
Salesforce DX Developer Guide
Version 41.0, Winter ’18

 @salesforcedocs
Last updated: December 20, 2017

https://twitter.com/salesforcedocs

© Copyright 2000–2017 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: How Salesforce Developer Experience Changes the Way You Work 1

Use a Sample Repo to Get Started . 2
Create an Application . 2
Migrate or Import Existing Source . 3

Chapter 2: Project Setup . 4

Salesforce CLI Configuration and Tips . 5
CLI Runtime Configuration Values . 6
CLI Environment Variables . 7
Salesforce DX Usernames and Orgs . 8
Override or Add Definition File Options at the Command Line . 11
CLI Parameter Resolution Order . 12
Support for JSON Responses . 12
Log Messages and Log Levels . 12
CLI Deprecation Policy . 13

Sample Repository on GitHub . 13
Create a Salesforce DX Project . 14
Create a Salesforce DX Project from Existing Source . 14
Retrieve Source from an Existing Managed Package . 15
Retrieve Unpackaged Source Defined in a package.xml File . 16
Retrieve Unpackaged Source by Creating a Temporary Unmanaged Package 16
Convert the Metadata API Source . 17
Link a Namespace to a Dev Hub Org . 18
Salesforce DX Project Configuration . 19

Chapter 3: Authorization . 21

Authorize an Org Using the Web-Based Flow . 22
Authorize an Org Using the JWT-Based Flow . 23
Create a Private Key and Self-Signed Digital Certificate . 23
Create a Connected App . 24
Use an Existing Access Token Instead of Authorizing . 25
Authorization Information for an Org . 26

Chapter 4: Scratch Orgs . 27

Scratch Org Definition File . 29
Scratch Org Definition Configuration Values . 30
Create Scratch Orgs . 34
Supported Metadata API Types . 36
Salesforce DX Project Structure and Source File Format . 39

Push Source to the Scratch Org . 44
How to Exclude Source When Syncing or Converting . 46

Assign a Permission Set . 47
Ways to Add Data to Your Scratch Org . 47

Example: Export and Import Data Between Orgs . 49
Pull Source from the Scratch Org to Your Project . 50
Scratch Org Users . 51

Create a Scratch Org User . 52
User Definition File for Customizing a Scratch Org User . 53
Generate or Change a Password for a Scratch Org User . 54

Manage Scratch Orgs from the Dev Hub . 55

Chapter 5: Development . 56

Create a Lightning App and Components . 58
Create an Apex Class . 58
Track Changes Between the Project and Scratch Org . 58
Testing . 58
View Apex Debug Logs . 59

Chapter 6: Build and Release Your App . 61

Build and Release Your App with Managed Packages . 62
Packaging Checklist . 62
Deploy the Package Metadata to the Packaging Org . 63
Create a Beta Version of Your App . 64
Install the Package in a Target Org . 65
Create a Managed Package Version of Your App . 65

View Information About a Package . 66
View All Package Versions in the Org . 67
Package IDs . 67

Build and Release Your App with Metadata API . 68
Deploy Changes to a Sandbox for Validation . 68
Release Your App to Production . 70

Chapter 7: Develop Second-Generation Packages (Beta) . 71

Second-Generation Packaging . 72
Types of Packaging Projects . 72

Packaging for ISVs . 72
Enterprise Customers . 73
What’s a Package? . 73

Before You Create Second-Generation Packages . 73
Know Your Orgs . 74
Sample Repository . 74
Review Org Setup . 74
Verify Project Configuration . 75

Contents

Workflow for Second-Generation Packages . 75
Plan Second-Generation Packages . 76

Supported Component Types . 77
Namespaces . 79
Package Types . 79
Best Practices for Second-Generation Packages . 80
Package IDs . 81

Configure Packages in the sfdx-project.json File . 82
Features . 83
Package Versions . 83
Keywords . 83
Package Dependencies . 83
Package Ancestors . 83
Package Installation Key . 84

Create a Package . 84
Generate the Package . 85
Generate a Package Version . 85
Release a Second-Generation Package . 86
Update a Package Version . 87
View Package Details . 87

Install a Package . 87
User Profiles for Installed Packages . 88
Install Packages with the CLI . 88
Install Packages With Salesforce in a Browser . 88
Upgrade a Package Version . 90

Uninstall a Package . 91

Chapter 8: Continuous Integration . 92

Continuous Integration Using Jenkins . 93
Configure Your Environment for Jenkins . 93
Jenkinsfile Walkthrough . 94
Sample Jenkinsfile . 98

Continuous Integration with Travis CI . 99

Chapter 9: Troubleshoot Salesforce DX . 100

CLI Version Information . 101
Run CLI Commands on macOS Sierra (Version 10.12) . 101
Error: No defaultdevhubusername org found . 101
Unable to Work After Failed Org Authorization . 102
Error: Lightning Experience-Enabled Custom Domain Is Unavailable 102

Chapter 10: Limitations for Salesforce DX . 104

Contents

CHAPTER 1 How Salesforce Developer Experience Changes the
Way You Work

Salesforce Developer Experience (DX) is a new way to manage and develop apps on the Force.com
platform across their entire life cycle. It brings together the best of Force.com to enable source-driven
development, team collaboration with governance, and new levels of agility for custom app development
on Salesforce.

In this chapter ...

• Use a Sample Repo
to Get Started

• Create an
Application

Highlights of Salesforce DX include:

• Your tools, your way. With Salesforce DX, you use the developer tools you already know.• Migrate or Import
Existing Source • The ability to apply best practices to software development. Source code and metadata exist outside

of the org and provide more agility to develop Salesforce apps in a team environment. Instead of
the org, your version control system is the source of truth.

• A powerful command-line interface (CLI) removes the complexity of working with your Salesforce
org for development, continuous integration, and delivery.

• Flexible and configurable scratch orgs that you build for development and automated environments.
This new type of org makes it easier to build your apps and packages.

• You can use any IDE or text editor you want with the CLI and externalized source.

• If you are using Eclipse, an updated Eclipse IDE plug-in built specifically for Salesforce DX accelerates
app development.

Are You Ready to Begin?

Here’s the basic order for doing your work using Salesforce DX. These workflows include the most
common CLI commands. For all commands, see the Salesforce CLI Command Reference.

• Use a Sample Repo to Get Started on page 2

• Create an Application on page 2

• Migrate or Import Existing Source on page 3

SEE ALSO:

Salesforce DX (Salesforce Developer Center Web Site)

Salesforce DX = UX for Developers (Salesforce Developer Blog)

Salesforce CLI Command Reference

1

https://developer.salesforce.com/platform/dx
https://developer.salesforce.com/blogs/developer-relations/2016/10/salesforce-dx-ux-developers.html
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

Use a Sample Repo to Get Started

The quickest way to get going with Salesforce DX is to clone the sfdx-simple GitHub repo. Use its configuration files and Force.com
application to try some commonly used Salesforce CLI commands.

1. Open a terminal or command prompt window, and clone the sfdx-simple GitHub sample repo using HTTPS or SSH.

git clone https://github.com/forcedotcom/sfdx-simple.git
--or--
git clone git@github.com:forcedotcom/sfdx-simple.git

2. Change to the sfdx-simple project directory.

cd sfdx-simple

3. Authorize your Developer Hub (Dev Hub) org, set it as your default, and assign it an alias.

sfdx force:auth:web:login --setdefaultdevhubusername --setalias DevHub

Enter your Dev Hub org credentials in the browser that opens. After you log in successfully, you can close the browser.

4. Create a scratch org using the config/project-scratch-def.json file, set the username as your default, and assign it
an alias.

sfdx force:org:create --setdefaultusername -f config/project-scratch-def.json --setalias
my-scratch-org

5. Push source and tests, located in the force-app directory, to the scratch org.

sfdx force:source:push

6. Run Apex tests.

sfdx force:apex:test:run --resultformat human

7. Open the scratch org and view the pushed metadata under Most Recently Used.

sfdx force:org:open

SEE ALSO:

Sample Repository on GitHub

Authorization

Create Scratch Orgs

Push Source to the Scratch Org

Testing

Create an Application

Follow the basic workflow when you are starting from scratch to create and develop an app that runs on the Force.com platform.

1. Set up your project. on page 4

2

Use a Sample Repo to Get StartedHow Salesforce Developer Experience Changes the Way You
Work

2. Authorize the Developer Hub org for the project. on page 21

3. Configure your local project. on page 19

4. Create a scratch org. on page 34

5. Push the source from your project to the scratch org. on page 44

6. Develop the app. on page 56

7. Pull the source to keep your project and scratch org in sync. on page 50

8. Run tests. on page 58

9. Add, commit, and push changes. Create a pull request.

Deploy your app using one of the following methods:

• Build and release your app with managed packages on page 62

• Build and release your app using the Metadata API on page 68

Migrate or Import Existing Source

Use the Metadata API to retrieve the code, and then convert your source for use in a Salesforce DX project.

Tip: If your current repo follows the directory structure that is created from a Metadata API retrieve, you can skip the retrieve step
and go directly to converting the source.

1. Set up your project. on page 4

2. Retrieve your metadata. on page 14

3. Convert the MDAPI source you just retrieved to Salesforce DX project format. on page 17

4. Authorize the Developer Hub org for the project. on page 21

5. Configure your local project. on page 19

6. Create a scratch org. on page 34

7. Push the source from your project to the scratch org. on page 44

8. Develop the app. on page 56

9. Pull the source to sync your project and scratch org. on page 50

10. Run tests. on page 58

11. Add, commit, and push changes. Create a pull request.

Deploy your app using one of the following methods:

• Build and release your app with managed packages. on page 62

• Build and release your app using the Metadata API. on page 68

3

Migrate or Import Existing SourceHow Salesforce Developer Experience Changes the Way You
Work

CHAPTER 2 Project Setup

Salesforce DX introduces a new project structure for your org’s metadata (code and configuration), your
org templates, your sample data, and all your team’s tests. Store these items in a version control system
(VCS) to bring consistency to your team’s development processes. Retrieve the contents of your team’s
repository when you’re ready to develop a new feature.

In this chapter ...

• Salesforce CLI
Configuration and
Tips

You can use your preferred VCS. Most of our examples use Git.
• Sample Repository

on GitHub You have different options to create a Salesforce DX project depending on how you want to begin.

• Create a Salesforce
DX Project Explore the features of Salesforce DX using one of

our sample repos and your own VCS and toolset.
Use the Sample Repository on GitHub on page 13

• Create a Salesforce
DX Project from
Existing Source

Start with an existing Salesforce app to create a
Salesforce DX project.

Create a Salesforce DX Project from Existing Source
on page 14

• Retrieve Source from
an Existing Managed
Package

Create an app on the Force.com platform using a
Salesforce DX project.

Create a Salesforce DX Project on page 14

• Retrieve Unpackaged
Source Defined in a
package.xml File

• Retrieve Unpackaged
Source by Creating a
Temporary
Unmanaged
Package

• Convert the
Metadata API Source

• Link a Namespace to
a Dev Hub Org

• Salesforce DX Project
Configuration

4

Salesforce CLI Configuration and Tips

Use the Salesforce command-line interface (CLI) for most Salesforce DX tasks. These tasks include authorizing a Dev Hub org, creating
a scratch org, synchronizing source code between your scratch orgs and VCS, and running tests.

You can start using the CLI right after you install it.

The CLI commands are grouped into top-level topics. For example, the force top-level topic is divided into topics that group commands
by functionality, such as the force:org commands to manage your orgs.

Run --help at each level to get more information.

sfdx --help // lists all top-level topics
sfdx force --help // lists all the topics under force
sfdx force:org --help // lists all the commands in the topic force:org
sfdx force:org:open --help // detailed info about the force:org:open command

Run this command to view all available commands in the force topic.

sfdx force:doc:commands:list

CLI Runtime Configuration Values

You can set CLI runtime configuration values for your current project or for all projects. You can set two kinds of configuration values:
global and local. Global values apply to all projects on your computer. Local values apply to a specific project. Local values override
global values when commands are run from within a Salesforce DX project directory.

CLI Environment Variables

You can set environment variables to configure some CLI behaviors.

Salesforce DX Usernames and Orgs

Many CLI commands connect to an org to complete their task. For example, the force:org:create command, which creates
a scratch org, connects to a Dev Hub org. The force:source:push|pull commands synchronize source code between
your project and a scratch org. In each case, the CLI command requires a username to determine which org to connect to. Usernames
are unique within the entire Salesforce ecosystem and have a one-to-one association with a specific org.

Override or Add Definition File Options at the Command Line

Some CLI commands, such as force:org:create and force:user:create, use a JSON definition file to determine the
characteristics of the org or user they create. The definition file contains one or more options. You can override some options by
specifying them as name-value pairs at the command line. You can also specify options that aren’t in the definition file. This technique
allows multiple users or continuous integration jobs to share a base definition file and then customize options when they run the
command.

CLI Parameter Resolution Order

Because you can specify parameters for a given CLI command in several ways, it’s important to know the order of parameter resolution.

Support for JSON Responses

Salesforce CLI commands typically display their output to the console (stdout) in non-structured, human-readable format. Messages
written to the log file (stderr) are always in JSON format.

Log Messages and Log Levels

The Salesforce CLI writes all log messages to the USER_HOME_DIR/.sfdx/sfdx.log file. CLI invocations append log
messages to this running log file. Only errors are output to the terminal or command window from which you run the CLI.

5

Salesforce CLI Configuration and TipsProject Setup

CLI Deprecation Policy

Salesforce deprecates CLI command and parameters when, for example, the underlying API changes.

SEE ALSO:

Salesforce DX Setup Guide

CLI Runtime Configuration Values
You can set CLI runtime configuration values for your current project or for all projects. You can set two kinds of configuration values:
global and local. Global values apply to all projects on your computer. Local values apply to a specific project. Local values override global
values when commands are run from within a Salesforce DX project directory.

To set a configuration value for the current project:

sfdx force:config:set name=<value>

For local configuration values, you must issue this command from within the Salesforce DX project directory.

To set the value for all your projects:

sfdx force:config:set name=<value> --global

You can issue global commands anywhere or within any project, yet they apply to all the Salesforce CLI commands you run.

You can view the local and global configuration values that you have set. The output lists the local values for the project directory from
which you are running the command and all global values.

sfdx force:config:list

To return one or more previously set configuration values, use force:config:get. It is often useful to specify JSON output for this
command for easier parsing in a continuous integration (CI) environment. For example, to return the value of defaultusername
and defaultdevhubusername:

sfdx force:config:get defaultusername defaultdevhubusername --json

To unset a configuration value, set it to no value. For example, to unset the instanceUrl configuration value:

sfdx force:config:set instanceUrl=

You can set these CLI configuration values.

DescriptionConfiguration Value Name

The API version for a specific project or all projects. This examples
sets the API version for all projects (globally).

sfdx force:config:set apiVersion=41.0
--global

apiVersion

The username for an org that all commands run against by default.defaultusername

The username of your Dev Hub org that the
force:org:create command defaults to.

defaultdevhubusername

6

CLI Runtime Configuration ValuesProject Setup

https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_setup.meta/sfdx_setup

DescriptionConfiguration Value Name

The URL of the Salesforce instance that is hosting your org.instanceUrl

SEE ALSO:

Salesforce DX Usernames and Orgs

Authorization

Use an Existing Access Token Instead of Authorizing

CLI Environment Variables
You can set environment variables to configure some CLI behaviors.

DescriptionEnvironment Variable

Specifies the web page that opens in your browser when you run
force:org:open. For example, to open Lightning Experience,
set to one/one.app.

Equivalent to the --path parameter of force:org:open.

FORCE_OPEN_URL

Set to true to show a spinner animation on the command line
when running asynchronous CLI commands. Default is false.

FORCE_SHOW_SPINNER

Specifies the speed of the spinner in milliseconds. Default is 60.FORCE_SPINNER_DELAY

Set to true to disable the auto-update feature of the CLI. By
default, the CLI periodically checks for and installs updates.

SFDX_AUTOUPDATE_DISABLE

Specifies the code coverage percentages that are displayed in
green when you run force:apex:test:run or

SFDX_CODE_COVERAGE_REQUIREMENT

force:apex:test:report with the --codecoverage
parameter.

If the code coverage percentage for an Apex test is equal to or
higher than this setting, it is displayed in green. If the percent is
lower, it is displayed in red. Applies only to human-readable output.
Default is 70%.

All CLI commands output results in JSON format.SFDX_CONTENT_TYPE

Specifies the username of your default org so you don’t have to
use the --targetusername CLI parameter. Overrides the
value of the defaultusername runtime configuration value.

SFDX_DEFAULT_USERNAME

Specifies the time, in seconds, that the CLI waits for the Lightning
Experience custom domain to resolve and become available in a
newly-created scratch org.

The default value is 240 (4 minutes). Set the variable to 0 to bypass
the Lightning Experience custom domain check entirely.

SFDX_DOMAIN_RETRY

7

CLI Environment VariablesProject Setup

DescriptionEnvironment Variable

Sets the level of messages that the CLI writes to the log file.SFDX_LOG_LEVEL

Set to true to enable Apex pre-compile before the tests are run.
This variable works with the force:apex:test:run
command. Default is false.

SFDX_PRECOMPILE_ENABLE

Important: The duration of an Apex test pre-compilation
can be inconsistent. As a result, runs of the same Apex tests
are sometimes quick and other times they time out. We
recommend that you set this variable to true only if your
Apex tests (without pre-compile) activate multiple
concurrent Apex compilations that consume many system
resources.

(Linux and macOS only) Set to true if you want to use the generic
UNIX keychain instead of the Linux libsecret library or macOS

SFDX_USE_GENERIC_UNIX_KEYCHAIN

keychain. Specify this variable when using the CLI with ssh or
"headless" in a CI environment.

SEE ALSO:

Log Messages and Log Levels

Support for JSON Responses

Salesforce DX Usernames and Orgs
Many CLI commands connect to an org to complete their task. For example, the force:org:create command, which creates a
scratch org, connects to a Dev Hub org. The force:source:push|pull commands synchronize source code between your
project and a scratch org. In each case, the CLI command requires a username to determine which org to connect to. Usernames are
unique within the entire Salesforce ecosystem and have a one-to-one association with a specific org.

Note: The examples in this topic might refer to CLI commands that you are not yet familiar with. For now, focus on how to specify
the usernames, configure default usernames, and use aliases. The CLI commands are described later.

When you create a scratch org, the CLI generates a username. The username looks like an email address, such as
test-gjt2ycpivtpz@your_company.net. You do not need a password to connect to or open a scratch org, although you can generate
one later with the force:user:password:generate command.

Salesforce recommends that you set a default username for the orgs that you connect to the most during development. The easiest way
to do this is when you authorize a Dev Hub org or create a scratch org. Specify the --setdefaultdevhubusername or
--setdefaultusername parameter, respectively, from within a project directory. You can also create an alias to give the usernames
more readable names. You can use usernames or their aliases interchangeably for all CLI commands that connect to an org.

These examples set the default usernames and aliases when you authorize an org and then when you create a scratch org.

sfdx force:auth:web:login --setdefaultdevhubusername --setalias my-hub-org
sfdx force:org:create --definitionfile my-org-def.json --setdefaultusername --setalias
my-scratch-org

To verify whether a CLI command requires an org connection, look at its parameter list with the --help parameter. Commands that
have the --targetdevhubusername parameter connect to the Dev Hub org. Similarly, commands that have

8

Salesforce DX Usernames and OrgsProject Setup

--targetusername connect to scratch orgs, sandboxes, and so on. This example displays the parameter list and help information
about force:org:create.

sfdx force:org:create --help

When you run a CLI command that requires an org connection and you don’t specify a username, the command uses the default. To
see your default usernames, run force:org:list to display all the orgs you've authorized or created. The default Dev Hub and
scratch orgs are marked on the left with (D) and (U), respectively.

Let's run through a few examples to see how this works. This example pushes source code to the scratch org that you've set as the
default.

sfdx force:source:push

To specify an org other than the default, use --targetusername. For example, let’s say you created another scratch org with alias
my-other-scratch-org. It’s not the default but you still want to push source to it.

sfdx force:source:push --targetusername my-other-scratch-org

This example shows how to use the --targetdevhubusername parameter to specify a non-default Dev Hub org when creating
a scratch org.

sfdx force:org:create --targetdevhubusername jdoe@mydevhub.com --definitionfile
my-org-def.json --setalias yet-another-scratch-org

More About Setting Default Usernames
If you’ve already created a scratch org, you can set the default username with the force:config:set command from your project
directory.

sfdx force:config:set defaultusername=test-ymmlqf29req5@your_company.net

The command sets the value locally, so it works only for the current project. To use the default username for all projects on your computer,
specify the --global parameter. You can run this command from any directory. Local project defaults override global defaults.

sfdx force:config:set defaultusername=test-ymmlqf29req5@your_company.net --global

The process is similar to set a default Dev Hub org, except you use the defaultdevhubusername config value.

sfdx force:config:set defaultdevhubusername=jdoe@mydevhub.com

More About Aliasing
Use the force:alias:set command to set an alias for an org or after you’ve authorized an org. You can create an alias for any
org: Dev Hub, scratch, production, sandbox, and so on. So when you issue a command that requires the org username, using an alias
for the org that you can easily remember can speed up things.

sfdx force:alias:set my-scratch-org=test-ymmlqf29req5@your_company.net

An alias also makes it easy to set a default username. The previous example of using force:config:set to set
defaultusername now becomes much more digestible when you use an alias rather than the username.

sfdx force:config:set defaultusername=my-scratch-org

Set multiple aliases with a single command by separating the name-value pairs with a space.

sfdx force:alias:set org1=<username> org2=<username>

9

Salesforce DX Usernames and OrgsProject Setup

You can associate an alias with only one username at a time. If you set it multiple times, the alias points to the most recent username.
For example, if you run the following two commands, the alias my-org is set to test-ymmlqf29req5@your_company.net.

sfdx force:alias:set my-org=test-blahdiblah@whoanellie.net
sfdx force:alias:set my-org=test-ymmlqf29req5@your_company.net

To view all aliases that you’ve set, use one of the following commands.

sfdx force:alias:list
sfdx force:org:list

To remove an alias, set it to nothing.

sfdx force:alias:set my-org=

List All Your Orgs
Use the force:org:list command to display the usernames for the orgs that you’ve authorized and the active scratch orgs that
you’ve created.

sfdx force:org:list
=== Orgs

ALIAS USERNAME ORG ID CONNECTED STATUS
----------- -------------------- -------- ----------------
DD-ORG jdoe@dd-204.com 00D...OEA Connected

(D) devhuborg208 jdoe@mydevhub.com 00D...MAC Connected

ALIAS SCRATCH ORG NAME USERNAME ORG ID EXPIRATION DATE
---------- ------------ -------------------------- --------- ----------
my-scratch Your Company test-ymmlqf5@a_company.net 00D...UAI 2017-06-13

(U) scratch208 Your Company test-gjt2ycz@b_company.net 00D...UAY 2017-06-13

The top section of the output lists the non-scratch orgs that you’ve authorized, including Dev Hub orgs, production orgs, and sandboxes.
The output displays the usernames that you specified when you authorized the orgs, their aliases, their IDs, and whether the CLI can
connect to it. A (D) on the left points to the default Dev Hub username.

The lower section lists the active scratch orgs that you’ve created and their usernames, org IDs, and expiration dates. A (U) on the left
points to the default scratch org username.

To view more information about scratch orgs, such as the create date, instance URL, and associated Dev Hub org, use the --verbose
parameter.

sfdx force:org:list --verbose

10

Salesforce DX Usernames and OrgsProject Setup

Use the --clean parameter to remove non-active scratch orgs from the list. The command prompts you before it does anything.

sfdx force:org:list --clean

SEE ALSO:

Authorization

Scratch Org Definition File

Create Scratch Orgs

Generate or Change a Password for a Scratch Org User

Push Source to the Scratch Org

Override or Add Definition File Options at the Command Line
Some CLI commands, such as force:org:create and force:user:create, use a JSON definition file to determine the
characteristics of the org or user they create. The definition file contains one or more options. You can override some options by specifying
them as name-value pairs at the command line. You can also specify options that aren’t in the definition file. This technique allows
multiple users or continuous integration jobs to share a base definition file and then customize options when they run the command.

Let’s say you use the following JSON definition file to create a scratch org. You name the file project-scratch-def.json.

{
"orgName": "Acme",
"country": "US",
"edition": "Enterprise",
"hasSampleData": "true",
"features": ["MultiCurrency", "AuthorApex"],
"orgPreferences": {
"enabled": ["S1DesktopEnabled", "ChatterEnabled"],
"disabled": ["IsNameSuffixEnabled"]

}
}

To create an Enterprise Edition scratch org that uses all the options in the file, run this command.

sfdx force:org:create --definitionfile project-scratch-def.json

You can then use the same definition file to create a Developer Edition scratch org that doesn’t have sample data by overriding the
edition and hasSampleData options.

sfdx force:org:create --definitionfile project-scratch-def.json edition=Developer
hasSampleData=false

Use commas to separate multiple array values, and enclose them in double quotes. For example, to change the features option:

sfdx force:org:create --definitionfile project-scratch-def.json
features="MultiCurrency,PersonAccounts"

This example shows how to add the adminEmail option, which doesn’t exist in the definition file.

sfdx force:org:create --definitionfile project-scratch-def.json adminEmail=john@doe.org

11

Override or Add Definition File Options at the Command LineProject Setup

Note: You can’t override options whose values are JSON objects, such as orgPreferences.

SEE ALSO:

Create Scratch Orgs

Create a Scratch Org User

CLI Parameter Resolution Order
Because you can specify parameters for a given CLI command in several ways, it’s important to know the order of parameter resolution.

The order of precedence for parameter resolution is:

1. Command-line parameters, such as --loglevel, --targetusername, or --targetdevhubusername.

2. Parameters listed in a file specified by the command line. An example is a scratch org definition in a file specified by the
--definitionfile parameter of force:org:create.

3. Environment variables, such as SFDX_LOG_LEVEL.

4. Local CLI configuration values, such as defaultusername or defaultdevhubusername. To view the local values, run
force:config:list from your project directory.

5. Global CLI configuration values. To view the global values, run force:config:list from any directory.

For example, if you set the SFDX_LOG_LEVEL environment variable to INFO but specify --loglevel DEBUG for a command, the
log level is DEBUG. This behavior happens because command-line parameters are at the top of the precedence list.

If you specify the --targetusername parameter for a specific CLI command, the CLI command connects to an org with that
username. It does not connect to an org using the defaultusername, assuming that you set it previously with the
force:config:set command.

Support for JSON Responses
Salesforce CLI commands typically display their output to the console (stdout) in non-structured, human-readable format. Messages
written to the log file (stderr) are always in JSON format.

To view the console output in JSON format, specify the --json parameter for a particular CLI command.

sfdx force:org:display --json

Most CLI commands support JSON output. To confirm, run the command with the --help parameter to view the supported parameters.

To get JSON responses to all Salesforce CLI commands without specifying the --json option each time, set the SFDX_CONTENT_TYPE
environment variable.

export SFDX_CONTENT_TYPE=JSON

Log Messages and Log Levels
The Salesforce CLI writes all log messages to the USER_HOME_DIR/.sfdx/sfdx.log file. CLI invocations append log messages
to this running log file. Only errors are output to the terminal or command window from which you run the CLI.

Important: The files in the USER_HOME_DIR/.sfdx directory are used internally by the Salesforce CLI. Do not remove or
edit them.

12

CLI Parameter Resolution OrderProject Setup

The default level of log messages is ERROR. You can set the log level to one of the following, listed in order of least to most information.
The level is cumulative: for the DEBUG level, the log file also includes messages at the INFO, WARN, and ERROR levels.

• ERROR

• WARN

• INFO

• DEBUG

• TRACE

You can change the log level in two ways, depending on what you want to accomplish.

To change the log level for the execution of a single CLI command, use the --loglevel parameter. Changing the log level in this
way does not affect subsequent CLI use. This example specifies debug-level log messages when you create a scratch org.

sfdx force:org:create --definitionfile config/project-scratch-def.json --loglevel DEBUG
--setalias my-scratch-org

To globally set the log level for all CLI commands, set the SFDX_LOG_LEVEL environment variable. For example, on UNIX:

export SFDX_LOG_LEVEL=DEBUG

Note: The Salesforce CLI gathers diagnostic information about its use and reports it to Salesforce so that the development team
can investigate issues. The type of information includes command duration and command invocation counts.

CLI Deprecation Policy
Salesforce deprecates CLI command and parameters when, for example, the underlying API changes.

The Salesforce CLI deprecation policy is:

• Salesforce can deprecate a command or parameter in any major update of the salesforcedx plug-in.

• Salesforce removes the deprecated command or parameter in the next major release of the salesforcedx plug-in. For example, if
Salesforce deprecates a command in version 41, it does not appear in version 42.

• If you use a command or parameter that’s been deprecated but not yet removed, you get a warning message in stderr when you
specify human-readable output. If you specify JSON output, the warning is presented as a property. The message includes the plug-in
version of when the command or parameter will be removed. The command help also includes deprecation information when
appropriate.

• When possible, Salesforce provides a functional alternative to the deprecated command or parameter.

• Salesforce announces new and upcoming deprecated commands and parameters in the release notes.

Sample Repository on GitHub

If you want to check out Salesforce DX features quickly, start with the sfdx-simple GitHub repo. It contains an example of the
project configuration file (sfdx-project.json), a simple Force.com app, and Apex tests.

Cloning this repo creates the directory sfdx-simple. See the repo’s Readme for more information.

Assuming that you’ve already set up Git, use the git clone command to clone the master branch of the repo from the command
line.

To use HTTPS:

git clone https://github.com/forcedotcom/sfdx-simple.git

13

CLI Deprecation PolicyProject Setup

To use SSH:

git clone git@github.com:forcedotcom/sfdx-simple.git

If you don’t want to use Git, download a .zip file of the repository’s source using Clone, or download on the GitHub website. Unpack the
source anywhere on your local file system.

To check out a more complex example, clone the dreamhouse-sfdx GitHub repo. This standalone application contains multiple Apex
classes, Lightning components, Visualforce components, and custom objects.

SEE ALSO:

sfdx-simple Sample GitHub Repo

dreamhouse-sfdx Sample GitHub Repo

Create a Salesforce DX Project

A Salesforce DX project has a specific structure and a configuration file that identifies the directory as a Salesforce DX project.

1. Use the force:project:create command to create a skeleton project structure for your Salesforce DX project. If you don’t
indicate an output directory, the project directory is created in the current location. You can also specify the default package directory
to target when syncing source to and from the scratch org. If you don’t indicate a default package directory, this commands creates
a default package directory, force-app.

Example:

sfdx force:project:create --projectname mywork
sfdx force:project:create --projectname mywork --defaultpackagedir myapp

• (Optional) Register the namespace with the Dev Hub org.

• Configure the project (sfdx-project.json). If you use a namespace, update this file to include it.

• Create a scratch org definition that produces scratch orgs that mimic the shape of another org you use in development, such as
sandbox, packaging, or production. The config directory of your new project contains a sample scratch org definition file.

SEE ALSO:

Create a Salesforce DX Project from Existing Source

Salesforce DX Project Configuration

Link a Namespace to a Dev Hub Org

Scratch Org Definition File

Create a Salesforce DX Project from Existing Source

If you are already a Salesforce developer or ISV, you likely have existing source in a managed package in your packaging org or some
application source in your sandbox or production org. Before you begin using Salesforce DX, retrieve the existing source and convert it
to the Salesforce DX project format.

Tip: If your current repo follows the directory structure that is created from a Metadata API retrieve, you can skip to converting
the Metadata API source after you create a Salesforce DX project.

1. Create a Salesforce DX project.

14

Create a Salesforce DX ProjectProject Setup

https://github.com/forcedotcom/sfdx-simple
https://github.com/DreamhouseApp/dreamhouse-sfdx

2. Create a directory for the metadata retrieve. You can create this directory anywhere.

mkdir mdapipkg

3. Retrieve your metadata source.

How to Retrieve Your Source for ConversionFormat of Current Source

Retrieve Source from an Existing Managed Package on page 15You are a partner who has your source already defined as a
managed package in your packaging org.

Retrieve Unpackaged Source Defined in a package.xml File on
page 16

You have a package.xml file that defines your unpackaged
source.

Retrieve Unpackaged Source by Creating a Temporary
Unmanaged Package on page 16

You don’t have your source defined in a package.

SEE ALSO:

Convert the Metadata API Source

Create a Salesforce DX Project

Retrieve Source from an Existing Managed Package

If you’re a partner or ISV who already has a managed package in a packaging org, you’re in the right place. You can retrieve that package,
unzip it to your local project, and then convert it to Salesforce DX format, all from the CLI.

Before you begin, create a Salesforce DX project.

1. In the project, create a folder to store what’s retrieved from your org, for example, mdapipkg.

2. Retrieve the metadata.

sfdx force:mdapi:retrieve -s -r ./mdapipkg -u <username> -p <package name>

The username can be a username or alias for the target org (such as a packaging org) from which you’re pulling metadata. The -s
parameter indicates that you’re retrieving a single package.

3. Check the status of the retrieve.

When you run force:mdapi:retrieve, the job ID, target username, and retrieve directory are stored, so you don’t have to
specify these required parameters to check the status. These stored values are overwritten when you run the
force:mdapi:retrieve again.

sfdx force:mdapi:retrieve:report

If you want to check the status of a different retrieve operation, specify the retrieve directory and job ID on the command line, which
overrides any stored values.

4. Unzip the zip file.

5. (Optional) Delete the zip file.

15

Retrieve Source from an Existing Managed PackageProject Setup

After you finish, convert the metadata source.

SEE ALSO:

Create a Salesforce DX Project

Convert the Metadata API Source

Retrieve Unpackaged Source Defined in a package.xml File

If you already have a package.xml file, you can retrieve it, unzip it in your local project, and convert the source to Salesforce DX
format. You can do all these tasks from the CLI. The package.xml file defines the source you want to retrieve.

If you already have the source retrieved from the Metadata API, you can skip to converting the metadata API source.

1. In the project, create a folder to store what’s retrieved from your org, for example, mdapipkg.

2. Retrieve the metadata.

sfdx force:mdapi:retrieve -r ./mdapipkg -u <username> -k ./package.xml

The username can be the scratch org username or an alias. The -k parameter indicates the path to the package.xml file, which
is the unpackaged manifest of components to retrieve.

3. Check the status of the retrieve.

When you run force:mdapi:retrieve, the job ID, target username, and retrieve directory are stored, so you don’t have to
specify these required parameters to check the status. These stored values are overwritten when you run the
force:mdapi:retrieve again.

sfdx force:mdapi:retrieve:report

If you want to check the status of a different retrieve operation, specify the retrieve directory and job ID on the command line, which
overrides any stored values.

4. Unzip the zip file.

5. (Optional) Delete the zip file.

After you retrieve the source and unzip it, you no longer need the zip file, so you can delete it.

After you finish, convert the metadata source.

SEE ALSO:

Convert the Metadata API Source

Retrieve Unpackaged Source by Creating a Temporary Unmanaged
Package

Don’t already have your source defined in a package.xml file? No worries. To simplify the source retrieval process, you can use the
Unmanaged Package UI to define what you want to retrieve. Create an unmanaged package in your sandbox, and add your app’s source
to it.

16

Retrieve Unpackaged Source Defined in a package.xml FileProject Setup

1. Open the sandbox org that contains your metadata.

sfdx force:org:open -u <username> --path one/one.app

You can use the sandbox username or an alias.

2. Open All Setup.

3. Open Package Manager.

4. Create a package with the name of your application.

5. Add the metadata source to the package.

6. In your Salesforce DX project, create a folder for the MDAPI retrieve, for example, mdapipkg.

7. Retrieve the metadata.

sfdx force:mdapi:retrieve -s -r ./mdapipkg -u <username> -p <package name>

The -s parameter indicates that you’re retrieving a single package. The package name is the name you used in step 4.

8. Check the status of the retrieve.

When you run force:mdapi:retrieve, the job ID, target username, and retrieve directory are stored, so you don’t have to
specify these required parameters to check the status. These stored values are overwritten when you run the
force:mdapi:retrieve again.

sfdx force:mdapi:retrieve:report

If you want to check the status of a different retrieve operation, specify the retrieve directory and job ID on the command line, which
overrides any stored values.

9. Unzip the zip file.

10. (Optional) Delete the zip file.

After you retrieve your source, you can delete or refresh your sandbox or delete the package definition in the sandbox org. Now that
you have the source, you don’t need the resources.

Next, convert the metadata source.

SEE ALSO:

Convert the Metadata API Source

Convert the Metadata API Source

After you retrieve the source from your org, you can complete the configuration of your project and convert the source to Salesforce DX
project format.

The convert command ignores all files that start with a “dot,” such as .DS_Store. To exclude more files from the convert process,
add a .forceignore file.

1. To indicate which package directory is the default, update the sfdx-project.json file.

2. Convert the metadata API source to Salesforce DX project format.

sfdx force:mdapi:convert --rootdir <retrieve dir name>

17

Convert the Metadata API SourceProject Setup

The --rootdir parameter is the name of the directory that contains the metadata source, that is, one of the package directories
or subdirectories defined in the sfdx-project.json file.

If you don’t indicate an output directory with the --outputdir parameter, the converted source is stored in the default package
directory indicated in the sfdx-project.json file. If the output directory is located outside of the project, you can indicate
its location using an absolute path.

If there are two or more files with the same file name yet they contain different contents, the output directory contains duplicate files.
Duplicate files can occur if you convert the same set of metadata more than once. The mdapi:convert process identifies these files
with a .dup file extension. The source:push and source:pull commands ignore duplicate files, so you’ll want to resolve
them. You have these options:

• Choose which file to keep, then delete the duplicate.

• Merge the files, then delete the other.

Next steps:

• Authorize the Dev Hub org and set it as the default

• Configure the Salesforce DX project

• Create a scratch org

SEE ALSO:

How to Exclude Source When Syncing or Converting

Salesforce DX Project Configuration

Authorization

Create Scratch Orgs

Link a Namespace to a Dev Hub Org

To use a namespace with a scratch org, you must link the Developer Edition org where the namespace is registered to a Dev Hub.

Complete these tasks before you link a namespace.

• If you don’t have an org with a registered namespace, create a Developer Edition org that is separate from the Dev Hub or scratch
orgs. If you already have an org with a registered namespace, go to Step 1.

• In the Developer Edition org, create and register the namespace.

Important: Choose namespaces carefully. If you’re trying out this feature or need a namespace for testing purposes, choose
a disposable namespace. Don’t choose a namespace that you want to use in the future for a production org or some other
real use case. Once you associate a namespace with an org, you can't change it or reuse it.

1. Log in to your Dev Hub org as the System Administrator or as a user with the Salesforce DX Namespace Registry permissions.

2. (Required) If you have not already done so, define and deploy a My Domain name.

Tip: Why do you need a My Domain? A My Domain adds a subdomain to your Salesforce org URL so that it’s unique. As part
of the Namespace Registry linking process, you’ll be logging into two distinct orgs simultaneously (your Dev Hub and your
Developer Edition org), and your browser can’t reliably distinguish between the two without a My Domain.

You receive an email when your domain name is ready for testing. It can take a few minutes.

3. From the App Launcher menu, select Namespace Registry.

4. Click Link Namespace.

18

Link a Namespace to a Dev Hub OrgProject Setup

Tip: Make sure your browser allows pop-ups from your Dev Hub.

5. Log in to the Developer Edition org in which your namespace is registered using the org's System Administrator's credentials.

We recommend that you link Developer Edition orgs with a registered namespace to only a single Dev Hub. You cannot link orgs
without a namespace, sandboxes, scratch orgs, patch orgs, and branch orgs to the Namespace Registry.

To view all the namespaces linked to the Namespace Registry, select the All Namespace Registries view.

SEE ALSO:

Create a Developer Edition Org

Lightning Components Developer Guide: Create a Namespace in Your Org

Salesforce DX Setup Guide: Add Salesforce DX Users

Salesforce Help: Define Your Domain Name

Salesforce Help: My Domain

Salesforce Help: Test and Deploy Your New My Domain Subdomain

Salesforce DX Project Configuration

The project configuration file sfdx-project.json indicates that the directory is a Salesforce DX project. The configuration file
contains project information and facilitates the authentication of scratch orgs. It also tells Salesforce DX where to put files when syncing
between the project and scratch org.

We provide sample sfdx-project.json files in the sample repos for creating a project using the CLI or IDE.

We recommend that you check in this file with your source.

{
"packageDirectories" : [

{ "path": "force-app", "default": true},
{ "path" : "unpackaged" },
{ "path" : "utils" }

],
"namespace": "",
"sfdcLoginUrl" : "https://login.salesforce.com",
"sourceApiVersion": "40.0"
}

You can manually edit these parameters.

packageDirectories

Package directories indicate which directories to target when syncing source to and from the scratch org. These directories can
contain source from your managed package, unmanaged package, or unpackaged source, for example, ant tool or change set.

Keep these things in mind when working with package directories.

• The location of the package directory is relative to the project. Don’t specify an absolute path. The following two examples are
equivalent.

"path": "helloWorld"
"path" : "./helloWorld"

19

Salesforce DX Project ConfigurationProject Setup

https://developer.salesforce.com/gettingstarted
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/namespaces_creating.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_add_users.htm
https://help.salesforce.com/articleView?id=domain_name_define.htm&language=en_US
https://help.salesforce.com/articleView?id=domain_name_overview.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=domain_name_testing_and_rollout.htm&language=en_US

• You can have only one default path (package directory). If you have only one path, we assume it’s the default, so you don’t need
to explicitly set the Default parameter. If you have multiple paths, you must indicate which one is the default.

• The CLI uses the default package directory as the target directory when pulling changes in the scratch org to sync the local
project.

• If you do not specify an output directory, the default package directory is also where files are stored during source conversions.
Source conversions are both from Metadata API format to Salesforce DX project format and from project format to Metadata
API format.

namespace

The global namespace that is used with a package. The namespace must be registered with an org that is associated with your Dev
Hub org. This namespace is assigned to scratch orgs created with the org:create command.

Important: Register the namespace with Salesforce and then connect the org with the registered namespace to the Dev
Hub org.

sfdcLoginUrl

The login URL that the force:auth commands use. The default is login.salesforce.com. Override the default value if
you want users to authorize to a specific Salesforce instance. For example, if you want to authorize into a sandbox org, set this
parameter to test.salesforce.com.

If you do not specify a default login URL here, or if you run force:auth outside the project, you specify the instance URL when
authorizing the org.

sourceApiVersion

The API version that the source is compatible with. The SourceApiVersion determines the fields retrieved for each metadata
type. For example, an icon field was added to the CustomTab for API version 14.0. If you retrieve components for version 13.0 or
earlier, the components do not include the icon field.

SEE ALSO:

Link a Namespace to a Dev Hub Org

Authorization

How to Exclude Source When Syncing or Converting

Pull Source from the Scratch Org to Your Project

Push Source to the Scratch Org

20

Salesforce DX Project ConfigurationProject Setup

CHAPTER 3 Authorization

The Dev Hub allows you to create, delete, and manage your Salesforce scratch orgs. After you set up
your project on your local machine, you authorize with the Dev Hub org before you can create a scratch
org.

In this chapter ...

• Authorize an Org
Using the
Web-Based Flow Note: The supported editions for Dev Hub orgs are Enterprise Edition (EE) and Unlimited Edition

(UE).• Authorize an Org
Using the JWT-Based
Flow

You can also authorize other existing orgs, such as sandbox or packaging orgs, to provide more flexibility
when using CLI commands. For example, after developing and testing an application using scratch orgs,
you can deploy the changes to a centralized sandbox. Or, you can export a subset of data from an existing
production org and import it into a scratch org for testing purposes.

• Create a Private Key
and Self-Signed
Digital Certificate

You authorize an org only once. To switch between orgs during development, specify your username
for the org. Use either the --targetusername (or --targetdevhubusername) CLI command
parameter, set a default username, or use an alias.

• Create a Connected
App

• Use an Existing
Access Token Instead
of Authorizing

You have some options when configuring authentication depending on what you’re trying to accomplish.

• We provide the OAuth Refresh Token flow, also called web-based flow, through a global
out-of-the-box connected app. When you authorize an org from the command line, you enter your• Authorization

Information for an
Org

credentials and authorize the global connected app through the Salesforce web browser
authentication flow.

• For continuous integration or automated environments in which you don’t want to manually enter
credentials, use the OAuth JSON Web Tokens (JWT) Bearer Token flow, also called JWT-based flow.
This authentication flow is ideal for scenarios where you cannot interactively log in to a browser,
such as a continuous integration script.

SEE ALSO:

Authorize an Org Using the Web-Based Flow

Authorize an Org Using the JWT-Based Flow

Salesforce DX Usernames and Orgs

21

Authorize an Org Using the Web-Based Flow

To authorize an org with the web-based flow, all you do is run a CLI command. Enter your credentials in a browser, and you’re up and
running!

Authorization requires a connected app. We provide a connected app that is used by default. But you can optionally create a connected
app if you need more security or control, such as setting the refresh token timeout or specifying IP ranges.

1. (Optional) Create a connected app if you require more security and control than offered by the provided connected app. Enable
OAuth settings for the new connected app. Make note of the consumer key because you need it later.

2. If the org you are authorizing is on a My Domain subdomain, update your project configuration file (sfdx-project.json). Set
the sfdcLoginUrl parameter to your My Domain login URL. If you are authorizing a sandbox, set the parameter to
https://test.salesforce.com. For example:

"sfdcLoginUrl" : "https://test.salesforce.com"

or

"sfdcLoginUrl" : "https://somethingcool.my.salesforce.com"

Alternatively, use the --instanceurl parameter of the force:auth:web:login command, as shown in the next step,
to specify the URL.

3. Run the force:auth:web:login CLI command. If you are authorizing a Dev Hub, use the
--setdefaultdevhubusername parameter if you want the Dev Hub to be the default for commands that accept the
--targetdevhubusername parameter.

sfdx force:auth:web:login --setdefaultdevhubusername --setalias my-hub-org
sfdx force:auth:web:login --setalias my-sandbox

If you are using your own connected app, use the --clientid parameter. For example, if your client identifier (also called the
consumer key) is 04580y4051234051 and you are authorizing a Dev Hub:

sfdx force:auth:web:login --clientid 04580y4051234051 --setdefaultdevhubusername
--setalias my-hub-org

To specify a login URL other than the default, such as https://test.salesforce.com:

sfdx force:auth:web:login --setalias my-hub-org --instanceurl https://test.salesforce.com

Important: Use the --setdefaultdevhubusername parameter only when authorizing to a Dev Hub. Do not use it
when authorizing to other orgs, such as a sandbox.

4. In the browser window that opens, sign in to your org with your credentials.

5. Close the browser window, unless you want to explore the org.

SEE ALSO:

Create a Connected App

Salesforce DX Project Configuration

22

Authorize an Org Using the Web-Based FlowAuthorization

Authorize an Org Using the JWT-Based Flow

Continuous integration (CI) environments are fully automated and don’t support the human interactivity of a web-based flow. In this
case, you must use the JWT-based flow to authorize a Dev Hub.

The JWT-based authorization flow requires first generating a digital certificate and creating a connected app. You execute these tasks
only once. After that, you can authorize the Dev Hub in a script that runs in your CI environment.

For information about using JWT-based authorization with the Travis CI), see the Continuous Integration Using Salesforce DX Trailhead
module.

1. If you do not have your own private key and digital certificate, use OpenSSL to create the key and a self-signed certificate. It is assumed
in this task that your private key file is named server.key and your digital certificate is named server.crt.

2. Create a connected app, and configure it for Salesforce DX. This task includes uploading the server.crt digital certificate file.
Make note of the consumer key when you save the connected app because you need it later.

3. If the org you are authorizing is not hosted on https://login.salesforce.com, update your project configuration file
(sfdx-project.json). Set the sfdcLoginUrl parameter to the login URL. Examples of other login URLs are your custom
subdomain or https://test.salesforce.com for sandboxes. For example:

"sfdcLoginUrl" : "https://test.salesforce.com"

Alternatively, use the --instanceUrl parameter of the force:auth:jwt:grant command, as shown in the next step,
to specify the URL.

4. Run the force:auth:jwt:grant CLI command. Specify the client identifier from your connected app (also called the consumer
key), the path to the private key file (server.key), and the JWT authentication username. When you authorize a Dev Hub, set it
as the default with the --setdefaultdevhubusername parameter. For example:

sfdx force:auth:jwt:grant --clientid 04580y4051234051 --jwtkeyfile
/Users/jdoe/JWT/server.key --username jdoe@acdxgs0hub.org --setdefaultdevhubusername
--setalias my-hub-org

To specify a different login URL:

sfdx force:auth:jwt:grant --clientid 04580y4051234051 --jwtkeyfile
/Users/jdoe/JWT/server.key --username jdoe@acdxgs0hub.org --setdefaultdevhubusername
--setalias my-hub-org --instanceUrl https://test.salesforce.com

SEE ALSO:

Create a Private Key and Self-Signed Digital Certificate

Create a Connected App

Salesforce DX Project Configuration

Trailhead: Create Your Connected App (Continuous Integration Using Salesforce DX Module)

Create a Private Key and Self-Signed Digital Certificate

The JWT-based authorization flow requires a digital certificate and the private key used to sign the certificate. You upload the digital
certificate to the custom connected app that is also required for JWT-based authorization. You can use your own private key and certificate
issued by a certification authority. Alternatively, you can use OpenSSL to create a key and a self-signed digital certificate.

This process produces two files.

23

Authorize an Org Using the JWT-Based FlowAuthorization

https://trailhead.salesforce.com/modules/sfdx_travis_ci/units/sfdx_travis_ci_connected_app

• server.key—The private key. You specify this file when you authorize an org with the force:auth:jwt:grant command.

• server.crt—The digital certification. You upload this file when you create the connected app required by the JWT-based flow.

1. If necessary, install OpenSSL on your computer.

To check whether OpenSSL is installed on your computer, run this command.

$ which openssl

2. In Terminal or a Windows command prompt, create a directory to store the generated files, and change to the directory.

$ mkdir /Users/jdoe/JWT
$ cd /Users/jdoe/JWT

3. Generate a private key, and store it in a file called server.key.

$ openssl genrsa -des3 -passout pass:x -out server.pass.key 2048
$ openssl rsa -passin pass:x -in server.pass.key -out server.key

You can delete the server.pass.key file because you no longer need it.

4. Generate a certificate signing request using the server.key file. Store the certificate signing request in a file called server.csr.
Enter information about your company when prompted.

$ openssl req -new -key server.key -out server.csr

5. Generate a self-signed digital certificate from the server.key and server.csr files. Store the certificate in a file called
server.crt.

$ openssl x509 -req -sha256 -days 365 -in server.csr -signkey server.key -out server.crt

SEE ALSO:

OpenSSL: Cryptography and SSL/TLS Tools

Create a Connected App

Authorize an Org Using the JWT-Based Flow

Create a Connected App

If you use JWT-based authorization, you must create your own connected app in your Dev Hub org. You can also create a connected
app for web-based authorization if you require more security than provided with our connected app. For example, you can create a
connected app to set the refresh token timeout or specify IP ranges.

You create a connected app using Setup in your Dev Hub org. These steps assume that you are using Lightning Experience.

JWT-based authorization requires a digital certificate, also called a digital signature. You can use your own certificate or create a self-signed
certificate using OpenSSL.

Note: The steps marked JWT only are required only if you are creating a connected app for JWT-based authorization. They are
optional for web-based authorization.

1. Log in to your Dev Hub org.

2. From Setup, enter App Manager in the Quick Find box to get to the Lightning Experience App Manager.

3. In the top-right corner, click New Connected App.

24

Create a Connected AppAuthorization

https://www.openssl.org/

4. Update the basic information as needed, such as the connected app name and your email address.

5. Select Enable OAuth Settings.

6. For the callback URL, enter http://localhost:1717/OauthRedirect.

If port 1717 (the default) is already in use on your local machine, specify an available one instead. Make sure to also update your
sfdx-project.json file by setting the oauthLocalPort property to the new port. For example, if you set the callback
URL to http://localhost:1919/OauthRedirect:

"oauthLocalPort" : "1919"

7. (JWT only) Select Use digital signatures.

8. (JWT only) Click Choose File and upload the server.crt file that contains your digital certificate.

9. Add these OAuth scopes:

• Access and manage your data (api)

• Perform requests on your behalf at any time (refresh_token, offline_access)

• Provide access to your data via the Web (web)

10. Click Save.

Important: Make note of the consumer key because you need it later when you run a force:auth command.

11. (JWT only) Click Manage.

12. (JWT only) Click Edit Policies.

13. (JWT only) In the OAuth Policies section, select Admin approved users are pre-authorized for Permitted Users, and click OK.

14. (JWT only) Click Save.

15. (JWT only) Click Manage Profiles and then click Manage Permission Sets. Select the profiles and permission sets that are
pre-authorized to use this connected app. Create permission sets if necessary.

SEE ALSO:

Create a Private Key and Self-Signed Digital Certificate

Trailhead: Create Your Connected App (Continuous Integration Using Salesforce DX Module)

Connected Apps

Authorization

Use an Existing Access Token Instead of Authorizing

When you authorize into an org using the force:auth commands, the Salesforce CLI takes care of generating and refreshing all
tokens, such as the access token. But sometimes you want to run a few CLI commands against an existing org without going through
the entire authorization process. In this case, you must provide the access token and instance URL of the org.

1. Use force:config:set to set the instanceUrl config value to the Salesforce instance that hosts the existing org to
which you want to connect.

sfdx force:config:set instanceUrl=https://na35.salesforce.com

25

Use an Existing Access Token Instead of AuthorizingAuthorization

https://trailhead.salesforce.com/modules/sfdx_travis_ci/units/sfdx_travis_ci_connected_app
https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US

2. When you run the CLI command, use the org’s access token as the value for the --targetusername parameter rather than
the org’s username.

sfdx force:mdapi:deploy --deploydir <md-dir> --targetusername <access-token>

The CLI does not store the access token in its internal files. It uses it only for this CLI command run.

Authorization Information for an Org

You can view information for all orgs that you have authorized and the scratch orgs that you have created.

Use this command to view authentication information about an org.

sfdx force:org:display --targetusername <username>

If you have set a default username, you don’t have to specify the --targetusername parameter. To display the usernames for all
the active orgs that you’ve authorized or created, use force:org:list.

If you have set an alias for an org, you can specify it with the --targetusername parameter. This example uses the my-scratch
alias.

$ sfdx force:org:display --targetusername my-scratch-org

=== Org Description
KEY VALUE
─────────────── ───
Access Token <long-string>
Alias my-scratch-org
Client Id SalesforceDevelopmentExperience
Created By joe@mydevhub.org
Created Date 2017-06-07T00:51:59.000+0000
Dev Hub Id jdoe@fabdevhub.org
Edition Developer
Expiration Date 2017-06-14
Id 00D9A0000008cKm
Instance Url https://page-power-5849-dev-ed.cs46.my.salesforce.com
Org Name Your Company
Status Active
Username test-apraqvkwhcml@your_company.net

To get more information, such as the Salesforce DX authentication URL, include the --verbose parameter.

Note: To help prevent security breaches, the force:org:display output doesn’t include the org’s client secret or refresh
token. If you need these values, perform an OAuth flow outside of the Salesforce CLI.

SEE ALSO:

OAuth 2.0 Web Server Authentication Flow

Salesforce DX Usernames and Orgs

26

Authorization Information for an OrgAuthorization

https://help.salesforce.com/articleView?id=remoteaccess_oauth_web_server_flow.htm&language=en_US

CHAPTER 4 Scratch Orgs

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Dev Hub available in:
Enterprise, Performance,
and Unlimited Editions

Scratch orgs available in:
Developer, Enterprise,
Group, and Professional
Editions

The scratch org is a source-driven and disposable deployment of
Salesforce code and metadata. A scratch org is fully configurable,
allowing developers to emulate different Salesforce editions with
different features and preferences. And you can share the scratch
org configuration file with other team members, so you all have
the same basic org in which to do your development.

Scratch orgs drive developer productivity and collaboration during
the development process, and facilitate automated testing and
continuous integration. You can use the CLI or IDE to open your
scratch org in a browser without logging in. You might spin up a
new scratch org when you want to:

In this chapter ...

• Scratch Org Definition
File

• Scratch Org Definition
Configuration Values

• Create Scratch Orgs

• Supported Metadata
API Types

• Salesforce DX Project
Structure and Source
File Format • Start a new project.

• Push Source to the
Scratch Org

• Start a new feature branch.

• Test a new feature.• Assign a Permission
Set • Start automated testing.

• Perform development tasks directly in an org.• Ways to Add Data to
Your Scratch Org • Start from “scratch” with a fresh new org.

• Pull Source from the
Scratch Org to Your
Project

Note: Some Salesforce DX features, specifically Developer Hub and scratch orgs, are not available
to Government cloud and public cloud customers in Winter ’18.

Scratch Org Allocations and Considerations

To ensure optimal performance when you’re using Salesforce DX, your Dev Hub org edition determines
your scratch org allocations. These allocations determine how many scratch orgs you can create daily,

• Scratch Org Users

• Manage Scratch
Orgs from the Dev
Hub

as well as how many can be active at a given point. By default, Salesforce deletes scratch orgs and their
associated ActiveScratchOrg records from your Dev Hub when a scratch org expires. A scratch org expires
in 7 days unless you set a duration when you create it.

Scratch orgs have these storage limits:

• 200 MB for data

• 50 MB for files

Active Scratch Org
Allocation

Daily Scratch Org AllocationEdition

4080Enterprise Edition

27

Active Scratch Org
Allocation

Daily Scratch Org AllocationEdition

100200Unlimited Edition

100200Performance Edition

2040Dev Hub trial

Note: If you are a partner or ISV, your scratch org allocations may be different. See the ISVforce
Guide for details.

To try out Salesforce DX, sign up for a Dev Hub trial org. Trial Dev Hubs expire after 30 days, and each
trial Dev Hub gets 10 user licenses.

List Active and Daily Scratch Orgs

To view how many scratch orgs you have allocated, and how many you have remaining:

sfdx force:limits:api:display -u <Dev Hub username or alias>

NAME REMAINING MAXIMUM
───────────────────────────────────── ───────── ─────────
ActiveScratchOrgs 25 25
ConcurrentAsyncGetReportInstances 200 200
ConcurrentSyncReportRuns 20 20
DailyApiRequests 14994 15000
DailyAsyncApexExecutions 250000 250000
DailyBulkApiRequests 10000 10000
DailyDurableGenericStreamingApiEvents 10000 10000
DailyDurableStreamingApiEvents 10000 10000
DailyGenericStreamingApiEvents 10000 10000
DailyScratchOrgs 50 50
DailyStreamingApiEvents 10000 10000
DailyWorkflowEmails 75 75
DataStorageMB 1073 1073
DurableStreamingApiConcurrentClients 20 20
FileStorageMB 1073 1073
HourlyAsyncReportRuns 1200 1200
HourlyDashboardRefreshes 200 200
HourlyDashboardResults 5000 5000
HourlyDashboardStatuses 999999999 999999999
HourlyODataCallout 10000 10000
HourlySyncReportRuns 500 500
HourlyTimeBasedWorkflow 50 50
MassEmail 10 10
PermissionSets 1489 1500
SingleEmail 15 15
StreamingApiConcurrentClients 20 20

28

Scratch Orgs

https://developer.salesforce.com/promotions/orgs/dx-signup

Scratch Org Definition File

The scratch org definition file is a blueprint for a scratch org. It mimics the shape of an org that you use in the development life cycle,
such as sandbox, packaging, or production.

The shape of an org is determined by the collection of settings associated with it, including:

• Edition—The Salesforce edition of the scratch org, such as Developer, Enterprise, Group, or Professional.

• Add-on features—Functionality that is not included by default in an edition, such as multi-currency.

• Org preferences—Org and feature settings used to configure Salesforce products, such as Chatter and Communities.

Be default, scratch orgs are empty. They don’t contain much of the sample metadata that you get when you sign up for an org, such as
a Developer Edition org, the traditional way. Some of the things you won’t find in a scratch org are:

• Custom objects, fields, indexes, tabs, and entity definitions

• Sample data

• Sample Chatter feeds

• Dashboards and reports

• Workflows

• Picklists

• Profiles and permission sets

• Apex classes, triggers, and pages

Setting up different scratch org definition files allows you to easily create scratch orgs with different shapes for testing. For example, you
can turn Chatter on or off in a scratch org by setting the ChatterEnabled org preference in the definition file. If you want a scratch org
with sample data and metadata like you’re used to, we have an option for that: hasSampleData.

Here are the options you can specify in the scratch org definition file:

Default If Not SpecifiedRequired?Name

CompanyNoorgName

Dev Hub's country. Scratch orgs are located in a data center based
on the specified country.

Nocountry

test-unique_identifier@orgName.netNousername

Email address of the Dev Hub user making the scratch org creation
request

NoadminEmail

None. Valid entries are Developer, Enterprise, Group, or ProfessionalYesedition

None. 2000-character free-form text field.

The description is a good way to document the scratch org’s
purpose. You can view or edit the description in the Dev Hub. From

Nodescription

App Launcher, select Scratch Org Info or Active Scratch Orgs,
then click the scratch org number.

Valid values are true and false. False is the default, which
creates an org without sample data.

NohasSampleData

Default language for the countryNolanguage

29

Scratch Org Definition FileScratch Orgs

Default If Not SpecifiedRequired?Name

NoneNofeatures

NoneNoorgPreferences

Here’s what the scratch org definition JSON file looks like:

{
"orgName": "Acme",
"country": "US",
"edition": "Enterprise",
"description": "Work Item #12345: add picklist to widget",
"hasSampleData": "true",
"features": ["MultiCurrency", "AuthorApex"],
"orgPreferences": {
"enabled": ["S1DesktopEnabled", "ChatterEnabled"],
"disabled": ["IsNameSuffixEnabled"]

}
}

Important: When indicating an orgName, don’t use a period as the last character. For example, Acme Corp. is not a good name
because it causes an undesirable extra period in the scratch org username
(scratchorg1497932510400@acmecorp..com).

Some features, such as Communities, can require a combination of a feature and an orgPreferences parameter to work correctly
for scratch orgs. This code snippet sets both the feature and org preference.

"features": ["Communities"],
"orgPreferences": {

"enabled": ["NetworksEnabled"],
...

You indicate the path to the scratch org configuration file when you create a scratch org with the force:org:create CLI command.
You can name this file whatever you like and locate it anywhere the CLI can access.

If you’re using a sample repo or creating a Salesforce DX project, the sample scratch org definition files are located in the config
directory. You can create different configuration files for different org shapes or testing scenarios. For easy identification, name the file
something descriptive, such as devEdition-scratch-def.json or packaging-org-scratch-def.json.

We recommend that you keep this file in your project and check it in to your version control system. For example, create a team version
that you check in for all team members to use. Individual developers could also create their own local version that includes the scratch
org definition parameters. Examples of these parameters include email and last name, which identify who is creating the scratch org.

Scratch Org Definition Configuration Values

Configuration values determine the shape of the scratch org.

Supported Editions
The Salesforce edition of the scratch org. Possible values are:

• Developer

30

Scratch Org Definition Configuration ValuesScratch Orgs

• Enterprise

• Group

• Professional

Supported Features
You can enable these add-on features in a scratch org:

• API

• AuthorApex

• Communities

• ContractApprovals

• CustomerSelfService

• CustomApps

• CustomTabs

• DebugApex

• DefaultWorkflowUser

• ForceComPlatform

• MultiCurrency

• PersonAccounts

• SalesWave

• LightningSalesConsole

• LightningServiceConsole

• ServiceCloud

• ServiceWave

• SiteDotCom

• Sites

You can specify multiple feature values in a comma-delimited list in the scratch org definition file.

"features": ["MultiCurrency", "AuthorApex"],

Notes:

• For Group and Professional Edition orgs, the AuthorApex feature is disabled by default. Enabling the AuthorApex feature lets you
edit and test your Apex classes.

• DebugApex lets you use the Apex Debugger in a scratch org provided there are available sessions in the Dev Hub.

Supported Org Preferences
Org preferences are settings that a user can configure in the org. For example, these preferences control which Chatter, Knowledge, and
Opportunities settings are enabled, among many others. These settings are enabled (or disabled) in the orgPreferences section of the
configuration file, in JSON format.

"orgPreferences": {
"enabled": ["S1DesktopEnabled", "ChatterEnabled", "IsOpportunityTeamEnabled"],

31

Scratch Org Definition Configuration ValuesScratch Orgs

"disabled": ["IsOrdersEnabled"]
}

You can set the following org preferences in the configuration file. See the Metadata API Developer Guide for descriptions of the supported
settings.

Important: Exercise caution when using DisableParallelApexTesting. Your tests will run noticeably slower. Try these Testing Best
Practices in the Apex Developer Guide so that you can run your Apex tests in parallel.

General Settings

• AnalyticsSharingEnable

• AsyncSaveEnabled

• ChatterEnabled

• DisableParallelApexTesting

• EnhancedEmailEnabled

• EventLogWaveIntegEnabled

• LoginForensicsEnabled

• NetworksEnabled

• OfflineDraftsEnabled

• PathAssistantsEnabled

• S1DesktopEnabled

• S1EncryptedStoragePref2

• S1OfflinePref

• SelfSetPasswordInApi

• SendThroughGmailPref

• SocialProfilesEnable

• Translation

• VoiceEnabled

Account Settings

• IsAccountTeamsEnabled

• ShowViewHierarchyLink

Activities Settings

• IsActivityRemindersEnabled

• IsDragAndDropSchedulingEnabled

• IsEmailTrackingEnabled

• IsGroupTasksEnabled

• IsMultidayEventsEnabled

• IsRecurringEventsEnabled

• IsRecurringTasksEnabled

• IsSidebarCalendarShortcutEnabled

• IsSimpleTaskCreateUIEnabled

• ShowEventDetailsMultiUserCalendar

32

Scratch Org Definition Configuration ValuesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.210.0.apexcode.meta/apexcode/apex_testing_best_practices.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.apexcode.meta/apexcode/apex_testing_best_practices.htm

• ShowHomePageHoverLinksForEvents

• ShowMyTasksHoverLinks

Contract Settings

• AutoCalculateEndDate

• IsContractHistoryTrackingEnabled

• NotifyOwnersOnContractExpiration

Entitlement Settings

• AssetLookupLimitedToActiveEntitlementsOnAccount

• AssetLookupLimitedToActiveEntitlementsOnContact

• AssetLookupLimitedToSameAccount

• AssetLookupLimitedToSameContact

• IsEntitlementsEnabled

• EntitlementLookupLimitedToActiveStatus

• EntitlementLookupLimitedToSameAccount

• EntitlementLookupLimitedToSameAsset

• EntitlementLookupLimitedToSameContact

Forecasting Settings

• IsForecastsEnabled

Ideas Settings

• IsChatterProfileEnabled

• IsIdeaThemesEnabled

• IsIdeasEnabled

• IsIdeasReputationEnabled

Knowledge Settings

• IsCreateEditOnArticlesTabEnabled

• IsExternalMediaContentEnabled

• IsKnowledgeEnabled

• ShowArticleSummariesCustomerPortal

• ShowArticleSummariesInternalApp

• ShowArticleSummariesPartnerPortal

• ShowValidationStatusField

Live Agent Settings

• IsLiveAgentEnabled

Marketing Action Settings

• IsMarketingActionEnabled

Name Settings

• IsMiddleNameEnabled

• IsNameSuffixEnabled

Opportunity Settings

33

Scratch Org Definition Configuration ValuesScratch Orgs

• IsOpportunityTeamEnabled

Order Settings

• IsNegativeQuantityEnabled

• IsOrdersEnabled

• IsReductionOrdersEnabled

Personal Journey Settings

• IsExactTargetForSalesforceAppsEnabled

Product Settings

• IsCascadeActivateToRelatedPricesEnabled

• IsQuantityScheduleEnabled

• IsRevenueScheduleEnabled

Quote Settings

• IsQuoteEnabled

Search Settings

• DocumentContentSearchEnabled

• OptimizeSearchForCjkEnabled

• RecentlyViewedUsersForBlankLookupEnabled

• SidebarAutoCompleteEnabled

• SidebarDropDownListEnabled

• SidebarLimitToItemsIownCheckboxEnabled

• SingleSearchResultShortcutEnabled

• SpellCorrectKnowledgeSearchEnabled

SEE ALSO:

Salesforce Editions

Settings (Metadata API Developer Guide)

Create Scratch Orgs

After you create the scratch org definition file, you can easily spin up a scratch org and open it directly from the command line.

Before you create a scratch org:

• Set up your Salesforce DX project

• Authorize the Dev Hub

• Create the scratch org definition file

You can create scratch orgs for different functions, such as for feature development, for development of packages that contain a
namespace, or for user acceptance testing.

Tip: Delete any unneeded or malfunctioning scratch orgs in the Dev Hub or via the command line so that they don’t count against
your active scratch org allocations.

1. Create the scratch org.

34

Create Scratch OrgsScratch Orgs

https://help.salesforce.com/articleView?id=overview_edition.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.210.0.api_meta.meta/api_meta/meta_settings.htm

Run This CommandTo

The scratch org definition defines the org edition, features, org preferences, and some
other options.

sfdx force:org:create -f project-scratch-def.json

Create a scratch org for development using
a scratch org definition file

sfdx force:org:create adminEmail=me@email.com
edition=Developer \

username=admin_user@orgname.org

Specify scratch org definition values on the
command line using key=value pairs

Scratch org usernames are long and unintuitive. Setting an alias each time you create
a scratch org is a great way to track the scratch org’s function. And it’s much easier to
remember when issuing subsequent CLI commands.

sfdx force:org:create -f project-scratch-def.json -a
MyScratchOrg

Create a scratch org with an alias

In this case, you don’t want to create a scratch org with a namespace. You can use this
command to override the namespace value in the scratch org definition file.

sfdx force:org:create -f project-scratch-def.json
--nonamespace

Create a scratch org for user acceptance
testing or to test installations of packages

CLI commands that are run from within the project use the default scratch org, and
you don’t have to manually enter the username parameter each time.

sfdx force:org:create -f project-scratch-def.json
--setdefaultusername

Indicate that this scratch org is the default

The default is 7 days. Valid values are from 1-30.

sfdx force:org:create -f config/project-scratch-def.json
--durationdays 30

sfdx force:org:create -f config/project-scratch-def.json
-d 3

Specify the scratch org’s duration, which
indicates when the scratch org expires (in
days).

Indicate the path to the scratch definition file relative to your current directory. For sample repos, this file is located in the config
directory.

Stdout displays two important pieces of information: the org ID and the username.

Successfully created scratch org: 00D3D0000000PE5UAM,
username: scratchorg1488709604@acme.com

If the create command times out before the scratch org is created (the default wait time is 6 minutes), you see an error. Issue this
command to see if it returns the scratch org ID, which confirms the existence of the scratch org:

sfdx force:data:soql:query -q "SELECT ID, Name, Status FROM ScratchOrgInfo \
WHERE CreatedBy.Name = '<your name>' \
AND CreatedDate = TODAY" -u <Dev Hub org>

35

Create Scratch OrgsScratch Orgs

This example assumes that your name is Jane Doe, and you created an alias for your Dev Hub org called DevHub:

sfdx force:data:soql:query -q "SELECT ID, Name, Status FROM ScratchOrgInfo \
WHERE CreatedBy.Name = 'Jane Doe' AND CreatedDate = TODAY" -u DevHub

If that doesn’t work, create another scratch org and increase the timeout value using the --wait parameter. Don’t forget to delete
the malfunctioning scratch org.

2. Open the org.

sfdx force:org:open -u <username/alias>

If you want to open the scratch org in Lightning Experience or open a Visualforce page, use the --path parameter.

sfdx force:org:open --path one/one.app

3. Push local project source to your scratch org.

SEE ALSO:

Project Setup

Authorization

Scratch Org Definition File

Push Source to the Scratch Org

Supported Metadata API Types

After changing the metadata source, you can sync the changes between the project and scratch org. We describe how to do that next.
In general, we mainly support the Metadata API types that are packageable and a few non-packageable components.

Note: If you're working with second-generation packages (beta), check this list to make sure it’s one of the Supported Component
Types.

For more information, see “Metadata Types” in the Metadata API Developer Guide.

Supported Packageable Entities
We support these packageable components for first-generation managed packages:

• ActionLinkGroupTemplate

• AnalyticSnapshot

• ApexClass

• ApexComponent

• ApexPage

• ApexTrigger

• AuraDefinitionBundle

• BusinessProcess

• CompactLayout

• CompanySettings

• ConnectedApp

36

Supported Metadata API TypesScratch Orgs

• ContentAsset

• CorsWhitelistOrigin

• CspTrustedSite

• CustomApplication

• CustomApplicationComponent

• CustomField

• CustomLabel(s)

• CustomMetadata

• CustomObject

• CustomPageWebLink

• CustomPermission

• CustomTab

• Dashboard

• DashboardFolder

• Document

• DocumentFolder

• DuplicateRule

• EmailFolder

• EmailTemplate

• ExternalDataSource

• FieldServiceSettings

• FieldSet

• FlexiPage

• FlowDefinition

• GlobalPicklist

• GlobalValueSet

• HomePageComponent

• HomePageLayout

• Layout

• Letterhead

• LookupFilter

• MatchingRule(s)

• NamedCredential

• PermissionSet

• PlatformCachePartition

• QuickAction

• RecordType

• RemoteSiteSettings

• Report

• ReportFolder

37

Supported Metadata API TypesScratch Orgs

• ReportType

• Scontrol

• SharingReason

• StaticResource

• Translations

• ValidationRule

• WaveApplication

• WaveDashboard

• WaveDataflow

• WaveDataset

• WaveLens

• WaveRecipe

• WebLink

• WorkflowAlert

• WorkflowFieldUpdate

• WorkflowFlowAction

• WorkflowOutboundMessage

• WorkflowRule

• WorkflowTask

Supported Non-Packageable Entities
We also support these non-packageable components for first-generation managed packages:

• AccountSettings

• ActivitiesSettings

• AddressSettings

• ApexTestSuite

• ApprovalProcess

• AssignmentRule(s)

• AuthProvider

• AutoResponseRule(s)

• BusinessHoursSettings

• CallCenter

• CaseSettings

• ChatterAnswerSettings

• ContractSettings

• CustomObjectTranslation

• CustomValue

• EntitlementSettings

• FileUploadAndDownloadSecuritySettings

38

Supported Metadata API TypesScratch Orgs

• ForecastingSettings

• Group

• IdeasSettings

• KnowledgeSettings

• LiveAgentSettings

• MacroSettings

• MarketingActionSettings

• MobileSettings

• NameSettings

• OpportunitySettings

• OrderSettings

• OrgPreferenceSettings

• ProductSettings

• Profile

• Queue

• QuoteSettings

• Role

• SecuritySettings

• SharingCriteriaRule

• SharingOwnerRule

• SharingRules

• Territory

• Territory2

• Territory2Model

• Territory2Rule

• Territory2Type

• Workflow

SEE ALSO:

Components Available in Managed Packages (ISVForce Guide)

Metadata Types (Metadata API Developer Guide)

Salesforce DX Project Structure and Source File Format

A Salesforce DX project has a specific project structure and source file format. Salesforce DX source uses a different set of files and file
extensions from what you’re accustomed when using Metadata API.

File Extensions
When you convert existing Metadata API source to Salesforce DX project format, we create an XML file for each bit. All files that contain
XML markup now have an .xml extension. You can then look at your source files using an XML editor. To sync your local projects and

39

Salesforce DX Project Structure and Source File FormatScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.210.0.packagingGuide.meta/packagingGuide/packaging_packageable_components.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.api_meta.meta/api_meta/meta_types_list.htm

scratch orgs, Salesforce DX projects use a particular directory structure for custom objects, custom object translations, Lightning
components, and documents.

For example, if you had an object called Case.object, Salesforce DX provides an XML version called Case.object-meta.xml. If
you have an app call DreamHouse.app, we create a file called DreamHouse.app-meta.xml. You get the idea. For Salesforce DX
projects, all source files have a companion file with the “-meta.xml” extension.

Traditionally, static resources are stored on the file system as binary objects with a .resource extension. Salesforce DX handles static
resources differently by supporting content MIME types. For example, .gif files are stored as a .gif instead of .resource. By
storing files with their MIME extensions, you can manage and edit your files using the associated editor on your system.

You can have a combination of existing static resources with their .resource extension, and newly created static resources with
their MIME content extensions. Existing static resources with .resource extensions keep that extension, but any new static resources
show up in your project with their MIME type extensions. We allow .resource files to support the transition for existing customers.
Although you get this additional flexibility, we recommend storing your files with their MIME extensions.

Source Transformation
It’s not uncommon for Metadata API source files to be very large, making it difficult to find what you want. If you work on a team with
other developers who update the same Metadata API source file at the same time, you have to deal with merging multiple updates to
the file. If you’re thinking that there has to be a better way, you’re right.

Before Salesforce DX, all custom objects and object translations were stored in one large Metadata API source file.

Salesforce DX solves this problem by providing a new source shape that breaks down these large source files to make them more
digestible and easier to manage with a version control system.

A Salesforce DX project stores custom objects and custom object translations in intuitive subdirectories. This source structure makes it
much easier to find what you want to change or update. And you can say goodbye to messy merges.

40

Salesforce DX Project Structure and Source File FormatScratch Orgs

Static resources must reside in the /main/default/staticresources directory. The force:source:push and
force:source:pull commands support auto-expanding or compressing archive MIME types within your project. These behaviors
support both the .zip and .jar MIME types. This way, the source files are more easily integrated in your Salesforce DX project and
version control system.

If, for example, you upload a static resource archive through the scratch org’s Setup UI, force:source:pull expands it into its
directory structure within the project. To mimic this process from the file system, add the directory structure to compress directly into
the static resources directory root, then create the associated .resource-meta.xml file. If an archive exists as a single file in your
project, it’s always treated as a single file and not expanded.

This example illustrates how different types of static resources are stored in your local project. You can see an expanded .zip archive
called expandedzippedresource and its related .resource-meta.xml file. You also see a couple .jpg files being stored
with their MIME type, and a single file being stored with the legacy .resource extension

41

Salesforce DX Project Structure and Source File FormatScratch Orgs

Custom Objects
When you convert your source to Salesforce DX project format, your custom objects are placed in the <package
directory>/main/default/objects directory. Each object has its own subdirectory that reflects the type of custom object.

Some parts of the custom objects are extracted into in these subdirectories:

• businessProcesses

• compactLayouts

• fields

• fieldSets

• listViews

• recordTypes

• sharingReasons

• validationRules

• webLinks

The parts of the custom object that are not extracted are placed in a file.

• For objects, <object>.object-meta.xml

• For fields, <field_name>.field-meta.xml

42

Salesforce DX Project Structure and Source File FormatScratch Orgs

Custom Object Translations
Custom object translations reside in the <package directory>/main/default/objectTranslations directory, each
in their own subdirectory named after the custom object translation. Custom object translations and field translations are extracted into
their own files within the custom object translation’s directory.

• For field names, <field_name>.fieldTranslation-meta.xml

• For object names, <object_name>.objectTranslation-meta.xml

The remaining pieces of the custom object translation are placed in a file called
<objectTranslation>.objectTranslation-meta.xml.

Lightning Components
Lightning bundles and components must reside in a directory named aura under the <package directory> directory.

Documents
Documents must be inside the directories of their parent document folder. The parent document folder must be in a directory called
documents. Each document has a corresponding Metadata API XML file that you can view with an XML editor.

43

Salesforce DX Project Structure and Source File FormatScratch Orgs

Push Source to the Scratch Org

After changing the source, you can sync the changes to your scratch org by pushing the changed source to it.

The first time you push metadata to the org, all source in the folders you indicated as package directories is pushed to the scratch org
to complete the initial setup. At this point, we start change-tracking locally on the file system and remotely in the scratch org to determine
which metadata has changed. Let’s say you pushed an Apex class to a scratch org and then decide to modify the class in the scratch org
instead of your local file system. The CLI tracks in which local package directory the class was created, so when you pull it back to your
project, it knows where it belongs.

Warning: You can use force:source:push for scratch orgs only. If you’re synchronizing source to another org, use the
Metadata API.

During development, you change files locally in your file system and change the scratch org directly using the builders and editors that
Salesforce supplies. Usually, these changes don’t cause a conflict and involve unique files.

The push command doesn’t handle merges. Projects and scratch orgs are meant to be used by one developer. Therefore, we don’t
anticipate file conflicts or the need to merge. However, if the push command detects a conflict, it terminates the operation and displays
the conflict information to the terminal. You can rerun the push command and force the changes in your project to the scratch org.

Before running the push command, you can get a list of what’s new, changed, and the conflicts between your local file system and the
scratch org by using force:source:status. This way you can choose ahead of time which version you want to keep and manually
address the conflict.

44

Push Source to the Scratch OrgScratch Orgs

Pushing Source to a Scratch Org
To push changed source to your default scratch org:

sfdx force:source:push

STATE FULL NAME TYPE PROJECT PATH
─────── ───────────── ───────── ────────────────────────────────────
Changed MyWidgetClass ApexClass /classes/MyWidgetClass.cls-meta.xml
Changed MyWidgetClass ApexClass /classes/MyWidgetClass.cls

To push changed source to a scratch org that’s not the default, you can indicate it by its username or alias:

sfdx force:source:push --targetusername scratchorg148@acme.com

sfdx force:source:push -u scratchorg148@acme.com

sfdx force:source:push -u MyGroovyScratchOrg

Tip: You can create an alias for an org using force:alias:set. Run force:org:list to display the usernames of all
the scratch orgs you have created.

Selecting Files to Ignore During Push
It’s likely that you have some files that you don’t want to sync between the project and scratch org. You can have the push command
ignore the files you indicate in .forceignore.

If Push Detects Warnings
If you run force:source:push, and warnings occur, the CLI doesn’t push the source. Warnings can occur, for example, if your
project source is using an outdated version. If you want to ignore these warnings and push the source to the scratch org, run:

sfdx force:source:push --ignorewarnings

Tip: Although you can successsfully push using this option, we recommend addressing the issues in the source files. For example,
if you see a warning because a Visualforce page is using an outdated version, consider updating your page to the current version
of Visualforce. This way, you can take advantage of new features and performance improvements.

If Push Detects File Conflicts
If you run force:source:push, and conflicts are detected, the CLI doesn’t push the source.

STATE FULL NAME TYPE PROJECT PATH
─────── ───────────── ───────── ─────────────────────────────────
Conflict NewClass ApexClass /classes/CoolClass.cls-meta.xml
Conflict NewClass ApexClass /classes/CoolClass.cls

Notice that you have a conflict. CoolClass exists in your scratch org but not in the local file system. In this new development paradigm,
the local project is the source of truth. Consider if it makes sense to overwrite the conflict in the scratch org.

45

Push Source to the Scratch OrgScratch Orgs

If conflicts have been detected and you want to override them, here’s how you use the power of the force (overwrite) to push the source
to a scratch org.

sfdx force:source:push --forceoverwrite

Next steps:

• To verify that the source was uploaded successfully to the scratch org, open the org in a browser.

• Add some sample test data.

How to Exclude Source When Syncing or Converting

When syncing metadata between your local file system and a scratch org, you often have source files you want to exclude. Similarly,
you often want to exclude certain files when converting source to Salesforce DX project format. In both cases, you can exclude
individual files or all files in a specific directory with a .forceignore file.

SEE ALSO:

How to Exclude Source When Syncing or Converting

Track Changes Between the Project and Scratch Org

Track Changes Between the Project and Scratch Org

Assign a Permission Set

Ways to Add Data to Your Scratch Org

How to Exclude Source When Syncing or Converting
When syncing metadata between your local file system and a scratch org, you often have source files you want to exclude. Similarly,
you often want to exclude certain files when converting source to Salesforce DX project format. In both cases, you can exclude individual
files or all files in a specific directory with a .forceignore file.

Use your favorite text editor to create a .forceignore file to specify the files or directories you want to exclude. Any source file or
directory that begins with a “dot,” such as .DS_Store, is excluded by default.

The .forceignore file excludes files when running force:source:push, force:source:pull, and
force:source:status. For source:status, remote changes are checked against entries in the .forceignore file. Let’s
say you added a class called HelloWorld.cls on the server and included an entry in .forceignore that matches the file
name (such as HelloWorld.cls or HelloWorld.*). The source:status output omits the HelloWorld.cls.

Where to Put .forceignore
For the .forceignore file to work its magic, you must put it in the proper location, depending on which command you are running.

• Add the .forceignore file to the root of your project for force:source:push.

• Add the file to the Metadata retrieve directory (with package.xml) for force:mdapi:convert.

Sample Syntax for .forceignore
The .forceignore file has similar functionality to .gitignore. Here are some options for indicating which source to exclude.
All paths are relative to the project root directory.

Specify a relative path to a directory from the project root
helloWorld/main/default/classes

46

How to Exclude Source When Syncing or ConvertingScratch Orgs

Specify a wildcard directory - any directory named “classes” is excluded
**classes

Specify file extensions
**.cls
**.pdf

Specify a specific file
helloWorld/main/default/HelloWorld.cls

Assign a Permission Set

After creating your scratch org and pushing the source, you must sometimes give your users access to your application, especially if your
app contains custom objects.

1. If needed, create the permission set in the scratch org.

a. Open the scratch org in your browser.

sfdx force:org:open -u <scratch org username/alias>

b. From Setup, enter Perm in the Quick Find box, then select Permission Sets.

c. Click New.

d. Enter a descriptive label for the permission set, then click Save.

e. Under Apps, click Assigned Apps > Edit.

f. Under Available Apps, select your app, then click Add to move it to Enabled Apps.

g. Click Save.

2. Pull the permission set from the scratch org to your project.

sfdx force:source:pull -u <scratch org username/alias>

3. Assign the permission set to one or more users of the org that contains the app:

sfdx force:user:permset:assign --permsetname <permset_name> --targetusername
<username/alias>

The target username must have permission to assign a permission set. Use the --onbehalfof parameter to assign a permission
set to non-administrator users.

sfdx force:user:permset:assign --permsetname <permset_name> --targetusername <admin-user>
--onbehalfof <non-admin-user>

Ways to Add Data to Your Scratch Org

Orgs for development need a small set of stock data for testing. Scratch orgs come with the same set of data as the edition on which
they are based. For example, Developer Edition orgs typically include 10–15 records for key standard objects, such as Account, Contact,
and Lead. These records come in handy when you’re testing something like a new trigger, workflow rule, Lightning component, or
Visualforce page.

47

Assign a Permission SetScratch Orgs

Sometimes, the stock data doesn’t meet your development needs. Scratch orgs have many uses, so we provide you the flexibility to add
the data you need for your use cases. Apex tests generally create their own data. Therefore, if Apex tests are the only tests you’re running
in a scratch org, you can probably forget about data for the time being. However, other tests, such as UI, API, or user acceptance tests,
do need baseline data. Make sure that you use consistent data sets when you run tests of each type.

The following sections describe the Salesforce CLI commands you can use to populate your scratch orgs. The commands you use depend
on your current stage of development.

You can also use the force:data:soql:query CLI command to run a SOQL query against a scratch org. While the command
doesn’t change the data in an org, it’s useful for searching or counting the data. You can also use it with other data manipulation
commands.

force:data:tree Commands
The SObject Tree Save API drives the force:data:tree commands for exporting and importing data. The commands use JSON
files to describe objects and relationships. The export command requires a SOQL query to select the data in an org that it writes to the
JSON files. Rather than loading all records of each type and establishing relationships, the import command loads parents and children
already in the hierarchy.

force:data:bulk Commands
Bulk API drives the force:bulk commands for exporting a basic data set from an org and storing that data in source control. You
can then update or augment the data directly rather than in the org from where it came. The force:data:bulk commands use
CSV files to import data files into scratch orgs or to delete sets of data that you no longer want hanging around. Use dot notation to
establish child-to-parent relationships.

force:data:record Commands
Everyone’s process is unique, and you don’t always need the same data as your teammates. When you want to create, modify, or delete
individual records quickly, use the force:data:record:create|delete|get|update commands. No data files are
needed.

Example: Export and Import Data Between Orgs

Let’s say you’ve created the perfect set of data to test your application, and it currently resides in your default scratch org. You finished
coding a new feature that you want to test in a new scratch org. You create the scratch org, push your source code, and assign the
needed permission sets. Now you want to populate the scratch org with your perfect set of data from the other org. How? Read on!

SEE ALSO:

SObject Tree Request Body (REST API Developer Guide)

Create Multiple Records (REST API Developer Guide)

Create Nested Records (REST API Developer Guide)

Salesforce Object Query Language (SOQL)

Sample CSV File (Bulk API Developer Guide)

Salesforce CLI Command Reference

48

Ways to Add Data to Your Scratch OrgScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.210.0.api_rest.meta/api_rest/requests_composite_sobject_tree.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.api_rest.meta/api_rest/dome_composite_sobject_tree_flat.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.api_rest.meta/api_rest/dome_composite_sobject_tree_create.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.api_asynch.meta/api_asynch/datafiles_csv_sample_file.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

Example: Export and Import Data Between Orgs
Let’s say you’ve created the perfect set of data to test your application, and it currently resides in your default scratch org. You finished
coding a new feature that you want to test in a new scratch org. You create the scratch org, push your source code, and assign the
needed permission sets. Now you want to populate the scratch org with your perfect set of data from the other org. How? Read on!

This use case refers to the Broker and Properties custom objects of the Salesforce DX Github DreamHouse example. It’s assumed that,
in the first scratch org from which you are exporting data, you’ve created the two objects by pushing the DreamHouse source. It’s also
assumed that you’ve assigned the permission set and populated the objects with the data. In the second scratch org, however, it’s
assumed that you’ve created the two objects and assigned the permission set but not yet populated them with data. See the README
of the dreamhouse-sfdx GitHub example for instructions on these tasks.

1. Export the data in your default scratch org.

Use the force:data:soql:query command to fine-tune the SELECT query so that it returns the exact set of data you want
to export. This command outputs the results to your terminal or command window, but it doesn’t change the data in the org.
Because the SOQL query is long, the command is broken up with backslashes for easier reading. You can still cut and paste the
command into your terminal window and run it.

sfdx force:data:soql:query --query \
"SELECT Id, Name, Title__c, Phone__c, Mobile_Phone__c, \

Email__c, Picture__c, \
(SELECT Name, Address__c, City__c, State__c, Zip__c, \

Price__c, Title__c, Beds__c, Baths__c, Picture__c, \
Thumbnail__c, Description__c \

FROM Properties__r) \
FROM Broker__c"

2. When you’re satisfied with the SELECT statement, use it to export the data into a set of JSON files.

sfdx force:data:tree:export --query \
"SELECT Id, Name, Title__c, Phone__c, Mobile_Phone__c, \

Email__c, Picture__c, \
(SELECT Name, Address__c, City__c, State__c, Zip__c, \

Price__c, Title__c, Beds__c, Baths__c, Picture__c, \
Thumbnail__c, Description__c \

FROM Properties__r) \
FROM Broker__c" \

--prefix export-demo --outputdir sfdx-out --plan

The export command writes the JSON files to the sfdx-out directory (in the current directory) and prefixes each file name with
the string export-demo. The files include a plan definition file, which refers to the other files that contain the data, one for each
exported object.

3. Import the data into the new scratch org by specifying the plan definition file.

sfdx force:data:tree:import --targetusername <test-ABC@XYZ.com> \
--plan sfdx-out/export-demo-Broker__c-Property__c-plan.json

Use the --plan parameter to specify the full path name of the plan execution file generated by the
force:data:tree:export command. Plan execution file names always end in -plan.json.

In the previous example, you must use the --targetusername option because you are importing into a scratch org that is not
your default. Use the force:org:list command to view all your scratch orgs along with their usernames and aliases. You can
also use force:config:set to set the new scratch org as your default.

49

Example: Export and Import Data Between OrgsScratch Orgs

4. (Optional) Open the new scratch org and query the imported data using the Salesforce UI and SOQL.

sfdx force:org:open --targetusername <test-ABC@XYZ.com>

If you set an alias for the scratch org username, you can pass it to the --targetusername parameter.

sfdx force:org:open --targetusername <alias>

SEE ALSO:

CLI Runtime Configuration Values

dreamhouse-sfdx Sample GitHub Repo

Salesforce CLI Command Reference

Pull Source from the Scratch Org to Your Project

After you do an initial push, Salesforce DX tracks the changes between your local file system and your scratch org. If you change your
scratch org, you usually want to pull those changes to your local project to keep both in sync.

During development, you change files locally in your file system and change the scratch org using the builders and editors that Salesforce
supplies. Usually, these changes don’t cause a conflict and involve unique files.

Important: You can use force:source:pull for scratch orgs only. If you’re synchronizing source to any other org, use
the Metadata API (force:mdapi:retrieve or force:mdapi:deploy).

By default, only changed source is synced back to your project.

The pull command does not handle merges. Projects and scratch orgs are meant to be used by one developer. Therefore, we don’t
anticipate file conflicts or the need to merge. However, if the pull command detects a conflict, it terminates the operation and displays
the conflict information to the terminal. You can rerun the command with the force option if you want to pull changes from your scratch
org to the project despite any detected conflicts.

Before you run the pull command, you can get a list of what’s new, changed, and any conflicts between your local file system and the
scratch org by using force:source:status. This way you can choose ahead of time which files to keep.

To pull changed source from the scratch org to the project:

sfdx force:source:pull

You can indicate either the full scratch org username or an alias. The terminal displays the results of the pull command. This example
adds two Apex classes to the scratch org. The classes are then pulled to the project in the default package directory. The pull also indicates
which files have changed since the last push and if a conflict exists between a version in your local project and the scratch org.

STATE FULL NAME TYPE PROJECT PATH
─────── ───────────── ───────── ─────────────────────────────────
Changed MyWidgetClass ApexClass /classes/MyWidgetClass.cls-meta.xml
Changed MyWidgetClass ApexClass /classes/MyWidgetClass.cls
Changed CoolClass ApexClass /classes/CoolClass.cls-meta.xml
Changed CoolClass ApexClass /classes/CoolClass.cls

50

Pull Source from the Scratch Org to Your ProjectScratch Orgs

https://github.com/DreamhouseApp/dreamhouse-sfdx
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

To pull source to the project if a conflict has been detected:

sfdx force:source:pull --forceoverwrite

SEE ALSO:

Track Changes Between the Project and Scratch Org

Scratch Org Users

A scratch org includes one administrator user by default. The admin user is typically adequate for all your testing needs. But sometimes
you need other users to test with different profiles and permission sets.

You can create a user by opening the scratch org in your browser and navigating to the Users page in Setup. You can also use the
force:user:create CLI command to easily integrate the task into a continuous integration job.

Scratch Org User Limits, Defaults, and Considerations
• You can create a user only for a specific scratch org. If you try to create a user for a non-scratch org, the command fails. Also specify

your Developer Hub, either explicitly or by setting it as your default, so that Salesforce can verify that the scratch org is active.

• Your scratch org edition determines the number of available user licenses. Your number of licenses determines the number of users
you can create. For example, a Developer Edition org includes a maximum of two Salesforce user licenses. Therefore, in addition to
the default administrator user, you can create one standard user.

• The new user’s username must be unique across all Salesforce orgs and in the form of an email address. The username is active only
within the bounds of the associated scratch org.

• You can’t delete a user. The user is deactivated when you delete the scratch org with which the user is associated. Deactivating a
user frees up the user license. But you can’t reuse usernames, even if the associated user has been deactivated.

• The simplest way to create a user is to let the force:user:create command assign default or generated characteristics to
the new user. If you want to customize your new user, create a definition file and specify it with the --definitionfile (-f)
parameter. In the file, you can include all the User sObject fields and a set of Salesforce DX-specific options, described in User Definition
File for Customizing a Scratch Org User on page 53. You can also specify these options on the command line.

• If you do not customize your new user, the force:user:create command creates a user with the following default
characteristics.

– The username is the existing administrator’s username prepended with a timestamp. For example, if the administrator username
is test-wvkpnfm5z113@abc.net, the new username is something like 1505759162830_test-wvkpnfm5z113@abc.net.

– The user’s profile is Standard User.

– The values of the required fields of the User sObject are the corresponding values of the administrator user. For example, if the
administrator’s locale (specifically the LocaleSidKey field of User sObject) is en_US, the new user’s locale is also en_US.

Create a Scratch Org User

You sometimes need other users to test with different profiles and permission sets.

User Definition File for Customizing a Scratch Org User

To customize a new user, rather than use the default and generated values, create a definition file.

51

Scratch Org UsersScratch Orgs

Generate or Change a Password for a Scratch Org User

By default, new scratch orgs contain 1 administrator user with no password. You can optionally set a password when you create a
new user. Use the CLI to generate or change a password for any scratch org user. Once set, you can’t unset a password, you can only
change it.

SEE ALSO:

User sObject API Reference

Create a Scratch Org User
You sometimes need other users to test with different profiles and permission sets.

Use the force:user:create command to create a user. Specify the --setalias parameter to assign a simple name to the
user that you can reference in later CLI commands. When the command completes, it outputs the new username and user ID.

sfdx force:user:create --setalias qa-user

Successfully created user "1505774874884_test-sug5dr2vzoj1@your_company.net" with ID
[0059A000000U0psQAC] for org 00D9A0000000SXKUA2.
You can see more details about this user by running "sfdx force:user:display -u
1505774874884_test-sug5dr2vzoj1@your_company.net".

Users are associated with a specific scratch org and Developer Hub. Specify the scratch org or Developer Hub username or alias at the
command line if they aren’t already set by default in your environment. If you try to create a user for a non-scratch org, the
force:user:create command fails.

sfdx force:user:create --setalias qa-user --targetusername my-scratchorg
--targetdevhubusername my-dev-hub

The force:user:create command uses default and generated values for the new user, such as the user’s username, profile, and
locale. You can customize the new user by creating a definition file and specifying it with the --definitionfile parameter.

sfdx force:user:create --setalias qa-user --definitionfile config/user-def.json

View the list of users associated with a scratch org with the force:user:list command. The (A) on the left identifies the
administrator user that was created at the same time that the scratch org was created.

sfdx force:user:list

ALIAS USERNAME PROFILE NAME USER ID
─── ────────── ────────────────────────────────── ──────────────────── ──────────────────
(A) admin-user test-gwkqkwuqd72y@paradiseisle.net System Administrator 005xx000001SvBPAA0

ci-user wonder@woman.net Standard User 005xx000001SvBaAAK

Display details about a user with the force:user:display command.

sfdx force:user:display --targetusername ci-user

=== User Description
KEY VALUE
─────────────── ───
Access Token <long-string>

52

Create a Scratch Org UserScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.210.0.object_reference.meta/object_reference/sforce_api_objects_user.htm

Alias ci-user
Id 005xx000001SvBaAAK
Instance Url https://innovation-ability-4888-dev-ed.cs46.my.salesforce.com
Login Url https://innovation-ability-4888-dev-ed.cs46.my.salesforce.com
Org Id 00D9A0000000SXKUA2
Profile Name Standard User
Username 1505774874884_test-sug5dr2vzoj1@your_company.net

User Definition File for Customizing a Scratch Org User
To customize a new user, rather than use the default and generated values, create a definition file.

The user definition file uses JSON format and can include any Salesforce User sObject field and these Salesforce DX-specific options.

Default If Not SpecifiedDescriptionSalesforce DX Option

NoneAn array of permission sets assigned to the
user. Separate multiple values with commas,
and enclose in square brackets.

You must have previously pushed the
permission sets to the scratch org with
force:source:push.

permsets

FalseBoolean. Specifies whether to generate a
random password for the user.

If set to true, force:user:create
displays the generated password after it

generatePassword

completes. You can also view the password
using force:user:describe.

Standard UserName of a profile to associate with the user.
Similar to the ProfileId field of the User

profileName

sObject except that you specify the name
of the profile and not its ID. Convenient
when you know only the name of the
profile.

The user definition file options are case-insensitive. However, we recommend that you use lower camel case for the Salesforce DX-specific
options and upper camel case for the User sObject fields. This format is consistent with other Salesforce DX definition files.

This user definition file includes some User sObject fields and three Salesforce DX options (profileName, permsets, and
generatePassword).

{
"Username": "tester1@sfdx.org",
"LastName": "Hobbs",
"Email": "tester1@sfdx.org",
"Alias": "tester1",
"TimeZoneSidKey": "America/Denver",
"LocaleSidKey": "en_US",

53

User Definition File for Customizing a Scratch Org UserScratch Orgs

"EmailEncodingKey": "UTF-8",
"LanguageLocaleKey": "en_US",
"profileName": "Standard Platform User",
"permsets": ["Dreamhouse", "Cloudhouse"],
"generatePassword": true

}

In the example, the username tester1@sfdx.org must be unique across the entire Salesforce ecosystem; otherwise, the
force:user:create command fails. The alias in the Alias option is different from the alias you specify with the --setalias
parameter of force:user:create. You use the Alias option alias only with the Salesforce UI. The --setalias alias is local to
the computer from which you run the CLI, and you can use it with other CLI commands.

You indicate the path to the user definition file with the --definitionfile parameter of the force:user:create CLI
command. You can name this file whatever you like and store it anywhere the CLI can access.

sfdx force:user:create --setalias qa-user --definitionfile config/user-def.json

You can override an option in the user definition file by specifying it as a name-value pair at the command line when you run
force:user:create. This example overrides the username, list of permission sets, and whether to generate a password.

sfdx force:user:create --setalias qa-user --definitionfile config/user-def.json
permsets="Dreamy,Cloudy" Username=tester345@sfdx.org generatePassword=false

You can also add options at the command line that are not in the user definition file. This example adds the City option.

sfdx force:user:create --setalias qa-user --definitionfile config/user-def.json City=Oakland

SEE ALSO:

User sObject API Reference

Generate or Change a Password for a Scratch Org User
By default, new scratch orgs contain 1 administrator user with no password. You can optionally set a password when you create a new
user. Use the CLI to generate or change a password for any scratch org user. Once set, you can’t unset a password, you can only change
it.

1. Generate a password for a scratch org user with this command:

sfdx force:user:password:generate --targetusername <username>

You can run this command for scratch org users only. The command outputs the generated password.

The target username must be an administrator user. The --onbehalfof parameter lets you assign permsets to multiple users
at once, including admin users, or to users who don’t have permissions to do it themselves. Specify multiple users by separating
them with commas; enclose them in quotes if you include spaces. The command still requires an administrator user which you
specify with the --targetusername parameter. For example, let’s say the administrator user has alias admin-user and
you want to generate a password for users with aliases ci-user and qa-user:

sfdx force:user:password:generate --targetusername admin-user --onbehalfof ci-user,qa-user

2. View the generated password and other user details:

sfdx force:user:display --targetusername ci-user

54

Generate or Change a Password for a Scratch Org UserScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.210.0.object_reference.meta/object_reference/sforce_api_objects_user.htm

=== User Description
KEY VALUE
─────────────── ───
Access Token <long-string>
Alias ci-user
Id 005xx000001SvBaAAK
Instance Url https://innovation-ability-4888-dev-ed.cs46.my.salesforce.com
Login Url https://innovation-ability-4888-dev-ed.cs46.my.salesforce.com
Org Id 00D9A0000000SXKUA2
Profile Name Standard User
Username 1505774874884_test-sug5dr2vzoj1@your_company.net

3. Log in to the scratch org with the new password:

a. From the force:user:display output, copy the value of Instance URL and paste it into your browser. In our example,
the instance URL is https://site-fun-3277.cs46.my.salesforce.com.

b. If you’ve already opened the scratch org with the force:org:open command, you’re automatically logged in again. To try
out the new password, log out and enter the username and password listed in the output of the force:user:display
command.

c. Click Log In to Sandbox.

Note: If you change a scratch org user’s password using the Salesforce UI, the new password doesn’t show up in the
force:user:display output.

Manage Scratch Orgs from the Dev Hub

You can view and delete your scratch orgs and their associated requests from the Dev Hub.

In the Dev Hub, ActiveScratchOrgs represent the scratch orgs that are currently in use. ScratchOrgInfos represent the requests that were
used to create scratch orgs and provide historical context.

1. Log in to Dev Hub org as the System Administrator or as a user with the Salesforce DX permissions.

2. From the App Launcher, select Active Scratch Org to see a list of all active scratch orgs.

To view more details about a scratch org, click the link in the Number column.

3. To delete an active scratch org from the Active Scratch Org list view, choose Delete from the dropdown.

Deleting an active scratch org does not delete the request (ScratchOrgInfo) that created it, but it does free up a scratch org so that
it doesn’t count against your allocations.

4. To view the requests that created the scratch orgs, select Scratch Org Info from the App Launcher.

To view more details about a request, click the link in the Number column. The details of a scratch org request include whether it's
active, expired, or deleted.

5. To delete the request that was used to create a scratch org, choose Delete from the dropdown.

Deleting the request (ScratchOrgInfo) also deletes the active scratch org.

SEE ALSO:

Add Salesforce DX Users (Salesforce DX Setup Guide)

55

Manage Scratch Orgs from the Dev HubScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_add_users.htm

CHAPTER 5 Development

After you import some test data, you’ve completed the process of setting up your project. Now, you’re
ready to start the development process.

In this chapter ...

• Create a Lightning
App and
Components Create Source Files from the CLI

To add source files from the CLI, make sure that you’re working in an appropriate directory. For example,
if your package directory is called force-app, create Apex classes in

• Create an Apex
Class

• Track Changes
Between the Project
and Scratch Org

force-app/main/default/classes. You can organize your source as you want underneath
each package directory except for documents, custom objects, and custom object translations. Also,
your Lightning components must be in the aura directory.• Testing

• View Apex Debug
Logs

Execute one of these commands.

• apex:class:create

• lightning:app:create

• lightning:component:create

• lightning:event:create

• lightning:interface:create

• visualforce:component:create

• visualforce:page:create

Consider using these two powerful optional flags:

DescriptionOption

The directory for saving the created files. If you don’t indicate
a directory, your source is added to the current folder.

-d, --outputdir

Template used for the file creation.-t, --template

Tip: If you want to know more information about a command, run it with the --help option.
For example, sfdx apex:class:create --help.

Edit Source Files

Use your favorite code editor to edit Apex classes, Visualforce pages and components, and Lightning
bundles in your project. You can also make edits in your default scratch org and then use
force:source:pull to pull those changes down to your project. For Lightning pages (FlexiPage

56

files) that are already in your scratch org, use the shortcut to open Lightning App Builder in a scratch
org from your default browser. Lightning Pages are stored in the flexipages directory.

To edit a FlexiPage in your default browser—for example, to edit the Property_Record_Page
source—execute this command.

sfdx force:source:open -f Property_Record_Page.flexipage-meta.xml

If you want to generate a URL that loads the .flexipage-meta.xml file in Lightning App Builder
but does not launch your browser, use the --urlonly flag.

sfdx force:source:open -f Property_Record_Page.flexipage-meta.xml -r

SEE ALSO:

Salesforce CLI Command Reference

57

Development

https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

Create a Lightning App and Components

To create Lightning apps and components from the CLI, you must have an aura directory in your Salesforce DX project.

1. In <app dir>/main/default, create the aura directory .

2. Change to the aura directory.

3. In the aura directory, create a Lightning app or a Lightning component.

sfdx force:lightning:app:create -n mylightningapp

sfdx force:lightning:component:create -n mylightningcomp

Create an Apex Class

You can create Apex classes from the CLI.

1. If the classes directory doesn’t exist in <app dir>/main/default, create it.

2. In the classes directory, create the class.

sfdx force:apex:class:create -n myclass

Track Changes Between the Project and Scratch Org

When you start developing, you can change local files in your project directory or remotely in your scratch org. Before you push local
changes to the scratch org or pull remote changes to the local Salesforce DX project, it’s helpful to see what changes you’ve made.

1. To view the status of local or remote files:

sfdx force:source:status

STATE FULL NAME TYPE PROJECT PATH
───────────── ───────── ─────────
───
Local Deleted MyClass ApexClass /MyClass.cls-meta.xml
Local Deleted MyClass ApexClass /MyClass.cls
Local Add OtherClass ApexClass /OtherClass.cls-meta.xml
Local Add OtherClass ApexClass /OtherClass.cls
Local Add Event QuickAction /Event.quickAction-meta.xml
Remote Deleted MyWidgetClass ApexClass /MyWidgetClass.cls-meta.xml
Remote Deleted MyWidgetClass ApexClass /MyWidgetClass.cls
Remote Changed (Conflict) NewClass ApexClass /NewClass.cls-meta.xml
Remote Changed (Conflict) NewClass ApexClass /NewClass.cls

Testing

When you’re ready to test changes to your Force.com app source code, you can run Apex tests from the Salesforce DX CLI. The command
runs Apex tests in your scratch org.

58

Create a Lightning App and ComponentsDevelopment

You can also execute the CLI command for running Apex tests (force:apex:test:run) from within third-party continuous
integration tools, such as Jenkins.

To run Apex tests from the command line:

sfdx force:apex:test:run

This command runs all Apex tests in the scratch org asynchronously and then outputs a job ID. Pass the ID to the
force:apex:test:report command to view the results. The results include the outcome of individual tests, how long each
test ran, and the overall pass and fail rate.

sfdx force:apex:test:report --testrunid 7074C00000988ax

Use the --resultformat parameter to run the tests synchronously. The command waits to display the test results until all tests
have completed.

sfdx force:apex:test:run --resultformat human

Use parameters to list the test classes or suites to run, specify the output format, view code coverage results, and more. For example,
the following command runs the TestA and TestB tests, provides results in Test Anything Protocol (TAP) format, and requests code
coverage results.

sfdx force:apex:test:run --classnames TestA,TestB –-resultformat tap --codecoverage

SEE ALSO:

Test Anything Protocol (TAP)

Salesforce CLI Command Reference

View Apex Debug Logs

Apex debug logs can record database operations, system processes, and errors that occur when executing a transaction or running unit
tests in your scratch org. You can use the Salesforce CLI to view the debug logs.

1. Open your scratch org by running force:org:open. If you have not set a default username, specify the scratch org’s username
or alias with the -u parameter.

2. Under the quick access menu (Lightning Experience) or your name (Salesforce Classic), click Developer Console. Opening the
Developer Console starts a listener that is required by the force:apex:log commands.

3. If necessary, run Apex tests to generate some debug logs.

sfdx force:apex:test:run

4. Get a list of the debug logs.

sfdx force:apex:log:list

APPLICATION DURATION (MS) ID LOCATION SIZE (B) LOG USER OPERATION
REQUEST START TIME STATUS

─────────── ───────────── ────────────────── ───────── ──────── ─────────
─────────────── ─────── ──────────────────────── ───────
Unknown 1143 07L9A000000aBYGUA2 SystemLog 23900 User User
ApexTestHandler Api 2017-09-05T22:58:57+0000 Success

59

View Apex Debug LogsDevelopment

https://testanything.org/
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

5. View a debug log by passing its ID to the force:apex:log:get command.

sfdx force:apex:log:get --logid 07L9A000000aBYGUA2

38.0
APEX_CODE,FINEST;APEX_PROFILING,INFO;CALLOUT,INFO;DB,INFO;SYSTEM,DEBUG;VALIDATION,INFO;VISUALFORCE,INFO;WAVE,INFO;WORKFLOW,INFO
15:58:57.3
(3717091)|USER_INFO|[EXTERNAL]|0059A000000TwPM|test-ktjauhgzinnp@your_company.net|Pacific
Standard Time|GMT-07:00
15:58:57.3 (3888677)|EXECUTION_STARTED
15:58:57.3
(3924515)|CODE_UNIT_STARTED|[EXTERNAL]|01p9A000000FmMN|RejectDuplicateFavoriteTest.acceptNonDuplicate
15:58:57.3 (5372873)|HEAP_ALLOCATE|[72]|Bytes:3
...

SEE ALSO:

Debug Log (Apex Developer Guide)

60

View Apex Debug LogsDevelopment

https://developer.salesforce.com/docs/atlas.en-us.210.0.apexcode.meta/apexcode/apex_debugging_debug_log.htm

CHAPTER 6 Build and Release Your App

When you finish writing your code, the next step is to deploy it. Your destination depends on whether
you’re supporting internal customers through your production environment or you’re an ISV building
for AppExchange. For AppExchange, you build a managed package. If you’re releasing an app within
your own org, you can also use the Metadata API. Whichever path you’re on, we’ve got you covered.

In this chapter ...

• Build and Release
Your App with
Managed Packages

If you're an ISV, you want to build a managed package. A managed package is a bundle of components
that make up an application or piece of functionality. You can use a managed package to protect

• View Information
About a Package

intellectual property because the source code of many components is not available through the package.
• Build and Release

Your App with
Metadata API

The managed package is distributed as an app, so you can also roll out upgrades to the package. Managed
packages are a great way to release applications for sale and to support licensing for your features.

When you’re working with your production org, you create a .zip file of metadata components and
deploy them through Metadata API. The .zip file contains:

• A package manifest (package.xml) that lists what to retrieve or deploy

• One or more XML components organized into folders

If you don’t have the package source already in the SFDX format, you can retrieve it from the org and
convert it using the CLI.

61

Build and Release Your App with Managed Packages

If you developed and tested your app, you’re well on your way to releasing it. Luckily, when it’s time to build and release an app as a
managed package, you’ve got options. You can package an app you developed from scratch. If you’re experimenting, you can also build
the sample app from Salesforce and emulate the release process.

Working with a package is an iterative process. You typically retrieve, convert, and deploy source multiple times as you create scratch
orgs, test, and update the package components.

Chances are, you already have a namespace and package defined in your packaging org. If not, run this command to open the packaging
org in your browser.

sfdx force:org:open --targetusername me@my.org --path one/one.app#/setup/Package/home

In the Salesforce UI, you can define a namespace and a package. Each packaging org can have a single managed package and 1 namespace.

Be sure to link the namespace to your Dev Hub org.

Packaging Checklist

Ready to deploy your packaging metadata and start creating a package?

Deploy the Package Metadata to the Packaging Org

Before you deploy the package metadata into your packaging org, you convert the format of your source so that it’s readable by the
Metadata API.

Create a Beta Version of Your App

Test your app in a scratch org, or share the app for evaluation by creating a beta version.

Install the Package in a Target Org

After you create a package with the CLI, install the package in a target org. You can install the package in any org you can authenticate,
including a scratch org.

Create a Managed Package Version of Your App

After your testing is done, your app is almost ready to be published in your enterprise or on AppExchange. Generate a new managed
package version in your Dev Hub org.

SEE ALSO:

ISVforce Guide

Link a Namespace to a Dev Hub Org

Retrieve Source from an Existing Managed Package

Packaging Checklist
Ready to deploy your packaging metadata and start creating a package?

Take a few minutes to verify that you covered the items in this checklist and you’re good to go.

1. Link the namespace of each package you want to work with to the Dev Hub org.

2. Pull the metadata of the package from your version control system to a local project.

3. Update the config files, if needed.

62

Build and Release Your App with Managed PackagesBuild and Release Your App

https://developer.salesforce.com/docs/atlas.en-us.210.0.packagingGuide.meta/packagingGuide

For example, to work with managed packages, sfdx-project.json must include the namespace.

"namespace": "acme_example",

4. (Optional) Create an alias for each of the orgs you want to work with.

If you haven’t yet created an alias for each org you work with, consider doing that now. Using aliases is an easy way to switch between
orgs when you’re working in the CLI.

5. Authenticate the Dev Hub org.

6. Create a scratch org.

Recall that a scratch org is different than a sandbox org. You specify the org shape using project-scratch.json. To create a scratch org
and set it as the defaultusername org, run this command from the project directory.

sfdx force:org:create -s -f config/project-scratch-def.json

7. Push source to the scratch org.

8. Update source in the scratch org as needed.

9. Pull the source from the scratch org if you used declarative tools to make changes there.

With these steps complete, you’re ready to deploy your package metadata to the packaging org.

SEE ALSO:

Sample Repository on GitHub

Authorization

Create Scratch Orgs

Push Source to the Scratch Org

Deploy the Package Metadata to the Packaging Org
Before you deploy the package metadata into your packaging org, you convert the format of your source so that it’s readable by the
Metadata API.

It’s likely that you have some files that you don’t want to convert to Metadata API format. Create a .forceignore file to indicate
which files to ignore.

1. Convert the source from Salesforce DX format to the Metadata API format.
sfdx force:source:convert --outputdir mdapi_output_dir --packagename managed_pkg_name

If the output directory doesn’t exist, it’s created. Be sure to include the --packagename so that the converted metadata is added
to the managed package in your packaging org.

2. Review the contents of the output directory.
ls -lR mdapi_output_dir

3. Authenticate the packaging org, if needed. This example uses an OAuth client ID but you can also specify the org with an alias.
sfdx force:auth:web:login --clientid oauth_client_id

4. Deploy the package metadata back to the packaging org.
sfdx force:mdapi:deploy --deploydir mdapi_output_dir --targetusername me@example.com

63

Deploy the Package Metadata to the Packaging OrgBuild and Release Your App

The --targetusername can be the username or an alias. You can use other options like --wait to specify the number of
minutes to wait. The --zipfile parameter lets you provide the path to a zip file that contains your metadata. Don’t run tests at
the same time as you deploy the metadata, though. You can run tests during the package upload process.

A message displays the job ID for the deployment.

5. Check the status of the deployment.

When you run force:mdapi:deploy, the job ID and target username are stored, so you don’t have to specify these required
parameters to check the status. These stored values are overwritten when you run the force:mdapi:deploy again.

sfdx force:mdapi:deploy:report

If you want to check the status of a different deploy operation, specify the job ID on the command line, which overrides the stored
job ID.

SEE ALSO:

Salesforce CLI Command Reference

How to Exclude Source When Syncing or Converting

Create a Beta Version of Your App
Test your app in a scratch org, or share the app for evaluation by creating a beta version.

If you specified the package name when you converted source to Metadata API format, both the changed and new components are
automatically added to the package. Including the package name in that stage of the process lets you take full advantage of the Salesforce
DX end-to-end automation.

If, for some reason, you don’t want to include new components, you have two choices. You can omit the package name when you
convert source or remove components from the package in the Salesforce UI before you create the package version.

Create the beta version of a managed package by running the commands against your packaging org, not the Dev Hub org.

1. Ensure that you’ve authorized the packaging org.

sfdx force:auth:web:login --targetusername me@example.com

2. Create the beta version of the package.

sfdx force:package1:version:create --packageid package_id --name package_version_name

If you want to protect the package with an installation key, add it now or when you create the released version of your package. The
--installationkey supplied from the CLI is equivalent to the Password field that you see when working with packages
through the Salesforce user interface. When you include a value for --installationkey, you or a subscriber must supply the
key before you can install the package in a target org.

You’re now ready to create a scratch org and install the package there for testing. By default, the create command generates a beta
version of your managed package.

Later, when you’re ready to create the Managed - Released version of your package, include the -m (--managedreleased true)
parameter.

64

Create a Beta Version of Your AppBuild and Release Your App

https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

Note: After you create a managed-released version of your package, many properties of the components added to the package
are no longer editable. Refer to the ISVforce Guide to understand the differences between beta and managed-released versions of
your package.

SEE ALSO:

Salesforce CLI Command Reference

ISVforce Guide

Link a Namespace to a Dev Hub Org

Install the Package in a Target Org
After you create a package with the CLI, install the package in a target org. You can install the package in any org you can authenticate,
including a scratch org.

If you want to create a scratch org and set it as the defaultusername org, run this command from the project directory.

sfdx force:org:create -s -f config/project-scratch-def.json

To locate the ID of the package version to install, first run force:package1:version:list.

METADATAPACKAGEVERSIONID METADATAPACKAGEID NAME VERSION RELEASESTATE BUILDNUMBER
──────────────────────── ────────────────── ──── ─────── ──────────── ───────────
04txx000000069oAAA 033xx00000007coAAA r00 1.0.0 Released 1
04txx000000069tAAA 033xx00000007coAAA r01 1.1.0 Released 1
04txx000000069uAAA 033xx00000007coAAA r02 1.2.0 Released 1
04txx000000069yAAA 033xx00000007coAAA r03 1.3.0 Released 1
04txx000000069zAAA 033xx00000007coAAA r04 1.4.0 Released 1

You can then copy the package version ID you want to install. For example, the ID 04txx000000069zAAA is for version 1.4.0.

1. Install the package. You supply the package version ID, which starts with 04t, in the required --id parameter.

sfdx force:package:install --id 04txx000000069zAAA

If you’ve set a default target org, the package is installed there. You can specify a different target org with the --targetusername
parameter. If the package is protected by an installation key, supply the key with the --installationkey parameter.

To uninstall a package, open the target org and choose Setup. On the Installed Packages page, locate the package and choose Uninstall.

SEE ALSO:

ISVforce Guide

Salesforce CLI Command Reference

Create a Managed Package Version of Your App
After your testing is done, your app is almost ready to be published in your enterprise or on AppExchange. Generate a new managed
package version in your Dev Hub org.

65

Install the Package in a Target OrgBuild and Release Your App

https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://developer.salesforce.com/docs/atlas.en-us.210.0.packagingGuide.meta/packagingGuide
https://developer.salesforce.com/docs/atlas.en-us.210.0.packagingGuide.meta/packagingGuide
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

Ensure that you’ve authorized the packaging org and can view the existing package versions.

sfdx force:auth:web:login --instanceurl https://test.salesforce.com --setdefaultusername
org_alias

View the existing package versions for a specific package to get the ID for the version you want to install.

sfdx force:package1:version:list --packageid 033...

To view details for all packages in the packaging org, run the command with no parameters.

More than 1 beta package can use the same version number. However, you can use each version number for only one managed package
version. You can specify major or minor version numbers.

You can also include URLs for a post-installation script and release notes. Before you create a managed package, make sure that you’ve
configured your developer settings, including the namespace prefix.

Note: After you create a managed package version, you can’t change some attributes of Salesforce components used in the
package. See the ISVforce Guide has information on editable components.

1. Create the managed package. Include the --managedreleased parameter.

sfdx force:package1:version:create --packageid 033xx00000007oi --name ”Spring 17”
--description ”Spring 17 Release” --version 3.2 --managedreleased

You can use other options like --wait to specify the number of minutes to wait.

To protect the package with an installation key, include a value for --installationkey. Then, you or a subscriber must supply
the key before you can install the package in a target org.

After the managed package version is created, you can retrieve the new package version ID using
force:package1:version:list.

SEE ALSO:

Salesforce CLI Command Reference

ISVforce Guide

Link a Namespace to a Dev Hub Org

View Information About a Package

View the details about a specific package version, including its metadata package ID, package name, release state, and build number.

1. From the project directory, run this command, supplying a package version ID.
force:package1:version:display -i 04txx000000069yAAA
The output is similar to this example.

METADATAPACKAGEVERSIONID METADATAPACKAGEID NAME VERSION RELEASESTATE BUILDNUMBER
──────────────────────── ────────────────── ──── ─────── ──────────── ───────────
04txx000000069yAAA 033xx00000007coAAA r03 1.3.0 Released 1
04txx000000069yAAA 033xx00000011coAAA r03 1.4.0 Released 1

View All Package Versions in the Org

View the details about all package versions in the org.

66

View Information About a PackageBuild and Release Your App

https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://developer.salesforce.com/docs/atlas.en-us.210.0.packagingGuide.meta/packagingGuide

Package IDs

When you work with packages using the CLI, the package IDs refer either to a unique package or a unique package version.

SEE ALSO:

Salesforce CLI Command Reference

View All Package Versions in the Org
View the details about all package versions in the org.

1. From the project directory, run the list command.
force:package1:version:list
The output is similar to this example. When you view the package versions, the list shows a single package for multiple package
versions.

METADATAPACKAGEVERSIONID METADATAPACKAGEID NAME VERSION RELEASESTATE BUILDNUMBER
──────────────────────── ────────────────── ──── ─────── ──────────── ───────────
04txx000000069oAAA 033xx00000007coAAA r00 1.0.0 Released 1
04txx000000069tAAA 033xx00000007coAAA r01 1.1.0 Released 1
04txx000000069uAAA 033xx00000007coAAA r02 1.2.0 Released 1
04txx000000069yAAA 033xx00000007coAAA r03 1.3.0 Released 1
04txx000000069zAAA 033xx00000007coAAA r04 1.4.0 Released 1

SEE ALSO:

Salesforce CLI Command Reference

Package IDs
When you work with packages using the CLI, the package IDs refer either to a unique package or a unique package version.

The relationship of package version to package is one-to-many.

Used WhereDescriptionID Example

Generated when you create a package. A
single package can have one or more

Metadata Package ID033xx00000007oi

associated package version IDs. The package
ID remains the same, whether it has a
corresponding beta or released package
version.

Generated when you create a package
version.

Metadata Package Version ID04tA000000081MX

67

View All Package Versions in the OrgBuild and Release Your App

https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

Build and Release Your App with Metadata API

After developing and testing your app in a scratch org, you use the Metadata API to deploy the app to a sandbox. The sandbox mimics
the release activity, commands, and process you plan to execute when you release your app to the production org.

To deploy Apex to production, unit tests of your Apex code must meet coverage requirements. Code coverage indicates how many
executable lines of code in your classes and triggers are covered by your test methods. Write test methods to test your triggers and
classes, and then run those tests to generate code coverage information.

Code coverage requirements must be met when you release an app to a production org. If you run tests with the release and review
the results, you can meet these requirements.

If you don’t specify a test level when initiating a deployment, the default test execution behavior depends on the contents of your
deployment package.

• If your deployment package contains Apex classes or triggers, when you deploy to production, all tests are executed, except tests
that originate from a managed package.

• If your package doesn’t contain Apex components, no tests are run by default.

You can run tests for a deployment of non-Apex components. You can override the default test execution behavior by setting the test
level in your deployment options. Test levels are enforced regardless of the types of components present in your deployment package.
We recommend that you run all local tests in your development environment, such as a sandbox, before deploying to production.
Running tests in your development environment reduces the number of tests required in a production deployment.

Deploy Changes to a Sandbox for Validation

When you’re ready to validate your source, convert your Salesforce DX source to Metadata API source format. You can then deploy
to a sandbox.

Release Your App to Production

After you convert your source to Metadata API format and package metadata from one org, you can release your app in a different
org. You can specify tests to run after deployment and indicate whether to roll back the deployment if there are errors.

SEE ALSO:

Metadata API Developer Guide

Salesforce CLI Command Reference

Deploy Changes to a Sandbox for Validation
When you’re ready to validate your source, convert your Salesforce DX source to Metadata API source format. You can then deploy to a
sandbox.

You can deploy or retrieve up to 10,000 files at once. The maximum size of the deployed or retrieved .zip file is 400 MB (39 MB compressed).
If either limit is exceeded, the operation fails.

Note: You can increase the efficiency of your sandbox and production deployments by using tests you’ve already done in the
scratch org. Run only the tests that are required, such as tests for Apex classes and triggers that change for the deployment. To
run only specified tests when you deploy, set -l to RunSpecifiedTests and use -r to specify a comma-separated list
of tests for deployment-specific changes to your Apex code.

sfdx force:mdapi:deploy -d mdapi_output_dir/ -u "sandbox_username" -l RunSpecifiedTests
-r test1,test2,test3,test4

68

Build and Release Your App with Metadata APIBuild and Release Your App

https://developer.salesforce.com/docs/atlas.en-us.210.0.api_meta.meta/api_meta
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

The username can be the org username or an alias.

1. To ensure that your project is up to date, synchronize the source in your local file system with your development scratch org.

sfdx force:source:pull

2. From the project, create directory for your source and convert the source to Metadata API format.

a. Create a directory for the converted source.

mkdir mdapi_output_dir

b. Convert the source to Metadata API format, and put the converted source in the output directory that you created.

sfdx force:source:convert -d mdapi_output_dir/ --packagename package_name

Note: The source:convert command creates the package manifest file, package.xml. The package.xml manifest
file lists the metadata to retrieve or deploy. Creating a package.xml file that you can modify gives you flexibility and control
over the components that you’re retrieving or deploying.

c. List the contents of the output directory to confirm that it’s what you expected.

ls -lR mdapi_output_dir/

3. Deploy the metadata from the directory to the sandbox, specifying deployment-specific tests as needed.

sfdx force:mdapi:deploy -d mdapioutput_dir/ -u "sandbox_username" -l RunSpecifiedTests
-r test1,test2,test3,test4

Messages similar to the following display.

=== Status
Status: Pending
jobid: 0AfB0000009SvyoKAC
Component errors: 0
Components deployed: 0
Components total: 0
Tests errors: 0
Tests completed: 0
Tests total: 0

If the deployment job wait time is 1 minute or more, the status messages update every 30 seconds.

4. If your deployment exceeds the wait time before it completes, use force:mdapi:deploy:report to check the deployment
status. The default wait time is 0 minutes. Use the --wait parameter to specify a longer wait time.

For example, to check a deployment job and add 5 more minutes to the wait time:

sfdx force:mdapi:deploy:report -w 5

The sandbox username can be the org username or an alias.

SEE ALSO:

Metadata API Developer Guide

Salesforce CLI Command Reference

69

Deploy Changes to a Sandbox for ValidationBuild and Release Your App

https://developer.salesforce.com/docs/atlas.en-us.210.0.api_meta.meta/api_meta
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

Release Your App to Production
After you convert your source to Metadata API format and package metadata from one org, you can release your app in a different org.
You can specify tests to run after deployment and indicate whether to roll back the deployment if there are errors.

You can deploy or retrieve up to 10,000 files at once. The maximum size of the deployed or retrieved .zip file is 400 MB (39 MB compressed).
If either limit is exceeded, the operation fails.

Note: To support the needs of continuous integration and automated systems, the --rollbackonerror parameter of the
force:mdapi:deploy command defaults to true.

1. To release your .zip package of metadata to the target org, enter the following command with a list of the required tests.
sfdx force:mdapi:deploy -d mdapi_output_dir/ -u "target_username" -l RunSpecifiedTests
-r test1,test2,test3,test4

The username can be the org username or an alias.

SEE ALSO:

Metadata API Developer Guide

Salesforce CLI Command Reference

70

Release Your App to ProductionBuild and Release Your App

https://developer.salesforce.com/docs/atlas.en-us.210.0.api_meta.meta/api_meta
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

CHAPTER 7 Develop Second-Generation Packages (Beta)

Whether you’re an ISV or an enterprise customer, second-generation packaging (2GP) gives you flexibility
in how you organize, distribute, deploy, and manage your apps and metadata.

In this chapter ...

• Second-Generation
Packaging Note: This release contains a beta version of Second-Generation Packaging, which means it’s a

high-quality feature with known limitations. Second-Generation Packaging isn’t generally available• Types of Packaging
Projects unless or until Salesforce announces its general availability in documentation or in press releases

or public statements. We can’t guarantee general availability within any particular time frame or• Before You Create
Second-Generation
Packages

at all. Make your purchase decisions only based on generally available products and features. You
can provide feedback and suggestions for Second-Generation Packaging in the Salesforce DX
Packaging 2 Beta group in the Trailblazer Community.

Second-generation packaging lets you create developer-controlled packages or managed packages.
We support developer-controlled packages through an open pilot program. These packages are

• Workflow for
Second-Generation
Packages

designed for enterprise customer use cases, but ISVs can also use them during package• Plan
Second-Generation
Packages

development. Pilot programs are subject to change. You can install developer-controlled packages
in scratch or sandbox orgs but not in a production org. Check out the Trailblazer Community for
details on developer-controlled packages.• Configure Packages

in the
sfdx-project.json File

• Create a Package

• Install a Package

• Uninstall a Package

71

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000Lg5U
https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000Lg5U
https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000Lg5U

Second-Generation Packaging

Second-generation packaging, also called 2GP, lets you create packages in a source-driven development environment. You can use 2GP
to create and deploy packages in your own Salesforce org or to develop and distribute packages to your customers.

With second-generation packaging, you can take advantage of these helpful features.

• The Salesforce command-line interface lets you work efficiently with your second-generation packages, scratch orgs, and an integrated
development cycle.

• Options for enterprise customers to organize and deploy metadata to production orgs.

• Multiple packages per namespace, so you can better organize your source and easily share Apex code. You can use public Apex
classes across packages rather than global Apex classes.

• Feature branch development and testing.

• Fully API-driven functionality.

• Packages that are source-driven, not org-based.

• Ease of development and distribution of dependent packages.

SEE ALSO:

Salesforce DX (Salesforce Developer Center Web Site)

Salesforce CLI Command Reference

Types of Packaging Projects

Salesforce offers three methods for building and releasing apps. You can use first-generation managed packages, change sets to deploy
metadata via the Metadata API, or second-generation packaging (2GP). With 2GP, you can make your namespace work for you, get
finer-grained control over future metadata changes, and implement feature branching during the development cycle.

The type of projects you define are up to you. It all depends on whether you’re an ISV or an enterprise customer and your business goals,

Packaging for ISVs

Salesforce ISVs approach packaging projects with laser focus on the steps required to build and deliver a successful commercial app.
ISVs are interested in sound design patterns that support solving common problems as they develop their packages. ISVs also have
considerations such as protecting intellectual property and rolling out upgrades to their installed base.

Enterprise Customers

If you’re an enterprise customer, you might be wondering: how can I use packaging in my Salesforce org? Isn’t packaging a
partner-oriented feature? We have good news for you. Second-generation packaging enables technologies for developer-controlled
packages. These packages let enterprise customers more easily develop and deploy their apps and functionality.

What’s a Package?

If you’re new to packaging, you can think about a package as a container that you fill with metadata when you want to move the
metadata from one location to another. Each second-generation package has a distinct lifecycle.

Packaging for ISVs
Salesforce ISVs approach packaging projects with laser focus on the steps required to build and deliver a successful commercial app.
ISVs are interested in sound design patterns that support solving common problems as they develop their packages. ISVs also have
considerations such as protecting intellectual property and rolling out upgrades to their installed base.

72

Second-Generation PackagingDevelop Second-Generation Packages (Beta)

https://developer.salesforce.com/platform/dx
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

Enterprise Customers
If you’re an enterprise customer, you might be wondering: how can I use packaging in my Salesforce org? Isn’t packaging a partner-oriented
feature? We have good news for you. Second-generation packaging enables technologies for developer-controlled packages. These
packages let enterprise customers more easily develop and deploy their apps and functionality.

For most production orgs, metadata is contained in two buckets: a set of managed packages installed from the AppExchange or
unpackaged metadata. At the same time, enterprises often invest in Salesforce customizations to support business processes and extend
the power of the Salesforce platform.

Developer-controlled packages let you harness and extend your investments in the Salesforce platform in two ways. First, you can
organize the unpackaged metadata in your production org into well-defined packages. You can then provide a continuous development
and deployment framework for new apps, whether you have one production org or many.

SEE ALSO:

Developer-Controlled Packages (Pilot)

What’s a Package?
If you’re new to packaging, you can think about a package as a container that you fill with metadata when you want to move the
metadata from one location to another. Each second-generation package has a distinct lifecycle.

You add metadata to a package and, when you’re ready to “send” or release the package, you take a snapshot of it. We call the snapshot
a package version. The package version can be installed in a scratch org, sandbox org, DE org, or production org. Installing the package
is similar to deploying metadata.

As you add, remove, or make changes to the package metadata, you can create additional snapshots, package versions. Because each
package version has a version number, you can install a new package version into the same org through a package upgrade.

The cycle of package development can be repeated any number of times. You make changes to metadata, create a package version,
test the package version, and finally deploy or install the package to a production org. This distinct app development lifecycle lets you
control exactly what, when and how your metadata is rolled out. Instead of a flat set of unorganized, unpackaged metadata, in the
installed org, you can inspect which metadata came from which package and the set of all metadata associated with a specific package
version.

Before You Create Second-Generation Packages

When you use second-generation packaging, be sure that you’ve set things up properly.

Know Your Orgs

Some of the orgs that you use with second-generation packaging have a unique purpose.

Sample Repository

To work with a sample repository, get the Salesforce DX DreamHouse app in GitHub and check out the Packaging 2 branch.

Review Org Setup

After you verify or configure the org details, you’re ready to go.

Verify Project Configuration

Before you create a second-generation package, review your project configuration and other Salesforce DX settings, including the
namespace prefix.

73

Enterprise CustomersDevelop Second-Generation Packages (Beta)

Know Your Orgs
Some of the orgs that you use with second-generation packaging have a unique purpose.

• Use the Dev Hub org for these purposes.

– As owner of all second-generation packages

– To link your namespaces so that they’re known to SFDX and your scratch orgs

– To authorize and run your package2 commands

• The primary purpose of the namespace org is to provide a package namespace. If you want to use the namespace strictly for testing,
choose a disposable namespace.

Note: After you create a namespace org and specify the namespace in it, open the Dev Hub org and link the namespace org
to the Dev Hub.

• You can create scratch orgs on the fly to use while testing your packages.

• The target or installation org is where you install the package. This org is sometimes called a “subscriber” org.

Sample Repository
To work with a sample repository, get the Salesforce DX DreamHouse app in GitHub and check out the Packaging 2 branch.

You can clone the sample repository from GitHub.

git clone https://github.com/dreamhouseapp/dreamhouse-sfdx
cd dreamhouse-sfdx
git checkout pkg2-beta

Learn more about using other Salesforce DX features in the README file in the master branch of the dreamhouse-sfdx repository.
The pkg2-beta branch contains sample files and resources you can use.

Review Org Setup
After you verify or configure the org details, you’re ready to go.

First, if you plan to use namespaces with your packages, complete these tasks.

Note: If you’re creating a managed second-generation package, a namespace is required. If you’re creating a developer-controlled
package, a namespace is optional.

1. Log in to the Dev Hub org you’re using for SFDX.

2. Enable and deploy My Domain in the Dev Hub org.

Note: If you don’t enable and deploy My Domain, you can’t link your namespace to the Dev Hub org.

3. From https://developer.salesforce.com/signup, create a Developer Edition (DE) org to use as your namespace org for testing.

Note: Unlike first-generation packaging, there’s no need to create a package or packaging org for second-generation packaging.
You can create multiple test packages for a namespace by using the CLI and authenticating to the Dev Hub org.

4. Log in to the namespace org, and specify a namespace. Use a disposable namespace, because you can use it only for testing. Use
your real namespace later when you’re ready to adopt packaging for your production work.

74

Know Your OrgsDevelop Second-Generation Packages (Beta)

Note: Most customers use a single namespace org but you can use more than one if you want more granular control over
how you organize metadata. There can be a short delay between the time when you deploy My Domain and when the Link
Namespace button appears in the Dev Hub.

5. In the Dev Hub org, link each namespace you want to work with.

For all types of packages, complete these tasks from the CLI.

1. Create a project and specify your configuration options in sfdx-project.json.

2. Create a scratch org where you can develop, install, and test versions of your packages.

3. (Recommended) Specify an alias for each org you plan to work with. An alias lets you give your orgs an easy to remember name so
you can move between orgs easily while you work with packages.

SEE ALSO:

Salesforce DX Setup Guide

Salesforce CLI Command Reference

Link a Namespace to a Dev Hub Org

Scratch Orgs

Verify Project Configuration
Before you create a second-generation package, review your project configuration and other Salesforce DX settings, including the
namespace prefix.

Each project in SFDX requires an sfdx-project.json project configuration file.

Verify that the packageDirectories, namespace, and sourceApiVersion attributes are set.

{
"packageDirectories": [
{
"path": "my-pkg2-app",
"default": true

}
],
"namespace": "acme_example",
"sourceApiVersion": "41.0"

}

You can create the sfdx-project.json file by hand or copy the versions in the SFDX sample repositories as a starting point.

SEE ALSO:

Configure Packages in the sfdx-project.json File

Workflow for Second-Generation Packages

After developing an app in a scratch org and testing it, you can create and install a second-generation package directly from the Salesforce
command line.

Note: You must run the package2 CLI commands from the directory that contains the sfdx-project.json file.

75

Verify Project ConfigurationDevelop Second-Generation Packages (Beta)

https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_setup
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

The basic workflow includes these steps. See specific topics for details about each step.

1. Authorize the Dev Hub org, and create a scratch org.

When you perform this step, include the -d option. You can then omit the dev hub parameter in the package2 commands. For some
commands, you still specify a scratch org.

Note: If you define an alias for each org you work with, it’s easy to switch between different orgs from the command line.
You can authorize different orgs as you iterate through the package development cycle.

2. Verify that all package components are in the project directory where you want to create a package.

3. Configure the package in the sfdx-project.json file.

4. Create the package.

sfdx force:package2:create --name new_package --description “New Package”
--containeroptions Unlocked

Wait a few minutes before you proceed to the next step.

5. Create a package version. You specify the package ID and directory name in the sfdx-project.json file. Supply one of these parameters
with the command.

sfdx force:package2:version:create --directory project-directory

Wait a few minutes before you proceed to the next step.

6. Install and test the package version.

sfdx force:package2:version:install --subscriberpackage2versionid 04t6A0000004eytQAA
--targetusername user@example.com

Plan Second-Generation Packages

Investing time to plan your package helps you to develop, build, and deploy it successfully. Good planning ensures that your package
is reusable and easily upgradable.

Supported Component Types

You can include most Salesforce component types in a second-generation package.

Namespaces

With second-generation packages, you can decide how to use your namespaces or create developer-controlled packages with no
namespace.

Package Types

You can create two types of second-generation packages.

Best Practices for Second-Generation Packages

We suggest that you follow these best practices when working with second-generation packages.

Package IDs

The package IDs are unique identifiers that we use to track packages and package versions when performing actions such as creating
a package or updating a package version.

76

Plan Second-Generation PackagesDevelop Second-Generation Packages (Beta)

Supported Component Types
You can include most Salesforce component types in a second-generation package.

Supported Component Types (Beta)
These component types are supported for second-generation packages.

API NameComponent

QuickActionAction

ApexClassApex Class

SharingRecalculationApex Recalculation

SharingReasonApex Sharing Reason

ApexTriggerApex Trigger

Lightning App?App

CompactLayoutCompact Layout

ContentAssetContent Asset

ConnectedAppConnected App

CorsWhitelistOriginCors Whitelist Origin

WebLinkCustom Buttons or Link

CustomFieldCustom Field

CustomLabelCustom Labek

CustomMetadataCustom Metadata

CustomObjectCustom Metadata Type

CustomObjectCustom Object

CustomPermissionCustom Permission

ReportTypeCustom Report Type

CustomObject typeCustom Setting

DashboardDashboard

DocumentDocument

WorkflowAlertEmail Alert

EmailTemplateEmail Template

FieldSetField Set

FlowFlow

77

Supported Component TypesDevelop Second-Generation Packages (Beta)

API NameComponent

DocumentFolderFolder

GlobalPicklist, GlobalPicklistValueGlobal Pick List

HomePageComponentHome Page Component

HomePageLayoutHome Page Layout

LetterheadLetterhead

AuraDefinitionBundleLightning Application

AuraDefinitionBundleLightning Component

AuraDefinitionBundleLightning Event

AuraDefinitionBundleLightning Interface

FlexiPageLightning Page

ListViewList View

LookupFilter (NamdFilter)Lookup Filter

MatchingRuleMatching Rule

CustomObjectTranslationObject Translation

WorkflowOutboundMessageOutbound Message

LayoutPage Layout

PermissionSetPermission Set

RecordTypeRecord Type

RemoteSiteSettingRemote Site Settings

ReportReport

AnalyticSnapshotReporting Snapshot

StaticResourceStatic Resource

CustomTabTab

WorkflowTaskTask

TranslationsTranslation

ValidationRuleValidation Rule

ApexComponentVisualforce Component

ApexPageVisualforce Page

WorkflowRuleWorkflow Rule

78

Supported Component TypesDevelop Second-Generation Packages (Beta)

Supported Component Types (Pilot for Unlocked and Locked Packages)
If you’re using the pilot release of locked and unlocked packages, there is one exception. The Connected App component is not supported.

Namespaces
With second-generation packages, you can decide how to use your namespaces or create developer-controlled packages with no
namespace.

A namespace helps you distinguish a set of metadata as belonging to one organization. Namespaces are assigned to a package at the
time it’s created.

For developer-controlled packages, you can create certain packages with no namespace at all.

One reason to use a “no namespace” package is to give your developers more control over how you organize and distribute parts of
your application. Another reason is to give yourself lots of flexibility during the initial phase when you adopt packaging.

When you do specify a package namespace, every component added to a package has the namespace prefixed to the component API
name. Let’s say you have a custom object called Insurance_Agent with the API name, Insurance_Agent__c. If you add this component
to a package associated with the Acme namespace, the API name becomes Acme__Insurance_Agent__c.

If you’re an enterprise customer who’s new to packaging, you’re probably adopting packages in several stages. In that case, the namespace
prefix (Acme__) can help you identify what’s packaged and what’s still in the ocean of unpackaged metadata in your production orgs.

When you work with package namespaces, keep these considerations in mind.

• You can create developer-controlled packages with no namespace, but can install them only in scratch orgs and sandbox orgs.

• You can develop more than one package with the same namespace.

• If you work with more than one namespace, you set up one project for each namespace.

SEE ALSO:

Configure Packages in the sfdx-project.json File

Package Types
You can create two types of second-generation packages.

Managed 2GP Packages (Beta)

A managed second-generation package is similar to a first-generation managed package. The managed package type is often used
by Salesforce partners (ISVs) to develop, distribute, and sell applications to customers. A managed package is fully upgradeable.

Developer-Controlled Packages (Pilot)

Developer-controlled packages are packages with no manageability rules. The package development team controls the package
and can modify the components as needed.

Managed 2GP Packages (Beta)
A managed second-generation package is similar to a first-generation managed package. The managed package type is often used by
Salesforce partners (ISVs) to develop, distribute, and sell applications to customers. A managed package is fully upgradeable.

79

NamespacesDevelop Second-Generation Packages (Beta)

Developer-Controlled Packages (Pilot)
Developer-controlled packages are packages with no manageability rules. The package development team controls the package and
can modify the components as needed.

There are two subtypes of developer-controlled packages, locked or unlocked. Components in a locked package are read-only after
they’re installed in the target org. Developers, but not subscribers, can change the components.

Important: For an unlocked package, both the subscriber and the package developer can update components but any changes
made by the developer “always win.” If there’s a conflict between subscriber changes and developer changes to the same
component, the developer version of the component overwrites the subscriber version.

Developer-controlled packages can also be configured to depend on one another.

Note: Because you have the flexibility in how you control changes to developer-controlled packages, take special care when
making changes in a production org. Communicate changes back to the development team who can update the package source.

Locked Packages
For subscribers, if you create a locked package, most of the package components can’t be modified or deleted in the installed org. Only
the package developer can edit the components. The package developer can push changes out to a production org during package
upgrades.

Locked packages prevent the direct manipulation of metadata in the production org and all the issues that can arise from that practice.
There is one source of truth (the version control system) and one source of change management (your development team).

Unlocked Packages
Some enterprises want admins to have the flexibility to make changes directly in a production org in response to emergent issues that
come up. If you need this flexibility, you can create “unlocked” packages. However, your development team still controls the package.
A package upgrade overwrites the changes made directly in the production org.

If you create an unlocked package, you can change or delete any component in the installed package from the installed org. For example,
you can:

• Change the data type of a custom field from number to text.

• Change the markup on a Visualforce page.

• Modify a workflow rule.

• Remove permissions in a permission set.

• Change the description of a custom object.

• Delete a custom field.

• Delete a task associated with a workflow rule.

Best Practices for Second-Generation Packages
We suggest that you follow these best practices when working with second-generation packages.

• We strongly recommend that you work with only one Dev Hub org, unless you have a strong use case for concurrent use of multiple
Dev Hubs.

• Every second-generation package that you create is owned by a specific Dev Hub. If the Dev Hub org associated with a package
expires or is deleted, its packages no longer work.

80

Best Practices for Second-Generation PackagesDevelop Second-Generation Packages (Beta)

• Take care when you decide how to utilize namespaces. For most customers, we recommend that you work with a single namespace
to avoid unnecessary complexity in how you manage components. If you’re test-driving second-generation packages, use a test
namespace. Use real namespaces only when you’re ready to embark on a development path headed for release in a production org.

• Link your namespace with one and only one Dev Hub. It’s possible to link a namespace with more than one Dev Hub org. But some
packaging features such as keywords just aren’t designed to work with a namespace linked in this way.

• Include the --tag option when you use the package2:version:create and package2:version:update
commands. This option helps you keep your version-control system tags in sync with specific package versions.

• Add the package version name and description to your sfdx-project.json file to store info about specific package versions. You can
also update the name or description of an existing package version using the package2:version:update command.

Package IDs
The package IDs are unique identifiers that we use to track packages and package versions when performing actions such as creating a
package or updating a package version.

At the command line, you also see IDs for things like package members (a component in a package) and requests (like a package version
create request).

Note: As a shortcut, the documentation sometimes refers an ID by its 3-character prefix. For example, a package2 version ID
always starts with “04t”.

Each package has two IDs. You interact with one ID when you update the package. The other ID is what you and your customers use
when you install the package.

Here are the most commonly used IDs.

DescriptionShort ID NameID Example

Use this ID to install a package version.
Returned by
force:package2:version:create.

Subscriber Package Version ID04t6A0000004eytQAA

Use this ID on the command line to create
a package version or enter it ito the

Package2 ID0Hoxx00000000CqCAI

sfdx-project.json file and use the directory
name. Generated by
force:package2:create.

Returned by
force:package2:version:create.

Package2 Version ID05ixx00000000DZAAY

Use this ID to specify ancestry among
package versions and for promoting a
package version preleased using
force:package2:version:update
--setreleased.

ID for a specific request to create a package2
version.

Version Creation Request ID08cxx00000000BEAAY

81

Package IDsDevelop Second-Generation Packages (Beta)

Configure Packages in the sfdx-project.json File

You include an entry in the Salesforce DX project configuration file for each package to specify its version details, dependencies, and
org preferences.

Each package description includes these attributes.

{
"path": "logic",
"id": "0HoB00000004CFuKAM",
"versionName": "v 1.2",
"versionDescription": "ver 1.2 - anc = 1.1",
"versionNumber": "1.2.0.NEXT",
"ancestorId": "05iB00000004CIeIAM",
"dependencies": [

{
"packageId": "0HoB00000004CFpKAM",
"versionNumber": "1.2.0.LATEST"

},
{

"packageId": "0HoB00000004CFkKAM",
"versionNumber": "1.2.0.LATEST"

}
],
"features": "MultiCurrency",
"orgPreferences": {

"enabled": [
"S1DesktopEnabled",
"Translation"

],
"disabled": []

}
}

Features

You can use all features supported by Salesforce DX.

Package Versions

Specify the package versions in the sfdx-project.json file.

Keywords

A keyword is a variable that you can use to specify a package version number.

Package Dependencies

If you defined a second-generation package with dependencies on another package, specify the dependencies in the sfdx-project.json
file.

Package Ancestors

The package ancestor attribute specifies the version branch to associate with a new package version.

Package Installation Key

To protect a package with an installation key, you can set the key when you create the package version. Package creators provide
the key to authorized subscribers so they can install the package. Package users provide the key during installation, whether installing
the package from the CLI or a browser.

82

Configure Packages in the sfdx-project.json FileDevelop Second-Generation Packages (Beta)

Features
You can use all features supported by Salesforce DX.

Package Versions
Specify the package versions in the sfdx-project.json file.

Note these considerations for package versions.

• Version numbers are formatted as major.minor.patch.build. For example, 1.2.0.8.

Note: During the beta, the patch number must be 0, because patches aren’t yet supported.

• A subscriber can upgrade a managed package only if the upgrade has an ancestor that was previously installed in the subscriber
org. Remember that when you create a managed package version, you specify the ancestorId or ancestorVersion in
sfdx-project.json. As long as the ancestor is specified when you create a managed package version, you can easily support upgrades.

Keywords
A keyword is a variable that you can use to specify a package version number.

You can use two different keywords to automatically increment the value of the package build numbers and set the package dependency
to the latest version.

Use the NEXT keyword to automatically increment the build number to the next available for the package.

“versionNumber”: “1.2.0.NEXT”,

Use the LATEST keyword to automatically assign the latest version of the package dependency when you create a new package version.

“dependencies”: [
{

“packageId”: “0HoB00000004CFpKAM”,
“versionNumber”: “1.2.0.LATEST”

}
],

Package Dependencies
If you defined a second-generation package with dependencies on another package, specify the dependencies in the sfdx-project.json
file.

If the package has more than one dependency, provide a comma-separated list of package IDs in the order they need to be installed.
For example, if package C depends on package B, and package B depends on package A, the dependencies for package C are:

“dependencies” :[“04tOfPA...”, “04tOfPB...”],

Be sure to edit the sfdx-project.json file to include the ID of the package dependency. You can use the LATEST keyword as well.

Package Ancestors
The package ancestor attribute specifies the version branch to associate with a new package version.

83

FeaturesDevelop Second-Generation Packages (Beta)

If you’re familiar with first-generation managed packages, you probably know that they use linear package versions. Each package has
a single parent in a single branch. For second-generation managed packages, you have more flexibility to implement a tree structure
of inheritance.

Specify the ancestor attribute in the sfdx-project.json file. Use the ancestor that’s the immediate parent of the version you’re creating.
You can specify either the ancestorID or with the ancestorVersion. The package version ID you supply starts with “05i”.

“ancestorId” :“05iB00000004CIeIAM”,

Note: When you create a scratch org, any ancestors defined for a package version that you include in the sfdx-project.json file
are automatically added to the scratch org. You can exclude the ancestors by using the --noancestors option when you
create a scratch org with force:org:create.

Package Installation Key
To protect a package with an installation key, you can set the key when you create the package version. Package creators provide the
key to authorized subscribers so they can install the package. Package users provide the key during installation, whether installing the
package from the CLI or a browser.

To set the installation key, add that parameter to the command when you create the package version. This command creates a package
and protects it with the Open Sesame installation key.

sfdx force:package2:version:create --package2id 0HoB0000000CaRWKA0 --directory common --tag
'Release 1.0.0' --installationkey “Open Sesame”

You can also add an installation key to an existing package version with the force:package2:version:update command.
If the ID is specified in your project configuration file, you can omit it from the command line.

sfdx force:package2:version:update --installationkey “Open Sesame”

Supply the installation key when you install the package version in the target org.

sfdx force:package:install --id 04t6A0000004eytQAA --installationkey “Open Sesame”

Create a Package

A package is a top-level container that holds important details about the app or package: the package name, description, and associated
namespace.

You supply the package details in the package descriptor section of your sfdx-project.json project configuration file. You can associate
multiple second-generation packages with a single Dev Hub org. Unlike first-generation managed packages, a second-generation
package has no packaging org.

Each package can have many versions. Because you can create multiple second-generation packages with a single org, you can use the
Salesforce CLI to see a list of all packages associated with your Dev Hub org.

It’s helpful to review the list before you create a package so you can see previous versions and confirm package details like the status or
ID.

Authorize your Dev Hub org, and run the force:package2:list command.

sfdx force:package2:list

84

Package Installation KeyDevelop Second-Generation Packages (Beta)

Generate the Package

When you’re ready to test or share your package, use the force:package2:create command to create a package. The
package can be a base package or an extension package that depends on an existing package.

Generate a Package Version

A package version is a fixed snapshot of the package contents and related metadata. The package version lets you manage changes
and track what’s different each time you release or deploy a specific set of changes added to a package. When you’re ready to create
a package version, you can do it quickly using the Salesforce CLI.

Release a Second-Generation Package

During the development cycle, you can iterate on a package version until it’s ready for release. Using Salesforce DX, you can complete
the release process from the command line.

Update a Package Version

You can update most properties of a package version from the command line. For example, you can change the package name or
description. One important exception is that you can’t change the release status.

View Package Details

The Dev Hub org can own multiple second-generation packages.

Generate the Package
When you’re ready to test or share your package, use the force:package2:create command to create a package. The package
can be a base package or an extension package that depends on an existing package.

You specify the package namespace in the sfdx-project.json file, along with other package properties.

To create the package, change to the project directory NS enter this command.

sfdx force:package2:create --name package_name --description package_description
--containeroptions Locked

The output is similar to this example.

Successfully created second-generation package (package2).
=== Ids NAME VALUE ===
Package2 Id 0HoB00000004CApKAM
Subscriber Package Id 033B00000004ehaIAA

Generate a Package Version
A package version is a fixed snapshot of the package contents and related metadata. The package version lets you manage changes and
track what’s different each time you release or deploy a specific set of changes added to a package. When you’re ready to create a
package version, you can do it quickly using the Salesforce CLI.

Before you create a package version, first specify package details, such as the package ID, ancestors, dependencies, and major and minor
version numbers, in the sfdx-project.json file. Verify that the metadata you want to change or add in the new package version is located
in the package’s main directory.

Create the package version with this command. Supply either the directory name or the package ID.

sfdx force:package2:version:create --directory directory_name

85

Generate the PackageDevelop Second-Generation Packages (Beta)

It can be a long-running process to create a package version, depending on the package size and other variables. You can easily view
the status and monitor progress.

sfdx force:package2:version:create:get --package2createrequestid 08cxx00000000YDAAY

The output shows details about the request.

=== Package2 Version Create Request
NAME VALUE
===
Id 08cB00000004CBxIAM
Status InProgress
Package2 Id 0HoB00000004C9hKAE
Package2 Version Id
Subscriber Package2 Version Id
Tag
Branch
CreatedDate

You can find the request ID (08c) in the initial output of force:package2:version:create. After the package version is created, the success
message includes the package version ID. You supply this ID when you install the package.

Depending on the size of the package and other variables, the create request can take several minutes. When you have more than one
pending request to create package versions, you can view a list of all requests with this command.

sfdx force:package2:version:create:list --createdlastdays 0

Details for each request display as shown here (IDs and labels truncated).

=== Package2 Version Create Requests [3]
ID STATUS PACKAGE2 ID PKG2 VERSION ID SUB PKG2 VER ID TAG BRANCH CREATED DATE ===
08c... Error 0Ho...
08c... Success 0Ho... 05i... 04t... 2017-06-22 12:07
08c... Success 0Ho... 05i... 04t... 2017-06-23 14:55

Release a Second-Generation Package
During the development cycle, you can iterate on a package version until it’s ready for release. Using Salesforce DX, you can complete
the release process from the command line.

Important: After you release a package version, you can’t change some component attributes. For most package types, you can
run this command with the setasreleased option only once for each package version number, and you can’t undo the change to
the package status. For a given version number, you can release only one package version. However, if you are creating a
developer-controlled package, the components are not locked.

When you’re ready to release, use force:package2:version:update.

sfdx force:package2:version:update --package2versionid 05ixx00000000DZAAY --setasreleased

If the command is successful, a confirmation message appears.

Successfully updated the package2 version. ID: 05ixx00000000DZAAY.

After the update succeeds, view the package details.

sfdx force:package2:version:get --package2versionid 05ixx00000000DZAAY

86

Release a Second-Generation PackageDevelop Second-Generation Packages (Beta)

Confirm that the value of the Released property is true.

=== Package2 Version
NAME VALUE ===
Name v 1.0
Package2 Id 0HoB00000004CApKAM
Subscriber Package2 Version Id 04tB00000005B1uIAE
Version 1 .0.0.1
Description
Ver 1.0
Branch
Tag
Released true

Update a Package Version
You can update most properties of a package version from the command line. For example, you can change the package name or
description. One important exception is that you can’t change the release status.

View Package Details
The Dev Hub org can own multiple second-generation packages.

To display a list of all second-generation packages in the Dev Hub org, use this command.

sfdx force:package2:list --targetusername jdev@example.com

You can view the namespace, package name, ID, and other details in the output.

NAMESPACE PREFIX NAME ID SUBSCRIBER PKG2 ID DESCRIPTION ===
acme_planetary Planetary Common 0Ho... 033... Planet Schema & Data

To list all second-generation package versions in the Dev Hub org, use this command.

sfdx force:package2:version:list --createdlastdays 0 --verbose --orderby PatchVersion

Include optional parameters to filter the list results based on the modification date, creation date, and to order by specific fields or
package IDs. To limit the details, use --concise. To show expanded details, use --verbose.

Install a Package

Install second-generation packages using the CLI or the Salesforce browser. You can install package versions in a scratch org, sandbox
org, DE org, or production org, depending on the package type.

User Profiles for Installed Packages

When you install a package with the CLI, the system admin is given full access to all the metadata contained in the package as long
as the Admin profile has permissions to access that metadata. This profile is similar to the Install for Admins Only option that you
can use to install managed packages from a browser.

Install Packages with the CLI

If you’re working with the Salesforce CLI, you can use the force:package:install command to install packages in a scratch
org or target subscriber org.

87

Update a Package VersionDevelop Second-Generation Packages (Beta)

Install Packages With Salesforce in a Browser

You can install second-generation packages in the same way that you install first-generation managed packages.

Upgrade a Package Version

Are you introducing metadata changes to an existing package? You can use the CLI to upgrade one package version to another.

User Profiles for Installed Packages
When you install a package with the CLI, the system admin is given full access to all the metadata contained in the package as long as
the Admin profile has permissions to access that metadata. This profile is similar to the Install for Admins Only option that you can use
to install managed packages from a browser.

Install Packages with the CLI
If you’re working with the Salesforce CLI, you can use the force:package:install command to install packages in a scratch
org or target subscriber org.

Before you install a package to a scratch org, run this command to list all the packages and locate the ID.

sfdx force:package2:version:list

Identify the version you want to install. Enter this command, supplying the Subscriber Package2 Version ID, which begins with 04t.

sfdx force:package:install -i 04t... --targetusername jdoe@example.com

If you’ve already set the scratch org with a default username, just enter the package version ID.

sfdx force:package:install -i 04txx0000000FIuAAM

Note: If you’ve defined an alias (with the -a parameter), you can specify the alias instead of the username for the
--targetusername parameter.

The CLI displays status messages regarding the installation.

Waiting for the subscriber package version install request to get processed. Status =
InProgress Successfully installed the subscriber package2 version: 04txx0000000FIuAAM.

Install Packages With Salesforce in a Browser
You can install second-generation packages in the same way that you install first-generation managed packages.

Pre-Installation Steps
1. In a browser, go to the installation URL provided by the package developer.

Note: If you’re installing into a sandbox, you can replace the www.salesforce.com portion of the installation link with
test.salesforce.com.

2. Enter your username and password for the Salesforce org in which you want to install the package, and then click the login button.

3. If the package is protected by an installation key, enter the installation key you received from the publisher as the package password.

88

User Profiles for Installed PackagesDevelop Second-Generation Packages (Beta)

Default Installation
After completing the pre-installation steps, click Install. A message describes the progress. You receive a confirmation message when
the installation is complete.

Custom Installation
Follow these steps if you need to modify the default settings, as an administrator.

1. Choose one or more of these options, as appropriate.

• Click View Components. You’ll see an overlay with a list of components in the package. For managed packages, the screen
also contains a list of connected apps (trusted applications that are granted access to a user's Salesforce data after the user and
the application are verified). Review the list to confirm that the components and any connected apps shown are acceptable,
and then close the overlay.

Note: Some package items, such as validation rules, record types, or custom settings might not appear in the Package
Components list but are included in the package and installed with the other items. If there are no items in the Package
Components list, the package might contain only minor changes.

• If the package contains a remote site setting, you must approve access to websites outside of Salesforce. The dialog box lists all
the websites that the package communicates with. We recommend that a website uses SSL (secure sockets layer) for transmitting
data. After you verify that the websites are safe, select Yes, grant access to these third-party websites and click Continue,
or click Cancel to cancel the installation of the package.

Warning: By installing remote site settings, you’re allowing the package to transmit data to and from a third-party website.
Before using the package, contact the publisher to understand what data is transmitted and how it's used. If you have an
internal security contact, ask the contact to review the application so that you understand its impact before use.

• Click API Access. You’ll see an overlay with a list of the API access settings that package components have been granted. Review
the settings to verify they’re acceptable, and then close the overlay to return to the installer screen.

• In Enterprise, Performance, Unlimited, and Developer Editions, choose one of the following security options.

Note: Depending on the type of installation, you might not see this option. For example, in Group and Professional
Editions, or if the package doesn’t contain a custom object, Salesforce skips this option, which gives all users full access.

Install for Admins Only
Specifies the following settings on the installing administrator’s profile and any profile with the "Customize Application"
permission.

– Object permissions—“Read,” “Create,” “Edit,” “Delete,” “View All,” and “Modify All” enabled

– Field-level security—set to visible and editable for all fields

– Apex classes—enabled

– Visualforce pages—enabled

– App settings—enabled

– Tab settings—determined by the package creator

– Page layout settings—determined by the package creator

– Record Type settings—determined by the package creator

After installation, if you have Enterprise, Performance, Unlimited, or Developer Edition, set the appropriate user and object
permissions on custom profiles as needed.

Install for All Users
Specifies the following settings on all internal custom profiles.

89

Install Packages With Salesforce in a BrowserDevelop Second-Generation Packages (Beta)

– Object permissions—“Read,” “Create,” “Edit,” and “Delete” enabled

– Field-level security—set to visible and editable for all fields

– Apex classes—enabled

– Visualforce pages—enabled

– App settings—enabled

– Tab settings—determined by the package creator

– Page layout settings—determined by the package creator

– Record Type settings—determined by the package creator

Note: The Customer Portal User, Customer Portal Manager, High Volume Customer Portal, Authenticated Website,
Partner User, and standard profiles receive no access.

Install for Specific Profiles...
Enables you to choose the usage access for all custom profiles in your organization. You can set each profile to have full
access or no access for the new package and all its components.

– Full Access—Specifies the following settings for each profile.

• Object permissions—“Read,” “Create,” “Edit,” “Delete,” “View All,” and “Modify All” enabled

• Field-level security—set to visible and editable for all fields

• Apex classes—enabled

• Visualforce pages—enabled

• App settings—enabled

• Tab settings—determined by the package creator

• Page layout settings—determined by the package creator

• Record Type settings—determined by the package creator

– No Access—Specifies the same settings as Full Access, except all object permissions are disabled.

You might see other options if the publisher has included settings for custom profiles. You can incorporate the settings of
the publisher’s custom profiles into your profiles without affecting your settings. Choose the name of the profile settings in
the drop-down list next to the profile that you need to apply them to. The current settings in that profile remain intact.

Alternatively, click Set All next to an access level to give this setting to all user profiles.

2. Click Install. You’ll see a message that describes the progress and a confirmation message after the installation is complete.

Upgrade a Package Version
Are you introducing metadata changes to an existing package? You can use the CLI to upgrade one package version to another.

When you perform a package upgrade, here’s what to expect for metadata changes.

• Metadata introduced in the new version is installed as part of the upgrade.

• If an upgraded component has the same API name as a component already in the target org, the component is overwritten with
the changes.

• If a component in the upgrade was previously deleted from the target org, the component is re-created during the upgrade.

• Metadata that was deleted in the new package version is also deleted from the target org as part of the upgrade. If it was deleted
before the upgrade occurs, the upgrade proceeds normally. Generally, components are hard-deleted. Schema items are not deleted,
but are marked as deletable.

90

Upgrade a Package VersionDevelop Second-Generation Packages (Beta)

Uninstall a Package

You can uninstall a package from a subscriber org using the CLI or from Salesforce Setup. When you uninstall second-generation packages,
all components in the package are deleted from the org.

To use the CLI to uninstall a second-generation package from the target org, authorize the Dev Hub org and run this command.

sfdx force:package:uninstall -i 04txx0000000FIuAAM

You can also uninstall a package from the web browser. Open the Salesforce org where you installed the package.

sfdx force:org:open -u me@my.org

Then uninstall the package in the same way you uninstall first-generation managed packages.

To remove a package:

1. From Setup, enter Installed in the Quick Find box, then select Installed Packages.

2. Click Uninstall next to the package that you want to remove.

3. Select Yes, I want to uninstall... and click Uninstall.

4. After an uninstall, Salesforce automatically creates an export file containing the package data, associated notes, and any attachments.
When the uninstall is complete, Salesforce sends an email containing a link to the export file to the user performing the uninstall.
The export file and related notes and attachments are listed below the list of installed packages. We recommend storing the file
elsewhere because it’s only available for a limited time after the uninstall completes.

Tip: If you reinstall the package later and want to reimport the package data, see Importing Package Data.

SEE ALSO:

Salesforce CLI Command Reference

91

Uninstall a PackageDevelop Second-Generation Packages (Beta)

https://help.salesforce.com/apex/HTViewHelpDoc?id=distribution_reimport_package_data.htm&language=en_US#distribution_reimport_package_data
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

CHAPTER 8 Continuous Integration

Continuous integration (CI) is a software development practice in which developers regularly integrate
their code changes into a source code repository. To ensure that the new code does not introduce bugs,
automated builds and tests run before or after developers check in their changes.

In this chapter ...

• Continuous
Integration Using
Jenkins Many third-party CI tools are available for you to choose from. Salesforce DX easily integrates into these

tools so that you can set up continuous integration for your Force.com applications.
• Continuous

Integration with
Travis CI

92

Continuous Integration Using Jenkins

Jenkins is an open-source, extensible automation server for implementing continuous integration and continuous delivery. You can
easily integrate Salesforce DX into the Jenkins framework to automate testing of Force.com applications against scratch orgs.

To integrate Jenkins, we assume:

• You are familiar with how Jenkins works. You can configure and use Jenkins in many ways. We focus on integrating Salesforce DX
into Jenkins multibranch pipelines.

• The computer on which the Jenkins server is running has access to your version control system and to the repository that contains
your Force.com application.

Configure Your Environment for Jenkins

Before integrating Salesforce DX into your existing Jenkins framework, configure your Jenkins environment.

Jenkinsfile Walkthrough

The sample Jenkinsfile shows how to integrate Salesforce DX into a Jenkins job. The sample uses Jenkins multibranch pipelines.
Every Jenkins setup is different. This walkthrough describes one of the ways to automate testing of your Force.com applications. The
walkthrough highlights the Salesforce DX CLI commands to create a scratch org, upload your code, and run your tests.

Sample Jenkinsfile

A Jenkinsfile is a text file that contains the definition of a Jenkins Pipeline. This Jenkinsfile shows how to integrate the
Salesforce DX CLI commands to automate testing of your Force.com applications using scratch orgs.

SEE ALSO:

Jenkins

Pipeline-as-code with Multibranch Workflows in Jenkins

Configure Your Environment for Jenkins
Before integrating Salesforce DX into your existing Jenkins framework, configure your Jenkins environment.

1. In your Dev Hub org, create a connected app as described by the JWT-based authorization flow. This step includes obtaining or
creating a private key and digital certificate.

Make note of your consumer key (sometimes called a client ID) when you save the connected app. You need the consumer key to
set up your Jenkins environment. Also have available the private key file used to sign the digital certificate.

2. On the computer that is running the Jenkins server, do the following.

a. Download and install the Salesforce DX CLI.

b. Store the private key file as a Jenkins Secret File using the Jenkins Admin Credentials interface. Make note of the new entry’s ID.

You later reference this Credentials entry in your Jenkinsfile.

c. Set the following variables in your Jenkins environment.

• HUB_ORG_DH—The username for the Dev Hub org, such as juliet.capulet@myenvhub.com.

• SFDC_HOST_DH—The login URL of the Salesforce instance that is hosting the Dev Hub org. The default is
https://login.salesforce.com

• CONNECTED_APP_CONSUMER_KEY_DH—The consumer key that was returned after you created a connected app in your
Dev Hub org.

93

Continuous Integration Using JenkinsContinuous Integration

https://jenkins.io/
https://jenkins.io/blog/2015/12/03/pipeline-as-code-with-multibranch-workflows-in-jenkins/
https://wiki.jenkins-ci.org/display/JENKINS/Credentials+Binding+Plugin

• JWT_CRED_ID_DH—The credentials ID for the private key file that you stored in the Jenkins Admin Credentials interface.

The names for these environment variables are just suggestions. You can use any name as long as you specify it in the
Jenkinsfile.

3. Set up your Salesforce DX project so that you can create a scratch org.

4. (Optional) Install the Custom Tools Plugin into your Jenkins console, and create a custom tool that references the Salesforce CLI. The
Jenkins walkthrough assumes that you created a custom tool named toolbelt in the /usr/local/bin directory, which is the
directory in which the Salesforce CLI is installed.

SEE ALSO:

Authorize an Org Using the JWT-Based Flow

Salesforce DX Setup Guide

Jenkins: Credentials Binding Plugin

Project Setup

Jenkinsfile Walkthrough
The sample Jenkinsfile shows how to integrate Salesforce DX into a Jenkins job. The sample uses Jenkins multibranch pipelines. Every
Jenkins setup is different. This walkthrough describes one of the ways to automate testing of your Force.com applications. The walkthrough
highlights the Salesforce DX CLI commands to create a scratch org, upload your code, and run your tests.

We assume that you are familiar with the structure of the Jenkinsfile, Jenkins Pipeline DSL, and the Groovy programming language. This
walkthrough focuses solely on Salesforce DX information. See the Salesforce DX Command Reference regarding the commands used.

This Salesforce DX workflow most closely corresponds to Jenkinsfile stages.

• Define Variables

• Check Out the Source Code

• Wrap All Stages in a withCredentials Command

• Authorize Your Dev Hub Org and Create a Scratch Org

• Push Source and Assign a Permission Set

• Run Apex Tests

• Delete the Scratch Org

Define Variables
Use the def keyword to define the variables required by the Salesforce DX CLI commands. Assign each variable the corresponding
environment variable that you previously set in your Jenkins environment.

def HUB_ORG=env.HUB_ORG_DH
def SFDC_HOST = env.SFDC_HOST_DH
def JWT_KEY_CRED_ID = env.JWT_CRED_ID_DH
def CONNECTED_APP_CONSUMER_KEY=env.CONNECTED_APP_CONSUMER_KEY_DH

Define the SFDC_USERNAME variable, but don’t set its value. You do that later.

def SFDC_USERNAME

94

Jenkinsfile WalkthroughContinuous Integration

https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_setup.meta/sfdx_setup
https://wiki.jenkins-ci.org/display/JENKINS/Credentials+Binding+Plugin

Although not required, we assume you’ve used the Jenkins Global Tool Configuration to create the toolbelt custom tool that points
to the CLI installation directory. In your Jenkinsfile, use the tool command to set the value of the toolbelt variable to this
custom tool.

def toolbelt = tool 'toolbelt'

You can now reference the Salesforce CLI executable in the Jenkinsfile using ${toolbelt}/sfdx.

Check Out the Source Code
Before testing your code, get the appropriate version or branch from your version control system (VCS) repository. In this example, we
use the checkout scm Jenkins command. We assume that the Jenkins administrator has already configured the environment to
access the correct VCS repository and check out the correct branch.

stage('checkout source') {
// when running in multi-branch job, one must issue this command
checkout scm

}

Wrap All Stages in a withCredentials Command
You previously stored the JWT private key file as a Jenkins Secret File using the Credentials interface. Therefore, you must use the
withCredentials command in the body of the Jenkinsfile to access the secret file. The withCredentials command
lets you name a credential entry, which is then extracted from the credential store and provided to the enclosed code through a variable.
When using withCredentials, put all stages within its code block.

This example stores the credential ID for the JWT key file in the variable JWT_KEY_CRED_ID. You defined JWT_KEY_CRED_ID
earlier and set it to its corresponding environment variable. The withCredentials command fetches the contents of the secret
file from the credential store and places the contents in a temporary location. The location is stored in the variable jwt_key_file.
You use the jwt_key_file variable with the force:auth:jwt command to specify the private key securely.

withCredentials([file(credentialsId: JWT_KEY_CRED_ID, variable: 'jwt_key_file')]) {
all stages will go here

}

Authorize Your Dev Hub Org and Create a Scratch Org
The dreamhouse-sfdx example uses one stage to authorize the Dev Hub org and create a scratch org.

stage('Create Scratch Org') {

rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:auth:jwt:grant --clientid
${CONNECTED_APP_CONSUMER_KEY} --username ${HUB_ORG} --jwtkeyfile ${jwt_key_file}
--setdefaultdevhubusername --instanceurl ${SFDC_HOST}"

if (rc != 0) { error 'hub org authorization failed' }

// need to pull out assigned username
rmsg = sh returnStdout: true, script: "${toolbelt}/sfdx force:org:create --definitionfile

config/project-scratch-def.json --json --setdefaultusername"
printf rmsg
def jsonSlurper = new JsonSlurperClassic()
def robj = jsonSlurper.parseText(rmsg)
if (robj.status != "ok") { error 'org creation failed: ' + robj.message }

95

Jenkinsfile WalkthroughContinuous Integration

SFDC_USERNAME=robj.username
robj = null

}

Use the force:auth:jwt:grant CLI command to authorize your Dev Hub org.

You are required to run this step only once, but we suggest you add it to your Jenkinsfile and authorize each time you run the
Jenkins job. This way you’re always sure that the Jenkins job is not aborted due to lack of authorization. There is typically little harm in
authorizing multiple times, although keep in mind that the API call limit for your scratch org’s edition still applies.

Use the parameters of the force:auth:jwt:grant command to provide information about the Dev Hub org that you are
authorizing. The values for the --clientid, --username, and --instanceurl parameters are the
CONNECTED_APP_CONSUMER_KEY, HUB_ORG, and SFDC_HOST environment variables you previously defined, respectively. The value
of the --jwtkeyfile parameter is the jwt_key_file variable that you set in the previous section using the
withCredentials command. The --setdefaultdevhubusername parameter specifies that this HUB_ORG is the default
Dev Hub org for creating scratch orgs.

Use the force:org:create CLI command to create a scratch org. In the example, the CLI command uses the
config/project-scratch-def.json file (relative to the project directory) to create the scratch org. The --json parameter
specifies that the output be in JSON format. The --setdefaultusername parameter sets the new scratch org as the default.

The Groovy code that parses the JSON output of the force:org:create command extracts the username that was auto-generated
as part of the org creation. This username, stored in the SFDC_USERNAME variable, is used with the CLI commands that push source,
assign a permission set, and so on.

Push Source and Assign a Permission Set
Let’s populate your new scratch org with metadata. This example uses the force:source:push command to upload your source
to the org. The source includes all the pieces that make up your Salesforce application: Apex classes and test classes, permission sets,
layouts, triggers, custom objects, and so on.

stage('Push To Test Org') {

rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:source:push --targetusername
${SFDC_USERNAME}"
if (rc != 0) {
error 'push all failed'
}
// assign permset
rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:user:permset:assign

--targetusername ${SFDC_USERNAME} --permsetname DreamHouse"
if (rc != 0) {

error 'push all failed'
}

}

Recall the SFDC_USERNAME variable that contains the auto-generated username that was output by the force:org:create
command in an earlier stage. The code uses this variable as the argument to the --targetusername parameter to specify the
username for the new scratch org.

The force:source:push command pushes all the Force.com-related files that it finds in your project. Add a .forceignore
file to your repository to list the files that you do not want pushed to the org.

After pushing the metadata, the example uses the force:user:permset:assign command to assign a permission set (named
DreamHouse) to the SFDC_USERNAME user. The XML file that describes this permission set was uploaded to the org as part of the push.

96

Jenkinsfile WalkthroughContinuous Integration

Run Apex Tests
Now that your source code and test source have been pushed to the scratch org, run the force:apex:test:run command to
run Apex tests.

stage('Run Apex Test') {
sh "mkdir -p ${RUN_ARTIFACT_DIR}"
timeout(time: 120, unit: 'SECONDS') {
rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:apex:test:run --testlevel

RunLocalTests --outputdir ${RUN_ARTIFACT_DIR} --resultformat tap --targetusername
${SFDC_USERNAME}"
if (rc != 0) {
error 'apex test run failed'
}
}

}

You can specify various parameters to the force:apex:test:run CLI command. In the example:

• The --testlevel RunLocalTests option runs all tests in the scratch org, except tests that originate from installed managed
packages. You can also specify RunSpecifiedTests to run only certain Apex tests or suites or RunAllTestsInOrg to
run all tests in the org.

• The --outputdir option uses the RUN_ARTIFACT_DIR variable to specify the directory into which the test results are written.
Test results are produced in JUnit and JSON formats.

• The --resultformat tap option specifies that the command output is in Test Anything Protocol (TAP) format. The test results
that are written to a file are still in JUnit and JSON formats.

• The --targetusername option specifies the username for accessing the scratch org (the value in SFDC_USERNAME).

The force:apex:test:run command writes its test results in JUnit format. You can collect the results using industry-standard
tools as shown in the following example.

stage('collect results') {
junit keepLongStdio: true, testResults: 'tests/**/*-junit.xml'

}

Delete the Scratch Org
Salesforce reserves the right to delete a scratch org a specified number of days after it was created. You can also create a stage in your
pipeline that uses force:org:delete to explicitly delete your scratch org when the tests complete. This cleanup ensures better
management of your resources.

stage('Delete Test Org') {

timeout(time: 120, unit: 'SECONDS') {
rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:org:delete

--targetusername ${SFDC_USERNAME} --noprompt"
if (rc != 0) {

error 'org deletion request failed'
}

97

Jenkinsfile WalkthroughContinuous Integration

}
}

SEE ALSO:

Sample Jenkinsfile

Pipeline-as-code with Multibranch Workflows in Jenkins

TAP: Test Anything Protocol

Configure Your Environment for Jenkins

Salesforce CLI Command Reference

Sample Jenkinsfile
A Jenkinsfile is a text file that contains the definition of a Jenkins Pipeline. This Jenkinsfile shows how to integrate the
Salesforce DX CLI commands to automate testing of your Force.com applications using scratch orgs.

The Jenkinsfile Walkthrough topic uses this Jenkinsfile as an example.

#!groovy
import groovy.json.JsonSlurperClassic
node {

def BUILD_NUMBER=env.BUILD_NUMBER
def RUN_ARTIFACT_DIR="tests/${BUILD_NUMBER}"
def SFDC_USERNAME

def HUB_ORG=env.HUB_ORG_DH
def SFDC_HOST = env.SFDC_HOST_DH
def JWT_KEY_CRED_ID = env.JWT_CRED_ID_DH
def CONNECTED_APP_CONSUMER_KEY=env.CONNECTED_APP_CONSUMER_KEY_DH

def toolbelt = tool 'toolbelt'

stage('checkout source') {
// when running in multi-branch job, one must issue this command
checkout scm

}

withCredentials([file(credentialsId: JWT_KEY_CRED_ID, variable: 'jwt_key_file')]) {
stage('Create Scratch Org') {

rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:auth:jwt:grant
--clientid ${CONNECTED_APP_CONSUMER_KEY} --username ${HUB_ORG} --jwtkeyfile ${jwt_key_file}
--setdefaultdevhubusername --instanceurl ${SFDC_HOST}"

if (rc != 0) { error 'hub org authorization failed' }

// need to pull out assigned username
rmsg = sh returnStdout: true, script: "${toolbelt}/sfdx force:org:create

--definitionfile config/project-scratch-def.json --json --setdefaultusername"
printf rmsg
def jsonSlurper = new JsonSlurperClassic()
def robj = jsonSlurper.parseText(rmsg)

98

Sample JenkinsfileContinuous Integration

https://jenkins.io/blog/2015/12/03/pipeline-as-code-with-multibranch-workflows-in-jenkins/
https://testanything.org/
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference

if (robj.status != "ok") { error 'org creation failed: ' + robj.message }
SFDC_USERNAME=robj.username
robj = null

}

stage('Push To Test Org') {
rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:source:push

--targetusername ${SFDC_USERNAME}"
if (rc != 0) {

error 'push failed'
}
// assign permset

rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:user:permset:assign
--targetusername ${SFDC_USERNAME} --permsetname DreamHouse"

if (rc != 0) {
error 'permset:assign failed'

}
}

stage('Run Apex Test') {
sh "mkdir -p ${RUN_ARTIFACT_DIR}"
timeout(time: 120, unit: 'SECONDS') {

rc = sh returnStatus: true, script: "${toolbelt}/sfdx force:apex:test:run
--testlevel RunLocalTests --outputdir ${RUN_ARTIFACT_DIR} --resultformat tap
--targetusername ${SFDC_USERNAME}"

if (rc != 0) {
error 'apex test run failed'

}
}

}

stage('collect results') {
junit keepLongStdio: true, testResults: 'tests/**/*-junit.xml'

}
}

}

SEE ALSO:

Jenkinsfile Walkthrough

Continuous Integration with Travis CI

Travis CI is a cloud-based continuous integration (CI) service for building and testing software projects hosted on GitHub.

Setting up Salesforce DX with Travis CI is easy. See the sfdx-travisci GitHub sample and the Salesforce DX Trailhead modules
to get started.

SEE ALSO:

sfdx-travisci Sample GitHub Repo

Travis CI

99

Continuous Integration with Travis CIContinuous Integration

https://github.com/forcedotcom/sfdx-travisci
https://travis-ci.org/

CHAPTER 9 Troubleshoot Salesforce DX

This guide is a work in progress. Log in to the Salesforce Trailblazer Community and let us know if you
find a solution that would help other users so that we can incorporate it.

SEE ALSO:

Salesforce Trailblazer Community

In this chapter ...

• CLI Version
Information

• Run CLI Commands
on macOS Sierra
(Version 10.12)

• Error: No
defaultdevhubusername
org found

• Unable to Work After
Failed Org
Authorization

• Error: Lightning
Experience-Enabled
Custom Domain Is
Unavailable

100

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000HTp1

CLI Version Information

Use these commands to view version information about the Salesforce DX CLI.

sfdx --version // CLI version
sfdx plugins // SalesforceDX plugin version
sfdx force --version // Salesforce API version used by the CLI

Run CLI Commands on macOS Sierra (Version 10.12)

Some users who upgrade to macOS Sierra can’t execute CLI commands. This is a general problem and not isolated to Salesforce DX. To
resolve the issue, reinstall your Xcode developer tools.

Execute this command in Terminal:

xcode-select --install

If you still can’t execute CLI commands, download the Command Line Tools (macOS sierra) for Xcode 8 package from the Apple
Developer website.

SEE ALSO:

Apple Developer Downloads

Stack Overflow: Command Line Tools bash (git) not working - macOS Sierra Final Release Candidate

Error: No defaultdevhubusername org found

Let’s say you successfully authorize a Dev Hub org using the --setdefaultdevhubusername parameter. The username associated
with the org is your default Dev Hub username. You then successfully create a scratch org without using the
--targetdevhubusername parameter.

But when you try to create a scratch org another time using the same CLI command, you get this error:

Unable to invoke command. name: NoOrgFound message: No defaultdevhubusername org found

What happened?

Answer: You are no longer in the directory where you ran the authorization command. The directory from which you use the
--setdefaultdevhubusername parameter matters.

If you run the authorization command from the root of your project directory, the defaultdevhubusername config value is set
locally. The value applies only when you run the command from the same project directory. If you change to a different directory and
run force:org:create, the local setting of the default Dev Hub org no longer applies and you get an error.

Solve the problem by doing one of the following.

• Set defaultdevhubusername globally so that you can run force:org:create from any directory.

sfdx force:config:set defaultdevhubusername=<devhubusername> --global

• Run force:org:create from the same project directory where you authorized your Dev Hub org.

101

CLI Version InformationTroubleshoot Salesforce DX

https://developer.apple.com/download/more/
http://stackoverflow.com/questions/39484218/command-line-tools-bash-git-not-working-macos-sierra-final-release-candidate

• Use the --targetdevhubusername parameter with force:org:create to run it from any directory.

sfdx force:org:create --definitionfile <file> --targetdevhubusername <devhubusername>
--setalias my-scratch-org

• To check whether you’ve set configuration values globally or locally, use this command.

sfdx force:config:list

SEE ALSO:

How Salesforce Developer Experience Changes the Way You Work

Unable to Work After Failed Org Authorization

Sometimes you try to authorize a Dev Hub or a scratch org using the Salesforce CLI or an IDE, but you don’t successfully log in to the
org. The port remains open for the stray authorization process, and you can’t use the CLI or IDE. To proceed, end the process manually.

macOS or Linux
To recover from a failed org authorization on macOS or Linux, use a terminal to kill the process running on port 1717.

1. From a terminal, run:

lsof -i tcp:1717

2. In the results, find the ID for the process that’s using the port.

3. Run:

kill -9 <the process ID>

Windows
To recover from a failed org authorization on Windows, use the Task Manager to end the Node process.

1. Press Ctrl+Alt+Delete, then click Task Manager.

2. Select the Process tab.

3. Find the process named Node.

Note: If you’re a Node.js developer, you might have several running processes with this name.

4. Select the process that you want to end, and then click End Process.

Error: Lightning Experience-Enabled Custom Domain Is Unavailable

If you create a scratch org with force:org:create, and then immediately try to use it, you sometimes get an error after waiting
a few minutes for the command to finish.

102

Unable to Work After Failed Org AuthorizationTroubleshoot Salesforce DX

For example, if you try to open the new scratch org in a browser with force:org:open, you might get this error:

Waiting to resolve the Lightning Experience-enabled custom domain...
ERROR running force:org:open: The Lightning Experience-enabled custom domain is unavailable.

The error occurs because it takes a few minutes for the Lightning Experience-enabled custom domain to internally resolve.

When using the CLI interactively, wait a few more minutes and run the command again. In a CI environment, however, you can avoid
the error altogether by changing how long the CLI itself waits.

By default, the CLI waits 240 seconds (4 minutes) for the custom domain to become available. You can configure the CLI to wait longer
by setting the SFDX_DOMAIN_RETRY environment variable to the number of seconds you want it to wait. For example, to wait 5 minutes
(300 seconds):

export SFDX_DOMAIN_RETRY=300

If you want the CLI to bypass the custom domain check entirely, set SFDX_DOMAIN_RETRY to 0.

103

Error: Lightning Experience-Enabled Custom Domain Is
Unavailable

Troubleshoot Salesforce DX

CHAPTER 10 Limitations for Salesforce DX

Here are some known issues you might run into while using Salesforce DX.

Salesforce CLI

Upgrade to High Sierra Breaks Salesforce CLI Installation
Description: After upgrading Mac OS X to High Sierra, the CLI installation breaks for Mac users that
have used the .pkg installer to install the CLI.

Workaround: Before you uninstall and reinstall the CLI, see if this fix works from one of our amazing
Salesforce Customer Trailblazers. See his blog for details.

If that doesn’t work, uninstall the CLI, then reinstall it.

If you choose to install using NPM, you don’t get the benefit of auto-updates. To uninstall the CLI if
you used the DMG installer, download and run the GIST uninstall script:
https://gist.github.com/dcarroll/318e5f2d44fb6c2e612dd8d817473cdb

Installation instructions:
https://developer.salesforce.com/docs/atlas.en-us.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli_macos.htm

NPM installation instructions:
https://developer.salesforce.com/docs/atlas.en-us.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli_npm.htm

Stacktrace May Occur When Upgrading the CLI from 5.7.6 to 6.0
Description: When upgrading the Salesforce CLI from version 5.7.6 to 6.0 by running sfdx
update, you might see a stacktrace instead of this successful completion message:

$ sfdx update

sfdx-cli: Updating plugins... done

Workaround: This glitch is temporary. Rerun sfdx update.

Limited Support for Shell Environments on Windows
Description: Salesforce CLI is tested on the Command Prompt (cmd.exe), Powershell, and Windows
Subsystem for Linux (WSL) for Ubuntu. There are known issues in the cygwin and Min-GW
environments. These environments might be tested and supported in a future release. For now, use
a supported shell instead.

Workaround: None.

The force:apex:test:run Command Doesn’t Finish Executing
Description: In certain situations, the force:apex:test:run command doesn’t finish
executing. Examples of these situations include a compile error in the Apex test or an Apex test
triggering a pre-compile when another is in progress.

104

http://lekkimworld.com/2017/12/19/fixing_heroku_and_sfdx_cli_after_upgrading_to_macos_high_sierra.html
https://gist.github.com/dcarroll/318e5f2d44fb6c2e612dd8d817473cdb
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli_macos.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli_npm.htm

Workaround: Stop the command execution by typing control-C. If the command is part of a
continuous integration (CI) job, try setting the environment variable
SFDX_PRECOMPILE_DISABLE=true.

Dev Hub and Scratch Orgs

Person Accounts Don’t Work in Developer Edition Scratch Orgs
Description: Person accounts work only in Enterprise Edition and Professional Edition scratch orgs.

Workaround: When working with person accounts, don’t use a DE scratch org.

Source Management

.forceignore Does Not Exclude Lightning Definition Bundle Files During a Push
Description: If you have added a file to a Lightning (Aura) Bundle folder that is not part of the bundle
definition and try to exclude that file from push or packaging commands using .forceignore,
the file isn’t ignored and an error is displayed.

See AuraDefinitionBundle for valid component types (bundle suffixes).

Workaround: Move the file from the aura directory to a different directory.

Must Manually Enable Feed Tracking in a Custom Object's Metadata File
Description: If you enable feed tracking on a custom object, then run force:source:pull,
feed tracking doesn't get enabled.

Workaround: In your Salesforce DX project, manually enable feed tracking on the custom object
in its metadata file (-meta.xml) like this: <enableFeeds>true</enableFeeds>.

force:mdapi:convert Returns a Success Exit Code Even When Conversion Fails
Description: If force:mdapi:convert fails for any reason and outputs an error message,
the command still returns a 0 (Success) exit code.

Workaround: None.

Incorrect Status Message After Making a Fine-Grained Modification to a Custom Object
Description: Let’s say you make a fine-grained modification to a custom object in your scratch org,
such as changing one of its field sets. When you run force:source:status or
force:source:pull, the status message about the item you modified is sometimes incorrect.
In our example, the field set might be marked as Remote Add even though it is already part of your
source.

Workaround: None.

Pushing After Removing a Permission Set Locally Causes “Unknown” Error
Description: If you remove a permission set from your local project, then run the
force:source:push command, you see the error message: Unknown.

Workaround: None.

Unable to Push Lookup Filters to a Scratch Org
Description: When you execute the force:source:push command to push the source of
a relationship field that has a lookup filter, you sometimes get the following error:

duplicate value found: <unknown> duplicates value on record with
id: <unknown> at line num, col num.

105

Limitations for Salesforce DX

https://developer.salesforce.com/docs/atlas.en-us.210.0.api_meta.meta/api_meta/meta_auradefinitionbundle.htm

Workaround: None.

First-Generation Packaging

When You Install a Package in a Scratch Org, No Tests Are Performed
Description: If you include tests as part of your continuous integration process, those tests don’t
run at the time when you install a package in a scratch org.

Workaround: You can manually execute tests after the package is installed.

New Terminology in CLI for Managed Package Password
Description: When you use the CLI to add an installation key to a package version or to install a
key-protected package version, the parameter name of the key is --installationkey. When
you view a managed package version in the Salesforce user interface, the same package attribute
is called “Password”. In the API, the corresponding field name, “password”, is unchanged.

Workaround: None. The Password field name in the user interface will be changed in a future
release.

Second-Generation Packaging

API Version Must be 41.0 or Later
Description: API versions before 41.0 aren’t supported for second-generation packages.

Workaround: Before you create a second-generation package, verify that you’ve set the
sourceApiVersion in sfdx-project.json to 41.0 or later.

Unlocked and Locked Packages Can Only be Installed in Scratch or Sandbox Orgs
Description: You can create three types of second-generation packages. You can install managed
second-generation packages in any org. Locked and unlocked packages are pilot features that you
can install only in a sandbox or scratch org.

Workaround: None.

Unable to Specify a Patch Version
Description: The four-part package version number includes a patch segment, defined as
major.minor.patch.build. However, you can’t create a patch for a second-generation package. Package
creation fails if you set a patch number in the package descriptor. Stay tuned for patch versions in
an upcoming release.

Workaround: Always set the patch segment of the version number, to 0. For example, 1.2.0.1 is
valid but 1.2.1.1 is not.

Protected Custom Metadata and Custom Settings are Visible to Developers in a Scratch Org If
Installed Packages Share a Namespace

Description: Use caution when you store secrets in your second-generation packages using protected
custom metadata or protected custom settings. You can create multiple second-generation packages
with the same namespace. However, when you install these packages in a scratch org, these secrets
are visible to any of your developers that are working in a scratch org with a shared namespace. In
the future, we might add a “package-protected” keyword to prevent access to package secrets in
these situations.

Workaround: None.

106

Limitations for Salesforce DX

	How Salesforce Developer Experience Changes the Way You Work
	Use a Sample Repo to Get Started
	Create an Application
	Migrate or Import Existing Source

	Project Setup
	Salesforce CLI Configuration and Tips
	CLI Runtime Configuration Values
	CLI Environment Variables
	Salesforce DX Usernames and Orgs
	Override or Add Definition File Options at the Command Line
	CLI Parameter Resolution Order
	Support for JSON Responses
	Log Messages and Log Levels
	CLI Deprecation Policy

	Sample Repository on GitHub
	Create a Salesforce DX Project
	Create a Salesforce DX Project from Existing Source
	Retrieve Source from an Existing Managed Package
	Retrieve Unpackaged Source Defined in a package.xml File
	Retrieve Unpackaged Source by Creating a Temporary Unmanaged Package
	Convert the Metadata API Source
	Link a Namespace to a Dev Hub Org
	Salesforce DX Project Configuration

	Authorization
	Authorize an Org Using the Web-Based Flow
	Authorize an Org Using the JWT-Based Flow
	Create a Private Key and Self-Signed Digital Certificate
	Create a Connected App
	Use an Existing Access Token Instead of Authorizing
	Authorization Information for an Org

	Scratch Orgs
	Scratch Org Definition File
	Scratch Org Definition Configuration Values
	Create Scratch Orgs
	Supported Metadata API Types
	Salesforce DX Project Structure and Source File Format
	Push Source to the Scratch Org
	How to Exclude Source When Syncing or Converting

	Assign a Permission Set
	Ways to Add Data to Your Scratch Org
	Example: Export and Import Data Between Orgs

	Pull Source from the Scratch Org to Your Project
	Scratch Org Users
	Create a Scratch Org User
	User Definition File for Customizing a Scratch Org User
	Generate or Change a Password for a Scratch Org User

	Manage Scratch Orgs from the Dev Hub

	Development
	Create a Lightning App and Components
	Create an Apex Class
	Track Changes Between the Project and Scratch Org
	Testing
	View Apex Debug Logs

	Build and Release Your App
	Build and Release Your App with Managed Packages
	Packaging Checklist
	Deploy the Package Metadata to the Packaging Org
	Create a Beta Version of Your App
	Install the Package in a Target Org
	Create a Managed Package Version of Your App

	View Information About a Package
	View All Package Versions in the Org
	Package IDs

	Build and Release Your App with Metadata API
	Deploy Changes to a Sandbox for Validation
	Release Your App to Production

	Develop Second-Generation Packages (Beta)
	Second-Generation Packaging
	Types of Packaging Projects
	Packaging for ISVs
	Enterprise Customers
	What’s a Package?

	Before You Create Second-Generation Packages
	Know Your Orgs
	Sample Repository
	Review Org Setup
	Verify Project Configuration

	Workflow for Second-Generation Packages
	Plan Second-Generation Packages
	Supported Component Types
	Namespaces
	Package Types
	Managed 2GP Packages (Beta)
	Developer-Controlled Packages (Pilot)

	Best Practices for Second-Generation Packages
	Package IDs

	Configure Packages in the sfdx-project.json File
	Features
	Package Versions
	Keywords
	Package Dependencies
	Package Ancestors
	Package Installation Key

	Create a Package
	Generate the Package
	Generate a Package Version
	Release a Second-Generation Package
	Update a Package Version
	View Package Details

	Install a Package
	User Profiles for Installed Packages
	Install Packages with the CLI
	Install Packages With Salesforce in a Browser
	Upgrade a Package Version

	Uninstall a Package

	Continuous Integration
	Continuous Integration Using Jenkins
	Configure Your Environment for Jenkins
	Jenkinsfile Walkthrough
	Sample Jenkinsfile

	Continuous Integration with Travis CI

	Troubleshoot Salesforce DX
	CLI Version Information
	Run CLI Commands on macOS Sierra (Version 10.12)
	Error: No defaultdevhubusername org found
	Unable to Work After Failed Org Authorization
	Error: Lightning Experience-Enabled Custom Domain Is Unavailable

	Limitations for Salesforce DX

