
Big Objects Implementation
Guide

Version 44.0, Winter ’19

 @salesforcedocs
Last updated: January 15, 2019

https://twitter.com/salesforcedocs

© Copyright 2000–2018 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Big Objects . 1

Big Objects Best Practices . 3
Define and Deploy Custom Big Objects . 4
Populate a Custom Big Object . 10

Populate a Custom Big Object with Apex . 10
Delete Data in a Custom Big Object . 11
Big Objects Queueable Example . 12
SOQL with Big Objects . 14

Chapter 2: Async SOQL . 16

Running Async SOQL Queries . 19
Async SOQL Use Cases . 24
Supported SOQL Commands . 29

Index . 32

CHAPTER 1 Big Objects

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions for
up to 1 million records

Additional record capacity
and Async SOQL query is
available as an add-on
license.

Big objects store and manage massive amounts of data on the
Salesforce platform.

Big objects capture data for use within Lightning Platform and are
accessible via a standard set of APIs to clients and external systems.
What differentiates big objects is that they are built to provide
consistent performance whether there are 1 million records, 100
million, or even 1 billion. This scale is what gives big objects their
power and what defines the features that are provided.

There are two types of big objects.

In this chapter ...

• Big Objects Best
Practices

• Define and Deploy
Custom Big Objects

• Populate a Custom
Big Object

• Delete Data in a
Custom Big Object

• Standard big objects—Objects defined by Salesforce and
included in Salesforce products. FieldHistoryArchive
is a standard big object that stores data as part of the Field
Audit Trail product. Standard big objects are available out of
the box and cannot be customized.

• Big Objects
Queueable Example

• SOQL with Big
Objects

• Custom big objects—New objects that you create to store
information unique to your org. Custom big objects extend the functionality that Lightning Platform
provides. For example, if you’re building an app to track product inventory, create a custom big
object called HistoricalInventoryLevels to track historical inventory levels for analysis
and future optimizations. This implementation guide is for configuring and deploying custom big
objects.

Custom Big Object Use Cases

• 360° view of the customer—Extend your Salesforce data model to include detailed information
from loyalty programs, feeds, clicks, billing and provisioning information, and more.

• Auditing and tracking—Track and maintain a long-term view of Salesforce or product usage for
analysis or compliance purposes.

• Historical archive—Maintain access to historical data for analysis or compliance purposes while
optimizing the performance of your core CRM or Lightning Platform applications.

Differences Between Big Objects and Other Objects

Because a big object can store data on an unlimited scale, it has different characteristics than other
objects, like sObjects. Big objects are also stored in a different part of the Lightning Platform.

sObjectsBig Objects

Relational databaseHorizontally scalable distributed database

Transactional databaseNon-transactional database

1

sObjectsBig Objects

Millions of recordsHundreds of millions or even billions of records

These big object behaviors ensure a consistent and scalable experience.

• Big objects support only object and field permissions, not regular or standard sharing rules.

• Features like triggers, flows, processes, and the Salesforce app are not supported on big objects.

• When you insert an identical big object record with the same representation multiple times, only a
single record is created so that writes can be idempotent. This behavior is different from an sObject,
which creates a record for each request to create an object.

SEE ALSO:

Release Notes: Field History Tracking Data Deleted After 18 Months

2

Big Objects

https://releasenotes.docs.salesforce.com/en-us/winter18/release-notes/rn_pds_field_history_tracking_deletion.htm

Big Objects Best Practices

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions for
up to 1 million records

Additional record capacity
and Async SOQL query is
available as an add-on
license.

A big object is unique because of its ability to scale for massive amounts of data.

Considerations When Using Big Objects
• You must use Metadata API to define a big object or add a field to a custom big object.

Note: To deploy custom big objects through the Setup user interface, you can install a
custom Lightning component. See Custom Big Object Creator for details.

Important: The Custom Big Object Creator is a custom Lightning component available
from Salesforce Labs. Salesforce Labs can modify or terminate access to this component
at any time. As a result, Salesforce can't guarantee future availability of the Custom Big
Object Creator or any of its functionality.

• Big objects support custom Lightning and Visualforce components rather than standard UI
elements home pages, detail pages, list views, and so on.

• You can create up to 100 big objects per org. The limits for big object fields are similar to the
limits on custom objects and depend on your org’s license type.

• You can’t use Salesforce Connect external objects to access big objects in another org.

Design with Resiliency in Mind
The big objects database stores billions of records and is a distributed system that favors consistency over availability. The database is
designed to ensure row-level consistency.

When working with big data and writing batches of records using APIs or Apex, you can experience a partial batch failure while some
records are written and others aren’t. Because the database is highly responsive and consistent at scale, this type of behavior is expected.
In these cases, simply retry until all records are written.

Keep these principles in mind when working with big objects.

• The best practice when writing to a big object is to have a retry mechanism in place. Retry the batch until you get a successful result
from the API or Apex method.

Tip: To add logging to a custom object and surface errors to users, use the addError() method. See An Introduction to
Exception Handling.

Tip: To verify that all records are saved, check the Database.SaveResult class. See SaveResult Class Reference.

• Don’t try to figure out which records succeeded and which failed. Retry the entire batch.

• Big objects don’t support transactions. If attempting to read or write to a big object using a trigger, process, or flow on a sObject,
use asynchronous Apex. Asynchronous Apex has features like the Queueable interface that isolates DML operations on different
sObject types to prevent the mixed DML error.

• Because your client code must retry, use asynchronous Apex to write to a big object. By writing asynchronously, you are better
equipped to handle database lifecycle events.

3

Big Objects Best PracticesBig Objects

http://www.sfdc.co/BigObjectCreator
https://developer.salesforce.com/page/An_Introduction_to_Exception_Handling
https://developer.salesforce.com/page/An_Introduction_to_Exception_Handling

Define and Deploy Custom Big Objects

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions for
up to 1 million records

Additional record capacity
and Async SOQL query
available as an add-on
license.

You can define custom big objects with Metadata API. After you define and deploy a custom big
object, you can view it in the Setup UI.

Define a Custom Big Object
Define a custom big object through the Metadata API by creating XML files that contain its definition,
fields, and index.

• object files—Create a file for each object to define the custom big object, its fields, and its
index.

• permissionset/profile files—Create a permissionSet or profile file to specify
permissions for each field. These files are not required, but is required to grant access to users.
By default, access to a custom big object is restricted.

• package file—Create a file for the metadata package to specify the contents.

Note: While custom big objects use the “CustomObject” metadata type, some parameters
are unique to big objects and others are not applicable. The specific metadata parameters
that apply to big objects are outlined in this document.

Naming Conventions for Custom Big Objects
Object names must be unique across all standard objects, custom objects, external objects, and big objects in the org. In the API, the
names of custom big objects have a suffix of two underscores immediately followed by a lowercase “b” (__b). For example, an external
object named “HistoricalInventoryLevels” is seen as HistoricalInventoryLevels__b in that organization's WSDL. We recommend that you
make object labels unique across all objects in the org - standard, custom, external and big objects.

CustomObject Metadata

DescriptionField TypeField Name

Custom big object’s deployment status (Deployed for all big objects)DeploymentStatus
(enumeration of type string)

deploymentStatus

Definition of a field in the objectCustomField[]fields

Unique API name of a fieldstringfullName

Definition of the indexIndex[]indexes

Object’s name as displayed in the UIstringlabel

Field plural name as displayed in the UIstringpluralLabel

4

Define and Deploy Custom Big ObjectsBig Objects

https://developer.salesforce.com/docs/atlas.en-us.216.0.api_meta.meta/api_meta/meta_field_types.htm#meta_type_deploy_stat_type
https://developer.salesforce.com/docs/atlas.en-us.216.0.api_meta.meta/api_meta/meta_objects_intro.htm#enumeration_title
https://developer.salesforce.com/docs/atlas.en-us.216.0.api_meta.meta/api_meta/customfield.htm

CustomField Metadata

DescriptionField TypeField Name

Unique API name of a field.stringfullName

Field name as displayed in the UI.stringlabel

Length of a field in characters (Text and LongTextArea fields only).intlength

Field plural name as displayed in the UI.stringpluralLabel

Number of digits for a number value. For example, the number 256.99 has
a precision of 5 (number fields only).

intprecision

Related object type for a lookup field (lookup fields only).stringreferenceTo

Name of a relationship as displayed in the UI (lookup fields only).stringrelationshipName

Specifies whether the field is required. All fields that are part of the index
must be marked as required.

booleanrequired

Number of digits to the right of the decimal point for a number value. For
example, the number 256.99 has a scale of 2 (number fields only).

intscale

Field type. Supports DateTime, Lookup, Number, Text, and LongTextArea.FieldTypetype

Note: Uniqueness is not supported for custom fields.

Index Metadata
Represents an index defined within a custom big object. Use this metadata type to define the composite primary key (index) for a custom
big object.

DescriptionField TypeField Name

The definition of the fields in the index.IndexField[]fields

IndexField Metadata
Defines which fields make up the index, their order, and sort direction. The order in which the fields are defined determines the order
fields are listed in the index.

DescriptionField TypeField Name

Required. The API name for the field that’s part of the index. This value must
match the value of the fullName value for the field in the fields section and
be marked as required.

stringname

Required. The sort direction of the field in the index. Valid values are ASC for
ascending order and DESC for descending order.

stringsortDirection

5

Define and Deploy Custom Big ObjectsBig Objects

https://developer.salesforce.com/docs/atlas.en-us.216.0.api_meta.meta/api_meta/meta_field_types.htm#meta_type_fieldtype

Example: Create Metadata Files for Deployment

The following XML excerpts create metadata files that you can deploy as a package. Each Customer Interaction object represents
customer data from a single session in an online video game. The Account__c, Game_Platform__c, and Play_Date__c
fields define the index, and a lookup field relates the Customer Interactions to the Account object.

Customer_Interaction__b.object

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">

<deploymentStatus>Deployed</deploymentStatus>

<fields>
<fullName>In_Game_Purchase__c</fullName>
<label>In-Game Purchase</label>
<length>16</length>
<required>false</required>
<type>Text</type>
<unique>false</unique>

</fields>

<fields>
<fullName>Level_Achieved__c</fullName>
<label>Level Achieved</label>
<length>16</length>
<required>false</required>
<type>Text</type>
<unique>false</unique>

</fields>

<fields>
<fullName>Lives_This_Game__c</fullName>
<label>Lives Used This Game</label>
<length>16</length>
<required>false</required>
<type>Text</type>
<unique>false</unique>

</fields>

<fields>
<fullName>Game_Platform__c</fullName>
<label>Platform</label>
<length>16</length>
<required>true</required>
<type>Text</type>
<unique>false</unique>

</fields>

<fields>
<fullName>Score_This_Game__c</fullName>
<label>Score This Game</label>
<length>16</length>
<required>false</required>
<type>Text</type>
<unique>false</unique>

6

Define and Deploy Custom Big ObjectsBig Objects

</fields>

<fields>
<fullName>Account__c</fullName>
<label>User Account</label>
<referenceTo>Account</referenceTo>
<relationshipName>Game_User_Account</relationshipName>
<required>true</required>
<type>Lookup</type>

</fields>

<fields>
<fullName>Play_Date__c</fullName>
<label>Date of Play</label>
<required>true</required>
<type>DateTime</type>

</fields>

<fields>
<fullName>Play_Duration__c</fullName>
<label>Play Duration</label>
<required>false</required>
<type>Number</type>
<scale>2</scale>
<precision>18</precision>

</fields>

<indexes>
<fullName>CustomerInteractionsIndex</fullName>
<label>Customer Interactions Index</label>
<fields>

<name>Account__c</name>
<sortDirection>DESC</sortDirection>

</fields>
<fields>

<name>Game_Platform__c</name>
<sortDirection>ASC</sortDirection>

</fields>
<fields>
<name>Play_Date__c</name>
<sortDirection>DESC</sortDirection>
</fields>

</indexes>

<label>Customer Interaction</label>
<pluralLabel>Customer Interactions</pluralLabel>

</CustomObject>

package.xml

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>*</members>
<name>CustomObject</name>

7

Define and Deploy Custom Big ObjectsBig Objects

</types>
<types>

<members>*</members>
<name>PermissionSet</name>

</types>
<version>41.0</version>

</Package>

Customer_Interaction_BigObject.permissionset

<?xml version="1.0" encoding="UTF-8"?>
<PermissionSet xmlns="http://soap.sforce.com/2006/04/metadata">

<label>Customer Interaction Permission Set</label>

<fieldPermissions>
<editable>true</editable>
<field>Customer_Interaction__b.In_Game_Purchase__c</field>
<readable>true</readable>

</fieldPermissions>

<fieldPermissions>
<editable>true</editable>
<field>Customer_Interaction__b.Level_Achieved__c</field>
<readable>true</readable>

</fieldPermissions>

<fieldPermissions>
<editable>true</editable>
<field>Customer_Interaction__b.Lives_This_Game__c</field>
<readable>true</readable>

</fieldPermissions>

<fieldPermissions>
<editable>true</editable>
<field>Customer_Interaction__b.Play_Duration__c</field>
<readable>true</readable>

</fieldPermissions>

<fieldPermissions>
<editable>true</editable>
<field>Customer_Interaction__b.Score_This_Game__c</field>
<readable>true</readable>

</fieldPermissions>

</PermissionSet>

Deploy Custom Big Objects as a Metadata Package
Use the Metadata API to deploy a custom big object. You can use several different tools, like Workbench or the Ant Migration Tool, to
deploy. When building a package to deploy a custom big object, make sure the object file is in a folder called “objects” and the

8

Define and Deploy Custom Big ObjectsBig Objects

https://workbench.developerforce.com/login.php
https://developer.salesforce.com/docs/atlas.en-us.216.0.daas.meta/daas/meta_development.htm

permissionset file is in a folder called “permissionsets”. package.xml must be in the root directory, and not in a folder within
the package.

Note: You can run a test deployment by using the checkOnly deployment option. In Workbench, select the Check Only
option on the Deploy screen.

View a Custom Big Object in Setup
After you’ve deployed your custom big object, you can view it by logging in to your organization and, from Setup, entering Big
Objects in the Quick Find box, then selecting Big Objects.

Click the name of a big object, to see its fields and relationships.

9

Define and Deploy Custom Big ObjectsBig Objects

Populate a Custom Big Object

Use Salesforce APIs to populate a custom big object.

You can use a CSV file to load data into a custom big object via SOAP API Bulk API. The first row in the CSV file must contain the field
labels used to map the CSV data to the fields in the custom big object during import.

Re-inserting a record with the same index but different data results in behavior similar to an upsert operation. If a record with the index
exists, the insert overwrites the index values with the new data. Insertion is idempotent, so inserting data that already exists won't result
in duplicates. Reinserting is helpful when uploading millions of records. If an error occurs, the reinsert reuploads the failed uploads
without duplicate data. During the reinsertion, if no record exists for the provided index, a new record is inserted.

For example, this CSV file contains data for import into a Customer Interaction big object.

Play Start,In-Game Purchase,Level Achieved,Lives Used,Platform,Play Stop,Score,Account
2015-01-01T23:01:01Z,A12569,57,7,PC,2015-01-02T02:27:01Z,55736,001R000000302D3
2015-01-03T13:22:01Z,B78945,58,7,PC,2015-01-03T15:47:01Z,61209,001R000000302D3
2015-01-04T15:16:01Z,D12156,43,5,iOS,2015-01-04T16:55:01Z,36148,001R000000302D3

Populate a Custom Big Object with Apex
Use Apex to populate a custom big object.

You can create and update custom big object records in Apex using the insertImmediate method.

Warning: Apex tests that use mixed DML calls are not allowed and fail. If you write only to the Big Object, the test inserts bad
data into the target big object that you have to delete manually. To contain test DML calls to the target big object, use a mocking
framework with the batch Apex stub API instead.

Reinserting a record with the same index but different data results in behavior similar to an upsert operation. If a record with the index
exists, the insert overwrites the index values with the new data. Insertion is idempotent, so inserting data that exists doesn’t result in

10

Populate a Custom Big ObjectBig Objects

duplicates. Reinserting is helpful when uploading millions of records. If an error occurs, the reinsertion reuploads the failed uploads
without duplicate data. During the reinsertion, if no record exists for the provided index, a new record is inserted.

Here is an example of an insert operation in Apex that assumes a table in which the index consists of FirstName__c, LastName__c,
and Address__c.

// Define the record.
PhoneBook__b pb = new PhoneBook__b();
pb.FirstName__c = 'John';
pb.LastName__c = 'Smith';
pb.Address__c = '1 Market St';
pb.PhoneNumber__c = '555-1212';
database.insertImmediate(pb);
// A single record will be created in the big object.

// Define the record with the same index values but different phone number.
PhoneBook__b pb = new PhoneBook__b();
pb.FirstName__c = 'John';
pb.LastName__c = 'Smith';
pb.Address__c = '1 Market St';
pb.PhoneNumber__c = '415-555-1212';
database.insertImmediate(pb);
// The existing records will be "re-inserted". Only a single record will remain in the big
object.

// Define the record with the different index values and different phone number
PhoneBook__b pb = new PhoneBook__b();
pb.FirstName__c = 'John';
pb.LastName__c = 'Smith';
pb.Address__c = 'Salesforce Tower';
pb.PhoneNumber__c = '415-555-1212';
database.insertImmediate(pb);
// A new record will be created leaving two records in the big object.

Delete Data in a Custom Big Object

Use Apex or SOAP to delete data in a custom big object.

The Apex method deleteImmediate() deletes data in a custom big object. Declare an sObject that contains all the fields in the
custom big object’s index. The sObject acts like a template. All rows that match the sObject’s fields and values are deleted. You can
specify only fields that are part of the big object’s index. You must specify all fields in the index. You can’t include a partially specified
index or non-indexed field, and wildcards aren’t supported.

In this example, Account__c, Game_Platform__c, and Play_Date__c are part of the custom big object’s index. When
specifying specific values after the WHERE clause, fields must be listed in the order they appear in the index, without any gaps.

// Declare sObject using the index of the custom big object -->
List<Customer_Interaction__b> cBO = new List<Customer_Interaction__b>();
cBO.addAll([SELECT Account__c, Game_Platform__c, Play_Date__c FROM Customer_Interaction__b
WHERE Account__c = '001d000000Ky3xIAB']);

Database.deleteImmediate(cBO);

To use the SOAP call deleteByExample(), declare an sObject that contains the fields and values to delete. The sObject acts like
a template. All rows that match the sObject’s fields and values are deleted. You can only specify fields that are part of the big object’s

11

Delete Data in a Custom Big ObjectBig Objects

index. All fields in the index must be specified. You can’t include a partially specified index or non-indexed field, and wildcards aren’t
supported. This example deletes all rows in which Account__c is 001d000000Ky3xIAB, Game_Platform__c is iOS, and
Play_Date__c is 2017-11-28T19:13:36.000z.

Java example code:

public static void main(String[] args) {
try{

Customer_Interaction__b[] sObjectsToDelete = new Customer_Interaction__b[1];
//Declare an sObject that has the values to delete
Customer_Interaction__b customerBO = new Customer_Interaction__b();
customerBO.setAccount__c (“001d000000Ky3xIAB”);
customerBO.setGame_Platform__c (“iOS”);
Calendar dt = new GregorianCalendar(2017, 11, 28, 19, 13, 36);
customerBO.setPlay_Date__c(dt);
sObjectsToDelete[0] = customerBO;
DeleteByExampleResult[] result = connection.deleteByExample(sObjectsToDelete);

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Note: Repeating a successful deleteByExample() operation produces a success result, even if the rows have already been
deleted.

Big Objects Queueable Example

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions for
up to 1 million records

Additional record capacity
and Async SOQL query
available as an add-on
license.

To read or write to a big object using a trigger, process, or flow from a sObject, use asynchronous
Apex. This example uses the asynchronous Apex Queueable interface to isolate DML operations
on different sObject types to prevent the mixed DML error.

Example: This trigger occurs when a case record is inserted. It calls a method to insert a
batch of big object records and demonstrates a partial failure case in which some records
succeed and some fail. To create metadata files for the Customer_Interaction__b
object in this example, use the XML excerpts in the Create Metadata Files for Deployment on
page 6 example.

Tip: To add logging to a custom object and surface errors to users, use the
addError() method. See An Introduction to Exception Handling.

// CaseTrigger.apxt

trigger CaseTrigger on Case (before insert) {
if (Trigger.operationType ==

TriggerOperation.BEFORE_INSERT){
// Customer_Interaction__b has three required fields

in its row key, in this order:
// 1) Account__c - lookup to Account
// 2) Game_Platform__c - Text(18)
// 3) Play_Date__c - Date/Time
List<Customer_Interaction__b> interactions = new

List<Customer_Interaction__b>();

12

Big Objects Queueable ExampleBig Objects

https://developer.salesforce.com/page/An_Introduction_to_Exception_Handling

// Assemble the list of big object records to be inserted
for (Case c : Trigger.new) {

Customer_Interaction__b ci = new Customer_Interaction__b(
Account__c = c.AccountId,
// In this example, the Case object has a custom field, also named

Game_Platform__c
Game_Platform__c = c.Game_Platform__c,
Play_Date__c = Date.today()

);
interactions.add(ci);

}

// CustomerInteractionHandler is an asynchronous queuable Apex class
CustomerInteractionHandler handler = new

CustomerInteractionHandler(interactions);
System.enqueueJob(handler);

}
}

The trigger uses the Queueable Apex interface to asynchronously call a method to insert into a big object.

// CustomerInteractionHandler.apxc

public class CustomerInteractionHandler implements Queueable {

private List<Customer_Interaction__b> interactions;

public CustomerInteractionHandler(List<Customer_Interaction__b> interactions) {
this.interactions = interactions;

}

/*
* Here we insert the Customer Interaction big object records,
* or log an error if insertion fails.
*/
public void execute(QueueableContext context){

List<ExceptionStorage__c> errors = new List<ExceptionStorage__c>();

try {
// We have to use insertImmediate() to insert big object records.
List<Database.SaveResult> srList = Database.insertImmediate(interactions);

// Check the save results from the bulk insert
for (Database.SaveResult sr: srList) {

if (sr.isSuccess()) {
System.debug('Successfully inserted Customer Interaction.');

} else {
for (Database.Error err : sr.getErrors()) {
// Display an error message if the insert failed
System.debug(err.getStatusCode() + ': ' + err.getMessage() +

'; ' +
'Error fields: ' + err.getFields());

13

Big Objects Queueable ExampleBig Objects

// Write to a custom object, such as ExceptionStorage__c
// for a more durable record of the failure
ExceptionStorage__c es = new ExceptionStorage__c(

name = 'Error',
ExceptionMessage__c = (err.getMessage()).abbreviate(255),

ExceptionType__c = String.valueOf(err.getStatusCode()),

ExceptionFields__c =
(String.valueOf(err.getFields())).abbreviate(255)

);
errors.add(es);

}
}

}
}
catch (Exception e) {

// Exception occurred, output the exception message
System.debug('Exception: ' + e.getTypeName() + ', ' + e.getMessage());

// Write any errors to a custom object as well
ExceptionStorage__c es = new ExceptionStorage__c(

name = 'Exception',
ExceptionMessage__c = e.getMessage(),
ExceptionType__c = e.getTypeName()

);
errors.add(es);

}

// If any errors occurred, save the ExceptionStorage records
if (errors.size() > 0) {

insert errors;
}

}
}

SOQL with Big Objects

You can query the fields in a big object’s index using a subset of standard SOQL commands.

Build an index query starting from the first field defined in the index, without gaps between the first and last field in the query. You can
use =, <, >, <=, or >=, or IN on the last field in your query. Any prior fields in your query can only use the = operator. The !=, LIKE,
NOT IN, EXCLUDES, and INCLUDES operators are not valid in any query.

You can include the system fields CreatedById, CreatedDate, and SystemModstamp in queries. To retrieve a list of results,
do not use the Id field in a query. Including Id in a query returns only results that have an empty ID (000000000000000 or
000000000000000AAA).

Note: When you use Developer Console to generate a query from a resource, the Id field is included automatically. To query
big objects in Developer Console, remove Id from the generated query.

14

SOQL with Big ObjectsBig Objects

The following queries assume that you have a table in which the index is defined by LastName__c, FirstName__c, and
PhoneNumber__c.

This query specifies all three fields in the index. In this case, the filter on PhoneNumber__c can be a range.

SELECT LastName__c, FirstName__c, PhoneNumber__c
FROM Phone_Book__b
WHERE LastName__c='Kelly' AND FirstName__c='Charlie' AND PhoneNumber__c='2155555555'

This query specifies only the first two fields in the index. In this case, the filter on FirstName__c can be a range.

SELECT LastName__c, FirstName__c, PhoneNumber__c
FROM Phone_Book__b
WHERE LastName__c='Kelly' AND FirstName__c='Charlie'

This query specifies only the first field in the index. The filter on LastName__c can be a range.

SELECT LastName__c, FirstName__c, PhoneNumber__c
FROM Phone_Book__b
WHERE LastName__c='Kelly'

This query doesn’t work because of a gap in the query where FirstName__c is required.

SELECT LastName__c, FirstName__c, PhoneNumber__c
FROM Phone_Book__b
WHERE LastName__c='Kelly' AND PhoneNumber__c='2155555555'

Note: These restrictions do not apply to Async SOQL queries against big objects.

15

SOQL with Big ObjectsBig Objects

CHAPTER 2 Async SOQL

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions for
up to 1 million records

Extra record capacity and
Async SOQL query available
as an add-on license.

Async SOQL is a method for running SOQL queries when you can’t
wait for immediate results. These queries are run in the background
over Salesforce big object data. Async SOQL provides a convenient
way to query large amounts of data stored in Salesforce.

Async SOQL is implemented as a RESTful API that enables you to
run queries in the familiar syntax of SOQL. Because of its
asynchronous operation, you can subset, join, and create more
complex queries and not be subject to timeout limits. This situation
is ideal when you have millions or billions of records and need more
performant processing than is possible using synchronous SOQL.
The results of each query are deposited into an object you specify,
which can be a standard object, custom object, or big object.

The limit for Async SOQL queries is one concurrent query at a time.

Async SOQL Versus SOQL

SOQL and Async SOQL provide many of the same capabilities. So when would you use an Async SOQL
query instead of standard SOQL?

In this chapter ...

• Running Async SOQL
Queries

• Async SOQL Use
Cases

• Supported SOQL
Commands

Use standard SOQL when:

• You want to display the results in the UI without having the user wait for results.

• You want results returned immediately for manipulation within a block of Apex code.

• You know that the query returns a small amount of data.

Use Async SOQL when:

• You are querying against millions of records.

• You want to ensure that your query completes.

• You do not need to do aggregate queries or filtering outside of the index.

Use Case: Create a Working Dataset with Filtering

16

For example, let’s say that you want to analyze the years and years of opportunity history collected by
Salesforce. The results could help you identify which current and future opportunities are more likely to
close and give you a better picture of your forecast. But because the opportunity history data is stored
with all the field history data across the application, the volume of data is too large to query directly.
That’s where Async SOQL comes in! You can use it to write a query that extracts a smaller, representative
subset of the data that you’re interested. You can store this working dataset in a custom object and use
it in reports, dashboards, or any other Lightning Platform feature.

Use Case: Create a Working Dataset with Coarse
Aggregations

17

Async SOQL

With big objects, you can now bring a much finer level of detail into your applications using data that
you already have. For example, every interaction an individual has with your marketing campaign is
stored as data that you can use, but it’s unwieldy in its raw form. Async SOQL allows you to aggregate
that data by campaign and day and to extract the relevant details of the full dataset into a smaller, usable
dataset. As in the previous example, the smaller working set can live in a custom object and be used in
your reports and dashboards.

18

Async SOQL

Running Async SOQL Queries

Learn how to run Async SOQL queries on your objects and check on the status of your query using the Chatter REST API.

Formulating Your Async SOQL Query
To use Async SOQL effectively, it’s helpful to understand its key component and other related concepts. Each query is formulated in the
POST request as a JSON-encoded list of three or four key-value pairs.

Request body for POST

Available
Version

Required or
Optional

DescriptionTypeName

35.0RequiredSpecifies the parameters for the SOQL query you
want to execute.

Stringquery

39.0OptionalSpecify whether the query is an insert or upsert. If
the record doesn’t exist, an upsert behaves like an
insert.

Stringoperation

Note: Upsert is not supported for big
objects

35.0RequiredA standard object, custom object, external object,
or big object into which to insert the results of the
query.

StringtargetObject

35.0RequiredDefines how to map the fields in the query result
to the fields in the target object.

Map<String,
String>

targetFieldMap

Note: When defining the
targetFieldMap parameter, make
sure that the field type mappings are
consistent. If the source and target fields
don’t match, these considerations apply.

• Any source field can be mapped onto a
target text field.

• If the source and target fields are both
numerical, the target field must have
the same or greater number of decimal
places than the source field. If not, the
request fails. This behavior is to ensure
that no data is lost in the conversion.

• If a field in the query result is mapped
more than once, even if mapped to
different fields in the target object, only
the last mapping is used.

19

Running Async SOQL QueriesAsync SOQL

Available
Version

Required or
Optional

DescriptionTypeName

37.0OptionalDefines how to map static strings to fields in the
target object. Any field or alias can be used as the

Map<String,
String>

targetValueMap

TargetValueMap value in the SELECT clause
of a query.

You can map the special value, $JOB_ID, to a field
in the target object. The target field must be a
lookup to the Background Operation standard
object. In this case, the ID of the Background
Operation object representing the Async SOQL
query is inserted. If the target field is a text field, it
must be at least 15–18 characters long.

You can also include any field or alias in the SELECT
clause of the TargetValueMap. They can be
combined together to concatenate a value to be
used.

39.0OptionalThe ID of the target sObject. Required for upsert
operations.

StringtargetExternalIdField

This simple Async SOQL example queries SourceObject__c, a source custom object, and directs the result to TargetObject__c,
another custom object. You can easily map the fields in the source object to the fields of the target object in which you want to write
the results.

Example URI

https://yourInstance.salesforce.com/services/data/v38.0/async-queries/

Example POST request body

{
"query": "SELECT firstField__c, secondField__c FROM SourceObject__c",

"operation": "insert",

"targetObject": "TargetObject__c",

"targetFieldMap": {"firstField__c":"firstFieldTarget__c",
"secondField__c":"secondFieldTarget__c"
},

"targetValueMap": {"$JOB_ID":"BackgroundOperationLookup__c",
"Copy fields from source to

target":"BackgroundOperationDescription__c"
}

}

The response of an Async SOQL query includes the elements of the initial POST request.

Response body for POST

20

Running Async SOQL QueriesAsync SOQL

Available VersionFilter Group and
Version

DescriptionTypeProperty Name

35.0Big, 35.0The ID of the Async SOQL query. This ID
corresponds to an entry in the Background

StringjobId

Operation standard object. It matches the
ID that is used in the targetValueMap
when $JOB_ID is used. To get the status of
an async query job, use this ID in an Async
Query, Status request
(/async-queries/jobId).

37.0Big, 37.0A text message that provides information
regarding the query, such as an error
message if the query failed.

Stringmessage

.39.0Big, 39.0Specify whether the query is an insert or
upsert. If the record doesn’t exist, an upsert
behaves like an insert.

Stringoperation

Note: Upsert is not supported for
big objects

35.0Big, 35.0Specifies the parameters for the SOQL query
you want to execute.

Stringquery

35.0Big, 35.0Status of an async query job.Stringstatus

• Canceled—The job was canceled
before it could be run.

• Complete—The job was successfully
completed.

• Failed—The job failed after the
system submitted it or because the
request exceeded the Async SOQL
limits. The message field provides
details on the reason for failure.

• Running—The job is running
successfully, and the org hasn’t
exceeded any limits.

• Scheduled—The new job has been
created and scheduled, but is not yet
running.

• New—The job has been created but is
not yet scheduled.

39.0Big, 39.0The ID of the target sObject. Required for
upsert operations.

StringtargetExternalIdField

21

Running Async SOQL QueriesAsync SOQL

Available VersionFilter Group and
Version

DescriptionTypeProperty Name

35.0Big, 35.0Defines how to map the fields in the query
result to the fields in the target object.

Map<String, String>targetFieldMap

Note: When defining the
targetFieldMap parameter,
make sure that the field type
mappings are consistent. If the
source and target fields don’t match,
these considerations apply.

• Any source field can be mapped
onto a target text field.

• If the source and target fields are
both numerical, the target field
must have the same or greater
number of decimal places than
the source field. If not, the
request fails. This behavior is to
ensure that no data is lost in the
conversion.

• If a field in the query result is
mapped more than once, even
if mapped to different fields in
the target object, only the last
mapping is used.

37.0Big, 37.0Defines how to map static strings to fields
in the target object. Any field or alias can be

Map<String, String>targetValueMap

used as the TargetValueMap value in
the SELECT clause of a query.

You can map the special value, $JOB_ID, to
a field in the target object. The target field
must be a lookup to the Background
Operation standard object. In this case, the
ID of the Background Operation object
representing the Async SOQL query is
inserted. If the target field is a text field, it
must be at least 15–18 characters long.

You can also include any field or alias in the
SELECT clause of the TargetValueMap.
They can be combined together to
concatenate a value to be used.

35.0Big, 35.0A standard object, custom object, external
object, or big object into which to insert the
results of the query.

StringtargetObject

22

Running Async SOQL QueriesAsync SOQL

Example POST response body

{
"jobId": "08PD000000003kiT",

"message": "",

"query": "SELECT firstField__c, secondField__c FROM SourceObject__c",

"status": "New",

"targetObject": "TargetObject__c",

"targetFieldMap": {"firstField__c":"firstFieldTarget__c",
"secondField__c":"secondFieldTarget__c"
},

"targetValueMap": {"$JOB_ID":"BackgroundOperationLookup__c",
"Copy fields from source to

target":"BackgroundOperationDescription__c"
}

}

Tracking the Status of Your Query
To track the status of a query, specify its jobID with an HTTP GET request.

https://yourInstance.salesforce.com/services/data/v38.0/async-queries/<jobID>

The response is similar to the initial POST response but with updated status and message fields to reflect the status.

Example GET response body

{
"jobId": "08PD000000000001",
"message": "",
"query": "SELECT firstField__c, secondField__c FROM SourceObject__c",
"status": "Complete",
"targetObject": "TargetObject__c",
"targetFieldMap": {"firstField__c":"firstFieldTarget__c",
"secondField__c":"secondFieldTarget__c" }
}

You can get status information for all queries with the following HTTP GET request.

https://yourInstance.salesforce.com/services/data/v38.0/async-queries/

Example GET response body

{
"asyncQueries" : [{
"jobId" : "08PD00000000002",
"message" : "",
"query" : "SELECT String__c FROM test__b",
"status" : "Running",

23

Running Async SOQL QueriesAsync SOQL

"targetFieldMap" : {
"String__c" : "String__c"
},
"targetObject" : "test__b",
"targetValueMap" : { }
}, {
"jobId": "08PD000000000001",
"message": "Complete",
"query": "SELECT firstField__c, secondField__c FROM SourceObject__c",
"status": "Complete",
"targetObject": "TargetObject__c",
"targetFieldMap": {"firstField__c":"firstFieldTarget__c",
"secondField__c":"secondFieldTarget__c" }
}
}

Canceling a Query
You can cancel a query using an HTTP DELETE request by specifying its jobId.

https://yourInstance.salesforce.com/services/data/v38.0/async-queries/jobId

Note: Canceling a query that has already completed has no effect.

Handling Errors in Async SOQL Queries
Two different types of errors can occur during the execution of an Async SOQL query.

• An error in the query execution

• One or more errors writing the results into the target object

Problems in executing the job cause some errors. For example, an invalid query was submitted, one of the Async SOQL limits was
exceeded, or the query caused a problem with the underlying infrastructure. For these errors, the response body includes a status of
Failed. The message parameter provides more information on the cause of the failure.

Other times, the query executes successfully but encounters an error while attempting to write the results to the target object. Because
of the volume of data involved, capturing every error is inefficient. Instead, subsets of the errors generated are captured and made
available. Those errors are captured in the BackgroundOperationResult object and retained for seven days. You can query this object
with the Async SOQL query jobID to filter the errors for the specific Async SOQL query. Async SOQL job info is retained for a year.

Async SOQL Use Cases

Understand some of the common Async SOQL use cases.

Customer 360 Degree and Filtering
In this use case, administrators load various customer engagement data from external sources into Salesforce big objects and then
process the data to enrich customer profiles in Salesforce. The goal is to store customer transactions and interactions, such as point-of-sale
data, orders, and line items in big objects and then process and correlate that data with your core CRM data. Anchoring customer

24

Async SOQL Use CasesAsync SOQL

transactions and interactions with core master data provides a richer 360-degree view that translates into an enhanced customer
experience.

The following example analyzes the customer data stored in the Rider record of a car-sharing service. The source big object, Rider_Record_b,
has a lookup relationship with the Contact object, allowing for an enriched view of the contact’s riding history. You can see that the
query includes Rider__r.FirstName, Rider__r.LastName, Rider__r.Email as part of the SELECT clause. This example demonstrates the
ability to join big object data (Rider_Record__b) with Contact data (FirstName, LastName, Email) in a single Async SOQL query.

Example URI

https://yourInstance—api.salesforce.com/services/data/v38.0/async-queries/

Example POST request body

{
"query": "SELECT End_Location_Lat__c, End_Location_Lon__c, End_Time__c,

Start_Location_Lat__c, Start_Location_Lon__c, Start_Time__c,
Car_Type__c, Rider__r.FirstName, Rider__r.LastName,
Rider__r.Email

FROM Rider_Record__b WHERE Star_Rating__c = '5'",

"targetObject": "Rider_Reduced__b",

"targetFieldMap": {"End_Location_Lat__c":"End_Lat__c",
"End_Location_Lon__c":"End_Long__c",
"Start_Location_Lat__c": "Start_Lat__c",
"Start_Location_Lon__c": "Start_Long__c",
"End_Time__c": "End_Time__c",
"Start_Time__c": "Start_Time__c",
"Car_Type__c": "Car_Type__c",
"Rider__r.FirstName": "First_Name__c",
"Rider__r.LastName": "Last_Name__c",
"Rider__r.Email": "Rider_Email__c"
}

}

Example POST response body

{
"jobId": "08PB000000000NA",

"message": "",

"query": "SELECT End_Location_Lat__c, End_Location_Lon__c, End_Time__c,
Start_Location_Lat__c, Start_Location_Lon__c, Start_Time__c,
Car_Type__c, Rider__r.FirstName, Rider__r.LastName,
Rider__r.Email

FROM Rider_Record__b WHERE Star_Rating__c = '5'",

"status": "New",

"targetFieldMap": {"End_Location_Lat__c":"End_Lat__c",
"End_Location_Lon__c":"End_Long__c",
"Start_Location_Lat__c": "Start_Lat__c",
"Start_Location_Lon__c": "Start_Long__c",
"End_Time__c": "End_Time__c",

25

Async SOQL Use CasesAsync SOQL

"Start_Time__c": "Start_Time__c",
"Car_Type__c": "Car_Type__c",
"Rider__r.FirstName": "First_Name__c",
"Rider__r.LastName": "Last_Name__c",
"Rider__r.Email": "Rider_Email__c"
},

"targetObject": "Rider_Reduced__b"
}

Field Audit Trail
Field Audit Trail lets you define a policy to retain archived field history data up to 10 years from the time the data was archived. This
feature helps you comply with industry regulations related to audit capability and data retention.

You define a Field Audit Trail policy using the HistoryRetentionPolicy object for each object you want to archive. The field
history data for that object is then moved from the History related list into the FieldHistoryArchive object at periodic intervals,
as specified by the policy. For more information, see the Field Audit Trail Implementation Guide.

You can use Async SOQL to query archived fields stored in the FieldHistoryArchive object. You can use the WHERE clause
to filter the query by specifying comparison expressions for the FieldHistoryType, ParentId, and CreatedDate fields,
as long as you specify them in that order.

Note: If platform encryption is enabled on the org, then AsyncSOQL on FieldHistoryArchive is not supported.

This example queries archived accounts created within the last month.

Example URI

https://yourInstance.salesforce.com/services/data/v38.0/async-queries/

Example POST request body

{
"query": "SELECT ParentId, FieldHistoryType, Field, Id, NewValue, OldValue

FROM FieldHistoryArchive WHERE FieldHistoryType = ‘Account’
AND CreatedDate > LAST_MONTH”,

"targetObject": "ArchivedAccounts__b",

"targetFieldMap": {"ParentId": "ParentId__c",
"FieldHistoryType": "FieldHistoryType__c",
"Field": "Field__c",
"Id": "Id__c",
"NewValue": "NewValue__c",
"OldValue": "OldValue__c"
}

}

Example POST response body

{
"jobId": "07PB000000006PN",
"message": "",

"query": "SELECT ParentId, FieldHistoryType, Field, Id, NewValue, OldValue

26

Async SOQL Use CasesAsync SOQL

http://resources.docs.salesforce.com/204/12/en-us/sfdc/pdf/field_history_retention.pdf

FROM FieldHistoryArchive WHERE FieldHistoryType = ‘Account’ AND CreatedDate
> LAST_MONTH”,

"status": "New",
"targetObject": "ArchivedAccounts__b",
"targetFieldMap": {"ParentId": "ParentId__c",
"targetObject": "Rider_Reduced__b" }
}

Note: All number fields returned from a SOQL query of archived objects are in standard notation, not scientific notation, as in the
number fields in the entity history of standard objects.

Event Monitoring
Login Forensics and Real-Time Events enable you to track who is accessing confidential and sensitive data in your Salesforce org. You
can view information about individual events or track trends in events to swiftly identify unusual behavior and safeguard your company’s
data. These features are useful for compliance with regulatory and audit requirements.

Note: We provide Real-Time Events to selected customers through a pilot program that requires agreement to specific terms
and conditions. To be nominated to participate in the program, contact Salesforce. Pilot programs are subject to change, and we
can’t guarantee acceptance. Feature isn’t generally available unless or until Salesforce announces its general availability in
documentation or in press releases or public statements. We can’t guarantee general availability within any particular time frame
or at all. Make your purchase decisions based only on the generally available products and features.

With Real-Time Events, you can monitor data accessed through API calls, which covers many common scenarios because more than
50% of SOQL queries occur using the SOAP, REST, or Bulk APIs. Key information about each query, such as the username, user ID, browser,
and source IP address, is stored in the ApiEvent object. You can then run SOQL queries on this object to find out details of user activity
in your org.

For example, let’s say you want to know everyone who viewed the contact record of your company’s CEO, Jane Doe. The key to this
query is the CEO’s contact record ID: 003D000000QYVZ5. (You can also query the ID using SOQL: SELECT Id FROM Contact
WHERE Name = 'Jane Doe'). You can use the following Async SOQL query to determine all users who saw their contact
information, including when, how, and where they saw it.

Example URI

https://yourInstance—api.salesforce.com/services/data/v43.0/async-queries/

Example POST request body

{
"query": "SELECT Query, SourceIp, Username, EventDate FROM ApiEvent

WHERE RecordData Like '%003D000000QYVZ5%'",

"targetObject": "QueryEvents__c",

"targetFieldMap": {"Query":"QueryString__c","SourceIp":"IPAddress__c",
"Username":"User__c", "EventDate":"EventDate__c",
"UserAgent":"UserAgent__c"
}

}

Example POST response body

{
"jobId": "05PB000000001PQ",

27

Async SOQL Use CasesAsync SOQL

"message": "",

"query": "SELECT Query, SourceIp, Username, EventDate
FROM ApiEvent WHERE RecordData Like '%003D000000QYVZ5%'",

"status": "Complete",
"targetObject": "QueryEvents__c",
"targetFieldMap": {"Query":"QueryString__c","SourceIp":"IPAddress__c",

"Username":"User__c", "EventDate":"EventDate__c", "UserAgent":"UserAgent__c"
}

}

Note: All number fields returned from a SOQL query of archived objects are in standard notation, not scientific notation, as in the
number fields in the entity history of standard objects.

If you ask this question on a repeated basis for audit purposes, you can automate the query using a cURL script.

curl -H "Content-Type: application/json" -X POST -d
'{"query": "SELECT Query, SourceIp, UserAgent, Username, EventDate FROM ApiEvent WHERE
RecordData Like'%003D000000QYVZ5%'","targetObject": "QueryEvents__c",
"targetFieldMap": {"Query":"QueryString__c", "SourceIp":"IPAddress__c", "Username":"User__c",
"EventDate":"EventDate__c",UserAgent}}'
"https://yourInstance.salesforce.com/services/data/v43.0/async-queries" -H
"Authorization: Bearer 00D30000000V88A!ARYAQCZOCeABy29c3dNxRVtv433znH15gLWhLOUv7DVu.
uAGFhW9WMtGXCul6q.4xVQymfh4Cjxw4APbazT8bnIfxlRvUjDg"

Another event monitoring use case is to identify all users who accessed a sensitive field, such as Social Security Number or Email. For
example, you can use the following Async SOQL query to determine the users who saw social security numbers and the records in which
those numbers were exposed.

Example URI

https://yourInstance—api.salesforce.com/services/data/v43.0/async-queries/

Example POST request body

{
"query": "SELECT Query, Username, RecordData, EventDate FROM ApiEvent

WHERE Query Like '%SSN__c%'",

"targetObject": "QueryEvents__c",

"targetFieldMap": {"Query":"QueryString__c", "Username":"User__c",
"EventDate":"EventDate__c", "RecordData":"Records_Seen__c"
}

}

Example POST response body

{
"jobId": "08PB000000001RS",

"message": "",

"query": "SELECT Query, Username, RecordData, EventDate FROM ApiEvent

28

Async SOQL Use CasesAsync SOQL

WHERE Query Like '%SSN__c%'",

"status": "Complete",

"targetFieldMap": {"Query":"QueryString__c", "Username":"User__c",
"EventDate":"EventDate__c", "RecordData":"Records_Seen__c"
},

"targetObject": "QueryEvents__c"
}

Supported SOQL Commands

Async SOQL supports a subset of commands in the SOQL language. The subset includes the most common commands that are relevant
to key use cases.

Note: For details of any command, refer to the SOQL documentation.

WHERE
Comparison operators

=, !=, <, <=, >, >=, LIKE

Logical operators

AND, OR

Date formats

YYYY-MM-DD, YYYY-MM-DDThh:mm:ss-hh:mm

Example

SELECT AnnualRevenue
FROM Account
WHERE NumberOfEmployees > 1000 AND ShippingState = ‘CA’

Date Functions
Date functions in Async SOQL queries allow you to group or filter data by time periods, such as day or hour.

DetailsMethod

Returns a date representing the day portion of a dateTime field.DAY_ONLY()

Returns a number representing the hour in the day for a dateTime field.HOUR_IN_DAY()

Returns a number representing the month for a dateTime field.CALENDAR_MONTH()

Returns the year for a dateTime field.CALENDAR_YEAR()

29

Supported SOQL CommandsAsync SOQL

https://developer.salesforce.com/docs/atlas.en-us.216.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql.htm

Example

SELECT DAY_ONLY(date__c), HOUR_IN_DAY(date__c), COUNT(Id)
FROM FieldHistoryArchive
GROUP BY DAY_ONLY(date__c), HOUR_IN_DAY(date__c)

Aggregate Functions
AVG(field), COUNT(field), COUNT_DISTINCT(field), SUM(field), MIN(field), MAX(field)

Note: MIN() and MAX() do not support picklists.

Example

SELECT COUNT(field)
FROM FieldHistoryArchive

HAVING
Use this command to filter results from aggregate functions.

Example

SELECT LeadSource, COUNT(Name)
FROM Lead
GROUP BY LeadSource HAVING COUNT (Name) > 100

GROUP BY
Use this option to avoid iterating through individual query results. Specify a group of records instead of processing many individual
records.

Example

SELECT COUNT(Id) count, CreatedById createdBy
FROM FieldHistoryArchive
GROUP BY CreatedById

Relationship Queries
Single-level child-to-parent relationships are supported using dot notation. Use these queries with the SELECT, WHERE, and GROUP BY
clauses.

Example

SELECT Account.ShippingState s, COUNT(Id) c
FROM Contact
GROUP BY Account.ShippingState

30

Supported SOQL CommandsAsync SOQL

Using Aliases with Aggregates
Examples

{"query":"SELECT COUNT(Id) c, EventTime t FROM LoginEvent group by EventTime",
"targetObject":"QueryEvents__c",
"targetFieldMap":{"c":"Count__c", "t" : "EventTime__c"}
}

{"query":"SELECT COUNT(Id), EventTime FROM LoginEvent group by EventTime",
"targetObject":"QueryEvents__c",
"targetFieldMap":{"expr0":"Count__c","EventTime" : "EventTime__c"}
}

{"query":"SELECT COUNT(Id) c , firstField__c f FROM SourceObject__c",
"targetObject":"TargetObject__c",
"targetFieldMap":{"c":"countTarget__c","f":"secondFieldTarget__c"}
}

31

Supported SOQL CommandsAsync SOQL

INDEX

A
Async SOQL

Aggregate Functions 29
Aliases 29
Commands 29
Overview 16
Queries 19
Use cases 24

B
Big Objects

@future 12

Big Objects (continued)
Apex 10
Composite primary key 4
Considerations 3
Custom Big Object 4
Defining 4
Deleting 11
Deploying 4
Example 12
Index 4
Overview 1
Populating 10
Querying 14

32

	Big Objects
	Big Objects Best Practices
	Define and Deploy Custom Big Objects
	Populate a Custom Big Object
	Populate a Custom Big Object with Apex

	Delete Data in a Custom Big Object
	Big Objects Queueable Example
	SOQL with Big Objects

	Async SOQL
	Running Async SOQL Queries
	Async SOQL Use Cases
	Supported SOQL Commands

	Index

