
AJAX Toolkit Developer Guide
Version 42.0, Spring ’18

 @salesforcedocs
Last updated: March 23, 2018

https://twitter.com/salesforcedocs

© Copyright 2000–2018 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: AJAX Toolkit Developer Guide . 1

When to Use the AJAX Toolkit . 1
AJAX Toolkit Support Policy . 2
Other Resources . 2
AJAX Typographical Conventions . 2
Sample Visualforce Page Using the AJAX Toolkit . 2

Working with the AJAX Toolkit . 4
Connecting to the API . 4
Embedding API Calls in JavaScript . 5
Processing Results . 7

API Calls and the AJAX Toolkit . 8
Synchronous and Asynchronous Calls with the AJAX Toolkit . 8
Object Functions . 9
Data Types in AJAX Toolkit . 9
source Context Variable . 10
Debugging with the AJAX Toolkit . 10
Example Calls Using the Ajax Toolkit . 10

SOAP Header Options with the AJAX Toolkit . 23
Error Handling with the AJAX Toolkit . 25
Advanced Topics . 26

QueryResultIterator . 27
Differences in Escaping Reserved Characters . 27
Working with Base64 Binary Encoded Strings . 27
Timeout Parameter for Asynchronous Calls . 29
AJAX Proxy . 29

Glossary . 31

Index . 43

CHAPTER 1 AJAX Toolkit Developer Guide

Embed API calls and processes, such as within a Visualforce page, by using the AJAX Toolkit — a JavaScript wrapper around the API.

The AJAX Toolkit supports Microsoft® Internet Explorer® versions 9, 10, and 11 with the latest Microsoft hot fixes applied, and Mozilla®

Firefox®, most recent stable version. The AJAX Toolkit is based on the partner WSDL. Because there is no type checking in JavaScript, the
type information available in the enterprise WSDL is not needed.

Note: Before you use the AJAX Toolkit, familiarize yourself with JavaScript and with the information about the API in the SOAP
API Developer Guide.

When to Use the AJAX Toolkit

For best performance, use the AJAX Toolkit when working with small amounts of data.

Working with the AJAX Toolkit

API Calls and the AJAX Toolkit

This toolkit supports all SOAP API calls, as well as runTests() from Apex.

SOAP Header Options with the AJAX Toolkit

All header options in the SOAP API are supported in the toolkit, but they are specified differently than in the API.

Error Handling with the AJAX Toolkit

The AJAX Toolkit provides the ability to handle errors for synchronous and asynchronous calls.

Advanced Topics

Glossary

When to Use the AJAX Toolkit

For best performance, use the AJAX Toolkit when working with small amounts of data.

Because information is delivered via a browser, AJAX works best with relatively small amounts of data (up to 200 records, approximately
six fields with 50 characters of data each). The larger the data set returned, the more time it will take to construct and deconstruct a
SOAP message, and as the size of an individual record gets larger, the impact on performance becomes greater. Also, as more HTML
nodes are created from the data, the potential for poor performance increases. Because browsers are not efficient, careful consideration
needs to be given to browser memory management if you intend to display a large amount of data.

The following are examples of appropriate uses:

• Display or modify a single record.

• Display two or three fields from many records.

• Perform one or more simple calculations, then update a record.

The following are examples of scenarios that require case-by-case analysis:

• Update more than 200 records.

• Update records that are unusually large. For example, what happens if the user clicks the browser stop button?

• Recalculate a complex value for more than 200 records.

1

https://developer.salesforce.com/docs/atlas.en-us.212.0.api.meta/api/
https://developer.salesforce.com/docs/atlas.en-us.212.0.api.meta/api/

An example of inappropriate usage is providing a sortable grid of many records. This would require too much processing time, and
browser rendering would be too slow.

AJAX Toolkit Support Policy

Other Resources

AJAX Typographical Conventions

Sample Visualforce Page Using the AJAX Toolkit

This example demonstrates using the AJAX Toolkit in a Visualforce page.

AJAX Toolkit Support Policy
The current release of the AJAX Toolkit is the only version that receives bug fixes and enhancements. When a new version is released,
the previous version continues to be available, but is not supported.

Other Resources
In addition to the content of this document, there are other resources available for you as you learn to use the AJAX Toolkit:

• Eclipse plug-in: Force.com IDE

• Message boards: Salesforce Developers

AJAX Typographical Conventions
Topics about the AJAX Toolkit use the following typographical conventions:

DescriptionConvention

In an example, Courier font indicates items that you should type the
information as shown. This includes sample code, literals, methods,
calls, functions, and events from a variety of languages.

<script
src="/soap/ajax/42.0/connection.js"
type="text/javascript"></script>

In an example or syntax statement, italics represent variables. You
supply the actual value.

sforce.connection.header_option_name="value";

Sample Visualforce Page Using the AJAX Toolkit
This example demonstrates using the AJAX Toolkit in a Visualforce page.

To add JavaScript to a Visualforce page, use this procedure:

1. Create the Visualforce page. For more information, see the Visualforce Developer's Guide.

2. Cut and paste the following sample code into your Visualforce page.

The JavaScript code queries your organization and returns every account ID, account name, and industry type, if any:

<apex:page >
<script type="text/javascript">
var __sfdcSessionId = '{!GETSESSIONID()}';

2

AJAX Toolkit Support PolicyAJAX Toolkit Developer Guide

https://developer.salesforce.com/page/Tools
http://community.salesforce.com/sforce/board?board.id=ajax_toolkit
https://developer.salesforce.com/docs/atlas.en-us.212.0.pages.meta/pages/

</script>
<script src="../../soap/ajax/42.0/connection.js"

type="text/javascript"></script>
<script type="text/javascript"> window.onload = setupPage;
function setupPage() {
//function contains all code to execute after page is rendered

var state = { //state that you need when the callback is called
output : document.getElementById("output"),
startTime : new Date().getTime()};

var callback = {
//call layoutResult if the request is successful
onSuccess: layoutResults,

//call queryFailed if the api request fails
onFailure: queryFailed,
source: state};

sforce.connection.query(
"Select Id, Name, Industry From Account order by Industry",
callback);

}

function queryFailed(error, source) {
source.output.innerHTML = "An error has occurred: " + error;

}

/**
* This method will be called when the toolkit receives a successful
* response from the server.
* @queryResult - result that server returned
* @source - state passed into the query method call.
*/
function layoutResults(queryResult, source) {
if (queryResult.size > 0) {
var output = "";

//get the records array
var records = queryResult.getArray('records');

//loop through the records and construct html string
for (var i = 0; i < records.length; i++) {
var account = records[i];

output += account.Id + " " + account.Name +
" [Industry - " + account.Industry + "]
";

}

//render the generated html string
source.output.innerHTML = output;
}

}
</script>

3

Sample Visualforce Page Using the AJAX ToolkitAJAX Toolkit Developer Guide

<div id="output"> </div>

</apex:page>

After you created and navigated to the Visualforce page, you see text similar to this image:

Note: You can also use an Apex controller to create the Visualforce page. However, this sample is about basic functionality with
the AJAX Toolkit that contains API calls and processes Salesforce data.

Working with the AJAX Toolkit

Most JavaScript that you add to Visualforce pages, buttons, or links has three sections: first, connecting to the AJAX Toolkit, next,
embedding the API methods in JavaScript, and finally, processing the results. This section explains each of these steps.

Connecting to the API

Embedding API Calls in JavaScript

Processing Results

Connecting to the API
The first portion of any JavaScript code that uses the AJAX Toolkit must make the toolkit available to the JavaScript code. The syntax for
this is different depending on whether you are embedding JavaScript in a Visualforce page, or a button or link.

• For Visualforce pages or any source other than a custom onclick JavaScript button, specify a <script> tag that points to the
toolkit file:

<apex:page>
<script src="../../soap/ajax/42.0/connection.js"

type="text/javascript"></script>
<script>

sforce.connection.sessionId='{!GETSESSIONID()}';
...
</script>

...
</apex:page>

4

Working with the AJAX ToolkitAJAX Toolkit Developer Guide

• For a custom onclick JavaScript button, use !requireScript to point to the toolkit file:

<body>
{!requireScript("/soap/ajax/42.0/connection.js")}
...

The AJAX Toolkit picks up the endpoint and manages the session ID. You do not need to set them.

The version of the AJAX Toolkit is in the URL.

After this script executes, the toolkit is loaded and a global object, sforce.connection, is created. This object contains all of the
API calls and AJAX Toolkit methods, and manages the session ID. No other session management is needed.

Salesforce checks the IP address from which the client application is logging in, and blocks logins from unknown IP addresses. For a
blocked login via the API, Salesforce returns a login fault. Then, the user must add their security token to the end of their password in
order to log in. A security token is an automatically-generated key from Salesforce. For example, if a user's password is mypassword,
and their security token is XXXXXXXXXX, then the user must enter mypasswordXXXXXXXXXX to log in. Users can obtain their
security token by changing their password or resetting their security token via the Salesforce user interface. When a user changes their
password or resets their security token, Salesforce sends a new security token to the email address on the user's Salesforce record. The
security token is valid until a user resets their security token, changes their password, or has their password reset. When the security
token is invalid, the user must repeat the login process to log in. To avoid this, the administrator can make sure the client's IP address is
added to the organization's list of trusted IP addresses. For more information, see “Security Token” in the in the SOAP API Developer Guide.

Tip: It is recommended that you obtain your security token via the Salesforce user interface from a trusted network prior to
attempting to access Salesforce from a new location.

If Single Sign-On (SSO) is enabled for your organization, users who access the API or a desktop client cannot log in to Salesforce unless
their IP address is included on your organization's list of trusted IP addresses or on their profile, if their profile has IP address restrictions
set. Futhermore, the delegated authentication authority usually handles login lockout policies for users with the “Uses Single Sign-On”
permission. However, if the security token is enabled for your organization, then your organization's login lockout settings determine
the number of times a user can attempt to log in with an invalid security token before being locked out of Salesforce. For more information,
see “Setting Login Restrictions” and “Setting Password Policies” in the online help.

Embedding API Calls in JavaScript
After you have made the toolkit available using the procedure in Connecting to the API, you can write the JavaScript code that contains
your API calls and processing. Be sure to check the SOAP API Developer Guide for information about each call that you wish to use. The
syntax for calls is different in the AJAX Toolkit; for details see API Calls and the AJAX Toolkit.

The following example shows a simple synchronized call that you can issue after connecting. This query returns the Name and Id for
every User and writes them to the log.

result = sforce.connection.query("Select Name, Id from User");
records = result.getArray("records");

for (var i=0; i< records.length; i++) {
var record = records[i];
log(record.Name + " -- " + record.Id);

}

We recommend that you wrap your JavaScript code so that the entire HTML page is rendered by the browser before the code executes,
to avoid errors. For example:

<body onload="setupPage();">
<div id="output"></div>

</body>

5

Embedding API Calls in JavaScriptAJAX Toolkit Developer Guide

https://resources.docs.salesforce.com/212/latest/en-us/sfdc/pdf/apex_api.pdf
https://developer.salesforce.com/docs/atlas.en-us.212.0.api.meta/api/

When you specify setupPage() in the body onload, the browser initializes all HTML elements before it calls setupPage().

For example, the following code could be added to a Visualforce page to retrieve data:

<script type="text/javascript">
function setupPage() {

sforce.connection.query("Select Id, Name, Industry From Account order by
Industry",

{onSuccess : layoutResults,
onFailure : queryFailed,
source : {

output : document.getElementById("output"),
startTime : new Date().getTime()
}

});
}

</script>

The API interaction in the code above is accomplished in the first line of the setupPage function. A SOQL statement specifies what
data to return. For more information about the source context variable, see source Context Variable.

After fetching the data in this example, you should handle error conditions, for example:

function queryFailed(error, source) {
source.output.innerHTML = "

An error has occurred: <p>" + error;
}

For more about error handling, see Error Handling with the AJAX Toolkit.

Use a callback function to handle the results of this asynchronous call. A callback function is a function that is passed by reference to the
AJAX Toolkit. The AJAX Toolkit calls the callback function under defined conditions, for example, upon completion. For more information
about callback function syntax, see API Calls and the AJAX Toolkit.

For example, the following code verifies that at least one result was returned, and iterates through the result set if it exists:

/**
* This method will be called when the toolkit receives a successful
* response from the server.
* @queryResult - result that server returned
* @source - state passed into the query method call.
*/

function layoutResults(queryResult, source) {

if (queryResult.size > 0) {
var output = "";

//get the records array
var records = queryResult.getArray('records');

//loop through the records and construct html string
for (var i = 0; i < records.length; i++) {

var account = records[i];
output += account.Id + " " + account.Name +
" [Industry - " + account.Industry + "]
";

}

6

Embedding API Calls in JavaScriptAJAX Toolkit Developer Guide

//render the generated html string
source.output.innerHTML = output;
}

}

A suggested best practice is to use JavaScript onFailure as the callback function for failure conditions and JavaScript onSuccess
for processing results that are successfully returned.

For more information about embedding API calls in JavaScript with the AJAX Toolkit, especially the differences in syntax and availability
of asynchronous calls, see API Calls and the AJAX Toolkit.

Processing Results
You can process the results of a query that returns enough rows to require queryMore and queryLocator, much as you do now,
iterating across the results:

var result = sforce.connection.query("select name, id from account");
var queryMore = true;
while (queryMore) {

var records = result.getArray("records");
for (var i = 0; i < records.length; i++) {

//process records[i]
}
if (result.getBoolean("done")) {

queryMore = false;
} else {

result = sforce.connection.queryMore(result.queryLocator);
}

}

However, the AJAX Toolkit provides the QueryResultIterator object so that you can easily iterate through results without
invoking queryMore and queryLocator. If you are experienced with the API and JavaScript, see QueryResultIterator.

For other calls, you must handle the batching of up to 200 records at a time yourself. For example, the following sample shows how to
batch files for a create() call:

var accounts = [];

for (var i=0; i<10; i++) {
var account = new sforce.SObject("Account");
account.Name = "my new account " + i;
accounts.push(account);
}

var result = sforce.connection.create(accounts);

var sb = "";

for (var i=0; i<result.length; i++) {
if (result[i].getBoolean("success")) {
sb += "\n new account created with id " + result[i].id;
} else {
sb += "\n failed to create account " + result[i];
}

7

Processing ResultsAJAX Toolkit Developer Guide

}

alert("Result : " + sb);

For more examples, see Examples of Synchronous Calls.

API Calls and the AJAX Toolkit

This toolkit supports all SOAP API calls, as well as runTests() from Apex.

Synchronous and Asynchronous Calls with the AJAX Toolkit

The AJAX Toolkit supports both synchronous and asynchronous calls.

Object Functions

Property values can be accessed directly or by using a generic set or get method.

Data Types in AJAX Toolkit

The AJAX Toolkit returns all data as strings. If needed, you can convert the data into an appropriate datatype by using one of the
functions supplied with the returned object.

source Context Variable

Pass in any context and get it back in the callback method by using the source context variable.

Debugging with the AJAX Toolkit

The AJAX Toolkit provides a debugging window that pops up when certain errors are encountered.

Example Calls Using the Ajax Toolkit

Synchronous and Asynchronous Calls with the AJAX Toolkit
The AJAX Toolkit supports both synchronous and asynchronous calls.

Asynchronous calls allow the client side process to continue while waiting for a call back from the server. To issue an asynchronous call,
you must include an additional parameter with the API call, referred to as a callback function. Once the result is ready, the server invokes
the callback method with the result.

API Call Syntax in the AJAX Toolkit

SOAP API calls use slightly different syntax in AJAX Toolkit, depending on whether the call is synchronous or asynchronous.

API Call Syntax in the AJAX Toolkit
SOAP API calls use slightly different syntax in AJAX Toolkit, depending on whether the call is synchronous or asynchronous.

Synchronous Calls
Syntax:

sforce.connection.method("arg1","arg2", ...);

Example:

sforce.connection.login("MyName@MyOrg.com","myPassword1");

8

API Calls and the AJAX ToolkitAJAX Toolkit Developer Guide

Asynchronous Calls
Syntax:

method("arg1","arg2", ..., callback_method);

Example:

var callback = {onSuccess: handleSuccess, onFailure: handleFailure};
function handleSuccess(result) {}
function handleFailure(error) {}
sforce.connection.query("Select name from Account", callback);

In this example, onSuccess is the callback function, which will return the results when they are ready.

See Core Calls in the SOAP API Developer’s Guide for call usage, arguments, and best practices, but use the AJAX Toolkit syntax for methods
you embed in JavaScript.

Note: Because delete is a JavaScript keyword, use deleteIds instead of the API call delete.

Object Functions
Property values can be accessed directly or by using a generic set or get method.

• A get function for each field in the object. For example, an Account object has a get("Name") function. This can be used
instead of object.Field (for example, account.Name).

• A set function for each field in the object. For example, an Account object has a set("Name) function. This can be used instead
of object.Field = value.

Examples
For example, you can get the value of the Name field from an Account using either of these methods:

• account.get("Name")

• account.Name

• account["Name"]

You can set the value of the Name field from an Account using either of these methods:

• account.set("Name", "MyAccount");

• account.Name = "MyAccount";

• account["Name"]="MyAccount";

SEE ALSO:

Processing Results

Data Types in AJAX Toolkit
The AJAX Toolkit returns all data as strings. If needed, you can convert the data into an appropriate datatype by using one of the functions
supplied with the returned object.

• getDate maps dates to JavaScript Date.

• getDateTime maps dateTime values to JavaScript Date.

9

Object FunctionsAJAX Toolkit Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.212.0.api.meta/api/sforce_api_calls_list.htm

• getInt maps integer values to JavaScript Int.

• getFloat maps float values to JavaScript Float.

• getBoolean maps boolean values to JavaScript Boolean.

• getArray retrieves arrays of values.

• getBase64Binary returns the decoded value of a Base64 binary encoded string. This is typically used for working with documents
and attachments. See Working with Base64 Binary Encoded Strings for more information.

If you request a field whose value is null in a query, the returned value will be null. If you do not request a field, whether the value is null
or not, the value is not returned, and is therefore undefined.

source Context Variable
Pass in any context and get it back in the callback method by using the source context variable.

For an example of how to use source in an error handling context, see Error Handling with the AJAX Toolkit.

Debugging with the AJAX Toolkit
The AJAX Toolkit provides a debugging window that pops up when certain errors are encountered.

You can invoke logging explicitly using the log method. For example, if you wanted to display the debugging window with the value
of a variable at a certain point in your client application, you could add this line at the appropriate place:

sforce.debug.log(myVar);

You can open the debugging window at any point by using this command:

sforce.debug.open();

Example Calls Using the Ajax Toolkit
The next two sections contain examples of synchrononous and asynchronous calls.

The AJAX Toolkit provides a debugging window that pops up when certain errors are encountered.

You can invoke logging explicitly using the log() method. For example, if you wanted to display the debugging window with the
value of a variable at a certain point in your client application, you could add this line at the appropriate place:

sforce.debug.log(myVar);

The AJAX Toolkit samples in the following sections use log(). To use the samples in the following sections, add this simple version
of the log code before the first use of log:

function log(message) {
alert(message);

}

You can make log() as sophisticated as you wish.

Examples of Synchronous Calls

Examples of Asynchronous Calls

10

source Context VariableAJAX Toolkit Developer Guide

Examples of Synchronous Calls

Data Call Examples
login Example:

try{
var result = sforce.connection.login("myname@myemail.com", "password");
log("logged in with session id " + result.sessionId);

}catch(error) {
if (error.faultcode.indexOf("INVALID_LOGIN") != -1) {
log("check your username and passwd, invalid login");

} else {
log(error);

}
}

query Example:

result = sforce.connection.query("Select Name, Id from User");
records = result.getArray("records");

for (var i=0; i< records.length; i++) {
var record = records[i];
log(record.Name + " -- " + record.Id);

}

queryMore Example:

var result = sforce.connection.query("select name, id from account");

var queryMore = true;
while (queryMore) {

var records = result.getArray("records");
var sb = new sforce.StringBuffer();

for (var i = 0; i < records.length; i++) {
sb.append(records[i].Name).append(",");

}

log(records.length);
log(sb.toString());

if (result.getBoolean("done")) {
queryMore = false;

} else {

result = sforce.connection.queryMore(result.queryLocator);
}

}

11

Example Calls Using the Ajax ToolkitAJAX Toolkit Developer Guide

queryAll Example:

var result = sforce.connection.queryAll("Select Name, Id from Account");
var records = result.getArray("records");

for (var i=0; i<records.length; i++) {
var record = records[i];
log(record.Name + " -- " + record.Id);

}

Relationship Query Example—Child to Parent:

var result = sforce.connection.query("SELECT c.Id, c.firstname, " +
"c.lastname, c.leadsource, a.Id, a.name, a.industry, c.accountId " +
"FROM Contact c, c.account a ORDER BY leadsource LIMIT 10");

var it = new sforce.QueryResultIterator(result);

while(it.hasNext()) {
var record = it.next();
var accountName = record.Account ? record.Account.Name : null;

log(record.FirstName + " " + record.LastName +
" in account " + accountName);

}

Note: Relationship name formats differ depending on the direction of the relationship (parent-to-child or child-to-parent), and
also depending on whether the objects are standard or custom objects. For more information, see Relationship Queries in the
Salesforce SOQL and SOSL Reference Guide at www.salesforce.com/us/developer/docs/soql_sosl/index.htm.

Relationship Query Example—Parent to Child:

var result = sforce.connection.query("select a.Name, a.Industry, " +
"(select c.LastName, c.LeadSource from a.Contacts c) " +
"from account a order by industry limit 100");

var ait = new sforce.QueryResultIterator(result);

while(ait.hasNext()) {
var account = ait.next();

var contacts = [];
if (account.Contacts) {
var cit = new sforce.QueryResultIterator(account.Contacts);
while(cit.hasNext()) {
var contact = cit.next();
contacts.push(contact.LastName);

}
}

log(account.Name + ": " + contacts.join(","));
}

12

Example Calls Using the Ajax ToolkitAJAX Toolkit Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.212.0.soql_sosl.meta/soql_sosl/

create Example:

var account = new sforce.SObject("Account");
account.Name = "my new account";
var result = sforce.connection.create([account]);

if (result[0].getBoolean("success")) {
log("new account created with id " + result[0].id);

} else {
log("failed to create account " + result[0]);

}

Batch create Example:

var accounts = [];

for (var i=0; i<10; i++) {
var account = new sforce.SObject("Account");
account.Name = "my new account " + i;
accounts.push(account);

}

var result = sforce.connection.create(accounts);

for (var i=0; i<result.length; i++) {
if (result[i].getBoolean("success")) {
log("new account created with id " + result[i].id);

} else {
log("failed to create account " + result[i]);

}
}

delete Example:

//create an example account
var account = new sforce.SObject("Account");
account.Name = "my new account";
var result = sforce.connection.create([account]);

if (result[0].getBoolean("success")) {
log("new account created with id " + result[0].id);
account.Id = result[0].id;

} else {
throw ("failed to create account " + result[0]);

}

//now delete the example account
var delResult = sforce.connection.deleteIds([account.Id]);
if (delResult[0].getBoolean("success")) {
log("account with id " + result[0].id + " deleted");

} else {
log("failed to delete account " + result[0]);

}

13

Example Calls Using the Ajax ToolkitAJAX Toolkit Developer Guide

merge Example:

//create two accounts
var account1 = new sforce.SObject("Account");
account1.Name = "myName";
account1.Phone = "2837484894";

var account2 = new sforce.SObject("Account");
account2.Name = "anotherName";
account2.Phone = "938475950";

var result = sforce.connection.create([account1, account2]);
if (result.length != 2) throw "create failed";

account1.id = result[0].id;
account2.id = result[1].id;

//create merge request
var request = new sforce.MergeRequest();
request.masterRecord = account1;
request.recordToMergeIds = account2.id;

//call merge
result = sforce.connection.merge([request]);

if (result[0].getBoolean("success")) {
log("merge success " + result[0]);

} else {
log("merge failed " + result[0]);

}

process Example:

var request = new sforce.ProcessSubmitRequest();
request.objectId = "id of object that has a workflow rule on it"; // valid id
request.comments = "automated approval";

var request2 = new sforce.ProcessSubmitRequest();
request2.objectId = 'id of object that does NOT have a workflow rule on it' ; // valid id,
not useful for workflow
request2.comments = "approval that will fail";

var processRes = sforce.connection.process([request, request2]);

if(!processRes[0].getBoolean('success')){
log("The first process request failed and it should not have");

}

if(processRes[1].getBoolean('success')){
log("The second process request succeeded and it should not have");

}

log(processRes[0].errors);
log(processRes[1].errors);

14

Example Calls Using the Ajax ToolkitAJAX Toolkit Developer Guide

update Example:

//create an account
var account = new sforce.SObject("Account");
account.Name = "myName";
account.Phone = "2837484894";
result = sforce.connection.create([account]);

//update that account
account.id = result[0].id;
account.Phone = "12398238";
result = sforce.connection.update([account]);

if (result[0].getBoolean("success")) {
log("account with id " + result[0].id + " updated");

} else {
log("failed to update account " + result[0]);

}

undelete Example:

var account = new sforce.SObject("Account");
account.Name = "account to delete";
account.Phone = "2837484894";
result = sforce.connection.create([account]);
account.id = result[0].id;
log("account created " + account);

result = sforce.connection.deleteIds([account.id]);
if (!result[0].getBoolean("success")) throw "delete failed";
log("account deleted " + result);

result = sforce.connection.undelete([account.id]);
if (!result[0].getBoolean("success")) throw "undelete failed";
log("account undeleted " + result[0]);

upsert Example:

var account = new sforce.SObject("Account");
account.Name = "TestingAjaxUpsert";
account.Phone = "2837484894";
// this will insert an account
var result = sforce.connection.upsert("Id", [account]);

account.Id = result[0].id;
account.Name = "TestingAjaxUpsert2";
// this will update the account
result = sforce.connection.upsert("Id", [account]);

if(result[0].getBoolean("success") && result[0].id == account.Id) {
log("upsert updated the account as expected");
}
else {
log("upsert failed!");
}

15

Example Calls Using the Ajax ToolkitAJAX Toolkit Developer Guide

retrieve Example:

var account = new sforce.SObject("Account");
account.Name = "retrieve update test";
account.Phone = "2837484894";
var result = sforce.connection.create([account]);
if (result[0].getBoolean("success") == false) throw "create failed";
log("account created " + result[0]);

result = sforce.connection.retrieve("Name,Phone", "Account", [result[0].id]);
if (result[0] == null) throw "retrive failed";
log("account retrieved: " + result[0]);

result[0].Phone = "111111111111";
result = sforce.connection.update(result);
if (result[0].getBoolean("success") == false) throw "update failed";
log("account updated: " + result[0]);

search Example:

var result = sforce.connection.search(
"find {manoj} in Name fields RETURNING Account(name, id)");

if (result) {
var records = result.getArray("searchRecords");

for (var i=0; i<records.length; i++) {
var record = records[i].record;
log(record.Id + " -- " + record.Name);

}
}

getDeleted Example:

var start = new Date();
var end = new Date();
start.setDate(end.getDate() - 1);

var result = sforce.connection.getDeleted("Account", start, end);

var records = result.getArray("deletedRecords");

log("following records are deleted:");

for (var i=0; i<records.length; i++) {
log(records[i].id);

}

getUpdated Example:

var start = new Date();
var end = new Date();
start.setDate(end.getDate() - 1);

var result = sforce.connection.getUpdated("Account", start, end);

16

Example Calls Using the Ajax ToolkitAJAX Toolkit Developer Guide

var records = result.getArray("ids");

log("following records are updated:");
for (var i=0; i<records.length; i++) {
log(records[i]);

}

convertLead Example:

var account = new sforce.SObject("Account");
account.Name = "convert lead sample";
account.Phone = "2837484894";
result = sforce.connection.create([account]);
account.Id = result[0].id;

var lead = new sforce.SObject("Lead");
lead.Country = "US";
lead.Description = "This is a description";
lead.Email = "someone@somewhere.com";
lead.FirstName = "first";
lead.LastName = "last";
lead.Company = account.Name;
result = sforce.connection.create([lead]);
lead.Id = result[0].id;

var convert = new sforce.LeadConvert();
convert.accountId = account.Id;
convert.leadId = lead.Id;
convert.convertedStatus = "Qualified";

result = sforce.connection.convertLead([convert]);
if (result[0].getBoolean("success")) {
log("lead converted " + result[0]);

} else {
log("lead convert failed " + result[0]);

}

Describe Examples
describeSObject Account Example:

var result = sforce.connection.describeSObject("Account");

log(result.label + " : " + result.name + " : ");

log("---------- fields ---------");
for (var i=0; i<result.fields.length; i++) {
var field = result.fields[i];
log(field.name + " : " + field.label + " : " + field.length + " : ");

}

log("---------- child relationships ---------");

for (var i=0; i<result.childRelationships.length; i++) {

17

Example Calls Using the Ajax ToolkitAJAX Toolkit Developer Guide

var cr = result.childRelationships[i];
log(cr.field + " : " + cr.childSObject);

}

log("---------- record type info ----------");
for (var i=0; i<result.recordTypeInfos.length; i++) {
var rt = result.recordTypeInfos[i];
log(rt.name);

}

describeSObjects Example:

var result = sforce.connection.describeSObjects(["Account", "Contact"]);

for (var i=0; i<result.length; i++) {
log(result[i].label + " : " + result[i].name + " : ");

}

describeGlobal Example:

var result = sforce.connection.describeGlobal();

var sobjects = result.getArray("sobjects");
for (var i=0; i<sobjects.length; i++) {
log(sobjects[i].name);

}

describeLayout Example:

var result = sforce.connection.describeLayout("Account");

var layouts = result.getArray("layouts");

for (var i=0; i<layouts.length; i++) {
var layout = layouts[0];
detailLayoutSections(layout.detailLayoutSections);

}

function detailLayoutSections(sections) {
for (var i=0; i<sections.length; i++) {
var section = sections[i];
log(section.columns + ":" + section.heading + ":");
layoutRows(section.getArray("layoutRows"));

}
}

function layoutRows(rows) {
for (var i=0; i<rows.length; i++) {
var row = rows[i];
layoutItems(row.getArray("layoutItems"));

}
}

function layoutItems(items) {
for (var i=0; i<items.length; i++) {
var item = items[i];

18

Example Calls Using the Ajax ToolkitAJAX Toolkit Developer Guide

log(" " + item.label);
}

}

describeTabs Example:

var result = sforce.connection.describeTabs();

for (var i=0; i<result.length; i++) {
var tabSet = result[i];
log(tabSet.label);
displayTabs(tabSet.get("tabs"));

}

function displayTabs(tabs) {
for(var i=0; i<tabs.length; i++) {
var tab = tabs[i];
log(" " + tab.label + " " + tab.url);

}
}

Utility Examples
getServerTimestamp Example:

var result = sforce.connection.getServerTimestamp();
log(result.timestamp);

getUserInfo Example:

var user = sforce.connection.getUserInfo();
log("Hello " + user.userName);
log("Your email id is " + user.userEmail);
log("and you work for " + user.organizationName);

resetPassword and setPassword Example:

var username = "myname@myemail.com";

var result = sforce.connection.query(
"SELECT ID from User WHERE User.username='" + username + "'");

var records = result.getArray("records");
if (records.length != 1) throw "unable to find user";
var id = records[0].Id;

sforce.connection.resetPassword(id);
sforce.connection.setPassword(id, "123456");

sendEmail Example:

// single mail request
var singleRequest = new sforce.SingleEmailMessage();
singleRequest.replyTo = "jsmith@acme.com";
singleRequest.subject = "sent through ajax test driver";

19

Example Calls Using the Ajax ToolkitAJAX Toolkit Developer Guide

singleRequest.plainTextBody = "this test went through ajax";
singleRequest.toAddresses = ["noone@nowhere.com"];

// mass mail request - need to get email template ID

var queryResponse = sforce.connection.query("select id from emailtemplate");
var templatedId = queryResponse.getArray("records")[0].Id;
var massRequest = new sforce.MassEmailMessage();
massRequest.targetObjectIds = [globalContact.id];
massRequest.replyTo = "jsmith@acme.com";
massRequest.subject = "sent through ajax test driver";
massRequest.templateId = templateId;

var sendMailRes = sforce.connection.sendEmail([singleRequest, massRequest]);

The following sample shows best practice techniques by putting all processing in a function that does not execute until the HTML page
is loaded.

<html>
<head>
<script src="/soap/ajax/42.0/connection.js"></script>
<script>
var contactId = "{!Contact_ID}";
function initPage() {

try{
var contact = sforce.connection.retrieve("AccountId", "Contact", [contactId])[0];

var accountsRetrieved = sforce.connection.retrieve("Id, Name, Industry,
LastModifiedDate", "Account", [contact.AccountId]);

if (accountsRetrieved.length > 0) {
var account = accountsRetrieved.records[0];
document.body.innerHTML += "Account name: <a href='/" + account.Id;
document.body.innerHTML += "' target='_blank'>" + account.Name + "
;
document.body.innerHTML += "Industry: " + account.Industry + "
";

}
} catch (e) {

document.body.innerHTML += "Error retrieving contact information";
document.body.innerHTML += "
Fault code: " + e.faultcode;
document.body.innerHTML += "
Fault string: " + e.faultstring;
}

}
</script>
</head>
<body onload="initPage();">

</body>
</html>

Examples of Asynchronous Calls
query Example:

var result = sforce.connection.query("Select Name,Id from User", {
onSuccess : success,

20

Example Calls Using the Ajax ToolkitAJAX Toolkit Developer Guide

onFailure : failure
});

function success(result) {
var records = result.getArray("records");

for (var i=0; i<records.length; i++) {
var record = records[i];
log(record.Name + " -- " + record.Id);

}
}

function failure(error) {
log("An error has occurred " + error);

}

query Inline Function Example:

var result = sforce.connection.query("Select Name,Id from User", {
onSuccess : function(result) {

var records = result.getArray("records");

for (var i=0; i<records.length; i++) {
var record = records[i];
log(record.Name + " -- " + record.Id);

}
},
onFailure : function(error) {
log("An error has occurred " + error);

}
});

query With LIMIT Example:

var result = sforce.connection.query("Select Name, Id from Account
order by Name limit 10", {

onSuccess : success, onFailure : failure});

function success(result) {
var it = new sforce.QueryResultIterator(result);
while(it.hasNext()){
var record = it.next();
log(record.Name + " -- " + record.Id);

}
}

function failure(error) {
log("An error has occurred " + error);

}

queryResultIterator Example:

var result = sforce.connection.query("Select Name,Id from User", {
onSuccess : success, onFailure : failure});

21

Example Calls Using the Ajax ToolkitAJAX Toolkit Developer Guide

function success(result) {
var it = new sforce.QueryResultIterator(result);
while(it.hasNext()){
var record = it.next();
log(record.Name + " -- " + record.Id);

}
}

function failure(error) {
log("An error has occurred " + error);

}

queryMore Example:

sforce.connection.query("Select Name,Id from Account", {
onSuccess : success, onFailure : log });

function success(result) {
var records = result.getArray("records");

var sb = new sforce.StringBuffer();
for (var i=0; i<records.length; i++) {
var record = records[i];
sb.append(record.Name).append(",");

}

log(records.length);
log(sb.toString());

if (result.queryLocator) {
sforce.connection.queryMore(result.queryLocator, {

onSuccess : success, onFailure : log});
}

}

create Example:

var account = new sforce.SObject("Account");
account.Name = "my new account";

sforce.connection.create([account],
{onSuccess : success, onFailure : failed});

function success(result) {
if (result[0].getBoolean("success")) {
log("new account created with id " + result[0].id);

} else {
log("failed to create account " + result[0]);

}
}

function failed(error) {
log("An error has occurred " + error);

}

22

Example Calls Using the Ajax ToolkitAJAX Toolkit Developer Guide

create Other Objects Example:

var campaign = new sforce.SObject("Campaign");
campaign.Name = "new campaign";
campaign.ActualCost = 12938.23;
campaign.EndDate = new Date();
campaign.IsActive = true;

sforce.connection.create([campaign],
{onSuccess : success, onFailure : log});

function success(result) {
if (result[0].getBoolean("success")) {
log("new campaign created with id " + result[0].id);

} else {
log("failed to create campaign " + result[0]);

}
}

retrieve Account Example:

var account = new sforce.SObject("Account");
account.Name = "retrieve update test";
account.Phone = "2837484894";
var result = sforce.connection.create([account]);
if (result[0].getBoolean("success") == false) throw "create failed";
log("account created " + result[0]);

var callback = {
onSuccess: function(result) {
if (result[0] == null) throw "retrive failed";
log("account retrieved: " + result[0]);

},
onFailure: function(error) {
log("failed due to " + error);

}
};

result = sforce.connection.retrieve("Name,Phone", "Account",
[result[0].id], callback);

SOAP Header Options with the AJAX Toolkit

All header options in the SOAP API are supported in the toolkit, but they are specified differently than in the API.

Syntax for Specifying Header Options
• For headers that have only one option such as queryOptions:

sforce.connection.header_option_name="value";

23

SOAP Header Options with the AJAX ToolkitAJAX Toolkit Developer Guide

• For headers that have more than one option such as assignmentRuleHeader:

sforce.connection.header_name = {}
sforce.connection.header_name.header_option_name="value";

Valid Options
Here's each valid option, organized by its corresponding SOAP header name in the API for your reference.

• From the assignmentRuleHeader:

assignmentRuleId
ID of a specific assignment rule to run for the case or lead. Can be an inactive assignment rule. The ID can be retrieved by querying
the AssignmentRule object. If specified, do not specify useDefaultRule. This element is ignored for accounts, because all
territory assignment rules are applied. If the value is not in correct ID format (15-character or 18-character Salesforce ID), the call
fails and a MALFORMED_ID exception is returned.

useDefaultRule
If true for a Case or Lead, uses the default (active) assignment rule for a Case or Lead. If specified, do not specify an
assignmentRuleId. If true for an Account, all territory assignment rules are applied, and if false, no territory assignment
rules are applied.

• From callOptions:

client
A string that identifies a particular client.

defaultNamespace
A string that identifies a developer namespace prefix.

• From emailHeader:

triggerAutoResponseEmail
Indicates whether to trigger auto-response rules (true) or not (false), for leads and cases. In the Salesforce user interface,
this email can be automatically triggered by a number of events, for example resetting a user password.

triggerOtherEmail
Indicates whether to trigger email outside the organization (true) or not (false). In the Salesforce user interface, this email
can be automatically triggered by creating, editing, or deleting a contact for a case.

triggerUserEmail
Indicates whether to trigger email that is sent to users in the organization (true) or not (false). In the Salesforce user interface,
this email can be automatically triggered by a number of events; resetting a password, creating a new user, adding comments
to a case, or creating or modifying a task.

• From loginScopeHeader:

organizationId
The ID of the organization against which you will authenticate Self-Service users.

portalId

Specify only if user is a Customer Portal user. The ID of the portal for this organization. The ID is available in the Salesforce user
interface:

– From Setup, enter Customer Portal Settings in the Quick Find box, then select Customer Portal Settings

– Select a Customer Portal name, and on the Customer Portal detail page, the URL of the Customer Portal displays. The Portal
ID is in the URL.

24

SOAP Header Options with the AJAX ToolkitAJAX Toolkit Developer Guide

• From mruHeader:

updateMru
Indicates whether to update the list of most recently used items (true) or not (false). For retrieve, if the result has only one
row, MRU is updated to the ID of the retrieve result. For query, if the result has only one row and the ID field is selected, the MRU
is updated to the ID of the query result.

• From queryOptions:

batchSize
Batch size for the number of records returned in a query or queryMore call. Child objects count toward the number of records
for the batch size. For example, in relationship queries, multiple child objects may be returned per parent row returned. The
default is 500; the minimum is 200, and the maximum is 2,000.

• From sessionHeader:

sessionId
Session ID returned by the login call to be used for subsequent call authentication. Since session management is done for you
by the AJAX Toolkit, most scripts won't need to use this header option.

• From userTerritoryDeleteHeader:

transferToUserId
The ID of the user to whom open opportunities in that user's territory will be assigned when an opportunity's owner (user) is
removed from a territory.

Error Handling with the AJAX Toolkit

The AJAX Toolkit provides the ability to handle errors for synchronous and asynchronous calls.

Error Handling for Synchronous Calls
If the API call fails, then the AJAX Toolkit throws an exception. The exception contains all the available error information. For example:

<html>
<head>

<script src="/soap/ajax/42.0/connection.js" type="text/javascript"></script>

<script>

function setupPage() {
var output = document.getElementById("output");
var startTime = new Date().getTime()

try {
var queryResult = sforce.connection.query("Select Id, Name, Industry From

Account order by Industry limit 30");
layoutResults(queryResult, output, startTime);

} catch(error) {
queryFailed(error, output);

}
}

25

Error Handling with the AJAX ToolkitAJAX Toolkit Developer Guide

function queryFailed(error, out) {
out.innerHTML = "An error has occurred: <p>" + error;

}

function layoutResults(queryResult, out, startTime) {
var timeTaken = new Date().getTime() - startTime;

if (queryResult.size > 0) {
var output = "";
var records = queryResult.getArray('records');

for (var i = 0; i < records.length; i++) {
var account = records[i];
output += account.Id + " " + account.Name + " [Industry - "

+ account.Industry + "]
";
}

out.innerHTML = output + "
 query complexted in: " + timeTaken + " ms.";

} else {
out.innerHTML = "No records matched.";

}
}

</script>
</head>

<body onload="setupPage()">
<div id="output"></div>
</body>
</html>

Error Handling for Asynchronous Calls
For asynchronous calls, the onFailure property of the asynchronous object is called. For example:

connection.query("Select Name From Account",
{onSuccess: displayResult,

onFailure: queryFailed});

function displayResult(result){}
function queryFailed(error){}

If the onFailure property was not defined, the AJAX Toolkit pops up a new read-only browser window showing the error.

Advanced Topics

This chapter contains information about advanced activities in the AJAX Toolkit.

QueryResultIterator

Iterate over query results returned by the AJAX Toolkit without invoking queryMore and queryLocator.

26

Advanced TopicsAJAX Toolkit Developer Guide

Differences in Escaping Reserved Characters

If you have a single quote or backslash in a string literal, use two backslashes instead of one to escape it.

Working with Base64 Binary Encoded Strings

When working with Base64 encoded binary documents, access the document directly using the Id, rather than decoding Base64 in
JavaScript.

Timeout Parameter for Asynchronous Calls

If an asynchronous call does not complete in an appropriate amount of time, you can end the call. To do this, specify the timeout
parameter in the callback section of any asynchronous call.

AJAX Proxy

Some browsers don't allow JavaScript code to connect to external servers directly. Therefore, you may need to send requests through
the AJAX proxy.

QueryResultIterator
Iterate over query results returned by the AJAX Toolkit without invoking queryMore and queryLocator.

var result = sforce.connection.query("select id, name from account");
var it = new sforce.QueryResultIterator(result);

while (it.hasNext()) {
var account = it.next();
sforce.debug.log(account.Name);

}

1. The sforce.connection.query method returns a QueryResult object.

2. A QueryResultIterator object is created and passed the QueryResult object.

3. The code iterates through the records.

Differences in Escaping Reserved Characters
If you have a single quote or backslash in a string literal, use two backslashes instead of one to escape it.

For example, the following statement in a Java client program is valid for finding account names like Bob's B-B-Q.

SELECT ID from ACCOUNT WHERE Name LIKE 'Bob\'s B-B-Q%'

For the AJAX Toolkit, escape the single quote literal character twice.

SELECT ID from ACCOUNT WHERE Name LIKE 'Bob\\'s B-B-Q%'

Working with Base64 Binary Encoded Strings
When working with Base64 encoded binary documents, access the document directly using the Id, rather than decoding Base64 in
JavaScript.

Base64 encoding and decoding is very slow in JavaScript. Also, encoding and decoding does not work correctly for binary or multibyte
strings. We do not recommend that you manipulate Base64 binary encoded strings with the AJAX Toolkit. However, if you want to read
a document with Base64 binary encoding, you can use the API to query for the Id of the document and then download it directly from
the server.

27

QueryResultIteratorAJAX Toolkit Developer Guide

The following example demonstrates how to query for the document Id and then download it from the server.

<html>
<head>
<script type="text/javascript"
src="//ajax.googleapis.com/ajax/libs/dojo/1.10.4/dojo/dojo.js"></script>
<script src="/soap/ajax/42.0/connection.js"></script>

<script>
function setup() {
var document_ta = document.getElementById("document-ta");

sforce.connection.query("select name, id from document limit 1",
{onSuccess : querySuccess,
onFailure : function(error, doc_ta) {

doc_ta.value = "Oops something went wrong: " + error;
},
source: document_ta});

}

function querySuccess(result, doc_ta) {
var records = result.getArray("records");

if (records.length == 1) {
dojo.io.bind({
url: "/servlet/servlet.FileDownload?file=" + records[0].Id,
load: loadDocument});

} else {
doc_ta.value = "no records found";

}
}

function loadDocument(type, data, event) {
var document_ta = document.getElementById("document-ta");
document_ta.value = data;

}

</script>
</head>

<body onload="setup()">
<textarea id="document-ta" cols="80" rows="20">
</textarea>
</body>
</html>

Note: This example uses the JavaScript toolkit Dojo, which you’ll need to upload as a static resource, reference from a CDN, or
otherwise provide. For more information, see http://dojotoolkit.org/.

28

Working with Base64 Binary Encoded StringsAJAX Toolkit Developer Guide

http://dojotoolkit.org/

Timeout Parameter for Asynchronous Calls
If an asynchronous call does not complete in an appropriate amount of time, you can end the call. To do this, specify the timeout
parameter in the callback section of any asynchronous call.

var account = new sforce.SObject("Account");
account.Name = "my new account";

sforce.connection.create([account], {onSuccess: print, onFailure: printerr, timeout: 100});

Values for this parameter are in milliseconds, and valid values are integers beginning with 1.

If the call is successful within the time specified by the callout, no additional actions are taken. If the call is not successful, the onFailure
action is performed.

Warning: Use this parameter with caution. Because the timeout is performed on the client side, it is possible that the call
may complete on the server but the timeout is still triggered. For example, you might issue a create call to create 100 new
accounts, and any number of them, 1 or 100, might be created just before the timeout is triggered; your onFailure action
would still occur, but the accounts would have been created.

AJAX Proxy
Some browsers don't allow JavaScript code to connect to external servers directly. Therefore, you may need to send requests through
the AJAX proxy.

Note: To use the AJAX proxy, you must register all external services in the Salesforce user interface. From Setup, enter Remote
Site Settings in the Quick Find box, then select Remote Site Settings.

For security reasons, Salesforce restricts the outbound ports you may specify to one of the following:

• 80: This port only accepts HTTP connections.

• 443: This port only accepts HTTPS connections.

• 1024–66535 (inclusive): These ports accept HTTP or HTTPS connections.

The AJAX proxy is part of the AJAX Toolkit. Access it using remoteFunction defined in connection.js. You can specify any
HTTP method in remoteFucntion, for example HTTP GET or POST, and it will be forwarded to the external service.

The following examples illustrate typical approaches for GET and POST:

GET Example:

sforce.connection.remoteFunction({
url : "http://www.myExternalServer.com",
onSuccess : function(response) {

alert("result" + response);
}

});

POST Example:

var envelope = ""; //request envelope, empty for this example
sforce.connection.remoteFunction({

url : "http://services.xmethods.net:80/soap",
requestHeaders: {"Content-Type":"text/xml",

"SOAPAction": "\"\""
},

29

Timeout Parameter for Asynchronous CallsAJAX Toolkit Developer Guide

requestData: envelope,
method: "POST",
onSuccess : function(response) {

sforce.debug.log(response);
},

onFailure : function(response) {
alert("Failed" + response)

}
});

remoteFunction Syntax and Parameters

AJAX proxy uses remoteFunction to proxy calls.

Download the Salesforce Client Certificate

Your application (endpoint) server’s SSL/TLS can be configured to require client certificates (two-way SSL/TLS) to validate the identity
of the Salesforce server when it takes the role of client to your server. If so, you can download the Salesforce client certificate from
the Salesforce API page.

remoteFunction Syntax and Parameters
AJAX proxy uses remoteFunction to proxy calls.

The remoteFunction syntax and parameters:

sforce.connection.remoteFunction({
url : endpoint_url,
onSuccess : callback_method
onFailure : error_callback
method : http_method
mimeType : "text/plain" | "text/xml"
async : true | false
requestHeaders : http_headers
requestData : http_post_data
cache : true | false
timeout : client_side_timeout_in_ms
});

Note: cache and timeout are available in version 10.0 and later.

Download the Salesforce Client Certificate
Your application (endpoint) server’s SSL/TLS can be configured to require client certificates (two-way SSL/TLS) to validate the identity
of the Salesforce server when it takes the role of client to your server. If so, you can download the Salesforce client certificate from the
Salesforce API page.

1. From Setup, enter API in the Quick Find box, then select API.

2. On the API WSDL page, click Manage API Client Certificate.

3. On the Certificate and Key Management page, in the API Client Certificate section, click the API Client Certificate.

4. On the Certificates page, click Download Certificate. The .crt file is saved in the download location specified in your browser.

Import the downloaded certificate into your application server, and configure your application server to request the client certificate.
The application server then checks that the certificate used in the SSL/TLS handshake matches the one you downloaded.

30

AJAX ProxyAJAX Toolkit Developer Guide

Note: Your application (endpoint) server must send intermediate certificates in the certificate chain, and the certificate chain
must be in the correct order. The correct order is:

1. Server certificate

2. Intermediate certificate that signed the server certificate if the server certificate wasn’t signed directly by a root certificate

3. Intermediate certificate that signed the certificate in step 2

4. Any remaining intermediate certificates

Don’t include the root certificate authority certificate. The root certificate isn’t sent by your server. Salesforce already has its
own list of trusted certificates on file, and a certificate in the chain must be signed by one of those root certificate authority
certificates.

Glossary

A |B |C |D |E |F |G |H |I |J |K |L |M |N |O |P |Q |R |S |T |U |V |W |X |Y |Z

A
AJAX Toolkit

A JavaScript wrapper around the API that allows you to execute any API call and access any object you have permission to view from
within JavaScript code. For more information, see the AJAX Toolkit Developer's Guide.

Anonymous Block, Apex
Apex code that does not get stored in Salesforce, but that can be compiled and executed through the use of the
ExecuteAnonymousResult() API call, or the equivalent in the AJAX Toolkit.

Apex
Apex is a strongly typed, object-oriented programming language that allows developers to execute flow and transaction control
statements on the Lightning Platform server in conjunction with calls to the Lightning Platform API. Using syntax that looks like Java
and acts like database stored procedures, Apex enables developers to add business logic to most system events, including button
clicks, related record updates, and Visualforce pages. Apex code can be initiated by Web service requests and from triggers on objects.

Application Programming Interface (API)
The interface that a computer system, library, or application provides to allow other computer programs to request services from it
and exchange data.

B
Boolean Operators

You can use Boolean operators in report filters to specify the logical relationship between two values. For example, the AND operator
between two values yields search results that include both values. Likewise, the OR operator between two values yields search results
that include either value.

Bulk API
The REST-based Bulk API is optimized for processing large sets of data. It allows you to query, insert, update, upsert, or delete a large
number of records asynchronously by submitting a number of batches which are processed in the background by Salesforce. See
also SOAP API.

31

GlossaryAJAX Toolkit Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.212.0.ajax.meta/ajax/

C
Callout, Apex

An Apex callout enables you to tightly integrate your Apex with an external service by making a call to an external Web service or
sending a HTTP request from Apex code and then receiving the response.

Child Relationship
A relationship that has been defined on an sObject that references another sObject as the “one” side of a one-to-many relationship.
For example, contacts, opportunities, and tasks have child relationships with accounts.

See also sObject.

Class, Apex
A template or blueprint from which Apex objects are created. Classes consist of other classes, user-defined methods, variables,
exception types, and static initialization code. In most cases, Apex classes are modeled on their counterparts in Java.

Component, Visualforce
Something that can be added to a Visualforce page with a set of tags, for example, <apex:detail>. Visualforce includes a
number of standard components, or you can create your own custom components.

Component Reference, Visualforce
A description of the standard and custom Visualforce components that are available in your organization. You can access the
component library from the development footer of any Visualforce page or the Visualforce Developer's Guide.

Controller, Visualforce
An Apex class that provides a Visualforce page with the data and business logic it needs to run. Visualforce pages can use the standard
controllers that come by default with every standard or custom object, or they can use custom controllers.

Custom Field
A field that can be added in addition to the standard fields to customize Salesforce for your organization’s needs.

Custom Help
Custom text administrators create to provide users with on-screen information specific to a standard field, custom field, or custom
object.

Custom Links
Custom links are URLs defined by administrators to integrate your Salesforce data with external websites and back-office systems.
Formerly known as Web links.

Custom Object
Custom records that allow you to store information unique to your organization.

Custom S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created
s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can
still be edited.

Custom Web content for use in custom links. Custom s-controls can contain any type of content that you can display in a browser,
for example a Java applet, an Active-X control, an Excel file, or a custom HTML Web form.

D
Data Loader

A Lightning Platform tool used to import and export data from your Salesforce organization.

Data Manipulation Language (DML)
An Apex method or operation that inserts, updates, or deletes records.

32

GlossaryAJAX Toolkit Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.212.0.pages.meta/pages/

Date Literal
A keyword in a SOQL or SOSL query that represents a relative range of time such as last month or next year.

Delegated Authentication
A security process where an external authority is used to authenticate Lightning Platform users.

Developer Edition
A free, fully-functional Salesforce organization designed for developers to extend, integrate, and develop with the Lightning Platform.
Developer Edition accounts are available on developer.salesforce.com.

Salesforce Developers
The Salesforce Developers website at developer.salesforce.com provides a full range of resources for platform developers, including
sample code, toolkits, an online developer community, and the ability to obtain limited Lightning Platform environments.

Document Library
A place to store documents without attaching them to accounts, contacts, opportunities, or other records.

E
Email Alert

Email alerts are actions that send emails, using a specified email template, to specified recipients.

Email Template
A form email that communicates a standard message, such as a welcome letter to new employees or an acknowledgement that a
customer service request has been received. Email templates can be personalized with merge fields, and can be written in text,
HTML, or custom format.

Enterprise Edition
A Salesforce edition designed for larger, more complex businesses.

Enterprise WSDL
A strongly-typed WSDL for customers who want to build an integration with their Salesforce organization only, or for partners who
are using tools like Tibco or webMethods to build integrations that require strong typecasting. The downside of the Enterprise WSDL
is that it only works with the schema of a single Salesforce organization because it is bound to all of the unique objects and fields
that exist in that organization's data model.

Entity Relationship Diagram (ERD)
A data modeling tool that helps you organize your data into entities (or objects, as they are called in the Lightning Platform) and
define the relationships between them. ERD diagrams for key Salesforce objects are published in the SOAP API Developer’s Guide.

F
Field

A part of an object that holds a specific piece of information, such as a text or currency value.

Field-Level Security
Settings that determine whether fields are hidden, visible, read only, or editable for users. Available in Professional, Enterprise,
Unlimited, Performance, and Developer Editions.

Lightning Platform
The Salesforce platform for building applications in the cloud. Lightning Platform combines a powerful user interface, operating
system, and database to allow you to customize and deploy applications in the cloud for your entire enterprise.

33

GlossaryAJAX Toolkit Developer Guide

http://developer.salesforce.com
http://developer.salesforce.com
https://developer.salesforce.com/docs/atlas.en-us.212.0.api.meta/api/

Foreign Key
A field whose value is the same as the primary key of another table. You can think of a foreign key as a copy of a primary key from
another table. A relationship is made between two tables by matching the values of the foreign key in one table with the values of
the primary key in another.

Formula Field
A type of custom field. Formula fields automatically calculate their values based on the values of merge fields, expressions, or other
values.

Function
Built-in formulas that you can customize with input parameters. For example, the DATE function creates a date field type from a
given year, month, and day.

G
Gregorian Year

A calendar based on a 12-month structure used throughout much of the world.

Group Edition
A product designed for small businesses and workgroups with a limited number of users.

H
HTTP Debugger

An application that can be used to identify and inspect SOAP requests that are sent from the AJAX Toolkit. They behave as proxy
servers running on your local machine and allow you to inspect and author individual requests.

I
ID

See Salesforce Record ID.

Inline S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created
s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can
still be edited.

An s-control that displays within a record detail page or dashboard, rather than on its own page.

Instance
The cluster of software and hardware represented as a single logical server that hosts an organization's data and runs their applications.
The Lightning Platform runs on multiple instances, but data for any single organization is always stored on a single instance.

Integration User
A Salesforce user defined solely for client apps or integrations. Also referred to as the logged-in user in a SOAP API context.

ISO Code
The International Organization for Standardization country code, which represents each country by two letters.

34

GlossaryAJAX Toolkit Developer Guide

J
Junction Object

A custom object with two master-detail relationships. Using a custom junction object, you can model a “many-to-many” relationship
between two objects. For example, you create a custom object called “Bug” that relates to the standard case object such that a bug
could be related to multiple cases and a case could also be related to multiple bugs.

K
No Glossary items for this entry.

L
License Management Application (LMA)

A free AppExchange app that allows you to track sales leads and accounts for every user who downloads your managed package
(app) from the AppExchange.

License Management Organization (LMO)
The Salesforce organization that you use to track all the Salesforce users who install your package. A license management organization
must have the License Management Application (LMA) installed. It automatically receives notification every time your package is
installed or uninstalled so that you can easily notify users of upgrades. You can specify any Enterprise, Unlimited, Performance, or
Developer Edition organization as your license management organization. For more information, go to
http://www.salesforce.com/docs/en/lma/index.htm.

Logged-in User
In a SOAP API context, the username used to log into Salesforce. Client applications run with the permissions and sharing of the
logged-in user. Also referred to as an integration user.

M
Manual Sharing

Record-level access rules that allow record owners to give read and edit permissions to other users who might not have access to
the record any other way.

Many-to-Many Relationship
A relationship where each side of the relationship can have many children on the other side. Many-to-many relationships are
implemented through the use of junction objects.

Master-Detail Relationship
A relationship between two different types of records that associates the records with each other. For example, accounts have a
master-detail relationship with opportunities. This type of relationship affects record deletion, security, and makes the lookup
relationship field required on the page layout.

Metadata
Information about the structure, appearance, and functionality of an organization and any of its parts. Lightning Platform uses XML
to describe metadata.

Metadata WSDL
A WSDL for users who want to use the Lightning Platform Metadata API calls.

Multitenancy
An application model where all users and apps share a single, common infrastructure and code base.

35

GlossaryAJAX Toolkit Developer Guide

http://www.salesforce.com/docs/en/lma/index.htm

N
Namespace

In a packaging context, a one- to 15-character alphanumeric identifier that distinguishes your package and its contents from packages
of other developers on AppExchange, similar to a domain name. Salesforce automatically prepends your namespace prefix, followed
by two underscores (“__”), to all unique component names in your Salesforce organization.

O
Object

An object allows you to store information in your Salesforce organization. The object is the overall definition of the type of information
you are storing. For example, the case object allow you to store information regarding customer inquiries. For each object, your
organization will have multiple records that store the information about specific instances of that type of data. For example, you
might have a case record to store the information about Joe Smith's training inquiry and another case record to store the information
about Mary Johnson's configuration issue.

Object-Level Help
Custom help text that you can provide for any custom object. It displays on custom object record home (overview), detail, and edit
pages, as well as list views and related lists.

Object-Level Security
Settings that allow an administrator to hide whole objects from users so that they don't know that type of data exists. Object-level
security is specified with object permissions.

One-to-Many Relationship
A relationship in which a single object is related to many other objects. For example, an account may have one or more related
contacts.

Organization-Wide Defaults
Settings that allow you to specify the baseline level of data access that a user has in your organization. For example, you can set
organization-wide defaults so that any user can see any record of a particular object that is enabled via their object permissions, but
they need extra permissions to edit one.

Outbound Call
Any call that originates from a user to a number outside of a call center in Salesforce CRM Call Center.

Outbound Message
An outbound message sends information to a designated endpoint, like an external service. Outbound messages are configured
from Setup. You must configure the external endpoint and create a listener for the messages using the SOAP API.

Overlay
An overlay displays additional information when you hover your mouse over certain user interface elements. Depending on the
overlay, it will close when you move your mouse away, click outside of the overlay, or click a close button.

Owner
Individual user to which a record (for example, a contact or case) is assigned.

P
Parent Account

An organization or company that an account is affiliated. By specifying a parent for an account, you can get a global view of all
parent/subsidiary relationships using the View Hierarchy link.

36

GlossaryAJAX Toolkit Developer Guide

Partner WSDL
A loosely-typed WSDL for customers, partners, and ISVs who want to build an integration or an AppExchange app that can work
across multiple Salesforce organizations. With this WSDL, the developer is responsible for marshaling data in the correct object
representation, which typically involves editing the XML. However, the developer is also freed from being dependent on any particular
data model or Salesforce organization. Contrast this with the Enterprise WSDL, which is strongly typed.

Personal Edition
Product designed for individual sales representatives and single users.

Platform Edition
A Salesforce edition based on Enterprise, Unlimited, or Performance Edition that does not include any of the standard Salesforce
apps, such as Sales or Service & Support.

Primary Key
A relational database concept. Each table in a relational database has a field in which the data value uniquely identifies the record.
This field is called the primary key. The relationship is made between two tables by matching the values of the foreign key in one
table with the values of the primary key in another.

Production Organization
A Salesforce organization that has live users accessing data.

Professional Edition
A Salesforce edition designed for businesses who need full-featured CRM functionality.

Q
Queue

A holding area for items before they are processed. Salesforce uses queues in a number of different features and technologies.

Query Locator
A parameter returned from the query() or queryMore() API call that specifies the index of the last result record that was
returned.

Query String Parameter
A name-value pair that's included in a URL, typically after a '?' character. For example:

https://yourInstance.salesforce.com/001/e?name=value

R
Record

A single instance of a Salesforce object. For example, “John Jones” might be the name of a contact record.

Record Name
A standard field on all Salesforce objects. Whenever a record name is displayed in a Lightning Platform application, the value is
represented as a link to a detail view of the record. A record name can be either free-form text or an autonumber field. Record
Name does not have to be a unique value.

Record Type
A record type is a field available for certain records that can include some or all of the standard and custom picklist values for that
record. You can associate record types with profiles to make only the included picklist values available to users with that profile.

Record-Level Security
A method of controlling data in which you can allow a particular user to view and edit an object, but then restrict the records that
the user is allowed to see.

37

GlossaryAJAX Toolkit Developer Guide

Recycle Bin
A page that lets you view and restore deleted information. Access the Recycle Bin by using the link in the sidebar.

Related Object
Objects chosen by an administrator to display in the Agent console's mini view when records of a particular type are shown in the
console's detail view. For example, when a case is in the detail view, an administrator can choose to display an associated account,
contact, or asset in the mini view.

Relationship
A connection between two objects, used to create related lists in page layouts and detail levels in reports. Matching values in a
specified field in both objects are used to link related data; for example, if one object stores data about companies and another
object stores data about people, a relationship allows you to find out which people work at the company.

Relationship Query
In a SOQL context, a query that traverses the relationships between objects to identify and return results. Parent-to-child and
child-to-parent syntax differs in SOQL queries.

Report Type
A report type defines the set of records and fields available to a report based on the relationships between a primary object and its
related objects. Reports display only records that meet the criteria defined in the report type. Salesforce provides a set of pre-defined
standard report types; administrators can create custom report types as well.

Role Hierarchy
A record-level security setting that defines different levels of users such that users at higher levels can view and edit information
owned by or shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.

Roll-Up Summary Field
A field type that automatically provides aggregate values from child records in a master-detail relationship.

Running User
Each dashboard has a running user, whose security settings determine which data to display in a dashboard. If the running user is a
specific user, all dashboard viewers see data based on the security settings of that user—regardless of their own personal security
settings. For dynamic dashboards, you can set the running user to be the logged-in user, so that each user sees the dashboard
according to his or her own access level.

S
SaaS

See Software as a Service (SaaS).

Salesforce SOA (Service-Oriented Architecture)
A powerful capability of Lightning Platform that allows you to make calls to external Web services from within Apex.

Sandbox
A nearly identical copy of a Salesforce production organization for development, testing, and training. The content and size of a
sandbox varies depending on the type of sandbox and the editioin of the production organization associated with the sandbox.

Session ID
An authentication token that is returned when a user successfully logs in to Salesforce. The Session ID prevents a user from having
to log in again every time he or she wants to perform another action in Salesforce. Different from a record ID or Salesforce ID, which
are terms for the unique ID of a Salesforce record.

Session Timeout
The period of time after login before a user is automatically logged out. Sessions expire automatically after a predetermined length
of inactivity, which can be configured in Salesforce from Setup by clicking Security Controls. The default is 120 minutes (two hours).
The inactivity timer is reset to zero if a user takes an action in the Web interface or makes an API call.

38

GlossaryAJAX Toolkit Developer Guide

Setup
A menu where administrators can customize and define organization settings and Lightning Platform apps. Depending on your
organization’s user interface settings, Setup may be a link in the user interface header or in the drop-down list under your name.

Sharing
Allowing other users to view or edit information you own. There are different ways to share data:

• Sharing Model—defines the default organization-wide access levels that users have to each other’s information and whether
to use the hierarchies when determining access to data.

• Role Hierarchy—defines different levels of users such that users at higher levels can view and edit information owned by or
shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.

• Sharing Rules—allow an administrator to specify that all information created by users within a given group or role is automatically
shared to the members of another group or role.

• Manual Sharing—allows individual users to share records with other users or groups.

• Apex-Managed Sharing—enables developers to programmatically manipulate sharing to support their application’s behavior.
See Apex-Managed Sharing.

Sharing Model
Behavior defined by your administrator that determines default access by users to different types of records.

Sharing Rule
Type of default sharing created by administrators. Allows users in a specified group or role to have access to all information created
by users within a given group or role.

Sites
Salesforce Sites enables you to create public websites and applications that are directly integrated with your Salesforce
organization—without requiring users to log in with a username and password.

SOAP (Simple Object Access Protocol)
A protocol that defines a uniform way of passing XML-encoded data.

Software as a Service (SaaS)
A delivery model where a software application is hosted as a service and provided to customers via the Internet. The SaaS vendor
takes responsibility for the daily maintenance, operation, and support of the application and each customer's data. The service
alleviates the need for customers to install, configure, and maintain applications with their own hardware, software, and related IT
resources. Services can be delivered using the SaaS model to any market segment.

SOQL (Salesforce Object Query Language)
A query language that allows you to construct simple but powerful query strings and to specify the criteria that should be used to
select data from the Lightning Platform database.

SOSL (Salesforce Object Search Language)
A query language that allows you to perform text-based searches using the Lightning Platform API.

Standard Object
A built-in object included with the Lightning Platform. You can also build custom objects to store information that is unique to your
app.

Syndication Feeds
Give users the ability to subscribe to changes within Salesforce Sites and receive updates in external news readers.

System Log
Part of the Developer Console, a separate window console that can be used for debugging code snippets. Enter the code you want
to test at the bottom of the window and click Execute. The body of the System Log displays system resource information, such as
how long a line took to execute or how many database calls were made. If the code did not run to completion, the console also
displays debugging information.

39

GlossaryAJAX Toolkit Developer Guide

T
Test Method

An Apex class method that verifies whether a particular piece of code is working properly. Test methods take no arguments, commit
no data to the database, and can be executed by the runTests() system method either through the command line or in an
Apex IDE, such as the Force.com IDE.

Translation Workbench
The Tranlsation Workbench lets you specify languages you want to translate, assign translators to languages, create translations for
customizations you’ve made to your Salesforce organization, and override labels and translations from managed packages. Everything
from custom picklist values to custom fields can be translated so your global users can use all of Salesforce in their language.

Trigger
A piece of Apex that executes before or after records of a particular type are inserted, updated, or deleted from the database. Every
trigger runs with a set of context variables that provide access to the records that caused the trigger to fire, and all triggers run in
bulk mode—that is, they process several records at once, rather than just one record at a time.

Trigger Context Variable
Default variables that provide access to information about the trigger and the records that caused it to fire.

U
Unit Test

A unit is the smallest testable part of an application, usually a method. A unit test operates on that piece of code to make sure it
works correctly. See also Test Method.

Unlimited Edition
Unlimited Edition is Salesforce’s solution for maximizing your success and extending that success across the entire enterprise through
the Lightning Platform.

V
Validation Rule

A rule that prevents a record from being saved if it does not meet the standards that are specified.

Visualforce
A simple, tag-based markup language that allows developers to easily define custom pages and components for apps built on the
platform. Each tag corresponds to a coarse or fine-grained component, such as a section of a page, a related list, or a field. The
components can either be controlled by the same logic that is used in standard Salesforce pages, or developers can associate their
own logic with a controller written in Apex.

W
Web Service

A mechanism by which two applications can easily exchange data over the Internet, even if they run on different platforms, are
written in different languages, or are geographically remote from each other.

WebService Method
An Apex class method or variable that can be used by external systems, like a mash-up with a third-party application. Web service
methods must be defined in a global class.

40

GlossaryAJAX Toolkit Developer Guide

Web Services API
A Web services application programming interface that provides access to your Salesforce organization's information. See also SOAP
PI and Bulk API.

Automated Actions
Automated actions, such as email alerts, tasks, field updates, and outbound messages, can be triggered by a process, workflow rule,
approval process, or milestone.

Workflow Action
A workflow action, such as an email alert, field update, outbound message, or task, fires when the conditions of a workflow rule are
met.

Workflow Email Alert
A workflow action that sends an email when a workflow rule is triggered. Unlike workflow tasks, which can only be assigned to
application users, workflow alerts can be sent to any user or contact, as long as they have a valid email address.

Workflow Field Update
A workflow action that changes the value of a particular field on a record when a workflow rule is triggered.

Workflow Outbound Message
A workflow action that sends data to an external Web service, such as another cloud computing application. Outbound messages
are used primarily with composite apps.

Workflow Queue
A list of workflow actions that are scheduled to fire based on workflow rules that have one or more time-dependent workflow actions.

Workflow Rule
A workflow rule sets workflow actions into motion when its designated conditions are met. You can configure workflow actions to
execute immediately when a record meets the conditions in your workflow rule, or set time triggers that execute the workflow
actions on a specific day.

Workflow Task
A workflow action that assigns a task to an application user when a workflow rule is triggered.

Wrapper Class
A class that abstracts common functions such as logging in, managing sessions, and querying and batching records. A wrapper class
makes an integration more straightforward to develop and maintain, keeps program logic in one place, and affords easy reuse across
components. Examples of wrapper classes in Salesforce include the AJAX Toolkit, which is a JavaScript wrapper around the Salesforce
SOAP API, wrapper classes such as CCritical Section in the CTI Adapter for Salesforce CRM Call Center, or wrapper classes
created as part of a client integration application that accesses Salesforce using the SOAP API.

WSDL (Web Services Description Language) File
An XML file that describes the format of messages you send and receive from a Web service. Your development environment's SOAP
client uses the Salesforce Enterprise WSDL or Partner WSDL to communicate with Salesforce using the SOAP API.

X
No Glossary items for this entry.

Y
No Glossary items for this entry.

41

GlossaryAJAX Toolkit Developer Guide

Z
No Glossary items for this entry.

42

GlossaryAJAX Toolkit Developer Guide

INDEX

A
Advanced topics 26
AJAX proxy 29
API calls, see Calls 8
assignmentRuleID header option 23
Asynchronous calls

error handling 25
introduction 8
samples 20
using the timeout parameter 29

B
Base64 binary encoded strings 27
batchSize header option 23

C
callback function

and API calls 8
defined 1
in sample s-control 2

Calls
API with AJAX Toolkit 8
different syntax with AJAX Toolkit 8

Client certificate download 30
client header option 23
Connecting to AJAX Toolkit 4
connection.js 4
Context variable source 10

D
Data types

Base64 issues 9
converting 9

Debugging window 10

E
Embedding calls in JavaScript 5
Error handling 25

G
get method 9
Getting started 5
Getting started examples 5

H
Header options for SOAP messages 23

I
Introduction 1

L
log method 10

O
Object functions 9
onclick JavaScript button 4
organizationId header option 23
Other resources 2
Outbound port restrictions 29

P
Port restrictions 29
Processing results 7
Proxy for AJAX 29

Q
queryLocator, see QueryResultIterator 27
queryMore, see QueryResultIterator 27
QueryResultIterator 27

R
remoteFunction 30
requireScript 4
Reserved characters, differences in escaping 27
Resources for developers 2
Results processing 7

S
S-control sample 2
Samples

asynchronous calls 20
how to use 10
s-control 2
synchronous calls 11

sessionId header option 23
set method 9
SOAP headers 23
source context variable 10
Support policy 2

43

Synchronous calls
error handling 25
introduction 8
samples 11

T
timeout parameter with asynchronous calls 29
transferToUserId 23
triggerAutoResponseEmail header option 23
triggerOtherEmail header option 23

triggerUserEmail 23
Typographical conventions 2

U
updateMru header option 23
useDefaultRule header option 23

W
When to use the AJAX Toolkit 1

44

Index

	AJAX Toolkit Developer Guide
	When to Use the AJAX Toolkit
	AJAX Toolkit Support Policy
	Other Resources
	AJAX Typographical Conventions
	Sample Visualforce Page Using the AJAX Toolkit

	Working with the AJAX Toolkit
	Connecting to the API
	Embedding API Calls in JavaScript
	Processing Results

	API Calls and the AJAX Toolkit
	Synchronous and Asynchronous Calls with the AJAX Toolkit
	API Call Syntax in the AJAX Toolkit

	Object Functions
	Data Types in AJAX Toolkit
	source Context Variable
	Debugging with the AJAX Toolkit
	Example Calls Using the Ajax Toolkit
	Examples of Synchronous Calls
	Examples of Asynchronous Calls

	SOAP Header Options with the AJAX Toolkit
	Error Handling with the AJAX Toolkit
	Advanced Topics
	QueryResultIterator
	Differences in Escaping Reserved Characters
	Working with Base64 Binary Encoded Strings
	Timeout Parameter for Asynchronous Calls
	AJAX Proxy
	remoteFunction Syntax and Parameters
	Download the Salesforce Client Certificate

	Glossary

	Index

