
Streaming API Developer Guide
Version 42.0, Spring ’18

 @salesforcedocs
Last updated: March 30, 2018

https://twitter.com/salesforcedocs

© Copyright 2000–2018 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

GETTING STARTED WITH FORCE.COM STREAMING API 1

Chapter 1: Introducing Streaming API . 1

Push Technology . 2
Bayeux Protocol, CometD, and Long Polling . 2
Streaming API Terms . 2
How the Client Connects . 3
Message Reliability . 4
Message Durability . 4

Chapter 2: Quick Start Using Workbench . 8

Prerequisites . 8
Step 1: Create an Object . 8
Step 2: Create a PushTopic . 9
Step 3: Subscribe to the PushTopic Channel . 10
Step 4: Test the PushTopic Channel . 11

Chapter 3: Code Examples . 12

Example: Subscribe to and Replay Events Using a Visualforce Page 13
Prerequisites . 13
Deploy a Sample Project to Your Org . 13
Assign a Permission Set . 15
Durable PushTopic Streaming Sample . 15
Durable Generic Streaming Sample . 18
Replay Events Sample: Code Walkthrough . 22

Example: Interactive Visualforce Page without Replay . 24
Prerequisites . 25
Step 1: Create an Object . 25
Step 2: Create a PushTopic . 25
Step 3: Create the Static Resources . 25
Step 4: Create a Visualforce Page . 26
Step 5: Test the PushTopic Channel . 27

Example: Subscribe to and Replay Events Using a Java Client . 28
Prerequisites . 29
Step 1: Create an Object . 30
Step 2: Create a PushTopic . 30
Step 3: Download and Build the Project . 30
Step 4: Use the Connector with Username and Password Login 31
Step 5: Use the Connector with OAuth Bearer Token Login . 33
Learn More About EMP Connector . 35

Example: Authentication . 37
Set Up Authentication for Developer Testing . 37
Set Up Authentication with OAuth 2.0 . 37

USING STREAMING API . 41

Chapter 4: Working with PushTopics . 41

PushTopic Queries . 42
Security and the PushTopic Query . 42
Supported PushTopic Queries . 43
Compound Fields in PushTopic Queries . 44
Unsupported PushTopic Queries . 45

Event Notification Rules . 46
Events . 46
Notifications . 47

Replay PushTopic Streaming Events . 53
Filtered Subscriptions . 53
Bulk Subscriptions . 53
Deactivating a Push Topic . 54

Chapter 5: Streaming API Considerations . 55

Clients and Timeouts . 56
Clients and Cookies for Streaming API . 56
Supported CometD Versions . 56
HTTPS Recommended . 57
Debugging Streaming API Applications . 57

Handling Streaming API Errors . 57
Streaming API Error Codes . 59

Monitoring Event Usage . 62
Monitor PushTopic Event Usage in the UI . 62
Monitor Event Usage with the REST API . 62

Notification Message Order . 63
Considerations for Multiple Notifications in the Same Transaction . 64

GENERIC STREAMING . 65

Chapter 6: Introducing Generic Streaming . 65

Replay Generic Streaming Events with Durable Generic Streaming . 66

Chapter 7: Generic Streaming Quick Start . 67

Create a Streaming Channel . 67
Run a Java Client with Username and Password Login . 68
Run a Java Client with OAuth Bearer Token Login . 70
Generate Events Using REST . 72

Contents

REFERENCE . 74

Chapter 8: PushTopic . 74

Chapter 9: StreamingChannel . 77

Chapter 10: Streaming Channel Push . 79

Chapter 11: Streaming API Allocations . 82

INDEX . 84

Contents

GETTING STARTED WITH FORCE.COM STREAMING API

CHAPTER 1 Introducing Streaming API

Use Streaming API to receive notifications for changes to Salesforce data that match a SOQL query you
define, in a secure and scalable way.

In this chapter ...

• Push Technology
These events can be received by:

• Bayeux Protocol,
CometD, and Long
Polling

• Pages in the Salesforce application.

• Application servers outside of Salesforce.

• Streaming API Terms • Clients outside the Salesforce application.
• How the Client

Connects
The sequence of events when using Streaming API is as follows:

1. Create a PushTopic based on a SOQL query. This defines the channel.
• Message Reliability

2. Clients subscribe to the channel.• Message Durability
3. A record is created, updated, deleted, or undeleted (an event occurs). The changes to that record

are evaluated.

4. If the record changes match the criteria of the PushTopic query, a notification is generated by the
server and received by the subscribed clients.

Streaming API is useful when you want notifications to be pushed from the server to the client based
on criteria that you define. Consider the following applications for Streaming API:

Applications that poll frequently
Applications that have constant polling action against the Salesforce infrastructure, consuming
unnecessary API calls and processing time, would benefit from Streaming API which reduces the
number of requests that return no data.

General notification
Use Streaming API for applications that require general notification of data changes in an organization.
This enables you to reduce the number of API calls and improve performance.

Note: You can use Streaming API with any organization as long as you enable the API. This includes
both Salesforce and Database.com organizations.

1

Push Technology

Push technology, also called the publish/subscribe model, transfers information that is initiated from a server to the client. This type of
communication is the opposite of pull technology in which a request for information is made from a client to the server.

The information sent by the server is typically specified in advance. When using Streaming API, you specify the information that the
client receives by creating a PushTopic. The client then subscribes to the PushTopic channel and is notified of events that match the
PushTopic criteria.

In push technology, the server pushes out information to the client after the client has subscribed to a channel of information. For the
client to receive the information, the client must maintain a connection to the server. Streaming API uses the Bayeux protocol and
CometD, so the client to server connection is maintained through long polling.

Bayeux Protocol, CometD, and Long Polling

Streaming API uses the Bayeux protocol and CometD for long polling.

• Bayeux is a protocol for transporting asynchronous messages, primarily over HTTP.

• CometD is a scalable HTTP-based event routing bus that uses an AJAX push technology pattern known as Comet. It implements the
Bayeux protocol.

• Long polling, also called Comet programming, allows emulation of an information push from a server to a client. Similar to a normal
poll, the client connects and requests information from the server. However, instead of sending an empty response if information
isn't available, the server holds the request and waits until information is available (an event occurs). The server then sends a complete
response to the client. The client then immediately re-requests information. The client continually maintains a connection to the
server, so it’s always waiting to receive a response. In the case of server timeouts, the client connects again and starts over.

If you’re not familiar with long polling, Bayeux, or CometD, review the CometD documentation.

Streaming API supports the following CometD methods:

DescriptionMethod

The client connects to the server.connect

The client disconnects from the server.disconnect

The client performs a handshake with the server and establishes a long polling connection.handshake

The client subscribes to a channel defined by a PushTopic. After the client subscribes, it can receive
messages from that channel. You must successfully call the handshake method before you can
subscribe to a channel.

subscribe

The client unsubscribes from a channel.unsubscribe

Streaming API Terms

Learn about terms used for Streaming API.

DescriptionTerm

The creation, update, delete, or undelete of a record. Each event might trigger a notification.Event

2

Push TechnologyIntroducing Streaming API

https://docs.cometd.org/

DescriptionTerm

A message in response to an event. The notification is sent to a channel to which one or more
clients are subscribed.

Notification

A record that you create. The essential element of a PushTopic is the SOQL query. The PushTopic
defines a Streaming API channel.

PushTopic

How the Client Connects

Streaming API uses the HTTP/1.1 request-response model and the Bayeux protocol (CometD implementation). A Bayeux client connects
to Streaming API in multiple stages.

1. CometD sends a handshake request.

2. After a successful handshake, your custom listener on the /meta/handshake channel sends a subscription request to a channel.

3. CometD maintains the connection by using long polling.

Note: The maximum size of the HTTP request post body that the server can accept from the client is 32,768 bytes, for example,
when you call the CometD subscribe or connect methods. If the request message exceeds this size, the following error is
returned in the response: 413 Maximum Request Size Exceeded. To keep requests within the size limit, avoid sending multiple
messages in a single request.

The client receives events from the server while it maintains a long-lived connection. CometD performs the handshake, connection, and
reconnection requests. Your custom code performs other operations, such as subscription. The client reconnects for the following
conditions.

After Receiving Events
If the client receives events, the client must reconnect immediately using CometD to receive the next set of events. If the reconnection
doesn't occur within 40 seconds, the server expires the subscription, and the connection closes. The client must start over with a
handshake and subscribe again using your custom /meta/handshake channel listener.

When No Events Are Received
If no events are generated while the client is waiting and the server closes the connection, CometD must reconnect within 110
seconds. The Bayeux server sends a response to the client that contains the reconnect deadline of 110 seconds in the advice
field. If the client doesn't reconnect within the expected time, the server removes the client's CometD session.

After a Network Failure
If a long-lived connection is lost due to unexpected network disruption, CometD attempts to reconnect. If this reconnection is
successful, clients must resubscribe, because this new connection has gone through a rehandshake that removes previous subscribers.
Clients can listen to the /meta/handshake meta channel to receive notifications when a connection is lost and reestablished.
For more information, see Short Network Failures and Long Network Failures or Server Failures in the CometD Reference
Documentation.

After Invalid Authentication
Client authentication can sometimes become invalid, for example, when the OAuth token is revoked or the Salesforce session is
invalidated by a Salesforce admin. Streaming API regularly validates the OAuth token or session ID while the client is connected. If
client authentication is not valid, the client is notified with the 401::Authentication invalid error and an advice
field containing reconnect=none. After receiving the error notification in the channel listener, the client must reauthenticate
and reconnect to receive new events.

Note: Invalidated client authentication doesn’t include Salesforce session expiration. The Salesforce session never expires in
a CometD client. Salesforce keeps extending the timeout interval as long as the client stays connected.

3

How the Client ConnectsIntroducing Streaming API

http://en.wikipedia.org/wiki/Push_technology
https://docs.cometd.org/current/reference/#_short_network_failures
https://docs.cometd.org/current/reference/#_long_network_failures_or_server_failures
https://docs.cometd.org/current/reference/
https://docs.cometd.org/current/reference/

For details about these steps, see Bayeux Protocol, CometD, and Long Polling.

SEE ALSO:

Handling Streaming API Errors

Streaming API Error Codes

Message Reliability

As of API version 37.0, Streaming API provides reliable message delivery by enabling you to replay past events. In API version 36.0 and
earlier, clients might not receive all messages in some situations.

In API version 37.0 and later, Streaming API stores events for 24 hours, enabling you to replay past events. With durable streaming,
messages aren’t lost when a client is disconnected or isn’t subscribed. When the client subscribes again, it can fetch past events that are
within the 24-hour retention period. The ability to replay past events provides reliable message delivery.

In API version 36.0 and earlier, Streaming API doesn’t maintain client state nor keeps track of what’s delivered. The client might not
receive messages for several reasons, including:

• When a client first subscribes or reconnects, it might not receive messages that were processed while it wasn’t subscribed to the
channel.

• When a client disconnects and starts a new handshake, it could be working with a different application server, so it receives only
new messages from that point on.

• Some events are dropped when the system is being heavily used.

• If an application server is stopped, all messages being processed but not yet sent are lost. Clients connected to that application
server are disconnected. To receive notifications, the client must reconnect and subscribe to the topic channel.

Message Durability

Salesforce stores events for 24 hours. With API version 37.0 and later, you can retrieve events that are within the retention window. The
Streaming API event framework decouples event producers from event consumers. A subscriber can retrieve events at any time and
isn’t restricted to listening to events at the time they’re sent.

Event Replay Process
Each event message is assigned an opaque ID contained in the ReplayId field. The ReplayId field value, which is populated by
the system, refers to the position of the event in the event stream. Replay ID values are not guaranteed to be contiguous for consecutive
events. For example, the event following the event with ID 999 can have an ID of 1,025. A subscriber can store a replay ID value and use
it on resubscription to retrieve events that are within the retention window. For example, a subscriber can retrieve missed events after
a connection failure. Subscribers must not compute new replay IDs based on a stored replay ID to refer to other events in the stream.

This JSON message shows the replayId field in the event object for a generic event.

{
"clientId":"a1ps4wpe52qytvcvbsko09tapc",
"data":{

"event":{
"createdDate":"2016-03-29T19:05:28.334Z",
"replayId":55

},

4

Message ReliabilityIntroducing Streaming API

"payload":"This is a message."
},

"channel":"/u/TestStreaming"
}

This JSON message shows the replayId field in the event object for a PushTopic event.

{
"clientId":"2t80j2hcog29sdh9ihjd9643a",
"data":{
"event":{

"createdDate":"2016-03-29T16:40:08.208Z",
"replayId":13,
"type":"created"

},
"sobject":{

"Website":null,
"Id":"001D000000KnaXjIAJ",
"Name":"TicTacToe"

}
},
"channel":"/topic/TestAccountStreaming"

}

Note: In API version 37.0 and later, the time format of the createdDate field value has changed to make it consistent with
the time format used in the Salesforce app. The time portion now ends with a Z suffix instead of +0000. Both suffixes denote a
UTC time zone.

Replaying Events
A subscriber can choose which events to receive, such as all events within the retention window or starting after a particular event. The
default is to receive only the new events sent after subscribing. Events outside the 24-hour retention period are discarded.

This high-level diagram shows how event consumers can read a stream of events by using various replay options.

Table 1: Replay Options

DescriptionReplay Option

Subscriber receives all events after the event specified by its
replayId value.

Replay ID

5

Message DurabilityIntroducing Streaming API

DescriptionReplay Option

Subscriber receives new events that are broadcast after the client
subscribes.

-1

Subscriber receives all events, including past events that are within
the 24-hour retention window and new events sent after
subscription.

-2

To replay events, use the Streaming API endpoint.

https://Salesforce_Instance/cometd/42.0/

Note: Durable streaming is supported at this endpoint starting with API version 37.0. Durable Generic Streaming is supported in
version 36.0 at this alternative endpoint: https://Salesforce_Instance/cometd/replay/36.0/. However, we
recommend you upgrade to version 37.0 and use the main Streaming API endpoint.

The replay mechanism is implemented in a Salesforce-provided CometD extension. A sample extension is provided in JavaScript and
another in Java. For example, you can register the extension as follows in JavaScript.

// Register streaming extension
var replayExtension = new cometdReplayExtension();
replayExtension.setChannel(<Streaming Channel to Subscribe to>);
replayExtension.setReplay(<Event Replay Option>);
cometd.registerExtension('myReplayExtensionName', replayExtension);

Note:

• The argument passed to setReplay() is one of the replay options listed in Replay Options. We recommend that clients
subscribe with the –1 option to receive new events or with a specific replay ID. If the channel contains many event messages,
subscribing frequently with the –2 option can cause performance issues.

• The first argument passed to registerExtension() is the name of the replay extension in your code. In the example,
it’s set to myExtensionName, but it can be any string. You use this name to unregister the extension later on.

• If the setReplay() function isn’t called, or the CometD extension isn’t registered, only new events are sent to the subscriber,
which is the same as the –1 option.

After calling the setReplay() function on the extension, the events that the subscriber receives depend on the replay value
parameter passed to setReplay().

After a client times out because it hasn’t reconnected within 40 seconds or a network failure has occurred, it attempts a new handshake
request and reconnects. The replay extension saves the replay ID of the last message received and uses it when resubscribing. That way,
the client receives only messages that were sent after the timeout and doesn’t receive duplicate messages that were sent earlier.

Code Samples
Visualforce Sample

For a sample and code walkthrough that uses Visualforce and a CometD extension in JavaScript, see Example: Subscribe to and
Replay Events Using a Visualforce Page

6

Message DurabilityIntroducing Streaming API

Java Samples
For a Java client sample that uses the CometD extension, see the Example: Subscribe to and Replay Events Using a Java Client

SEE ALSO:

Bayeux Protocol, CometD, and Long Polling

Clients and Timeouts

7

Message DurabilityIntroducing Streaming API

CHAPTER 2 Quick Start Using Workbench

This quick start shows you how to get started with Streaming API by using Workbench. This quick start takes you step-by-step through
the process of using Streaming API to receive a notification when a record is updated.

• Prerequisites

• Step 1: Create an Object

• Step 2: Create a PushTopic

• Step 3: Subscribe to the PushTopic Channel

• Step 4: Test the PushTopic Channel

Prerequisites

You need access and appropriate permissions to complete the quick start steps.

• Access to a Developer Edition organization.

If you are not already a member of the Lightning Platform developer community, go to developer.salesforce.com/signup
and follow the instructions for signing up for a Developer Edition organization. Even if you already have Enterprise Edition, Unlimited
Edition, or Performance Edition, use Developer Edition for developing, staging, and testing your solutions against sample data to
protect your organization’s live data. This is especially true for applications that insert, update, or delete data (as opposed to simply
reading data).

• The “API Enabled” permission must be enabled for your Developer Edition organization. This permission is enabled by default, but
may have been changed by an administrator.

• The “Streaming API” permission must be enabled.

Note: To verify that the “API Enabled” and “Streaming API” permissions are enabled in your organization, from Setup, enter
User Interface in the Quick Find box, then select User Interface.

• The logged-in user must have “Read” permission on the PushTopic standard object to receive notifications.

• The logged-in user must have “Create” permission on the PushTopic standard object to create and manage PushTopic records.

• The logged-in user must have “Author Apex” permissions to create a PushTopic by using the Developer Console.

Step 1: Create an Object

The first step is to create an InvoiceStatement object.

After you create a PushTopic and subscribe to it, you’ll get notifications when an InvoiceStatement record is created, updated, deleted,
or undeleted. You’ll create the object with the user interface.

1. From your management settings for custom objects, if you’re using Salesforce Classic, click New Custom Object, or if you’re using
Lightning Experience, select Create > Custom Object.

8

https://developer.salesforce.com/signup

2. Define the custom object.

• In the Label field, type Invoice Statement.

• In the Plural Label field, type Invoice Statements.

• Select Starts with vowel sound.

• In the Record Name field , type Invoice Number.

• In the Data Type field , select Auto Number.

• In the Display Format field, type INV-{0000}.

• In the Starting Number field, type 1.

3. Click Save.

4. Add a Status field.

a. Scroll down to the Custom Fields & Relationships related list and click New.

b. For Data Type, select Picklist and click Next.

c. In the Field Label field, type Status.

d. Type the following picklist values in the box provided, with each entry on its own line.

Open
Closed
Negotiating
Pending

e. Select the checkbox for Use first value as default value.

f. Click Next.

g. For field-level security, select Read Only and then click Next.

h. Click Save & New to save this field and create a new one.

5. Now create an optional Description field.

a. In the Data Type field, select Text Area and click Next.

b. In the Field Label and Field Name fields, enter Description.

c. Click Next, accept the defaults, and click Next again.

d. Click Save to go the detail page for the Invoice Statement object.

Your InvoiceStatement object should now have two custom fields.

SEE ALSO:

Salesforce Help: Find Object Management Settings

Step 2: Create a PushTopic

Use the Developer Console to create the PushTopic record that contains a SOQL query.

Event notifications are generated for updates that match the query. Alternatively, you can also use Workbench to create a PushTopic.

1. Open the Developer Console.

9

Step 2: Create a PushTopicQuick Start Using Workbench

https://help.salesforce.com/HTViewHelpDoc?id=extend_click_find_objectmgmt_parent.htm&language=en_US

2. Click Debug > Open Execute Anonymous Window.

3. In the Enter Apex Code window, paste in the following Apex code, and click Execute.

PushTopic pushTopic = new PushTopic();
pushTopic.Name = 'InvoiceStatementUpdates';
pushTopic.Query = 'SELECT Id, Name, Status__c, Description__c FROM Invoice_Statement__c';
pushTopic.ApiVersion = 42.0;
pushTopic.NotifyForOperationCreate = true;
pushTopic.NotifyForOperationUpdate = true;
pushTopic.NotifyForOperationUndelete = true;
pushTopic.NotifyForOperationDelete = true;
pushTopic.NotifyForFields = 'Referenced';
insert pushTopic;

Note: If your organization has a namespace prefix defined, then you’ll need to preface the custom object and field names
with that namespace when you define the PushTopic query. For example, SELECT Id, Name,
namespace__Status__c, namespace__Description__c FROM
namespace__Invoice_Statement__c.

Because NotifyForOperationCreate, NotifyForOperationUpdate, NotifyForOperationDelete and
NotifyForOperationUndelete are set to true, Streaming API evaluates records that are created, updated, deleted, or
undeleted and generates a notification if the record matches the PushTopic query. Because NotifyForFields is set to
Referenced, Streaming API will use fields in both the SELECT clause and the WHERE clause to generate a notification. Whenever
the fields Name, Status__c, or Description__c are updated, a notification will be generated on this channel. For more
information about NotifyForOperationCreate, NotifyForOperationUpdate, NotifyForOperationDelete,
NotifyForOperationUndelete, and NotifyForFields, see Event Notification Rules.

Note: In API version 28.0 and earlier, notifications are only generated when records are created or updated. The
NotifyForOperationCreate, NotifyForOperationUpdate, NotifyForOperationDelete, and
NotifyForOperationUndelete fields are unavailable and the NotifyForOperations enum field is used
instead to set which record events generate a notification. For more information see PushTopic.

SEE ALSO:

Salesforce Help: Open the Developer Console

Step 3: Subscribe to the PushTopic Channel

In this step, you subscribe to the channel that you created with the PushTopic record in the previous step.

Important: Workbench is a free, open source, community-supported tool (see the Help page in Workbench). Salesforce provides
a hosted instance of Workbench for demonstration purposes only—Salesforce recommends that you do not use this hosted
instance of Workbench to access data in a production database. If you want to use Workbench for your production database, you
can download, host, and configure it using your own resources. You can download Workbench from
https://github.com/ryanbrainard/forceworkbench/releases.

1. In your browser, navigate to https://workbench.developerforce.com/login.php.

2. For Environment, select Production.

3. For API Version, select 36.0.

Note: Workbench supports Streaming API in versions 36.0 and earlier only.

10

Step 3: Subscribe to the PushTopic ChannelQuick Start Using Workbench

https://help.salesforce.com/HTViewHelpDoc?id=code_dev_console_opening.htm&language=en_US
https://github.com/ryanbrainard/forceworkbench/releases
https://workbench.developerforce.com/login.php

4. Accept the terms of service, and click Login with Salesforce.

5. After you successfully establish a connection to your database, you land on the Select page.

6. Select queries > Streaming Push Topics.

7. In the Push Topic field, select InvoiceStatementUpdates.

8. Click Subscribe.

You’ll see the connection and response information and a response like “Subscribed to /topic/InvoiceStatementUpdates.”

Keep this browser window open and make sure that the connection doesn’t time out. You’ll be able to see the event notifications
triggered by the InvoiceStatement record you create in the next step.

Step 4: Test the PushTopic Channel

Make sure the browser that you used in Step 3: Subscribe to the PushTopic Channel stays open and the connection doesn’t time out.
You’ll view event notifications in this browser.

The final step is to test the PushTopic channel by creating a new InvoiceStatement record in Workbench and viewing the event notification.

1. In a new browser window, open an instance of Workbench and log in using the same username by following the steps in Step 3:
Subscribe to the PushTopic Channel.

Note: If the user that makes an update to a record and the user that’s subscribed to the channel don’t share records, then
the subscribed user won’t receive the notification. For example, if the sharing model for the organization is private.

2. Click data > Insert.

3. For Object Type, select Invoice_Statement__c. Ensure that the Single Record field is selected, and click Next.

4. Type in a value for the Description__c field.

5. Click Confirm Insert.

6. Switch over to your Streaming Push Topics browser window. You’ll see a notification that the invoice statement was created. The
notification returns the Id, Status__c, and Description__c fields that you defined in the SELECT statement of your
PushTopic query. The message looks something like this:

{
"channel": "/topic/InvoiceStatementUpdates",
"data": {
"event": {
"type": "created",
"createdDate": "2011-11-14T17:33:45.000+0000"

},
"sobject": {
"Name": "INV-0004",
"Id": "a00D0000008oLi8IAE",
"Description__c": "Test invoice statement",
"Status__c": "Open"

}
}

}

11

Step 4: Test the PushTopic ChannelQuick Start Using Workbench

CHAPTER 3 Code Examples

Check out code examples for PushTopic and generic events in Visualforce and Java, and an authentication
example.

In this chapter ...

• Example: Subscribe
to and Replay Events
Using a Visualforce
Page

• Example: Interactive
Visualforce Page
without Replay

• Example: Subscribe
to and Replay Events
Using a Java Client

• Example:
Authentication

12

Example: Subscribe to and Replay Events Using a Visualforce Page

This sample app shows you how to subscribe to durable streaming events for PushTopic and generic events. The app contains two
interactive Visualforce pages: one for PushTopic events and one for generic events. You can generate test events and view them on each
page. You specify which events are retrieved and displayed by setting replay options.

For each Visualforce page, the logic for replaying events is contained within a Visualforce component. The component registers the
Salesforce-provided CometD extension and sets replay options.

IN THIS SECTION:

Prerequisites

Set up permissions that are required to run the durable streaming samples.

Deploy a Sample Project to Your Org

Use Workbench to copy all project components to your org.

Durable PushTopic Streaming Sample

The Durable PushTopic Streaming Visualforce sample shows you how to use replay options to subscribe and receive durable PushTopic
event notifications.

Durable Generic Streaming Sample

The Durable Generic Streaming Visualforce sample shows you how to use replay options to subscribe and receive durable generic
event notifications.

Replay Events Sample: Code Walkthrough

Learn how to register and use the CometD replay extension in JavaScript.

Prerequisites
Set up permissions that are required to run the durable streaming samples.

• You must have access to a Developer Edition org and have the “API Enabled” and “Streaming API” permissions enabled. The “API
Enabled” permission is enabled by default, but an administrator might have changed it.

If you are not already a member of the Lightning Platform developer community, go to developer.salesforce.com/signup
and follow the instructions for signing up for a Developer Edition organization. Even if you already have Enterprise Edition, Unlimited
Edition, or Performance Edition, use Developer Edition for developing, staging, and testing your solutions against sample data to
protect your organization’s live data. This is especially true for applications that insert, update, or delete data (as opposed to simply
reading data).

Note: To verify that the “API Enabled” and “Streaming API” permissions are enabled in your organization, from Setup, enter
User Interface in the Quick Find box, then select User Interface.

• To receive notifications, the logged-in user must have “Read” permission on the StreamingChannel standard object.

• To create and manage notifications, the logged-in user must have “Create” permission on the StreamingChannel standard object.

• To save the Apex class, the logged-in user must have the “Author Apex” permission.

• To save the Visualforce page, the logged-in user must have the “Customize Application” permission.

Deploy a Sample Project to Your Org
Use Workbench to copy all project components to your org.

13

Example: Subscribe to and Replay Events Using a Visualforce
Page

Code Examples

https://developer.salesforce.com/signup

1. Download the Salesforce Durable Streaming Demo .zip file from the developerforce github repository.

If you want, you can browse the contents of the project at https://github.com/developerforce/SalesforceDurableStreamingDemo.
The sample app contains two Visualforce pages with related components and some common components. The following common
components are installed in your org when you deploy the .zip file.

DescriptionComponent

Static resource representing a CometD extension in JavaScript.
This extension implements the replay mechanism for Streaming
API.

cometdReplayExtension

Static resources for CometD 3.1.0, jquery, and JSON.cometd, jquery, jquery_cometd, json2

The following app components are for the Durable PushTopic Streaming page.

DescriptionComponent

A Visualforce component that uses the CometD extension
cometdReplayExtension to replay events. The extension

DurablePushTopicEventDisplay

handles the handshake and subscribe calls and sets replay
options.

Having the replay functionality in a Visualforce component allows
you to add it to your Visualforce page for reuse in your app.

Apex controller that holds the logic behind the Visualforce page.DurablePushTopicStreamingController

Visualforce page. This page is the main page you use to generate,
view, and replay durable PushTopic events.

DurablePushTopicStreamingDemo Visualforce Page

The following app components are for the Durable Generic Streaming page.

DescriptionComponent

A Visualforce component that uses the CometD extension
cometdReplayExtension to replay events. The extension

DurableGenericEventDisplay

handles the handshake and subscribe calls and sets replay
options.

Having the replay functionality in a Visualforce component allows
you to add it to your Visualforce page for reuse in your app.

Apex controller that holds the logic behind the Visualforce page.DurableGenericStreamingController

Custom object used for creating streaming channels.StreamingChannel

Visualforce page. This page is the main page you use to generate,
view, and replay durable generic events.

DurableGenericStreamingDemo Visualforce Page

Permission set used to grant read and create access to the
StreamingChannel sObject.

DurableStreamingDemo Permission Set

14

Deploy a Sample Project to Your OrgCode Examples

https://github.com/developerforce/SalesforceDurableStreamingDemo/archive/master.zip
https://github.com/developerforce/SalesforceDurableStreamingDemo
https://github.com/developerforce/SalesforceDurableStreamingDemo/blob/master/staticresources/cometdReplayExtension.resource
https://github.com/developerforce/SalesforceDurableStreamingDemo/blob/master/components/DurablePushTopicEventDisplay.component
https://github.com/developerforce/SalesforceDurableStreamingDemo/blob/master/classes/DurablePushTopicStreamingController.cls
https://github.com/developerforce/SalesforceDurableStreamingDemo/blob/master/pages/DurablePushTopicStreamingDemo.page
https://github.com/developerforce/SalesforceDurableStreamingDemo/blob/master/components/DurableGenericEventDisplay.component
https://github.com/developerforce/SalesforceDurableStreamingDemo/blob/master/classes/DurableGenericStreamingController.cls
https://github.com/developerforce/SalesforceDurableStreamingDemo/blob/master/objects/StreamingChannel.object
https://github.com/developerforce/SalesforceDurableStreamingDemo/blob/master/pages/DurableGenericStreamingDemo.page
https://github.com/developerforce/SalesforceDurableStreamingDemo/blob/master/permissionsets/DurableStreamingDemo.permissionset

You use Workbench to migrate the zip file to your org.

2. Log in to Workbench at https://workbench.developerforce.com/login.php.

Important: Workbench is a free, open source, community-supported tool (see the Help page in Workbench). Salesforce
provides a hosted instance of Workbench for demonstration purposes only—Salesforce recommends that you do not use this
hosted instance of Workbench to access data in a production database. If you want to use Workbench for your production
database, you can download, host, and configure it using your own resources. You can download Workbench from
https://github.com/ryanbrainard/forceworkbench/releases.

3. For Environment, keep the production default value.

4. Ensure that the value for API Version is at least 37.0.

5. Accept the service terms, and then click Login with Salesforce.

6. Enter your Developer Edition org username and password, and then click Log In.

7. Select migration > Deploy.

8. Click Choose File and locate the .zip file that you downloaded.

9. Click Next, and then click Deploy.

10. Wait until the deployment finishes and the status of the deployment changes to Succeeded.

11. Log in to your org in another browser tab.

SEE ALSO:

GitHub: Streaming Replay Client Extensions

Assign a Permission Set
1. From Setup, enter Permission Sets in the Quick Find box, then select Permission Sets.

2. Click DurableStreamingDemo, and then click Manage Assignments.

3. Click Add Assignments.

4. Click the checkbox next to the user who is running the sample, and then click Assign.

5. Click Done.

Durable PushTopic Streaming Sample
The Durable PushTopic Streaming Visualforce sample shows you how to use replay options to subscribe and receive durable PushTopic
event notifications.

Use a Visualforce Page to Generate and Replay PushTopic Events
In this step, you use a Visualforce page to generate your own PushTopic streaming events and replay those events by using different
options.

When the Visualforce page is loaded, it creates a PushTopic for the Account object. The page also subscribes to this topic to receive
notifications for account creations, updates, and deletions, with an option to replay events. You can specify the name of the account to
create, update, and delete on the Visualforce page. These operations generate event notifications, which are displayed in the Notifications

15

Assign a Permission SetCode Examples

https://workbench.developerforce.com/login.php
https://github.com/ryanbrainard/forceworkbench/releases
https://github.com/developerforce/StreamingReplayClientExtensions

section. You can control which events are received and displayed by subscribing with replay options. After generating events, you can
replay events starting from:

• All events after a particular event specified by a replay ID.

• The first event broadcast right after subscribing (replay option -1).

• The earliest retained event in your org that’s less than 24 hours old (replay option -2). The sample uses replay option -2 as the default
option.

This Visualforce sample is part of the Durable Streaming Demo app.

1. Open the Durable Streaming Demo app.

2. Click the Durable PushTopic Streaming Demo tab.

The Visualforce page loads and subscribes to the PushTopic it created for the Account object.

3. On the Visualforce page, generate some events for an account. For example, Test account.

4. Click Create, Update, Delete New Account.

Note: The page subscribes to all new and old events by default (-2). The page first displays debug information about the
CometD connection in the Notifications section followed by the events received. The first time you generate events, there are
no stored events, and you see only the new events.

5. To change the point in time when events are read, enter the replay ID to read from in the Replay From Id field. For example, to
read all events after the event with replay ID 2, enter 2. Then click Update Subscription.
The Notifications section is updated and shows only the last event with replay ID 3.

6. To receive only the events that are sent after you subscribe, enter -1 in the Replay From ID field. Then click Update Subscription.
The Notifications section is cleared, because only new events from this point on are shown.

7. Generate some new events like you did previously using Lightning for the account name.
The Notifications section is updated with the new events and doesn’t show the old events.

16

Durable PushTopic Streaming SampleCode Examples

8. Switch the replay option back to -2.
The page displays all events, including events that were sent earlier.

17

Durable PushTopic Streaming SampleCode Examples

Durable Generic Streaming Sample
The Durable Generic Streaming Visualforce sample shows you how to use replay options to subscribe and receive durable generic event
notifications.

Create a Streaming Channel
You must have the appropriate Streaming API permissions enabled in your org.

Create a StreamingChannel object by using the Salesforce UI.

1. Log in to your Developer Edition org.

2. If you’re using Salesforce Classic, under All Tabs (+), select Streaming Channels. If you’re using Lightning Experience, from the App
Launcher, select All Items, and then click Streaming Channels.

3. On the Streaming Channels page, click New to create a streaming channel.

4. Enter /u/TestStreaming in Streaming Channel Name and add an optional description. Your new Streaming Channel page
looks something like this:

18

Durable Generic Streaming SampleCode Examples

5. Click Save. You now have a streaming channel that clients can subscribe to for notifications.

StreamingChannel is a regular, creatable Salesforce object, so you can also create one programmatically using Apex or a data API like
the SOAP API or REST API, or using a tool such as Workbench. For more information, see StreamingChannel.

Use a Visualforce Page to Generate and Replay Generic Events
In this step, you use a Visualforce page to generate your own streaming events and replay those events by using different options.

The Visualforce page simulates a streaming client that subscribes to events with options to replay events. The Visualforce page allows
you to supply the event’s message and specify the number of messages to create. The page listens to events and displays the received
events in the Notifications section. After generating events, you can replay events starting from:

• All events after a particular event specified by a replay ID.

• The first event broadcast right after subscribing (replay option -1).

• The earliest retained event in your org that’s less than 24 hours old (replay option -2). The sample uses replay option -2 as the default
option.

This Visualforce sample is part of the Durable Streaming Demo app.

1. Open the Durable Streaming Demo app.

2. Click the Durable Generic Streaming Demo tab.

The Visualforce page loads and subscribes to the test channel you created earlier.

3. In the Visualforce page, generate some events. Enter any text for the message text, for example, Test message. For Number of
Events, enter 10.

4. Click Generate.

Note: The page subscribes to all events by default (-2). The page first displays debug information about the CometD connection
in the Notifications section followed by the events received. The first time you generate events, there are no stored events,
and you see only the new events.

5. To change the point in time when events are read, enter the replay ID to read from in the Replay From Id field. For example, to
read all events after the event with replay ID 5, enter 5. Then click Update Subscription.
The Notifications section is updated and shows only the last five events starting from replay ID 6.

19

Durable Generic Streaming SampleCode Examples

6. To receive only the events that are sent after you subscribe, enter -1 in the Replay From Id field. Then click Update Subscription.
The Notifications section is cleared, because only new events from this point on are shown.

7. Generate some new events like you did in step 3 with New events for the message.
The Notifications section is updated with the new events and doesn’t show the old events.

20

Durable Generic Streaming SampleCode Examples

8. Switch the replay option back to -2.
The page displays all events, including events that were sent earlier.

21

Durable Generic Streaming SampleCode Examples

Replay Events Sample: Code Walkthrough
Learn how to register and use the CometD replay extension in JavaScript.

JavaScript Sample for Replaying Events
The Visualforce components in the durable streaming sample implement a CometD client that subscribes with replay options. The
components are embedded in Visualforce pages.

• For generic events, the Visualforce component is DurableGenericEventDisplay.

• For PushTopic events, the Visualforce component is DurablePushTopicEventDisplay.

If you want to implement a CometD client with replay options, you can reuse the Visualforce components or adapt the JavaScript code
for your app. Portions of the sample component are highlighted in this section.

The first step is to register the Salesforce-provided CometD extension cometdReplayExtension to replay events. This snippet
also sets the streaming channel and the replay option. The first argument in registerExtension is an arbitrary name, which you
use to unregister the extension.

// Register Generic Streaming Replay extension
var replayExtension = new cometdReplayExtension();

22

Replay Events Sample: Code WalkthroughCode Examples

https://github.com/developerforce/SalesforceDurableStreamingDemo/blob/master/components/DurableGenericEventDisplay.component
https://github.com/developerforce/SalesforceDurableStreamingDemo/blob/master/components/DurablePushTopicEventDisplay.component

replayExtension.setChannel(<Streaming Channel to Subscribe to>);
replayExtension.setReplay(<Event Replay Option>);
cometd.registerExtension('myReplayExtensionName', replayExtension);

Next, the client connects to the CometD replay endpoint. The API version in the endpoint must be 37.0 or later. The session ID value of
the current session is passed in the Authorization header. The client calls the cometd configure() function to set up the
connection and specify the endpoint and authorization header. Next, the client performs a handshake by calling cometd handshake()
function.

// Connect to the CometD endpoint
cometd.configure({

url: window.location.protocol+'//'+window.location.hostname+
(null != window.location.port ? (':'+window.location.port) : '') +
'/cometd/37.0/',

requestHeaders: { Authorization: 'OAuth {!$Api.Session_ID}'}
});
cometd.handshake();

To ensure that every step in the connection process is successful before moving on to the next step, the client uses listeners. For example,
a listener for the /meta/handshake channel checks whether the handshake is successful. If it is successful, the subscribe()
function is called.

if(!metaHandshakeListener) {
metaHandshakeListener = cometd.addListener('/meta/handshake', function(message) {

if (message.successful) {
$('#content').append('

 DEBUG: Handshake Successful: '+

JSON.stringify(message)+'

');

if (message.ext && message.ext[REPLAY_FROM_KEY] == true) {
isExtensionEnabled = true;

}
subscribedToChannel = subscribe(channel);

} else
$('#content').append('DEBUG: Handshake Unsuccessful: '+

JSON.stringify(message)+'

');
});

}

The last step is to specify a callback for the CometD subscribe() function. CometD calls this callback function when a message is
received in the channel. In this sample, the callback function displays the message data to the page. It appends the data to the div
HTML element whose ID value is "content".

function subscribe(channel) {
// Subscribe to a topic.

// JSON-encoded update will be returned in the callback.
return cometd.subscribe(channel, function(message) {

var div = document.getElementById('content');
div.innerHTML = div.innerHTML + '<p>Notification ' +
'on channel: ' + JSON.stringify(message.channel) + '
' +
'Payload: ' + JSON.stringify(message.data.payload) + '
' +
'Replay Id: ' + JSON.stringify(message.data.event.replayId) + '
' +
'Full message: ' + JSON.stringify(message) + '</p>
';

});
}

23

Replay Events Sample: Code WalkthroughCode Examples

cometdReplayExtension Extension

Note: The extension is a prerequisite for the replay functionality in a CometD client. In the durable streaming sample, the Visualforce
components register and use the extension. If you implement a CometD client, include the replay extension in your project, but
you don’t have to modify it.

The cometdReplayExtension contains cometd extension functions that are called for incoming and outgoing messages. These extension
functions implement the logic that checks for the extension’s registration on handshake and sets the replay option on subscription.

On handshake, the function for incoming messages checks whether the replay extension has been registered. If so, it sets the
_extensionEnabled variable to true. This function also saves the replay ID of the received message so that it can be used when
a client reconnects after a timeout.

this.incoming = function(message) {
if (message.channel === '/meta/handshake') {

if (message.ext && message.ext[REPLAY_FROM_KEY] == true) {
_extensionEnabled = true;

} else if (message.channel === _channel && message.data && message.data.event &&

message.data.event.replayId) {
_replay = message.data.event.replayId;

}
}

}

On subscription, the function for outgoing messages checks whether the replay extension has been registered by inspecting the
_extensionEnabled variable. If the extension is registered, the function subscribes to events based on the specified replay option.
The sample sets the replay option by calling the extension’s setReplay() function.

this.outgoing = function(message) {
if (message.channel === '/meta/subscribe') {

if (_extensionEnabled) {
if (!message.ext) {

message.ext = {};
}
var replayFromMap = {};
replayFromMap[_channel] = _replay;
// add "ext : { "replay" : { CHANNEL : REPLAY_VALUE }}"
// to subscribe message.
message.ext[REPLAY_FROM_KEY] = replayFromMap;

}
}

};

Example: Interactive Visualforce Page without Replay

This code example shows you how to implement Streaming API from a Visualforce page. The sample uses the Dojo library and CometD
to subscribe to PushTopic events.

On the Visualforce page, you enter the name of the PushTopic channel you want to subscribe to and click Subscribe to receive notifications
on the page. Click Unsubscribe to unsubscribe from the channel and stop receiving notifications.

Note: This sample doesn’t use the replay extension and can’t receive past events. To use a replay option, check out Example:
Subscribe to and Replay Events Using a Visualforce Page.

24

Example: Interactive Visualforce Page without ReplayCode Examples

https://github.com/developerforce/SalesforceDurableStreamingDemo/blob/master/staticresources/cometdReplayExtension.resource

IN THIS SECTION:

Prerequisites

You need access and appropriate permissions to complete the code example.

Step 1: Create an Object

Step 2: Create a PushTopic

Step 3: Create the Static Resources

Step 4: Create a Visualforce Page

Step 5: Test the PushTopic Channel

Prerequisites
You need access and appropriate permissions to complete the code example.

• Access to a Developer Edition organization.

If you are not already a member of the Lightning Platform developer community, go to developer.salesforce.com/signup
and follow the instructions for signing up for a Developer Edition organization. Even if you already have Enterprise Edition, Unlimited
Edition, or Performance Edition, use Developer Edition for developing, staging, and testing your solutions against sample data to
protect your organization’s live data. This is especially true for applications that insert, update, or delete data (as opposed to simply
reading data).

• The “API Enabled” permission must be enabled for your Developer Edition organization. This permission is enabled by default, but
may have been changed by an administrator.

• The “Streaming API” permission must be enabled.

Note: To verify that the “API Enabled” and “Streaming API” permissions are enabled in your organization, from Setup, enter
User Interface in the Quick Find box, then select User Interface.

• The logged-in user must have “Read” permission on the PushTopic standard object to receive notifications.

• The logged-in user must have “Create” permission on the PushTopic standard object to create and manage PushTopic records.

• The logged-in user must have “Author Apex” permissions to create a PushTopic by using the Developer Console.

Step 1: Create an Object
To perform this example, you must first create the InvoiceStatement object. If you haven’t already created this object, see Step 1: Create
an Object.

Step 2: Create a PushTopic
To perform this example, you must create a PushTopic. If you haven’t already done so, see Step 2: Create a PushTopic.

Step 3: Create the Static Resources
1. Download this static resource .zip file: streaming_api_interactive_visualforce_demo-v40.zip

2. Extract the following files from the .zip fle:

25

PrerequisitesCode Examples

https://developer.salesforce.com/signup
http://resources.docs.salesforce.com/rel1/doc/en-us/static/misc/streaming_api_interactive_visualforce_demo-v40.zip

DescriptionFile Name

Files for CometD version 3.1.0 and the Dojo toolkit used by demo.js. When you define a .zip
archive file as a static resource, Visualforce can access the files in that archive. The .zip file becomes
a virtual file system.

cometd.zip

The CSS code that formats the Visualforce page.demo.css

The code used by the page to subscribe to the channel, receive and display the notifications,
and unsubscribe from the channel.

demo.js

The JavaScript library that contains the stringify and parse methods.json2.js

The Visualforce page that displays the Streaming API notifications.StreamingApiDemo

3. From Setup, enter Static Resources in the Quick Find box, then select Static Resources to add the extracted files
with the following names:

Static Resource NameFile Name

cometd_zipcometd.zip

demo_cssdemo.css

demo_jsdemo.js

json2_jsjson2.js

For more information about static resources, see Deliver Static Resources with Visualforce.

Step 4: Create a Visualforce Page
Create a Visualforce page to display the channel notifications.

1. From Setup, enter Visualforce Pages in the Quick Find box, then select Visualforce Pages.

2. Click New.

3. In the Label field, enter the name of the page StreamingAPIDemo.

4. Replace the code in the page with the code from the StreamingApiDemo file that you downloaded.

<apex:page >
<apex:includeScript value="{!$Resource.json2_js}"/>
<script type="text/javascript" src="{!URLFOR($Resource.cometd_zip, 'dojo/dojo.js')}"
data-dojo-config="async: 1"></script>
<apex:stylesheet value="{!$Resource.demo_css}"/>
<script>var token = '{!$Api.Session_ID}';</script>

<div id="demo">
<div id="datastream"></div>

<script type="text/javascript" src="{!$Resource.demo_js}">
</script>

<div id="input">

26

Step 4: Create a Visualforce PageCode Examples

https://developer.salesforce.com/page/Delivering_Static_Resources_with_Visualforce

<div id="join">
<table>

<tbody>
<tr>

<td> </td>
<td> Enter Topic Name </td>
<td>

<input id="topic" type="text" />
</td>
<td>

<button id="subscribeButton"
class="button">Subscribe</button>

</td>
</tr>

</tbody>
</table>

</div>
<div id="joined">

<table>
<tbody>

<tr>
<td>

<button id="leaveButton"
class="button">Unsubscribe</button>

</td>
</tr>

</tbody>
</table>

</div>
</div>

</div>
</apex:page>

5. Click Save to save the page.

Step 5: Test the PushTopic Channel
1. To load the Visualforce page in a web browser, click Preview on the Visualforce page editor:

2. In the text box, enter the channel name: /topic/InvoiceStatementUpdates.

3. To subscribe to the channel, click Subscribe.

4. Create or modify an InvoiceStatement in a different browser tab. The page displays some debug messages and event notifications.
The output resembles the following:

DEBUG: Handshake Successful: {
"ext":{"replay":true,"payload.format":true},
"minimumVersion":"1.0",
"clientId":"41kdiuvgig2tfxdh9weakuiwyh",
"supportedConnectionTypes":["long-polling"],
"channel":"/meta/handshake",
"id":"1","version":"1.0","successful":true,"reestablish":false}

DEBUG: Connection Successful : {

27

Step 5: Test the PushTopic ChannelCode Examples

"clientId":"41kdiuvgig2tfxdh9weakuiwyh",
"advice":{
"interval":2000,"multiple-clients":true,"reconnect":"retry",
"timeout":110000},"channel":"/meta/connect","id":"2",
"successful":true}

DEBUG: Subscribe Successful /topic/InvoiceStatementUpdates:
{"clientId":"41kdiuvgig2tfxdh9weakuiwyh","channel":"/meta/subscribe",
"id":"15","subscription":"/topic/InvoiceStatementUpdates","successful":true}

{
"event": {
"createdDate": "2017-05-16T23:05:50.173Z",
"replayId": 1,
"type": "created"

},
"sobject": {
"Description__c": "New invoice.",
"Id": "a00D0000009YbwQIAS",
"Status__c": "Open",
"Name": "INV-0001"

}
}

{
"event": {
"createdDate": "2017-05-16T23:06:11.529Z",
"replayId": 2,
"type": "updated"

},
"sobject": {
"Description__c": "New invoice.",
"Id": "a00D0000009YbwQIAS",
"Status__c": "Negotiating",
"Name": "INV-0001"

}
}

The debug messages contain information about the subscription status. The first event notification shows the notification data when
an invoice statement is created. The second notification shows the notification data when an invoice statement is updated.

Click Unsubscribe to unsubscribe from the channel and stop receiving notifications.

Example: Subscribe to and Replay Events Using a Java Client

This code example implements Streaming API from a Java client using a library called Enterprise Messaging Platform (EMP) Connector.
EMP connector is a thin wrapper around the CometD library. It hides the complexity of creating a CometD client and subscribing to
Streaming API in Java. The example subscribes to a channel, receives notifications, and supports replaying events with durable streaming.

28

Example: Subscribe to and Replay Events Using a Java ClientCode Examples

Important: EMP Connector is a free, open-source, community-supported tool. Salesforce provides this tool as an example of how
to subscribe to events using CometD. To contribute to the EMP Connector project with your own enhancements, submit pull
requests to the repository at https://github.com/forcedotcom/EMP-Connector.

EMP Connector is based on Java 8 and uses CometD version 3.0.9. The connector supports PushTopic and generic streaming. It also
supports username and password authentication and OAuth bearer token authentication.

Note: The example requires API version 37.0 or later. For a code example that supports earlier API versions, refer to an earlier
version of this documentation.

IN THIS SECTION:

Prerequisites

You need access and appropriate permissions to complete the code example.

Step 1: Create an Object

Step 2: Create a PushTopic

Step 3: Download and Build the Project

Before you can run the connector examples, download the Java source files and build the Java project.

Step 4: Use the Connector with Username and Password Login

Now that you’ve downloaded and built the EMP connector, use it to connect to CometD and subscribe to the PushTopic.

Step 5: Use the Connector with OAuth Bearer Token Login

You can use the connector with OAuth authentication as an alternative to username and password authentication. This step is
optional and requires an OAuth token.

Learn More About EMP Connector

Let’s take a closer look at the components of EMP Connector.

Prerequisites
You need access and appropriate permissions to complete the code example.

• Java Development Kit 8. See Java Downloads.

• Eclipse IDE for Java Developers. Download a recent version from http://www.eclipse.org/downloads/eclipse-packages/.

• Access to a Developer Edition organization.

If you are not already a member of the Lightning Platform developer community, go to developer.salesforce.com/signup
and follow the instructions for signing up for a Developer Edition organization. Even if you already have Enterprise Edition, Unlimited
Edition, or Performance Edition, use Developer Edition for developing, staging, and testing your solutions against sample data to
protect your organization’s live data. This is especially true for applications that insert, update, or delete data (as opposed to simply
reading data).

• The “API Enabled” permission must be enabled for your Developer Edition organization. This permission is enabled by default, but
may have been changed by an administrator.

• The “Streaming API” permission must be enabled.

Note: To verify that the “API Enabled” and “Streaming API” permissions are enabled in your organization, from Setup, enter
User Interface in the Quick Find box, then select User Interface.

• The logged-in user must have “Read” permission on the PushTopic standard object to receive notifications.

• The logged-in user must have “Create” permission on the PushTopic standard object to create and manage PushTopic records.

29

PrerequisitesCode Examples

https://github.com/forcedotcom/EMP-Connector
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://www.eclipse.org/downloads/eclipse-packages/
https://developer.salesforce.com/signup

• The logged-in user must have “Author Apex” permissions to create a PushTopic by using the Developer Console.

Step 1: Create an Object
To perform this example, you must first create the InvoiceStatement object. If you haven’t already created this object, see Step 1: Create
an Object.

Step 2: Create a PushTopic
To perform this example, you must create a PushTopic. If you haven’t already done so, see Step 2: Create a PushTopic.

Step 3: Download and Build the Project
Before you can run the connector examples, download the Java source files and build the Java project.

Prerequisites:

• Java Development Kit 8. See Java Downloads.

• Eclipse IDE for Java Developers. Download a recent version from http://www.eclipse.org/downloads/eclipse-packages/.

The EMP connector project includes examples under the GitHub repository’s example folder that use the connector to log in and
subscribe to events. In the next steps, you run the following examples locally on your system.

• LoginExample.java

• BearerTokenExample.java

Note: LoginExample.java logs in to your production instance. To pass in a custom login URL, such as for sandbox or My
Domain, use DevLoginExample.java instead. DevLoginExample.java also provides debug logging for the Bayeux messages
received.

To download and build the EMP connector project:

1. To download the project files, do one of the following.

• Clone the EMP-Connector project using git.

git clone https://github.com/forcedotcom/EMP-Connector

• Download the project zip file from GitHub, and then extract the zip to a local folder.

2. In Eclipse, import the Maven project from the folder where you cloned or extracted the project.

The dependencies that are specified in the Maven’s pom.xml file, such as CometD, are added in the Java project in Eclipse.

3. If the Java project wasn’t automatically built, build it.

Note: If you prefer to run the tool from the command line, generate the JAR file using the Maven command: mvn clean
package. After you run this command, a JAR file is generated that includes the connector and the LoginExample functionality.
The JAR file is a shaded JAR—it contains all the dependencies for the connector so you don’t have to download them separately.
The JAR file has a -phat Maven classifier. You can run the login example from the command line, as follows.

java -jar target/emp-connector-0.0.1-SNAPSHOT-phat.jar <username> <password> <topic>
[optional_replayId]

30

Step 1: Create an ObjectCode Examples

http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://www.eclipse.org/downloads/eclipse-packages/
https://github.com/forcedotcom/EMP-Connector/tree/master/src/main/java/com/salesforce/emp/connector/example
https://github.com/forcedotcom/EMP-Connector/blob/master/src/main/java/com/salesforce/emp/connector/example/LoginExample.java
https://github.com/forcedotcom/EMP-Connector/blob/master/src/main/java/com/salesforce/emp/connector/example/BearerTokenExample.java
https://github.com/forcedotcom/EMP-Connector/blob/master/src/main/java/com/salesforce/emp/connector/example/DevLoginExample.java

The previous command uses the LoginExample class by default, which logs in to your production instance. To pass in a
custom login URL, such as for sandbox or My Domain, use the DevLoginExample class. For example, for sandbox, specify
https://test.salesforce.com for <login_URL>.

$ java -classpath target/emp-connector-0.0.1-SNAPSHOT-phat.jar
com.salesforce.emp.connector.example.DevLoginExample <login_URL> <username> <password>
<topic> [optional_replayId]

Open Source Project

EMP Connector is an open-source project, which means that you can contribute to it with your own enhancements by submitting pull
requests to the repository.

Step 4: Use the Connector with Username and Password Login
Now that you’ve downloaded and built the EMP connector, use it to connect to CometD and subscribe to the PushTopic.

Let’s run an example that uses username and password login.

1. In the /src/main/java/com/salesforce/emp/connector/example folder, open the LoginExample.java
Java source file.

/*
* Copyright (c) 2016, salesforce.com, inc.
* All rights reserved.
* Licensed under the BSD 3-Clause license.
* For full license text, see LICENSE.TXT file in the repo root or
https://opensource.org/licenses/BSD-3-Clause
*/
package com.salesforce.emp.connector.example;

import static com.salesforce.emp.connector.LoginHelper.login;

import java.net.URL;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import java.util.function.Consumer;

import com.salesforce.emp.connector.BayeuxParameters;
import com.salesforce.emp.connector.EmpConnector;
import com.salesforce.emp.connector.LoginHelper;
import com.salesforce.emp.connector.TopicSubscription;

/**
* An example of using the EMP connector using login credentials
*/
public class LoginExample {

public static void main(String[] argv) throws Exception {
if (argv.length < 3 || argv.length > 4) {

System.err.println(
"Usage: LoginExample username password topic [replayFrom]");

System.exit(1);
}
long replayFrom = EmpConnector.REPLAY_FROM_EARLIEST;
if (argv.length == 4) {

31

Step 4: Use the Connector with Username and Password
Login

Code Examples

replayFrom = Long.parseLong(argv[3]);
}

BearerTokenProvider tokenProvider = new BearerTokenProvider(() -> {
try {

return login(argv[0], argv[1]);
} catch (Exception e) {

e.printStackTrace(System.err);
System.exit(1);
throw new RuntimeException(e);

}
});

BayeuxParameters params = tokenProvider.login();

Consumer<Map<String, Object>> consumer = event ->
System.out.println(String.format("Received:\n%s", event));

EmpConnector connector = new EmpConnector(params);

connector.setBearerTokenProvider(tokenProvider);

connector.start().get(5, TimeUnit.SECONDS);

TopicSubscription subscription = connector.subscribe(
argv[2], replayFrom, consumer).get(5, TimeUnit.SECONDS);

System.out.println(String.format("Subscribed: %s", subscription));
}

}

2. Run the LoginExample class, and provide the following argument values.

ValueArgument

Username of the logged-in userusername

Password for the username (or logged-in user)password

/topic/InvoiceStatementUpdatestopic

The sample fetches the earliest saved events within the past 24 hours. Optionally, to receive different events, you can include a replay
ID as the last argument. Valid values are:

• –1—Get all new events sent after subscription.

• –2—Get all new events sent after subscription and all past events within the past 24 hours.

• Specific number—Get all events that occurred after the event with the specified replay ID.

3. In a browser window, create or modify an invoice statement. After you create or change data that corresponds to the query in your
PushTopic, the output looks similar to the following.

Subscribed: Subscription [/topic/InvoiceStatementUpdates:-2]
Received:

32

Step 4: Use the Connector with Username and Password
Login

Code Examples

{event={createdDate=2016-12-12T22:31:48.035Z, replayId=1, type=created},
sobject={Status__c=Open, Id=a070P00000pn0hyQAA, Name=INV-0001, Description__c=blah}}
Received:
{event={createdDate=2016-12-12T22:32:06.440Z, replayId=2, type=updated},
sobject={Status__c=Negotiating, Id=a070P00000pn0hyQAA, Name=INV-0001,
Description__c=blah}}
Received:
{event={createdDate=2016-12-12T22:32:57.404Z, replayId=3, type=created},
sobject={Status__c=Open, Id=a070P00000pn0lfQAA, Name=INV-0002, Description__c=Laptops
and accessories.}}

Generally, do not handle usernames and passwords of others when running code in production. In a production environment, delegate
the login to OAuth. The next step connects to Streaming API with OAuth.

Step 5: Use the Connector with OAuth Bearer Token Login
You can use the connector with OAuth authentication as an alternative to username and password authentication. This step is optional
and requires an OAuth token.

Prerequisites

Obtain an OAuth bearer access token for your Salesforce user. You supply this access token in the connector example.

See Set Up Authentication with OAuth 2.0. Also see Authenticate Apps with OAuth in Salesforce Help and Understanding Authentication
in the REST API Developer Guide.

Let’s run an example that uses OAuth bearer token login.

1. In the /src/main/java/com/salesforce/emp/connector/example folder, open the
BearerTokenExample.java Java source file.

/*
* Copyright (c) 2016, salesforce.com, inc. All rights reserved. Licensed under the BSD
3-Clause license. For full
* license text, see LICENSE.TXT file in the repo root or
https://opensource.org/licenses/BSD-3-Clause
*/
package com.salesforce.emp.connector.example;

import java.net.MalformedURLException;
import java.net.URL;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import java.util.function.Consumer;

import com.salesforce.emp.connector.BayeuxParameters;
import com.salesforce.emp.connector.EmpConnector;
import com.salesforce.emp.connector.TopicSubscription;
import org.cometd.bayeux.Channel;

/**
* An example of using the EMP connector using bearer tokens
*/
public class BearerTokenExample {

public static void main(String[] argv) throws Exception {
if (argv.length < 2 || argv.length > 4) {

33

Step 5: Use the Connector with OAuth Bearer Token LoginCode Examples

https://help.salesforce.com/articleView?id=remoteaccess_authenticate.htm&language=en_US
https://help.salesforce.com/
https://developer.salesforce.com/docs/atlas.en-us.212.0.api_rest.meta/api_rest/intro_understanding_authentication.htm
https://developer.salesforce.com/docs/atlas.en-us.212.0.api_rest.meta/api_rest/

System.err.println("Usage: BearerTokenExample url token topic [replayFrom]");

System.exit(1);
}
long replayFrom = EmpConnector.REPLAY_FROM_EARLIEST;
if (argv.length == 4) {

replayFrom = Long.parseLong(argv[3]);
}

BayeuxParameters params = new BayeuxParameters() {

@Override
public String bearerToken() {

return argv[1];
}

@Override
public URL host() {

try {
return new URL(argv[0]);

} catch (MalformedURLException e) {
throw new IllegalArgumentException(String.format(

"Unable to create url: %s", argv[0]), e);
}

}
};

Consumer<Map<String, Object>> consumer = event -> System.out.println(
String.format("Received:\n%s", event));

EmpConnector connector = new EmpConnector(params);

connector.addListener(Channel.META_CONNECT, new LoggingListener(true, true))
.addListener(Channel.META_DISCONNECT, new LoggingListener(true, true))
.addListener(Channel.META_HANDSHAKE, new LoggingListener(true, true));

connector.start().get(5, TimeUnit.SECONDS);

TopicSubscription subscription = connector.subscribe(
argv[2], replayFrom, consumer).get(5, TimeUnit.SECONDS);

System.out.println(String.format("Subscribed: %s", subscription));
}

}

2. Run the BearerTokenExample class, and provide the following argument values.

ValueArgument

URL of the Salesforce instance of the logged-in userurl

The access token returned by the OAuth authentication flowtoken

/topic/InvoiceStatementUpdatestopic

34

Step 5: Use the Connector with OAuth Bearer Token LoginCode Examples

The sample fetches the earliest saved events within the past 24 hours. Optionally, to receive different events, you can include a replay
ID as the last argument. Valid values are:

• –1—Get all new events sent after subscription.

• –2—Get all new events sent after subscription and all past events within the past 24 hours.

• Specific number—Get all events that occurred after the event with the specified replay ID.

3. In a browser window, create or modify an invoice statement. After you create or change data that corresponds to the query in your
PushTopic, the output looks similar to the following.

Subscribed: Subscription [/topic/InvoiceStatementUpdates:-2]
Received:
{event={createdDate=2016-12-12T22:31:48.035Z, replayId=1, type=created},
sobject={Status__c=Open, Id=a070P00000pn0hyQAA, Name=INV-0001, Description__c=blah}}
Received:
{event={createdDate=2016-12-12T22:32:06.440Z, replayId=2, type=updated},
sobject={Status__c=Negotiating, Id=a070P00000pn0hyQAA, Name=INV-0001,
Description__c=blah}}
Received:
{event={createdDate=2016-12-12T22:32:57.404Z, replayId=3, type=created},
sobject={Status__c=Open, Id=a070P00000pn0lfQAA, Name=INV-0002, Description__c=Laptops
and accessories.}}

Learn More About EMP Connector
Let’s take a closer look at the components of EMP Connector.

Authenticating
The LoginExample class logs in to production by default using the passed-in user-credential information.

After initial authentication, LoginExample reauthenticates the user if the authentication becomes invalid, such as when a Salesforce
session is invalidated or an access token is revoked. LoginExample listens to 401::Authentication invalid error
messages that Streaming API sends when the authentication is no longer valid. The class reauthenticates after a 401 error is received.
The token provider performs the reauthentication and is set using the EmpConnector.setBearerTokenProvider() method.

BearerTokenProvider tokenProvider = new BearerTokenProvider(() -> {
try {

return login(argv[0], argv[1]);
} catch (Exception e) {

e.printStackTrace(System.err);
System.exit(1);
throw new RuntimeException(e);

}
});

BayeuxParameters params = tokenProvider.login();
// . . .
connector.setBearerTokenProvider(tokenProvider);

35

Learn More About EMP ConnectorCode Examples

For OAuth authentication, the BearerTokenExample uses the BayeuxParameters constructor to override the methods in
the BayeuxParameters class and provides the token and URL values.

BayeuxParameters params = new BayeuxParameters() {

@Override
public String bearerToken() {

return "<token>";
}

@Override
public URL host() {

try {
return new URL("<URL>");

} catch (MalformedURLException e) {
throw new IllegalArgumentException(

String.format("Unable to create url: %s", argv[0]), e);
}

}
};

Note: BearerTokenExample doesn’t support reauthentication, but you can add this support. Reauthentication is implemented
only in LoginExample and DevLoginExample.

Listening to Events
To listen to events, the connector uses the Java event in a lambda expression. This statement prints the event message to the output
for each received event notification. Place this statement before the statement that subscribes to the topic.

Consumer<Map<String, Object>> consumer = event -> System.out.println(
String.format("Received:\n%s", event));

Subscribing to a Topic
The EmpConnector class is the main class that exposes the functionality of starting a connection and subscribing. The class contains
functions to create a connection, subscribe to a topic, cancel a subscription, and stop a connection.

// Instantiate the EMP connector
EmpConnector connector = new EmpConnector(params);

// Wait for handshake with Streaming API
connector.start().get(5, TimeUnit.SECONDS);

// Subscribe to a topic
// Block and wait for the subscription to succeed for 5 seconds
TopicSubscription subscription = connector.subscribe("/topic/myTopic",

replayFrom, consumer).get(5, TimeUnit.SECONDS);

To end a subscription, call these functions.

// Cancel a subscription
subscription.cancel();

36

Learn More About EMP ConnectorCode Examples

// Stop the connector
connector.stop();

Debug Logging
To aid in debugging, the LoggingListener class logs Bayeux messages to the console. BearerTokenExample and
DevLoginExample use logging but not LoginExample. DevLoginExample is part of the EMP Connector GitHub project,
but is not covered in this walkthrough. For more information, see the EMP Connector Readme page.

Example: Authentication

You can set up a simple authentication scheme for developer testing. For production systems, use robust authorization, such as OAuth
2.0.

IN THIS SECTION:

Set Up Authentication for Developer Testing

Set Up Authentication with OAuth 2.0

Set Up Authentication for Developer Testing
To set up authorization for developer testing:

Important: This authorization method is simple to use and recommended for testing your code quickly. However, we recommend
that you use OAuth 2.0 in a production environment for more robust security. The OAuth authentication method with a connected
app provides restricted access and other benefits.

1. Log in using the SOAP API login() and get the session ID.

2. Set up the HTTP authorization header using this session ID:

Authorization: Bearer sessionId

The CometD endpoint requires a session ID on all requests, plus any additional cookies set by the Salesforce server.

For more information, see Step 4: Use the Connector with Username and Password Login.

Set Up Authentication with OAuth 2.0
Setting up OAuth 2.0 requires some configuration in the user interface and in other locations. If any of the steps are unfamiliar, you can
consult the REST API Developer Guide or OAuth 2.0 documentation.

The sample Java code in this chapter uses the Apache HttpClient library which may be downloaded from
http://hc.apache.org/httpcomponents-client-ga/.

1. In Salesforce Classic, from Setup, enter Apps in the Quick Find box, then select Apps. Or in Lightning Experience, enter App
in the Quick Find box, then select App Manager. Click New in the Connected Apps related list to create a new connected
app.

The Callback URL you supply here is the same as your Web application's callback URL. Usually it’s a servlet if you work with
Java. It must be secure: http:// doesn’t work, only https://. For development environments, the callback URL is similar to

37

Example: AuthenticationCode Examples

https://github.com/forcedotcom/EMP-Connector
https://developer.salesforce.com/docs/atlas.en-us.212.0.api_rest.meta/api_rest/quickstart_oauth.htm
http://oauth.net/2/
http://hc.apache.org/httpcomponents-client-ga/

https://my-website/_callback. When you click Save, the Consumer Key is created and displayed, and a Consumer
Secret is created (click the link to reveal it).

Note: The OAuth 2.0 specification uses “client” instead of “consumer.” Salesforce supports OAuth 2.0.

The values here correspond to the following values in the sample code in the rest of this procedure:

• client_id is the Consumer Key

• client_secret is the Consumer Secret

• redirect_uri is the Callback URL.

An additional value you must specify is: the grant_type. For OAuth 2.0 callbacks, the value is authorization_code as
shown in the sample. For more information about these parameters, see Digging Deeper into OAuth 2.0 in Salesforce.

If the value of client_id (or consumer key) and client_secret (or consumer secret) are valid, Salesforce
sends a callback to the URI specified in redirect_uri that contains a value for access_token.

2. From your Java or other client application, make a request to the authentication URL that passes in grant_type, client_id,
client_secret, username, and password . For example:

HttpClient httpclient = new DefaultHttpClient();
HttpPost post = new HttpPost(baseURL);

List<BasicNameValuePair> parametersBody = new ArrayList<BasicNameValuePair>();

parametersBody.add(new BasicNameValuePair("grant_type", password));
parametersBody.add(new BasicNameValuePair("client_id", clientId));
parametersBody.add(new BasicNameValuePair("client_secret", client_secret));
parametersBody.add(new BasicNameValuePair("username", "auser@example.com"));
parametersBody.add(new BasicNameValuePair("password", "swordfish"));

Important: This method of authentication should only be used in development environments and not for production code.

Example: This example gets the session ID (authenticates), and then follows a resource,
https://instance.salesforce.com/id/00Dxxxxxxxxxxxx/005xxxxxxxxxxxx contained in the first
response to get more information about the user.

public static void oAuthSessionProvider(String loginHost, String username,
String password, String clientId, String secret)
throws HttpException, IOException

{
// Set up an HTTP client that makes a connection to REST API.
DefaultHttpClient client = new DefaultHttpClient();
HttpParams params = client.getParams();
HttpClientParams.setCookiePolicy(params, CookiePolicy.RFC_2109);
params.setParameter(HttpConnectionParams.CONNECTION_TIMEOUT, 30000);

// Set the SID.
System.out.println("Logging in as " + username + " in environment " + loginHost);

String baseUrl = loginHost + "/services/oauth2/token";
// Send a post request to the OAuth URL.
HttpPost oauthPost = new HttpPost(baseUrl);
// The request body must contain these 5 values.
List<BasicNameValuePair> parametersBody = new ArrayList<BasicNameValuePair>();

38

Set Up Authentication with OAuth 2.0Code Examples

https://help.salesforce.com/articleView?id=remoteaccess_authenticate_overview.htm&language=en_US

parametersBody.add(new BasicNameValuePair("grant_type", "password"));
parametersBody.add(new BasicNameValuePair("username", username));
parametersBody.add(new BasicNameValuePair("password", password));
parametersBody.add(new BasicNameValuePair("client_id", clientId));
parametersBody.add(new BasicNameValuePair("client_secret", secret));
oauthPost.setEntity(new UrlEncodedFormEntity(parametersBody, HTTP.UTF_8));

// Execute the request.
System.out.println("POST " + baseUrl + "...\n");
HttpResponse response = client.execute(oauthPost);
int code = response.getStatusLine().getStatusCode();
Map<String, String> oauthLoginResponse = (Map<String, String>)

JSON.parse(EntityUtils.toString(response.getEntity()));
System.out.println("OAuth login response");
for (Map.Entry<String, String> entry : oauthLoginResponse.entrySet())
{

System.out.println(String.format(" %s = %s", entry.getKey(), entry.getValue()));

}
System.out.println("");

// Get user info.
String userIdEndpoint = oauthLoginResponse.get("id");
String accessToken = oauthLoginResponse.get("access_token");
List<BasicNameValuePair> qsList = new ArrayList<BasicNameValuePair>();
qsList.add(new BasicNameValuePair("oauth_token", accessToken));
String queryString = URLEncodedUtils.format(qsList, HTTP.UTF_8);
HttpGet userInfoRequest = new HttpGet(userIdEndpoint + "?" + queryString);
HttpResponse userInfoResponse = client.execute(userInfoRequest);
Map<String, Object> userInfo = (Map<String, Object>)

JSON.parse(EntityUtils.toString(userInfoResponse.getEntity()));
System.out.println("User info response");
for (Map.Entry<String, Object> entry : userInfo.entrySet())
{

System.out.println(String.format(" %s = %s", entry.getKey(), entry.getValue()));

}
System.out.println("");

// Use the user info in interesting ways.
System.out.println("Username is " + userInfo.get("username"));
System.out.println("User's email is " + userInfo.get("email"));
Map<String, String> urls = (Map<String, String>)userInfo.get("urls");
System.out.println("REST API url is " + urls.get("rest").replace("{version}",

"42.0"));
}

The output from this code resembles the following:

Logging in as auser@example.com in environment https://login.salesforce.com
POST https://login.salesforce.com/services/oauth2/token...

OAuth login response
id = https://login.salesforce.com/id/00D30000000ehjIEAQ/00530000003THy8AAG

39

Set Up Authentication with OAuth 2.0Code Examples

issued_at = 1334961666037
instance_url = https://instance.salesforce.com
access_token =

00D30000000ehjI!ARYAQHc.0Mlmz.DCg3HRNF.SmsSn5njPkry2SM6pb6rjCOqfAODaUkv5CGksRSPRb.xb
signature = 8M9VWBoaEk+Bs//yD+BfrUR/+5tkNLgXAIwal1PMwsY=

User info response
user_type = STANDARD
status = {created_date=2012-04-08T16:44:58.000+0000, body=Hello}
urls = {sobjects=https://instance.salesforce.com/services/data/v{version}/sobjects/,

feeds=https://instance.salesforce.com/services/data/v{version}/chatter/feeds,
users=https://instance.salesforce.com/services/data/v{version}/chatter/users,
query=https://instance.salesforce.com/services/data/v{version}/query/,
enterprise=https://instance.salesforce.com/services/Soap/c/{version}/00D30000000ehjI,
recent=https://instance.salesforce.com/services/data/v{version}/recent/,
feed_items=https://instance.salesforce.com/services/data/v{version}/chatter/feed-items,
search=https://instance.salesforce.com/services/data/v{version}/search/,
partner=https://instance.salesforce.com/services/Soap/u/{version}/00D30000000ehjI,
rest=https://instance.salesforce.com/services/data/v{version}/,
groups=https://instance.salesforce.com/services/data/v{version}/chatter/groups,
metadata=https://instance.salesforce.com/services/Soap/m/{version}/00D30000000ehjI,
profile=https://instance.salesforce.com/00530000003THy8AAG}
locale = en_US
asserted_user = true
id = https://login.salesforce.com/id/00D30000000ehjIEAQ/00530000003THy8AAG
nick_name = SampleNickname
photos = {picture=https://instance.content.force.com/profilephoto/005/F,

thumbnail=https://c.instance.content.force.com/profilephoto/005/T}
display_name = Sample User
first_name = Admin
last_modified_date = 2012-04-19T04:35:29.000+0000
username = auser@example.com
email = emailaddr@example.com
organization_id = 00D30000000ehjIEAQ
last_name = User
utcOffset = -28800000
active = true
user_id = 00530000003THy8AAG
language = en_US

Username is auser@example.com
User's email is emailaddr@example.com
REST API url is https://instance.salesforce.com/services/data/v42.0/

40

Set Up Authentication with OAuth 2.0Code Examples

USING STREAMING API

CHAPTER 4 Working with PushTopics

Each PushTopic record that you create corresponds to a channel in CometD. The channel name is the
name of the PushTopic prefixed with “/topic/”, for example, /topic/MyPushTopic. A Bayeux client
can receive streamed events on this channel. The channel name is case-sensitive when you subscribe.

In this chapter ...

• PushTopic Queries

• Event Notification
Rules Note: Updates performed by the Bulk API won’t generate notifications, since such updates could

flood a channel.
• Replay PushTopic

Streaming Events As soon as a PushTopic record is created, the system starts evaluating record creates, updates, deletes,
and undeletes for matches. Whenever there’s a match, a new notification is generated. The server polls• Filtered Subscriptions
for new notifications for currently subscribed channels every second. This time may fluctuate depending
on the overall server load.

• Bulk Subscriptions

• Deactivating a Push
Topic The PushTopic defines when notifications are generated in the channel. This is specified by configuring

the following PushTopic fields:

• PushTopic Queries

• Events

• Notifications

Note: To receive notifications, users must have read access on both the object in the PushTopic
query and the PushTopic itself.

41

PushTopic Queries

The PushTopic query is the basis of the PushTopic channel and defines which record create, update, delete, or undelete events generate
a notification. This query must be a valid SOQL query. To ensure that notifications are sent in a timely manner, the following requirements
apply to PushTopic queries.

• The query SELECT clause must include Id. For example: SELECT Id, Name FROM....

• Only one entity per query.

• The object must be valid for the specified API version.

The fields that you specify in the PushTopic SELECT clause make up the body of the notification that is streamed on the PushTopic
channel. For example, if your PushTopic query is SELECT Id, Name, Status__c FROM InvoiceStatement__c, then
the ID, Name and Status__c fields are included in any notifications sent on that channel. Following is an example of a notification
message that might appear in that channel:

{
"channel": "/topic/InvoiceStatementUpdates",
"data":
{
"event":
{
"type": "updated",
"createdDate": "2011-11-03T15:59:06.000+0000"

},
"sobject":
{
"Name": "INV-0001",
"Id": "a00D0000008o6y8IAA",
"Status__c": "Open"

}
}

}

If you change a PushTopic query, those changes take effect immediately on the server. A client receives events only if they match the
new SOQL query. If you change a PushTopic Name, live subscriptions are not affected. New subscriptions must use the new channel
name.

Security and the PushTopic Query
Subscribers receive notifications about records that were created, updated, deleted, or undeleted if they have:

• Field-level security access to the fields specified in the WHERE clause

• Read access on the object in the query

• Read access on the PushTopic

• Visibility of the new or modified record based on sharing rules

If the subscriber doesn’t have access to specific fields referenced in the query SELECT clause, then those fields aren’t included in the
notification. If the subscriber doesn’t have access to all fields referenced in the query WHERE clause, then they will not receive the
notification.

42

PushTopic QueriesWorking with PushTopics

For example, assume a user tries to subscribe to a PushTopic with the following Query value:

SELECT Id, Name, SSN__c
FROM Employee__c
WHERE Bonus_Received__c = true AND Bonus_Amount__c > 20000

If the subscriber doesn't have access to Bonus_Received__c or Bonus_Amount__c, the subscription fails. If the subscriber
doesn’t have access to SSN__c, then it won’t be returned in the notification.

If the subscriber has already successfully subscribed to the PushTopic, but the field-level security then changes so that the user no longer
has access to one of the fields referenced in the WHERE clause, no streamed notifications are sent.

Supported PushTopic Queries
All custom objects are supported in PushTopic queries. The following subset of standard objects are supported in PushTopic queries:
Account, Campaign, Case, Contact, Lead, Opportunity, Task. The following standard objects are supported in PushTopic queries through
a pilot program: ContractLineItem, Entitlement, LiveChatTranscript, Quote, QuoteLineItem, ServiceContract.

Important: Tasks that are created or updated using the following methods don’t appear in task object topics in the streaming
API.

• Lead conversion

• Entity merge

• Mass email contacts/leads

Also, the standard SOQL operators as well as most SOQL statements and expressions are supported. Some SOQL statements aren’t
supported. See Unsupported PushTopic Queries.

The following are examples of supported SOQL statements.

• Custom object

SELECT Id, MyCustomField__c FROM MyCustomObject__c

• Standard objects (may include custom fields)

– Account

SELECT Id, Name FROM Account WHERE NumberOfEmployees > 1000

– Campaign

SELECT Id, Name FROM Campaign WHERE Status = 'Planned'

– Case

SELECT Id, Subject FROM Case WHERE Status = 'Working' AND IsEscalated = TRUE

– Contact

SELECT Id, Name, Email FROM Contact;

– Lead

SELECT Id, Company FROM Lead WHERE Industry = 'Computer Services'

43

Supported PushTopic QueriesWorking with PushTopics

– Opportunity

SELECT Id, Name, Amount FROM Opportunity WHERE CloseDate < 2011-06-14

– Task

SELECT Id, Subject, IsClosed, Status FROM Task WHERE isClosed = TRUE

Important:

• To receive notifications on the IsClosed field, the subscriber must subscribe to the Status field referenced in
the query.

• To receive notifications on the WhoCount and WhatCount fields, the subscriber must subscribe to the WhoId
and WhatId fields. Subscriptions based only on the WhoCount or WhatCount fields aren’t supported.

Compound Fields in PushTopic Queries
By default, the support of compound fields, such as Name or Address fields, depends on which fields are present in the PushTopic query.
For Name compound fields, you must specify the Name field. For Address and Geolocation fields, you must specify the constituent fields.

Note: If the PushTopic field NotifyForFields is set to All, compound fields are supported. In this case, it’s not necessary
to explicitly reference compound or constituent fields in the PushTopic query. The special behavior listed in the following sections
applies only for the default NotifyForFields setting (Referenced) or when NotifyForFields is set to Select
or Where.

Name Compound Field
To detect changes on the Name compound field, include the Name field in the SELECT or WHERE clause. The constituent fields, such as
firstName and lastName, are optional, but the Name field is required. The returned notification message includes all constituent field
values. If the Name field is omitted, changes can’t be detected, even if the constituent fields are present.

The following table shows supported and unsupported SELECT statements. These statements contain fields for the Name compound
field on Contact or Lead.

Supported?Fields

YesSELECT Id, Name

YesSELECT Id, Name, firstName, lastName

NoSELECT Id, firstName, lastName

Address Compound Field
To detect changes of Address compound fields, include the constituent fields in the SELECT or WHERE clause. The Address field, such
as MailingAddress on Contact or ShippingAddress on Account, is optional, but the constituent fields are required. If the constituent fields
are omitted, changes can’t be detected, even if the Address field is present.

The following table shows supported and unsupported SELECT statements. These statements contain MailingAddress fields of Contact.

44

Compound Fields in PushTopic QueriesWorking with PushTopics

Supported?Fields

NoSELECT Id, MailingAddress

YesSELECT Id, MailingAddress, MailingCity,
MailingStreet

YesSELECT Id, MailingCity, MailingStreet

Geolocation Compound Field
To detect changes of Geolocation compound fields, include the latitude and longitude constituent fields in the SELECT or WHERE clause.
The Geolocation field is optional, but the constituent fields are required. If the constituent fields are omitted, changes can’t be detected,
even if the Geolocation field is present.

The following table shows supported and unsupported SELECT statements. These statements contain a custom Geolocation field called
location__c and its constituent fields.

Supported?Fields

NoSELECT Id, location__c

YesSELECT Id, location__c,
location__latitude__s,
location__longitude__s

YesSELECT Id, location__latitude__s,
location__longitude__s

Unsupported PushTopic Queries
The following SOQL statements are not supported in PushTopic queries.

• Queries without an Id in the selected fields list

• Semi-joins and anti-joins

– Example query: SELECT Id, Name FROM Account WHERE Id IN (SELECT AccountId FROM Contact
WHERE Title = 'CEO')

– Error message: INVALID_FIELD, semi/anti join sub-selects are not supported

• Aggregate queries (queries that use AVG, MAX, MIN, and SUM)

– Example query: SELECT Id, AVG(AnnualRevenue) FROM Account

– Error message: INVALID_FIELD, Aggregate queries are not supported

• COUNT

– Example query: SELECT Id, Industry, Count(Name) FROM Account

– Error message: INVALID_FIELD, Aggregate queries are not supported

• LIMIT

– Example query: SELECT Id, Name FROM Contact LIMIT 10

45

Unsupported PushTopic QueriesWorking with PushTopics

– Error message: INVALID_FIELD, 'LIMIT' is not allowed

• Relationships aren’t supported, but you can reference an ID:

– Example query: SELECT Id, Contact.Account.Name FROM Contact

– Error message: INVALID_FIELD, relationships are not supported

• Searching for values in Text Area fields.

• ORDER BY

– Example query: SELECT Id, Name FROM Account ORDER BY Name

– Error message: INVALID_FIELD, 'ORDER BY' clause is not allowed

• GROUP BY

– Example query: SELECT Id, AccountId FROM Contact GROUP BY AccountId

– Error message: INVALID_FIELD, 'Aggregate queries are not supported'

• Formula fields in WHERE clauses (formula fields are supported in SELECT clauses though.)

• NOT

– Example query: SELECT Id FROM Account WHERE NOT Name = 'Salesforce.com'

– Error message: INVALID_FIELD, 'NOT' is not supported

To make this a valid query, change it to SELECT Id FROM Account WHERE Name != 'Salesforce.com'.

Note: The NOT IN phrase is supported in PushTopic queries.

• OFFSET

– Example query: SELECT Id, Name FROM Account WHERE City = 'New York' OFFSET 10

– Error message: INVALID_FIELD, 'OFFSET' clause is not allowed

• TYPEOF

– Example query: SELECT TYPEOF Owner WHEN User THEN LastName ELSE Name END FROM Case

– Error message: INVALID_FIELD, 'TYPEOF' clause is not allowed

Note: TYPEOF is currently available as a Developer Preview as part of the SOQL Polymorphism feature. For more information
on enabling TYPEOF for your organization, contact Salesforce.

Event Notification Rules

Notifications are generated for record events based on how you configure your PushTopic. The Streaming API matching logic uses the
NotifyForOperationCreate, NotifyForOperationUpdate, NotifyForOperationDelete,
NotifyForOperationUndelete, and NotifyForFields fields in a PushTopic record to determine whether to generate
a notification.

Clients must connect using the cometd/29.0 (or later) Streaming API endpoint to receive delete and undelete event notifications.

Events
Events that may generate a notification are the creation, update, delete, or undelete of a record. The PushTopic
NotifyForOperationCreate, NotifyForOperationUpdate, NotifyForOperationDelete, and

46

Event Notification RulesWorking with PushTopics

NotifyForOperationUndelete fields enable you to specify which events may generate a notification in that PushTopic channel.
The fields are set as follows:

DescriptionField

true if a create operation should generate a notification,
otherwise, false.

NotifyForOperationCreate

true if a delete operation should generate a notification,
otherwise, false.

NotifyForOperationDelete

true if an undelete operation should generate a notification,
otherwise, false.

NotifyForOperationUndelete

true if an update operation should generate a notification,
otherwise, false.

NotifyForOperationUpdate

In API version 28.0 and earlier, you use the NotifyForOperations field to specify which events generate a notification, and can
only specify create or update events. The NotifyForOperations values are:

DescriptionNotifyForOperations
Value

Evaluate a record to possibly generate a notification whether the record has been created or
updated.

All (default)

Evaluate a record to possibly generate a notification only if the record has been created.Create

Evaluate a record to possibly generate a notification only if the record has been updated.Update

A value of Extended means that neither create or update operations are set to generate events.
This value is provided to allow clients written to API version 28.0 or earlier to work with Salesforce
organizations configured to generate delete and undelete notifications.

Extended

The event field values together with the NotifyForFields value provides flexibility when configuring when you want to generate
notifications using Streaming API.

Notifications
After a record is created or updated (an event), the record is evaluated against the PushTopic query and a notification might be generated.
A notification is the message sent to the channel as the result of an event. The notification is a JSON formatted message. The PushTopic
field NotifyForFields specifies how the record is evaluated against the PushTopic query. The NotifyForFields values
are:

DescriptionNotifyForFields Value

Notifications are generated for all record field changes, provided the evaluated records match the
criteria specified in the WHERE clause.

All

Changes to fields referenced in the SELECT and WHERE clauses are evaluated. Notifications are
generated for the evaluated records only if they match the criteria specified in the WHERE clause.

Referenced (default)

47

NotificationsWorking with PushTopics

DescriptionNotifyForFields Value

Changes to fields referenced in the SELECT clause are evaluated. Notifications are generated for
the evaluated records only if they match the criteria specified in the WHERE clause.

Select

Changes to fields referenced in the WHERE clause are evaluated. Notifications are generated for
the evaluated records only if they match the criteria specified in the WHERE clause.

Where

The fields that you specify in the PushTopic query SELECT clause are contained in the notification message.

NotifyForFields Set to All
When you set the value of PushTopic.NotifyForFields to All, a change to any field value in the record causes the Streaming
API matching logic to evaluate the record to determine if a notification should be generated. Changes to record field values cause this
evaluation whether or not those fields are referenced in the PushTopic query SELECT clause or WHERE clause.

A notification is generated whenEvent

The record field values match the values specified in the WHERE clauseRecord is created

The record field values match the values specified in the WHERE clauseRecord is updated

Examples

ResultPushTopic Query

Generates a notification if any field values in the record have changed.SELECT Id, f1, f2, f3
FROM InvoiceStatement

Generates a notification if any field values in the record have changed and f3 and f4 match the
values in the WHERE clause.

SELECT Id, f1, f2 FROM
InvoiceStatement WHERE
f3 = 'abc' AND f4 LIKE
'xyz'

When Id is the only field in the SELECT clause, a notification is generated if any field values have
changed.

SELECT Id FROM
InvoiceStatement

Generates a notification if any field values in the record have changed and f3 and f4 match the
values in the WHERE clause.

SELECT Id FROM
InvoiceStatement WHERE
f3 = 'abc' AND f4 LIKE
'xyz'

Generates a notification if any field values in the record have changed and the record ID is contained
in the WHERE clause IN list.

SELECT Id FROM
InvoiceStatement WHERE
Id IN
('a07B0000000KWZ7IAO',
'e10R0000000KEU9IAO',
'v32B0000000KWZ7YEP')

Generates a notification if any field values in the record have changed and the record ID is contained
in the WHERE clause IN list.

SELECT Id, f1, f2 FROM
InvoiceStatement WHERE

48

NotificationsWorking with PushTopics

ResultPushTopic Query

Id IN
('a07B0000000KWZ7IAO',
'e10R0000000KEU9IAO',
'v32B0000000KWZ7YEP')

Generates a notification if any field values in the record have changed, f3 and f4 match the WHERE
clause, and the record ID is contained in the WHERE clause IN list.

SELECT Id, f1, f2 FROM
InvoiceStatement WHERE
f3 = 'abc' AND f4 LIKE
'xyz' AND Id IN
('a07B0000000KWZ7IAO',
'e10R0000000KEU9IAO',
'v32B0000000KWZ7YEP')

Warning: Use caution when setting NotifyForFields to All. When you use this value, then notifications are generated
for all record field changes as long as the new field values match the values in the WHERE clause. Therefore, the number of generated
notifications could potentially be large, and you may hit the daily quota of events allocation. In addition, because every record
change is evaluated and many notifications may be generated, this causes a heavier load on the system.

NotifyForFields Set to Referenced
When you set the value of PushTopic.NotifyForFields to Referenced, a change to any field value in the record as long
as that field is referenced in the query SELECT clause or WHERE clause causes the Streaming API matching logic to evaluate the record
to determine if a notification should be generated.

If the PushTopic.NotifyForFields value is Referenced, then the PushTopic query must have a SELECT clause with at
least one field other than ID or a WHERE clause with at least one field other than Id.

A notification is generated whenEvent

The record field values match the values specified in the WHERE clauseRecord is created

Record is updated • A change occurs in one or more record fields that are specified in the PushTopic query SELECT
clause or

• A change occurs in one or more record fields that are specified in the PushTopic query WHERE
clause and

• The record values of the fields specified in the WHERE clause all match the values in the
PushTopic query WHERE clause

Examples

ResultPushTopic Query

Generates a notification if f1, f2, or f3 have changed.SELECT Id, f1, f2, f3 FROM
InvoiceStatement__c

49

NotificationsWorking with PushTopics

ResultPushTopic Query

Generates a notification if f1, f2, f3, or f4 have changed and f3 and f4 match the
values in the WHERE clause.

SELECT Id, f1, f2 FROM
InvoiceStatement__c WHERE f3 =
'abc' AND f4 LIKE 'xyz'

Generates a notification if f3 and f4 have changed and f3 and f4 match the values
in the WHERE clause.

SELECT Id FROM
InvoiceStatement__c WHERE f3 =
'abc' AND f4 LIKE 'xyz'

Generates a notification if f1 or f2 have changed and the record ID is contained in
the WHERE clause IN list.

SELECT Id, f1, f2 FROM
InvoiceStatement__c WHERE Id IN
('a07B0000000KWZ7IAO',
'e10R0000000KEU9IAO',
'v32B0000000KWZ7YEP')

Generates a notification if f1, f2, f3, or f4 have changed, f3 and f4 match the values
in the WHERE clause, and the ID is contained in the WHERE clause IN list.

SELECT Id, f1, f2 FROM
InvoiceStatement__c WHERE f3 =
'abc' AND f4 LIKE 'xyz' AND Id
IN ('a07B0000000KWZ7IAO',
'e10R0000000KEU9IAO',
'v32B0000000KWZ7YEP')

NotifyForFields Set to Select
When you set the value of PushTopic.NotifyForFields to Select, a change to any field value in the record as long as that
field is referenced in the query SELECT clause causes the Streaming API matching logic to evaluate the record to determine if a notification
should be generated.

If the PushTopic.NotifyForFields value is Select, then the PushTopic query must have a SELECT clause with at least one
field other than ID.

A notification is generated whenEvent

The record field values match the values specified in the WHERE clauseRecord is created

Record is updated • A change occurs in one or more record fields that are specified in the PushTopic query SELECT
clause and

• The record values of the fields specified in the WHERE clause all match the values in the
PushTopic query WHERE clause

Examples

ResultPushTopic Query

Generates a notification if f1, f2, or f3 have changed.SELECT Id, f1, f2, f3 FROM
InvoiceStatement__c

50

NotificationsWorking with PushTopics

ResultPushTopic Query

Generates a notification if f1 or f2 have changed and f3 and f4 match the values
in the WHERE clause.

SELECT Id, f1, f2 FROM
InvoiceStatement__c WHERE f3 =
'abc' AND f4 LIKE 'xyz'

Generates a notification if f1 or f2 have changed and ID is contained in the WHERE
clause IN list.

SELECT Id, f1, f2 FROM
InvoiceStatement__c WHERE Id IN
('a07B0000000KWZ7IAO',
'e10R0000000KEU9IAO',
'v32B0000000KWZ7YEP')

Generates a notification if f1 or f2 have changed, f3 and f4 match the values in the
WHERE clause, and the ID is contained in the WHERE clause IN list.

SELECT Id, f1, f2 FROM
InvoiceStatement__c WHERE f3 =
'abc' AND f4 LIKE 'xyz' AND Id
IN ('a07B0000000KWZ7IAO',
'e10R0000000KEU9IAO',
'v32B0000000KWZ7YEP')

NotifyForFields Set to Where
When you set the value of PushTopic.NotifyForFields to Where, a change to any field value in the record as long as that
field is referenced in the query WHERE clause causes the Streaming API matching logic to evaluate the record to determine if a notification
should be generated.

If the PushTopic.NotifyForFields value is Where, then the PushTopic query must have a WHERE clause with at least one
field other than Id.

A notification is generated whenEvent

The record field values match the values specified in the WHERE clauseRecord is created

Record is updated • A change occurs in one or more record fields that are specified in the PushTopic query WHERE
clause and

• The record values of the fields specified in the WHERE clause all match the values in the
PushTopic query WHERE clause

Examples

ResultPushTopic Query

Generates a notification if f3 or f4 have changed and the values match the values
in the WHERE clause.

SELECT Id, f1, f2 FROM
InvoiceStatement__c WHERE f3 =
'abc' AND f4 LIKE 'xyz'

Generates a notification if f3 or f4 have changed and the values match the values
in the WHERE clause.

SELECT Id FROM
InvoiceStatement__c WHERE f3 =
'abc' AND f4 LIKE 'xyz'

51

NotificationsWorking with PushTopics

ResultPushTopic Query

Generates a notification if f3 or f4 have changed, f3 and f4 match the values in the
WHERE clause, and the record ID is contained in the WHERE clause IN list.

SELECT Id, f1, f2 FROM
InvoiceStatement__c WHERE f3 =
'abc' AND f4 LIKE 'xyz' AND Id
IN ('a07B0000000KWZ7IAO',
'e10R0000000KEU9IAO',
'v32B0000000KWZ7YEP')

Notification Scenarios
Following is a list of example scenarios and the field values you need in a PushTopic record to generate notifications.

ConfigurationScenario

You want to receive all notifications of all record updates. • MyPushTopic.Query = SELECT Id, Name,
Description__c FROM InvoiceStatement

• MyPushTopic.NotifyForFields = All

You want to receive notifications of all record changes
only when the Name or Amount fields change. For
example, if you’re maintaining a list view.

• MyPushTopic.Query = SELECT Id, Name, Amount__c
FROM InvoiceStatement

• MyPushTopic.NotifyForFields = Referenced

You want to receive notification of all record changes made
to a specific record.

• MyPushTopic.Query = SELECT Id, Name, Amount__c
FROM InvoiceStatement WHERE
Id='a07B0000000KWZ7IAO'

• MyPushTopic.NotifyForFields = All

You want to receive notification only when the Name or
Amount field changes for a specific record. For example,

• MyPushTopic.Query = SELECT Id, Name, Amount__c
FROM InvoiceStatement WHERE
Id='a07B0000000KWZ7IAO'if the user is on a detail page and only those two fields are

displayed.
• MyPushTopic.NotifyForFields = Referenced

You want to receive notification for all invoice statement
record changes for vendors in a particular state.

• MyPushTopic.Query = SELECT Id, Name, Amount__c
FROM InvoiceStatement WHERE BillingState__c
= 'NY'

• MyPushTopic.NotifyForFields = All

You want to receive notification for all invoice statement
record changes where the invoice amount is $1,000 or
more.

• MyPushTopic.Query = SELECT Id, Name FROM
InvoiceStatement WHERE Amount > 999

• MyPushTopic.NotifyForFields = Referenced

52

NotificationsWorking with PushTopics

Replay PushTopic Streaming Events

Salesforce stores PushTopic-based events for 24 hours and allows you to retrieve stored and new events. Subscribers can choose which
events to receive by using replay options.

For more information about durable events, see Message Durability.

Code Samples
• GitHub: Durable PushTopic Streaming Demo

• GitHub: Streaming Replay Client Extensions

Filtered Subscriptions

Reduce the number of PushTopic event notifications by specifying record fields to filter on when you subscribe to a channel.

Specify the filter criteria in an expression you append to the subscription URI, as follows.

/topic/ChannelName?<expression>

ChannelName is the channel, and <expression> is the expression containing one or more conditions. Join conditions with the
& operator. Only the & operator is supported. Use this syntax for the <expression>.

?fieldA=valueA&fieldB=valueB&...

Include each field used in a filter condition in the PushTopic query. The & operator acts like the logical OR operator, so record events
are matched if any condition is true.

Note: If you use an ID in filter criteria, use the 18-character ID format; 15-character IDs aren’t supported.

Example: This subscription returns event notifications for records whose industry is Energy or shipping city is San Francisco.

/topic/myChannel?Industry='Energy'&ShippingCity='San Francisco'

The PushTopic query for this subscription includes the Industry and ShippingCity fields.

Bulk Subscriptions

You can subscribe to multiple topics at the same time.

To do so, send a JSON array of subscribe messages instead of a single subscribe message. For example this code subscribes to three
topics:

[
{

"channel": "/meta/subscribe",
"clientId": "Un1q31d3nt1f13r",
"subscription": "/topic/foo"

},
{

"channel": "/meta/subscribe",
"clientId": "Un1q31d3nt1f13r",
"subscription": "/topic/bar"

53

Replay PushTopic Streaming EventsWorking with PushTopics

https://github.com/developerforce/SalesforceDurablePushTopicDemo
https://github.com/developerforce/StreamingReplayClientExtensions

},
{

"channel": "/meta/subscribe",
"clientId": "Un1q31d3nt1f13r",
"subscription": "/topic/baz"

}

]

For more information, see the Bayeux Specification.

Deactivating a Push Topic

You can temporarily deactivate a PushTopic, rather than deleting it, by setting the isActive field to false.

• To deactivate a PushTopic by Id, execute the following Apex code:

PushTopic pt = new PushTopic(Id='0IFD0000000008jOAA', IsActive = false);
update(pt);

54

Deactivating a Push TopicWorking with PushTopics

http://svn.cometd.com/trunk/bayeux/bayeux.html#toc_57

CHAPTER 5 Streaming API Considerations

Streaming API helps you create near real-time update notifications of your Salesforce data. This chapter
covers some client and troubleshooting considerations to keep in mind when implementing Streaming
API.

In this chapter ...

• Clients and Timeouts

• Clients and Cookies
for Streaming API

• Supported CometD
Versions

• HTTPS
Recommended

• Debugging
Streaming API
Applications

• Monitoring Event
Usage

• Notification Message
Order

• Considerations for
Multiple Notifications
in the Same
Transaction

55

Clients and Timeouts

Streaming API imposes two timeouts, as supported in the Bayeux protocol.

Socket timeout: 110 seconds
A client receives events (JSON-formatted HTTP responses) while it waits on a connection. If no events are generated and the client
is still waiting, the connection times out after 110 seconds and the server closes the connection. Clients should reconnect before
two minutes to avoid the connection timeout.

Reconnect timeout: 40 seconds
After receiving the events, a client needs to reconnect to receive the next set of events. If the reconnection doesn't happen within
40 seconds, the server expires the subscription and the connection is closed. If this happens, the client must start again and handshake,
subscribe, and connect.

Each Streaming API client logs into an instance and maintains a session. When the client handshakes, connects, or subscribes, the session
timeout is restarted. A client session times out if the client doesn’t reconnect to the server within 40 seconds after receiving a response
(an event, subscribe result, and so on).

Note that these timeouts apply to the Streaming API client session and not the Salesforce authentication session. If the client session
times out, the authentication session remains active until the organization-specific timeout policy goes into effect.

Note: In addition to timeouts, a client might disconnect from the channel due to network failures. For more information, see
Short Network Failures and Long Network Failures or Server Failures in the CometD Reference Documentation.

Clients and Cookies for Streaming API

The client you create to work with the Streaming API must obey the standard cookie protocol with the server. The client must accept
and send the appropriate cookies for the domain and URI path, for example
https://instance_name.salesforce.com/cometd.

Streaming API requirements on clients:

• The "Content-Type: application/json" header is required on all calls to the cometd servlet if the content of the
post is JSON.

• A header containing the Salesforce session ID or OAuth token is required. For example, Authorization: Bearer sessionId.

• The client must accept and send back all appropriate cookies for the domain and URI path. Clients must obey the standard cookie
protocol with the server.

• The subscribe response and other responses might contain the following fields. These fields aren't contained in the CometD
specification.

– EventType contains either created or updated.

– CreatedDate contains the event's creation date.

Supported CometD Versions

Use CometD version 3.1.0 or later in your clients to connect to Streaming API. Earlier versions aren’t supported and could result in
unexpected behavior. To prevent potential issues with old CometD versions in your clients, upgrade the CometD library to a supported
version. For more information, see https://cometd.org/.

56

Clients and TimeoutsStreaming API Considerations

https://docs.cometd.org/current/reference/#_short_network_failures
https://docs.cometd.org/current/reference/#_long_network_failures_or_server_failures
https://docs.cometd.org/current/reference/
https://cometd.org/

HTTPS Recommended

Streaming API follows the preference set by your administrator for your organization. By default this is HTTPS. To protect the security of
your data, we recommend you use HTTPS.

Debugging Streaming API Applications

You must be able to see all of the requests and responses to debug Streaming API applications. Because Streaming API applications are
stateful, you need to use a proxy tool to debug your application. Use a tool that can report the contents of all requests and results, such
as Burp Proxy, Fiddler, or Firebug.

The most common errors include:

• Browser and JavaScript issues

• Sending requests out of sequence

• Malformed requests that don't follow the Bayeux protocol

• Authorization issues

• Network or firewall issues with long-lived connections

Using these tools, you can look at the requests, headers, body of the post, as well as the results. If you must contact us for help, be sure
to copy and save these elements to assist in troubleshooting.

Handling Streaming API Errors
Learn about some common errors and how to handle them in your streaming client.

401 Authentication Errors
Client authentication can sometimes become invalid, for example, when the OAuth token is revoked or a Salesforce admin revokes the
Salesforce session. An admin can revoke an OAuth token or delete a Salesforce session to prevent a client from receiving events. Sometimes
a client can inadvertently invalidate its authentication by logging out from a Salesforce session. Streaming API regularly validates the
OAuth token or session ID while the client is connected. If client authentication is not valid, the client is notified with an error. A Bayeux
message is sent on the /meta/connect channel with an error value of 401::Authentication invalid and an advice
field containing reconnect=none. After receiving the error notification in the channel listener, the client must reauthenticate and
reconnect to receive new events.

Note: If the OAuth or session token is not sent in the request header, the 401 error message text is 401::Request requires
authentication.

The error response message that is sent on the /meta/connect channel looks similar to the following.

{
"clientId": "1q1ib66fvm7kli1gfoauu95i78g",
"advice": {
"reconnect": "none",
"interval": 0

},
"channel": "/meta/connect",
"id": 7,
"error": "401::Authentication invalid",

57

HTTPS RecommendedStreaming API Considerations

http://portswigger.net/burp/proxy.html
http://www.fiddler2.com/fiddler2/
http://getfirebug.com/

"successful": false
}

If the client is required to perform a new handshake request due to a failed connection, the authentication error is sent on the
/meta/handshake channel. The handshake request fails with a 403::Handshake denied error in the response. The
401::Authentication invalid error is nested in the ext property in the response.

The error response message that is sent on the /meta/handshake channel looks similar to the following.

{
"ext": {
"sfdc": {
"failureReason": "401::Authentication invalid"

}
},
"advice": {
"reconnect": "none"

},
"channel": "/meta/handshake",
"error": "403::Handshake denied",
"successful": false

}

For a code example about reauthentication, see the AuthFailureListener class in the EMPConnector GitHub project.

Note: Invalidated client authentication doesn’t include Salesforce session expiration. The Salesforce session never expires in a
CometD client. Salesforce keeps extending the timeout interval as long as the client stays connected.

403 Unknown Client Error
If a long-lived connection is lost due to unexpected network disruption, the CometD server times out the client and deletes the client
state. The CometD client attempts to reconnect but the connection is rejected with the 403::Unknown client error because
the client state doesn't exist anymore. The error response returned when the client attempts to reconnect after a timeout looks similar
to the following message.

{
"error":"403::Unknown client",
"successful":false,
"advice":{"interval":0,"reconnect":"handshake"}

}

When the client receives the 403::Unknown client error with the "reconnect":"handshake" advice field, the client
must perform a new handshake. If the handshake is successful, the client must resubscribe to the channel in the handshake listener.

For more information, see Clients and Timeouts.

Note: The 403::Unknown client error is sometimes returned when using more than one CometD connection. You can
have only one CometD connection in one browser. If you have more than one connection because you have multiple clients or
another app is using one CometD connection, your client fails to connect. In this event, ensure to turn off the other client or share
the CometD connection between clients.

403 Resource Limit and Validation Errors for Handshake Requests
After a client sends a handshake request, Streaming API checks the client’s API version and resource limits to ensure that the client can
perform a successful connection. The following validations are performed.

58

Handling Streaming API ErrorsStreaming API Considerations

https://github.com/forcedotcom/EMP-Connector/blob/master/src/main/java/com/salesforce/emp/connector/EmpConnector.java

• API Version

• Maximum concurrent clients (subscribers) across all streaming channels

• Simultaneous connections limit on the Salesforce app servers. This limit protects against denial of service attacks.

If the client fails the validation, the response contains 403::Handshake denied in the error field, and the cause of the error
is returned in the nested ext/sfdc/failureReason field. For example, the following response message is returned when the
number of simultaneous connections has been exhausted.

{
"channel" : "/meta/handshake",
"id" : "1",
"error" : "403::Handshake denied",
"successful" : false,
"advice" : {
"reconnect" : "none"

},
"ext" : {
"sfdc" : {
"failureReason" : "403::To protect all customers from excessive use and Denial of

Service attacks, we limit the number of simultaneous connections per server.
Your request has been denied because this limit has been exceeded.
Please try your request again later."

},
"replay" : true,
"payload.format" : true

}
}

Note: The maximum daily event usage is checked when the client subscribes.

Streaming API Error Codes
Learn about the errors that Streaming API can return to troubleshoot your streaming client.

Error DescriptionError MessageError Code

The API version information was not in the URI. Include
the API version at the end of the URI. For example,
/cometd/42.0.

API version in the URI is mandatory. URI format:
'/cometd/42.0'

400

The supplied API version in the URI is not supported. Only
API version 23.0 and later is supported. The URI format is
/cometd/xx.x.

Unsupported API version. Only API versions '23.0' and
above are supported. URI format: '/cometd/42.0'

400

An invalid transport type was used. Only long-polling is
supported, but another connection type was requested,
such as WebSocket or callback long-polling.

Invalid connection type {connection_type}400

The streaming channel requested to subscribe to doesn’t
exist. Ensure that the channel is created before
subscribing.

The channel you requested to subscribe to does not exist
{channel_name}

400

59

Streaming API Error CodesStreaming API Considerations

Error DescriptionError MessageError Code

The channel name wasn’t specified. Specify a valid
channel name to subscribe to.

Channel name not specified400

The channel name format is invalid. Channel names must
start with a leading slash (/).

Channel subscriptions must start with a leading '/'400

The supplied query fields don’t exist on the Salesforce
object specified in the PushTopic.

Query fields {query_fields} do not exist on the topic
entity

400

No cookie was found after the client established a session.
Ensure that the streaming client accepts cookies.

Client client_name has established a session, but
no cookie_name cookie present

400

The supplied replay ID is invalid. Ensure that the replay
ID corresponds to an event that is within the retention

The replayId {replay_id} you provided was invalid.
Please provide a valid ID, -2 to replay all events, or -1 to
replay only new events.

400

window and that has not been deleted. Alternatively,
provide -2 to replay all events or -1 to replay only new
events.

The supplied authentication token or session ID is not
valid. This error is returned on the /meta/handshake

Authentication invalid.401

or the /meta/connect channel. On the
/meta/handshake channel, the error is in the
failureReason response field, which is nested
under the ext/sfdc field. On the /meta/connect
channel, the error is in the error field.

No authentication token or session ID was supplied in
the request header. The client must send authentication

Request requires authentication.401

information. This error is returned in the handshake error
response (on the /meta/handshake channel) in
the failureReason response field, which is nested
under the ext/sfdc field. The error field in the
response also contains the following error:
403::Handshake denied.

The subscription channel can’t be created, which can be
due to insufficient permissions.

Cannot create channel {channel_name}403

The subscriber doesn’t have access to the Salesforce
object in the PushTopic.

Subscriber does not have access to the entity in this topic403

The subscriber doesn’t have access to all fields referenced
in the WHERE clause of the PushTopic.

Subscriber does not have access to all fields referenced
in the where clause of the PushTopic

403

The handshake request was denied. The cause of this
error is provided in the failureReason field in the
response, which is nested under the ext/sfdc field.

Handshake denied403

The client has not completed a handshake. The client
must perform a handshake before subscribing.

Client has not completed handshake403

60

Streaming API Error CodesStreaming API Considerations

Error DescriptionError MessageError Code

The maximum number of concurrent clients across all
channels has been exceeded. This error applies to any

Organization concurrent user limit exceeded403

type of event, including PushTopic, generic, and platform
events.

The maximum number of daily events has been
exceeded. This error applies to any type of event,
including PushTopic, generic, and platform events.

Organization total events daily limit exceeded403

The user doesn’t have the required permissions to
subscribe to the streaming channel.

Restricted channel403

The user doesn’t have read permission on the PushTopic.User not enabled for streaming403

The user must have the View All Data permission to
subscribe to Change Data Capture (CDC). CDC is part of
a pilot program.

User not allowed to subscribe CDC without View All Data
permissions

403

The maximum number of concurrent clients per topic
for PushTopic and generic events has been exceeded.
This error doesn’t apply to platform events.

Subscription limit exceeded for this topic403

The server deleted the client CometD session due to a
timeout, which can be caused by a network failure. The
client must perform a new handshake and reconnect.

Unknown client403

Salesforce app servers enforce a limit on simultaneous
connections per server to protect from excessive use and

To protect all customers from excessive use and Denial
of Service attacks, we limit the number of simultaneous

403

denial of service attacks. Your request has been deniedconnections per server. Your request has been denied
because this limit has been exceeded. Try your requestbecause this limit has been exceeded. Please try your

request again later. again later. This error is returned in a handshake response
(on the /meta/handshake channel) in the
failureReason response field, which is nested
under the ext/sfdc field. The response also contains
an error in the error field: 403::Handshake
denied.

The maximum request size of 32,768 bytes has been
exceeded.

Maximum Request Size Exceeded413

Generic Streaming-only Errors
The following errors are returned for generic streaming events only.

Error DescriptionError MessageError Code

The maximum number of generic streaming channels has
been exceeded.

Unable to create channel dynamically, maximum
channel limit has been exceeded

403

61

Streaming API Error CodesStreaming API Considerations

Error DescriptionError MessageError Code

The generic streaming channel can’t be accessed because
the user doesn’t have permissions on the
StreamingChannel object.

No access on channel403

The generic streaming channel exists with a different case.
Generic streaming channel names are case-sensitive.

channel names may not vary only by case404

The generic streaming channel isn’t found or can’t be
created dynamically.

Unknown channel404

Monitoring Event Usage

Obtain basic daily event usage for PushTopic events through the UI, or full usage information for all events through the API.

SEE ALSO:

Streaming API Allocations

Monitor PushTopic Event Usage in the UI
When using API version 36.0 and earlier, you can monitor Streaming API daily event usage for PushTopic events on the Company
Information page in Setup.

• From Setup, enter Company Information in the Quick Find box, then select Company Information.

PushTopic event usage is displayed with the label Streaming API Events, Last 24 Hours.

When you refresh the Company Information page, the Streaming API Events value can fluctuate slightly. You can ignore these small
fluctuations; your allocations are being assessed accurately.

Note: For API version 37.0 and later, usage information is available only through the API, not in the UI.

Monitor Event Usage with the REST API
Use the REST API limits resource to obtain usage information for Streaming API (API version 36.0 and earlier) and Durable Streaming
API (API version 37.0 and later).

The usage information that the limits resource returns includes:

API VersionDescriptionLimit Label

37.0 and laterMaximum and remaining number of generic events in the
past 24 hours for Durable Streaming

DailyDurableGenericStreamingApiEvents

37.0 and laterMaximum and remaining number of PushTopic events in the
past 24 hours for Durable Streaming

DailyDurableStreamingApiEvents

37.0 and laterMaximum and remaining number of concurrent clients
(subscribers) for Durable Streaming

DurableStreamingApiConcurrentClients

62

Monitoring Event UsageStreaming API Considerations

API VersionDescriptionLimit Label

36.0 and earlierMaximum and remaining number of generic events in the
past 24 hours

DailyGenericStreamingApiEvents

36.0 and earlierMaximum and remaining number of PushTopic events in the
past 24 hours

DailyStreamingApiEvents

36.0 and earlierMaximum and remaining number of concurrent clients
(subscribers)

StreamingApiConcurrentClients

REST API Endpoint

/vXX.X/limits/

For more information, see Limits and List Organization Limits in the REST API Developer Guide.

Notification Message Order

Changes to data in your organization happen in a sequential manner. However, the order in which you receive event notification messages
in Streaming API isn’t guaranteed. On the client side, you can use createdDate to order the notification messages returned in a
channel. The value of createdDate is a UTC date/time value that indicates when the event occurred.

This code shows multiple messages, one generated by the creation of a record and one generated by the update of a record.

{
"channel": "/topic/InvoiceStatementUpdates",
"clientId": "1g177wgjj14omtdo3rcl0hjhm4w",
"data": {
"event": {
"type": "updated",
"createdDate": "2013-05-10T18:16:19.000+0000"

},
"sobject": {
"Name": "INV-0002",
"test_ds__Status__c": "Negotiating",
"test_ds__Description__c": "Update to invoice statement #2",
"Id": "a00D0000008pvxcIAA"

}
}

}

{
"channel": "/topic/InvoiceStatementUpdates",
"clientId": "1g177wgjj14omtdo3rcl0hjhm4w",
"data": {
"event": {
"type": "created",
"createdDate": "2013-05-10T18:15:11.000+0000"

},
"sobject": {
"Name": "INV-0003",
"test_ds__Status__c": "Open",

63

Notification Message OrderStreaming API Considerations

https://developer.salesforce.com/docs/atlas.en-us.212.0.api_rest.meta/api_rest/resources_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.212.0.api_rest.meta/api_rest/dome_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.212.0.api_rest.meta/api_rest/intro_what_is_rest_api.htm

"test_ds__Description__c": "New invoice statement #1",
"Id": "a00D0000008pvzdIAA"

}
}

}

Considerations for Multiple Notifications in the Same Transaction

Check out these knowledge articles to learn about the behavior of Streaming API when multiple notifications are delivered within the
same transaction.

• Streaming API Notifications Are Sent in Reverse Order Within a Transaction

• Multiple Streaming API Notifications for the Same Record - Notifications Are Sent for Untracked Fields

• (API Version 36.0 and Earlier) Only Last Push Topic Notification is sent out of multiple notifications done in short time

64

Considerations for Multiple Notifications in the Same
Transaction

Streaming API Considerations

https://help.salesforce.com/articleView?id=Streaming-API-Notifications-Are-Sent-in-Reverse-Order-Within-a-Transaction&language=en_US&type=1
https://help.salesforce.com/articleView?id=Multiple-Streaming-API-Notifications-for-the-Same-Record-Notifications-Are-Sent-for-Untracked-Fields&language=en_US&type=1
https://help.salesforce.com/articleView?id=Only-Last-Push-Topic-Notification-is-sent-out-of-multiple-notifications-done-in-short-time&language=en_US&type=1

GENERIC STREAMING

CHAPTER 6 Introducing Generic Streaming

Generic streaming uses Streaming API to send notifications of general events that are not tied to Salesforce
data changes.

In this chapter ...

• Replay Generic
Streaming Events Use generic streaming when you want to send and receive notifications based on custom events that

you specify. You can use generic streaming for any situation where you need to send custom notifications,
such as:

with Durable Generic
Streaming

• Broadcasting notifications to specific teams or to your entire organization

• Sending notifications for events that are external to Salesforce

To use generic streaming, you need:

• A StreamingChannel that defines the channel, with a name that is case-sensitive

• One or more clients subscribed to the channel

• The Streaming Channel Push REST API resource that lets you monitor and invoke push events on
the channel

65

Replay Generic Streaming Events with Durable Generic Streaming

A client can receive generic streaming events after it subscribes to a channel and as long as the Salesforce session is active. Events sent
before a client subscribes to a channel or after a subscribed client disconnects from the Salesforce session are missed. However, a client
can fetch the missed events within the 24-hour retention window by using Durable Generic Streaming.

For more information about durable events, see Message Durability.

Code Sample
See theses code samples about replaying generic streaming events.

• Generic Streaming Quick Start

• Example: Subscribe to and Replay Events Using a Visualforce Page

66

Replay Generic Streaming Events with Durable Generic
Streaming

Introducing Generic Streaming

CHAPTER 7 Generic Streaming Quick Start

This quick start shows you how to get started with generic streaming in Streaming API. This quick start takes you step-by-step through
the process of using Streaming API to receive a notification when an event is pushed via REST and lets you specify replay options.

IN THIS SECTION:

Create a Streaming Channel

Create a new StreamingChannel object by using the Salesforce UI.

Run a Java Client with Username and Password Login

Run a Java client that uses EMP Connector to subscribe to the channel with username and password authentication.

Run a Java Client with OAuth Bearer Token Login

Run a Java client that uses EMP Connector to subscribe to the channel with OAuth authentication.

Generate Events Using REST

Use the Streaming Channel Push REST API resource to generate event notifications to channel subscribers.

Create a Streaming Channel

Create a new StreamingChannel object by using the Salesforce UI.

You must have the proper Streaming API permissions enabled in your organization.

1. Log in to your Developer Edition organization.

2. If you’re using Salesforce Classic, under All Tabs (+), select Streaming Channels. If you’re using Lightning Experience, from the App
Launcher, select All Items, and then click Streaming Channels.

3. On the Streaming Channels page, click New to create a streaming channel.

4. Enter /u/notifications/ExampleUserChannel in Streaming Channel Name, and an optional description. Your new
Streaming Channel page should look something like this:

67

5. Select Save. You’ve just created a streaming channel that clients can subscribe to for notifications.

StreamingChannel is a regular, creatable Salesforce object, so you can also create one programmatically using Apex or any data API like
SOAP API or REST API.

Also, if you need to restrict which users can receive or send event notifications, you can use user sharing on the StreamingChannel to
control this. Channels shared with public read-only or read-write access send events only to clients subscribed to the channel that also
are using a user session associated with the set of shared users or groups. Only users with read-write access to a shared channel can
generate events on the channel, or modify the actual StreamingChannel record. To modify user sharing for a StreamingChannel, from
Setup, enter Sharing Settings in the Quick Find box, then select Sharing Settings and create or modify a StreamingChannel
sharing rule.

Generic Streaming also supports dynamic streaming channel creation, which creates a StreamingChannel when a client first subscribes
to the channel. To enable dynamic streaming channels in your org, from Setup, enter User Interface in the Quick Find box,
then select User Interface and enable Enable Dynamic Streaming Channel Creation.

Run a Java Client with Username and Password Login

Run a Java client that uses EMP Connector to subscribe to the channel with username and password authentication.

1. Get the EMP Connector project from GitHub. See Download and Build the Project.

2. In the /src/main/java/com/salesforce/emp/connector/example folder, open the LoginExample.java
Java source file.

/*
* Copyright (c) 2016, salesforce.com, inc.
* All rights reserved.
* Licensed under the BSD 3-Clause license.
* For full license text, see LICENSE.TXT file in the repo root or
https://opensource.org/licenses/BSD-3-Clause
*/
package com.salesforce.emp.connector.example;

import static com.salesforce.emp.connector.LoginHelper.login;

import java.net.URL;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import java.util.function.Consumer;

import com.salesforce.emp.connector.BayeuxParameters;
import com.salesforce.emp.connector.EmpConnector;
import com.salesforce.emp.connector.LoginHelper;
import com.salesforce.emp.connector.TopicSubscription;

/**
* An example of using the EMP connector using login credentials
*/
public class LoginExample {

public static void main(String[] argv) throws Exception {
if (argv.length < 3 || argv.length > 4) {

System.err.println(
"Usage: LoginExample username password topic [replayFrom]");

System.exit(1);

68

Run a Java Client with Username and Password LoginGeneric Streaming Quick Start

}
long replayFrom = EmpConnector.REPLAY_FROM_EARLIEST;
if (argv.length == 4) {

replayFrom = Long.parseLong(argv[3]);
}

BearerTokenProvider tokenProvider = new BearerTokenProvider(() -> {
try {

return login(argv[0], argv[1]);
} catch (Exception e) {

e.printStackTrace(System.err);
System.exit(1);
throw new RuntimeException(e);

}
});

BayeuxParameters params = tokenProvider.login();

Consumer<Map<String, Object>> consumer = event ->
System.out.println(String.format("Received:\n%s", event));

EmpConnector connector = new EmpConnector(params);

connector.setBearerTokenProvider(tokenProvider);

connector.start().get(5, TimeUnit.SECONDS);

TopicSubscription subscription = connector.subscribe(
argv[2], replayFrom, consumer).get(5, TimeUnit.SECONDS);

System.out.println(String.format("Subscribed: %s", subscription));
}

}

3. Run the LoginExample class, and provide the following argument values.

ValueArgument

Username of the logged-in user.username

Password for the username (or logged-in user).password

/u/notifications/ExampleUserChanneltopic

The sample fetches the earliest saved events within the past 24 hours. Optionally, to receive different events, you can include a replay
ID as the last argument. Valid values are:

• –1—Get all new events sent after subscription.

• –2—Get all new events sent after subscription and all past events within the past 24 hours.

• Specific number—Get all events that occurred after the event with the specified replay ID.

69

Run a Java Client with Username and Password LoginGeneric Streaming Quick Start

4. When you run this client app and generate notifications using the REST resource, the output will look something like:

Subscribed: Subscription [/u/notifications/ExampleUserChannel:-2]
Received:
{payload=Broadcast message to all subscribers,
event={createdDate=2016-12-13T00:57:36.020Z, replayId=1}}
Received:
{payload=Another message, event={createdDate=2016-12-13T00:58:16.591Z, replayId=2}}

Generally, do not handle usernames and passwords of others when running code in production. In a production environment, delegate
the login to OAuth. The next step connects to Streaming API with OAuth.

Run a Java Client with OAuth Bearer Token Login

Run a Java client that uses EMP Connector to subscribe to the channel with OAuth authentication.

Prerequisites

Obtain an OAuth bearer access token for your Salesforce user. You supply this access token in the connector example.

See Set Up Authentication with OAuth 2.0. Also see Authenticate Apps with OAuth in Salesforce Help and Understanding Authentication
in the REST API Developer Guide.

Let’s run an example that uses OAuth bearer token login.

1. Get the EMP Connector project from GitHub. See Download and Build the Project.

2. In the /src/main/java/com/salesforce/emp/connector/example folder, open the
BearerTokenExample.java Java source file.

/*
* Copyright (c) 2016, salesforce.com, inc. All rights reserved. Licensed under the BSD
3-Clause license. For full
* license text, see LICENSE.TXT file in the repo root or
https://opensource.org/licenses/BSD-3-Clause
*/
package com.salesforce.emp.connector.example;

import java.net.MalformedURLException;
import java.net.URL;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import java.util.function.Consumer;

import com.salesforce.emp.connector.BayeuxParameters;
import com.salesforce.emp.connector.EmpConnector;
import com.salesforce.emp.connector.TopicSubscription;
import org.cometd.bayeux.Channel;

/**
* An example of using the EMP connector using bearer tokens
*/
public class BearerTokenExample {

public static void main(String[] argv) throws Exception {
if (argv.length < 2 || argv.length > 4) {

System.err.println("Usage: BearerTokenExample url token topic [replayFrom]");

70

Run a Java Client with OAuth Bearer Token LoginGeneric Streaming Quick Start

https://help.salesforce.com/articleView?id=remoteaccess_authenticate.htm&language=en_US
https://help.salesforce.com/
https://developer.salesforce.com/docs/atlas.en-us.212.0.api_rest.meta/api_rest/intro_understanding_authentication.htm
https://developer.salesforce.com/docs/atlas.en-us.212.0.api_rest.meta/api_rest/

System.exit(1);
}
long replayFrom = EmpConnector.REPLAY_FROM_EARLIEST;
if (argv.length == 4) {

replayFrom = Long.parseLong(argv[3]);
}

BayeuxParameters params = new BayeuxParameters() {

@Override
public String bearerToken() {

return argv[1];
}

@Override
public URL host() {

try {
return new URL(argv[0]);

} catch (MalformedURLException e) {
throw new IllegalArgumentException(String.format(

"Unable to create url: %s", argv[0]), e);
}

}
};

Consumer<Map<String, Object>> consumer = event -> System.out.println(
String.format("Received:\n%s", event));

EmpConnector connector = new EmpConnector(params);

connector.addListener(Channel.META_CONNECT, new LoggingListener(true, true))
.addListener(Channel.META_DISCONNECT, new LoggingListener(true, true))
.addListener(Channel.META_HANDSHAKE, new LoggingListener(true, true));

connector.start().get(5, TimeUnit.SECONDS);

TopicSubscription subscription = connector.subscribe(
argv[2], replayFrom, consumer).get(5, TimeUnit.SECONDS);

System.out.println(String.format("Subscribed: %s", subscription));
}

}

3. Run the BearerTokenExample class, and provide the following argument values.

ValueArgument

Username of the logged-in user.username

Password for the username (or logged-in user).password

/u/notifications/ExampleUserChanneltopic

71

Run a Java Client with OAuth Bearer Token LoginGeneric Streaming Quick Start

The sample fetches the earliest saved events within the past 24 hours. Optionally, to receive different events, you can include a replay
ID as the last argument. Valid values are:

• –1—Get all new events sent after subscription.

• –2—Get all new events sent after subscription and all past events within the past 24 hours.

• Specific number—Get all events that occurred after the event with the specified replay ID.

4. When you run this client app and generate notifications using the REST resource, the output will look something like:

Subscribed: Subscription [/u/notifications/ExampleUserChannel:-2]
Received:
{payload=Broadcast message to all subscribers,
event={createdDate=2016-12-13T00:57:36.020Z, replayId=1}}
Received:
{payload=Another message, event={createdDate=2016-12-13T00:58:16.591Z, replayId=2}}

In the next step, you learn how to generate notifications using REST.

Generate Events Using REST

Use the Streaming Channel Push REST API resource to generate event notifications to channel subscribers.

You’ll use Workbench to access REST API and send notifications. Workbench is a free, open source, community-supported tool (see the
Help page in Workbench). Salesforce provides a hosted instance of Workbench for demonstration purposes only—Salesforce recommends
that you do not use this hosted instance of Workbench to access data in a production database. If you want to use Workbench for your
production database, you can download, host, and configure it using your own resources. You can download Workbench from
https://github.com/ryanbrainard/forceworkbench/releases.

1. In a browser, navigate to https://developer.salesforce.com/page/Workbench.

2. For Environment, select Production.

3. For API Version, select 42.0.

4. Accept the terms of service and click Login with Salesforce.

5. Once you successfully establish a connection to your database, you land on the Select page.

6. Find the StreamingChannel ID by clicking queries > SOQL Query and doing a SOQL query for SELECT Name, ID FROM
StreamingChannel. Copy down the StreamingChannel ID for /u/notifications/ExampleUserChannel.

7. Click utilities > REST Explorer.

8. In the URL field, enter /services/data/v<API version>/sobjects/StreamingChannel/<Streaming
Channel ID>/push, where v<API version> is v42.0 and <Streaming Channel ID> is the ID of the
StreamingChannel you found in Step 6.

9. Set the HTTP method by selecting POST. In Request Body, enter the JSON request body shown in “Example POST REST request
body” below.

10. With your Java subscriber client running, click Execute. This sends the event to all subscribers on the channel. You should receive
the notification with the payload text in your Java client. The REST method response will indicate the number of subscribers the
event was sent to (in this case, –1, because the event was set to broadcast to all subscribers).

You’ve successfully sent a notification to a subscriber using generic streaming. Note that you can specify the list of subscribed users to
send notifications to instead of broadcasting to all subscribers. Also, you can use the GET method of the Streaming Channel Push REST
API resource to get a list of active subscribers to the channel.

72

Generate Events Using RESTGeneric Streaming Quick Start

https://github.com/ryanbrainard/forceworkbench/releases
https://developer.salesforce.com/page/Workbench

Example: Example POST REST request body:

{

"pushEvents": [

{

"payload": "Broadcast message to all subscribers",

"userIds": []

}

]

}

73

Generate Events Using RESTGeneric Streaming Quick Start

REFERENCE

CHAPTER 8 PushTopic

Represents a query that is the basis for notifying listeners of changes to records in an organization. This is available from API version 21.0
or later.

Supported Calls

REST: DELETE, GET, PATCH, POST (query requests are specified in the URI)

SOAP: create(), delete(), describe(), describeSObjects(), query(), retrieve(), update()

Special Access Rules

• This object is only available if Streaming API is enabled for your organization.

• Only users with “Create” permission can create this record.

Fields

DescriptionField
Type

Field

Required. API version to use for executing the query specified in Query. It must be an
API version greater than 20.0. If your query applies to a custom object from a package,
this value must match the package's ApiVersion.

Example value: 42.0

doubleApiVersion

Field Properties: Create, Filter, Sort, Update

Description of the PushTopic. Limit: 400 characters

Field Properties: Create, Filter, Sort, Update

stringDescription

System field: Globally unique string that identifies a record.

Field Properties: Default on create, Filter, Group, idLookup, Sort

IDID

Indicates whether the record currently counts towards the organization's allocation.

Field Properties: Create, Default on create, Filter, Group, Sort, Update

booleanisActive

74

DescriptionField
Type

Field

System field: Indicates whether the record has been moved to the Recycle Bin (true)
or not (false).

Field Properties: Default on create, Filter, Group, Sort

booleanIsDeleted

Required. Descriptive name of the PushTopic, such as MyNewCases or
TeamUpdatedContacts. Limit: 25 characters. This value identifies the channel and
must be unique.

Field Properties: Create, Filter, Group, Sort, Update

stringName

Specifies which fields are evaluated to generate a notification.

Valid values:

picklistNotifyForFields

• All

• Referenced (default)

• Select

• Where

Field Properties: Create, Filter, Sort, Update

Specifies which record events may generate a notification.

Valid values:

picklistNotifyForOperations

• All (default)

• Create

• Extended

• Update

Field Properties for API version 28.0 and earlier: Create, Filter, Sort, Update

Field Properties for API version 29.0 and later: Filter, Sort

In API version 29.0 and later, this field is read-only, and will not contain information about
delete and undelete events. Use NotifyForOperationCreate,
NotifyForOperationDelete, NotifyForOperationUndelete and
NotifyForOperationUpdate to specify which record events should generate
a notification.

A value of Extended means that neither create or update operations are set to generate
events.

true if a create operation should generate a notification, otherwise, false. Defaults
to true. This field is available in API version 29.0 and later.

booleanNotifyForOperationCreate

true if a delete operation should generate a notification, otherwise, false. Defaults
to true. Clients must connect using the cometd/29.0 (or later) Streaming API

booleanNotifyForOperationDelete

endpoint to receive delete and undelete event notifications. This field is available in API
version 29.0 and later.

75

PushTopic

DescriptionField
Type

Field

true if an undelete operation should generate a notification, otherwise, false.
Defaults to true. Clients must connect using the cometd/29.0 (or later) Streaming

booleanNotifyForOperationUndelete

API endpoint to receive delete and undelete event notifications. This field is available in
API version 29.0 and later.

true if an update operation should generate a notification, otherwise, false. Defaults
to true. This field is available in API version 29.0 and later.

booleanNotifyForOperationUpdate

Required. The SOQL query statement that determines which record changes trigger
events to be sent to the channel.

Limit: 1,300 characters

stringQuery

Field Properties: Create, Filter, Sort, Update

PushTopic and Notifications

The PushTopic defines when notifications are generated in the channel. This is specified by configuring the following PushTopic fields:

• PushTopic Queries

• Events

• Notifications

76

PushTopic

CHAPTER 9 StreamingChannel

Represents a channel that is the basis for notifying listeners of generic Streaming API events. Available from API version 29.0 or later.

Supported Calls

REST: DELETE, GET, PATCH, POST (query requests are specified in the URI)

SOAP: create(), delete(), describe(), describeLayout(), describeSObjects(), getDeleted(),
getUpdated(), query(), retrieve(), undelete(), update()

Special Access Rules

• This object is available only if Streaming API is enabled for your organization.

• Only users with “Create” permission can create this record.

• You can create a permission set and grant users read and create access to all streaming channels in the org. This access isn’t for a
specific channel, like with user sharing.

• You can apply user sharing to StreamingChannel. You can restrict access to receiving or sending events on a channel by sharing
channels with specific users or groups. Channels shared with public read-only or read-write access send events only to clients
subscribed to the channel that also are using a user session associated with the set of shared users or groups. Only users with
read-write access to a shared channel can generate events on the channel, or modify the actual StreamingChannel record.

Dynamic Streaming Channel

Generic Streaming also supports dynamic streaming channel creation, which creates a StreamingChannel when a client first subscribes
to the channel. To enable dynamic streaming channels in your org, from Setup, enter User Interface in the Quick Find box,
then select User Interface and enable Enable Dynamic Streaming Channel Creation.

Fields

DescriptionField
Type

Field

Description of the StreamingChannel. Limit: 255 characters.

Field Properties: Create, Filter, Group, Nillable, Sort, Update

stringDescription

Label: Description

77

DescriptionField
Type

Field

System field: Globally unique string that identifies a StreamingChannel record.

Field Properties: Default on create, Filter, Group, idLookup, Sort

IDID

System field: Indicates whether the record has been moved to the Recycle Bin (true)
or not (false).

Field Properties: Default on create, Filter, Group, Sort

booleanIsDeleted

true if the channel gets dynamically created on subscribe if necessary, false
otherwise.

Field Properties: Default on create, Filter, Group, Sort

booleanIsDynamic

The timestamp for when the current user last viewed a record related to this record.

Field Properties: Filter, Sort

dateLastReferencedDate

The timestamp for when the current user last viewed this record. If this value is null, this
record might only have been referenced (LastReferencedDate) and not viewed.

Field Properties: Filter, Sort

dateLastViewedDate

Required. Descriptive name of the StreamingChannel. Limit: 80 characters, alphanumeric
and “_”, “/” characters only. Must start with “/u/”. This value identifies the channel and
must be unique.

Field Properties: Create, Filter, Group, idLookup, Sort, Update

stringName

Label: Streaming Channel Name

The ID of the owner of the StreamingChannel.

Field Properties: Create, Default on create, Filter, Group, Sort, Update

referenceOwnerId

Label: Owner Name

78

StreamingChannel

CHAPTER 10 Streaming Channel Push

Gets subscriber information and pushes notifications for Streaming Channels.

Syntax

URI
/vXX.X/sobjects/StreamingChannel/Channel ID/push

Available since release
29.0

Formats
JSON, XML

HTTP methods
GET, POST

Authentication
Authorization: Bearer token

Request body
For GET, no request body required. For POST, a request body that provides the push notification payload. This contains the following
fields:

DescriptionTypeName

List of event payloads to send notifications for.array of push event
payloads

pushEvents

Each push event payload contains the following fields:

DescriptionTypeName

Information sent with notification. Cannot exceed 3,000 single-byte characters.stringpayload

List of subscribed users to send the notification to. If this array is empty, the
notification will be broadcast to all subscribers on the channel.

array of User IDsuserIds

Request parameters
None

Response data
For GET, information on the channel and subscribers is returned in the following fields:

79

DescriptionTypeName

User IDs of currently subscribed users to this channel.array of User IDsOnlineUserIds

Name of the channel, for example,
/u/notifications/ExampleUserChannel.

stringChannelName

For POST, information on the channel and payload notification results is returned in an array of push results, each of which contains
the following fields:

DescriptionTypeName

The number of subscribers that the event got sent to. This is the count of
subscribers specified in the POST request that were online. If the request was

numberfanoutCount

broadcast to all subscribers, fanoutCount will be –1. If no active subscribers were
found for the channel, fanoutCount will be 0.

List of User IDs the notification was sent to and their listener status. If true the
User ID is actively subscribed and listening, otherwise false.

array of User online status
information

userOnlineStatus

Example

The following is an example JSON response of a GET request for
services/data/v29.0/sobjects/StreamingChannel/0M6D000000000g7KXA/push:

{
"OnlineUserIds" : ["005D0000001QXi1IAG"],
"ChannelName" : "/u/notifications/ExampleUserChannel"

}

Using a POST request to services/data/v29.0/sobjects/StreamingChannel/0M6D000000000g7KXA/push
with a request JSON body of:

{
"pushEvents": [

{
"payload": "hello world!",
"userIds": ["005xx000001Svq3AAC", "005xx000001Svq4AAC"]

},
{

"payload": "broadcast to everybody (empty user list)!",
"userIds": []

}
]

}

the JSON response data looks something like:

[
{
"fanoutCount" : 1,
"userOnlineStatus" : {

80

Streaming Channel Push

"005xx000001Svq3AAC" : true,
"005xx000001Svq4AAC" : false,

}
},
{
"fanoutCount" : -1,
"userOnlineStatus" : {
}

}
]

81

Streaming Channel Push

CHAPTER 11 Streaming API Allocations

These default allocations are for basic consumers of Streaming API.

If your application exceeds these allocations, or you have scenarios for which you need to increase the number of concurrent clients,
contact Salesforce.

PushTopic Streaming Allocations

The following allocations apply to PushTopic Streaming in all API versions.

All other
supported
editions

Enterprise
Edition

Performance
and
Unlimited
Editions

Description

4050100Maximum number of topics (PushTopic records) per org

201,0002,000Maximum number of concurrent clients (subscribers) per topic or across all topics

50,000
(10,000 for

free orgs)

200,0001,000,000Maximum number of events within a 24-hour period

110 seconds110 seconds110 secondsSocket timeout during connection (CometD session)

40 seconds40 seconds40 secondsTimeout to reconnect after successful connection (keepalive)

1,300
characters

1,300
characters

1,300
characters

Maximum length of the SOQL query in the Query field of a PushTopic record

25 characters25 characters25 charactersMaximum length for a PushTopic name

Note: For free orgs, the maximum number of events within a 24-hour period is 10,000. Free orgs include Developer Edition orgs
and trial orgs (all editions), such as partner test and demo orgs created through the Environment Hub. Sandboxes get the same
allocations as their associated production orgs.

82

Generic Streaming Allocations

Free OrgsProfessional
Edition

Enterprise
Edition

Performance
and
Unlimited
Editions

Description

2001,0001,0001,000Maximum streaming channels per org

10,000100,000100,000100,000Maximum events within a 24-hour period with Generic Streaming
(API version 36.0 and earlier)

10,000100,000200,0001,000,000Maximum events within a 24-hour period with Durable Generic
Streaming (API version 37.0 and later)

Note: Free orgs include Developer Edition orgs and trial orgs (all editions), such as partner test and demo orgs created through
the Environment Hub. Sandboxes get the same allocations as their associated production orgs.

Generic Streaming has the same allocations for the maximum number of concurrent clients as PushTopic Streaming. The following
allocations apply to Generic Streaming and Durable Generic Streaming.

All other
supported
editions

Enterprise
Edition

Performance
and
Unlimited
Editions

Description

201,0002,000Maximum concurrent clients (subscribers) per generic streaming channel or across all
generic streaming channels

83

Streaming API Allocations

INDEX

A
Allocations 82

B
Bayeux protocol 2
Browsers supported 56
Bulk subscriptions 53

C
Client

timeout 56
Client connection 3
Clients for Streaming API 56
CometD 2
Considerations

multiple notifications in the same transaction 64

D
Debugging Streaming API

error codes 59
handling errors 57
overview and tools 57

Durable streaming 4

E
Events

monitoring 62
monitoring, REST API 62
monitoring, UI 62

Example
authentication 37
EMP Connector 28
Java client 28
Visualforce interactive client 24
Visualforce interactive client for replaying durable events 13

F
Filtered Subscriptions 53

G
Generic Streaming

Create Java Client 68, 70
Create new StreamingChannel 67
Generating Events Using REST 72
Quick start 67

Generic Streaming (continued)
replay events 66

H
HTTPS 57

J
JSON array for bulk subscriptions 53

L
Long polling 2

M
Message loss 4
Message order 63

N
Notification rules 46
Notification scenarios 52
Notifications 47
NotifyForFields field 47
NotifyForOperations field 46

O
Object[PushTopic] 74
Object[StreamingChannel] 77
Ordering

notification messages 63

P
Push technology

overview 2
PushTopic

deactivating 54
NotifyForFields value All 48
NotifyForFields value Referenced 49, 51
NotifyForFields value Select 50
queries 42
security 42
working with 41

PushTopic object 74
PushTopic Streaming

replay events 53

84

Q
Queries

compound fields 44
unsupported queries 45
unsupported SOQL 45

Query
supported objects 43
supported queries 43
supported SOQL 43

Query in PushTopic 42
Quick start

using workbench 8
Quick Start

create an object 8
creating a push topic 9
prerequisites 8
subscribe to a channel 10
testing the PushTopic 11

R
Reliability 4

Replay Events
generic streaming 66
PushTopic 53

Retention 4

S
Security 42
Stateless 4
Streaming API

client 56
Getting started 1

Streaming Channel Push REST Resource 79
StreamingChannel object 77
Subscriptions

filtered 53

T
Terms 2
Timeouts 56

U
Using Streaming API 55

85

Index

	Getting Started with Force.com Streaming API
	Introducing Streaming API
	Push Technology
	Bayeux Protocol, CometD, and Long Polling
	Streaming API Terms
	How the Client Connects
	Message Reliability
	Message Durability

	Quick Start Using Workbench
	Prerequisites
	Step 1: Create an Object
	Step 2: Create a PushTopic
	Step 3: Subscribe to the PushTopic Channel
	Step 4: Test the PushTopic Channel

	Code Examples
	Example: Subscribe to and Replay Events Using a Visualforce Page
	Prerequisites
	Deploy a Sample Project to Your Org
	Assign a Permission Set
	Durable PushTopic Streaming Sample
	Use a Visualforce Page to Generate and Replay PushTopic Events

	Durable Generic Streaming Sample
	Create a Streaming Channel
	Use a Visualforce Page to Generate and Replay Generic Events

	Replay Events Sample: Code Walkthrough

	Example: Interactive Visualforce Page without Replay
	Prerequisites
	Step 1: Create an Object
	Step 2: Create a PushTopic
	Step 3: Create the Static Resources
	Step 4: Create a Visualforce Page
	Step 5: Test the PushTopic Channel

	Example: Subscribe to and Replay Events Using a Java Client
	Prerequisites
	Step 1: Create an Object
	Step 2: Create a PushTopic
	Step 3: Download and Build the Project
	Step 4: Use the Connector with Username and Password Login
	Step 5: Use the Connector with OAuth Bearer Token Login
	Learn More About EMP Connector

	Example: Authentication
	Set Up Authentication for Developer Testing
	Set Up Authentication with OAuth 2.0

	Using Streaming API
	Working with PushTopics
	PushTopic Queries
	Security and the PushTopic Query
	Supported PushTopic Queries
	Compound Fields in PushTopic Queries
	Unsupported PushTopic Queries

	Event Notification Rules
	Events
	Notifications
	NotifyForFields Set to All
	NotifyForFields Set to Referenced
	NotifyForFields Set to Select
	NotifyForFields Set to Where
	Notification Scenarios

	Replay PushTopic Streaming Events
	Filtered Subscriptions
	Bulk Subscriptions
	Deactivating a Push Topic

	Streaming API Considerations
	Clients and Timeouts
	Clients and Cookies for Streaming API
	Supported CometD Versions
	HTTPS Recommended
	Debugging Streaming API Applications
	Handling Streaming API Errors
	Streaming API Error Codes

	Monitoring Event Usage
	Monitor PushTopic Event Usage in the UI
	Monitor Event Usage with the REST API

	Notification Message Order
	Considerations for Multiple Notifications in the Same Transaction

	Generic Streaming
	Introducing Generic Streaming
	Replay Generic Streaming Events with Durable Generic Streaming

	Generic Streaming Quick Start
	Create a Streaming Channel
	Run a Java Client with Username and Password Login
	Run a Java Client with OAuth Bearer Token Login
	Generate Events Using REST

	Reference
	PushTopic
	StreamingChannel
	Streaming Channel Push
	Streaming API Allocations

	Index

