceled deployment? Run a deployment report.

$ sfdx force:mdapi:deploy:report

SEE ALSO:

Metadata API Developer Guide

Salesforce CLI Command Reference

93

Cancel a Metadata DeploymentBuild and Release Your App

https://developer.salesforce.com/docs/atlas.en-us.220.0.api_meta.meta/api_meta
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://developer.salesforce.com/docs/atlas.en-us.220.0.api_meta.meta/api_meta
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

CHAPTER 10 First-Generation Managed Packages

If you’re an ISV, you want to build a managed package. A managed package is a bundle of components
that make up an application or piece of functionality. A managed package is a great way to release an
app for sale and to support licensing your features. You can protect intellectual property because the
source code of many components is not available through the package. You can also roll out upgrades
to the package.

In this chapter ...

• Build and Release
Your App with
Managed Packages

• View Information
About a Package

When you’re working with your production org, you create a .zip file of metadata components and
deploy them through Metadata API. The .zip file contains:

• A package manifest (package.xml) that lists what to retrieve or deploy

• One or more XML components organized into folders

If you don’t have the packaged source already in the source format, you can retrieve it from the org and
convert it using the CLI.

94

Build and Release Your App with Managed Packages

If you developed and tested your app, you’re well on your way to releasing it. Luckily, when it’s time to build and release an app as a
managed package, you’ve got options. You can package an app you developed from scratch. If you’re experimenting, you can also build
the sample app from Salesforce and emulate the release process.

Working with a package is an iterative process. You typically retrieve, convert, and deploy source multiple times as you create scratch
orgs, test, and update the package components.

Chances are, you already have a namespace and package defined in your packaging org. If not, run this command to open the packaging
org in your browser.

sfdx force:org:open --targetusername me@my.org --path lightning/setup/Package/home

In the Salesforce UI, you can define a namespace and a package. Each packaging org can have a single managed package and one
namespace.

Be sure to link the namespace to your Dev Hub org.

Packaging Checklist

Ready to deploy your packaging metadata and start creating a package? Take a few minutes to verify that you covered the items in
this checklist, and you’re good to go.

Deploy the Package Metadata to the Packaging Org

Before you deploy the package metadata into your packaging org, you convert from source format to metadata format.

Create a Beta Version of Your App

Test your app in a scratch org, or share the app for evaluation by creating a beta version.

Install the Package in a Target Org

After you create a package with the CLI, install the package in a target org. You can install the package in any org you can authenticate,
including a scratch org.

Create a Managed Package Version of Your App

After your testing is done, your app is almost ready to be published in your enterprise or on AppExchange. Generate a new managed
package version in your Dev Hub org.

SEE ALSO:

ISVforce Guide

Link a Namespace to a Dev Hub Org

Retrieve Source from an Existing Managed Package

Packaging Checklist
Ready to deploy your packaging metadata and start creating a package? Take a few minutes to verify that you covered the items in this
checklist, and you’re good to go.

1. Link the namespace of each package you want to work with to the Dev Hub org.

2. Copy the metadata of the package from your version control system to a local project.

3. Update the config files, if needed.

95

Build and Release Your App with Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.220.0.packagingGuide.meta/packagingGuide

For example, to work with managed packages, sfdx-project.json must include the namespace.

"namespace": "acme_example",

4. (Optional) Create an alias for each org you want to work with.

If you haven’t yet created an alias for each org, consider doing that now. Using aliases is an easy way to switch between orgs when
you’re working in the CLI.

5. Authenticate the Dev Hub org.

6. Create a scratch org.

A scratch org is different than a sandbox org. You specify the org shape using project-scratch.json. To create a scratch org and set
it as the defaultusername org, run this command from the project directory.

sfdx force:org:create -s -f config/project-scratch-def.json

7. Push source to the scratch org.

8. Update source in the scratch org as needed.

9. Pull the source from the scratch org if you used declarative tools to make changes there.

With these steps complete, you’re ready to deploy your package metadata to the packaging org.

SEE ALSO:

Sample Repository on GitHub

Authorization

Create Scratch Orgs

Push Source to the Scratch Org

Deploy the Package Metadata to the Packaging Org
Before you deploy the package metadata into your packaging org, you convert from source format to metadata format.

It’s likely that you have some files that you don’t want to convert to metadata format. Create a .forceignore file to indicate which
files to ignore.

1. Convert from source format to the metadata format.
sfdx force:source:convert --outputdir mdapi_output_dir --packagename managed_pkg_name

Create the output directory in the root of your project, not in the package directory. If the output directory doesn’t exist, it’s created.
Be sure to include the --packagename so that the converted metadata is added to the managed package in your packaging
org.

2. Review the contents of the output directory.
ls -lR mdapi_output_dir

3. Authenticate the packaging org, if needed. This example specifies the org with an alias called MyPackagingOrgAlias, which helps
you refer to the org more easily in subsequent commands.
sfdx force:auth:web:login --setalias MyPackagingOrgAlias

You can also authenticate with an OAuth client ID: sfdx force:auth:web:login --clientid oauth_client_id

4. Deploy the package metadata back to the packaging org.
sfdx force:mdapi:deploy --deploydir mdapi_output_dir --targetusername me@example.com

96

Deploy the Package Metadata to the Packaging OrgFirst-Generation Managed Packages

The --targetusername is the username. Instead of the username, you can use -u MyPackagingOrgAlias to refer to
your previously defined org alias. You can use other options, like --wait to specify the number of minutes to wait. Use the
--zipfile parameter to provide the path to a zip file that contains your metadata. Don’t run tests at the same time as you deploy
the metadata. You can run tests during the package upload process.

A message displays the job ID for the deployment.

5. Check the status of the deployment.

When you run force:mdapi:deploy, the job ID and target username are stored, so you don’t have to specify these required
parameters to check the status. These stored values are overwritten when you run force:mdapi:deploy again.

sfdx force:mdapi:deploy:report

If you want to check the status of a different deploy operation, specify the job ID on the command line, which overrides the stored
job ID.

SEE ALSO:

Salesforce CLI Command Reference

How to Exclude Source When Syncing or Converting

Create a Beta Version of Your App
Test your app in a scratch org, or share the app for evaluation by creating a beta version.

If you specified the package name when you converted source to metadata format, both the changed and new components are
automatically added to the package. Including the package name in that stage of the process lets you take full advantage of end-to-end
automation.

If, for some reason, you don’t want to include new components, you have two choices. You can omit the package name when you
convert source or remove components from the package in the Salesforce UI before you create the package version.

Create the beta version of a managed package by running the commands against your packaging org, not the Dev Hub org.

1. Ensure that you’ve authorized the packaging org.

sfdx force:auth:web:login --targetusername me@example.com

2. Create the beta version of the package.

sfdx force:package1:version:create --packageid package_id --name package_version_name

You can get the package ID on the package detail page in the packaging org. If you want to protect the package with an installation
key, add it now or when you create the released version of your package. The --installationkey supplied from the CLI is
equivalent to the Password field that you see when working with packages through the Salesforce user interface. When you include
a value for --installationkey, you or a subscriber must supply the key before you can install the package in a target org.

You’re now ready to create a scratch org and install the package there for testing. By default, the create command generates a beta
version of your managed package.

Later, when you’re ready to create the Managed - Released version of your package, include the -m (--managedreleased true)
parameter.

97

Create a Beta Version of Your AppFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

Note: After you create a managed-released version of your package, many properties of the components added to the package
are no longer editable. Refer to the ISVforce Guide to understand the differences between beta and managed-released versions of
your package.

SEE ALSO:

Salesforce CLI Command Reference

ISVforce Guide

Link a Namespace to a Dev Hub Org

Install the Package in a Target Org
After you create a package with the CLI, install the package in a target org. You can install the package in any org you can authenticate,
including a scratch org.

If you want to create a scratch org and set it as the defaultusername org, run this command from the project directory.

sfdx force:org:create -s -f config/project-scratch-def.json

To locate the ID of the package version to install, run force:package1:version:list.

METADATAPACKAGEVERSIONID METADATAPACKAGEID NAME VERSION RELEASESTATE BUILDNUMBER
──────────────────────── ────────────────── ──── ─────── ──────────── ───────────
04txx000000069oAAA 033xx00000007coAAA r00 1.0.0 Released 1
04txx000000069tAAA 033xx00000007coAAA r01 1.1.0 Released 1
04txx000000069uAAA 033xx00000007coAAA r02 1.2.0 Released 1
04txx000000069yAAA 033xx00000007coAAA r03 1.3.0 Released 1
04txx000000069zAAA 033xx00000007coAAA r04 1.4.0 Released 1

You can then copy the package version ID you want to install. For example, the ID 04txx000000069zAAA is for version 1.4.0.

1. Install the package. You supply the package alias or version ID, which starts with 04t, in the required --package parameter.

sfdx force:package:install --package 04txx000000069zAAA

If you’ve set a default target org, the package is installed there. You can specify a different target org with the --targetusername
parameter. If the package is protected by an installation key, supply the key with the --installationkey parameter.

To uninstall a package, open the target org and choose Setup. On the Installed Packages page, locate the package and choose Uninstall.

SEE ALSO:

ISVforce Guide

Salesforce CLI Command Reference

Create a Managed Package Version of Your App
After your testing is done, your app is almost ready to be published in your enterprise or on AppExchange. Generate a new managed
package version in your Dev Hub org.

98

Install the Package in a Target OrgFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://developer.salesforce.com/docs/atlas.en-us.220.0.packagingGuide.meta/packagingGuide
https://developer.salesforce.com/docs/atlas.en-us.220.0.packagingGuide.meta/packagingGuide
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

Ensure that you’ve authorized the packaging org and can view the existing package versions.

sfdx force:auth:web:login --instanceurl https://test.salesforce.com --setdefaultusername
org_alias

View the existing package versions for a specific package to get the ID for the version you want to install.

sfdx force:package1:version:list --packageid 033...

To view details for all packages in the packaging org, run the command with no parameters.

More than one beta package can use the same version number. However, you can use each version number for only one managed
package version. You can specify major or minor version numbers.

You can also include URLs for a post-installation script and release notes. Before you create a managed package, make sure that you’ve
configured your developer settings, including the namespace prefix.

Note: After you create a managed package version, you can’t change some attributes of Salesforce components used in the
package. The ISVforce Guide has information on editable components.

1. Create the managed package. Include the --managedreleased parameter.

sfdx force:package1:version:create --packageid 033xx00000007oi --name ”Spring 17”
--description ”Spring 17 Release” --version 3.2 --managedreleased

You can use other options, like --wait to specify the number of minutes to wait.

To protect the package with an installation key, include a value for --installationkey. Then, you or a subscriber must supply
the key before you can install the package in a target org.

After the managed package version is created, you can retrieve the new package version ID using
force:package1:version:list.

SEE ALSO:

Salesforce CLI Command Reference

ISVforce Guide

Link a Namespace to a Dev Hub Org

View Information About a Package

View the details about a specific package version, including its metadata package ID, package name, release state, and build number.

1. From the project directory, run this command, supplying a package version ID.
force:package1:version:display -i 04txx000000069yAAA
The output is similar to this example.

METADATAPACKAGEVERSIONID METADATAPACKAGEID NAME VERSION RELEASESTATE BUILDNUMBER
──────────────────────── ────────────────── ──── ─────── ──────────── ───────────
04txx000000069yAAA 033xx00000007coAAA r03 1.3.0 Released 1
04txx000000069yAAA 033xx00000011coAAA r03 1.4.0 Released 1

View All Package Versions in the Org

View the details about all package versions in the org.

99

View Information About a PackageFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://developer.salesforce.com/docs/atlas.en-us.220.0.packagingGuide.meta/packagingGuide

Package IDs

When you work with packages using the CLI, the package IDs refer either to a unique package or a unique package version.

SEE ALSO:

Salesforce CLI Command Reference

View All Package Versions in the Org
View the details about all package versions in the org.

1. From the project directory, run the list command.
force:package1:version:list
The output is similar to this example. When you view the package versions, the list shows a single package for multiple package
versions.

METADATAPACKAGEVERSIONID METADATAPACKAGEID NAME VERSION RELEASESTATE BUILDNUMBER
──────────────────────── ────────────────── ──── ─────── ──────────── ───────────
04txx000000069oAAA 033xx00000007coAAA r00 1.0.0 Released 1
04txx000000069tAAA 033xx00000007coAAA r01 1.1.0 Released 1
04txx000000069uAAA 033xx00000007coAAA r02 1.2.0 Released 1
04txx000000069yAAA 033xx00000007coAAA r03 1.3.0 Released 1
04txx000000069zAAA 033xx00000007coAAA r04 1.4.0 Released 1

SEE ALSO:

Salesforce CLI Command Reference

Package IDs
When you work with packages using the CLI, the package IDs refer either to a unique package or a unique package version.

The relationship of package version to package is one-to-many.

Used WhereDescriptionID Example

Generated when you create a package. A
single package can have one or more

Metadata Package ID033xx00000007oi

associated package version IDs. The package
ID remains the same, whether it has a
corresponding beta or released package
version.

Generated when you create a package
version.

Metadata Package Version ID04tA000000081MX

100

View All Package Versions in the OrgFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

CHAPTER 11 Unlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

Unlocked packages give customers and system integrators a means to organize their metadata into a
package and then deploy the metadata (via packages) to different orgs. Second-generation (2GP)
managed packages are for Independent Software Vendors (ISVs) and partners who want to test this beta
version in preparation for 2GP managed packages when they are generally available.

In this chapter ...

• Second-Generation
Packaging

• What’s a Package?
Note: As a beta feature, Second-Generation Managed Packages is a preview and isn’t part of the
“Services” under your master subscription agreement with Salesforce. Use this feature at your sole

• Types of Packaging
Projects

discretion, and make your purchase decisions only on the basis of generally available products
• Before You Create

Second-Generation
Packages

and features. Salesforce doesn’t guarantee general availability of this feature within any particular
time frame or at all, and we can discontinue it at any time. This feature is for evaluation purposes
only, not for production use. It’s offered as is and isn’t supported, and Salesforce has no liability for

• Workflow for
Second-Generation
Packages

any harm or damage arising out of or in connection with it. All restrictions, Salesforce reservation
of rights, obligations concerning the Services, and terms for related Non-Salesforce Applications
and Content apply equally to your use of this feature. You can provide feedback and suggestions

• Plan
Second-Generation
Packages

for second-generation managed packages in the Packaging 2 Beta group in the Trailblazer
Community.

Have you turned on the beta in your Dev Hub org? For information on enabling the beta, see Enable
Second-Generation Packaging in the Salesforce DX Setup Guide.

• Configure Packages

• Create a Package

• Install a Package

• Migrate Deprecated
Metadata from
Unlocked Packages

• Uninstall a Package

101

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000Lg5U
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_enable_secondgen_pkg.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_enable_secondgen_pkg.htm

Second-Generation Packaging

Second-generation packaging (2GP) allows customers and system integrators to create packages in a source-driven development
environment. You can create and deploy packages in your own Salesforce org or develop and distribute packages to your customers.

Use packaging to take advantage of these helpful features.

• The Salesforce CLI provides commands for the entire application life cycle so you can work efficiently with your packages, scratch
orgs, and development processes.

• Options for enterprise customers to organize and deploy metadata to production orgs.

• Multiple packages per namespace, so you can better organize your source and easily share Apex code. You can use public Apex
classes across packages rather than global Apex classes.

• Feature branch development and testing.

• Completely API-driven functionality.

• Packages that are built directly from the source.

• Ease of development and distribution of dependent packages.

SEE ALSO:

Salesforce DX (Salesforce Developer Center Web Site)

Salesforce CLI Command Reference

What’s a Package?

If you’re new to packaging, you can think about a package as a container that you fill with metadata. You use packages to move the
metadata from one location to another. Each second-generation package has a distinct life cycle.

You add metadata to a package and, when you’re ready to “send” or release the package, you take a snapshot of it. We call the snapshot
a package version. The package version can be installed in a scratch org, sandbox org, DE org, or production org. Installing the package
is similar to deploying metadata.

As you add, remove, or change the package metadata, you can create another snapshot, called a package versions. Because each package
version has a version number, you can install a new package version into the same org through a package upgrade.

The cycle of package development can be repeated any number of times. You can change metadata, create a package version, test the
package version, and finally deploy or install the package to a production org. This distinct app development lifecycle lets you control
exactly what, when and how your metadata is rolled out. In the installed org, you can inspect which metadata came from which package
and the set of all metadata associated with a specific package version.

Types of Packaging Projects

Salesforce offers several methods for building and releasing apps. In the package development model, the new and improved source
of truth is your version control system. You use Salesforce DX projects to organize your source into package directories. Your end goal
is to create packages using those directories that are versionable, easy to maintain, update, install, and upgrade.

The type of projects you define are up to you. It all depends on whether you’re an ISV or an enterprise customer, and your business goals.

102

Second-Generation PackagingUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

https://developer.salesforce.com/platform/dx
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

Packaging for ISVs

Salesforce ISVs approach packaging projects with laser focus on the steps required to build and deliver a successful commercial app.
ISVs are interested in sound design patterns that support solving common problems as they develop their packages. ISVs also have
considerations such as protecting intellectual property and rolling out upgrades to their installed base.

Enterprise Customers

If you’re an enterprise customer, you may be wondering: can I use packaging in my Salesforce org? Isn’t packaging a partner-oriented
feature? We have good news for you. With unlocked packages, developers can more easily develop and deploy their apps and
functionality.

Packaging for ISVs
Salesforce ISVs approach packaging projects with laser focus on the steps required to build and deliver a successful commercial app.
ISVs are interested in sound design patterns that support solving common problems as they develop their packages. ISVs also have
considerations such as protecting intellectual property and rolling out upgrades to their installed base.

Enterprise Customers
If you’re an enterprise customer, you may be wondering: can I use packaging in my Salesforce org? Isn’t packaging a partner-oriented
feature? We have good news for you. With unlocked packages, developers can more easily develop and deploy their apps and functionality.

To understand the power of unlocked packages, let’s first discuss how packaging works in the traditional change set development model.
For most production orgs, metadata is traditionally contained in two buckets: a set of managed packages installed from AppExchange
or unpackaged metadata. At the same time, enterprises often invest in Salesforce customizations to support business processes and
extend the power of the Salesforce platform. In the change set development model, all metadata that belongs to the custom app or
extension is contained in your Salesforce org. However, it’s not isolated or organized in a way that makes it easy to upgrade and maintain.

In the package development model, unlocked packages let you harness and extend your investments in the Salesforce platform in two
ways. You can organize the unpackaged metadata in your production org into well-defined packages. These packages are versionable
and easy to maintain, update, install, and upgrade. In your production org, you can inspect which metadata came from which package
version and the set of all metadata associated with the package version. When your “happy soup” of metadata is organized into packages,
updates and customizations are much easier to manage across your development team.

Before You Create Second-Generation Packages

When you use second-generation (2GP) packaging, be sure that you’ve set up things properly.

Is the beta in your Dev Hub org enabled? For information on enabling the beta, see Enable Second-Generation Packaging in the Salesforce
DX Setup Guide.

Note: Second-generation packaging is available with these licenses: Salesforce or Salesforce Limited Access - Free (partners only).

Users who work with 2GP packages need the correct permission set in the Dev Hub org. A user who doesn’t have the System Administrator
profile needs the Create and Update Second-Generation Packages permission. For more information, see Add Salesforce DX Users in
the Salesforce DX Setup Guide.

The maximum number of 2GP packages that you can create from a Dev Hub per day is the same as your daily scratch org allocation.
Scratch orgs and packages are counted independently, so creating a 2GP package does not count against your daily scratch org limit.
To view your scratch org limits, use the CLI:

sfdx force:limits:api:display -u <Dev Hub username or alias>

103

Packaging for ISVsUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_enable_secondgen_pkg.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_add_users.htm

For more information on scratch org limits, see Scratch Orgs .

Know Your Orgs

Some of the orgs that you use with second-generation packaging have a unique purpose.

Sample Repository

To work with a sample repository, get the Salesforce DX DreamHouse app in GitHub and check out the Packaging 2 branch.

Review Org Setup

After you verify or configure the org details, you’re ready to go.

Know Your Orgs
Some of the orgs that you use with second-generation packaging have a unique purpose.

Choose Your Dev Hub Org
Use the Dev Hub org for these purposes.

• As owner of all second-generation packages

• To link your namespaces so that they’re known to your scratch orgs

• To authorize and run your force:package commands

Important: You can create second-generation packages in any Dev Hub org where Packaging 2 is enabled. You can easily move
metadata from one Dev Hub org to another. But every time you create a second-generation package using the Salesforce CLI, the
Dev Hub org “owns” the package and package ownership can’t be transferred from one Dev Hub org to another. When you’re
ready to define and create a package for production use, be sure to create it in your production or “master” Dev Hub org and not
in a test Dev Hub org.

Other Orgs
When you work with packages, you also use these orgs:

• The primary purpose of the namespace org is to provide a package namespace. If you want to use the namespace strictly for testing,
choose a disposable namespace.

Note: After you create a namespace org and specify the namespace in it, open the Dev Hub org and link the namespace org
to the Dev Hub org.

• You can create scratch orgs on the fly to use while testing your packages.

• The target or installation org is where you install the package. This org is sometimes called a “subscriber” org.

SEE ALSO:

Link a Namespace to a Dev Hub Org

Sample Repository
To work with a sample repository, get the Salesforce DX DreamHouse app in GitHub and check out the Packaging 2 branch.

104

Know Your OrgsUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

You can clone the sample repository from GitHub.

git clone https://github.com/dreamhouseapp/dreamhouse-sfdx
cd dreamhouse-sfdx
git checkout pkg2-beta

Learn more about using other Salesforce DX features in the README file in the master branch of the dreamhouse-sfdx repository.
The pkg2-beta branch contains sample files and resources you can use.

Review Org Setup
After you verify or configure the org details, you’re ready to go.

First, if you plan to use namespaces with your packages, complete these tasks.

Note: If you’re creating a managed second-generation package, a namespace is required. If you’re creating an unlocked package,
a namespace is optional.

1. Log in to the Dev Hub org.

2. Enable and deploy My Domain in the Dev Hub org.

If you don’t enable and deploy My Domain, you can’t link your namespace to the Dev Hub org.

3. Create a Developer Edition (DE) org to use as your namespace org for testing.

Unlike first-generation packaging, there’s no need to create a package or packaging org for second-generation packaging. You can
create multiple test packages for a namespace by using the CLI and authenticating to the Dev Hub org.

4. Log in to the namespace org, and specify a namespace.

Important: Use a disposable namespace, because you can use it only for testing. Use your real namespace later when you’re
ready to adopt packaging for your production work.

Most customers use a single namespace org but you can use more than one if you want more granular control over how you organize
metadata. There can be a short delay between the time when you deploy My Domain and when the Link Namespace button appears
in the Dev Hub org.

5. In the Dev Hub org, link each namespace you want to work with.

For all types of packages, complete these tasks from the CLI.

1. Create a project and specify your configuration options in sfdx-project.json.

2. Create a scratch org where you can develop, install, and test versions of your packages.

3. (Recommended) Specify an alias for each org you plan to work with. An alias lets you give your orgs an easy to remember name so
you can move between orgs easily while you work with packages.

SEE ALSO:

Salesforce DX Setup Guide

Salesforce CLI Command Reference

Link a Namespace to a Dev Hub Org

Scratch Orgs

105

Review Org SetupUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

https://developer.salesforce.com/signup
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_setup
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

Workflow for Second-Generation Packages

After developing an app in a scratch org and testing it, you can create and install a second-generation package directly from the Salesforce
command line.

Note: Be sure to run the package CLI commands from the directory that contains the sfdx-project.json file.

The basic workflow includes these steps. See specific topics for details about each step.

1. Authorize the Dev Hub org, and create a scratch org.

When you perform this step, include the -d option. You can then omit the Dev Hub username when running subsequent Salesforce
CLI commands.

Tip: If you define an alias for each org you work with, it’s easy to switch between different orgs from the command line. You
can authorize different orgs as you iterate through the package development cycle.

2. Verify that all package components are in the project directory where you want to create a package.

3. From the Salesforce DX project directory, create the package.

sfdx force:package:create --name "Expense Manager" --path force-app \
--packagetype Unlocked

Wait a few minutes before you proceed to the next step.

4. Configure the package in the sfdx-project.json file. The CLI automatically updates the project file to include the package
directory and creates an alias based on the package name.

{
"packageDirectories": [

{
"path": "force-app",
"default": true,
"package": "Expense Manager",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT"

}
],
"namespace": "",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "43.0",
"packageAliases": {

"Expense Manager": "0Hoxxx"
}

}

Notice the placeholder values for versionName and versionNumber. You can update these values, or indicate base packages that
this package depends on. You can specify the features and org preferences required for the metadata of your package in the project
file, or you can opt to specify this information in an external .json file, such as the scratch org definition.

5. Create a package version. This example assumes the package metadata is in the force-app directory.

sfdx force:package:version:create --package "Expense Manager" --directory force-app \
--installationkey test1234 --definitionfile config/project-scratch-def.json --wait 10

106

Workflow for Second-Generation PackagesUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

You can indicate the .json file on the command line or define it in the sfdx-project.json. Wait a few minutes before
you proceed to the next step.

6. Install and test the package version in your scratch org.

sfdx force:package:install --package "Expense Manager" -u MyScratchOrgAlias \
--wait 10 --publishwait 10

7. After the package is installed, open the scratch org to view the package.

sfdx force:org:open -u MyScratchOrgAlias

Plan Second-Generation Packages

Investing time to plan your package helps you to develop, build, and deploy it successfully. Good planning ensures that your package
is reusable and easily upgradable.

Namespaces

A namespace is a one to 15-character alphanumeric identifier that distinguishes your package and its contents from packages of
other developers. A namespace is assigned to a package at the time that it’s created, and can’t be changed.

Package Types

Here are the package types for second-generation packaging.

Best Practices for Second-Generation Packages

We suggest that you follow these best practices when working with second-generation packages.

Package IDs

When running Salesforce CLI commands, you can identify packages and package versions by their aliases or package IDs. A package
ID is a unique identifier for packages and package versions.

Namespaces
A namespace is a one to 15-character alphanumeric identifier that distinguishes your package and its contents from packages of other
developers. A namespace is assigned to a package at the time that it’s created, and can’t be changed.

Important: When creating a namespace, use something that’s useful and informative to users. However, don’t name a namespace
after a person (for example, by using a person's name, nickname, or private information).

When you work with 2GP namespaces, keep these considerations in mind.

• For a managed package, a namespace is required.

• You can develop more than one package with the same namespace but you can associate each package with only a single namespace.
If you’re an ISV, we recommend that you use the same namespace for all your packages.

• If you work with more than one namespace, you set up one project for each namespace.

When you specify a package namespace, every component added to a package has the namespace prefixed to the component API
name. Let’s say you have a custom object called Insurance_Agent with the API name, Insurance_Agent__c. If you add this
component to a package associated with the Acme namespace, the API name becomes Acme__Insurance_Agent__c.

107

Plan Second-Generation PackagesUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

Namespaces for Unlocked Packages
You can choose to create unlocked packages with or without a specific namespace.

If you’re an enterprise customer who’s new to packaging, you’re probably adopting packages in several stages. In that case, a namespace
prefix such as Acme__ can help you identify what’s packaged and what’s still unpackaged metadata in your production orgs.

Creating a no-namespace package gives developers more control over how to organize and distribute parts of an application. This
flexibility can be useful during the initial package adoption phase.

When you build new functionality with no dependencies on unpackaged org metadata, evaluate your development plans to decide
whether to use a namespace.

Existing, unpackaged metadata can be migrated only to an unlocked package with no namespace. Therefore, to be able to migrate
existing metadata, create no-namespace, unlocked packages.

Note: You can’t install a no-namespace, unlocked package into any org with a namespace (for example, a scratch org with a
namespace or a first-generation packaging org).

Namespace-Based Visibility for Apex Classes in Second-Generation (2GP) Packages
The @namespaceAccessible annotation marks public or protected Apex in a package as available to other packages with the
same namespace. Unless explicitly annotated, Apex classes, methods, interfaces, and properties defined in a 2GP package aren’t accessible
to other packages with which they share a namespace. There is no impact on Apex that isn’t packaged.

Note: Apex that is declared global is always available across all namespaces, without the need of this annotation.

Restrictions on package-level Apex visibility are enforced when Apex is invoked from another Apex class or trigger. However, when Apex
is invoked as a Visualforce or Lightning controller, annotation used across packages is not enforced; it will be enforced in a future release.

You can add or remove the @namespaceAccessible annotation at any time, even on managed and released Apex code. Make
sure that you don’t have dependent packages relying on the functionality of the annotation before adding or removing it.

Note: When adding or removing @namespaceAccessible Apex from a package, consider the impact to customers with installed
versions of other packages that reference this package’s annotation. Before pushing a package upgrade, ensure that no customer
is running a package version that would fail to fully compile when the upgrade is pushed.

This example shows an Apex class marked with the @namespaceAccessible annotation. The class is accessible to other packages
within the same namespace. The first constructor is also visible within the namespace, but the second constructor isn’t.

// A namespace-visible Apex class
@namespaceAccessible
public class MyClass {

private Boolean bypassFLS;

// A namespace-visible constructor that only allows secure use
@namespaceAccessible
public MyClass() {

bypassFLS = false;
}

// A package private constructor that allows use in trusted contexts,
// but only internal to the package
public MyClass (Boolean bypassFLS) {

this.bypassFLS = bypassFLS;
}
@namespaceAccessible

108

NamespacesUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

protected Boolean getBypassFLS() {
return bypassFLS;

}
}

SEE ALSO:

Configure Packages

Package Types
Here are the package types for second-generation packaging.

Managed Packages (Beta)
A managed second-generation package is similar to a first-generation managed package. The managed package type is often used by
Salesforce partners (ISVs) to develop, distribute, and sell applications to customers. A managed package is fully upgradeable.

Unlocked Packages
Some enterprises want admins to have the flexibility to make changes directly in a production org in response to emergent issues that
come up. If you need this flexibility, you can create “unlocked” packages. However, your development team still controls the package.
A package upgrade overwrites the changes made directly in the production org.

Important: Because developers create these packages, a new package version overwrites any changes made directly in a
production org. Admins must communicate changes back to the development team who can update the package source.

If you create an unlocked package, you can change or delete any component in the installed package from the installed org. For example,
you can:

• Change the data type of a custom field from number to text.

• Change the markup on a Visualforce page.

• Modify a workflow rule.

• Remove permissions in a permission set.

• Change the description of a custom object.

• Delete a custom field.

• Delete a task associated with a workflow rule.

Some components are “hard-deleted.” When you delete the component from the package and install the new package version,
components are deleted from the install org.

Best Practices for Second-Generation Packages
We suggest that you follow these best practices when working with second-generation packages.

• We strongly recommend that you work with only one Dev Hub, unless you have a strong use case for concurrent use of multiple
Dev Hubs.

• A specific Dev Hub org owns every second-generation package that you create. If the Dev Hub org associated with a package expires
or is deleted, its packages no longer work.

109

Package TypesUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

• Take care when you decide how to utilize namespaces. For most customers, we recommend that you work with a single namespace
to avoid unnecessary complexity in how you manage components. If you’re test-driving second-generation packages, use a test
namespace. Use real namespaces only when you’re ready to embark on a development path headed for release in a production org.

Note: You can’t install a no-namespace, unlocked package into any org with a namespace (for example, a scratch org with
a namespace or a first-generation packaging org).

• Link your namespace with only one Dev Hub org. It’s possible to link a namespace with more than one Dev Hub org. However, some
packaging features such as keywords aren’t designed to work with a namespace linked in this way.

• Include the --tag option when you use the package:version:create and package:version:update commands.
This option helps you keep your version-control system tags in sync with specific package versions.

• Add the package version name and description to your sfdx-project.json file to store info about specific package versions.
You can also update the name or description of an existing package version using the package:version:update command.

• Use user-friendly aliases for packaging IDs, and start using those aliases in your Salesforce DX project file and when running CLI
packaging commands. The sfdx-project.json includes a section for creating package aliases. The CLI maps the 0Ho or
04t IDs to the package names or aliases when creating packages or package versions, and automatically updates the Salesforce
DX project file.

Package IDs
When running Salesforce CLI commands, you can identify packages and package versions by their aliases or package IDs. A package ID
is a unique identifier for packages and package versions.

When you create a package or package version, the CLI creates an alias in the sfdx-project.json file that references the unique
package ID.

Note: As a shortcut, the documentation sometimes refers to an ID by its three-character prefix. For example, a package version
ID always starts with 04t.

Each package has two IDs. You interact with one ID when you update the package. The other ID is what you and your customers use
when you install the package. At the command line, you also see IDs for things like package members (a component in a package) and
requests (like a package version create request).

Here are the most commonly used IDs.

DescriptionShort ID NameID Example

Use this ID to install a package version.
Returned by
force:package:version:create.

Subscriber Package Version ID04t6A0000004eytQAA

Use this ID on the command line to create
a package version. Or enter it into the

Package ID0Hoxx00000000CqCAI

sfdx-project.json file and use the directory
name. Generated by
force:package:create.

Returned by
force:package:version:create.

Package Version ID05ixx00000000DZAAY

Use this ID to specify ancestry among
package versions and for promoting a

110

Package IDsUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

DescriptionShort ID NameID Example

package version preleased using
force:package:version:promote.

ID for a specific request to create a package
version such as
force:package:version:create:get

Version Creation Request ID08cxx00000000BEAAY

Configure Packages

You include an entry in the Salesforce DX project configuration file for each package to specify its alias, version details, dependencies,
features, and org preferences. From the command line, you can also set or change options, such as specify an installation key, update
the package name, or add a description.

Project Configuration File for Packages

The project configuration file is a blueprint for your project and for the outline of a package. The settings in the file determine the
package attributes and package contents.

Keywords

A keyword is a variable that you can use to specify a package version number.

Package Installation Key

To ensure the security of the metadata in your package, you must specify an installation key when creating a package version.
Package creators provide the key to authorized subscribers so they can install the package. Package users provide the key during
installation, whether installing the package from the CLI or from a browser. An installation key is required as the first step during
installation, ensuring that no package information, like the name and components, is disclosed until the correct installation key is
supplied. The installer UI and API changes are effective in the Winter ’18 release. Changes to the Salesforce CLI will be announced
in a future release.

Extract Dependency Information from Unlocked Packages

For an installed unlocked package, you can now run a simple SOQL query to extract its dependency information. You can also create
a script to automate the installation of unlocked packages with dependencies.

Project Configuration File for Packages
The project configuration file is a blueprint for your project and for the outline of a package. The settings in the file determine the package
attributes and package contents.

Here are the parameters you can specify in the project definition file.

Default if Not SpecifiedRequired?Name

If you don’t specify a path, the Salesforce CLI uses a placeholder
when you create a package.

Yespath

true

If you have specified more than one path, include this parameter
for the default path to indicate which is the default package
directory.

Nodefault

111

Configure PackagesUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

Default if Not SpecifiedRequired?Name

The package name you specified when creating the package.Yespackage

If not specified, the CLI uses versionNumber as the version
name.

NoversionName

None.NoversionDescription

None. Version numbers are formatted as major.minor.patch.build.
For example, 1.2.1.8.

A subscriber can upgrade a managed package only if the upgrade
has an ancestor that was previously installed in the subscriber org.

YesversionNumber

When you create a managed package version, you specify the
ancestorID or ancestorVersion.

None. Specify the dependencies on other packages.

To specify dependencies for 2GP within the same Dev Hub, use
either the package version alias or a combination of the package
name and the version number.

"dependencies": [
{

Nodependencies

"package": "MyPackageName@0.1.0.1"
}

]

"dependencies": [
{

"package": "MyPackageName",
"versionNumber": "0.1.0.LATEST"

}
]

To specify dependencies for 2GP outside of the Dev Hub and for
first-generation packages within or outside of the current Dev Hub,
use:

"dependencies": [
{

"package": "OtherOrgPackage@1.2.0"
}

]

Note: You can use the LATEST keyword for the version
number to set the dependency.

To denote dependencies with package IDs instead of package
aliases, use:

• The 0Ho ID if you specify the package ID along with the
version number

• The 04t ID if you specify only the package ID

112

Project Configuration File for PackagesUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

Default if Not SpecifiedRequired?Name

If the package has more than one dependency, provide a
comma-separated list of packages in the order of installation. For
example, if a package depends on the package Expense Manager
- Util, which in turn depends on the package External Apex Library,
the package dependencies are:

"dependencies": [
{

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.LATEST"

},
{

"package" : "External Apex Library -
1.0.0.4"

}
]

For information on extracting dependency information from
unlocked packages, see Extract Dependency Information from
Unlocked Packages

None. Use the ancestor that’s the immediate parent of the version
that you’re creating. You can specify either ancestorID or
ancestorVersion.

The package version ID to supply starts with “05i”.

NoancestorID

ancestorVersion

You can also specify the ancestor version using the format
major.minor.patch.build.

Reference an external .json file to specify the features and org
preferences required for the metadata of your package, such as
the scratch org definition.

"definitionFile":
"config/project-scratch-def.json",

NodefinitionFile

None. You can use all features supported by Salesforce DX. We
recommend that you specify features in an external .json file,
such as the scratch org definition.

Nofeatures

None. You can use all Salesforce org preferences supported by
Salesforce DX, such as Chatter and Communities. We recommend

NoorgPreferences

that you specify org preferences in an external .json file, such
as the scratch org definition.

The Salesforce CLI updates this file with the aliases when you create
a package or package version. You can also manually update this

YespackageAliases

section for existing packages or package versions. You can use the
alias instead of the cryptic package ID when running CLI
force:package commands.

113

Project Configuration File for PackagesUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

The Salesforce DX project definition file is a JSON file is located in the root directory of your project. Here’s what the parameters in
packageDirectories look like.

{
"namespace": "",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "43.0",
"packageDirectories": [

{
"path": "util",
"default": true,
"package": "Expense Manager - Util",
"versionName": "Spring ‘18",
"versionDescription": "Welcome to Spring 2018 Release of Expense Manager Util

Package",
"versionNumber": "4.7.0.NEXT",
"definitionFile": "config/scratch-org-def.json"

},
{

"path": "exp-core",
"default": false,
"package": "Expense Manager",
"versionName": "v 3.2",
"versionDescription": "Spring 2018 Release",
"versionNumber": "3.2.0.NEXT",
"definitionFile": "config/scratch-org-def.json",
"dependencies": [

{
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.LATEST"

},
{

"package" : "External Apex Library - 1.0.0.4"
}

]
}

],
"packageAliases": {

"Expense Manager - Util": "0HoB00000004CFpKAM",
"External Apex Library - 1.0.0.4": "04tB0000000IB1EIAW",
"Expense Manager": "0HoB00000004CFuKAM"}

}

What If I Don’t Want My Salesforce DX Project Automatically Updated?
In some circumstances, automatic updates to the sfdx-project.json file aren’t desirable. When more control is required, use
these environment variables to suppress automatic updates to the project file.

Set This Environment Variable to TrueFor This Command

SFDX_PROJECT_AUTOUPDATE_DISABLE_FOR_PACKAGE_CREATEforce:package:create

SFDX_PROJECT_AUTOUPDATE_DISABLE_FOR_PACKAGE_VERSION_CREATEforce:package:version:create

114

Project Configuration File for PackagesUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

Keywords
A keyword is a variable that you can use to specify a package version number.

You can use two different keywords to automatically increment the value of the package build numbers and set the package dependency
to the latest version.

Use the NEXT keyword to increment the build number to the next available for the package.

"versionNumber": "1.2.0.NEXT"

Use the LATEST keyword in the version number to assign the latest version of the package dependency when you create a package
version.

"dependencies": [
{

"package": "MyPackageName",
"versionNumber": "0.1.0.LATEST"

}
]

Package Installation Key
To ensure the security of the metadata in your package, you must specify an installation key when creating a package version. Package
creators provide the key to authorized subscribers so they can install the package. Package users provide the key during installation,
whether installing the package from the CLI or from a browser. An installation key is required as the first step during installation, ensuring
that no package information, like the name and components, is disclosed until the correct installation key is supplied. The installer UI
and API changes are effective in the Winter ’18 release. Changes to the Salesforce CLI will be announced in a future release.

To set the installation key, add the --installationkey parameter to the command when you create the package version. This
command creates a package and protects it with the Open Sesame installation key.

sfdx force:package:version:create --package "Expense Manager" --directory common \
--tag 'Release 1.0.0' --installationkey "Open Sesame"

You must supply the installation key when you install the package version in the target org.

sfdx force:package:install --package "Expense Manager" --installationkey "Open Sesame"

Change the Installation Key for an Existing Package Version
You can change the installation key for an existing package version with the force:package:version:update command.

sfdx force:package:version:update --package "Expense Manager" --installationkey "Open
Sesame"

Create a Package Version Without an Installation Key
If you don’t require security measures to protect your package metadata, you can create a package version without an installation key.

sfdx force:package:version:create --package "Expense Manager" --directory common \
--tag 'Release 1.0.0' --installationkeybypass

115

KeywordsUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

Extract Dependency Information from Unlocked Packages
For an installed unlocked package, you can now run a simple SOQL query to extract its dependency information. You can also create a
script to automate the installation of unlocked packages with dependencies.

The SubscriberPackageVersion Tooling API object now provides dependency information. Using a SOQL query on SubscriberPackageVersion,
you can identify the packages on which your unlocked package has a dependency. You can get the (04t) IDs and the correct install order
for those packages.

Example: Package B has a dependency on package A. Package D depends on packages B and C. Here’s a sample
sfdx-project.json that you would have specified while creating a package version. Package D dependencies are noted
as packages A, B, and C.

{
"packageDirectories": [

{
"path": "pkg-a-workspace",
"package": "pkgA",
"versionName": "ver 4.9",
"versionNumber": "4.9.0.NEXT",
"default": true

},
{

"path": "pkg-b-workspace",
"package": "pkgB",
"versionName": "ver 3.17",
"versionNumber": "3.17.0.NEXT",
"default": false,
"dependencies": [

{
"package": "pkgA",
"versionNumber": "3.3.0.LATEST"

}
]

},
{

"path": "pkg-c-workspace",
"package": "pkgC",
"versionName": "ver 2.1",
"versionNumber": "2.1.0.NEXT",
"default": false

},
{

"path": "pkg-d-workspace",
"package": "pkgD",
"versionName": "ver 1.1",
"versionNumber": "1.1.0.NEXT",
"default": false,
"dependencies": [

{
"package": "pkgA",
"versionNumber": "3.3.0.LATEST"

},
{

"package": "pkgB",

116

Extract Dependency Information from Unlocked PackagesUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

"versionNumber": "3.12.0.LATEST"
},
{

"package": "pkgC",
"versionNumber": "2.1.0.LATEST"

}
]

}
],
"namespace": "",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "44.0",
"packageAliases": {

"pkgA": "0HoB00000008Oq6KAE",
"pkgB": "0HoB00000008OqBKAU",
"pkgC": "0HoB00000008OqGKAU",
"pkgD": "0HoB00000008OqGKAQ"

}
}

Before installing pkgD (with ID=04txx000000082hAAA), use this SOQL query to determine its dependencies. The username is
typically the target subscriber org where the unlocked package is to be installed.

sfdx force:data:soql:query -u {USERNAME} -t
-q "SELECT Dependencies FROM SubscriberPackageVersion

WHERE Id='04txx000000082hAAA'" --json

You see this output when you run the query, with the (04t) IDs for pkgA, pkgB, and pkgC in that order.

"Dependencies":{"Ids":[
{"subscriberPackageVersionId":"04txx000000080vAAA"},
{"subscriberPackageVersionId":"04txx000000082XAAQ"},
{"subscriberPackageVersionId":"04txx0000000AiGAAU"}]}

SEE ALSO:

Sample Script for Installing Packages with Dependencies

Create a Package

A package is a top-level container that holds important details about the app or package: the package name, description, and associated
namespace.

You supply the package details in the package descriptor section of your sfdx-project.json project configuration file. You can
associate multiple second-generation packages with a single Dev Hub org. Unlike first-generation managed packages, a second-generation
package has no packaging org.

Each package can have many versions. Because you can create multiple second-generation packages with a single org, you can use the
Salesforce CLI to see a list of all packages associated with your Dev Hub org.

It’s helpful to review the list before you create a package so you can see previous versions and confirm package details like the status or
ID.

117

Create a PackageUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

Authorize your Dev Hub org, and run the force:package:list command.

sfdx force:package:list

NAMESPACE PREFIX NAME ID DESCRIPTION PACKAGE TYPE PACKAGE ALIAS

──────────────── ────────── ──── ───────────────── ──────────── ─────────────

acme exp-mgr 0Ho Exp Manager Unlocked exp-mgr
exp-mgr-util 0Ho Exp Manager Utils Unlocked exp-mgr-util

Generate the Package

When you’re ready to test or share your package, use the force:package:create command to create a package. The package
can be a base package or an extension package that depends on an existing package.

Generate a Package Version

A package version is a fixed snapshot of the package contents and related metadata. The package version lets you manage changes
and track what’s different each time you release or deploy a specific set of changes.

Package Ancestors

The package ancestor attribute specifies the version branch to associate with a new package version.

Release a Second-Generation Package

During the development cycle, you can iterate a package version until it’s ready for release. You can complete the release process
from the command line using the Salesforce CLI.

Update a Package Version

You can update most properties of a package version from the command line. For example, you can change the package name or
description. One important exception is that you can’t change the release status.

View Package Details

The Dev Hub org can own multiple second-generation packages.

Generate the Package
When you’re ready to test or share your package, use the force:package:create command to create a package. The package
can be a base package or an extension package that depends on an existing package.

You specify the package namespace in the sfdx-project.json file, along with other package properties.

To create the package, change to the project directory. The name becomes the package alias, which is automatically added to the project
file.

sfdx force:package:create --name "My Awesome App" --description "My Package" \
--packagetype Unlocked

The output is similar to this example.

Successfully created a second-generation package. 0HoB00000004CXHJA2
=== Ids
NAME VALUE
────────── ──────────────────
Package Id 0HoB00000004CXHJA2

118

Generate the PackageUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

Update the Package
To update the name or description of an existing package, use this command.

sfdx force:package:update --package "Expense Manager" --name "New Name" \
--description "New Description"

Note: You can’t change the package namespace after you create the package.

Generate a Package Version
A package version is a fixed snapshot of the package contents and related metadata. The package version lets you manage changes and
track what’s different each time you release or deploy a specific set of changes.

Before you create a package version, first specify package details, such as the package ID, ancestors, dependencies, and major and minor
version numbers, in the sfdx-project.json file. Verify that the metadata you want to change or add in the new package version
is located in the package’s main directory.

How Many Package Versions Can I Create Per Day?
Run this command to see how many package versions you can create per day and how many you have remaining.

sfdx force:limits:api:display

Look for the PackageVersionCreates entry.

NAME REMAINING MAXIMUM
───────────────────────────────────── ───────── ─────────
PackageVersionCreates 50 50

Create a Package Version
Create the package version with this command. Specify the package alias or ID (0Ho). You can also include a scratch definition file that
contains a list of features and org preferences that the metadata of the package version depends on.

sfdx force:package:version:create --package "Expense Manager" \
--definitionfile config/project-scratch-def.json --wait 10

Note: When creating a package version, specify a --wait time to run the command in non-asynchronous mode. If the package
version is created within that time, the sfdx-project.json file is automatically updated. If not, you must manually edit
the project file.

It can be a long-running process to create a package version, depending on the package size and other variables. You can easily view
the status and monitor progress.

sfdx force:package:version:create:report --packagecreaterequestid 08cxx00000000YDAAY

The output shows details about the request.

=== Package Version Create Request
NAME VALUE
───────────────────────────── ────────────────────
Version Create Request Id 08cB00000004CBxIAM

119

Generate a Package VersionUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

Status InProgress
Package Id 0HoB00000004C9hKAE
Package Version Id 05iB0000000CaaNIAS
Subscriber Package Version Id 04tB0000000NOimIAG
Tag
Branch
CreatedDate 2018-05-08 09:48
Installation URL
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000NOimIAG

You can find the request ID (08c) in the initial output of force:package:version:create.

Depending on the size of the package and other variables, the create request can take several minutes. When you have more than one
pending request to create package versions, you can view a list of all requests with this command.

sfdx force:package:version:create:list --createdlastdays 0

Details for each request display as shown here (IDs and labels truncated).

=== Package Version Create Requests [3]
ID STATUS PACKAGE2 ID PKG2 VERSION ID SUB PKG2 VER ID TAG BRANCH CREATED DATE ===
08c... Error 0Ho...
08c... Success 0Ho... 05i... 04t... 2017-06-22 12:07
08c... Success 0Ho... 05i... 04t... 2017-06-23 14:55

Package Ancestors
The package ancestor attribute specifies the version branch to associate with a new package version.

If you’re familiar with first-generation managed packages, you probably know that they use linear package versions. Each package has
a single parent in a single branch. For second-generation(2GP) managed packages, you have more flexibility to implement a tree structure
of inheritance.

Note: Package inheritance can be specified only for 2GP managed packages, not for unlocked packages.

Specify the ancestor attribute in the sfdx-project.json file. Use the ancestor that’s the immediate parent of the version you’re
creating. You can specify either the ancestorID or with the ancestorVersion. The package version ID you supply starts with
“05i”.

"ancestorId" :"05iB00000004CIeIAM",

Note: When you create a scratch org, any ancestors defined for a package version that you include in the sfdx-project.json file
are automatically added to the scratch org. You can exclude the ancestors by using the --noancestors option when you
create a scratch org with force:org:create.

Release a Second-Generation Package
During the development cycle, you can iterate a package version until it’s ready for release. You can complete the release process from
the command line using the Salesforce CLI.

With this command, you promote your beta package versions to released. You can run this command only once for each package version
number, and you can’t undo the change to the package status.

A version number uses the format major.minor.patch.build. When you promote a package version, you can’t promote the same package
again unless you increment the minor or major number. For example, if you created and promoted package 1.0.0.2, you can create

120

Package AncestorsUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

packages 1.0.0.3, 1.0.0.4, and so on using the force:package:version:create command. However, you can’t promote more
packages with the 1.0.0 scheme. To promote another package, create a new package with an incremented major or minor version
number.

To promote packages, you must enable the Promote a package version to released setting for the user profile. We recommend that
you create a permission set enabling the Promote a package version to released system permission, and then assign the permission
set to the appropriate user profiles.

For managed packages, after you promote a package version, you can’t change some component attributes of its metadata in subsequent
package versions. This restriction doesn’t apply to unlocked packages, where you can make changes to subsequent package versions.

When you’re ready to release, use force:package:version:promote.

sfdx force:package:version:promote --package "Expense Manager"

If the command is successful, a confirmation message appears.

Successfully updated the package version. ID: 05ixx00000000DZAAY.

After the update succeeds, view the package details.

sfdx force:package:version:report --package "Expense Manager-1.0.0.5"

Confirm that the value of the Released property is true.

=== Package Version
NAME VALUE
────────────────────────────── ───────────────────
Name ver 1.0
Alias Expense Manager-1.0.0.5
Package Version Id 05iB0000000CaahIAC
Package Id 0HoB0000000CabmKAC
Subscriber Package Version Id 04tB0000000NPbBIAW
Version 1.0.0.5
Description update version
Branch
Tag
Released true
Created Date 2018-05-08 09:48
Installation URL
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000NPbBIAW

Update a Package Version
You can update most properties of a package version from the command line. For example, you can change the package name or
description. One important exception is that you can’t change the release status.

View Package Details
The Dev Hub org can own multiple second-generation packages.

To display a list of all second-generation packages in the Dev Hub org, use this command.

sfdx force:package:list --targetdevhubusername jdev@example.com

121

Update a Package VersionUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

You can view the namespace, package name, ID, and other details in the output.

NAMESPACE PREFIX NAME ID DESCRIPTION PACKAGE TYPE PACKAGE ALIAS

──────────────── ────────── ──── ───────────────── ──────────── ─────────────

acme exp-mgr 0Ho Exp Manager Unlocked exp-mgr
exp-mgr-util 0Ho Exp Manager Utils Unlocked exp-mgr-util

To list all second-generation package versions in the Dev Hub org, use this command.

sfdx force:package:version:list --createdlastdays 0 --verbose \
--orderby PatchVersion

Include optional parameters to filter the list results based on the modification date, creation date, and to order by specific fields or
package IDs. To limit the details, use --concise. To show expanded details, use --verbose.

Install a Package

Install second-generation packages using the CLI or the Salesforce browser. You can install package versions in a scratch org, sandbox
org, DE org, or production org, depending on the package type.

Install Packages with the CLI

If you’re working with the Salesforce CLI, you can use the force:package:install command to install packages in a scratch
org or target subscriber org.

Install Packages from a URL

Install second-generation packages from the CLI or from a browser, similar to how you install classic managed packages.

Upgrade a Package Version

Are you introducing metadata changes to an existing package? You can use the CLI to upgrade one package version to another.

Sample Script for Installing Packages with Dependencies

Use this sample script as a basis to create your own script to install packages with dependencies. This script contains a query that
finds dependent packages and installs them in the correct dependency order.

Install Packages with the CLI
If you’re working with the Salesforce CLI, you can use the force:package:install command to install packages in a scratch
org or target subscriber org.

Before you install a package to a scratch org, run this command to list all the packages and locate the ID or package alias.

sfdx force:package:version:list

Identify the version you want to install. Enter this command, supplying the package alias or package ID (starts with 04t).

sfdx force:package:install --package "Expense Manager@1.2.0-12" --targetusername
jdoe@example.com

If you’ve already set the scratch org with a default username, enter just the package version ID.

sfdx force:package:install --package "Expense Manager@1.2.0-12"

122

Install a PackageUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

Note: If you’ve defined an alias (with the -a parameter), you can specify the alias instead of the username for
--targetusername.

The CLI displays status messages regarding the installation.

Waiting for the subscriber package version install request to get processed. Status =
InProgress Successfully installed the subscriber package version: 04txx0000000FIuAAM.

Control Package Installation Timeouts
When you issue a force:package:install command, it takes a few minutes for a package version to become available in the
target org and for installation to complete. To allow sufficient time for a successful install, use these parameters that represent mutually
exclusive timers.

• --publishwait defines the maximum number of minutes that the command waits for the Package Version to be available in
the target org. The default is 0. If the package is not available in the target org in this time frame, the install is terminated.

Setting --publishwait is useful when you create a new package version and then immediately try to install it to target orgs.

Note: If --publishwait is set to 0, the package installation immediately fails, unless the package version is already
available in the target org.

• --wait defines the maximum number of minutes that the command waits for the installation to complete after the package is
available. The default is 0. When the --wait interval ends, the install command completes, but the installation continues until it either
fails or succeeds. You can poll the status of the installation using sfdx force:package:install:report.

Note: The --wait timer takes effect after the time specified by --publishwait has elapsed. If the --publishwait
interval times out before the package is available in the target org, the --wait interval never starts.

For example, consider a package called Expense Manager that takes five minutes to become available on the target org, and 11 minutes
to install. The following command has publishwait set to three minutes and wait set to 10 minutes. Because Expense Manager
requires more time than the set publishwait interval, the installation is aborted at the end of the three minute publishwait
interval.

sfdx force:package:install --package "Expense Manager@1.2.0-12" --publishwait 3 --wait 10

The following command has publishwait set to six minutes and wait set to 10 minutes. If not already available, Expense Manager
takes five minutes to become available on the target org. The clock then starts ticking for the 10 minute wait time. At the end of 10
minutes, the command completes because the wait time interval has elapsed, although the installation is not yet complete. At this
point, package:install:report indicates that the installation is in progress. After one more minute, the installation completes
and package:install:report indicates a successful installation.

sfdx force:package:install --package "Expense Manager@1.2.0-12" --publishwait 6 --wait 10

Install Packages from a URL
Install second-generation packages from the CLI or from a browser, similar to how you install classic managed packages.

If you create packages from the CLI, you can derive an installation URL for the package by adding the subscriber package ID to your Dev
Hub URL. You can use this URL to test different deployment or installation scenarios.

For example, if the package version has the subscriber package ID, 04tB00000009oZ3JBI, add the ID as the value of apvId.

https://my-domain.lightning.force.com/packagingSetupUI/ipLanding.app?apvId=04tB00000009oZ3JBI

Anyone with the URL and a valid login to a Salesforce org can install the package.

123

Install Packages from a URLUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

To install the package:

1. In a browser, go to the installation URL.

2. Enter your username and password for the Salesforce org in which you want to install the package, and then click Login.

3. If the package is protected by an installation key, enter the installation key you received from the publisher.

4. For a default installation, click Install.

A message describes the progress. You receive a confirmation message when the installation is complete.

For more information about installing packages and custom installation options, see the ISVforce Guide and Salesforce Help.

Upgrade a Package Version
Are you introducing metadata changes to an existing package? You can use the CLI to upgrade one package version to another.

When you perform a package upgrade, here’s what to expect for metadata changes.

• Metadata introduced in the new version is installed as part of the upgrade.

• If an upgraded component has the same API name as a component already in the target org, the component is overwritten with
the changes.

• If a component in the upgrade was previously deleted from the target org, the component is re-created during the upgrade.

• Metadata that was removed in the new package version is also removed from the target org as part of the upgrade. Removed
metadata is metadata not included in the current package version install, but present in the previous package version installed in
the target org. If metadata is removed before the upgrade occurs, the upgrade proceeds normally. Some examples where metadata
is deprecated and not deleted are:

– User-entered data in custom objects and fields are deprecated and not deleted. Admins can export such data if necessary.

– An object such as an Apex class is deprecated and not deleted if it is referenced in a Lightning component that is part of the
package.

• In API version 45.0 and later (salesforcedx plug-in for Salesforce CLI version 45.0.9 or later), you can specify what happens to
removed metadata during package upgrade. Use the force:package:install command’s -t | --upgradetype
parameter, specifying one of these values:

– DeprecateOnly specifies that all removed components must be marked deprecated. The removed metadata exists in the
target org after package upgrade, but is shown in the UI as deprecated from the package. This option is useful when migrating
metadata from one package to another.

– Mixed (the default) specifies that some removed components are deleted, and other components are marked deprecated.
For more information on hard-deleted components, see Metadata Coverage.

Sample Script for Installing Packages with Dependencies
Use this sample script as a basis to create your own script to install packages with dependencies. This script contains a query that finds
dependent packages and installs them in the correct dependency order.

124

Upgrade a Package VersionUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

Sample Script

Note: Be sure to replace the package version ID and scratch org user name with your own specific details.

#!/bin/bash

The execution of this script stops if a command or pipeline has an error.

For example, failure to install a dependent package will cause the script

to stop execution.

set -e

Specify a package version id (starts with 04t)

If you know the package alias but not the id, use force:package:version:list to find it.

PACKAGE=04tB0000000NmnHIAS

Specify the user name of the subscriber org.

USER_NAME=test-bvdfz3m9tqdf@example.com

Specify the timeout in minutes for package installation.

WAIT_TIME=15

echo "Retrieving dependencies for package Id: "$PACKAGE

Execute soql query to retrieve package dependencies in json format.

RESULT_JSON=`sfdx force:data:soql:query -u $USER_NAME -t -q "SELECT Dependencies FROM
SubscriberPackageVersion WHERE Id='$PACKAGE'" --json`

Parse the json string using python to test whether the result json contains a list of
ids or not.

DEPENDENCIES=`echo $RESULT_JSON | python -c 'import sys, json; print
json.load(sys.stdin)["result"]["records"][0]["Dependencies"]'`

If the parsed dependencies is None, the package has no dependencies. Otherwise, parse
the result into a list of ids.

Then loop through the ids to install each of the dependent packages.

125

Sample Script for Installing Packages with DependenciesUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

if [["$DEPENDENCIES" != 'None']]; then

DEPENDENCIES=`echo $RESULT_JSON | python -c '

import sys, json

ids = json.load(sys.stdin)["result"]["records"][0]["Dependencies"]["ids"]

dependencies = []

for id in ids:

dependencies.append(id["subscriberPackageVersionId"])

print " ".join(dependencies)

'`

echo "The package you are installing depends on these packages (in correct dependency
order): "$DEPENDENCIES

for id in $DEPENDENCIES

do

echo "Installing dependent package: "$id

sfdx force:package:install --package $id -u $USER_NAME -w $WAIT_TIME --publishwait
10

done

else

echo "The package has no dependencies"

fi

After processing the dependencies, proceed to install the specified package.

echo "Installing package: "$PACKAGE

sfdx force:package:install --package $PACKAGE -u $USER_NAME -w $WAIT_TIME --publishwait
10

exit 0;

126

Sample Script for Installing Packages with DependenciesUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

Migrate Deprecated Metadata from Unlocked Packages

You can deprecate metadata in an unlocked package, move that metadata to a new package, and then install the new package in your
production org.

As you start creating more unlocked packages, you might need to refactor your package and move metadata from one unlocked package
to another unlocked package. Before the Winter ’18 release, you had to use the UI to manually remove the installed metadata from the
original package because deprecate-upon-upgrade metadata was still associated with the package. You couldn’t install a new package
containing that metadata without the manual step.

To move production metadata from package A to package B, follow these steps.

1. Identify the metadata to be moved from package A to package B.

2. Remove the metadata from package A, create a version, and release the package.

3. Add the metadata to package B, create a version, and release the package.

4. In your production org, upgrade package A.

5. In your production org, install package B.

Your metadata is now a part of package B in your production org.

Uninstall a Package

You can uninstall a package from a subscriber org using the CLI or from Salesforce Setup. When you uninstall second-generation packages,
all components in the package are deleted from the org.

To use the CLI to uninstall a second-generation package from the target org, authorize the Dev Hub org and run this command.

sfdx force:package:uninstall --package "Expense Manager"

You can also uninstall a package from the web browser. Open the Salesforce org where you installed the package.

sfdx force:org:open -u me@my.org

Then uninstall the package in the same way you uninstall first-generation managed packages.

1. From Setup, enter Installed Packages in the Quick Find box, then select Installed Packages.

2. Click Uninstall next to the package that you want to remove.

3. Select Yes, I want to uninstall and click Uninstall.

4. After an uninstall, Salesforce automatically creates an export file containing the package data, associated notes, and any attachments.
When the uninstall is complete, Salesforce sends an email containing a link to the export file to the user performing the uninstall.
The export file and related notes and attachments are listed below the list of installed packages. We recommend storing the file
elsewhere because it’s available for only two days after the uninstall completes, then it's deleted from the server.

Tip: If you reinstall the package later and want to reimport the package data, see Importing Package Data.

SEE ALSO:

Salesforce CLI Command Reference

127

Migrate Deprecated Metadata from Unlocked PackagesUnlocked Packages (Generally Available) and
Second-Generation Managed Packages (Beta)

https://help.salesforce.com/apex/HTViewHelpDoc?id=distribution_reimport_package_data.htm&language=en_US#distribution_reimport_package_data
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

CHAPTER 12 Continuous Integration

Continuous integration (CI) is a software development practice in which developers regularly integrate
their code changes into a source code repository. To ensure that the new code does not introduce bugs,
automated builds and tests run before or after developers check in their changes.

In this chapter ...

• Continuous
Integration Using
CircleCI Many third-party CI tools are available for you to choose from. Salesforce DX easily integrates into these

tools so that you can set up continuous integration for your Salesforce applications.

SEE ALSO:

Trailhead: Build an Automated CI/CD Pipeline with GitLab

• Continuous
Integration Using
Jenkins

• Continuous
Integration with
Travis CI

• Sample CI Repos for
Org Development
Model

• Sample CI Repos for
Package
Development Model

128

https://trailhead.salesforce.com/en/content/learn/projects/automate-cicd-with-gitlab

Continuous Integration Using CircleCI

CircleCI is a commonly used integration tool that integrates with your existing version control system to push incremental updates to
the environments you specify. CircleCI can be used as a cloud-based or on-premise tool. These instructions demonstrate how to use
GitHub, CircleCI, and your Dev Hub org for continuous integration.

Configure Your Environment for CircleCI

Before integrating your existing CircleCI framework, configure your Dev Hub org and CircleCI project.

Connect CircleCI to Your DevHub

Authorize CircleCI to push content to your Dev Hub via a connected app.

SEE ALSO:

CircleCI

The sfdx-circleci Github Repo

Configure Your Environment for CircleCI
Before integrating your existing CircleCI framework, configure your Dev Hub org and CircleCI project.

1. Set up your GitHub repository with CircleCI. You can follow the sign-up steps on the CircleCI website to access your code on GitHub.

2. Install the Salesforce CLI, if you haven’t already.

3. Follow Authorize an Org Using the JWT-Based Flow for your Dev Hub org, if you haven’t already.

4. Encrypt your server key.

a. First, generate a key and initialization vector (iv) to encrypt your server.key file locally. CircleCI uses the key and vi to decrypt
your server key in the build environment.

Run the following command in the directory containing your server.key file. For the <passphrase> value, enter a
word of your own choosing to create a unique key.

openssl enc -aes-256-cbc -k <passphrase> -P -md sha1 -nosalt

The key and iv value display in the output.

key=****24B2
iv =****DA58

b. Note the key and iv values, you need them later.

c. Encrypt the server.key file using the newly generated key and iv values. Run the following command in the directory
containing your server.key file, replacing <key> and <iv> with the values from the previous step.

openssl enc -nosalt -aes-256-cbc -in server.key -out server.key.enc -base64 -K <key>
-iv <iv>

Note: Use the key and iv values only once, and don't use them to encrypt more than the server.key. While you can
reuse this pair to encrypt other things, it is considered a security violation to do so.

You generate a new key and iv value every time you run the command in step a. In other words, you can't regenerate the same
pair. If you lose these values you must generate new ones and encrypt again.

129

Continuous Integration Using CircleCIContinuous Integration

http://www.circleci.com/
https://github.com/forcedotcom/sfdx-circleci
https://circleci.com/docs/2.0/
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm

Next, you’ll store the key, iv, and contents of server.key.enc as protected environment variables in the CircleCI UI. These values
are considered secret, so take the appropriate precautions to protect them.

Connect CircleCI to Your DevHub
Authorize CircleCI to push content to your Dev Hub via a connected app.

1. Make sure that you have the Salesforce CLI installed. Check by running sfdx force --help and confirm that you see the
command output. If you don't have it installed, see Install the Salesforce CLI.

2. Confirm you can perform a JWT-based authorization from the directory containing your server.key file. Run the following
command from the directory containing your server.key (replace <your_consumer_key> and <your_username>
values where indicated).

sfdx force:auth:jwt:grant --clientid <your_consumer_key> --jwtkeyfile server.key
--username <your_username> --setdefaultdevhubusername

3. Fork the sfdx-circleci repo into your GitHub account using the Fork link at the top of the page.

4. Create a local directory for this project and clone your forked repo locally into the new directory. Replace <git_username>
with your own GitHub username.

git clone https://github.com/<git_username>/sfdx-circleci.git

5. Retrieve the generated consumer key from your JWT-Based Authorization connected app. From Setup, in the Quick Find box, enter
App, and then select App Manager. Select View in the row-menu next to the connected app.

6. In the CircleCI UI, you should see a project named sfdx-circleci. In the project settings, store the consumer key in a CircleCI environment
variable named HUB_CONSUMER_KEY. For more information, see the CircleCI documentation Setting an Environment Variable
in a Project.

7. Store the username that you use to access your Dev Hub in a CircleCI environment variable named HUB_SFDX_USER using the
CircleCI UI.

8. Store the key and iv values from Encrypt Your Server Key in CircleCI environment variables named DECRYPTION_KEYand
DECRYPTION_IV, respectively. When you finish setting the environment variables, your project screen should look like the
following image.

130

Connect CircleCI to Your DevHubContinuous Integration

https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm#sfdx_setup_install_cli
http://help.github.com/fork-a-repo/
https://github.com/forcedotcom/sfdx-circleci
https://circleci.com/docs/2.0/env-vars/#setting-an-environment-variable-in-a-project
https://circleci.com/docs/2.0/env-vars/#setting-an-environment-variable-in-a-project

Note: In the directory containing your server.key file, use the command rm server.key to remove the
server.key. Never store keys or certificates in a public place.

You’re ready to go! Now when you commit and push a change, your change kicks off a CircleCI build.

Contributing to the Repository

If you find any issues or opportunities for improving this repository, fix them! Feel free to contribute to this project, fork this repository,
and then change the content. Once you've made your changes, share them back with the community by sending a pull request. See
How to send pull requests for more information about contributing to GitHub projects.

Reporting Issues

If you find any issues with this demo that you can't fix, feel free to report them in the issues section of this repository.

Continuous Integration Using Jenkins

Jenkins is an open-source, extensible automation server for implementing continuous integration and continuous delivery. You can
easily integrate Salesforce DX into the Jenkins framework to automate testing of Salesforce applications against scratch orgs.

To integrate Jenkins, we assume:

• You are familiar with how Jenkins works. You can configure and use Jenkins in many ways. We focus on integrating Salesforce DX
into Jenkins multibranch pipelines.

• The computer on which the Jenkins server is running has access to your version control system and to the repository that contains
your Salesforce application.

Configure Your Environment for Jenkins

Before integrating Salesforce DX into your existing Jenkins framework, configure your Jenkins environment.

131

Continuous Integration Using JenkinsContinuous Integration

http://help.github.com/fork-a-repo/
http://help.github.com/send-pull-requests/
https://github.com/forcedotcom/sfdx-circleci/issues

Jenkinsfile Walkthrough

The sample Jenkinsfile shows how to integrate Salesforce DX into a Jenkins job. The sample uses Jenkins multibranch pipelines.
Every Jenkins setup is different. This walkthrough describes one of the ways to automate testing of your Salesforce applications. The
walkthrough highlights the Salesforce DX CLI commands to create a scratch org, upload your code, and run your tests.

Sample Jenkinsfile

A Jenkinsfile is a text file that contains the definition of a Jenkins Pipeline. This Jenkinsfile shows how to integrate the
Salesforce DX CLI commands to automate testing of your Salesforce applications using scratch orgs.

SEE ALSO:

Jenkins

Pipeline-as-code with Multibranch Workflows in Jenkins

Configure Your Environment for Jenkins
Before integrating Salesforce DX into your existing Jenkins framework, configure your Jenkins environment.

1. In your Dev Hub org, create a connected app as described by the JWT-based authorization flow. This step includes obtaining or
creating a private key and digital certificate.

Make note of your consumer key (sometimes called a client ID) when you save the connected app. You need the consumer key to
set up your Jenkins environment. Also have available the private key file used to sign the digital certificate.

2. On the computer that is running the Jenkins server, do the following.

a. Download and install the Salesforce DX CLI.

b. Store the private key file as a Jenkins Secret File using the Jenkins Admin Credentials interface. Make note of the new entry’s ID.

You later reference this Credentials entry in your Jenkinsfile.

c. Set the following variables in your Jenkins environment.

• HUB_ORG_DH—The username for the Dev Hub org, such as juliet.capulet@myenvhub.com.

• SFDC_HOST_DH—The login URL of the Salesforce instance that is hosting the Dev Hub org. The default is
https://login.salesforce.com

• CONNECTED_APP_CONSUMER_KEY_DH—The consumer key that was returned after you created a connected app in your
Dev Hub org.

• JWT_CRED_ID_DH—The credentials ID for the private key file that you stored in the Jenkins Admin Credentials interface.

The names for these environment variables are just suggestions. You can use any name as long as you specify it in the
Jenkinsfile.

You can also optionally set the SFDX_AUTOUPDATE_DISABLE variable to true to disable auto-update of the Salesforce CLI.
CLI auto-update can interfere with the execution of a Jenkins job.

3. Set up your Salesforce DX project so that you can create a scratch org.

132

Configure Your Environment for JenkinsContinuous Integration

https://jenkins.io/
https://jenkins.io/blog/2015/12/03/pipeline-as-code-with-multibranch-workflows-in-jenkins/
https://wiki.jenkins-ci.org/display/JENKINS/Credentials+Binding+Plugin

4. (Optional) Install the Custom Tools Plugin into your Jenkins console, and create a custom tool that references the Salesforce CLI. The
Jenkins walkthrough assumes that you created a custom tool named toolbelt in the /usr/local/bin directory, which is the
directory in which the Salesforce CLI is installed.

SEE ALSO:

Authorize an Org Using the JWT-Based Flow

Salesforce DX Setup Guide

Jenkins: Credentials Binding Plugin

Project Setup

Jenkinsfile Walkthrough
The sample Jenkinsfile shows how to integrate Salesforce DX into a Jenkins job. The sample uses Jenkins multibranch pipelines. Every
Jenkins setup is different. This walkthrough describes one of the ways to automate testing of your Salesforce applications. The walkthrough
highlights the Salesforce DX CLI commands to create a scratch org, upload your code, and run your tests.

We assume that you are familiar with the structure of the Jenkinsfile, Jenkins Pipeline DSL, and the Groovy programming language. This
walkthrough focuses solely on Salesforce DX information. See the Salesforce DX Command Reference regarding the commands used.

This Salesforce DX workflow most closely corresponds to Jenkinsfile stages.

• Define Variables

• Check Out the Source Code

• Wrap All Stages in a withCredentials Command

• Authorize Your Dev Hub Org and Create a Scratch Org

• Push Source and Assign a Permission Set

• Run Apex Tests

• Delete the Scratch Org

Define Variables
Use the def keyword to define the variables required by the Salesforce DX CLI commands. Assign each variable the corresponding
environment variable that you previously set in your Jenkins environment.

def HUB_ORG=env.HUB_ORG_DH
def SFDC_HOST = env.SFDC_HOST_DH
def JWT_KEY_CRED_ID = env.JWT_CRED_ID_DH
def CONNECTED_APP_CONSUMER_KEY=env.CONNECTED_APP_CONSUMER_KEY_DH

Define the SFDC_USERNAME variable, but don’t set its value. You do that later.

def SFDC_USERNAME

Although not required, we assume you’ve used the Jenkins Global Tool Configuration to create the toolbelt custom tool that points
to the CLI installation directory. In your Jenkinsfile, use the tool command to set the value of the toolbelt variable to this
custom tool.

def toolbelt = tool 'toolbelt'

You can now reference the Salesforce CLI executable in the Jenkinsfile using ${toolbelt}/sfdx.

133

Jenkinsfile WalkthroughContinuous Integration

https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_setup.meta/sfdx_setup
https://wiki.jenkins-ci.org/display/JENKINS/Credentials+Binding+Plugin

Check Out the Source Code
Before testing your code, get the appropriate version or branch from your version control system (VCS) repository. In this example, we
use the checkout scm Jenkins command. We assume that the Jenkins administrator has already configured the environment to
access the correct VCS repository and check out the correct branch.

stage('checkout source') {
// when running in multi-branch job, one must issue this command
checkout scm

}

Wrap All Stages in a withCredentials Command
You previously stored the JWT private key file as a Jenkins Secret File using the Credentials interface. Therefore, you must use the
withCredentials command in the body of the Jenkinsfile to access the secret file. The withCredentials command
lets you name a credential entry, which is then extracted from the credential store and provided to the enclosed code through a variable.
When using withCredentials, put all stages within its code block.

This example stores the credential ID for the JWT key file in the variable JWT_KEY_CRED_ID. You defined JWT_KEY_CRED_ID
earlier and set it to its corresponding environment variable. The withCredentials command fetches the contents of the secret
file from the credential store and places the contents in a temporary location. The location is stored in the variable jwt_key_file.
You use the jwt_key_file variable with the force:auth:jwt command to specify the private key securely.

withCredentials([file(credentialsId: JWT_KEY_CRED_ID, variable: 'jwt_key_file')]) {
all stages will go here

}

Authorize Your Dev Hub Org and Create a Scratch Org
The dreamhouse-sfdx example uses one stage to authorize the Dev Hub org and create a scratch org.

stage('Create Scratch Org') {

rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:auth:jwt:grant --clientid
${CONNECTED_APP_CONSUMER_KEY} --username ${HUB_ORG} --jwtkeyfile ${jwt_key_file}
--setdefaultdevhubusername --instanceurl ${SFDC_HOST}"

if (rc != 0) { error 'hub org authorization failed' }

// need to pull out assigned username
rmsg = sh returnStdout: true, script: "${toolbelt}/sfdx force:org:create --definitionfile

config/project-scratch-def.json --json --setdefaultusername"
printf rmsg
def jsonSlurper = new JsonSlurperClassic()
def robj = jsonSlurper.parseText(rmsg)
if (robj.status != "ok") { error 'org creation failed: ' + robj.message }
SFDC_USERNAME=robj.username
robj = null

}

Use the force:auth:jwt:grant CLI command to authorize your Dev Hub org.

134

Jenkinsfile WalkthroughContinuous Integration

You are required to run this step only once, but we suggest you add it to your Jenkinsfile and authorize each time you run the
Jenkins job. This way you’re always sure that the Jenkins job is not aborted due to lack of authorization. There is typically little harm in
authorizing multiple times, although keep in mind that the API call limit for your scratch org’s edition still applies.

Use the parameters of the force:auth:jwt:grant command to provide information about the Dev Hub org that you are
authorizing. The values for the --clientid, --username, and --instanceurl parameters are the
CONNECTED_APP_CONSUMER_KEY, HUB_ORG, and SFDC_HOST environment variables you previously defined, respectively. The value
of the --jwtkeyfile parameter is the jwt_key_file variable that you set in the previous section using the
withCredentials command. The --setdefaultdevhubusername parameter specifies that this HUB_ORG is the default
Dev Hub org for creating scratch orgs.

Use the force:org:create CLI command to create a scratch org. In the example, the CLI command uses the
config/project-scratch-def.json file (relative to the project directory) to create the scratch org. The --json parameter
specifies that the output be in JSON format. The --setdefaultusername parameter sets the new scratch org as the default.

The Groovy code that parses the JSON output of the force:org:create command extracts the username that was auto-generated
as part of the org creation. This username, stored in the SFDC_USERNAME variable, is used with the CLI commands that push source,
assign a permission set, and so on.

Push Source and Assign a Permission Set
Let’s populate your new scratch org with metadata. This example uses the force:source:push command to upload your source
to the org. The source includes all the pieces that make up your Salesforce application: Apex classes and test classes, permission sets,
layouts, triggers, custom objects, and so on.

stage('Push To Test Org') {

rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:source:push --targetusername
${SFDC_USERNAME}"
if (rc != 0) {
error 'push all failed'
}
// assign permset
rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:user:permset:assign

--targetusername ${SFDC_USERNAME} --permsetname DreamHouse"
if (rc != 0) {

error 'push all failed'
}

}

Recall the SFDC_USERNAME variable that contains the auto-generated username that was output by the force:org:create
command in an earlier stage. The code uses this variable as the argument to the --targetusername parameter to specify the
username for the new scratch org.

The force:source:push command pushes all the Salesforce-related files that it finds in your project. Add a .forceignore
file to your repository to list the files that you do not want pushed to the org.

After pushing the metadata, the example uses the force:user:permset:assign command to assign a permission set (named
DreamHouse) to the SFDC_USERNAME user. The XML file that describes this permission set was uploaded to the org as part of the push.

135

Jenkinsfile WalkthroughContinuous Integration

Run Apex Tests
Now that your source code and test source have been pushed to the scratch org, run the force:apex:test:run command to
run Apex tests.

stage('Run Apex Test') {
sh "mkdir -p ${RUN_ARTIFACT_DIR}"
timeout(time: 120, unit: 'SECONDS') {
rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:apex:test:run --testlevel

RunLocalTests --outputdir ${RUN_ARTIFACT_DIR} --resultformat tap --targetusername
${SFDC_USERNAME}"
if (rc != 0) {
error 'apex test run failed'
}
}

}

You can specify various parameters to the force:apex:test:run CLI command. In the example:

• The --testlevel RunLocalTests option runs all tests in the scratch org, except tests that originate from installed managed
packages. You can also specify RunSpecifiedTests to run only certain Apex tests or suites or RunAllTestsInOrg to
run all tests in the org.

• The --outputdir option uses the RUN_ARTIFACT_DIR variable to specify the directory into which the test results are written.
Test results are produced in JUnit and JSON formats.

• The --resultformat tap option specifies that the command output is in Test Anything Protocol (TAP) format. The test results
that are written to a file are still in JUnit and JSON formats.

• The --targetusername option specifies the username for accessing the scratch org (the value in SFDC_USERNAME).

The force:apex:test:run command writes its test results in JUnit format. You can collect the results using industry-standard
tools as shown in the following example.

stage('collect results') {
junit keepLongStdio: true, testResults: 'tests/**/*-junit.xml'

}

Delete the Scratch Org
Salesforce reserves the right to delete a scratch org a specified number of days after it was created. You can also create a stage in your
pipeline that uses force:org:delete to explicitly delete your scratch org when the tests complete. This cleanup ensures better
management of your resources.

stage('Delete Test Org') {

timeout(time: 120, unit: 'SECONDS') {
rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:org:delete

--targetusername ${SFDC_USERNAME} --noprompt"
if (rc != 0) {

error 'org deletion request failed'
}

136

Jenkinsfile WalkthroughContinuous Integration

}
}

SEE ALSO:

Sample Jenkinsfile

Pipeline-as-code with Multibranch Workflows in Jenkins

TAP: Test Anything Protocol

Configure Your Environment for Jenkins

Salesforce CLI Command Reference

Sample Jenkinsfile
A Jenkinsfile is a text file that contains the definition of a Jenkins Pipeline. This Jenkinsfile shows how to integrate the
Salesforce DX CLI commands to automate testing of your Salesforce applications using scratch orgs.

The Jenkinsfile Walkthrough topic uses this Jenkinsfile as an example.

#!groovy
import groovy.json.JsonSlurperClassic
node {

def BUILD_NUMBER=env.BUILD_NUMBER
def RUN_ARTIFACT_DIR="tests/${BUILD_NUMBER}"
def SFDC_USERNAME

def HUB_ORG=env.HUB_ORG_DH
def SFDC_HOST = env.SFDC_HOST_DH
def JWT_KEY_CRED_ID = env.JWT_CRED_ID_DH
def CONNECTED_APP_CONSUMER_KEY=env.CONNECTED_APP_CONSUMER_KEY_DH

def toolbelt = tool 'toolbelt'

stage('checkout source') {
// when running in multi-branch job, one must issue this command
checkout scm

}

withCredentials([file(credentialsId: JWT_KEY_CRED_ID, variable: 'jwt_key_file')]) {
stage('Create Scratch Org') {

rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:auth:jwt:grant
--clientid ${CONNECTED_APP_CONSUMER_KEY} --username ${HUB_ORG} --jwtkeyfile ${jwt_key_file}
--setdefaultdevhubusername --instanceurl ${SFDC_HOST}"

if (rc != 0) { error 'hub org authorization failed' }

// need to pull out assigned username
rmsg = sh returnStdout: true, script: "${toolbelt}/sfdx force:org:create

--definitionfile config/project-scratch-def.json --json --setdefaultusername"
printf rmsg
def jsonSlurper = new JsonSlurperClassic()
def robj = jsonSlurper.parseText(rmsg)

137

Sample JenkinsfileContinuous Integration

https://jenkins.io/blog/2015/12/03/pipeline-as-code-with-multibranch-workflows-in-jenkins/
https://testanything.org/
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_cli_reference.meta/sfdx_cli_reference

if (robj.status != 0) { error 'org creation failed: ' + robj.message }
SFDC_USERNAME=robj.result.username
robj = null

}

stage('Push To Test Org') {
rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:source:push

--targetusername ${SFDC_USERNAME}"
if (rc != 0) {

error 'push failed'
}
// assign permset

rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:user:permset:assign
--targetusername ${SFDC_USERNAME} --permsetname DreamHouse"

if (rc != 0) {
error 'permset:assign failed'

}
}

stage('Run Apex Test') {
sh "mkdir -p ${RUN_ARTIFACT_DIR}"
timeout(time: 120, unit: 'SECONDS') {

rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:apex:test:run
--testlevel RunLocalTests --outputdir ${RUN_ARTIFACT_DIR} --resultformat tap
--targetusername ${SFDC_USERNAME}"

if (rc != 0) {
error 'apex test run failed'

}
}

}

stage('collect results') {
junit keepLongStdio: true, testResults: 'tests/**/*-junit.xml'

}
}

}

SEE ALSO:

Jenkinsfile Walkthrough

Continuous Integration with Travis CI

Travis CI is a cloud-based continuous integration (CI) service for building and testing software projects hosted on GitHub.

Setting up Salesforce DX with Travis CI is easy. See the sfdx-travisci GitHub sample and the Salesforce DX Trailhead modules
to get started.

SEE ALSO:

sfdx-travisci Sample GitHub Repo

Travis CI

138

Continuous Integration with Travis CIContinuous Integration

https://github.com/forcedotcom/sfdx-travisci
https://travis-ci.org/

Sample CI Repos for Org Development Model

Get started quickly with CI by cloning a sample repository from your vendor of choice. Each repo has a sample configuration file and a
comprehensive README.md with step-by-step information.

These sample repositories support the org development model. This model uses Salesforce CLI, a source control system, and sandboxes
during the application life cycle. To determine if this model is right for you, head over and earn your badge by completing the Org
Development Model module.

Link to GitHub RepositoryVendor

https://github.com/forcedotcom/sfdx-appveyor-orgAppVeyor

https://github.com/forcedotcom/sfdx-bamboo-orgBamboo

https://github.com/forcedotcom/sfdx-bitbucket-orgBitbucket

https://github.com/forcedotcom/sfdx-circleci-orgCircleCI

https://github.com/forcedotcom/sfdx-gitlab-orgGitLab

https://github.com/forcedotcom/sfdx-jenkins-orgJenkins

https://github.com/forcedotcom/sfdx-travisci-orgTravisCI

Sample CI Repos for Package Development Model

Get started quickly with CI by cloning a sample repository from your vendor of choice. Each repo has a sample configuration file and a
comprehensive README.md with step-by-step information.

These sample repositories support the package development model. This model uses Salesforce CLI, a source control system, scratch
orgs for development, and sandboxes for testing and staging. To determine if this model is right for you, head over and earn your badge
by completing the Package Development Model module.

Link to GitHub RepositoryVendor

https://github.com/forcedotcom/sfdx-appveyor-packageAppVeyor

https://github.com/forcedotcom/sfdx-bamboo-packageBamboo

https://github.com/forcedotcom/sfdx-bitbucket-packageBitbucket

https://github.com/forcedotcom/sfdx-circleci-packageCircleCI

https://github.com/forcedotcom/sfdx-gitlab-package

CI/CD template for Salesforce/Apex apps:

GitLab

https://gitlab.com/sfdx/sfdx-cicd-template

https://github.com/forcedotcom/sfdx-jenkins-packageJenkins

139

Sample CI Repos for Org Development ModelContinuous Integration

https://trailhead.salesforce.com/content/learn/modules/org-development-model
https://trailhead.salesforce.com/content/learn/modules/org-development-model
https://github.com/forcedotcom/sfdx-appveyor-org
https://github.com/forcedotcom/sfdx-bamboo-org
https://github.com/forcedotcom/sfdx-bitbucket-org
https://github.com/forcedotcom/sfdx-circleci-org
https://github.com/forcedotcom/sfdx-gitlab-org
https://github.com/forcedotcom/sfdx-jenkins-org
https://github.com/forcedotcom/sfdx-travisci-org
https://trailhead.salesforce.com/content/learn/modules/sfdx_dev_model
https://github.com/forcedotcom/sfdx-appveyor-package
https://github.com/forcedotcom/sfdx-bamboo-package
https://github.com/forcedotcom/sfdx-bitbucket-package
https://github.com/forcedotcom/sfdx-circleci-package
https://github.com/forcedotcom/sfdx-gitlab-package
https://gitlab.com/sfdx/sfdx-cicd-template
https://github.com/forcedotcom/sfdx-jenkins-package

Link to GitHub RepositoryVendor

https://github.com/forcedotcom/sfdx-travisci-packageTravisCI

SEE ALSO:

Trailhead: Build an Automated CI/CD Pipeline with GitLab

140

Sample CI Repos for Package Development ModelContinuous Integration

https://github.com/forcedotcom/sfdx-travisci-package
https://trailhead.salesforce.com/en/content/learn/projects/automate-cicd-with-gitlab

CHAPTER 13 Troubleshoot Salesforce DX

This guide is a work in progress. Log in to the Salesforce Trailblazer Community and let us know if you
find a solution that would help other users so that we can incorporate it.

SEE ALSO:

Salesforce Trailblazer Community

In this chapter ...

• CLI Version
Information

• Run CLI Commands
on macOS Sierra
(Version 10.12)

• Error: No
defaultdevhubusername
org found

• Unable to Work After
Failed Org
Authorization

• Error: Lightning
Experience-Enabled
Custom Domain Is
Unavailable

141

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000HTp1

CLI Version Information

Use these commands to view version information about Salesforce CLI.

sfdx plugins --core // Versions for all installed plugins and sfdx-cli
sfdx plugins // salesforcedx plugin version
sfdx force --version // Salesforce API version that Salesforce CLI uses

Run CLI Commands on macOS Sierra (Version 10.12)

Some users who upgrade to macOS Sierra can’t execute CLI commands. This is a general problem and not isolated to Salesforce DX. To
resolve the issue, reinstall your Xcode developer tools.

Execute this command in Terminal:

xcode-select --install

If you still can’t execute CLI commands, download the Command Line Tools (macOS sierra) for Xcode 8 package from the Apple
Developer website.

SEE ALSO:

Apple Developer Downloads

Stack Overflow: Command Line Tools bash (git) not working - macOS Sierra Final Release Candidate

Error: No defaultdevhubusername org found

Let’s say you successfully authorize a Dev Hub org using the --setdefaultdevhubusername parameter. The username associated
with the org is your default Dev Hub username. You then successfully create a scratch org without using the
--targetdevhubusername parameter.

But when you try to create a scratch org another time using the same CLI command, you get this error:

Unable to invoke command. name: NoOrgFound message: No defaultdevhubusername org found

What happened?

Answer: You are no longer in the directory where you ran the authorization command. The directory from which you use the
--setdefaultdevhubusername parameter matters.

If you run the authorization command from the root of your project directory, the defaultdevhubusername config value is set
locally. The value applies only when you run the command from the same project directory. If you change to a different directory and
run force:org:create, the local setting of the default Dev Hub org no longer applies and you get an error.

Solve the problem by doing one of the following.

• Set defaultdevhubusername globally so that you can run force:org:create from any directory.

sfdx force:config:set defaultdevhubusername=<devhubusername> --global

• Run force:org:create from the same project directory where you authorized your Dev Hub org.

142

CLI Version InformationTroubleshoot Salesforce DX

https://developer.apple.com/download/more/
http://stackoverflow.com/questions/39484218/command-line-tools-bash-git-not-working-macos-sierra-final-release-candidate

• Use the --targetdevhubusername parameter with force:org:create to run it from any directory.

sfdx force:org:create --definitionfile <file> --targetdevhubusername <devhubusername>
--setalias my-scratch-org

• To check whether you’ve set configuration values globally or locally, use this command.

sfdx force:config:list

SEE ALSO:

How Salesforce Developer Experience Changes the Way You Work

Unable to Work After Failed Org Authorization

Sometimes you try to authorize a Dev Hub org or a scratch org using the Salesforce CLI or an IDE, but you don’t successfully log in to
the org. The port remains open for the stray authorization process, and you can’t use the CLI or IDE. To proceed, end the process manually.

macOS or Linux
To recover from a failed org authorization on macOS or Linux, use a terminal to kill the process running on port 1717.

1. From a terminal, run:

lsof -i tcp:1717

2. In the results, find the ID for the process that’s using the port.

3. Run:

kill -9 <the process ID>

Windows
To recover from a failed org authorization on Windows, use the Task Manager to end the Node process.

1. Press Ctrl+Alt+Delete, then click Task Manager.

2. Select the Process tab.

3. Find the process named Node.

Note: If you’re a Node.js developer, you might have several running processes with this name.

4. Select the process that you want to end, and then click End Process.

Error: Lightning Experience-Enabled Custom Domain Is Unavailable

If you create a scratch org with force:org:create, and then immediately try to use it, you sometimes get an error after waiting
a few minutes for the command to finish.

143

Unable to Work After Failed Org AuthorizationTroubleshoot Salesforce DX

For example, if you try to open the new scratch org in a browser with force:org:open, you might get this error:

Waiting to resolve the Lightning Experience-enabled custom domain...
ERROR running force:org:open: The Lightning Experience-enabled custom domain is unavailable.

The error occurs because it takes a few minutes for the Lightning Experience-enabled custom domain to internally resolve.

When using the CLI interactively, wait a few more minutes and run the command again. In a CI environment, however, you can avoid
the error altogether by changing how long the CLI itself waits.

By default, the CLI waits 240 seconds (4 minutes) for the custom domain to become available. You can configure the CLI to wait longer
by setting the SFDX_DOMAIN_RETRY environment variable to the number of seconds you want it to wait. For example, to wait 5 minutes
(300 seconds):

export SFDX_DOMAIN_RETRY=300

If you want the CLI to bypass the custom domain check entirely, set SFDX_DOMAIN_RETRY to 0.

144

Error: Lightning Experience-Enabled Custom Domain Is
Unavailable

Troubleshoot Salesforce DX

CHAPTER 14 Limitations for Salesforce DX

Here are some known issues you could run into while using Salesforce DX.

For the latest known issues, visit the Trailblazer Community’s Known Issues page.

Salesforce CLI

Authorization Fails If Using auth:web:login with Client Secret
Description: If you run force:auth:web:login with a client ID and client secret, you can’t
use Salesforce CLI to issue commands to the scratch org because the authorization file isn’t properly
created.

Workaround: Use the web-based flow without client ID and client secret, or use the JWT-based
flow to authorize to the org. See Authorization in the Salesforce DX Developer Guide for instructions
on Dev Hub and scratch org authorization methods.

Windows Defender Suspends CLI Installation
Description: When you are installing the Salesforce CLI on Windows, you see a Windows Defender
warning. This message is expected because we updated the installer’s code signing certificate.

Workaround: To ignore this message, click Run anyway.

Can’t Import Record Types Using the Salesforce CLI
Description: We don't support RecordType when running the data:tree:import command.

Workaround: None.

145

https://success.salesforce.com/issues_index?tag=Salesforce%20DX
https://developer.salesforce.com/docs/atlas.en-us.220.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth.htm

Limited Support for Shell Environments on Windows
Description: Salesforce CLI is tested on the Command Prompt (cmd.exe) and Powershell. There
are known issues in the Cygwin and Min-GW environments, and with Windows Subsystem for Linux
(WSL). These environments might be tested and supported in a future release. For now, use a
supported shell instead.

Workaround: None.

The force:apex:test:run Command Doesn’t Finish Executing
Description: In certain situations, the force:apex:test:run command doesn’t finish
executing. Examples of these situations include a compile error in the Apex test or an Apex test
triggering a pre-compile when another is in progress.

Workaround: Stop the command execution by typing control-C. If the command is part of a
continuous integration (CI) job, try setting the environment variable
SFDX_PRECOMPILE_DISABLE=true.

Dev Hub and Scratch Orgs

Salesforce CLI Sometimes Doesn’t Recognize Scratch Orgs with Communities
Description: Sometimes, but not in all cases, the Salesforce CLI doesn’t acknowledge the creation
of scratch orgs with the Communities feature. You can’t open the scratch org using the CLI, even
though the scratch org is listed in Dev Hub.

Workaround: You can try this workaround, although it doesn’t fix the issue in all cases. Delete the
scratch org in Dev Hub, then create a new scratch org using the CLI. Deleting and recreating scratch
orgs counts against your daily scratch org limits.

Error Occurs If You Pull a Community and Deploy It
Description: The error occurs because the scratch org doesn’t have the required guest license.

Workaround: In your scratch org definition file, if you specify the Communities feature, also specify
the Sites feature.

Source Management

ERROR: No Results Found for force:source:status After Deleting a Custom Label
Description: The force:source:status command returns a No Results Found
error after you delete a custom label in a scratch org.

Workaround: Option #1: If you have only one or two scratch orgs and you can easily identify the
affected scratch org by its generated username, use this workaround. In the Your DX
project/.sfdx/org directory, delete only the folder of the affected scratch org.

Option #2: If you have several scratch orgs associated with your DX project and you don’t know
which scratch org’s local data to delete, use this workaround. Delete the Your DX
project/.sfdx/org directory. This directory contains source tracking information for all

scratch orgs related to the project. When you run the next source-tracking command for this or
another scratch org (source:push, source:pull, or source:status), the CLI reconstructs
the source tracking information for that org.

After you delete the directory (after option #1 or option #2), run force:source:status again.

146

Limitations for Salesforce DX

ERROR: Entity of type 'RecordType' named 'Account.PersonAccount' cannot be found
Description: Although you can turn on Person Accounts in your scratch org by adding the feature
to your scratch org definition, running source:push or source:pull results in an error,

Workaround: None.

force:source:convert Doesn’t Add Post-Install Scripts to package.xml
Description: If you run force:source:convert, package.xml does not include the post
install script.

Workaround: To fix this issue, choose one of these methods:

• Manually add the <postInstallClass> element to the package.xml in the metadata
directory that force:source:convert produces

• Manually add the element to the package in the release org or org to which you are deploying
the package.

Must Manually Enable Feed Tracking in an Object's Metadata File
Description: If you enable feed tracking on a standard or custom object, then run
force:source:pull, feed tracking doesn't get enabled.

Workaround: In your Salesforce DX project, manually enable feed tracking on the standard or
custom object in its metadata file (-meta.xml) by adding
<enableFeeds>true</enableFeeds>.

Unable to Push Lookup Filters to a Scratch Org
Description: When you execute the force:source:push command to push the source of
a relationship field that has a lookup filter, you sometimes get the following error:

duplicate value found: <unknown> duplicates value on record with
id: <unknown> at line num, col num.

Workaround: None.

Deployment

Compile on Deploy Can Increase Deployment Times in Scratch Orgs
Description: If your deployment times for Apex code are slow, your scratch org might have the
CompileOnDeploy preference set to true.

Workaround:To turn it off, set it to false (the default) or delete the setting from the scratch org
definition.

{
"orgName": "ekapner Company",
"edition": "Developer",
"features": [],
"settings": {
"orgPreferenceSettings": {
"s1DesktopEnabled": true,
"compileOnDeploy": false

}
}

}

147

Limitations for Salesforce DX

Managed First-Generation Packages

When You Install a Package in a Scratch Org, No Tests Are Performed
Description: If you include tests as part of your continuous integration process, those tests don’t
run when you install a package in a scratch org.

Workaround: You can manually execute tests after the package is installed.

New Terminology in CLI for Managed Package Password
Description: When you use the CLI to add an installation key to a package version or to install a
key-protected package version, the parameter name of the key is --installationkey. When
you view a managed package version in the Salesforce user interface, the same package attribute
is called “Password”. In the API, the corresponding field name, “password”, is unchanged.

Workaround: None.

Managed Second-Generation Packages

Unable to Specify a Patch Version for Managed Packages
Description: The four-part package version number includes a patch segment, defined as
major.minor.patch.build. However, you can’t create a patch for a second-generation managed
package. Package creation fails if you set a patch number in the package descriptor. We plan to
provide this functionality for managed packages in the Winter ’20 release.

Workaround: Always set the patch segment of the version number, to 0. For example, 1.2.0.1 is
valid but 1.2.1.1 is not.

Protected Custom Metadata and Custom Settings are Visible to Developers in a Scratch Org If
Installed Packages Share a Namespace

Description: Use caution when you store secrets in your second-generation packages using protected
custom metadata or protected custom settings. You can create multiple second-generation packages
with the same namespace. However, when you install these packages in a scratch org, these secrets
are visible to any of your developers that are working in a scratch org with a shared namespace. In
the future, we might add a “package-protected” keyword to prevent access to package secrets in
these situations.

Workaround: None.

Unlocked Packages

Protected Custom Metadata and Custom Settings are Visible to Developers in a Scratch Org If
Installed Packages Share a Namespace

Description: Use caution when you store secrets in your unlocked packages using protected custom
metadata or protected custom settings. You can create multiple unlocked packages with the same
namespace. However, when you install these packages in a scratch org, these secrets are visible to
any of your developers that are working in a scratch org with a shared namespace. In the future, we
might add a “package-protected” keyword to prevent access to package secrets in these situations.

Workaround: None.

148

Limitations for Salesforce DX

	How Salesforce Developer Experience Changes the Way You Work
	Use a Sample Repo to Get Started
	Create an Application
	Migrate or Import Existing Source

	Salesforce CLI Configuration and Tips
	CLI Runtime Configuration Values
	Environment Variables
	Salesforce DX Usernames and Orgs
	Override or Add Definition File Options at the Command Line
	CLI Parameter Resolution Order
	Support for JSON Responses
	Log Messages and Log Levels
	CLI Deprecation Policy

	Project Setup
	Sample Repository on GitHub
	Create a Salesforce DX Project
	Create a Salesforce DX Project from Existing Source
	Retrieve Source from an Existing Managed Package
	Retrieve Unpackaged Source Defined in a package.xml File
	Convert the Metadata Source to Source Format
	Link a Namespace to a Dev Hub Org
	Salesforce DX Project Configuration

	Authorization
	Authorize an Org Using the Web-Based Flow
	Authorize an Org Using the JWT-Based Flow
	Authorize a Scratch Org

	Create a Private Key and Self-Signed Digital Certificate
	Create a Connected App
	Use an Existing Access Token Instead of Authorizing
	Authorization Information for an Org
	Log Out of an Org

	Metadata Coverage
	Scratch Orgs
	Scratch Org Definition File
	Scratch Org Definition Configuration Values
	Create Scratch Orgs
	Select the Salesforce Release for a Scratch Org
	Salesforce DX Project Structure and Source Format
	Push Source to the Scratch Org
	How to Exclude Source When Syncing or Converting

	Assign a Permission Set
	Ways to Add Data to Your Scratch Org
	Example: Export and Import Data Between Orgs

	Pull Source from the Scratch Org to Your Project
	Track Changes Between the Project and Scratch Org
	Scratch Org Users
	Create a Scratch Org User
	User Definition File for Customizing a Scratch Org User
	Generate or Change a Password for a Scratch Org User

	Manage Scratch Orgs from Dev Hub

	Sandboxes
	Authorize in to Your Production Org
	Create a Sandbox Definition File (Beta)
	Create, Clone, or Delete a Sandbox (Beta)

	Development
	Develop Against Any Org
	Create Lightning Apps and Aura Components
	Create Lightning Web Components
	Create an Apex Class
	Create an Apex Trigger
	Testing
	View Apex Debug Logs
	Apex Debugger

	Build and Release Your App
	Build and Release Your App with Metadata API
	Develop and Test Changes Locally
	Build and Test the Release Artifact
	Test the Release Artifact in a Staging Environment
	Release Your App to Production
	Cancel a Metadata Deployment

	First-Generation Managed Packages
	Build and Release Your App with Managed Packages
	Packaging Checklist
	Deploy the Package Metadata to the Packaging Org
	Create a Beta Version of Your App
	Install the Package in a Target Org
	Create a Managed Package Version of Your App

	View Information About a Package
	View All Package Versions in the Org
	Package IDs

	Unlocked Packages (Generally Available) and Second-Generation Managed Packages (Beta)
	Second-Generation Packaging
	What’s a Package?
	Types of Packaging Projects
	Packaging for ISVs
	Enterprise Customers

	Before You Create Second-Generation Packages
	Know Your Orgs
	Sample Repository
	Review Org Setup

	Workflow for Second-Generation Packages
	Plan Second-Generation Packages
	Namespaces
	Package Types
	Best Practices for Second-Generation Packages
	Package IDs

	Configure Packages
	Project Configuration File for Packages
	Keywords
	Package Installation Key
	Extract Dependency Information from Unlocked Packages

	Create a Package
	Generate the Package
	Generate a Package Version
	Package Ancestors
	Release a Second-Generation Package
	Update a Package Version
	View Package Details

	Install a Package
	Install Packages with the CLI
	Install Packages from a URL
	Upgrade a Package Version
	Sample Script for Installing Packages with Dependencies

	Migrate Deprecated Metadata from Unlocked Packages
	Uninstall a Package

	Continuous Integration
	Continuous Integration Using CircleCI
	Configure Your Environment for CircleCI
	Connect CircleCI to Your DevHub

	Continuous Integration Using Jenkins
	Configure Your Environment for Jenkins
	Jenkinsfile Walkthrough
	Sample Jenkinsfile

	Continuous Integration with Travis CI
	Sample CI Repos for Org Development Model
	Sample CI Repos for Package Development Model

	Troubleshoot Salesforce DX
	CLI Version Information
	Run CLI Commands on macOS Sierra (Version 10.12)
	Error: No defaultdevhubusername org found
	Unable to Work After Failed Org Authorization
	Error: Lightning Experience-Enabled Custom Domain Is Unavailable

	Limitations for Salesforce DX

