salesforce

Analytics Data Integration
Guide

Salesforce, Summer ‘19

Y @salesforcedocs
Last updated: July 31, 2019

https://twitter.com/salesforcedocs

© Copyright 2000-2019 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

INTEGRATE YOUR DATA IN ANALYTICS, 1
Getto KNow Datasetso e 2
Einstein Analytics Connector for Excel 4
Upload External Data fromthe User Interface o i 5
EXternal Data APl . . . o 5
CREATE DATASETS WITH THE DATAFLOW 6
Designthe Dataflowo o 6
Configure the Dataflow Through the Definition File 7
Startand Stop a Dataflow 10
Monitor a Dataflow Jobo 12
Schedule a Dataflow 14
DATAFLOW TRANSFORMATION REFERENCE 17
Transformations for Analytics Dataflowso 17
Overriding Metadata Generated by a Transformation 85

LOAD SALESFORCE DATA WITH THE DATASET BUILDER AND THE

DATAFLOW .. 90
CREATE A DATASET WITH EXTERNALDATA 96
Create a Dataset with External Data e 96
Monitor an External Data Upload o 99
EDIT A DATASET 102
DELETE A DATASET 104
ROW-LEVEL SECURITY FOR DATASETScooi... 105
Security Predicates for Datasets 106
Row-Level Security Example based on Record Ownership 106
Row-Level Security Example based on Opportunity Teams m
Row-Level Security Example based on Role Hierarchy and Record Ownership n9
Row-Level Security Example Based on Territory Management 129
Salesforce Sharing Inheritance forDatasets 135
SECURITY PREDICATEREFERENCE 139

Predicate Expression Syntax for Datasets 139

Contents

Sample Predicate Expressions for Datasets

INTEGRATE YOUR DATA IN ANALYTICS

You can integrate Salesforce data and external data into Analytics to enable users to explore and visualize the data with explorer and
designer. External data is data that resides outside of Salesforce, such as data from outside applications and spreadsheets.

When you load data into Analytics, you load it into datasets. A dataset is a collection of related data that is stored in a denormalized, yet
highly compressed form. You can prepare data in a dataset to combine data from different sources, calculate new values, and clean
data.

You can use these tools to create datasets in Analytics.

Dataflow Connections CSV Upload Analytics External Data Recipe
Wizard Connector for API
Excel
Data source Salesforce Salesforce External data Microsoft Excel External data Existing datasets;
objects; existing objects; external connected data
datasets; data

connected data

Load data Yes Yes Yes Yes Yes No
Prepare data Yes No No No Yes Yes
Graphical user Yes (dataflow Yes Yes Yes No Yes
interface editor) (programmatic
access)
Preview data No Yes Yes Yes No Yes
Refresh data Schedule Schedule Manual Manual Manual Schedule
IN THIS SECTION:

Get to Know Datasets
A dataset is a collection of related data that is stored in a denormalized, yet highly compressed form.

Einstein Analytics Connector for Excel
The Salesforce Einstein Analytics Connector for Excel makes it easy to import data from Microsoft Excel 2013 to Analytics.

Upload External Data from the User Interface

Use the upload user interface to create a single dataset based on external .csv data. To refresh the data, you can overwrite the data
in the dataset by uploading a new external data file.

External Data AP

You can use the External Data API to create a single dataset based on external data in the .csv format. You can also use the APl to
edit the dataset by uploading a new .csv file. When you edit the dataset, you can choose to overwrite all records, append records,
update records, or delete records.

Integrate Your Data in Analytics Get to Know Datasets

Get to Know Datasets

A dataset is a collection of related data that is stored in a denormalized, yet highly compressed form.
Analytics applies one of the following types to each dataset field:

Date
A date can be represented as a day, month, year, and, optionally, time. You can group, filter, and perform math on dates.

Dimension
A dimension is a qualitative value that usually contains categorical data, such as Product Category, Lead Status, and Case Subject.
Dimensions are handy for grouping and filtering your data. Unlike measures, you can't perform math on dimensions. To increase
query performance, Analytics indexes all dimension fields in datasets.

Measure
A measure is a quantitative value that contains numerical data like revenue and exchange rate. You can do math on measures, such
as calculating the total revenue and minimum exchange rate.

For each dataset that you create, you can apply row-level security to restrict access to records in the dataset.

Attention: Before you create a dataset, verify that the source data contains at least one value in each column. Columns with all
null values won't be created in datasets and can't be referenced in dataflows, lenses, or dashboards. Consider providing a default
value for null values, like "n/a" or "empty."

IN THIS SECTION:

Numeric-Value Handling in Datasets

Analytics internally stores numeric values in datasets as long values. For example, it stores the number “3,200.99" with a scale of “2"
as “320099". The user interface converts the stored value back to decimal notation to display the number as “3200.99."

Date Handling in Datasets

When Analytics loads dates into a dataset, it breaks up each date into multiple fields, such as day, week, month, quarter, and year,
based on the calendar year. For example, if you extract dates from a CreateDate field, Analytics generates date fields such as
CreateDate Day and CreateDate Week. If yourfiscal year differs from the calendar year, you can enable Analytics to
generate fiscal date fields as well.

Numeric-Value Handling in Datasets

Analytics internally stores numeric values in datasets as long values. For example, it stores the number “3,200.99" with a scale of “2" as
“320099". The user interface converts the stored value back to decimal notation to display the number as “3200.99.”

The maximum numeric value that can be stored in a dataset is 36,028,797,018,963,967 and the minimum numeric value is
-36,028,797,018,963,968.

Warning: If a numeric value is not within this range, you might receive unexpected results. For example, if you try to load the
value 3.7E-16 with a scale of 16 into a dataset, Analytics tries to store the value as 37000000000000000. However, because this
value exceeds the maximum, Analytics fails to load the entire record. In addition, if you perform a query that aggregates
measures—Ilike sum or group by—and the resulting value exceeds the maximum, the value overflows and Analytics returns an
incorrect result.

Integrate Your Data in Analytics

Date Handling in Datasets

When Analytics loads dates into a dataset, it breaks up each date into multiple fields, such as day, week, month, quarter, and year, based
on the calendar year. For example, if you extract dates from a CreateDate field, Analytics generates date fields such as
CreateDate Day and CreateDate Week.lIfyourfiscal year differs from the calendar year, you can enable Analytics to generate

fiscal date fields as well.

Analytics generates the following date fields.

Field Name

<date field name>_Second

<date field name>_Minute

<date field name>_Hour

<date field name>_Day

<date field name>_Week

<date field name>_Month

<date field name>_Quarter
<date field name>_Year

<date field name>_Week_Fiscal
<date field name>_Month_Fiscal
<date field name>_Quarter_Fiscal
<date field name>_Year_Fiscal

<date field name>_sec_epoch

<date field name>_day_epoch

Field Type

Text

Text

Text

Text
Text
Text
Text
Text
Text
Text
Text
Text

Numeric

Numeric

Date Handling in Datasets

Description

Number of seconds. If the date contains no
seconds, value is '0.'

Number of minutes. If the date contains no
minutes, value is '0."

Number of hours. If the date contains no
hours, value is '0."

Day of the month.

Week number in calendar year.
Month number in calendar year.
Quarter number in calendar year.
Calendar year.

Week number in fiscal year.
Month number in fiscal year.
Quarter number in fiscal year.
Fiscal year.

Number of seconds that have elapsed since
January 1, 1970 (midnight UTC).

Number of days that have elapsed since
January 1, 1970 (midnight UTC).

You can set metadata attributes to control how dates are loaded into datasets and to enable Analytics to generate fiscal date fields. You
set the metadata attributes in the sfdcDigest transformation parameters for Salesforce data or in the metadata file for external data.

@ Important: Before loading dates from an external data file, ensure that you review the date format requirements here. Also,
ensure that the column names in the external data file do not conflict with the generated date field names. For example, if you
load a CSV with column Create Date, Analytics generates the Create Date Year field in the dataset. If the CSV also
had a field named Create Date Year, Analytics would throw an error because the names conflict.

https://developer.salesforce.com/docs/atlas.en-us.220.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_reference.htm
https://developer.salesforce.com/docs/atlas.en-us.220.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_reference.htm

Integrate Your Data in Analytics Einstein Analytics Connector for Excel

Fiscal Periods in Analytics

If the calendar and fiscal year differ, you can enable Analytics to generate the fiscal date fields in the dataset in addition to calendar date
fields. To enable Analytics to generate fiscal date fields, set the fiscalMonthOf fset attribute to a value other than'0'. You set this
attribute for each date column for which you want to generate fiscal date fields. If you set the offset to '0' or you do not specify a value,
Analytics does not generate any fiscal date fields.

Additionally, to configure the fiscal periods, set the following metadata attributes for each date column:

fiscalMonthOffset
In addition to enabling the generation of fiscal date fields, this attribute also determines the first month of the fiscal year. You specify
the difference between the first month of the fiscal year and first month of the calendar year (January) in fiscalMonthOffset.
For example, if your fiscal year begins in April, set £iscalMonthOffset to'3".

isYearEndFiscalYear
Because the fiscal year can start in one calendar year and end in another, you must specify which year to use for the fiscal year. The
isYearEndFiscalYear attribute indicates whether the fiscal year is the year in which the fiscal year ends or begins.

To see how this works, let's look at a couple of examples. If i sYearEndFiscalYear =true (oryoudo not specify this attribute),
then the fiscal year is the year in which the fiscal year ends. As shown in the following diagram, any dates between 4/1/2015 and
3/31/2016 are part of the fiscal year 2016 because the fiscal year ends in 2016.

e———— 2015 Calendar Year . 2016 Calendar Year — e
1172015 11172016 1172017

e—— 016 Fiscal Year
4172015 33172016

If isYearEndFiscalYear =false, then the fiscal year is the year in which the fiscal year begins. As shown in the following
diagram, any dates between 4/1/2015 and 3/31/2016 are part of the fiscal year 2015 because the fiscal year begins in 2015.

e—————— 2015 Calendar Year . 2016 Calendar Year — e
1172015 11172016 1172017

2015 Fiscal Year — =
4172015 33172016

Week Numbering in Analytics

For each date loaded into a dataset, Analytics generates the corresponding week number for the calendar year and, if applicable, fiscal
year. Similar to the SOQL function WEEK _IN_ YEAR,week 1inAnalyticsis January 1-January 7. (This is different from the UTC week ()
calculation.)

If needed, you can configure the week to start on a particular day of the week by setting the £irstDayOfWeek attribute. Forexample,
if January 1is a Saturday and you configure the week to start on a Monday, then week 1 is January 1 - 2. Week 2 starts on Monday,
January 3. Week 3 starts January 10, the following Monday. Notice that week 1 can be a short week to ensure that the subsequent weeks
start on the specified day of the week.

Einstein Analytics Connector for Excel

The Salesforce Einstein Analytics Connector for Excel makes it easy to import data from Microsoft Excel 2013 to Analytics.

Integrate Your Data in Analytics Upload External Data from the User Interface

The Einstein Analytics Connector for Excel is available as an add-in for Excel 2013 on the desktop and Excel Online in Office 365. The
Connector is available from the Office Add-In Store or your organization’s private add-in catalog. After you install the Connector just
point and click to import data from Excel to Analytics.

Considerations When Using theEinstein Analytics Connector for Excel

e The Einstein Analytics Connector for Excel doesn't support loading data to Salesforce orgs that use custom domains. To load Excel
data to a custom domain org, save the data locally in .csv format, and then use the Analytics .csv upload tool to load the data.

e Null measure handling isn't supported when you load data using the Einstein Analytics Connector for Excel. Null measure values are
replaced with zeros in the resulting dataset, even if null measure handling is enabled in your org.

SEE ALSO:

Install the Einstein Analytics Connector for Excel

Upload External Data from the User Interface

Use the upload user interface to create a single dataset based on external .csv data. To refresh the data, you can overwrite the data in
the dataset by uploading a new external data file.

When Analytics loads any data into a dataset, it also adds metadata about each column of data. For example, metadata can include the
field type, precision, scale, and default value.

For external data, Analytics infers metadata about each column of data in the external data file unless you specify different metadata
attributes in a metadata file. A metadata file is a JSON file that describes the structure of an external data file. For example, you can use
a metadata file to explicitly set the field type and default value for a specific column of external data. If no metadata file is provided when
you upload external data, Analytics treats every column as a dimension and sets the field type to Text.' This impacts the type of queries
that can be placed on the dataset because you can't perform mathematical calculations on dataset columns with a Text field type. You
can only perform mathematical calculations on dataset columns with a Numeric field type.

After you create a dataset based on an external data file, you can edit the dataset to apply a new metadata file. This enables you to
change the metadata attributes of each column.

@ Nofe: Analytics temporarily stores the uploaded CSV and metadata files for processing only. After a dataset is created, Analytics
purges the files.

SEE ALSO:

Create a Dataset with External Data

External Data API

You can use the External Data API to create a single dataset based on external data in the .csv format. You can also use the API to edit
the dataset by uploading a new .csv file. When you edit the dataset, you can choose to overwrite all records, append records, update
records, or delete records.

For more information about the External Data API, see the Analytics External Data APl Developer Guide.

https://resources.docs.salesforce.com/220/latest/en-us/sfdc/pdf/bi_dev_guide_ext_data.pdf

CREATE DATASETS WITH THE DATAFLOW

You can use the dataflow to create one or more datasets based on data from Salesforce objects or existing datasets. A dataflow is a set
of instructions that specifies what data to extract from Salesforce objects or datasets, how to transform the datasets, and which datasets
to make available for querying. With a dataflow, you can manipulate the extracted data and override the metadata before you load it
into a dataset. You can schedule the dataflow to run to keep the datasets up to date.

To configure the dataflow, you add transformations to the dataflow definition file. A dataflow definition file is a JSON file that contains
transformations that represent the dataflow logic. You add transformations to determine what data to extract, how to transform datasets,
and which datasets to register to make available for queries. You can edit the dataflow definition file using the visual dataflow editor, or
manually using a JSON editor.

IN THIS SECTION:

Design the Dataflow
Before you start creating the dataflow, think about the dataflow design. Consider what data to make available for queries, where to
extract the data from, and whether you need to transform the extracted data to get the data you want.

Configure the Dataflow Through the Definition File
You can configure the dataflow by adding transformations directly to the dataflow definition file.

Start and Stop a Dataflow
You can manually start a dataflow job to load the data into datasets immediately. You can also stop the job while it's running.

Monitor a Dataflow Job
Use the Monitor tab in the data manager to monitor dataflow jobs to ensure that they complete successfully or to troubleshoot
them if they fail.

Schedule a Dataflow

You can set a dataflow to run on a time-based schedule by hour, week, or month, on specific days of the week or dates in the month.
Forexample, schedule a dataflow to ensure that the data is available by a particular time or to run the job during non-business hours.
You can also set an event-based schedule to run a dataflow after the Salesforce Local connection syncs. Set an event-based schedule
if the dataflow extracts data from Salesforce objects that have to sync before the dataflow runs.

Design the Dataflow

Before you start creating the dataflow, think about the dataflow design. Consider what data to make available for queries, where to
extract the data from, and whether you need to transform the extracted data to get the data you want.

"

Toillustrate some key design decisions, let's consider an example. In this example, the goal is to create a dataset called “Won Opportunities.
The dataset will contain opportunity details, including the account name for each opportunity.

To create this dataset, you design the following dataflow:

Create Datasets with the Dataflow Configure the Dataflow Through the Definition File

Extract Data Transform Datasets Register Datasets

Opportunity

Whon
Opporunities

sfdcRegshar

L
shdeigast

The dataflow extracts opportunity data from the Opportunity object and extracts the account name from the Account object. For each
extracted object, the dataflow creates a new dataset.

The dataflow then transforms the datasets created from the extracted data. First, the dataflow joins the opportunity and account data
into a new dataset. Next, the dataflow filters the records based on the opportunity stage so that the dataset contains only won opportunities.
Each time the dataflow transforms a dataset, it creates a new dataset.

Finally, because you want users to be able to query won opportunities only, you configure the dataflow to register the final dataset only.
However, if you wanted, you could register any dataset created by the dataflow and register as many datasets as you like.

Carefully choose which datasets to register because:

e The total number of rows in all registered datasets cannot exceed 100 million rows per platform license, or 250 million per platform
license purchased before October 20, 2015.

e Users that have access to registered datasets can query their data. Although, you can apply row-level security on a dataset to restrict
access to records.

Configure the Dataflow Through the Definition File

You can configure the dataflow by adding transformations directly to the dataflow definition file. EDITIONS

A dataflow definition file is a JSON file that contains transformations that represent the dataflow

logic. The dataflow definition file must be saved with UTF-8 encoding. Available in Salesforce

Before you can configure a dataflow to process external data, you must upload the external data CIOSSI,C and Lightning

. Experience.
to Analytics.
1. Available for an extra costin
In Analytics, click the gear icon ($) and then click Data Manager. Enterprise, Performance,

2. Click the Dataflows & Recipes tab. ond.UnIilr.lited Edifions. Also
available in Developer

3. Download the existing dataflow definition file by clicking Downloead in the actions menu. Edition.

USER PERMISSIONS

To edit the dataflow
definition file:

e Edit Analytics Dataflows

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Create Datasets with the Dataflow Configure the Dataflow Through the Definition File

Menitor Bataflcis s RECIPES Create Dataflow

Create, edit, and run dataflows and recipes to clean, transform, and combine data. Help me choose [¥]

& Dataf
DATAFLOWS DATASET RECIPES

E Default Salesforce Dataflow Mot Scheduled E
Last Modified By: Admin U alesEdgeEltWorkflow - Run b

Edit

ok Download

1, Upload
>

Data

Connect

Run Now

Schedule

4. Make a backup copy of the existing dataflow definition file before you modify it.

Analytics doesn't retain previous versions of the file. If you make a mistake, you can upload the previous version to roll back your
changes.

5. Add each transformation as a node in the dataflow definition file, using a JSON editor.

For example, based on the design in the previous step, you can add the following transformation nodes:

{

"Extract Opportunities": ({
"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" 1},
{ "name": "StageName" 1},
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

by
"Extract_AccountDetails": {
"action": "sfdcDigest",
"parameters": {
"object": "Account",
"fields": [
{ "name": "Id" },
{ "name": "Name" }

}y
"Transform Augment OpportunitiesWithAccountDetails": ({
"action": "augment",
"parameters": {
"left": "Extract Opportunities",
"left key": ["AccountId"],

Create Datasets with the Dataflow Configure the Dataflow Through the Definition File

}

"relationship": "OpptyAcct",
"right": "Extract AccountDetails",
"right key": ["Id"],
"right select": [

"Name"

br
"Transform Filter Opportunities": ({
"action": "filter",
"parameters": {
"filter": "StageName:EQ:Closed Won",
"source": "Transform Augment OpportunitiesWithAccountDetails"

by
"Register_ Dataset_WonOpportunities": ({

"action": "sfdcRegister",
"parameters": {
"alias": "WonOpportunities",
"name": "WonOpportunities",
"source": "Transform Filter Opportunities"”

See Transformations for Analytics Dataflows for more about each transformation and its JSON.

)

0]

Note: The JSON keys and values are case-sensitive. Each bolded key in the example JSON is the node name for a transformation.
Each node contains an action value, which identifies the transformation type. The order in which you add the transformations
to the dataflow definition file doesn't matter. Analytics determines the order in which to process the transformations by
traversing the dataflow to determine the dependencies among them.

Important: Node names must be unique in a dataflow definition file, and can’t contain space or tab characters. Consider that
node names are not treated as case sensitive, so names such as “Extract_Opportunities” and “extract_opportunities” are not
unigue in the same definition file.

6. Before you save the dataflow definition file, use a JSON validation tool to verify that the JSON is valid.

An error occurs if you try to upload the dataflow definition file with invalid JSON. You can find JSON validation tools on the internet.

7. Save the dataflow definition file with UTF-8 encoding, and then close the file.

8. Inthe Dataflow view of the Monitor tab, click Upload from the action menu to upload the updated dataflow definition file.

@ Nofe: Uploading the dataflow definition file does not affect any running dataflow jobs and does not automatically start the

dataflow job.

You can now start the dataflow on demand or wait for it to run on the schedule. Users cannot query the registered datasets until the

dataflow runs.

If you have enabled data sync, you can create multiple dataflows, in addition to the default dataflow, and configure them in the same
way. Look out for the Create Dataflow button in the Dataflows & Recipes tab of the data manager after you enable data sync. See

Optimize Your Dataflows with Data Sync.

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_integrate_replication.htm&language=en_US#bi_integrate_replication

Create Datasets with the Dataflow

Start and Stop a Dataflow

YA Data Manager

Va Dataflows & Recipes
Monitor
» Create, edit, and run dataflows and recipes to clean, transform, and combine data. Help me choose [¥]
_I‘ Dataflows & Recipes
DATAFLOWS DATASET RECIPES
Data
E Default Salesforce Dataflow
Connect Last Modified By: Admin User lesEdgeE

Create Dataflow

Mot Scheduled

ItWorkflow » Run by Integration User

@ Nofte: If you have data sync enabled, your org can have up to 35 dataflows. This number includes the default dataflow, and app
dataflows such as the Sales Analytics and Service Analytics dataflows. Keep in mind that dataflows that take longer than 2 minutes

to run count towards your 24-hour dataflow run limit.

Start and Stop a Dataflow

You can manually start a dataflow job to load the data into datasets immediately. You can also stop
the job while it's running.

You can run a maximum of 60 dataflow jobs during a rolling 24-hour period. For a production org
with the Einstein Analytics Plus platform license, Analytics runs up to two dataflows concurrently
when multiple dataflow jobs overlap. If more than two jobs overlap, Analytics puts the remaining
jobsin queue. Analytics runs one job at a time in production orgs with the Einstein Analytics Growth
license and sandbox orgs.

1.

In Analytics, click the gear icon (ﬁ) and then click Data Manager.

The data manager opens on the Monitor tab, with the Jobs view selected by default.
2. C(lick the Dataflows & Recipes tab.

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To start a dataflow job:
e Edit Analytics Dataflows

P
»

Prepare Datasets with Dataflows and Recipes

Cleanse, transform, and combine data from multiple sources.

Manitor

» Dataflows &
“" Recipes

DATAFLOWS DATASET RECIPES

Datasets

Default Salesforce Dataflow

Last Madified By: Admin User

Setup

The next run is Apr 23, 2017 at 12:00 PM

SalesEdgeEltWorkflow - Run

by Integration User

Create Dataflow

Edit

o, Download

@ Schedule

@ Unschedule

10

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Create Datasets with the Dataflow Start and Stop a Dataflow

3. Click Start in the actions menu to start the dataflow job.
The dataflow job is added to the job queue. The Start action is grayed out while the dataflow job runs.

4. After the job completes, Analytics sends an email notification to the user who created the dataflow.

The email notification indicates whether the job completed successfully. It also shows job details like start time, end time, duration,
and number of processed rows. If the job failed, the notification shows the reason for the failure.

Nofe: If the dataflow creator is not an active user, the notification is sent to the user who last modified the dataflow schedule
or definition file.

To stop a dataflow job that is currently running, click ¥ next to the job status.
If you click Start to restart a stopped dataflow, the job starts over—the dataflow job does not resume from the point at which it

was stopped.

Note: A dataflow will automatically restart if it is forcibly terminated by an external process like patches to the OS or Maestro
(specifically bifrost).

You can monitor the dataflow job on the Monitor tab to determine when the dataflow completes. After the dataflow completes
successfully, refresh the Analytics home page to view the registered datasets.

n

Create Datasets with the Dataflow

Monitor a Dataflow Job

Monitor a Dataflow Job

Use the Monitor tab in the data manager to monitor dataflow jobs to ensure that they complete

successfully or to troubleshoot them if they fail.

The Dataflows subtab on the Monitor tab shows the status, start time, and duration of the last 10
dataflow jobs and retains the last 7 days of history. To help you troubleshoot a failed job, you can
view error messages about the job, view the run-time details about every transformation that is

processed, and download error logs where available.

@ Nofe: Duration is calculated as the sum of the job queue time and job run time.

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To access the monitor:

e Edit Analytics Dataflows,
Upload External Data to
Analytics, or Manage
Analytics

To download an error log:
e Edit Analytics Dataflows
and View All Data

Note: The
dataflow owner
doesn’'t need
View All Data to
download an
error log.

Y4 Data Manager My Opportunities SFDC x

Monitor

B monitor

#" Dataflows & Recipes

Track the progress of syncs, dataflows, recipes, and other data jobs that you run

-

G Data

Default Salesforce Dataflow
* Connect

STARTED v DURATION STATUS
Today at 11:36 AM 00:00:28 []
NAME STATUS TYPE
sfdcDigest_Account ® Successful sfdcDigest
sfdcDigest_Opportunity ® Successful sfdcDigest
sfdcDigest_User ® Successful sfdcDigest
augment_Opportunity_Account [] 3 augment

Flaws per 24 Hours 60 Remaining

c

Not Scheduled

MESSAGE
The job completed sucessfully, but some rows failed. Download the error log from the data
manitor to view the failed rows
STARTED DURATION ROWS IN
Wed Apr 17 18:36:37 00:18:48 3
Wed Apr 17 18:36:38 00:17:43 8
Wed Apr 17 18:36:39 00:08:48 5
Wed Apr 17 18:36:40 00:05:53 8

12

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Create Datasets with the Dataflow Monitor a Dataflow Job

In Analytics, click the gear icon (¢) and then click Data Manager.
The data manager opens on the Monitor tab.

2. Click the Dataflows subtab (1).

Click ' © to see the latest status of a job.

Each job can have one of these statuses.

Status Description

Running The job is running.

Failed The job failed.

Successful The job completed successfully.

Warning The job completed successfully, but some rows failed.

4. If the dataflow job fails, expand the job node (2) and review the run-time details for every transformation that was processed.

5. Ifan error log is available for a node, click the download log button (3) to download a CSV file containing the failed rows.

@ Note: Errorlogs display the data from rows that have failed to load. To maintain data security and prevent unauthorized
access to this data, only the dataflow owner or users with the View All Data permission can download an error log.

6. Ifthere’s a problem with the dataflow logic, edit the dataflow and then run it again.

@ Note: You can have up to 60 dataflow runs in a rolling 24-hour period. Dataflow and recipe runs that take less than 2 minutes to
run, and data sync, don't count toward this limit. To track your current usage, use the flow indicator at the top of the Monitor tab.

Monitor

- %
Track the progress of syncs, dataflows, recipes, and other data jobs that you run.

JOBS DATAFLOWS

13

Create Datasets with the Dataflow

Schedule a Dataflow

Schedule a Dataflow

You can set a dataflow to run on a time-based schedule by hour, week, or month, on specific days
of the week or dates in the month. For example, schedule a dataflow to ensure that the data is
available by a particular time or to run the job during non-business hours. You can also set an
event-based schedule to run a dataflow after the Salesforce Local connection syncs. Set an
event-based schedule if the dataflow extracts data from Salesforce objects that have to sync before
the dataflow runs.

You can run a maximum of 60 dataflow jobs during a rolling 24-hour period. For a production org
with the Einstein Analytics Plus platform license, Analytics runs up to two dataflows concurrently
when multiple dataflow jobs overlap. If more than two jobs overlap, Analytics puts the remaining
jobsin queue. Analytics runs one job at a time in production orgs with the Einstein Analytics Growth
license and sandbox orgs.

In Analytics, click the gear icon ($) and then click Data Manager.
The data manager opens on the Monitor tab, with the Jobs tab open by default.

2. C(lick the Dataflows & Recipes tab.

3. Onthe right of the dataflow, click = ' and select Schedule.

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To schedule or unschedule
a dataflow job:

e Edit Analytics Dataflows

54 Data Manager

_“ Dataflows & Recipes
DATAFLOWS DATASET RECIPES
Data
E Default Salesforce Dataflow

Connect Last Modified By: Admin U Salest

Dataflows & Recipes R
Monitor
Create, edit, and run dataflows and recipes to clean, transform, and combine data. Help me choose [¥]

Not Scheduled D
seEltWorkflow - R

4 Edit
ok, Download
M Upload

P RunNow

@ Schedule

a" Notifications

The scheduler appears.

4. Under Schedule Mode, select the Time-based or Event-based.

Choose the time-based mode to schedule the dataflow to run at a specified time. If you select this mode, continue with these steps

to set the time information.

Choose the event-based mode to run the dataflow after the data sync finishes for all Salesforce objects in the dataflow. For example,
if the dataflow pulls data from Accounts and Opportunities, both objects must sync before the dataflow can run. If you select this

mode, click Save to complete the setup.

5. Ifyou selected the time-based mode, from the Schedule by picklist, select the time frame that you want to schedule by and complete

the other settings.
By Hour

Run the dataflow at specified hourly intervals, starting at the time you select on the selected days.

14

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Create Datasets with the Dataflow Schedule a Dataflow

Schedule for 'Default Salesforce Dataflow’

Schedule Mode

® Time-based

Event-based
Schedule by

Hour w

Start at

&00am w America/Los Angeles

Run every

1w Hourl(s)
Su M Tu w Th F Sa
Stop queuing at a specific time

6:00pm w America/Los Angeles

@ Nofe: To stop the dataflow from running after a certain time each day, select Stop queuing at a specific time. For
example, set a job to start at 8:00 am, run every hour, and stop after 6:00 pm to restrict runs to just office hours.

By Week
Run the dataflow at the time you select on the selected days.

Schedule for 'Default Salesforce Dataflow’

Schedule Mode

® Time-based

Event-based
Schedule by

Week W

Start at

8:00am w» America/Los Angeles

Su EM ETu Ew ETh EF Sa

By Month
Run the dataflow on a specific day or days each month. By default, you can schedule the job to run on a relative day each month,
for example, the first Monday. If you want the job to run on a specific date or dates, click select specific dates and then select
from the list.

15

Create Datasets with the Dataflow

Schedule on a Relative Date

Schedule a Dataflow

Schedule on Specific Dates

Schedule Mode

® Time-based

Event-based
Schedule by

Month w

Start at

8:00 am = America/Los Angeles

On the

1st w Monday of every month

Or select specific dates

6. Click Save.

Schedule by

Month w

Start at

B00am w America/Los Angeles

On dates

2 Date(s) Selected w every month

To remove a dataflow schedule, select Unschedule from the dataflow’s menu.

DATAFLOWS

Default Salesforce Dataflow

Last M

DATASET RECIPES

The next runis Jan 1, 2019 at 8:00 AM

Zdified By: Admin Use SalesEdgeEltWorkflow - R

Edit

'_

Download

Upload

v [

Run Now

Schedule

I @ Unschedule I

a* Notifications

16

DATAFLOW TRANSFORMATION REFERENCE

Transformations for Analytics Dataflows

A transformation refers to the manipulation of data. You can add transformations to a dataflow to extract data from Salesforce objects
or datasets, transform datasets that contain Salesforce or external data, and register datasets.

For example, you can use transformations to join data from two related datasets and then register the resulting dataset to make it
available for queries.

IN THIS SECTION:

append Transformation
The append transformation combines rows from multiple datasets into a single dataset.

augment Transformation

The augment transformation augments an input dataset by combining columns from another related dataset. The resulting,
augmented dataset enables queries across both related input datasets. For example, you can augment the Account dataset with
the User dataset to enable a query to return account records and the full names of the account owners.

computeExpression Transformation

The computeExpression transformation enables you to add derived fields to a dataset. The values for derived fields aren't extracted
from the input data source. Instead, Analytics generates the values using a SAQL expression, which can be based on one or more
fields from the input data or other derived fields. For example, you can use an expression to assign a value to a field, concatenate
text fields, or perform mathematical calculations on numeric fields.

computeRelative Transformation

You can use the computeRelative transformation to analyze trends in your data by adding derived fields to a dataset based on values
in other rows. For example, to analyze sales pipeline trends, create derived fields that calculate the number of days an opportunity
remains in each stage. You can also calculate the changes to the opportunity amount throughout the stages of the opportunity.

delta Transformation

The delta transformation calculates changes in the value of a measure column in a dataset over a period of time. The delta
transformation generates an output column in the dataset to store the delta for each record. Create deltas to make it easier for
business analysts to include them in queries.

dim2mea Transformation

The dim2mea transformation creates a new measure based on a dimension. The transformation adds the new measure column to
the dataset. The transformation also preserves the dimension to ensure that existing lenses and dashboards don't break if they use
the dimension.

edgemart Transformation

The edgemart transformation gives the dataflow access to an existing, registered dataset, which can contain Salesforce data, external
data, or a combination of the two. Use this transformation to reference a dataset so that its data can be used in subsequent
transformations in the dataflow. You can use this transformation and the augment transformation together to join an existing dataset
with a new dataset.

filter Transformation
Thefilter transformation removes records from an existing dataset. You define a filter condition that specifies which records to retain
in the dataset.

17

Dataflow Transformation Reference append Transformation

flatten Transformation

The flatten transformation flattens hierarchical data. For example, you can flatten the Salesforce role hierarchy to implement row-level
security on a dataset based on the role hierarchy.

sfdcDigest Transformation

The sfdcDigest transformation generates a dataset based on data that it extracts from a Salesforce object. You specify the Salesforce
object and fields from which to extract data. You might choose to exclude particular fields that contain sensitive information or that
aren't relevant for analysis.

sfdcRegister Transformation

The sfdcRegister transformation registers a dataset to make it available for queries. Users cannot view or run queries against unregistered
datasets.

update Transformation

The update transformation updates the specified field values in an existing dataset based on data from another dataset, which we'll
callthe lookup dataset. The transformation looks up the new values from corresponding fields in the lookup dataset. The transformation
stores the results in a new dataset.

append Transformation

The append transformation combines rows from multiple datasets into a single dataset.

Consider the following rules when using this transformation.

e This transformation does not remove duplicate records.

e Allinput datasets must have the same structure—the corresponding columns must be in the same order and have the same name

and field type.

Example: Let’s look at an example. Each month, you create a dataset that contains the month’s sales targets. Now, you want a
holistic view of sales targets for all months. To do that, you create the following dataflow to merge the existing datasets into a
single dataset.

Dataflow Append Node in Dataflow

% DataM ly Sales T X
SRR Quarterly Sales Targets Append SalesTargets_Quarterl: append X

DATAFLOW

Quarterly Sales Targets

ATTRIBUTES OUTPUT FIELDS
® S 2 | B} x| x| a X Y
Node Name

Extract SalesTargets_Mon >
edgemart

Append SalesTargets_Quarterl

Extract SalesTargets_Mon 3 Sources
edgemart

Search nodes.

Extract SalesTargets_Mon N
edgemart

, Append SalesTargets_Qu:

er AllSalesTargets o
append e

Extract SalesTargets_Month1

er

« Extract SalesTargets_Month2

« Extract SalesTargets_Month3

Allow disjoint schema

18

Dataflow Transformation Reference

Here's the dataflow JSON.

"Extract SalesTargets Month3": ({

"action": "edgemart",
"parameters": {
"alias": "SalesTargets Month3"

by
"Extract SalesTargets Month2": {

"action": "edgemart",
"parameters": {
"alias": "SalesTargets Month2"

by
"Extract SalesTargets Monthl": ({

"action": "edgemart",
"parameters": {
"alias": "SalesTargets Monthl"

s
"Append SalesTargets Quarterl": ({

"action": "append",
"parameters": {
"enableDisjointedSchemaMerge": false,
"sources": [
"Extract SalesTargets Monthl",
"Extract SalesTargets Month2",
"Extract SalesTargets Month3"

}y
"Register AllSalesTargets": {

"action": "sfdcRegister",
"parameters": {
"name": "All Sales Targets",
"alias": "AllSalesTargets",

"source":

}

"Append SalesTargets Quarterl"

append Transformation

After you create the single dataset, you can use date filters to analyze the sales targets by month, quarter, or year.

@ Note: The append transformation doesn’t remove duplicate rows.

19

Dataflow Transformation Reference append Transformation

Append Datasets with Different Schema

By default, input datasets must have the same structure—the corresponding columns must have the same name and field type. For
example, let's say you want to append your Canada opportunities to your U.S. opportunities.

US Sales Canada Sales
MName Stage Amount 5 Mame & Currency Stage Value
1 USOppl MNegotiation 100 1 Ca Oppl CaD Megotiation 100
2 USOpp2 Quote 200 2 Ca Opp2 caD Quote 200
3 US Opp3 Prospecting 300 3 Ca Opp3 CaD Prospecting 300
4 US Opp4 Needs Analysis 200 &4 Ca Opp4 caD MNeeds Analysis 200

Here, the column names are different, and the Canada data has a Currency column. For the dataflow not to fail, select Allow disjoint
schema in the append node in the dataflow editor. If you're working in the dataflow JSON, add the
enableDisjointedSchemaMerge parameter and set its value to true.

Append Node in Dataflow Editor Append Node in Dataflow JSON
Append US & CA Sales: append X "Append US & CA Sales": {
"action": "append",
"parameters": {
ATTRIBUTES OUTPUT FIELDS "enableDisjointedSchemaMerge": true,
"sources": [
Node Name "Extract US Sales",
"Extract CA Sales"
Append US & CA 5ales]
}
Sources },

["Extract US Sales""Extract CA Sales"]

Allow disjoint schema

When you run the dataflow, the data is merged without the dataflow failing.

20

Dataflow Transformation Reference append Transformation

MName Currency Stage Amount Value
1 Us Cppl - Megotiation 100
2 Us Opp2 - Quote 200
3 Us Cpp3 - Prospecting 300
4 Us Opps - MNeeds Analysis 200
5 CaOppl CAD Megotiation - 100
6 CaOpp2 CAD Quote - 200
7 CaOpp3 CAD Prospecting - 300
8 Ca Opp4 CAD MNeeds Analysis - 200

The append transformation adds all columns to the dataset and merges values in columns with the same name, such as Name. It also
adds null values in a column for rows that didn't previously have that column. You can see this in the Currency column.

@ Nofte: If null measure handling in datasets isn't enabled for your org, append adds zeros in a column for rows that didn't previously
have that column.

IN THIS SECTION:

append Parameters
When you define an append transformation in the dataflow JSON, you set the action attribute to append and specify the parameters.

append Parameters

When you define an append transformation in the dataflow JSON, you set the action attribute to append and specify the parameters.

This table describes the settings for the append node in the dataflow editor.

Setting Required? Value

Sources Yes Nodes in the dataflow that identify the datasets that you want
to merge.

Allow disjoint schema No Select to allow appending of datasets with different schema.

@ Nofte: If this setting isn't selected, appending datasets
with different schemas causes the dataflow to fail.

This table describes the input parameters for the append transformation in the dataflow JSON.

Parameter Required? Value

sources Yes Nodes in the dataflow definition file that identify the datasets
that you want to merge.

21

Dataflow Transformation Reference augment Transformation

Parameter Required? Value
enableDisjointedSchemaMerge No Indicates whether appending datasets with different schema is
allowed.

e To allow appending of disjoint schema, set to true.

e To prevent appending of disjoint schema, set to false. The
defaultis false.

Example:

"enableDisjointedSchemaMerge": true

@ Nofte: Ifthis parameter is set to false, appending datasets
with different schemas causes the dataflow to fail.

SEE ALSO:

append Transformation

augment Transformation

The augment transformation augments an input dataset by combining columns from another related dataset. The resulting, augmented
dataset enables queries across both related input datasets. For example, you can augment the Account dataset with the User dataset
to enable a query to return account records and the full names of the account owners.

When you create the transformation, you identify each input dataset as the left or right dataset and specify the relationship between
them. Analytics combines all the columns of the left dataset with only the specified columns from the right dataset. (Keep in mind that
each dataset can't have more than 5,000 columns.) Analytics adds the relationship to column names from the right dataset, which is
useful when the left and right datasets have columns with the same names.

For each record in the left dataset, the augment transformation performs a lookup to find a matching record in the right dataset. To
match related records, the augment transformation uses a match condition. You specify the match condition based on a key from each
dataset. For example:

"left key": ["Id"],"right key": ["Prod ID"]

A key can be a single-column key or a composite key. For a match condition based on a composite key, the keys for both datasets must
have the same number of columns, specified in the same order.

O Tip: To augment more than two datasets, augment two datasets at a time. For example, to augment three datasets, augment
the first two datasets, and then augment the resulting dataset with the third dataset.

@ Example: Let's look at an example of the augment transformation. In this example, you want to extract data from the Opportunity
and Accounts objects, and then match the data based on the account ID field.

22

Dataflow Transformation Reference

Opportunity Account
Id — Id

Mame Mame
Amount
StageMame
CloseDate
Accountld
Ownerld

You create the following dataflow definition file.

{
"Extract Opportunity": {

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" 1},
{ "name": "StageName" 1},
{ "name": "CloseDate" },
{ "name": "AccountId" 1},
{ "name": "OwnerId" }
]
}
by
"Extract AccountDetails": ({
"action": "sfdcDigest",
"parameters": {
"object": "Account",
"fields": [
{ "name": "Id" },
{ "name": "Name" }

by

"Augment OpportunitiesWithAccountDetails":

"action": "augment",
"parameters": {
"operation": "LookupSingleValue",
"left": "Extract Opportunity",
"left key": [
"AccountId"
1y
"relationship": "OpptyAcct",
"right": "Extract AccountDetails",
"right key": [
nggn

1,

"right select": ["Name"]

23

augment Transformation

Dataflow Transformation Reference augment Transformation

b
"Register OpportunityDetails": ({

"action": "sfdcRegister",
"parameters": {
"alias": "Opportunity Account",
"name": "Opportunity Account",
"source": "Augment OpportunitiesWithAccountDetails" }

}

After you run the dataflow, Analytics creates and registers the Opportunity_Account dataset. It also adds the relationship as a
prefix to all columns from the right dataset.

Opportunity_Account

Id
MName

Amount
StageMame —— Opportunity Columns
CloseDate
Accountld
Ownerld
OpptyAcct.1d
OpptyAcct Name

— Account Columns

IN THIS SECTION:

Special Cases for Matching Records with the augment Transformation
For each record in the left dataset, the augment transformation performs a lookup to find a matching record in the right dataset.
However, it's critical that you understand how the augment transformation handles special cases when matching records.

augment Parameters
When you define an augment transformation, you set the action attribute to augment and specify the parameters.

Special Cases for Matching Records with the augment Transformation

Foreach record in the left dataset, the augment transformation performs a lookup to find a matching record in the right dataset. However,
it's critical that you understand how the augment transformation handles special cases when matching records.

Let’s look at some examples that illustrate some special cases.

Handling Null Keys

When a record in the left dataset contains a null key, Analytics doesn’t perform a lookup to match the record. Instead, Analytics appends
the right columns and inserts null for dimensions (including dates) and '0' for measures.

Let’s look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price,", and match
the records based on the Id and Prodid fields.

24

Dataflow Transformation Reference augment Transformation

Product | Price
id |Mame |Pradid |Pricebook |UnitPrice
Pradi |Table Prodl |Standard 1000
Chair Prod? |Standasrd 450
null nch lr.uqJI' Curstom]
) Prod3 [Standard 700

Analytics doesn't match the last record because the product ID is null. Instead, Analytics inserts a null for the Price.Pricebook
dimension and '0' for the Price.UnitPrice measure. Here's the resulting dataset after the augment.

[“id""Prod1", "Mame"™"Table", "Price.Pricebook":"Standard”, “Price.UnitPrice™ 1000],
[“id""Prod2", "Mame""Chair', "Price.Pri k":"Stan " "Price.UnitPrice™4 1
["id"mit, "Mame"™"Banch", | "Price.Pricebook":null, "Price.UnitPrice™0]

Handling Empty Keys
Analytics matches empty-value left keys and empty-value right keys.

Let's look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price,", and match
the records based on the Id and ProdId fields.

Product Price
Id Mame Prodid |Pricebook |UnitPrice
Prod1 |Table Frodl |Standard 1000
|Prod2 | Chrair Prod? |Standard 450
" Bench Custom g00
il Standard 700

Analytics matches the last record in the Product dataset with the third record in the Price dataset because they both have empty values
("). Here's the resulting dataset after the augment.

{ "id""Prod1”, "Name":"Table", "Price.Pricebook":"Standard”, "Price.UnitPrice™ 1000 },
{ “id":"Prod2", "Name";"Chair", "Price.Pricebook":"Standard”, "Price.UnitPrice™450 },
{ "™, "Mame":"Bench”, |"F'r|1:e.Pncehnuk".'"'l:ustum". "Price.UnitPrice™800] }

Handling Non-Unique Keys

Although it's recommended, the left key doesn’t have to be unique. If multiple records have the same left key, Analytics creates the same
values for the appended columns.

Let's look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price,", and match
the records based on the Id and ProdId fields.

25

Dataflow Transformation Reference augment Transformation

Product Price
[:] Name Prodid |Pricebook |UnitPrice
Prodl |Takle Prodl |Standard 1000
Prod2 |Chair Prod2 |Standard 450
Prod2 [Chair Prod3 |Standard 700

Analytics matches the records in the Product dataset with records in the Price dataset. Here's the resulting dataset after the augment.

£ Mid""Prodl”, "Mame"™"Table", "Price.Pricebook":"Standard”, "Price.UnitPrice™ 1000 },
{"id":"Prad2", |"Mame";"Chair", "Price.Pricebook™"Standard", "Price.UnitPrice’:450 1},
f1hid" " Prod2”, |"Mame": "Chair", "Price.Pricebook™"Standard”, "Price.UnitPrice™:450 1}

Handling No Match

If the left key doesn't have a match in the right data stream, Analytics appends the right columns, inserting nulls for dimensions (including
dates) and sets measures based on whether null measure handling is enabled. If null measure handling is enabled, the augment
transformation sets the measures to null. Otherwise, it sets the measures to '0'.

Let's look at an example where null measure handling isn't enabled. You apply the augment transformation on the following datasets,
set the relationship to "Price,", and match the records based on the 1d and ProdId fields.

Product Price
I Name Prodld |Pricebook |UnitPrice
Prod1 |Table Prod4 |Standard 1000
Prod2 [Chair Prod5 |Standard 450
Prod3 [pench

Because no keys match, Analytics doesn't match any records in the Product dataset with records in the Price dataset. Here's the resulting
dataset after the augment.

£ id" " "Prod1”, "Mame""Table", "Price.Pricebook™ suff, "Price.UnitPrice™0 J,
£ Md" " "Prod2”, "Mame""Chair", "Price.Pricebook™ sudf, "Price.UnitPrice™0 J,
{ "id""Prod3", "Mame""Bench", "Price.Pricebook"™ wulf, "Price.UnitPrice™:0]

If null measure handling was enabled, Price.UnitPrice would be null, instead of 0.

Handling Multiple Matches

If the left dataset has a one-to-many relationship with the right dataset, Analytics might find multiple matches for a left record. What
Analytics does with multiple matches depends on the specified augment operation. You can specify one of the following operations to
handle the multiple-match case:

LookupSingleValue
The augment transformation returns results from a single row. Analytics randomly selects one row from the list of matched rows.

@ Note: Each time you run the dataflow, Analytics can return different results depending on the returned row.

26

Dataflow Transformation Reference augment Transformation

Let’s look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price," set the
operation to LookupSingleValue, and match the records based on the Id and ProdId fields.

Product Price
I Name Prodld |Pricebook |UnitPrice
Prod1 |Table Prod1 |Standard 1000
Prod2 [Chair Prod2 |Standard 450
Prod3 [pench Prod3 ||Custom 800
Prod3 ||Standard 700

Although there are multiple rows for Prod3 in the Price dataset, Analytics randomly chooses one matching row and returns values
based on that row. Here's the resulting dataset after the augment if Analytics chooses the first Prod3 row.

{ "id""Prad1", "Name""Table", "Price.Pricebook":"Standard", "Price.UnitPrice’: 1000 },
£ Mid""Prod2”, "Name™"Chair', "Price.Pricebook’:"Standard”, "Price.UnitPrice450 1,
£ "id""Prod3", "Name":"BEﬂch”J|"F‘rice.F‘ricebuuk”:"CustDm", "Price.UnitPrice":300 |}

LookupMultiValue
Analytics returns results from all matched rows.

Let’s look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price," set the
operation to LookupMultiValue, and match the records based on the Id and ProdId fields.

Product Price
Ied Name Prodid |Pricebook |UnitPrice
Prod1 |Table Prod1 |Standard 1000
ProdZ2 |Chair Prod2 |Standard 450
Prod3 |Bench Prod3 ||Custom 800
Prod3 ||5tandard 700

Because the lookup returns multiple rows for Prod3, the dimension Price.Pricebook field in the resulting dataset becomes
a multi-value field, showing all dimension values. The measure field Price.UnitPrice contains 1500, which is the sum of 800
and 700. Here's the resulting dataset after the augment.

{ "id""Prod1", "MName":"Tahle", "Price.Pricebook™"Standard”, "Price.UnitPrice": 1000 L
{ "id""Prod2", "Mame";"Chair", "Price.Pricebook':"Standard", "Price.UnitPrice':450 1,
{ "id""Prod3", "Mame";"Bench", |"Price.Pr\cebaak":"Custom", ”Price.Pricebook":"Standard"Jl |"Price.UnitPrice":1SDD|}

@ Note: If you are augmenting date fields from the right dataset, the LookupMultiValue operation can lead to fields
containing multiple date values, which can give unexpected results. We recommend that you use the LookupSinglevValue
operation when augmenting date fields, or augment the date fields in a separate LookupSingleValue augment node.

augment Parameters

When you define an augment transformation, you set the action attribute to augment and specify the parameters.

The following table describes the input parameters.

27

Dataflow Transformation Reference computeExpression Transformation

Parameter Required? Value

operation No Indicates what the transformation does if it matches multiple rows in the right
dataset with a row in the left. Valid values:

® TLookupSingleValue. Returns values from one of the matched rows.
If you don't specify the operation parameter, the transformation uses
this operation.

e LookupMultiValue.Returns values from all matched rows.

For more information about each operation, see Special Cases for Matching
Records with the augment Transformation.

left Yes Node in the dataflow definition file that identifies the left dataset. This is one of
two input sources for this transformation.

left_key Yes Key column in the left dataset used to augment the datasets. If you use a

composite key, the left and right keys must have the same number of columns
in the same order. For a composite key, use the following syntax:

["Key Columnl", "Key Column2", .., "Key ColumnN"]

@ Note: The left or right key can't be a multi-value field.

right Yes Node in the dataflow definition file that identifies the right dataset. This is one
of two input sources for this transformation.

relationship Yes Relationship between the left and right datasets. The dataflow adds the
relationship to the beginning of the right column names in the output dataset
to make the column names unique and descriptive.

right_select Yes An array of column names from the right dataset that you want to include in
the output dataset. The dataflow adds the relationship as a prefix to the column
name to determine the name of the right column in the output dataset.

right_key Yes Key column in the right dataset used to augment the datasets. If you use a
composite key, the left and right keys must have the same number of columns
in the same order.

SEE ALSO:

augment Transformation

computeExpression Transformation

The computeExpression transformation enables you to add derived fields to a dataset. The values for derived fields aren't extracted from
the input data source. Instead, Analytics generates the values using a SAQL expression, which can be based on one or more fields from
the input data or other derived fields. For example, you can use an expression to assign a value to a field, concatenate text fields, or
perform mathematical calculations on numeric fields.

28

Dataflow Transformation Reference computeExpression Transformation

@ Nofe: The computeExpression and computeRelative transformations are similar, but they have a key difference. The
computeExpression transformation performs calculations based on other fields within the same row. The computeRelative
transformation performs calculations based on the previous and next values of the same field in other rows.

Consider the following guidelines when creating a computeExpression transformation:
* You caninclude only the following SAQL operators and functions in the expression:

— Arithmetic operators
- (Case operator
- String operator

-~ Date functions

e Multi-value fields arent supported. The dataflow fails if you include a multi-value field in the SAQL Expression parameter.

e The values of the derived field must match its specified type. For example, set the type of the derived field to Text if the values
are strings.

e Analytics calculates the values of derived fields in the order in which they are listed in the JSON. Thus, if you create a derived field
based on other derived fields in the same computeExpression transformation, the input derived fields must be listed first. For example,
Derived_A must be listed before Derived_B in the following computeExpression transformation JSON snippet:

"CreateDerivedFields": {
"action": "computeExpression",
"parameters": {

"source": "sourceNode",
"mergeWithSource": false,
"computedFields": [

{

"name": "Derived A",
"type": "Text",
"label": "Derived Field A",
"saglExpression": "\"hello \""},
{
"name": "Derived B",
"type": "Text",
"label": "Derived Field B Dependent on Field A",
"saglExpression": "Derived A + \"world\""}

e You can choose whether the resulting dataset includes only the derived fields, or includes the input and derived fields.

@ Example: Let's look at an example. You want to create a dataset based on Salesforce opportunity data. You create a dataflow
that extracts the Id and Amount fields from the Opportunity object. In addition, you also want to add the following derived fields
to the dataset: Modifiedld, SalesTax, FinalPrice, and ValueCategory. For the derived fields, you will:

e Append “SFDC" to each opportunity Id to get a new modified Id.
e (alculate the sales tax based on an 8% tax rate.
e (alculate the final price by adding the amount and sales tax.

e (ategorize opportunities into low-, medium-, and high-value buckets based on the calculated final price.

29

https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_operators_arithmetic.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_operators_case.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_operators_string.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_functions_date.htm

Dataflow Transformation Reference

You create the following dataflow definition.

{

"salesData": ({
"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{"name": "Amount"},
{"name": "Id"}]}},
"Derived Fields": {
"action": "computeExpression",
"parameters": {
"source": "salesData",
"mergeWithSource": true,
"computedFields": [
{
"name": "ModifiedId",
"type": "Text",
"saglExpression": "\"SFDC\" + Id"},
{
"name": "SalesTax",
"type": "Numeric",
"precision": 18,
"defaultvalue": "0",
"scale": 5,
"saglExpression": "Amount * 0.08"},
{
"name": "FinalPrice",
"type": "Numeric",
"precision": 18,
"defaultvalue": "0",
"scale": 5,
"saglExpression": "Amount + SalesTax"},
{
"name": "ValueCategory",
"type": "Text",
"saglExpression": "case when FinalPrice <

FinalPrice >= 1000 and FinalPrice < 2000 then \"Medium\"

]

by

"Register CategorizedSales": {
"action": "sfdcRegister",
"parameters": {

"alias": "Categorized Sales",
"name": "Categorized Sales",
"source": "Derived Fields" }

30

computeExpression Transformation

1000 then \"Low\" when
else \"High\" end"}

Dataflow Transformation Reference computeExpression Transformation

IN THIS SECTION:

computekxpression Parameters

When you define a computeExpression transformation, you set the action attribute to computeExpression. You also specify
the parameters for the input source and the expression used to generate the values.

computeExpression Parameters

When you define a computeExpression transformation, you set the action attribute to computeExpression. You also specify the
parameters for the input source and the expression used to generate the values.

You can specify parameters in the following sections of the computeExpression node: parameters and computedFields.

Parameters

The following table describes the parameters in the parameters section.

Parameter Required? Value

source Yes Node in the dataflow definition file that identifies the input source for this
transformation.

mergeWithSource No Indicates whether the input fields are included with the derived fields in the resulting

dataset. When true, the resulting dataset contains all input fields from the source
and the newly generated derived fields. When false, the resulting dataset contains
the derived fields only. Default is true.

computedFields Yes Attributes and expression used to generate derived fields in the dataset. See
computedFields.

computedFields

The following table describes the attributesin the computedFields section. Italso describes optional attributes that you can provide
to override the field metadata to make the data appear differently in a dataset. For example, Analytics can replace null values in a field
with a default value.

Attribute Required? Value
name Yes API'name of the generated field.

@ Note: The APl names must be unique. Otherwise, the dataflow fails to run.

type Yes Analytics field type associated with the field. Valid types are Text, Numeric, or Date.
Example:
lltype" : llTeXt"

label No The display name of the generated field that appears in the Analytics user interface.

Can be up to 255 characters. Defaults to input field name if not specified.

31

Dataflow Transformation Reference

Attribute

saqlExpression

format

fiscalMonthOffset

isYearEndFiscalYear

Required?

Yes

Yes (for Date
fields only)

No

No

computeExpression Transformation

Value
SAQL expression used to calculate the value for the derived field. The expression
can be based on input fields or other derived fields in the transformation.

Example:

"saglExpression":"toDate (birth day, \"yyyy-M-d\")"

@ Nofte: If afield name in a SAQL expression contains characters other than
letters, numbers, or underscores, enclose the name in single quotes. For
example, field names resulting from an augment are prefixed with the
relationship name and a dot, and must be. enclosed in single quotes.

"saglExpression”:"'AccountId.Sales 04 c'-'AccountId.Sales Q3 c'"
@ Note: The use of multi-value fields as input fields isn't supported.

Format of the derived date field. For information about formats, see the Analytics
External Data Format Reference.

For date fields only. The difference, in months, between the first month of the fiscal
year and the first month of the calendar year (January). For example, if the fiscal
year starts in January, the offset is 0. If the fiscal year starts in October, the offset is
0.

Example:
"fiscalMonthOffset": 9

Whenyouset fiscalMonthOffset toavalueotherthan 0, Analytics generates
fields to show the fiscal week, month, quarter, and year that a date value falls in.
You can use these fields to group and filter by fiscal period in a dataset.

For more information, see Date Handling in Datasets.
Warning: Analytics doesn't support fields with different
fiscalMonthOffset valuesin the same dataset. Using different
fiscalMonthOffset values can produce unexpected results when

you filter by relative fiscal date ranges. We recommend that you set the same
valueforall fiscalMonthOffset attributesin a dataset.

For date fields only, when fiscalMonthOffset isgreater than 0. Indicates
whether the fiscal year is the year in which the fiscal year ends or begins. Because
the fiscal year can start in one calendar year and end in another, you specify which
year to use for the fiscal year.

e Iftrue, then the fiscal year is the year in which the fiscal year ends. The default
is true.

e Iffalse, then the fiscal year is the year in which the fiscal year begins.
Example:

"isYearEndFiscalYear": true

32

https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_reference.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_reference.htm

Dataflow Transformation Reference computeExpression Transformation

Attribute Required? Value

Warning: Analytics doesn't support fields with different
isYearEndFiscalYear valuesin the same dataset. Using different
isYearEndFiscalYear valuescan produce unexpected results when
you filter by relative fiscal date ranges. We recommend that you set the same
value forall isYearEndFiscalYear attributesin a dataset.

For more information, see Date Handling in Datasets.

firstDayOfWeek No For date fields only. The first day of the week for the calendar year and, if applicable,
fiscal year. Use 0 to set the first day to be Sunday, 1 to set the first day to be Monday,
and so on. Use -1 to set the first day to be on January 1. The default is -1.

Example:

"firstDayOfWeek": 0
Warning: Analytics doesn't support fields with different
firstDayOfWeek valuesin the same dataset. Using different
firstDayOfWeek values can produce unexpected results when you

filter by relative week date ranges. We recommend that you set the same
value for all firstDayOfWeek attributesin a dataset.

For more information, see Date Handling in Datasets.

precision Yes (for The maximum number of digits in a numeric value, or the length of a text value.
Numeric fields ~ For numeric values: Includes all numbers to the left and to the right of the decimal
only) point (but excludes the decimal point character). Value must be from 1 to 16. For

text values: Value defaults to 255 characters, and must be from 1to 32,000 characters.

Example:
"precision": 10
scale Yes (for The number of digits to the right of the decimal point in a numeric value. Must be
Numeric fields less than the precision value. Value must be from 1to 15 characters.
only) Example:
"scale": 2
defaultValue No For text and numeric fields that can be null. Default value that replaces a null value

for the specified field. Enter a string value.

Example:

"defaultvalue": "0O"

SEE ALSO:

computeExpression Transformation

33

Dataflow Transformation Reference

computeRelative Transformation

You can use the computeRelative transformation to analyze trends in your data by adding derived fields to a dataset based on values
in other rows. For example, to analyze sales pipeline trends, create derived fields that calculate the number of days an opportunity
remains in each stage. You can also calculate the changes to the opportunity amount throughout the stages of the opportunity.

@ Note: The computeExpression and computeRelative transformations are similar, but the computeExpression transformation
performs calculations based on fields within the same row. The computeRelative transformation performs calculations based on
the same field in other rows—particularly the current, first, previous, or next rows.

When you define a computeRelative transformation, you specify a source transformation as the input, partition the records, and sort the
records within each partition. For example, you can use sfdcDigest to extract opportunity history records, and then use computeRelative
to calculate changes in each opportunity over time. You can partition opportunity history records by opportunity ID, and then
chronologically sort records within each partition to correctly identify the previous and next values.

@ Nofte: Derived fields can be based on a source field or on a SAQL expression.

@ Example: Let'slook atan example. To perform trending analysis on the sales pipeline, create a dataflow that contains the following
transformations.

sfdcDigest transformation
Extracts the following data from the OpportunityHistory object.

Opportunity ID Created Date Stage Name Amount Close Date
006R0O00000LrerElAQ 2017-09-11T18:47:39.000Z Id. Decision Makers 120,000 2015-06-24
005RO000001rerGIAQ 2017-09-11T18:48:12.000Z Qualification 20,000 2015-10-22
005ROCO0001rerFIAQ 2017-09-11T18:48:39.000Z Value Proposition 75,000 2015-09-23

006ROCO0COLrerDIAQ 2017-09-11T18:49:11.000Z Perception Analysis 38,000 2015-07-15

006RO0O000LrerHIAD 2017-09-11T18:49:36.000Z Megotiation/Review 120,000 2015-07-31

computeRelative transformation
Performs the following tasks:

Partitions the extracted records by opportunity ID.

Within each partition, sorts the extracted records by CreatedDate in ascending order. Sorting by CreatedDate ensures that
the changes that occur for each opportunity are listed in chronological order.

Adds the following derived fields to the final dataset.

OpportunityCreatedDate
Determines the date that the opportunity was first created. You can use this date with the actual close date to determine
the number of days required to close the sale. The goal is to shorten the sales cycle to recognize revenue.

AmountPrev
Determines the previous amount of the opportunity. You can use this field to determine if the values of opportunities
are increasing or decreasing, which can affect whether you hit your sales targets.

CloseDatePrev
Determines the previous expected close date for the opportunity. You can use this field to analyze how the expected
close date changes over the sales cycle of the opportunity. If the expected close date keeps getting pushed out, identify
the issues that are causing the longer sales cycle.

AmountChange
Uses a SAQL expression to calculate the percentage change of the opportunity amount from its previous amount.

34

computeRelative Transformation

Dataflow Transformation Reference computeRelative Transformation

AmountChangeDirection
Uses a SAQL expression to generate a text value to show the direction in which an opportunity amount has changed:
Up, Down, or No Change.

sfdcRegister transformation
Registers the final dataset that contains the extracted fields from the sfdcDigest transformation and the derived fields from
computeRelative transformation.

You create the following dataflow definition.

{
"extractOppHistory": {
"action": "sfdcDigest",
"parameters": {
"object": "OpportunityHistory",
"fields": [
{"name": "OpportunityId"},
{"name": "CreatedDate"},
{"name": "StageName"},
{"name": "Amount"},
{"name": "CloseDate"}

}y
"computeTrending": {
"action": "computeRelative",
"parameters": {
"source": "extractOppHistory",
"partitionBy": ["OpportunityId"],
"orderBy": [
{
"name": "CreatedDate",
"direction": "asc"
}
I
"computedFields": [
{
"name": "OpportunityCreatedDate",
"label": "Opportunity Created Date",
"description": "Determines the date that the opportunity was first created.",

"expression": {
"sourceField": "CreatedDate",
"offset": "first()",
"default": "current ()"
}
by
{
"name": "AmountPrev",
"label": "Previous Amount",
"description": "Determines the previous amount of the opportunity",
"expression": {
"sourceField": "Amount",
"offset": "previous()",

35

Dataflow Transformation Reference computeRelative Transformation

"default": "null"
}
by
{
"name": "CloseDatePrev",
"label": "Previous Close Date",
"description": "Determines the previous expected close date for the
opportunity",
"expression": {
"sourceField": "CloseDate",
"offset": "previous()",
"default": "current ()"

"name": "AmountChange",

"label": "Amount % Change",

"description": "Determines percentage change from previous amount",
"expression": {

"saglExpression": " (current (Amount)-previous (Amount)) /previous (Amount) *100",

"type": "Numeric",
"scale": 2,
"default": "null"

"name": "AmountChangeDirection",
"label": "Amount Change Direction",
"description": "Determines text to indicate direction of change",
"expression": {
"saglExpression": "case when current (Amount)>previous (Amount) then \"Up\"
when current (Amount)<previous (Amount) then \"Down\" else \"No Change\" end",
"type": "Text",
"default": ""

}
b
"Register OppportunityHistory Dataset": ({

"action": "sfdcRegister",
"parameters": {
"alias": "SalesPipelineTrendingl",
"name": "Sales Pipeline Trendingl",
"source": "computeTrending"

}

The dataflow runs and creates the dataset with the new derived fields.

36

Dataflow Transformation Reference

computeRelative Transformation

Opportunity ID

006RO000001rerDIAQ
006RO00000 LrerEIAQ
006GRO0O00COLrerEIAQ
006RO00000TrerEIAQ

006RO00000LrerEIAQ

Created Date

2017-09-11T18:49.11.000Z

2017-08-28T18:24:41.000Z

2017-08-28T18:24:41.000Z

2017-08-28T18-24:41 0007

2017-09-11T18:47:39.000Z

Amount

38,000

140,000

140,000

140,000

120,000

OpportunityCreatedDate Previous Amount Amount % Change Amount Change Direction Previous Close Date
2017-08-28T18:24:41.000Z 40,000 -5.0 Down 2013-05-06
2017-08-28T18:24:41.000Z - - NoChange 1970-1-1
2017-08-28T18:24:41.000Z 140,000 0 NoChange 2013-03-07
2017-08-28T18:24:41 0007 140,000 0 Mo Change 2013-04-05
2017-08-28T18:24:41.000Z 140,000 -140 Down 2013-04-05

Notice that Analytics partitions the records by opportunity ID and then sorts the records in ascending order based on the CreatedDate
field within each partition. Analytics can now use the previous and next rows within each partition to determine changes in field
values in the dataset.

IN THIS SECTION:

computeRelative Parameters

When you define a computeRelative transformation, you set the action attribute to computeRelative. You also specify the
parameters for the input source, partition-by field, sort field, and derived field definitions.

computeRelative Parameters

When you define a computeRelative transformation, you set the action attribute to computeRelative. You also specify the
parameters for the input source, partition-by field, sort field, and derived field definitions.

You can specify parameters in the following sections of the computeRelative node.

Parameters

The following table describes the parameters in the parameters section.

Parameter

source

partitionBy

orderBy

Required?

Yes

Yes

Yes

Value

Node in the dataflow definition file that identifies the input source for this
transformation.

API name of the field used to partition the records in the dataset. Specify one
partition-by field only.

Field used to sort the records within each partition and the sort order: ascending
(asc) or descending (desc). Specify one sort field only.

Example:

"orderBy": [
{

"name" :"CreatedDate",
"direction":"asc"

37

Dataflow Transformation Reference computeRelative Transformation

Parameter Required? Value

computedFields Yes Alist of definitions for derived fields. Derived fields can be based on a source
field or on a SAQL expression.

Example showing derived fields based on a source field and on a SAQL expression:

"computedFields": [
{
"name": "PreviousAmount",
"label": "Previous Amount",
"description": "Previous amount of
opportunity",
"expression": {
"sourceField": "Amount",
"offset": "previous()",
"default": "null"
}
by
{
"name": "AmountChange",
"label": "Amount % Change",
"description": "Percentage change from
previous amount",
"expression": {
"saglExpression":
" (current (Amount) —-previous (Amount)) /previous (Amount) *100",

"type": "Numeric",
"scale": 2,
"default": "null"

]

See computedFields.

computedFields

The following table describes the attributes in the computedFields section.

Parameter Required? Value

name Yes API'name of the derived field to add to the dataset. The name must be unique
in the dataset.

@ Note: If the name is not unique, the dataflow fails to run.

label No The display name of the derived field that appears in the Analytics user interface.
Can be up to 255 characters. Defaults to the API name if not specified.

description No Description of the derived field for information only.

38

Dataflow Transformation Reference

Parameter

expression

expression

Required?

Yes

computeRelative Transformation

Value

Expression attributes used to calculate the value for the derived field. The
expression can be based on input fields or other derived fields in the
transformation.

Example:

"expression": {
"sourceField": "CloseDate",
"offset": "previous()",
"default": "01-01-1970"

See expression.

The following table describes the attributes in the expression section when creating a derived field based on a source field.

Parameter
sourceField

offset

Required?
Yes

Yes

Value
API name of the input field from the source node that's used in the expression.

The function used in the expression. You can use the following functions:

current ()
Gets the value from the current record.

Example:
"offset": "current ()"

first()
Gets the value from the first record in the partition, like the first CreateDate
for an opportunity.

Example:
"offset": "first()"

next ()
Gets the value from the next record.

Example:
"offset": "next ()"

previous ()
Gets the value from the previous record.

Example:

"offset": "previous()"

@ Nofte: Derived fields are computed in the order that they're defined. The
calculation of a derived field can be based on the value from another

39

Dataflow Transformation Reference computeRelative Transformation

Parameter Required? Value

derived field aslong as it has already been defined. For example, next ()
can't access the value of a derived field in the next row.

O Tip: To get the correct results when using the previous () and
next () functions, the computeRelative transformation requires you
to sort the records.

default Yes (for numeric fields ~ The default value if one can't be calculated. For example, you can specify a default
only) value when no previous or next value exists. You can insert a constant value or
current () asa default value.

Examples:
"default": "3000-01-01T00:00:00.000z"
"default": "current ()"

The following table describes the attributes in the expression section when creating a derived field based on a SAQL expression.

Parameter Required? Value

saqlExpression Yes SAQL expression used to calculate the value for the derived field. The expression
can be based on input fields or other derived fields in the transformation. You
can use the offset functions current (),first (),next (), and
previous () inthe expression.

Example to calculate the percentage change from the previous amount to the
current amount:

"saglExpression":
" (current (Amount) -previous (Amount)) /previous (Amount) *100"

You can also use the SAQL case operator in the expression.

Example to output Up, Down, or No Change values based on the change
from the previous amount to the current amount:

"saglExpression": "case when
current (Amount) >previous (Amount) then \"Up\" when
current (Amount) <previous (Amount) then \"Down\"
else \"No Change\" end"

type Yes Analytics field type associated with the field. Valid types are Numeric and Text.
Example:
'ltypell: 'lTethl

40

Dataflow Transformation Reference

Parameter Required?

scale No

default Yes (for numeric fields
only)

delta Transformation

delta Transformation

Value

The number of digits to the right of the decimal point in a numeric value.

Example:

"scale": 2

The default value if one can't be calculated.

Example:

"default": "null"

The delta transformation calculates changes in the value of a measure column in a dataset over a period of time. The delta transformation
generates an output column in the dataset to store the delta for each record. Create deltas to make it easier for business analysts to

include them in queries.

@ Note: The delta transformation isn't supported when null measure handling is enabled and dataflows containing delta
transformations fail. Use computeRelative and computeExpression transformations instead in your dataflows, to
calculate changes in measure values over time. For an example, see Enable Null Measure Handling.

The delta transformation calculates each delta value by comparing the value in each record with the value in the previous record. Because
records might not be sorted, the delta transformation orders the records before computing the delta values. To do this, the transformation
sorts the data by the specified dimension, and then by the specified epoch date column.

@ Notfe: When Analytics processes dates, it creates the following epoch date columns for each date processed:

Epoch Time Column

<date_column_name>_sec_epoch

<date_column_name>_day_epoch

Description

For example, if the date column is CloseDate, the generated
epoch second column is CloseDate_sec_epoch. This column
provides the number of seconds that have elapsed since January
1, 1970 (midnight UTC/GMT).

For example, if the date column is CloseDate, the generated
epoch day column is CloseDate_day_epoch. This column
provides the number of days that have elapsed since January
1, 1970 (midnight UTC/GMT).

@ Example: Let’s look at an example. You want to create an OppHistoryDelta dataset that contains opportunity history from the
OpportunityHistory object and also calculates the deltas for opportunity amounts.

The OpportunityHistory object contains the following data.

Opportunityld CloseDate
1 1/1/2014
2 1/1/2014

StageName Amount
New 100
New 100

4

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_integrate_enable_null_measures.htm&language=en_US#bi_integrate_enable_null_measures

Dataflow Transformation Reference

Opportunityld CloseDate StageName
2 2/1/2014 ClosedWon
1 3/1/2014 ClosedWon

You create the following dataflow definition.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "OpportunityHistory",
"fields": [
{ "name": "OpportunityId" },
{ "name": "CloseDate" },
{ "name": "StageName" },
{ "name": "Amount" }

bo
"Calculate Delta": ({

"action": "delta",

"parameters": {
"dimension": "OpportunityId",
"epoch": "CloseDate day epoch",
"inputMeasure": "Amount",
"outputMeasure": "DeltaAmount",
"source": "Extract Opportunities”

by

"Register Dataset": {

"action": "sfdcRegister",
"parameters": {
"alias": "OppHistoryDelta",
"name": "OppHistoryDelta",
"source": "Calculate Delta"

}

Amount
200

100

delta Transformation

To calculate the delta values for each opportunity amount, the delta transformation sorts the records by the dimension

(Opportunityld) first, and then by time (CloseDate_day_epoch) as shown here.

OpportunitylD CloseDate StageName
1 1/1/2014 New

1 3/1/2014 ClosedWon

2 1/1/2014 New

2 2/1/2014 ClosedWon

42

Amount
100
100
100

200

Dataflow Transformation Reference delta Transformation

After the records are sorted, for each dimension (Opportunityld), the transformation compares the previous value to the next value
to determine the delta for each record. The transformation creates the following dataset.

Opportunityld CloseDate StageName Amount DeltaAmount
1 1/1/2014 New 100 0

1 3/1/2014 ClosedWon 100 0

2 1/1/2014 New 100 0

2 2/1/2014 ClosedWon 200 100

For the first record of each dimension, the transformation inserts ‘0’ for the delta value.

@ Nofte: If an opportunity contains multiple changes on the same day, you must sort the records on a shorter time interval.
In this case, sort on CloseDate_sec_epoch column. Otherwise, records might not be sorted correctly, which means delta
values will be incorrect.

IN THIS SECTION:

delta Parameters
When you define a delta transformation, you set the action attribute to delta and specify the parameters.

delta Parameters

When you define a delta transformation, you set the action attribute to delta and specify the parameters.

The following table describes the input parameters:

Parameter Required? Value

dimension Yes Dimension column in the dataset used to
sort records when calculating the delta
values.

epoch Yes Epoch date column in the dataset used to

sort records within each dimension when
calculating delta values.

inputMeasure Yes Measure column on which you want to
calculate the delta.

outputMeasure Yes Name of the output column that contains
the delta value.

43

Dataflow Transformation Reference

Parameter Required?
source Yes
SEE ALSO:

delta Transformation

dim2mea Transformation

dim2mea Transformation

Value

Node in the dataflow definition file that
contains the dataset to which you want to
add the delta column.

The dim2mea transformation creates a new measure based on a dimension. The transformation adds the new measure column to the
dataset. The transformation also preserves the dimension to ensure that existing lenses and dashboards don't break if they use the

dimension.

If the transformation cannot create a measure from a dimension, the transformation populates the measure with the specified default

value. If no default value is provided, the transformation inserts ‘0.’

@ Example: Let's look at an example. Your Opportunity object contains a custom text field called StageVal

¢, which contains the

opportunity amount at a particular stage. Because this is a text field, Analytics loads this data as a dimension. However, you'd like
to create a measure from this dimension to enable users to perform calculations on stage amount.

You create the following dataflow definition.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" 1},
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "StageVal c" }
]
}
by
"Create Measure From Dimension": {
"action": "dim2mea",
"parameters": {
"dimension": "Stageval c",
"measure": "StageValue",
"measureDefault": "0",
"measureType": "long",
"source": "Extract Opportunities”

by

"Register The Dataset": ({
"action": "sfdcRegister",
"parameters": {

44

Dataflow Transformation Reference dim2mea Transformation

"alias": "OpportunitiesWithConvertedMeasure",
"name": "OpportunitiesWithConvertedMeasure",
"source": "Create Measure From Dimension"

IN THIS SECTION:

dim2mea Parameters
When you define a dim2mea transformation, you set the action attribute to dim2mea and specify the parameters.

dim2mea Parameters
When you define a dim2mea transformation, you set the action attribute to dim2mea and specify the parameters.

The following table describes the input parameters:

Parameter Required? Value

dimension Yes Dimension column in the dataset from
which you want to create the measure.

measure Yes Name of the output measure. This column
name must be unique within the dataset.
Do not use the same name as the dimension
because the transformation preserves the
dimension in the dataset.

@ Nofe: The measure nameis also the
new field's APl name, so it:

e (an contain only alphanumeric
and underscore characters.

e Must begin with a letter.
e (Can't end with an underscore.

e (an't contain 2 consecutive
underscore characters, except
when ending with “__¢"
(case-sensitive).

measureDefault Yes Default value for the measure if the
transformation is unable to create a measure
from a dimension.

measureType Yes Type of measure. Valid value: “long”

45

Dataflow Transformation Reference edgemart Transformation

Parameter Required? Value

source Yes Node in the dataflow definition file that
contains the dataset to which you want to
add the measure.

SEE ALSO:

dim2mea Transformation

edgemart Transformation

The edgemart transformation gives the dataflow access to an existing, registered dataset, which can contain Salesforce data, external
data, ora combination of the two. Use this transformation to reference a dataset so that its data can be used in subsequent transformations
in the dataflow. You can use this transformation and the augment transformation together to join an existing dataset with a new dataset.

Example: Let's look atan example. You would like to compare the final sales amount against the opportunity amount to determine
if heavy discounts were offered to close deals. You previously created and registered the FinalSales dataset. The FinalSales dataset
contains the final sale amount of each opportunity that was closed and won.

Table 1: FinalSales Dataset

OpplID UpdateDate StageName SaleAmount
1 1/1/2014 ClosedWon 100,000
2 11/1/2013 ClosedWon 150,000
3 2/1/2014 ClosedWon 200,000

You would now like to create a dataset that contains opportunity information from the Opportunity object. Then, you would like
to join the data from the existing FinalSales dataset with the Opportunity dataset.

You create the following dataflow definition.

{

"Extract Opportunities": {

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" }

by
"Extract Final Sales Data": {

"action": "edgemart",
"parameters": { "alias": "FinalSales" }
by
"Combine Opportunities FinalSales": {
"action": "augment",

46

Dataflow Transformation Reference filter Transformation

"parameters": {
"left": "Extract Opportunities",
"left key": ["Id" 1],
"relationship": "Opportunity",
"right": "Extract Final Sales Data",
"right key": ["OppID"],

"right_select": ["SaleAmount"]

b
"Register Opportunity FinalSales Dataset": ({

"action": "sfdcRegister",

"parameters": {
"alias": "OpportunityVersusFinalSales",
"name": "OpporunityVersusFinalSales",
"source": "Combine Opportunities FinalSales"

IN THIS SECTION:

edgemart Parameters
When you define an edgemart transformation, you set the action attribute to edgemart and specify the parameters.

edgemart Parameters

When you define an edgemart transformation, you set the action attribute to edgemart and specify the parameters.

The following table describes the input parameter:

Parameter Required? Value

alias Yes API name of the dataset from which you
want to extract data. To determine the API
name of a dataset, edit the dataset and view
the system name.

SEE ALSO:

edgemart Transformation

filter Transformation

The filter transformation removes records from an existing dataset. You define a filter condition that specifies which records to retain in
the dataset.

47

Dataflow Transformation Reference

filter Transformation

Example: Let’s look at an example. You would like to create a dataset that contains only opportunities that were Closed Won.
First, you extract all opportunities from the Opportunity object. Next, you filter the records so that you only include opportunities

with a Closed Won stage name.

You create the following dataflow.

Dataflow

A Data Manager Closed Won Opportun... X

DATAFLOW
E Closed Won Opportunities

SR

act_Opportunities

£ & w8 B oa

Il

ly_Won_Opppt

, Filter_Opportunities
filter

est

Filter Node in Dataflow

Here's the dataflow JSON.

"Extract Opportunities": ({
"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "I4d" }’

{ "name": "Name" 1},
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "AccountId" 1},
{ "name": "OwnerId" }
]
}
by
"Filter Opportunities™: ({
"action": "filter",
"parameters": {
"filter": "StageName:EQ:Closed Won",
"source": "Extract Opportunities”
}
s

"Register My Won Oppportunities Dataset":

"action": "sfdcRegister",

48

Filter_Opportunities: filter

ATTRIBUTES OUTPUT FIELDS
Node Name
Filter_Opportunities
Source
["Extract_Opportunities"]
Use SAQL

Filter

StageName:EQ:Closed Won

Dataflow Transformation Reference filter Transformation

"parameters": {
"alias": "MyWonOpportunities",
"name": "MyWonOpportunities",
"source": "Filter Opportunities"

}
For more complex filters, you can use SAQL in a filter node.

O Tip: Depending on your need, you can filter Salesforce object records at different levels.

Transformation level
To filter a stream of data loaded into a dataset, add a filter transformation to the dataflow. (Use a filter transformation
instead of an sfdcDigest transformation filter because complex filters in an sfdcDigest transformation impact global
filters.) To reduce the amount of data processing downstream, add the filter transformation as early as possible in the
dataflow.

Connection level
To prevent Salesforce records from being loaded into any dataset, add the filter on the connected object. You can add
afilter in the sync settings for the connected Salesforce object.

IN THIS SECTION:

filter Parameters
When you define a filter transformation, you set the action attribute to £i1ter and specify the parameters.

filter Expression Syntax

You create afilter expression in the filter transformation based on one or more dimensions in a dataset. You can use a standard filter
expressions or a SAQL filter expression.

filter Parameters

When you define a filter transformation, you set the action attribute to £i1ter and specify the parameters.

This table describes the settings for the filter node in the dataflow editor.

Setting Required? Value

Source Yes Node in the dataflow definition file that
contains the dataset that you want to filter.

Use SAQL No Select whether to use a SAQL expression in
the filter.
Filter No Standard filter expression that specifies

which records to include in the new dataset.
See filter Expression Syntax.

@ Note: Thisfield is visible when the
Use SAQL option is not selected.

49

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_integrate_configure_replication_settings.htm&language=en_US#bi_integrate_configure_replication_settings

Dataflow Transformation Reference filter Transformation

Setting Required? Value

SAQL Filter No SAQL filter expression that specifies which
records to include in the new dataset. See
filter Expression Syntax.

@ Note: Thisfield is visible when the
Use SAQL option is selected.

This table describes the input parameters for the filter transformation in the dataflow JSON.

Parameter Required? Value

filter No Filter expression that specifies which records
to include in the new dataset. See filter
Expression Syntax.

saqlFilter No SAQL filter expression that specifies which
records to include in the new dataset. See
filter Expression Syntax.

source Yes Node in the dataflow definition file that
contains the dataset that you want to filter.

@ Note: You caninclude eitherthe £i1lter parameter orthe saglFilter parameterin afilter node in the dataflow JSON,
but not both.

SEE ALSO:

filter Transformation

filter Expression Syntax

You create a filter expression in the filter transformation based on one or more dimensions in a dataset. You can use a standard filter
expressions or a SAQL filter expression.

@ Note:
e String comparisons in a filter expression are case-sensitive.

e When you filter on a Salesforce ID field extracted in an upstream sfdcDigest node, use 18-character ID values in your filter
expression. sfdcDigest nodes extract 18-character IDs, and the filter transformation performs string comparisons on ID fields.

Example: RecordTypeId:EQ:0126A0000016QfyQAE

To use a standard filter expression, deselect the Use SAQL option in the dataflow editor, or use the £i1ter parameter in the dataflow
JSON. You can use the following types of filter expressions:

50

Dataflow Transformation Reference filter Transformation

Filter Expression Syntax Description

dim:EQvalue True if the dimension and value are equal.
Dataflow editor example: StageName : EQ:Closed Won

Dataflow JSON example: "filter":
"StageName:EQ:Closed Won"

dim:R:valO:vall True if the left dimension falls within the specified range between
val0 and vall.

Dataflow editor example: EmployeeId:R:100:1000

Dataflow JSON example: "filter":
"EmployeeId:R:100:1000"

dim:Rval True if the dimension is greater than or equal to the value based
on binary sort order. For example, this is true when the dimension
is 'City' and the value is 'Anderson’ because ' 'City' > 'Anderson’).

Dataflow editor example: LastName :R: Li

Dataflow JSON example: "filter": "LastName:R:Li"

dim:R:val True if the dimension is less than or equal to the value based on
binary sort order.

Dataflow editor example: LastName:R: : Levy

Dataflow JSON example: "filter":
"LastName:R::Levy"

dim:N:val True if the dimension and value are not equal.
Dataflow editor example: RoleName : N:Manager

Dataflow JSON example: "filter":
"RoleName:N:Manager"

dim:EQuval1|val2 True if the dimension equals values val1 or val2. This filter
expression uses the logical OR operator (). You can compare the
dimension value against more than 2 values. For example, to
compare against 3 values, use the following syntax:
dim1:EQuvall|val2|val3.

Dataflow editor example: Lead
Status:EQ:0Open| Contacted

Dataflow JSON example: "filter": "Lead
Status:EQ:0Open|Contacted"

dim1:EQ:val1,dim2:EQ:val2 True if dimension dim1 equals value val1 and dimension dim2
equals value val2. This filter expression uses the logical AND
operator (,). You can compare more than 2 dimensions. For
example, to compare 3 dimensions, use the following syntax:
dim1:EQ:val1,dim2:EQ:val2,dim3:EQ:val3.

51

Dataflow Transformation Reference flatten Transformation

Filter Expression Syntax Description

Dataflow editor example: Lead
Status:EQ:Qualified,Rating:EQ:Hot

Dataflow JSON example: "filter": "Lead
Status:EQ:Qualified,Rating:EQ:Hot"

To use a SAQL filter expression, select the Use SAQL option in the dataflow editor, or use the saglFilter parameterinthe dataflow
JSON. Use the SAQL filter statement in your expression withoutthe a = filter a by part. See

@ Example: This example returns rows where the Stage Name field contains Proposal/Price Quote or
Negotiation/Review.
Dataflow editor: StageName in ["Proposal/Price Quote"”, "Negotiation/Review"]
Dataflow JSON: "saglFilter": "StageName in [\"Proposal/Price Quote\",
\"Negotiation/Review\"]"

@ Note: Inthe JSON, escape double quotes in the filter with \.

For complete information about SAQL operators, see Analytics SAQL Reference.

SEE ALSO:

filter Transformation

flatten Transformation

The flatten transformation flattens hierarchical data. For example, you can flatten the Salesforce role hierarchy to implement row-level
security on a dataset based on the role hierarchy.

When you configure the flatten transformation to flatten a hierarchy, you specify the field that contains every node in the hierarchy and
the field that contains their corresponding parent based on the hierarchy. The flatten transformation generates one record for each
hierarchy node, which we refer to as the “self ID.” Each record contains two generated columns that store the hierarchy for each self ID
node. One column contains a comma-separated list of all ancestors for each node in the hierarchy. The other column contains the
hierarchy path.

See the Roles and RolePath columns in the following flattened dataset to see how ancestors are stored.

Role ID (Self ID) Role Name Parent Role ID Roles RolePath
1 Salesperson 1 10 10, 20, 30 \T0\20\30
2 Salesperson 2 10 10,20, 30 \10\20\30
3 Salesperson 3 11 11,20, 30 \T1\20\30
10 Regional Manager 1 20 20,30 \20\30

11 Regional Manager 2 20 20,30 \20\30

20 Vice President 1 30 30 \30

21 Vice President 2 30 30 \30

52

https://developer.salesforce.com/docs/atlas.en-us.220.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_intro.htm

Dataflow Transformation Reference flatten Transformation

Role ID (Self ID) Role Name Parent Role ID Roles RolePath

30 CEO Not applicable Not applicable Not applicable

You can also configure the flatten transformation to include the self ID node in the generated hierarchy columns. The following dataset
shows the self ID in bold.

Role ID (Self ID) Role Name Parent Role ID Roles RolePath

1 Salesperson 1 10 1,10, 20, 30 \T\10\20\30
2 Salesperson 2 10 2,10, 20, 30 \2\10\20\30
3 Salesperson 3 11 3,11,20,30 \3\11\20\30
10 Regional Manager 1 20 10,20, 30 \T10\20\30
11 Regional Manager 2 20 11,20, 30 \T1\20\30
20 Vice President 1 30 20,30 \20\30

21 Vice President 2 30 21,30 \21\30

30 CEO Not applicable 30 30

Example: Let's look at an example. You want to create a dataset that contains all opportunities. For each opportunity, you want
toinclude user and role information about the opportunity owner. Also, to implement row-level security based on the role hierarchy,
each opportunity record must also contain a list of all ancestors above each opportunity owner based on the role hierarchy. To
generate the list of ancestors, use the flatten transformation to flatten the role hierarchy.

You create the following dataflow definition file:

{
"Extract Opportunity": {

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" 1},
{ "name": "StageName" },
{ "name": "AccountId" },
{ "name": "OwnerId" }
]
}
s
"Extract User": ({
"action": "sfdcDigest",
"parameters": {
"object": "User",
"fields": [

53

Dataflow Transformation Reference

{ "name": "Id" 1},

{ "name": "Name" 1},

{ "name": "Department" 1},
{ "name": "UserRoleId" }

by
"Extract UserRole": {

"action": "sfdcDigest",
"parameters": {
"object": "UserRole",
"fields": [
{ "name": "Id" },
{ "name": "Name" },
{ "name": "ParentRoleId" }

bo
"Flatten UserRole": {

"action": "flatten",

"parameters": {
"source": "Extract UserRole",
"self field": "Id",
"parent field": "ParentRoleId",
"multi field": "Roles",

"path field": "RolePath",
"include self id":false

b
"Augment User FlattenUserRole": {

"action": "augment",
"parameters": {
"left": "Extract User",
"left key": ["UserRoleId"],
"relationship": "Role",
"right": "Flatten UserRole",
"right key": ["Id"],
"right select": [
"Id",
"Name",
"Roles",
"RolePath"

}y
"Augment Opportunity UserWithRoles":

"action": "augment",
"parameters": {
"left": "Extract Opportunity",
"left key": ["OwnerId"],
"right": "Augment User FlattenUserRole",
"relationship": "Owner",

"right select": [
"Name" ,

{

flatten Transformation

Dataflow Transformation Reference

"Department",

"Role.
"Role.
"Role.
"Role.

1,

Id",
Name",
Roles™"

I4

RolePath"

"right key": [

by

nT4gn

]

flatten Transformation

"Register OpportunityWithRoles Dataset": {

"action": "sfdcRegister",
"parameters": {
"alias": "OppRoles",
"name": "OppRoles",
"source":

"rowLevelSecurityFilter":

"Augment Opportunity UserWithRoles",

== \"S$User.Id\""

}
}
}

"'Owner.Role.Roles' == \"$User.UserRoleId\" || 'OwnerId'

To flatten the Salesforce role hierarchy, the flatten transformation uses the following input fields from the UserRole object.

Id

Id identifies each node in the Salesforce role hierarchy.

ParentRoleld

ParentRoleld identifies the parent as defined in the role hierarchy.

After traversing through each parent-child relationship in the UserRole object, the flatten transformation generates one record for
eachrole ID. Each record contains all ancestor roles for each role in the hierarchy. The flatten transformation generates two output
columns—~Roles and RolePath—to store all ancestor roles for each role.

IN THIS SECTION:

flatten Parameters

When you define a flatten transformation, you set the action attribute to £1atten and specify the parameters.

flatten Parameters

When you define a flatten transformation, you set the action attribute to £1atten and specify the parameters.

The following table describes the input parameters:

Parameter

include_self_id

self_field

Required?

No

Yes

Value

Indicates whether to include the self ID node in the generated
multi_field and path_field columns. Valid values are false
(default) and true.

Name of the input field that identifies each node in the hierarchy.

55

Dataflow Transformation Reference

Parameter Required?
parent_field Yes
multi_field Yes
path_field Yes
source Yes

flatten Transformation

Value

Name of the input field that identifies the direct parent of each
node in the hierarchy. For example, the Regional Manager 1 role
is the parent of the Salesperson 1 role in a role hierarchy.

Name of the multi-value output field that contains a list of all
ancestors in the hierarchy, in order from the lowest to the highest
level. The flatten transformation creates this field and generates
the list of ancestors for each node in the hierarchy. For example,
for Salesperson 1 role, the hierarchy of ancestors is: Sales
Manager 1, Regional Manager 1, Vice
President 1, CEO

A string representation of the multi-field field, separated by
backslashes. This output field contains the hierarchical path of all
ancestors in the hierarchy, in order from the lowest to the highest
level. The flatten transformation creates this field and generates
the ancestry path for each node in the hierarchy. For example, for
a salesperson role in a role hierarchy, the value is: Sales
Manager 1\Regional Manager 1\Vice President
1\CEO.

Node in the dataflow definition file that contains the hierarchical
data that you want to flatten. This node is the input source for this
transformation and it must contain the input fields mapped to
self_field and parent_field.

Note: By default, the multi_field and path_field fields are created as system fields, which aren't visible in the user interface. To
make the fields appear in the user interface, add a schema section to the flatten transformation and set the IsSystemField
metadata attribute to false foreach field in the transformation. The schema section is shown in bold in this sample JSON.

"Flatten UserRole": {

"schema": {
"objects": [
{
"label": "UserWithRoles",
"fields": [
{
"name": "Roles",

"label": "Roles",

"isSystemField": false

"name": "RolePath",
"label": "RolePath",

"isSystemField": false

56

Dataflow Transformation Reference sfdcDigest Transformation

]
b,
"action": "flatten",
"parameters": {
"source": "Extract UserRole",
"self field": "Id",
"parent field": "ParentRoleId",
"multi field": "Roles",

"path field": "RolePath",
"include self id": false
}
by

For more information about overriding metadata using a schema section in a transformation, see Overriding Metadata Generated
by a Transformation.

SEE ALSO:

flatten Transformation

sfdcDigest Transformation

The sfdcDigest transformation generates a dataset based on data that it extracts from a Salesforce object. You specify the Salesforce
object and fields from which to extract data. You might choose to exclude particular fields that contain sensitive information or that
aren't relevant for analysis.

When you upload the dataflow definition file, Analytics validates access to Salesforce objects and fields based on the user profile of the
Integration User. If the user profile does not have read access to a field or object, the upload fails.

At run time, Analytics runs the dataflow as the Integration User. Again, Analytics validates access to the objects and fields based on the
profile of the Integration User. For example, if the dataflow tries to extract data from a custom field on which the Integration User does
not have read access, the dataflow job fails.

@ Nofe: The Integration User is a preconfigured user that is created when Analytics is enabled in your organization. If you or the
Integration User need permission on a Salesforce object or field, ask the administrator to grant access.

For more information about preconfigured users in Analytics, see the Analytics Security Implementation Guide.

@ Example: Let's look at an example. You would like to create a dataset that contains all opportunities from the Opportunity object.

You create the following dataflow definition.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" 1},
{ "name": "StageName" },
{ "name": "CloseDate" 1},
{ "name": "AccountId" },
{ "name": "OwnerId" },

57

Dataflow Transformation Reference sfdcDigest Transformation

{ "name": "OpportunitySupportTeamMembers c" }
]
}
by
"Register Opportunities Dataset": {
"action": "sfdcRegister",
"parameters": {
"alias": "Opportunities",
"name": "Opportunities",
"source": "Extract Opportunities”

Considerations When Using the sfdcDigest Transformation

Consider dataset storage limits when extracting data. For example, a dataset can contain a maximum of 5,000 fields, so be selective
when choosing fields. See Analytics Limits.

The sfdcDigest transformation runs a SOQL query to extract data from a Salesforce object, and so is subject to SOQL limits. If the
query exceeds any of these limits, it may return no results or cause the dataflow job to fail. For example, The length of the SOQL
query cannot exceed 20,000 characters. To reduce the SOQL query length, consider breaking up the extract into two or more
sfdcDigest transformations and then use the augment transformation to combine the results. For example, you might create one
sfdcDigest transformation to extract half of the fields and create another sfdcDigest transformation to extract the remaining fields.
See SOQL and SOSL Limits.

The sfdcDigest transformation can extract data from Salesforce Big Objects, but incremental extract isn't supported and filtering is
possible only on primary key fields.

IN THIS SECTION:

Filtering Records Extracted from a Salesforce Object

Add afilter to the sfdcDigest transformation to extract a subset of all records from a Salesforce object. You can filter records to reduce
the number of extracted and processed records, exclude records that contain irrelevant or sensitive data, and increase dataflow
performance.

Overriding Salesforce Field Metadata

You can override the field metadata that the sfdcDigest transformation extracts from a Salesforce object to make the data appear
differently in a dataset. For example, Analytics can add a default value to records that have missing values for a field.

Unsupported Salesforce Objects and Fields in Analytics

The sfdcDigest transformation can't extract data from all Salesforce objects and fields. Consider these limitations before configuring
the extraction of Salesforce objects.

sfdcDigest Parameters

When you define an sfdcDigest transformation, you set the action attribute to sfdcDigest and specify the parameters for the

object and fields that you want to extract. Optionally, you can also specify parameters to filter the records extracted from the Salesforce
object.

58

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_limits.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.220.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_soslsoql.htm

Dataflow Transformation Reference sfdcDigest Transformation

Filtering Records Extracted from a Salesforce Object

Add a filter to the sfdcDigest transformation to extract a subset of all records from a Salesforce object. You can filter records to reduce
the number of extracted and processed records, exclude records that contain irrelevant or sensitive data, and increase dataflow
performance.

Afilter consists of one or more filter conditions, where each filter condition compares a field value to a value. For example, Amount
>= 1000000. You can also apply SOQL functions on the field value in a filter condition, lke CALENDAR YEAR (CreatedDate)
= 2011. You can add multiple filter conditions using logical operators AND, OR, and NOT. You can also use a backslash (\) to escape
double quotes included in strings.

The sfdcDigest transformation extracts all records for which the filter is true. If you configured the sfdcDigest transformation for incremental
extraction, the filter applies to data extracted during the incremental run only—Analytics doesn't apply the filter to records that were
previously loaded into the dataset. If you add an invalid filter, the dataflow fails at run time.

For each instance of sfdcDigest, you can use one of the following types of filters:

e Structured filter

e Advanced filter

O Tip: Are you trying to decide whether to use a filter in the sfdcDigest transformation or use a filter transformation? Use a filter
transformation to filter records at any point in the dataflow. For example, you can add it after the dataflow joins two datasets.
However, to reduce the number of rows processed in the dataflow and optimize dataflow performance, add the filter closest to
the point at which records are extracted—when possible, add the filter in the sfdcDigest transformation.

@ Nofte: Filtering records extracted from Salesforce Big Objects is supported only on primary key fields in the sfdcDigest transformation.

IN THIS SECTION:

Structured Filter in sfdcDigest Transformation
You define a structured filter using JSON syntax.

Advanced Filter in sfdcDigest Transformation

You define an advanced filter using a Salesforce Object Query Language (SOQL) WHERE clause expression. Use an advanced filter
only if you are familiar with SOQL.

SEE ALSO:

sfdcDigest Transformation

Structured Filter in sfdcDigest Transformation
You define a structured filter using JSON syntax.

A structured filter uses the following JSON syntax for each filter condition.

{

"field": "<field name>",
"operator": "<operator>",
"value": "<value>"|"["<value 1>", "<value 2>"]1",

"isQuoted": true|false}

The value can be a number, date, string, list of strings, or date literal. Analytics automatically quotes strings unless you set i sQuoted
to true, which indicates that the string is already quoted.

You can use one of the following operators in a filter condition.

59

https://developer.salesforce.com/docs/atlas.en-us.220.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_dateformats.htm

Dataflow Transformation Reference

Operator

sfdcDigest Transformation

Comment

Filter condition is true if the value in the field equals the specified
value. String comparisons using the equals operator are
case-insensitive.

Example:

"filterConditions": [
{
"field": "OwnerId",
"operator": "=",
"value": "0056A000002075zDQAQ"
}

Filter condition is true if the value in the field does not equal the
specified value.

Example (using backslashes to escape double quotes in a string
value):

"filterConditions": [
{
"field": "Nickname c",
"operator": "!=",
"value": "\"Sammy\""

}

Filter condition is true if the value in the field is greater than the
specified value.

Example:

"filterConditions": [

{

"field": "Amount",
"operator": ">",
"value": "100000"
}

Filter condition is true if the value in the field is less than the
specified value.

Example (using a date literal):

"filterConditions": [
{
"field": "CloseDate",
"operator": "<",
"value": "THI S _MONTH",
"isQuoted": false

60

Dataflow Transformation Reference sfdcDigest Transformation

Operator Comment

Filter condition is true if the value in the field is greater than or
equal to the specified value.

Example:

"filterConditions": [
{
"field": "Amount",
"operator": ">=",
"value": "100000"
}

Filter condition is true if the value in the field is less than or equal
to the specified value.

Example (using a SOQL function):

"filterConditions": [
{
"field": "CALENDAR YEAR (CreatedDate)",
"operator": "<=",
"value": "2015",
"isQuoted": true

}

LIKE Filter condition is true if the value in the field matches the specified

value. The LIKE operator is similar to the LIKE operator in SQL; it
provides a mechanism for matching partial text strings and supports
wildcards.

e The % and _ wildcards are supported for the LIKE operator.
e The % wildcard matches zero or more characters.

e The _ wildcard matches exactly 1 character.

e The LIKE operator is supported for string fields only.

e The LIKE operator performs a case-insensitive match.

e The LIKE operator supports escaping of special characters %
or _. Use a backslash (\) to escape special characters.

Example:

"filterConditions": [
{
"field": "FirstName",
"operator": "LIKE",
"value": "Chris%s"

61

Dataflow Transformation Reference sfdcDigest Transformation

Operator Comment

Filter condition is true if the value in the field equals any one of the
values in the specified list. You can specify a quoted or non-quoted
list of values. If the list is quoted, set 1 sQuoted to true.

Example:

"filterConditions": [
{
"field": "StageName",
"operator": "IN",
"value": ["Closed Won", "Closed Lost"]

}

NOTIN Filter condition is true if the value in the field does not equal any

of the values in the specified list.

Example:

"filterConditions": [
{
"field": "BillingState",
"operator": "NOT IN",
"value": ["California", "New York"]

}

INCLUDES For picklist or multi-select picklist fields only. Filter condition is true

if the value in the picklist field includes the specified value.

Example:

"filterConditions": [
{
"field": "BillingState",
"operator": "INCLUDES",
"value": ["California"]

}

EXCLUDES For picklist or multi-select picklist fields only. Filter condition is true

if the value in the picklist field excludes the specified value.

Example:

"filterConditions": [

{
"field": "BillingState",

62

Dataflow Transformation Reference sfdcDigest Transformation

Operator Comment
"operator": "EXCLUDES",
"value": ["California", "New York"]

}

Let’s look at a few examples of structured filters.

Example: Let's look at an example with a basic structured filter. To perform pipeline analysis on opportunities in fiscal quarter 2
of fiscal year 2015, you create this dataflow definition file to create the relevant dataset.

{
"Extract Filtered Opportunities": {

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "AccountId" 1},
{ "name": "Amount" 1},
{ "name": "StageName" 1},
{ "name": "CloseDate" },
{ "name": "OwnerId" },
{ "name": "FiscalYear" },
{ "name": "FiscalQuarter" },
{ "name": "SystemModstamp" }
1s
"filterConditions": [
{
"field": "FiscalYear",
"operator": "=",
"value": "2015"
by
{
"field": "FiscalQuarter",
"operator": "=",
"value": "2"
}
]
}
}r
"Register Opportunities Dataset": {
"action": "sfdcRegister",
"parameters": {
"alias": "Opportunities 2015Q2",
"name": "Opportunities 2015Q2",
"source": "Extract Filtered Opportunities"”

63

Dataflow Transformation Reference sfdcDigest Transformation

Note: Ifyou do not specify a logical operator for multiple filter conditions—as is the case in this example—Analytics applies
AND between the conditions.

Example: Let's look at an example of a structured filter with a logical operator. To help forecast expected revenue, you create
this dataflow to view all opportunities that have either closed or have greater than 90% probability of closing.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" },
{ "name": "AccountId" },
{ "name": "Amount" 1},
{ "name": "StageName" },
{ "name": "CloseDate" 1},
{ "name": "OwnerId" 1},
{ "name": "Probability" },
{ "name": "FiscalYear" },
{ "name": "FiscalQuarter" }
1y
"filterConditions": [
{
"operator": "OR",
"conditions": [
{
"field": "StageName",
"operator": "=",
"value": "Closed Won"
by
{
"field": "Probability",
"operator": ">=",
"value™: "90"
}
]
}
1
}
}y
"Register Opportunities Dataset": {
"action": "sfdcRegister",
"parameters": {
"alias": "OpportunitiesExpectedToWin",
"name": "OpportunitiesExpectedToWin",
"source": "Extract Opportunities”

64

Dataflow Transformation Reference sfdcDigest Transformation

@ Example: Finally, let's look at an example of a structured filter with nested logical operators. You create this dataflow to view all
opportunities that closed in the current fiscal quarter and are owned by either one of your two direct reports.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "AccountId" },
{ "name": "Amount" 1},
{ "name": "StageName" 1},
{ "name": "CloseDate" },
{ "name": "OwnerId" },
{ "name": "FiscalYear" },
{ "name": "FiscalQuarter" }
I
"filterConditions": [
{
"operator": "AND",
"conditions": [
{
"field": "CloseDate",
"operator": "=",
"value": "THI S _FISCAL QUARTER",

"isQuoted": false

"operator": "OR",
"conditions": [
{
"field": "OwnerId",
"operator": "=",

"value": "0056A00000207zDQAQ"

"field": "OwnerId",
"operator": "=",
"value": "0056A00000207zGQAQ"

I
"Register Opportunities Dataset": {

"action": "sfdcRegister",

"parameters": {
"alias": "DirectReport Opportunities",
"name": "DirectReport Opportunities",

65

Dataflow Transformation Reference sfdcDigest Transformation

"source": "Extract Opportunities”

Advanced Filter in sfdcDigest Transformation

You define an advanced filter using a Salesforce Object Query Language (SOQL) WHERE clause expression. Use an advanced filter only
if you are familiar with SOQL.

Example: Let's look atan example of an advanced filter. You want to extract only opportunity records that are owned by a specific
user and that have either high value or a high probability of closing. You create this dataflow in the dataflow editor and add a filter
in the Complex Filter Conditions field of the sfdcDigest node.

Extract_Filtered_Opportu ,
sfdcDigest

Extract_Filtered_Opportunities: sfdcDigest

ATTRIBUTES OUTPUT FIELDS

Accountld Account ID

Amount Amount

Filter Conditions

=13

. Register_Opportunities_LC

Register_Opportunities_Dataset: sfdcRegister

ATTRIBUTES OUTPUT FIELDS
Node Name

Register_Opportunities_Dataset

Source Node

["Extract_Filtered_Opportunities”]
Alias

FilteredOpportunities

Complex Filter Conditions
Name

Ownerld = '005460000022HhMAAL" AND (Amount > 100000

OR Probability » 75) FilteredOpportunities

Sharing Source

(1

cancel “ cance' “

To add an advanced filter in the dataflow JSON, add a complexFilterConditions parameterin the sfdcDigest node.

{
"Extract Filtered Opportunities": {

66

Dataflow Transformation Reference sfdcDigest Transformation

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" },
{ "name": "AccountId" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "Probability" },
{ "name": "OwnerId" }

1,
"complexFilterConditions": "OwnerId = '005460000022HhMAAU' AND (Amount >
100000 OR Probability > 75)"
}
by

"Register Opportunities Dataset": {
"action": "sfdcRegister",
"parameters": {
"alias": "FilteredOpportunities",
"name": "FilteredOpportunities",
"source": "Extract Filtered Opportunities"”

}

Consider the following requirements for advanced filters.

e Always enclose OR conditions in parentheses in advanced filters, even if there are no other conditions. For example, to extract
only closed won or closed lost opportunities, use this advancedfilter: (StageName = 'Closed Won' OR StageName
= 'Closed Lost').Excluding parentheses causes the dataflow to fail.

® Youcan't use subqueries in an advanced filter if incremental sync is enabled on the Salesforce object.

Overriding Salesforce Field Metadata

You can override the field metadata that the sfdcDigest transformation extracts from a Salesforce object to make the data appear
differently in a dataset. For example, Analytics can add a default value to records that have missing values for a field.
You can add the following field parameters to the sfdcDigest transformation node to override the field metadata:

e defaultValue

° type

e fiscalMonthOffset

e isYearEndFiscalYear

e firstDayOfWeek

e isMultiValue

e multiValueSeparator (not available in dataflow editor)

e precision

® scale

67

Dataflow Transformation Reference sfdcDigest Transformation

For a description of each of these field parameters, see Field Parameters. For information about using metadata attributes to configure
dates, see Date Handling in Datasets.

@ Example: Let’s look at an example. You would like to override metadata extracted from the Opportunity object.

To override field metadata from the Opportunity object, you add the bold text to the sfdcDigest node in the datflow definition
file.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{
"name": "Amount",

"defaultvalue":"0",
"precision":18,

"scale":2
by
{ "name": "StageName" },
{

"name": "CloseDate",

"fiscalMonthOffset":9,
"firstDayOfWeek":2,
"isYearEndFiscalYear":true

by

{ "name":"AccountId" },

{ "name":"OwnerId" 1},

{
"name": "OpportunitySupportTeamMembers c",
"type":"Text",
"isMultivValue":true,
"multiValueSeparator":",",
"precision":255

by
"Register Opportunities Dataset":({
"action":"sfdcRegister",
"parameters":{
"alias":"Opportunities",
"name" :"Opportunities",
"source":"Extract Opportunities"

}

If you're working in the dataflow editor, click the sfdcDigest node and then click |:|next to the field that you want to change.

68

Dataflow Transformation Reference

sfdcDigest

Node Name

Extract_Cases

Source Object

["Case"]

Incremental Update

ATTRIBU

TES OUTPUT FIELDS

Fields Select Fields
Accountld Account ID o
ClosedDate Closed Date V|
CreatedDate Created Date V|
1d Case ID S o

Update the field attributes, and then click Save.

Override Field Attributes - Amount »

Enter new values for the attributes that you want to override.

Field Marme
Amount

Field Type
123 Numeric v

Default Value

Precision

18

Scale

69

sfdcDigest Transformation

Dataflow Transformation Reference sfdcDigest Transformation

@ Note: Changing a field's type attribute to anything other than Text can result in an error in your dataflow or unexpected
values in your datasets. For example, if you change a text field to a numeric field, you see an error when you try to update
the dataflow.

SEE ALSO:

sfdcDigest Transformation

Unsupported Salesforce Objects and Fields in Analytics

The sfdcDigest transformation can't extract data from all Salesforce objects and fields. Consider these limitations before configuring the
extraction of Salesforce objects.

For information about all Salesforce objects and fields, see the Object Reference for Salesforce and Lightning Platform.

Unsupported Obijects
The sfdcDigest transformation can't extract data from these Salesforce objects.
e ActivityMetric

e ApexEmailNotification

e AuthProvider

e BrandTemplate

e (ChatterConversation

e ChatterConversationMember
e (hatterMessage

e ConnectedApplication

e (ContentFolderLink

e (ContentFolderMember

e (ContentWorkspace

e ContentWorkspaceDoc

e ContentWorkspaceMember
e ContentWorkspacePermission
e CopyExport

e CorsWhitelistEntry

e DataAssessmentFieldMetric
e DataAssessmentMetric

e DataAssessmentValueMetric
e DataHubSetupData

e DataHubSetupDefinition

e DirectMessage

e DirectMessageFeed

e DirectMessageMember

e EmailCapture

70

https://developer.salesforce.com/docs/atlas.en-us.220.0.object_reference.meta/object_reference/

Dataflow Transformation Reference sfdcDigest Transformation

e EmailDomainKey

e EmailServicesAddress

e EmailServicesFunction

e EmailStatus

e EmailTemplate

e EnvironmentHub

e EnvironmentHublnvitation
e EnvironmentHubMemberRel
e FEventlype

e EventTypeParameter

e ExternalString

e Feedlike

e FeedPollChoice

e FeedPollVote

e KnowledgeArticle

e KnowledgeArticleVersion
e KnowledgeArticleVersionHistory
e KnowledgeArticleViewStat
e KnowledgeArticleVoteStat
e leadChangeEvent

e LoginGeo

e LoginHistory

e NetworkActivityAudit

e NetworkModeration

e QOrganizationProperty

e OrgWideEmailAddress

e Packagelicense

e PartnerNetworkSynclLog

e ReputationLevel

e ReputationLevellLocalization
e ReputationPointsRule

e SalesforcelgUser

e SampledEntity

e SandOminfo

e SandOminfoDetail

e SandOmObserver

e Scorelntelligence

e SearchPromotionRule

e SecurityCustomBaseline

e SelfServiceUser

71

Dataflow Transformation Reference

SsoUserMapping

TenantSecret

TwoFactorinfo
TwoFactorTempCode
UserPackagelicense
UserProvAccount
UserProvAccountStaging
UserProvisioningConfig
UserProvisioninglLog
UserProvisioningRequest
UserProvisioningRequestOwnerSharingRule
UserProvisioningRequestShare
UserProvMockTarget
UserRecordAccess
VerificationHistory
VoiceUserLine
VoiceUserLineOwnerSharingRule
VoiceUserLineShare
VoiceVendorline
VoiceVendorLineOwnerSharingRule
VoiceVendorLineShare

WeblLink

WebLinkLocalization

sfdcDigest Transformation

The sfdcDigest transformation cannot extract data from external objects created in Salesforce. External objects are similar to custom

objects, except that they map to data located outside Salesforce.

If you include an unsupported or inaccessible object in the sfdcDigest transformation, the dataflow fails at run time with an error message.

Unsupported Fields

The sfdcDigest transformation can't extract data from these fields.

Object

Account

ActionPlanltem

AuthSession

CaseArticle

Contact

Unsupported Fields
CleanStatus

[temld

e |oginGeold
e |oginHistoryld

KnowledgeArticleld

e (CanAllowPortalSelfReg

e (leanStatus

72

Dataflow Transformation Reference sfdcDigest Transformation

Object Unsupported Fields
ContentDocument Parentld
CustomPerson__p Title
DocumentAttachmentMap Parentld

EmailMessage Activityld
EmailRoutingAddress EmailServicesAddressld
EnvironmentHubMember EnvironmentHubld
ExternalEventMapping Eventld
InstalledMobileApp ConnectedApplicationld
Lead CleanStatus
KnowledgeArticle MasterLanguage
Network

e (CaseCommentEmailTemplateld
e (ChangePasswordEmailTemplateld
e ForgotPasswordEmailTemplateld

e WelcomeEmailTemplateld

Organization e SelfServiceEmailUserOnCaseCreationTemplateld

e SelfServiceNewCommentTemplateld
e SelfServiceNewPassTemplateld

e SelfServiceNewUserTemplateld

e WebToCaseAssignedEmailTemplateld
e WebToCaseCreatedEmailTemplateld
e WebToCaseEmailTemplateld

e WebToleadEmailTemplateld

PermissionSet e PermissionsEditEvent

e PermissionsEditTask

PermissionSetLicense e MaximumPermissionsEditEvent

e MaximumPermissionsEditTask

Profile e PermissionsEditEvent
e PermissionsEditTask

ThirdPartyAccountLink SsoProviderld

User

e LastPasswordChangeDate

e UserPreferencesEnableVoicePilot

73

Dataflow Transformation Reference sfdcDigest Transformation

Object Unsupported Fields
WorkBadge Rewardld
WorkBadgeDefinition RewardFundld

If you include a field with an unsupported field in the sfdcDigest transformation, the dataflow ignores the field.

In addition, Salesforce recommends that you do not extract data from the MayEdit field of the Account object. Extracting data from this
field significantly decreases performance and can cause the dataflow to fail.

Unsupported Field Types

The sfdcDigest transformation can't extract data from fields with these field types.
e basetd

e composite (like address and location)

e data category group reference

e encrypted string

If you include a field with an unsupported field type in the sfdcDigest transformation, the dataflow ignores the field.

SEE ALSO:

sfdcDigest Transformation

sfdcDigest Parameters

When you define an sfdcDigest transformation, you set the action attribute to s fdcDigest and specify the parameters for the object
and fields that you want to extract. Optionally, you can also specify parameters to filter the records extracted from the Salesforce object.

You can specify parameters in the following sections of the sfdcDigest node: parameters, fields, and filterConditions.

Parameters

The following table describes the parameters in the parameters section.

Parameter Required? Value

object Yes API'name of the Salesforce object from which you want to extract data. This object
is the input source for this transformation. The sfdcDigest transformation doesn't
support extraction from all Salesforce objects.

incremental No Performs anincremental sync, which extracts only changes to the Salesforce object
since the last dataflow run. Valid values: true or false.

@ Nofe: Incremental sync:
e s available if you have enabled data sync.

e |sn't supported for Salesforce big objects.

74

Dataflow Transformation Reference

Parameter

fullRefreshToken

fields

filterConditions

complexFilterConditions

Field Attributes

Required?

No

Yes

No

No

sfdcDigest Transformation

Value

Performs a one-time full extraction to synchronize the data in the dataset with data
in the Salesforce object. Specify any value for this parameter.

After the full extraction, the dataflow performs an incremental extraction each time
thereafter even though the ful1RefreshToken parameter is included in the
dataflow definition. To run a full extraction again, change the value of the
fullRefreshToken parameter to a different value.

@ Note: Incremental sync is available if you have enabled data sync.

An array of names of all fields from which you want to extract data from the specified
Salesforce object. The sfdcDigest transformation doesn't support extraction from
all field types.

See Field Attributes.

Afilter that restricts the records extracted from the specified Salesforce object. The
sfdcDigest transformation extracts all records from the Salesforce object for which
the filter is true. You can specify a structured or advanced filter.

See Filter Conditions Parameters.

Foradvanced filters only. A SOQL WHERE clause used to filter records extracted from
the specified Salesforce object.

The following table describes the attributesinthe £ields section. Italso describes optional attributes that you can provide to override
the field metadata. You can override the metadata that the sfdcDigest transformation extracts from a Salesforce object to make the data
appear differently in a dataset. For example, Analytics can add a default value to records that have missing values for a field. If you don't
override the values, Analytics gets the values from Salesforce.

Aftribute

name

defaultValue

type

Required?

Yes

No

No

Value

APl name of the field in the Salesforce object that you want to include in the dataset.
You can specify multiple fields.

For text and numeric fields that can be null. Default value that replaces a null value
for the specified field. Enter a string value.

Example:

"defaultvalue": "0O"

Analytics field type associated with the specified field. Valid types are Text, Numeric,
or Date. Any value, including numeric values, can be Text. For example, by default,

fiscal quarter from Salesforce objects is Number. However, you can change it to
Text. Specify a type to override the type determined by Analytics.

Example:

thpe" : "Text"

75

Dataflow Transformation Reference sfdcDigest Transformation

Attribute Required? Value

@ Note: You can't change a field's type to Numeric or Date.

fiscalMonthOffset No For date fields only. The difference, in months, between the first month of the fiscal
year and the first month of the calendar year (January). For example, if the fiscal
year starts in January, the offset is 0. If the fiscal year starts in October, the offset is
0.

Example:
"fiscalMonthOffset": 9
@ Note: This attribute also controls whether Analytics generates fiscal date

fields. To generate fiscal date fields, set fiscalMonthOffset toavalue
other than 0.

Warning: Analytics doesn't support fields with different
fiscalMonthOffset valuesin the same dataset. Using different
fiscalMonthOf fset values can produce unexpected results when
you filter by relative fiscal date ranges. We recommend that you set the same
valueforall fiscalMonthOffset attributesin a dataset.

For more information, see Date Handling in Datasets.

isYearEndFiscalYear No For date fields only. Indicates whether the fiscal year is the year in which the fiscal
year ends or begins. Because the fiscal year can start in one calendar year and end
in another, you must specify which year to use for the fiscal year.

e Iftrue, then the fiscal year is the year in which the fiscal year ends. The default
is true.

e |ffalse, then the fiscal year is the year in which the fiscal year begins.

Example:

"isYearEndFiscalYear": true

This field is relevant only when fiscalMonthOffset isgreater than 0.
Warning: Analytics doesn't support fields with different
isYearEndFiscalYear valuesin the same dataset. Using different
isYearEndFiscalYear valuescan produce unexpected results when

you filter by relative fiscal date ranges. We recommend that you set the same
value forall isYearEndFiscalYear attributesin a dataset.

For more information, see Date Handling in Datasets.

firstDayOfWeek No For date fields only. The first day of the week for the calendar year and, if applicable,
fiscal year. Use 0 to set the first day to be Sunday, 1 to set the first day to be Monday,
and so on. Use -1 to set the first day to be on January 1. The default is -1.

Example:

"firstDayOfWeek": O

Warning: Analytics doesn't support fields with different
firstDayOfWeek values in the same dataset. Using different

76

Dataflow Transformation Reference sfdcDigest Transformation

Attribute Required? Value

firstDayOfWeek values can produce unexpected results when you
filter by relative week date ranges. We recommend that you set the same
value forall £irstDayOfWeek attributesin a dataset.

For more information, see Date Handling in Datasets.

isMultiValue No For text fields only. Indicates whether the specified field has multiple values.
Example:
"isMultiValue": false

multiValueSeparator No For text fields only. Character used to separate multiple values in the specified field

when isMultiValue equals true. This value defaults to a semicolon () if you do not
specify a value and isMultiValue equals true. Set to null when isMultiValue equals

false.
Example:
"multivValueSeparator": ";"

precision No The maximum number of digits in a numeric value, or the length of a text value.
For numeric values: Includes all numbers to the left and to the right of the decimal
point (but excludes the decimal point character). Value must be from 1 through 18,
inclusive. For text values: Value defaults to 255 characters, and must be from 1
through 32,000 characters, inclusive.
Example:
"precision": 10

scale No

The number of digits to the right of the decimal point in a numeric value. Must be
less than the precision value. Value must be from 0 through 17 characters, inclusive.

Example:

"scale": 2

Filter Conditions Parameters

The following table describes the structured filter parameters in the filterConditions section. These parameters do not apply
to advanced filters.

Parameter Required? Value

field No The field in the Salesforce object on which you want to apply afilter condition. Each
filter condition in a structured filter uses the following syntax:

{

"field": "<field name>",
"operator": "<operator>",
"value": "<value>",

"isQuoted": true|false}

77

Dataflow Transformation Reference

Parameter

operator

value

isQuoted

sfdcDigest Transformation

Required? Value

No The purpose depends on the context.

e operator can be used asacomparison operator—like =, <, and IN-that
compares the field value against a constant value.

e operator canalso be used as alogical operator (AND, OR, or NOT) that links
multiple filter conditions together.

In the example below, the bold operator is the logical operator. The other
instances of operator are comparison operators.

"filterConditions": [
{
"operator": "OR",
"conditions": [
{

"field": "StageName",
"operator": "=",
"value": "Closed Won"

"field": "Probability",
"operator": ">=",
"Value": H90ll

No The value used in a filter condition.

No Indicates whether you quoted the string value in a filter condition.

Example with quoted values:

"filterConditions": [
{
"field": "StageName",
"operator": "IN",
"value": " ('Closed Won', 'Closed Lost'")",

"isQuoted": true
}
]

Example with non-quoted values:

"filterConditions": [
{
"field": "StageName",
"operator": "IN",
"value": ["Closed Won", "Closed Lost"],
"isQuoted": false

}

78

Dataflow Transformation Reference sfdcRegister Transformation

Parameter Required? Value

If you don'tinclude isQuoted for a filter on a string value, Analytics assumes that
the string value is not quoted and adds the quotes for you.

conditions No Use to specify a logical operator to link multiple filter conditions together.

SEE ALSO:
sfdcDigest Transformation

Filtering Records Extracted from a Salesforce Object

sfdcRegister Transformation

The sfdcRegister transformation registers a dataset to make it available for queries. Users cannot view or run queries against unregistered
datasets.

@ Note: The sfdcRegister transformation overwrites the current version of the dataset if it already exists.

You don't need to register all datasets. For example, you don't need to register an intermediate dataset that is used to build another
dataset and does not need to be queried. In addition, you don't need to register datasets that are created when you upload external
data because Analytics automatically registers these datasets for you.

Carefully choose which datasets to register because:

e The total number of rows in all registered datasets cannot exceed 100 million rows per platform license, or 250 million per platform
license purchased before October 20, 2015.

e Users that have access to registered datasets can query their data. Although, you can apply row-level security on a dataset to restrict
access to records.

@ Example: Let's look at an example. You create a dataflow that extracts opportunities from the Opportunity object. To register
the dataset, name it "Opportunities," and apply row-level security on it, you add the sfdcRegister transformation as shown in the
following dataflow definition file.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" 1},
{ "name": "StageName" 1},
{ "name": "CloseDate" },
{ "name": "AccountId" 1},
{ "name": "OwnerId" }
]
}
by
"Register Oppportunities Dataset": ({
"action": "sfdcRegister",
"parameters": {

79

Dataflow Transformation Reference sfdcRegister Transformation

"alias": "Opportunities",

"name": "Opportunities",

"source": "Extract Opportunities",
"rowLevelSecurityFilter": "'OwnerId' == \"S$User.Id\""

IN THIS SECTION:

sfdcRegister Parameters
When you define an sfdcRegister transformation, you set the action attribute to sfdcRegister and specify the parameters.

sfdcRegister Parameters

When you define an sfdcRegister transformation, you set the action attribute to sfdcRegister and specify the parameters.

The following table describes the input parameters:

Parameter Required? Value

alias Yes APIname of the registered dataset. This name can contain only underscores
and alphanumeric characters, and must be unique among other dataset
aliases in your organization. It must begin with a letter, not include spaces,
notend with an underscore, and not contain two consecutive underscores.
It also cannot exceed 80 characters.

@ Notfe: When the alias is unique, the sfdcRegister transformation
registers a new dataset with the alias. When an existing dataset has
the alias, the transformation overwrites the current version of that
dataset.

name Yes Display name of the registered dataset. The name cannot exceed 80
characters.

@ Nofe: To change the name after you create the dataset, you must
edit the dataset.

source Yes Node in the dataflow definition file that identifies the dataset that you want
to register. This node is the input source for this transformation.

rowLevelSharingSource No The APl name of the object from which to inherit sharing. Used when

applying row-level security on the dataset when the dataset is first created.

Example: "rowlevelSharingSource": "Opportunity”

@ Note: To change the sharing source after you create the dataset,
you must edit the dataset. If they don’t match, you see a warning
that says, "The sharing source and security predicate in this dataset
version must be the same as in the dataflow." For more information,
refer to Salesforce Sharing Inheritance for Datasets.

80

Dataflow Transformation Reference update Transformation

Parameter Required? Value

rowLevelSecurityFilter No The predicate used to apply row-level security on the dataset when the

dataset is first created.

Example: "rowLevelSecurityFilter": "Ownerld' == "SUser.Id""

@ Nofte: To change the predicate after you create the dataset, you
must edit the dataset.

When entering the predicate in the Register transformation of the
dataflow JSON, you must escape the double quotes around string
values.

After the dataset is created, Analytics ignores its security predicate setting
in the dataflow. To change the security predicate for an existing dataset,
edit the dataset in the user interface.

SEE ALSO:

sfdcRegister Transformation

update Transformation

The update transformation updates the specified field values in an existing dataset based on data from another dataset, which we'll call
the lookup dataset. The transformation looks up the new values from corresponding fields in the lookup dataset. The transformation
stores the results in a new dataset.

When you create the transformation, you specify the keys that are used to match records between the two datasets. To dictate which
field in the lookup dataset updates the field in the source dataset, you also map the corresponding fields from both datasets.

@ Example: Let’s look at an example. You have an existing Accounts dataset that contains account information—Id, Name, and
AnnualRevenue. Unfortunately, some of the account names in the dataset are now incorrect because of a series of mergers and
acquisitions. To quickly update the account names in the dataset, you perform the following tasks.

1. Create a csv file that contains the new account names and associated account IDs for accounts that have name changes.
2. Upload the .csv file to create a dataset called UpdatedAccountNames.

3. Create a dataflow definition file to update account names in the Accounts dataset by looking up the new account names in
the UpdatedAccountNames dataset.

Accounts UpdatedAccountNames
Id AccountlD
Keys
MName - MNewAccountMame
Replace

AnnualRevenue

81

Dataflow Transformation Reference update Transformation

You create the following dataflow definition file.

{

"Extract AccountDetails": ({
"action": "sfdcDigest",
"parameters": {

"object": "Account",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "AnnualRevenue" }

s
"Extract UpdatedAccountNames": {
"action": "edgemart",
"parameters": { "alias": "UpdatedAccountNames" }
s
"Update AccountRecords": {
"action": "update",
"parameters": {
"left": "Extract AccountDetails",
"right": "Extract UpdatedAccountNames",
"left key": ["Id" 1,
"right key": ["AccountID"],
"update columns": { "Name": "NewAccountName" }

by
"Register UpdatedAccountRecords": {

"action": "sfdcRegister",
"parameters": {

"alias": "Accounts",

"name": "Accounts",

"source": "Update AccountRecords"

@ Example: Let’s look at another example, where a composite key is used to match records between both datasets. In this case,
you match records using the account ID and account name fields.

You create the following dataflow definition file.

{

"Extract AccountDetails": ({
"action": "sfdcDigest",
"parameters": {

"object": "Account",
"fields": [
{ "name": "Id" },
{ "name": "Name" },
{ "name": "AnnualRevenue" }

by

82

Dataflow Transformation Reference

"Extract UpdatedAccountNames": {
"action": "edgemart",
"parameters": { "alias": "UpdatedAccountNames"

}y

"Update AccountRecords": ({

"action": "update",
"parameters": {
"left": "Extract AccountDetails",
"right": "Extract UpdatedAccountNames",
"left key": ["Id","Name"],
"right_key": ["AccountId", "NewAccountName"],
"update columns": {
"Name": "NewAccountName",
"CreatedDate":"NewCreatedDate",

"AnnualRevenue":"NewAnnualRevenue"

by
"Register UpdatedAccountRecords": {

"action": "sfdcRegister",

"parameters": {
"alias": "Accounts",
"name": "Accounts",
"source": "Update AccountRecords"

}

}
}
IN THIS SECTION:

update Parameters

}

update Transformation

When you define an update transformation, you set the action attribute to update and specify the parameters.

update Parameters

When you define an update transformation, you set the action attribute to update and specify the parameters.

The following table describes the input parameters.

Parameter Required?
left Yes
right Yes
left_key Yes

83

Value

Node in the dataflow definition file that
identifies the dataset that contains the
records that you want to update.

Node in the dataflow definition file that
identifies the lookup dataset that contains
the new values.

Key column inthe left dataset used to match
records in the other dataset. If you use a
composite key, the left and right keys must
have the same number of columns in the

Dataflow Transformation Reference update Transformation

Parameter Required? Value

same order. For an example, see update
Transformation on page 81.

right_key Yes Key column in the right dataset used to
match records in the other dataset. If you
use a composite key, the left and right keys
must have the same number of columns in
the same order.

update_columns No Anarray of corresponding columns between

the left and right datasets. Use the following
syntax: "update columns": {
"LeftColumnl":
"RightColumnl",
"LeftColumn2":
"RightColumn2", ...
"LeftColumnN":
"RightColumnN" }.The value from
right column replaces the value from the
corresponding left column. The field types
of the left and right column must match.

@ Nofte: Ifyou specify a column name
that does not exist, the dataflow fails.

If you do not specify this parameter, the
transformation updates the left dataset

by matching all columns in the right dataset
with those in the left. In this case, the right
column names must match exactly with the
left column names. Otherwise, an error
might occur.

SEE ALSO:

update Transformation

84

Dataflow Transformation Reference

Overriding Metadata Generated by a Transformation

Overriding Metadata Generated by a Transformation

Optionally, you can override the metadata that is generated by a transformation. You can override
object and field attributes. For example, you can change a field name that is extracted from a
Salesforce object so that it appears differently in the dataset. To override the metadata, add the
overrides to the Schema section of the transformation in the dataflow definition file.

In the Schema section, you can override the metadata attributes for one object only.

The Schema section in this sample sfdcDigest transformation contains metadata overrides:

"Extract Opportunities": ({

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available for an additional
cost in: Enterprise,
Performance, and
Unlimited Editions

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Name" },
{ "name": "Amount" }
]
by
"schema": {
"objects": [
{
"label":"Sales Opportunities",
"fields": [
{
"name": "Amount",

"label": "Opportunity Amount"

Obiject Atiributes

You can override the following object attributes.

Obiject Attribute Type
label String
description String

Description

The display name for the object. Can be up to 40 characters.
Example:

"label": "Sales Data"

The description of the object. Must be less than 1,000 characters.

85

Dataflow Transformation Reference

Obiject Attribute

fields

Field Attributes

You can override attributes of each specified dataset field.

Field Attribute

name

label

description

isSystemField

format

Type
String

String

String

Boolean

String

Overriding Metadata Generated by a Transformation

Type Description

Add a description to annotate an object in the dataflow definition file. This
description is not visible to users in the Analytics user interface.

Example:

"description": "The SalesData object tracks basic
sales data."

Aray The array of fields for this object.

Description

Name of the field in the dataset. Identifies the field that you want to override.

Examples:
"name": "Amount"
"name": "Role.Name"

The display name for the field. Can be up to 255 characters.
Example:

"label": "Opportunity Amount"

The description of the field. Must be less than 1,000 characters.

Add a description to annotate a field in the dataflow definition file. This description is not visible
to users in the Analytics user interface.

Example:

"description": "The Amount field contains the opportunity
amount."

Indicates whether this field is a system field to be excluded from query results.
Example:

"isSystemField": false

The display format of the numeric value.

Examples:

"format": "S$#,##0.00" (Numeric)

For more information about valid formats, see Numeric Formats.

86

Dataflow Transformation Reference Overriding Metadata Generated by a Transformation

Numeric Formats

An example of a typical numeric value is $1,000,000.99, which is represented as $#,##0.00. You are required to specify the precision and
scale of the number. The format is specified by using the following symbols:

Symbol Meaning
0 One digit. Use to add leading or trailing Os, like #, ### .00 for $56,375.00.
Adds zero or one digit

Default symbol used as the decimal separator. Use the decimalSeparator fieldto
set the decimal separator to a different symbol.

- Minus sign
, Grouping separator

$ Currency sign

Nofte: The format for numeric values isn't used in data ingestion. It is used only to specify how numeric values are formatted when
displayed in the Ul. Also, you can't override date formats.

@ Example: Let's consider an example where you want to override the following object and field attributes that the sfdcDigest
transformation extracts from the Opportunity object.

Obiject/Field Attribute Changes

Opportunity object e (Change the object label to "Sales Opportunities"

e Add an object description

d field e (Change the field label to "Opportunity Id"
e Hide the field from queries

Amount field e (Change the field label to "Opportunity Amount"
e Change the format to $#,##0.00

CloseDate field

e (Change the field label to "Closing Date"

To override the attributes, you add the Schema section with the override values to sfdcDigest in the dataflow definition file.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},

87

Dataflow Transformation Reference

{ "name": "Amount" },
{ "name": "StageName" 1},
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "OwnerId" }
]
b
"schema": {
"objects": [

{

"label":"Sales Opportunities",

Overriding Metadata Generated by a Transformation

"description": "These are all sales opportunities.",
"fields": [
{
"name": "Id",
"label": "Opportunity Id",

"isSystemField": true

"name": "Amount",
"label": "Opportunity Amount",
"format": "S$#,##0.00"
by
{
"name": "CloseDate",
"label": "Closing Date"
}
]
}
]
}
by
"Register Dataset Opportunities": {
"action": "sfdcRegister",
"parameters": {
"source": "Extract Opportunities",
"alias": "Opportunities",
"name": "Opportunities"

}

Important: Analytics removes Schema sections from all transformations except sfdcDigest when you add a dataflow to a
package. If you intend to package a dataflow, we recommend that you specify field attributes in the transformation itself,
instead of in a schema section. For example, this computeRelative transformation uses a label attribute to change a field’s

label.

"CalcAmountAfterdiscount": {
"action": "computeExpression",
"parameters": {

"mergeWithSource": true,

"source": "getOpps",

"computedFields": [

{

88

Dataflow Transformation Reference Overriding Metadata Generated by a Transformation

"name": "DiscountedAmount",

"label": "Discounted Amount",

"type": "Numeric",

"saqlExpression": "Amount * Discount Percentage c",
"precision": 10,

"scale": 2

89

LOAD SALESFORCE DATA WITH THE DATASET BUILDER AND
THE DATAFLOW

Use the dataset builder to create a single dataset based on data from one or more related Salesforce
objects. The dataset builder adds transformations to extract, augment, and register the datain a
new or existing dataflow. The dataset is created the next time the selected dataflow runs, and
refreshes each time the dataflow subsequently runs. You can edit the dataflow to add transformations
before you create the dataset.

1. On the home page or on an app page, click Create > Dataset.

2. (lick Salesforce Data.
The New Dataset dialog opens.

New Dataset X

MName the dataset and select a dataflow to add it to. The
dataflow creates the dataset and keeps it updated. Learn More

Dataset Name

Opportunities with Accounts and Users

© Add to existing dataflow

Sales Operations Dataflow x v

() Add to new dataflow

Enter name for new dataflow...

3. Enter a name for the dataset.

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available for an additional
cost in: Enterprise,
Performance, and
Unlimited Editions

USER PERMISSIONS

To access the dataset
builder:

e Edit Analytics Dataflows

@ Nofe: If you enter a dataset name that is already used, when you create the dataset, the dataset builder appends a number
to the dataset name. For example, if you entered MyOpportunities, the dataset builder creates MyOpportunities1. The dataset

name cannot exceed 80 characters.

4. Select a dataflow to add the dataset transformations to. You can select an existing dataflow, or a new dataflow.

a. Toadd the transformations to an existing dataflow, select Add to existing dataflow, and then select the dataflow from the

list.

b. To add the transformations to a new dataflow, select Add to new dataflow, and then enter a name for the new dataflow.

@ Nofe: The option to add to a new dataflow is only available if you have enabled data sync in your org.

5. Click Next.

90

Load Salesforce Data with the Dataset Builder and the
Dataflow

The dataset builder opens inside the dataflow editor.

D) Dataset Builder x

Q, Pick an s0bject to start
MNams

Accepted Event Relation
Account

Account Contact Role
Account Feed

Account History
Account Partner
Account Share
Additional Directory Mumber
Announcement

Apex Class

Apex Debug Log

Apex Job

Apex Test Queue ltem

Apex Test Pesult

6. Select the root object.

The root object is the lowest level child object that you can add to the canvas. After you select the root object, you can add only
parent objects of the root object—you can't add its child objects. To change the root object, refresh the page and start over.

7. Hover over the root object, and then click n
The Select Fields dialog box appears. By default, the Fields tab appears and shows all available object fields from which you can
extract data.

91

Load Salesforce Data with the Dataset Builder and the

Dataflow
Opportunity >
Root
FIELDS RELATIONSHIPS
Select Fields
Search by name or metadata.

NAME TYPE
Amount Currency
Close Date Date
Closed Boolean
Created Date DateTime
Current Generator(s) String
Deleted Boolean
Delivery/Installation Status Picklist
Description TextArea
Expected Amount Currency
Fiscal Period String

@ Nofe: You can view this dialog box for any object included in the canvas.
8. Inthe Fields tab, select the fields from which you want to extract data.
To locate fields more quickly, you can search for them or sort them by name or type.

@ Important: Select at least one field for each object that you add to the canvas. If you add an object and don't add any of its
fields, the dataflow fails at run time.

9. Inthe Relationships tab, click Join to add the related objects to the canvas.
When you add a related object, the related object appears in the canvas.

92

Load Salesforce Data with the Dataset Builder and the
Dataflow

Account -
Account ID
Opportunity (12) - User -
Root Created By ID
Select Related Objects FIELDS (9] RELATIONSHIPS (3)
User -
S name orr % Owner ID

Action Related Field Related Object Type
Account ID Account Std
Created By ID User Std
Last Modified By .. User Std

DELETE | Owner ID User Std
Price Book ID Pricebook2 Std

10. To remove a related object, click Delete.

Warning: When you delete a related object, you also delete all objects that descend from the related object. For example,
if you delete Account shown below, you delete the branch that contains Account and User.

Select the related Salesforce objects and fields to include in the dataset. Learn More

Account (7) User
Account ID Owner 1D

Opportunity (9)
Root

User
Owner ID

11. For each related object, select the fields from which you want to extract data.

12. To move the entire diagram, select a white space in the canvas and drag it.

You might need to move the diagram to view a different section of the diagram.

13. When you have finished adding objects and fields, click Next.
The transformations for the new dataset are added to the dataflow you selected.

93

Load Salesforce Data with the Dataset Builder and the
Dataflow

New Dataset X

We added the Salesforce data to the
Default Salesforce Dataflow dataflow.
To fine tune how your dataset is
created, edit the dataflow. Or if the
dataflow is ready to go, create your
dataset nght away.

Select an app for your dataset

Shared App A

14. Select the app that will contain the dataset, if it'’s not already selected.

15. To open the dataset editor to view or edit the dataflow in that you added the transformations to, click Edit Dataflow. To run the
dataflow now to create the dataset, click Create Dataset.

@ Nofe: To edit the dataflow, you must select the Shared App for the dataset.

94

INSTALL THE EINSTEIN ANALYTICS CONNECTOR FOR EXCEL

The Salesforce Einstein Analytics Connector for Excel gives you a fast, easy way to import data from
Excel 2013 into Analytics.

If you use Excel 2013 on the desktop or Office 365, the Office Online version of Excel, the Einstein
Analytics Connector for Excel gives you a great way to get your data into Analytics. After installing
the Connector, you just select data from Excel, click Submit Data, and the Connector does the
work for you, importing the data to Analytics and creating a dataset.

Here’s how to install the Connector:

1. Open Excel, either on your desktop or in Office Online.
Click the Insert tab.

Click Store.

Search for the Einstein Analytics Connector for Excel, and click Add to install it.

i & wN

Click Log in to Salesforce, and enter your Salesforce credentials to open the Connector.

USER PERMISSIONS

To import data from Excel

2013 to Analyfics:

¢ Upload External Data to
Analytics

Once you've installed the Connector, follow the instructions in the Connector window to create datasets from your Excel data. Opening
the Connector automatically logs you in to Analytics. Click the Connector Help icon for complete information about using the app.

95

CREATE A DATASET WITH EXTERNAL DATA

Create a Dataset with External Data

You can either upload external data through the user interface or through the External Data API to
create a dataset. When you upload an external data file, you can also provide a metadata file. A
metadata file contains metadata attributes that describe the structure of the data in the external
datafile. If you upload a .csv from the user interface, Analytics automatically generates the metadata,
which you can preview and change.

0 Tip: Analytics temporarily stores the uploaded CSV and metadata files for processing only.
After the datasets are created, Analytics purges the files. If you want to use the files again
later, keep a copy.

Before uploading external data files, review the format requirements and examples of the .csv and
metadata files in the Analytics External Data Format Reference.

@ Nofe: You can also use the External Data APl to upload external data files. Use the APl to
take advantage of more features, like performing incremental extracts and performing append,
delete, and upsert operations. For more information about the External Data API, see the
External Data API Developer's Guide.

1. Tostart a.csv upload, choose one of these options.

a. Onthe Analytics Studio home tab or an app page, click Create > Dataset, and select CSV
File.

b. Inthe data manager, click the Datasets tab and then click Create Dataset.

2. Select the csvfile to upload by performing one of these steps.
a. C(lick Select afile or drag it here, then select the file and click Open.

b. Drag the file into the file drop area.

3. C(lick Next.

4, Inthe Dataset Name field, enter a name for the dataset.

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To upload external data:

e Upload External Data to
Analytics

By default, Analytics uses the file name as the dataset name. The name cannot exceed 80 characters.

5. Select the app where the dataset will be created.

By default, Analytics selects your My Private App. To change an app, click the cross on it and select a different one.

6. In the File Properties Detected box, check that Analytics has correctly identified the properties of your file.

Usually, Analytics correctly identifies your file properties. If it doesn't, your data may not load correctly and you will see unexpected

results when you preview the data on the next screen. To edit the file properties, click ™ ' and select Edit.

@ Nofe: Analytics also generates a data schema file for your data. This file contains properties such as field labels, field types,
and settings. You can view and change these schema properties when you preview the data on the next screen. However, if

you want to download the file first, or replace it with your own file, click ' ™ ' in the Data Schema File field.

96

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.220.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format
https://developer.salesforce.com/docs/atlas.en-us.220.0.bi_dev_guide_ext_data.meta/bi_dev_guide_ext_data/

Create a Dataset with External Data Create a Dataset with External Data

7. Click Next.

The Edit Field Attributes screen appears. Here, you can preview the data, and view or edit the attributes for each field.

Edit Field Attributes x
DATASE ’$
u Opportunities -
A ACCOUNT NAME A OPPORTUNITY NAME & CLOSE DATE B R
Search fields w - IELD ATTRIBUTES
Abata 10 Widgets 10/6/15 Account Name
A Account Name
Abata 10 Widgets 10/6/15 Field Label
A Opportunity Na...
. Abata 10 Widgets 10/6/15 Account Name
[=] Close Date
A status ghat 10 Widgets 10/6/15 Field Type
A Country Abata 10 Widgets 10/6/15 Dimension o
A Lead Source Abata 10 Widgets 10/6/15
A Industry Abata 10 Widgets 10/6/15

8. To view or change a field's attributes, either click the field in the list on the left, or click the field’s column.
Field attributes appear in a panel on the right. The field attributes that you see are determined by the field type.
@ Important: Analytics detects the format for date fields based on a sample of values. If the sample contains values with

unsupported formats or a mixture of formats, Analytics sets the field type to Text. If you change the date format that Analytics
detects, rows with a different format will fail.

Consider this example data.

Row SIC Code SIC Description Last Updated
1 1110 Barley growing 1/10/17
2 1120 Rice growing 11/14/17
3 1130 Alliaceous vegetable growing 1117

Analytics detects the date format for the Last Updated field as M/d/yy. This format displays months and days below 10
without leading zeros, and years as 2 digits, asin 1/1/17.1f you change the format to MM/dd/yy, rows 1 and 3 will fail because
Analytics expects the month and day parts of the date values to have 2 digits.

9. When you finish reviewing or editing field attributes, click Upload File.

Analytics uploads the data, prepares and creates the dataset, and shows you progress as it happens.

97

Create a Dataset with External Data Rules for Automatic Generation of a Metadata File

Creating dataset: Opportunities Creating dataset: Opportunities

Uploading data... Preparing dataset...

Taking a while? Continue in the background and check progress in the data menitor.

Cancel Close

10. Choose one of these options while Analytics creates the dataset.
a. To cancel the process and stop dataset creation, click Cancel on the progress dialog.
This option is available only when the data is uploading.
b. To close the progress dialog and leave the process running in the background, click Close.

c. Toclose the progress dialog but continue monitoring progress, click the Continue in the background and check progress
in the data monitor link.

You're taken to the Monitor tab in the data manager.

d. Donothing. When the dataset is created, you're taken to the dataset’s edit page, where you can explore the data in a lens, prepare
itin a recipe, or create a story in Einstein Discovery.

DATASET
. Create Recipe Explore
Opportunities #

API Name Last Updated Created By Created

B
&
=

Opportunities Today at 5:55 PM Admin User Today at 5:41 PM

IN THIS SECTION:

Rules for Automatic Generation of a Metadata File

When you upload a CSV file from the user interface, Analytics automatically generates the metadata file as long as the CSV file meets
certain requirements.

Rules for Automatic Generation of a Metadata File

When you upload a CSV file from the user interface, Analytics automatically generates the metadata file as long as the CSV file meets
certain requirements.

To enable Analytics to generate the metadata file, a CSV file must meet the following requirements.

e The file type must be .csv, not .gz or zip.

98

Create a Dataset with External Data Monitor an External Data Upload

e The file must contain one row for the column header and at least one record.

e The CSV file must meet all Analytics requirements as mentioned in the Analytics External Data Format Reference.

Analytics generates the metadata attributes for each CSV column based on the first 100 rows in the CSV file. Analytics uses the following
rules to convert the CSV column names to field labels.

e Replaces special characters and spaces with underscores. For example, "Stage Name" becomes "Stage_Name."

e Replaces consecutive underscores with one underscore, except when column name ends with "__c." For example, "stage*&name’
becomes "stage_name."

e Prefixes the field label with "X" when the first character of the column name is numeric. For example, "30Day" becomes "X30Day."

® Replaces the field name with "Column" + column number when all characters in the column name are not alphanumeric. For
example, the fourth column name "*&"*(&*(%" becomes "Column4."

e Deletes underscores at the beginning and end of the field label to ensure that it doesn't start or end with an underscore.
e Increments the derived field label if the label is the same as an existing label. For example, if "X2" already exists, uses "X21," "X22,"
"X23."

o Tip: You can download the generated metadata file to change the metadata settings, and then upload it to apply the changes.
You can download the metadata file when you create or edit a dataset.

SEE ALSO:

Create a Dataset with External Data

Monitor an External Data Upload

When you upload an external data file, Analytics kicks off a job that uploads the data into the EDITIONS

specified dataset. You can use the Monitor tab of the data manager to monitor and troubleshoot

the upload job. Available in Salesforce

The Jobs subtab (1) of the Monitor tab shows the status, start time, and duration of each dataflow, Classic and Lightning

data sync, recipe, and external data upload job. It shows jobs for the last 7 days. Experience.

@ Note: Duration is calculated as the sum of the job queue time and job run time. Available for an extra costin

Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To access the Monitor tab of

the data manager:

e Edit Analytics Dataflows,
Upload External Data to
Analytics, or Manage
Analytics

99

https://developer.salesforce.com/docs/atlas.en-us.220.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Create a Dataset with External Data

Monitor an External Data Upload

¥~ Data Manager

& Monitor
: Track the proj ncs, dataflows, recipes, and other data jobs that you run. e
File Uploads: e
Dataflows & Recipes u— i p Show Hide c
JOBS DATAFLOWS N EE—————
Data
NAME STATUS TYPE STARTED DURATION MESSAGE
Connect
u_. v | Upload Opportunity8 Upload flow - Ox | @ Warning File Upload Today at 12:36 PM 00:00:23 e Job completed. ,‘;”a'ss‘r“;";;;";:ﬂ';’f” Download th
| — |
NAME STATUS YPE STARTED DURATION ROWS IN ROWS OUT ROWS
load ® Successful sfdcFetch Today at 12:36 PM 00:00:00
digest Warning ¥, csvDigest Today at 12:36 PM 00:00:00 669 669 2
optimize-register ® Successful % optimizer Today at 12:36 PM 00:00:00
register ® Successful \-/{fdcﬁegm... Today at 12:36 PM 00:00:09
1.

In Analytics, click the gear icon (ﬁ) and then click Data Manager.

The data manager opens on the Monitor tab, with the Jobs subtab selected by default. It displays each upload job name as

<dataset name upload flow>.You can hoverajob toview the entire name.

Note: To view external data upload jobs in the Jobs view, make sure that the File Uploads selector (2) is set to Show. Show

is the default selection.

To see the latest status of a job, click the Refresh Jobs button (- <).

Each job can have one of these statuses.

Status
Queued
Running
Failed
Successful

Warning

Description

The job is in queue to start.

The job is running.

The job failed.

The job completed successfully.

The job completed successfully, but some rows failed.

A message is displayed next to jobs with a status of Warning (3) or Failed . If you can't see the complete message, click the message

to view all of it.

3. To view the run-time details for a job, expand the job node (4).

The run-time details display under the job. In the run-time details section, scroll to the right to view information about the rows that

were processed.

4. Totroubleshoot ajob that has failed rows, view the error message. If an error log is available, click the status text or download button

(5) to download the log.

@ Note: Only the user who uploaded the external data file can download the error log.

The error log contains a list of failed rows.

100

Create a Dataset with External Data Monitor an External Data Upload

2] ExternalFileWorkflow06VAD000000005mEAA_digest.csv
A B C D E F
1 |row _lerror File_Name Page Views View_Date Authenticated
2 7 (column: Page_Views) strconv.ParseFloat: parsing "Text": invalid syntax ~ about:blank Text 5/1/2015 No
3
4

5. To troubleshoot a failed job, view the error message and the run-time details.

101

EDIT A DATASET

USER PERMISSIONS

To view a dataset edit page:

To update a dataset name, app, and
extended metadata:

To delete a dataset:

To upload and preview data:

To edit a dataset security:

To restore a dataset:

Use Analytics AND Editor access to the
dataset's app

Use Analytics AND Editor access to the
dataset's app

Use Analytics AND Editor access to the
dataset’'s app

Upload External Data to Analytics AND Editor

access to the dataset's app
Edit Analytics Dataflows
Edit Analytics Dataflows

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

Edit a dataset to change its name, app, security, or extended metadata (XMD). You can also replace data in a dataset, restore it to a
previous version, or delete it. The dataset edit page also provides key information about when the dataset was created and last updated,

and where it is used.

You can edit a dataset from Analytics home or from the data manager.

e To edit a dataset from Analytics home, follow these steps.

1. .
Hover over the dataset and click | ¥ .

2. Click Edit.

e To edit a dataset from the data manager, follow these steps.

1. In the data manager, click the Datasets tab.

2. On the right of the dataset, click ™ .

3. (lick Edit Dataset.

e Edit the following settings, as needed.

Option

Dataset name

App

Description

Enteranew name ifyou'd like to change the name of the dataset. The name cannot

exceed 80 characters.

Select a new app if you'd like to move the dataset to a different app.

102

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Edit a Dataset

Option

Extended Metadata File

Sharing Source

Security Predicate

Description
Specify an extended metadata file if you'd like to customize the formatting of
dashboards associated with the dataset.

Refer to Extended Metadata (XMD) Reference for information about extended
metadata files.

If you have enabled sharing inheritance, specify the object from which you want
to inherit sharing for this dataset. You can't specify a sharing source for datasets
created from CSV files. When you select a sharing source, you must also add a
security predicate. Analytics populates the Security Predicate field with the value
false.

See Salesforce Sharing Inheritance for Datasets.

Add a security predicate if you'd like to apply row-level security on the dataset.

For information about predicates, see Row-Level Security for Datasets.

103

DELETE A DATASET

Delete unnecessary datasets from shared apps on which you have at least Editor access, your My
Private App, and, with a special user permission, another user's My Private App. Removing datasets
reduces clutter and helps avoid reaching your org's total row limit for all registered datasets.

You can't delete a dataset that is used in a dashboard, lens, or dataflow. Before you delete a dataset,
first remove references to it from dashboards or dataflow transformations, and delete associated
lenses.

0 Tip: Review the usage information on the dataset’s edit page to see where the dataset is

used.
Usage
This dataset is used in these places
Dashboards Lenses Dataflows
Dashboard Last Accessed
Opportunities Aug 4, 2017 at 10:19 AM

O Warning: You can't recover a deleted dataset.
1. To edit a dataset from Analytics home or an app page, follow these steps.

a. Hover over the dataset and click | ¥ .
b. Click Edit.

2. To edit a dataset from the data manager, follow these steps.

a. Inthe data manager, click the Data tab.

b. On the right of the dataset, click ' ™ .
c. Click Edit Dataset.

On the dataset edit page, click the Delete Dataset button (L]).

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To delete a dataset:

e Use Analytics AND Editor
access to the dataset's
app

To delete a dataset in

another user's My Private

App:

e Manage All Private
Einstein Analytics

If the dataset is in use, Analytics stops the deletion and shows a list of assets that reference the dataset. Click Got It and resolve these

references before trying again.

4. (lick Delete Permanently.

@ Important: Analytics doesn't check if a dataset is used in recipes. If you delete a dataset that's used in a recipe, the recipe

fails.

104

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

ROW-LEVEL SECURITY FOR DATASETS

If an Analytics user has access to a dataset, the user has access to all records in the dataset by default. However, you can implement
row-level security on a dataset to restrict access to records. Some records contain sensitive data that must not be accessible by everyone.

Toimplement row-level security for a dataset, either define a security predicate or turn on sharing inheritance. Specify from which objects
to migrate the sharing rules. Sharing inheritance works together with security predicates. You can specify a security predicate to take
over for those users who fall outside the scope of sharing inheritance.

IN THIS SECTION:

Security Predicates for Datasets
Applying a predicate to a dataset is more than just defining the predicate expression. You also need to consider how the predicate
is dependent on the information in the dataset and where to define the predicate expression.

Row-Level Security Example based on Record Ownership

Let's look at an example where you create a dataset based on a CSV file and then implement row-level security based on record
ownership. In this example, you will create a dataset that contains sales targets for account owners. To restrict access on each record
in the dataset, you will create a security policy where each user can view only sales targets for accounts that they own. This process
requires multiple steps that are described in the sections that follow.

Row-Level Security Example based on Opportunity Teams

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on an
opportunity team. In this example, you will create a dataset that contains only opportunities associated with an opportunity team.
To restrict access on each record in the dataset, you will create a security policy where only opportunity members can view their
opportunity. This process requires multiple steps that are described in the sections that follow.

Row-Level Security Example based on Role Hierarchy and Record Ownership

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on the
Salesforce role hierarchy and record ownership. In this example, you will create a dataset that contains all opportunities. To restrict
access on each record in the dataset, you will create a security policy where each user can view only opportunities that they own or
that are owned by their subordinates based on the Salesforce role hierarchy. This process requires multiple steps that are described
in the sections that follow.

Row-Level Security Example Based on Territory Management

Let's look at an example where you create a dataset based on Salesforce data and then implement row-level security based on your
defined territories. In this example, you determine what model you use for territory management, so you can later review sample
JSON for that dataset. To restrict access on each record in the dataset, you will create a security predicate where each user can view
only data appropriate for the territory to which they belong.

Salesforce Sharing Inheritance for Datasets
Use sharing inheritance to let Analytics use the same sharing rules for your datasets as Salesforce uses for your objects.

SEE ALSO:

sfdcRegister Transformation

sfdcRegister Parameters

105

Row-Level Security for Datasets Security Predicates for Datasets

Security Predicates for Datasets

Applying a predicate to a dataset is more than just defining the predicate expression. You also need to consider how the predicate is
dependent on the information in the dataset and where to define the predicate expression.

Define a predicate for each dataset on which you want to restrict access to records. A security predicate is a filter condition that defines
row-level access to records in a dataset.

When a user submits a query against a dataset that has a predicate, Analytics checks the predicate to determine which records the user
has access to. If the user doesn't have access to a record, Analytics does not return that record.

@ Note:

Changes to security settings (rowLevelSharingSource or rowlevelSecurityFilter) in a dataflow have no effect on datasets that
already exist. You must change those settings on the edit dataset page.

e When sharing inheritance is enabled, you can set the security predicate to ‘false’ to block all users not covered by sharing. In
fact, this predicate is the default when sharing is enabled on existing datasets.

The predicate is flexible and can model different types of security policies. For example, you can create predicates based on:

e Record ownership. Enables each user to view only records that they own.

e Management visibility. Enables each user to view records owned or shared by their subordinates based on a role hierarchy.

e Team or account collaboration. Enables all members of a team, like an opportunity team, to view records shared with the team.

e Combination of different security requirements. For example, you might need to define a predicate based on the Salesforce role
hierarchy, teams, and record ownership.

The type of security policy you implement depends on how you want to restrict access to records in the dataset.

Warning: If row-level security isn't applied to a dataset, any user that has access to the dataset can view all records in the dataset.

You can create a predicate expression based on information in the dataset. For example, to enable each user to view only dataset records
that they own, you can create a predicate based on a dataset column that contains the owner for each record. If needed, you can load
additional data into a dataset required by the predicate.

The location where you define the predicate varies.

e To apply a predicate on a dataset created from a dataflow, add the predicate in the rowLevelSecurityFilter field of the Register
transformation. The next time the dataflow runs, Analytics will apply the predicate.

e Toapply a predicate on a dataset created from an external data file, define the predicate in the rowLevelSecurityFilter field in the
metadata file associated with the external data file. Analytics applies the predicate when you upload the metadata file and external
data file. If you already created the dataset from a external data file, you can edit the dataset to apply or change the predicate.

Row-Level Security Example based on Record Ownership

Let's look at an example where you create a dataset based on a CSV file and then implement row-level security based on record ownership.
In this example, you will create a dataset that contains sales targets for account owners. To restrict access on each record in the dataset,
you will create a security policy where each user can view only sales targets for accounts that they own. This process requires multiple
steps that are described in the sections that follow.

@ Nofte: Although this example is about applying a predicate to a dataset created from a CSV file, this procedure can also be applied
to a dataset that is created from Salesforce data.

106

Row-Level Security for Datasets Determine Which Data to Include in the Dataset

IN THIS SECTION:

1.

Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create a Targets dataset that contains all
sales targets.

Determine Row-Level Security for Dataset

Now it's time to think about row-level security. How will you restrict access to each record in this dataset?

Add the Predicate to the Metadata File

For a dataset created from a CSV file, you can specify the predicate in the metadata file associated with the CSV file or when you edit
the dataset.

Create the Dataset
Now that you updated the metadata file with the predicate, you can create the dataset.

Test Row-Level Security for the Dataset
You must verify that the predicate is applied properly and that each user can see their own sales targets.

Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create a Targets dataset that contains all sales
targets.

You will obtain sales targets from the CSV file shown below.

AccountOwner Region Target TargetDate
Tony Santos Midwest 10000 1/1/201
Lucy Timmer Northeast 50000 1717201
Lucy Timmer Northeast 0 12/1/2013
Bill Rolley Midwest 15000 17172011
Keith Laz Southwest 35000 1/1/2011
Lucy Timmer Southeast 40000 1/1/2011

If you were to create the dataset without implementing row-level security, any user that had access to the dataset would be able to see
the sales targets for all account owners. For example, as shown below, Keith would be able to view the sales targets for all account
owners.

107

Row-Level Security for Datasets

Salesforce Analytics KeithLaz v @ 2 Analytics
= SalesTaigeis o
Cv > C B 2 o
bat lensin Sroup Coaler

Count of Rows =eMeaswe by Account Owne.. and Region =e&mup

i
&
Iy

Y P
Count of Rows
Account Owner Region Fegion
Northeast .
Southeast

Indira Singh Southeast

You need to apply row-level security to restrict access to records in this dataset.

Determine Row-Level Security for Dataset

Now it's time to think about row-level security. How will you restrict access to each record in this dataset?

You decide to implement the following predicate on the dataset.

'AccountOwner' == "$User.Name"

@ Nofte: All predicate examples in this document escape the double quotes because it's required when you enter the predicate in

the Register transformation or metadata file.This predicate implements row-level security based on record ownership. Based on
the predicate, Analytics returns a sales target record when the user who submits the query on the dataset is the account owner.

Let's take a deeper look into the predicate expression:

e AccountOwner refers to the dataset column that stores the full name of the account owner for each sales target.

e SUser.Name refers to the Name column of the User object that stores the full name of each user. Analytics performs a lookup to get
the full name of the user who submits each query.

@ Note: The lookup returns a match when the names in AccountOwner and SUser.Name match exactly—they must have the same
case.

Add the Predicate to the Metadata File

For a dataset created from a CSV file, you can specify the predicate in the metadata file associated with the CSV file or when you edit the
dataset.

You must escape the double quotes around string values when entering a predicate in the metadata file.

In this example, you add the predicate to the metadata file shown below.

{

"fileFormat": {
"charsetName": "UTF-8",
"fieldsDelimitedBy": ", ",

108

Determine Row-Level Security for Dataset

Row-Level Security for Datasets

"fieldsEnclosedBy": "\"",
"numberOfLinesToIgnore": 1 },
"objects": [

{

Add the Predicate to the Metadata File

"name": "Targets",

"fullyQualifiedName": "Targets",

"label": "Targets",

"rowLevelSecurityFilter": "'AccountOwner' == \"$User.Name\"",
"fields": [

"name": "AccountOwner",

"fullyQualifiedName": "Targets.AccountOwner",
"label": "Account Owner",

"type": "Text"

"name": "Region",

"fullyQualifiedName": "Targets.Region",
"label": "Region",

"type": "Text"

"name": "Target",

"fullyQualifiedName": "Targets.Target",
"label": "Target",

"type": "Numeric",

"precision": 16,

"scale": 0,

"defaultValue": "0",

"format": null

"name": "TargetDate",

"fullyQualifiedName": "Targets.TargetDate",
"label": "TargetDate",

"description": "",

"type": "Date",

"format": "dd/MM/yy HH:mm:ss",

"isSystemField": false,
"fiscalMonthOffset": 0

109

Row-Level Security for Datasets Create the Dataset

Create the Dataset

Now that you updated the metadata file with the predicate, you can create the dataset. EDITIONS

o Warning: If you wish to perform the steps in this sample implementation, perform the steps
in a non-production environment. Ensure that these changes do not impact other datasets
that you already created.

Available in Salesforce
Classic and Lightning

Experience.
To create the dataset, perform the following steps.
Available for an extra costin

1. In Analytics, go to the home page. Enterprise, Performance,

2. Click Create > Dataset and Unlimited Editions. Also
3. ClickCSV. ovg.lloble in Developer
Edition.

The following screen appears.

USER PERMISSIONS

To upload a CSV and
metadata file:

¢ Upload External Data to
Analytics

Salesforce Analytics Manuel Castro v & 2 Analytics

Datasat 4

Add CSV or .gz or ZIP File {Max: 500 MB)

X, Select File

Add JSON Schema File

X SelectFile

N EEm

Dataset Name

Enter Dataset Name

App

My Private App ~

. Select the CSV file and metadata (schema) file.

4
5. Inthe Dataset Name field, enter “SalesTarget” as the name of the dataset.
6. Optionally, choose a different app where you want to store the dataset.

7. C(lick Create Dataset.

Analytics confirms that the upload is successful and then creates a job to create the dataset. You can view the SalesTarget dataset
after the job completes successfully.

©

To verify that the job completes successfully, perform the following steps:

110

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Test Row-Level Security for the Dataset

a.
Click the gear icon ($) and then select Data Monitor to open the data monitor.

By default, the Jobs View of the data monitor appears. It shows the statuses of dataflow and external data upload jobs.

b.
Click the Refresh Jobs button (- €) to view the latest statuses of the jobs.

Test Row-Level Security for the Dataset

You must verify that the predicate is applied properly and that each user can see their own sales EDITIONS

targets.

1. Login to Analytics as Keith. Available in Salesforce
2. Open the SalesTargets dataset. Classic and Lightning

. : . . . Experience.
As shown in the following lens, notice that Keith can see only his sales target. P

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer

Edition.
~N Salesforce Analytics Keithlaz v @ 7 Analytics v
& SalesTargets o
{ v > C A o ~
bar length Group Color
Count of Rows =rMeaswre by Account Owne..and Region =Grou = o] :=
Y Filter

Count of Rows

Account Owner Region Region

Row-Level Security Example based on Opportunity Teams

Let's look at an example where you create a dataset based on Salesforce data and then implement row-level security based on an
opportunity team. In this example, you will create a dataset that contains only opportunities associated with an opportunity team. To
restrict access on each record in the dataset, you will create a security policy where only opportunity members can view their opportunity.
This process requires multiple steps that are described in the sections that follow.

IN THIS SECTION:

1. Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create an OppTeamMember dataset that
contains only opportunities associated with an opportunity team.

m

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Determine Which Data to Include in the Dataset

2. Design the Dataflow to Load the Data

Now it's time to figure out how the dataflow will extract the Salesforce data and load it into a dataset. You start by creating this
high-level design for the dataflow.

3. Determine Row-Level Security for the Dataset
Now it's time to think about row-level security. How will you restrict access to each record in this dataset?

4. Modify the Dataflow Based on Row-Level Security
It's now time to add the predicate in the dataflow definition file.

5. Create the Dataset
Now that you have the final dataflow definition file, you can create the dataset.

6. Test Row-Level Security for the Dataset
You must verify that the predicate is applied properly and that each user can see the appropriate opportunities.

Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create an EDITIONS
OppTeamMember dataset that contains only opportunities associated with an opportunity team.

You will obtain opportunities from the Opportunity object and the opportunity teams from the Available in Salesforce
OpportunityTeamMember object. Both are Salesforce objects. Classic and Lightning
Experience.

In this example, your Salesforce organization has the following opportunity team and users.
Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer

o] 8

East_Sales West_Sales | § Edition.
Bill = Lucy
NJ_Sales ; ‘ NY_Sales ‘ [CA_Sales ‘ ‘ WA_Sales ‘
Tony H Joe John Mary
Opportunity Team :
Your organization also contains the following opportunities, most of which are owned by Keith.
Q,;"‘J All Opportunities v | Edit | Delete | Create New View EEENECE Jp Feed | = @
New Opportunity| | [T) aAlB|lc|D|E[F|G|H[I[J[K|LIm[N|O|[P|@|R[S|T|u|V|wW|X|Y]|Z]|Oter AN
Action Opportunity Name + Account Name Amount Close Date Stage Opportunity Owner Alias
Edit| Del | g Acc - 1000 Widgets Acc salesrep 9/4/2014 Prospecting Tony
Edit| Del | @ Acme - 1.200 Widgels Acme $140,000.00 61472012 Value Proposition Keith
Edit| Del | @@ Acme-200 Widgets Acme $20,000.00 1071372012 Prospecting Keith
Edit| Del | g9 Acme- 600 Widgets — Acme $70,000.00 8/10/2012 MNeeds Analysis Keith
Edit| Del | @ ESales 01 East Sales acc 01 9/4/2014 Prospecting Bill
Edit| Del | @@ Global Media - 400... Global Media $40,000.00 732012 Id. Decision Makers Keith
Edit| Del | €9 salesforce.com-1... salesforce.com §100,000.00 6/14/2012 Negotiation/Review Keith
Edit| Del | @ salesforce.com -2 salesforce.com $20,000.00 81272012 Value Proposition Keith
Edit| Del | @@ salesforce.com-50... Global Media $50,000.00 51272012 Closed Won Keith
Edit| Del | g salesforce.com - 50... Global Media $500,000.00 5/12/2012 Closed Won Keith
Edit| Del | @ West Sales 01 Woest Sales Acc 01 9/4/2014 Prospecting Lucy

N2

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Design the Dataflow to Load the Data

Acc - 1000 Widgets is the only opportunity shared by an opportunity team. Bill is the Sales Manager for this opportunity. Tony is the
opportunity owner.

Design the Dataflow to Load the Data

Now it's time to figure out how the dataflow will extract the Salesforce data and load it into a dataset. EDITIONS
You start by creating this high-level design for the dataflow.

Available in Salesforce
Classic and Lightning
Experience.

Qpportunity

Available for an extra costin
] Enterprise, Performance,
Opportunity L "
TeamMember and Unlimited Editions. Also
available in Developer
Edition.

The dataflow will extract data from the Opportunity and OpportunityTeamMember objects, join
the data, and then load it into the OppTeamMember dataset.

Now let's implement that design in JSON, which is the format of the dataflow definition file. A dataflow definition file contains
transformations that extract, transform, and load data into a dataset.

Based on the design, you create the JSON shown below.

{
"Extract OpportunityTeamMember": {

"action": "sfdcDigest",
"parameters": {
"object": "OpportunityTeamMember",
"fields": [
{ "name": "Name" 1},
{ "name": "OpportunityId" },
{ "name": "UserId" }

b
"Extract Opportunity": {

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" 1},
{ "name": "StageName" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

by
"Augment OpportunityTeamMember Opportunity": {

"action": "augment",
"parameters": {
"left": "Extract OpportunityTeamMember",

13

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Design the Dataflow to Load the Data

"left key": [
"OpportunityId"
]I
"relationship": "TeamMember",
"right": "Extract Opportunity",
"right key": [
nggn
]I
"right select": [
"Name", "Amount"

by

"Register Dataset": {

"action": "sfdcRegister",
"parameters": {
"alias": "OppTeamMember",
"name": "OppTeamMember",
"source": "Augment OpportunityTeamMember Opportunity",

"rowLevelSecurityFilter": ""

}

If you were to run this dataflow, Analytics would generate a dataset with no row-level security. As a result, any user that has access to
the dataset would be able to see the opportunity shared by the opportunity team.

For example, as shown below, Lucy would be able to view the opportunity that belongs to an opportunity team of which sheis not a
member.

Salesforce Analytics Lucy Timmer

= OppleamMember ®
{wv > C A o

bar length

Count of Rows = measue =+ croup

1}
o
I|||

Y Fiter

Count of Rows

You need to apply row-level security to restrict access to records in this dataset.

114

Row-Level Security for Datasets Determine Row-Level Security for the Dataset

Determine Row-Level Security for the Dataset

Now it's time to think about row-level security. How will you restrict access to each record in this EDITIONS
dataset?

Available in Salesforce
Classic and Lightning
Experience.

You decide to implement the following predicate on the dataset.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

'UserId' == "S$User.Id"

This predicate compares the Userld column in the dataset against the ID of the user running a query against the dataset. The Userld
column in the dataset contains the user ID of the team member associated with each opportunity. To determine the ID of the user
running the query, Analytics looks up the ID of the user making the query in the User object.

For each match, Analytics returns the record to the user.

Modify the Dataflow Based on Row-Level Security

It's now time to add the predicate in the dataflow definition file. EDITIONS

You add the predicate to the Register transformation that registers the OppTeamMember dataset

as shown below. Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

"Extract OpportunityTeamMember": {

"action": "sfdcDigest",
"parameters": {
"object": "OpportunityTeamMember",
"fields": [
{ "name": "Name" },
{ "name": "OpportunityId" },
{ "name": "UserId" }

}
}y

"Extract Opportunity": {

"action": "sfdcDigest",

15

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Modify the Dataflow Based on Row-Level Security

"parameters": {

"object": "Opportunity",

"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" 1},
{ "name": "StageName" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

by
"Augment OpportunityTeamMember Opportunity": {
"action": "augment",
"parameters": {
"left": "Extract OpportunityTeamMember",
"left key": [
"OpportunityId"
1,
"relationship": "TeamMember",
"right": "Extract Opportunity",
"right key": [
nggn
Iy
"right select": [
"Name", "Amount"

I
"Register Dataset": {

"action": "sfdcRegister",
"parameters": {
"alias": "OppTeamMember",
"name": "OppTeamMember",
"source": "105 Augment OpportunityTeamMember Opportunity",
"rowLevelSecurityFilter": "'UserId' == \"$User.Id\""

116

Row-Level Security for Datasets Create the Dataset

Create the Dataset

Now that you have the final dataflow definition file, you can create the dataset. EDITIONS

O Warning: If you wish to perform the steps in this sample implementation, verify that you

Available in Salesforce

have all required Salesforce objects and fields, and perform the steps in a non-production
Classic and Lightning

environment. Ensure that these changes do notimpact other datasets that you already created.

Also, always make a backup of the existing dataflow definition file before you make changes Experience.
because you cannot retrieve old versions of the file. Available for an extra costin
To create the dataset, perform the following steps. Enterprise, Performance,
. and Unlimited Editions. Also
" In Analytics, click the gear icon ($) and then select Monitor to open the monitor. Gvg‘iloble in Developer
The Jobs view of the monitor appears by default. Edition.
2. Select Dataflow View.
USER PERMISSIONS
3. Click the actions list (1) for the dataflow and then select Download to download the existing _
dataﬂOW deﬁnition ﬂle To down|00dl Up|ood’ run,
and monitor a dataflow:
e Edit Analytics Dataflows
Monitor Dataflows & Recipes
Create, edit, and run dataflows and recipes to clean, transform, and combine data. Help me choose []
& Da & Recipe
DATAFLOWS DATASET RECIPES
Data -
Default Salesforce Dataflow Mot Scheduled
Connect EL'\::-:':'J alesEdgeEltWorkflow - Run by~ - E
Edit
I, Upload
P RunNow
@ Schedule
4. Open the dataflow definition file in a JSON or text editor.
5. Add the JSON determined in the previous step.
6. Before you save the dataflow definition file, use a JSON validation tool to verify that the JSON is valid.
An error occurs if you try to upload the dataflow definition file with invalid JSON. You can find JSON validation tool on the internet.
7. Save and close the dataflow definition file.
8. Inthe Dataflow View of the monitor, click the actions list for the dataflow and then select Upload.
9. Select the updated dataflow definition file and click Upload.
10. In the Dataflow View of the monitor, click the actions list for the dataflow and then select Run to run the dataflow job.
11.

Click the Refresh Jobs button (<) to view the latest status of the dataflow job.
You can view the OppTeamMember dataset after the dataflow job completes successfully.

@ Note: If you are adding a predicate to a dataset that was previously created, each user must log out and log back in for the

predicate to take effect.

n7

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Test Row-Level Security for the Dataset

Test Row-Level Security for the Dataset

You must verify that the predicate is applied properly and that each user can see the appropriate EDITIONS
opportunities.
1. Login to Analytics as Lucy. Available in Salesforce
2. Open the OppTeamMember opportunity. EC)I(OSeSr'iZ:cnS Lightning
Notice that Lucy can't view the opportunity associated with the opportunity team anymore P ’
because she is not a member of the team. Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.
Salesforce Analytics Lucy Timmer v &
& OppleamMember x
{ v > C A o
bar length Group
Count of Opportu.. Fwmeswe by Opportunity Team.. = eow = = 3
Y Fiter
No results meet those criteria. Try changing your filters.
3. Logoutand now login as Bill.

Bill can view the opportunity that is shared by the opportunity team of which he is a member.

] Salesforce Analytics BillRoley v © ? Analytics v
= OppleamMember ®

v > C a o ~
bar length Group

Count of Opportu.. =wmeaswe by Opportunity Team.. =+ sow

li
o
Uy

Y Fiter

Count of Opportunity ID

Opportunity Team Member Name 0O

18

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Row-Level Security Example based on Role Hierarchy and

Record Ownership

Row-Level Security Example based on Role Hierarchy and Record
Ownership

Let's look at an example where you create a dataset based on Salesforce data and then implement row-level security based on the
Salesforce role hierarchy and record ownership. In this example, you will create a dataset that contains all opportunities. To restrict access
on each record in the dataset, you will create a security policy where each user can view only opportunities that they own or that are
owned by their subordinates based on the Salesforce role hierarchy. This process requires multiple steps that are described in the sections
that follow.

IN THIS SECTION:

1.

Determine Which Data to Include in the Dataset
First, determine what data you want to include in the dataset. For this example, you will create the OppRoles dataset that contains
all opportunities as well as user details about each opportunity owner, such as their full name, division, and title.

2. Design the Dataflow to Load the Data
Now it's time to figure out how the dataflow will extract the data and load it into a dataset. You start by creating this high-level
design for the dataflow.
3. Determine Row-Level Security for the Dataset
Now it's time to think about row-level security. How will you restrict access to each record in this dataset?
4. Modify the Dataflow Based on Row-Level Security
Now it's time to modify the dataflow definition file to account for the predicate.
5. Create the Dataset
Now that you have the final dataflow definition file, you can create the dataset.
6. Test Row-Level Security for the Dataset
You must verify that the predicate is applied properly and that each user can see the appropriate opportunities.
SEE ALSO:

flatten Parameters

Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create the EDITIONS

OppRoles dataset that contains all opportunities as well as user details about each opportunity
owner, such as their full name, division, and title.

Available in Salesforce

You will obtain opportunities from the Opportunity object and user details from the User object. Classic and Lightning
Both are objects in Salesforce. Experience.
In this example, your Salesforce organization has the following role hierarchy and users. Available for an extra costin

Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

19

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Design the Dataflow to Load the Data

VP_Sales g
eith

el

East_Sales

il bt
‘ NJ_Sales ‘ I NY_Sales ‘ ‘ CA_Sales ‘ ‘ WA_Sales ‘
8 a3 8 §
Tony Joe John Mary

Also, your organization contains the following opportunities, most of which are owned by Keith.

Cv‘ All Opportunities v | Edit | Delete | Create New View - Feed = @
New Opportunity || [€) AlB|C|IDIE|F|GIH|I[J|K|LIM|N[O|P|@|R[S|T|U|V|W|X|Y|Z]|Other AN
Action Opportunity Name + Account Name Amount Close Date Stage Opportunity Owner Alias
Edit| Del | @ Acc- 1000 Widgets Acc_salesrep 9/4/2014 Prospecting Tony
Edit] Del | @@ Acme - 1,200 Widgets Acme $140,000.00 61472012 Walue Proposition Keith
Edit] Del | @@ Acme - 200 Widgets ~ Acme $20,000.00 10M113/2012 Prospecting Keith
Edit| Del | @ Acme - 600 Widgets ~ Acme $70,000.00 ano/2012 Needs Analysis Keith
Edit| Del | §9 ESales 01 East Sales acc 01 9/4/2014 Prospecting Bill
Edit| Del| @@ Global Media-400... Global Media $40,000.00 7132012 Id. Decision Makers ~ Keith
Edit| Del | @ salesforce.com - 1. salesforce.com $100,000.00 61472012 Negut\alinniReuie(w Keith
Edit] Del | @@ salesforce.com-2. . salesforce.com $20,000.00 81122012 Walue Proposition Keith
Edit| Del | @@ salesforce.com - 50... Global Media $50,000.00 5M2/2012 Closed Won Keith
Edit| Del | @ salesforce.com - 50 . Global Media $500,000.00 51212012 Closed Won Keith
Edit] Del | @ West Sales 01 West Sales Acc 01 9/4/2014 Prospecting Lucy

Design the Dataflow to Load the Data

Now it's time to figure out how the dataflow will extract the data and load it into a dataset. You EDITIONS
start by creating this high-level design for the dataflow.

Available in Salesforce
Classic and Lightning
Opportunity Experience.

L » |OppRaoles Available for an extra costin

Enterprise, Performance,
User ——— and Unlimited Editions. Also
available in Developer
Edition.

The dataflow will extract data from the Opportunity and User objects, join the data, and then load
it into the OppRoles dataset.

Now let's implement that design in JSON, which is the format of the dataflow definition file. A dataflow definition file contains
transformations that extract, transform, and load data into a dataset.

Based on the design, you create the JSON shown below.

{
"Extract Opportunity": {
"action": "sfdcDigest",

120

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets

"parameters": {

"object": "Opportunity",

"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" },
{ "name": "StageName" 1},
{ "name": "AccountId" },
{ "name": "OwnerId" }
]

}

}y
"Extract User": {

"action": "sfdcDigest",

"parameters": {

"object": "User",

"fields": [
{ "name": "Id" 1},
{ "name": "Username" 1},
{ "name": "LastName" },
{ "name": "FirstName" },
{ "name": "Name" 1},
{ "name": "CompanyName" 1},
{ "name": "Division" },
{ "name": "Department" },
{ "name": "Title" 1},
{ "name": "Alias" },
{ "name": "CommunityNickname"
{ "name": "UserType" },
{ "name": "UserRoleId" }
]

}y

"Augment Opportunity User": ({

"action": "augment",

"parameters'

"left":

l: {
"Extract Opportunity",

"left key": [
"OwnerId"

i
"right":

"Extract User",

"relationship": "Owner",

"right select": [

"Name"

Iy

"right key": [

n"Tg"

by

"Register": {

"action": "sfdcRegister",
"parameters": {
"alias": "OppRoles",

by

121

Design the Dataflow to Load the Data

Row-Level Security for Datasets Determine Row-Level Security for the Dataset

"name": "OppRoles",
"source": "Augment Opportunity User",
"rowLevelSecurityFilter": ""

}

If you were to run this dataflow, Analytics would generate a dataset with no row-level security. As a result, any user that has access to
the dataset would be able to view all opportunities. For example, as shown below, Bill would be able to view all opportunities, including
those owned by his manager Keith.

Salesforce Analytics BilRolley v @ ? Analytics
& OppRoles x
{v> C a o -~
bar length Group

ii
o
n

Count of Opportu... =messwe by Name reouw

Y Fitter

Count of Opportunity ID

=)

Name

Acme - 1,200 Widgets

Acme - 200 Widgets

Acme - 600 Widgets
ESales_01

Global Media - 400 Widgets
West_Sales_01

salesforce.com - 1,000 Widgets
salesforce.com - 2,000 Widgets
salesforce.com - 500 Widgets

salesforce.com - 5000 Widgets

salesrep

You need to apply row-level security to restrict access to records in this dataset.

Determine Row-Level Security for the Dataset

Now it's time to think about row-level security. How will you restrict access to each record in this EDITIONS

dataset?

You decide to implement the following predicate on the dataset. Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

'ParentRolelIDs' == "S$User.UserRoleId" || 'OwnerId' == "S$User.Id"

122

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Modify the Dataflow Based on Row-Level Security

@ Note: The current dataflow doesn't contain logic to create a dataset column named “ParentRolelDs.” ParentRolelDs is a placeholder
for the name of a column that will contain this information. In the next step, you will modify the dataflow to add this column to
the dataset. This column name will change based on how you configure the dataflow.

Based on the predicate, Analytics returns an opportunity record if:

e The user who submits the query is a parent of the opportunity owner based on the Salesforce role hierarchy. Analytics determines
this based on their role IDs and the role hierarchy.

e Or, the user who submits the query on the dataset is the opportunity owner.

Let's examine both parts of this predicate.

Predicate Part Description

ParentRolelDs’ == "SUser.UserRoleld e ParentRolelDs refers to a dataset column that contains a

comma-separated list of role IDs of all users above the
opportunity owner based on the role hierarchy. You will create
this dataset column in the next section.

e SUser.UserRoleld refers to the UserRoleld column of the User
object. Analytics looks up the user role ID of the user who
submits the query from the User object.

Ownerld' == "SUser.d e QOwnerld refers to the dataset column that contains the user

ID of the owner of each opportunity.

e SUserld refers to the Id column of the User object. Analytics
looks up the user ID of the user who submits the query from
the User object.

Modify the Dataflow Based on Row-Level Security

Now it's time to modify the dataflow definition file to account for the predicate. EDITIONS

In this scenario, you have to make changes to the dataflow based on the predicate.

Available in Salesforce
Classic and Lightning
Experience.

e Addacolumn in the dataset that stores a comma-separated list of the role IDs of all parents for
each opportunity owner. When you defined the predicate in the previous step, you temporarily
referred to this column as “ParentRolelDs.” To add the column, you redesign the dataflow as
shown in the following diagram: Available for an extra costin

Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

123

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets

Opportunity -
sfdcDigest

User -
sfdcDigest

UserRole -
sfdcDigest

OO

Modify the Dataflow Based on Row-Level Security

flatten

The new dataflow design contains the following changes:

— Extracts the role IDs from the UserRole object.

augment

sfdcRegister

augmenkt

— Uses the Flatten transformation to generate a column that stores a comma-separated list of the role IDs of all parents of each
user. When you determined the predicate in the previous step, you temporarily referred to this column as “ParentRolelDs.”

- Link the new column to the OppRoles dataset.

e Add the predicate to the Register transformation that registers the OppRoles dataset.

You modify the dataflow as shown below.

{

"Extract Opportunity": ({
: "sfdcDigest",

"action"

"parameters":

"object":

"fields": [
"nameﬂ -
"name" .

{

{
{
{
{
{

by

{

"name" :

"name" .
"name" :
"name":

"Extract User": {

"action":

"parameters":

"object":

"fields": [

{

{
{
{
{
{
{
{
{
{
{

{

"name" :

"name" :
"name":
"name":

"name" :

"name" :
"name":
"name":

"name" :

"name" :

"name":

"Opportunity",

"Ida" i,

"Name" 1},
"Amount" 1},
"StageName" },
"AccountId" },
"OwnerId" }

"sfdcDigest",

llUser",

"Ida" },
"Username" 1},
"LastName" },
"FirstName" 1},
"Name" 1},
"CompanyName" 1},
"Division" },
"Department" 1},
"Title" 1},
"Alias" },
"CommunityNickname"

by

124

Row-Level Security for Datasets

{ "name":
{ "name":

"UserType" 1},
"UserRoleId" }

by
"Extract UserRole": {

"action": "sfdcDigest",
"parameters": {
"object": "UserRole",
"fields": [
{ "name": "Id" },
{ "name": "ParentRoleId" },
{ "name": "RollupDescription" 1},
{ "name": "OpportunityAccessForAccountOwner"
{ "name": "CaseAccessForAccountOwner" 1},
{ "name": "ContactAccessForAccountOwner" },
{ "name": "ForecastUserId" },
{ "name": "MayForecastManagerShare" 1},
{ "name": "LastModifiedDate" },
{ "name": "LastModifiedById" },
{ "name": "SystemModstamp" },
{ "name": "DeveloperName" },
{ "name": "PortalAccountId" 1},
{ "name": "PortalType" },
{ "name": "PortalAccountOwnerId" }

br
"Flatten UserRole": {

"action": "flatten",
"parameters": {
"multi field": "Roles",
"parent field": "ParentRoleId",
"path field": "RolePath",
"self field": "Id",
"source": "Extract UserRole"

by
"Augment User FlattenUserRole": ({
"augment",
"parameters": {
"left": "Extract User",
"left key": [
"UserRoleId"
I
"relationship": "Role",
"right": "Flatten UserRole",
"right key": [
nggn
1,
"right select": [
"Roles",
"RolePath"

"action":

125

Modify the Dataflow Based on Row-Level Security

b

Row-Level Security for Datasets

}y
"Augment Opportunity UserWithRoles": {
"action": "augment",
"parameters": {
"left": "Extract Opportunity",
"left key": [
"OwnerId"
1,
"right": "Augment User FlattenUserRole",
"relationship": "Owner",
"right select": [
"Name",
"Role.Roles",
"Role.RolePath"
1,
"right key": [
nogn

b
"Register": {

"action": "sfdcRegister",
"parameters": {
"alias": "OppRoles",
"name": "OppRoles",
"source": "Augment Opportunity UserWithRoles",
"rowLevelSecurityFilter": "'Owner.Role.Roles'
== \"$User.Id\""

}

}

Modify the Dataflow Based on Row-Level Security

= \"S$User.UserRoleId\" || 'OwnerId'

@ Nofe: In this example, the dataset has columns Owner.Role.Roles and Ownerld. A user can view the values of these columns for

each record to which they have access.

126

Row-Level Security for Datasets Create the Dataset

Create the Dataset

Now that you have the final dataflow definition file, you can create the dataset. EDITIONS

O Warning: If you wish to perform the steps in this sample implementation, verify that you

Available in Salesforce

have all required Salesforce objects and fields, and perform the steps in a non-production
Classic and Lightning

environment. Ensure that these changes do notimpact other datasets that you already created.

Also, always make a backup of the existing dataflow definition file before you make changes Experience.
because you cannot retrieve old versions of the file. Available for an extra costin
To create the dataset, perform the following steps. Enterprise, Performance,
. and Unlimited Editions. Also
" In Analytics, click the gear icon ($) and then select Data Monitor to open the data monitor. Gvg‘iloble in Developer
The Jobs View of the data monitor appears by default. Edition.
2. Select Dataflow View.
USER PERMISSIONS
3. Click the actions list (1) for the dataflow and then select Download to download the existing _
dataﬂOW deﬁnition ﬂle To down|00dl Up|ood’ run,
and monitor a dataflow:
e Edit Analytics Dataflows
Monitor Dataflows & Recipes
Create, edit, and run dataflows and recipes to clean, transform, and combine data. Help me choose []
& Da & Recipe
DATAFLOWS DATASET RECIPES
Data -
Default Salesforce Dataflow Mot Scheduled
Connect EL'\::-:':'.J alesEdgeEltwarkflow - Run by ™ E
Edit
I, Upload
P RunNow
@ Schedule
4. Open the dataflow definition file in a JSON or text editor.
5. Add the JSON determined in the previous step.
6. Before you save the dataflow definition file, use a JSON validation tool to verify that the JSON is valid.
An error occurs if you try to upload the dataflow definition file with invalid JSON. You can find JSON validation tool on the internet.
7. Save and close the dataflow definition file.
8. Inthe Dataflow View of the data monitor, click the actions list for the dataflow and then select Upload.
9. Select the updated dataflow definition file and click Upload.
10. In the Dataflow View of the data monitor, click the actions list for the dataflow and then select Run to run the dataflow job.
11.

Click the Refresh Jobs button (<) to view the latest status of the dataflow job.
You can view the OppRoles dataset after the dataflow job completes successfully.

@ Note: If you are adding a predicate to a dataset that was previously created, each user must log out and log back in for the

predicate to take effect.

127

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Test Row-Level Security for the Dataset

Test Row-Level Security for the Dataset

You must verify that the predicate is applied properly and that each user can see the appropriate EDITIONS
opportunities.

1. Log in to Analytics as Bill. Available in Salesforce
Classic and Lightning

2. Open the OppRoles opportunity. Experience

Notice that Bill can't see his manager Keith’s opportunities anymore. Now, he can see only his

opportunity and his subordinate Tony's opportunity. Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

Salesforce Analytics Bil Rolley v & ?

(v > C A o ~
bar length Group Color

Count of Oppo... #Measure by Name and Opportunity Ow. = Group = & :=

Y Fitter

Count of Opportunity 1D

Name Opportunity.Owner.Full Name Opportunity.Owne...ame
Tony Samos [l

3. Log outand now log in as Keith.

As expected, Keith can still see all opportunities.

128

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Row-Level Security Example Based on Territory Management

Salesforce Analytics

bar length Group Color

il
o
I|||

Count of Oppo... drMeasure by Name and Opportunity.Ow. =+ Group

Y Fitter
Count of Opportunity 1D
Name Opportunity.Owner.Full Name Opportunity.Owne...ame
keith Laz [l
Lucy Timmer
West_Sales_01 Lucy Timmer

Row-Level Security Example Based on Territory Management

Let's look at an example where you create a dataset based on Salesforce data and then implement row-level security based on your
defined territories. In this example, you determine what model you use for territory management, so you can later review sample JSON
for that dataset. To restrict access on each record in the dataset, you will create a security predicate where each user can view only data
appropriate for the territory to which they belong.

Territory management is an account sharing system that grants access to accounts based on the characteristics of the accounts. It enables
your company to structure your Salesforce data and users the same way you structure your sales territories.

If your organization has a private sharing model, you might have granted users access to accounts based on criteria such as postal code,
industry, revenue, or a custom field that is relevant to your business. Perhaps you also need to generate forecasts for these diverse
categories of accounts. Territory management solves these business needs and provides a powerful solution for structuring your users,
accounts, and their associated contacts, opportunities, and cases.

IN THIS SECTION:

1. Determine How You Use Territory Management

When working with security related to territory management, it helps to know how your organization implements territory
management. Usually, one of 2 methods are used. Either accounts are assigned to regions manually, following some
organization-specific precedence, or the organization use’s Salesforce's territory hierarchy feature.

129

Row-Level Security for Datasets Determine How You Use Territory Management

2. Create the DataSet
Now we look at sample JSON code that describes territory management in a dataset.

3. Create the Security Predicate
Now we can apply a security predicate to filter the dataset.

Determine How You Use Territory Management

When working with security related to territory management, it helps to know how your organization implements territory management.
Usually, one of 2 methods are used. Either accounts are assigned to regions manually, following some organization-specific precedence,
or the organization use’s Salesforce's territory hierarchy feature.

The manual process

Manually Assigned Accounts Add Accounts
Action Account Name Billing State/Province Phone Type Account Owner Alias Owner Alias
Remove Santa's Workshop North Pale Alser

For this example, any account with a Billing State or Province that is North Pole is manually assigned to the Canada region.

Territory Management hierarchies

130

Row-Level Security for Datasets Create the DataSet

Your Organization's Territory Hierarchy

Collapse All Expand All
= ¥G TM Demo
i Add Territory
El Asia Edit| Del
© " Add Territory
B China Edit| Del
i " Add Territory
E‘ South-East Asia Edit| Dal
© " Add Territory
B South-West Asia Edit| Del
i * Add Territory
El Europe Edit| Del
© " Add Territory
E' Eastern Europe Edit| Del
i " Add Territory
B Western Europe Edit| Del
_ “ Add Territory
E' Latin America Edit| Del
i i Add Territory
E‘ Central America Edit| Dal
© " Add Territory
B E':muth America Edit| Del

! Add Territory

B North America Edit| Del

© Add Territory

E' Canada Edit| Del

i " Add Territory

E‘ Mexico Edit| Dal

© " Add Territory

B United States Edit| Del

Add Territory

For this example, we have a user called North America VP who needs access to all accounts in the Canada, Mexico, and US territories.
We also have a user called Rep1 Canada who should only have access to the accounts in the Canada territory, not Mexico or US, and
nowhere above in the hierarchy.

Create the DataSet

Now we look at sample JSON code that describes territory management in a dataset.

In this example, territory management data is stored on the following objects and fields.

131

Row-Level Security for Datasets Create the DataSet

o

/d
/ Name
AccountShare § BillingCountry
-'-‘ *and any other fields you may want in your dataset

1d \

RowCause [

UserOrGrounld N .

Accountld Group Territory*** UserTerritorv User
Type id Territorvid id
Id Name Userld Name
Relatedid ParentTerritorvid

***Territories can be nested, so you will need to flatten Territory before joining it to the Group and UserTerritorv objects

Here is an example JSON file for this dataset.

{

"Extract AccountShare": {
"action": "sfdcDigest",
"parameters": {

"object": "AccountShare",
"fields": [
{ "name": "Id"},
{ "name": "RowCause"},
{ "name": "UserOrGroupId"},
{ "name": "AccountId"}

}
}I
"Extract Group": {
"action": "sfdcDigest",
"parameters": {
"object": "Group",
"fields": [
{ "name": "Name"},
{ "name": "Type"},
{ "name": "Id"},
{ "name": "RelatedId"}

}
}I
"Extract Territory": {
"action": "sfdcDigest",
"parameters": {
"object": "Territory",
"fields": [
{ "name": "Id"},
{ "name": "Name"},
{ "name": "ParentTerritoryId"}

}
}I
"Extract User Territory": ({
"action": "sfdcDigest",
"parameters": {
"object": "UserTerritory",
"fields": [

132

Row-Level Security for Datasets

{ "name": "TerritoryId"},
{ "name": "UserId"}
]
}
I
"Extract User": ({
"action": "sfdcDigest",
"parameters": {
"object": "User",
"fields": [
{ "name": "Id"},
{ "name": "Name"}
]
}
by
"Extract Account": {
"action": "sfdcDigest",
"parameters": {
"object": "Account",
"fields": [
{ "name": "Id"},
{ "name": "Name"},
{ "name": "BillingCountry"}
]
}
}y
"Augment TerritoryUsers": ({
"action": "augment",
"parameters": {
"left": "Extract Territory",
"left key": [
nggn
1y
"relationship": "TerritoryId",
"right": "Extract User Territory",
"right key": [
"TerritoryId"

1,

"right select": [
"UserId"

1,

"operation": "LookupMultiValue"

}
by

"Augment AccountShare To Territory Groups":

"action": "augment",
"parameters": {

"left": "Augment AccountShare To Account",

"left key": [
"UserOrGroupId"
I

"relationship": "UserOrGroupId",

"right": "Extract Group",
"right key": [

Create the DataSet

Row-Level Security for Datasets Create the DataSet

"

1,

"right select": [
"Name",
"RelatedId"

}
ty
"Augment AccountShare To Territory": {
"action": "augment",
"parameters": {
"left": "Augment AccountShare To Territory Groups",
"left key": [
"UserOrGroupId.RelatedId"
1,

"relationship": "Territory",
"right": "Augment TerritoryUsers",
"right key": [

" Id"

1,

"right select": [
"TerritoryId.UserId"

I

"operation": "LookupMultiValue"
}
by
"Augment AccountShare To Account": {
"action": "augment",
"parameters": {
"left": "Extract AccountShare",
"left key": [
"AccountId"
I
"relationship": "AccountId",
"right": "Extract Account",
"right key": [
nggn

1,
"right select": [

"Name"
]
}
}y
"Register Territory GroupUsers": ({
"action": "sfdcRegister",
"parameters": {
"alias": "Register Territory GroupUsers",
"name": "Register Territory GroupUsers",
"source": "Augment AccountShare To Territory"

}

When run, this JSON file results in a list of accounts. In this example, a list of 5:

134

Row-Level Security for Datasets Create the Security Predicate

gt Greup

Count of Rows +mesue by Accountld Name +eewe = @ E

&= Filter

Count of Rows

Accountld Name
Acme

Global Media
Borta Rico Beach

Santa's Workshap

salesforce.com

Create the Security Predicate

Now we can apply a security predicate to filter the dataset.

Using this example, the following security predicate on the dataset enforces the territory management security rules.

'Territory.TerritoryId.UserId' == "$User.Id" || 'UserOrGroupId' == "S$User.Id"

@ Nofe: Update the dataset, and then log out of and back in to the org so you see the changes.

Now you see only 2 accounts - Global Media because it is in the Canada territory, and Santa’s Workshop because of the manual rule.

bar length Group

Count of Rows +wmeaswe by Accountld Name +Gew = & =
= Filter
Count of Rows

Accountld Name

Global Media

Santa's Warkshop

Salesforce Sharing Inheritance for Datasets

Use sharing inheritance to let Analytics use the same sharing rules for your datasets as Salesforce uses for your objects.

As a Salesforce administrator, you likely use sharing rules so that users have access to data appropriate to their roles. These sharing rules
include rules for Apex or custom sharing and manual, hierarchy, role, group, and team-based sharing. For more information, see Sharing
Settings.

For supported objects, administrators can enable sharing inheritance in Analytics to use the Salesforce sharing settings in Analytics.
When creating your datasets during the ELT (extract, load, and transform) process, or when editing existing datasets, specify the objects
that use sharing.

Limitations

These limitations could result in leaking information when using sharing inheritance.

135

https://help.salesforce.com/apex/HTViewHelpDoc?id=managing_the_sharing_model.htm&language=en_US#managing_the_sharing_model
https://help.salesforce.com/apex/HTViewHelpDoc?id=managing_the_sharing_model.htm&language=en_US#managing_the_sharing_model

Row-Level Security for Datasets Set Up Sharing Inheritance

e You can inherit sharing settings only from one object, regardless of how many source objects are used in creating a dataset. Because
the dataset can be constructed from many objects, each object could be using a different security model.

e The computeRelative and delta dataflow transformations could merge information from records with different security, which can
result in leaking information when using sharing inheritance.

e (alculated fields are treated as normal fields. Row-level security applied during the calculation in Salesforce is ignored.

@ Important: If your dataflow doesn't do a full extraction each time it runs, be sure to evaluate whether security drift is a risk for
the datasets you bring into Analytics. Consider whether to use periodic full sync. For more information, see Security Metadata Drift.

Here are some other limitations of the Analytics sharing inheritance feature.

e Adataset using sharing must also have a security predicate defined.

e Ifauser can see more than 3,000 records on the object in Salesforce but the user does not have the “View All Data” permission,
sharing inheritance is not used. The backup security predicate takes effect. This limitation does not apply to the Opportunity object
if the critical update “Increase Coverage of Einstein Analytics Sharing Inheritance for Opportunity” is enabled.

e Ifan opportunity has more than 150 sharing rules, you can't use the Opportunity object as a sharing source for a dataflow.

e Sharing inheritance might not be used when many sharing settings or rules control access to an opportunity, such as in the following
situations:

- Auser has membership in many public groups, each of which grants access to the opportunity.

- Auseris near (or at) the top of role or territory hierarchies in an org that has a complex role or territory configuration.

In this situation, the backup security predicate takes effect.
e Sharing isn't automatically applied to datasets. You apply sharing to each dataset manually.

e (Changes tothe rowLevelSharingSource or rowlLevelSecurityFilter security settings in a dataflow have no effect on datasets that exist.
Change those settings on the edit dataset page.

e Foran object to appear in the security-sharing source list, the primary key of the custom object must be a field in the dataset. A
foreign key doesn't satisfy this requirement. For example, if you have Opportunity. Accountld in your dataset but not Account.ld, you
can'tinherit sharing from the Account object.

@ Note: Sharing inheritance can affect the performance of queries and dataflows. If your requirements include best-possible
performance, use security predicates instead of sharing inheritance. If not, enjoy the convenience of sharing inheritance.

IN THIS SECTION:

Set Up Sharing Inheritance
To enable sharing inheritance in Analytics, specify which datasets inherit sharing rules, and set a default security predicate.

Set Up Sharing Inheritance

To enable sharing inheritance in Analytics, specify which datasets inherit sharing rules, and set a default security predicate.

@ Note: We recommend testing in a sandbox environment before rolling out sharing inheritance to production. Test your particular
use cases against your org’s security model and data to make sure that sharing inheritance works for you.

Enable or Disable Sharing Inheritance

Sharing inheritance is turned on by default in new orgs.
1. From Setup, in the Quick Find box, enter Analytics,and then click Settings.

2. Select Inherit sharing from Salesforce, and click Save.

136

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_security_datasets_sharing_drift.htm&language=en_US#bi_security_datasets_sharing_drift

Row-Level Security for Datasets Set Up Sharing Inheritance

Enable Sharing Inheritance When Using Data Sync

If your org has data sync enabled, enable sharing inheritance for each object you want to use as a sharing source.
1. In Analytics Studio, click Data Manager.

In Data Manager, click Connect.

On the right end of the row for the object you want to enable, click the dropdown list.

Click Row Level Sharing.

Click Sharing inheritance on.

Click Save.

o v &M W N

Enhance Sharing Inheritance for the Opportunity Object

Sharing inheritance does have limitations. (See “Limitations” in Salesforce Sharing Inheritance for Datasets.) You can increase availability
of sharing inheritance for the Opportunity object by enabling the critical update “Increase Coverage of Einstein Analytics Sharing
Inheritance for Opportunity”.

To get the enhanced coverage, the Opportunity object must be the sharing source for both your dataflow and your dataset.

Configure Dataflows

For each dataset that you want to inherit sharing, modify the dataflow.
1. Specify the source object and a default security predicate. For more information, see Configure the Dataflow.

2. Addthe rowLevelSharingSource parametertothe sfdcRegister node parametersforthe dataset. For more information,
see sfdcRegister. The rowLevelSharingSource parameter takes a string, which is the API name for the object from which
to inherit sharing. In this example, the parameter specifies that the Salesforce sharing rules on the Opportunity object should be

inherited.
"reg" H {
"action": "sfdcRegister",
"parameters": {
"source": "Opportunity final",
"name": "Opportunity w/ Account",
"alias": "Oppty w_Acct",
"rowLevelSharingSource": "Opportunity",
"rowLevelSecurityFilter": "'OwnerId' == \"S$User.Id\""

}
by

3. Whensetting rowLevelSharingSource,you mustalso set the security predicate (rowLevelSecurityFilter).Inthe
example, when sharing limits are exceeded, users see only the opportunities that they own. Set the security predicate to false
to block all users not covered by sharing.

Configure Datasets

On datasets that exist, changes to security settings in a dataflow have no effect. You must also change those settings on the edit dataset
page.

@ Note: If the settings in the dataset and dataflow don't match, you see a warning that says, "The sharing source and security
predicate in this dataset version must be the same as in the dataflow".

137

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_integrate_dataflow_configure.htm&language=en_US#bi_integrate_dataflow_configure
https://help.salesforce.com/articleView?id=bi_integrate_register_transformation.htm&language=en_US

Row-Level Security for Datasets Set Up Sharing Inheritance

1. Edit the dataset. For more information, see Edit a Dataset on page 102.

2. For Sharing Source, select the APl name for the object. Only valid objects are displayed in the list. For example, the primary key of
the object must be a field in the dataset.

3. For Security Predicate, enter the default security predicate. If you use sharing inheritance, you must also specify a default predicate.
Set the security predicate to false to blockall users not covered by sharing. This security predicate is the default when sharing
is enabled on existing datasets.

Security

Sharing Source

Apply Salesforce sharing settings from No sharing sou

Security Predicate

€D

138

SECURITY PREDICATE REFERENCE

Predicate Expression Syntax for Datasets

You must use valid syntax when defining the predicate expression.
The predicate expression must have the following syntax:
<dataset column> <operator> <value>

For example, you can define the following predicate expression for a dataset:
'UserId' == "$User.Id"
You can create more complex predicate expressions such as:
(‘Expected Revenue’ > 4000 || ‘Stage Name’ == "Closed Won") && ‘isDeleted’ != "False"

Consider the following requirements for the predicate expression:
e The expression is case-sensitive.
e The expression cannot exceed 1,000 characters.

e There must be at least one space between the dataset column and the operator, between the operator and the value, and before
and after logical operators. This expression is not valid: ‘Revenue’ >100. It must have spaces like this: ‘Revenue’ > 100.

If you try to apply a predicate to a dataset and the predicate is not valid, an error appears when any user tries to query the dataset.

IN THIS SECTION:

Dataset Columns in a Predicate Expression
You include at least one dataset column as part of the predicate expression.

Values in a Predicate Expression

The value in the predicate expression can be a string literal or number literal. It can also be a field value from the User object in
Salesforce.

Escape Sequences
You can use the backslash character (\) to escape characters in column names and string values in a predicate expression.

Character Set Support

Analytics supports UTF-8 characters in dataset column names and values in a predicate expression. Analytics replaces non-UTF-8
characters with the UTF-8 symbol (6). If Analytics has to replace a non-UTF-8 character in a predicate expression, users may
experience unexpected query results.

Special Characters
Certain characters have a special meaning in Analytics.

Operators
You can use comparison operators and logical operators in predicate expressions.

139

Security Predicate Reference Dataset Columns in a Predicate Expression

Dataset Columns in a Predicate Expression

You include at least one dataset column as part of the predicate expression.
Consider the following requirements for dataset columns in a predicate expression:

e Column names are case-sensitive.

e Column names must be enclosed in single quotes (). For example, 'Region' == "South"

@ Note: A set of characters in double quotes is treated as a string rather than a column name.

e Single quotes in column names must be escaped. For example, ' Team\'s Name' == "West Region Accounts"

Values in a Predicate Expression

The value in the predicate expression can be a string literal or number literal. It can also be a field value from the User object in Salesforce.

Consider the following requirements for each value type.

Value Type Requirements Predicate Expression Examples
string literal Enclose in double quotes and escape the "Owner' —— "Amber"
double quotes.
® 'Stage Name' == "Closed
Won"

number literal Can be a float or long datatype. Do not

i ® 'Expected Revenue' >=
enclose in quotes.

2000.00
® 'NetLoss' < -10000

field value When referencing a field from the User
object, use the SUser.[field] syntax. Use the
APl name for the field.

® 'Owner.Role' ==
"SUser.UserRoleId"

® 'GroupID' ==

You can specify standard or custom fields

of type string, number, or multi-value
picklist. @ Note: Supported User object field

value types are string, number, and
multi-value picklist. Other types (for
example, boolean) are not
supported.

"$User.UserGroupId c"

When you define a predicate for a dataset,
you must have read access on all User object
fields used to create the predicate
expression.

However, when a user queries a dataset that
has a predicate based on the User object,
Analytics uses the access permissions of the
Insights Security User to evaluate the
predicate expression based on the User
object.

140

Security Predicate Reference Escape Sequences

Value Type Requirements Predicate Expression Examples

@ Note: By default, the Security User
does not have access permission on
custom fields of the User object.

To grant the Security User read
access on a field, set field-level
security on the field in the user
profile of the Security User.

Escape Sequences

You can use the backslash character (\) to escape characters in column names and string values in a predicate expression.

You can use the \ escape sequence to escape a single quote in a column name. For example:
‘Team\’s Name’ == "West Region Accounts"

You can use the following escape sequences for special characters in string values.

Sequence Meaning

\b One backspace character

\n New line

\r Carriage return

\t Tab

\Z CTRL+Z (ASCII 26)

\" One double-quote character
\\ One backslash character

\0 One ASCII null character

Character Set Support

Analytics supports UTF-8 characters in dataset column names and values in a predicate expression. Analytics replaces non-UTF-8 characters

with the UTF-8 symbol (9). If Analytics has to replace a non-UTF-8 character in a predicate expression, users may experience unexpected
query results.

Special Characters

Certain characters have a special meaning in Analytics.

141

Security Predicate Reference

Character

1

Operators

You can use comparison operators and logical operators in predicate expressions.

IN THIS SECTION:

Comparison Operators

Name

Single quote

Double quote

Parentheses

Dollar sign

Period

Comparison operators return true or false.

Operators

Description

Encloses a dataset column namein a
predicate expression.

Example predicate expression:

'Expected Revenue' >=
2000.00

Encloses a string value or field value in a
predicate expression.

Example predicate expression:
'OpportunityOwner' ==
"Michael Vesti"

Enforces the order in which to evaluate a
predicate expression.

Example predicate expression:

("Expected Revenue' > 4000

|| 'Stage Name' == "Closed
Won") && 'isDeleted' !=
"False"

Identifies the Salesforce objectin a predicate
expression.

@ Note: You can only use the User
object in a predicate expression.

Example predicate expression:

'Owner.Role' ==
"SUser.UserRoleId"

Separates the object name and field name
in a predicate expression.

Example predicate expression:

'Owner' == "$User.UserId"

Security Predicate Reference Operators

Logical Operators
Logical operators return true or false.

Comparison Operators

Comparison operators return true or false.

Analytics supports the following comparison operators.

Operator Name Description

- Equals Trueif the operands are equal. String comparisons that use the equals operator are case-sensitive.

Example predicate expressions:

'Stage Name' == "Closed Won"
I= Not equals . . .
True if the operands are not equal. String comparisons that use the not equals operator are
case-sensitive.
Example predicate expression:
'isDeleted' != "False"
< Less than True if the left operand is less than the right operand.
Example predicate expression:
'Revenue' < 100
<= Less or equal True if the left operand is less than or equal to the right operand.
> Greater than True if the left operand is greater than the right operand.
>= Greater or equal True if the left operand is greater than or equal to the right operand.
in Multi-value list filter

True if the left operand exists in the list of strings substituted for a multi-value picklist (field value).
Example predicate expression:
'Demog' in ["$User.Demographic c"]

Inthisexample, Demographic cisoftype multiPicklistField.Duringevaluation,
the multi-value picklist field is substituted by a list of strings, with 1 string per user-selected item.

@ Note: Comma-separated lists are not supported within the square-bracket construct.

You can use the <, <=, >, and >= operators with measure columns only.

Logical Operators

Logical operators return true or false.

Analytics supports the following logical operators.

143

Security Predicate Reference

Operator Name
&& Logical AND
I Logical OR

Sample Predicate Expressions for Datasets

Description

True if both operands are true.
Example predicate expression:

'Stage Name' == "Closed Won" &&
isDeleted" I="False"

True if either operand is true.
Example predicate expression:

'Expected_Revenue' > 4000 || 'Stage Name'

=="Closed Won"

Sample Predicate Expressions for Datasets

Review the samples to see how to structure a predicate expression.

The samples are based on the following Opportunity dataset.

Opportunity Expected_Rev Owner OwnerRolelD Stage_Name IsDeleted
OppA 2000.00 Bill 20 Prospecting True
OppB 3000.00 Joe 22 Closed Won False
OppC 1000.00 i egpyTe 36 Closed Won False
OppD 5000.00 O'Fallon 18 Prospecting True

OppE Joe 22 Closed Won True

Let's take a look at some examples to understand how to construct a predicate expression.

Predicate Expression

'OwnerRoleID' == "$User.UserRoleId"

'Expected Rev' > 1000 && 'Expected Rev' <=
3000

'Owner' = "Joe" || 'Owner' = "Bill"

("Expected Rev' > 4000 ||
"Closed Won") &&

'Stage Name' ==
'isDeleted' != "False"

'Stage Name' == "Closed Won" &&

'Expected Rev' > 70000
'Owner' == "P“gﬁﬁﬂd

'Owner' == "O\’Fallon"

Details

Checks column values in the User object.

Parentheses specify the order of operations.

String contains Unicode characters.

Single quote in a string requires the escape character.

144

Security Predicate Reference Sample Predicate Expressions for Datasets

Predicate Expression Details

'Stage Name' == "" Checks for an empty string.

145

	Integrate Your Data in Analytics
	Get to Know Datasets
	Numeric-Value Handling in Datasets
	Date Handling in Datasets

	Einstein Analytics Connector for Excel
	Upload External Data from the User Interface
	External Data API

	Create Datasets with the Dataflow
	Design the Dataflow
	Configure the Dataflow Through the Definition File
	Start and Stop a Dataflow
	Monitor a Dataflow Job
	Schedule a Dataflow

	Dataflow Transformation Reference
	Transformations for Analytics Dataflows
	append Transformation
	append Parameters

	augment Transformation
	Special Cases for Matching Records with the augment Transformation
	augment Parameters

	computeExpression Transformation
	computeExpression Parameters

	computeRelative Transformation
	computeRelative Parameters

	delta Transformation
	delta Parameters

	dim2mea Transformation
	dim2mea Parameters

	edgemart Transformation
	edgemart Parameters

	filter Transformation
	filter Parameters
	filter Expression Syntax

	flatten Transformation
	flatten Parameters

	sfdcDigest Transformation
	Filtering Records Extracted from a Salesforce Object
	Structured Filter in sfdcDigest Transformation
	Advanced Filter in sfdcDigest Transformation

	Overriding Salesforce Field Metadata
	Unsupported Salesforce Objects and Fields in Analytics
	sfdcDigest Parameters

	sfdcRegister Transformation
	sfdcRegister Parameters

	update Transformation
	update Parameters

	Overriding Metadata Generated by a Transformation

	Load Salesforce Data with the Dataset Builder and the Dataflow
	Create a Dataset with External Data
	Create a Dataset with External Data
	Rules for Automatic Generation of a Metadata File

	Monitor an External Data Upload

	Edit a Dataset
	Delete a Dataset
	Row-Level Security for Datasets
	Security Predicates for Datasets
	Row-Level Security Example based on Record Ownership
	Determine Which Data to Include in the Dataset
	Determine Row-Level Security for Dataset
	Add the Predicate to the Metadata File
	Create the Dataset
	Test Row-Level Security for the Dataset

	Row-Level Security Example based on Opportunity Teams
	Determine Which Data to Include in the Dataset
	Design the Dataflow to Load the Data
	Determine Row-Level Security for the Dataset
	Modify the Dataflow Based on Row-Level Security
	Create the Dataset
	Test Row-Level Security for the Dataset

	Row-Level Security Example based on Role Hierarchy and Record Ownership
	Determine Which Data to Include in the Dataset
	Design the Dataflow to Load the Data
	Determine Row-Level Security for the Dataset
	Modify the Dataflow Based on Row-Level Security
	Create the Dataset
	Test Row-Level Security for the Dataset

	Row-Level Security Example Based on Territory Management
	Determine How You Use Territory Management
	Create the DataSet
	Create the Security Predicate

	Salesforce Sharing Inheritance for Datasets
	Set Up Sharing Inheritance

	Security Predicate Reference
	Predicate Expression Syntax for Datasets
	Dataset Columns in a Predicate Expression
	Values in a Predicate Expression
	Escape Sequences
	Character Set Support
	Special Characters
	Operators
	Comparison Operators
	Logical Operators

	Sample Predicate Expressions for Datasets

