
Lightning Components
Developer Guide

Version 41.0, Winter ’18

 @salesforcedocs
Last updated: December 14, 2017

https://twitter.com/salesforcedocs

© Copyright 2000–2017 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: What is the Lightning Component Framework? . 1

What is Salesforce Lightning? . 2
Why Use the Lightning Component Framework? . 2
Components . 3
Events . 3
Open Source Aura Framework . 4
Browser Support Considerations for Lightning Components . 4
Using the Developer Console . 6
Online Content . 6

Chapter 2: Quick Start . 8

Before You Begin . 9
Trailhead: Explore Lightning Components Resources . 9
Create a Component for Lightning Experience and the Salesforce Mobile App 10

Load the Contacts . 13
Fire the Events . 17

Chapter 3: Creating Components . 19

Create Lightning Components in the Developer Console . 21
Lightning Bundle Configurations Available in the Developer Console 22

Component Markup . 23
Component Namespace . 24

Using the Default Namespace in Organizations with No Namespace Set 25
Using Your Organization’s Namespace . 25
Using a Namespace in or from a Managed Package . 25
Creating a Namespace in Your Organization . 26
Namespace Usage Examples and Reference . 26

Component Bundles . 29
Component IDs . 30
HTML in Components . 31
CSS in Components . 31
Component Attributes . 33
Component Composition . 34
Component Body . 36
Component Facets . 37
Best Practices for Conditional Markup . 38
Component Versioning . 39
Components with Minimum API Version Requirements . 41
Using Expressions . 42

Dynamic Output in Expressions . 43
Conditional Expressions . 43
Data Binding Between Components . 44
Value Providers . 48
Expression Evaluation . 54
Expression Operators Reference . 54
Expression Functions Reference . 58

Using Labels . 61
Using Custom Labels . 62
Input Component Labels . 62
Dynamically Populating Label Parameters . 63
Getting Labels in JavaScript . 63
Getting Labels in Apex . 65
Setting Label Values via a Parent Attribute . 66

Localization . 67
Providing Component Documentation . 68
Working with Base Lightning Components . 70

Base Lightning Components Considerations . 75
Event Handling in Base Lightning Components . 77
Lightning Design System Considerations . 79

Working with UI Components . 94
Event Handling in UI Components . 96
Using the UI Components . 97

Working with the Flow Lightning Component . 98
Set Flow Variable Values from a Lightning Component . 99
Get Flow Variable Values to a Lightning Component . 102
Control a Flow’s Finish Behavior in a Lightning Component . 103
Resume a Flow Interview from a Lightning Component . 104

Supporting Accessibility . 105
Button Labels . 105
Audio Messages . 106
Forms, Fields, and Labels . 106
Events . 107
Menus . 107

Chapter 4: Using Components . 108

Use Lightning Components in Lightning Experience and the Salesforce Mobile App 109
Configure Components for Custom Tabs . 109
Add Lightning Components as Custom Tabs in Lightning Experience 110
Add Lightning Components as Custom Tabs in the Salesforce App 111
Lightning Component Actions . 112
Override Standard Actions with Lightning Components . 119

Get Your Lightning Components Ready to Use on Lightning Pages 123
Configure Components for Lightning Pages and the Lightning App Builder 124

Contents

Lightning Component Bundle Design Resources . 126
Configure Components for Lightning Experience Record Pages 128
Create Components for Lightning for Outlook and Lightning for Gmail 129
Create Dynamic Picklists for Your Custom Components . 134
Create a Custom Lightning Page Template Component . 135
Lightning Page Template Component Best Practices . 138
Make Your Lightning Page Components Width-Aware with
lightning:flexipageRegionInfo . 139
Tips and Considerations for Configuring Components for Lightning Pages and the Lightning
App Builder . 140

Use Lightning Components in Community Builder . 141
Configure Components for Communities . 142
Create Custom Theme Layout Components for Communities 142
Create Custom Search and Profile Menu Components for Communities 145
Create Custom Content Layout Components for Communities 146

Add Components to Apps . 148
Integrate Your Custom Apps into the Chatter Publisher . 148
Use Lightning Components in Visualforce Pages . 153
Add Lightning Components to Any App with Lightning Out (Beta) . 155

Lightning Out Requirements . 156
Lightning Out Dependencies . 156
Lightning Out Markup . 157
Authentication from Lightning Out . 159
Share Lightning Out Apps with Non-Authenticated Users . 160
Lightning Out Considerations and Limitations . 161

Chapter 5: Communicating with Events . 163

Actions and Events . 164
Handling Events with Client-Side Controllers . 165
Component Events . 167

Component Event Propagation . 168
Create Custom Component Events . 169
Fire Component Events . 169
Handling Component Events . 170
Component Event Example . 176

Application Events . 178
Application Event Propagation . 179
Create Custom Application Events . 180
Fire Application Events . 181
Handling Application Events . 182
Application Event Example . 184

Event Handling Lifecycle . 186
Advanced Events Example . 188
Firing Lightning Events from Non-Lightning Code . 192

Contents

Events Best Practices . 193
Events Anti-Patterns . 194

Events Fired During the Rendering Lifecycle . 194
Events Handled in the Salesforce mobile app and Lightning Experience 196
System Events . 198

Chapter 6: Creating Apps . 200

App Overview . 201
Designing App UI . 201
Creating App Templates . 202
Developing Secure Code . 202

What is LockerService? . 202
Content Security Policy Overview . 211

Validations for Lightning Component Code . 213
Validation When You Save Code Changes . 214
Validation During Development Using the Salesforce CLI . 215
Review and Resolve Validation Errors and Warnings . 218
Lightning Component Validation Rules . 219
Salesforce Lightning CLI (Deprecated) . 226

Styling Apps . 226
Using the Salesforce Lightning Design System in Apps . 227
Using External CSS . 228
More Readable Styling Markup with the join Expression . 229
Tips for CSS in Components . 230
Vendor Prefixes . 231
Styling with Design Tokens . 231

Using JavaScript . 245
Invoking Actions on Component Initialization . 247
Sharing JavaScript Code in a Component Bundle . 248
Sharing JavaScript Code Across Components . 250
Using External JavaScript Libraries . 252
Working with Attribute Values in JavaScript . 253
Working with a Component Body in JavaScript . 254
Working with Events in JavaScript . 255
Modifying the DOM . 258
Checking Component Validity . 262
Modifying Components Outside the Framework Lifecycle . 264
Validating Fields . 265
Throwing and Handling Errors . 267
Calling Component Methods . 269
Using JavaScript Promises . 274
Making API Calls from Components . 276
Create CSP Trusted Sites to Access Third-Party APIs . 277

JavaScript Cookbook . 278

Contents

Dynamically Creating Components . 279
Detecting Data Changes with Change Handlers . 281
Finding Components by ID . 282
Dynamically Adding Event Handlers To a Component . 282
Dynamically Showing or Hiding Markup . 285
Adding and Removing Styles . 285
Which Button Was Pressed? . 287
Formatting Dates in JavaScript . 288

Using Apex . 289
Creating Server-Side Logic with Controllers . 290
Working with Salesforce Records . 303
Testing Your Apex Code . 310
Making API Calls from Apex . 311
Creating Components in Apex . 312

Lightning Data Service . 312
Loading a Record . 313
Saving a Record . 315
Creating a Record . 318
Deleting a Record . 321
Record Changes . 323
Errors . 324
Considerations . 325
Lightning Data Service Example . 327
SaveRecordResult . 331

Lightning Container . 332
Using a Third-Party Framework . 333
Lightning Container Component Limits . 340
The Lightning Realty App . 340
lightning-container NPM Module Reference . 343

Controlling Access . 348
Application Access Control . 351
Interface Access Control . 351
Component Access Control . 351
Attribute Access Control . 352
Event Access Control . 352

Using Object-Oriented Development . 352
What is Inherited? . 353
Inherited Component Attributes . 353
Abstract Components . 355
Interfaces . 355
Inheritance Rules . 356

Using the AppCache . 357
Distributing Applications and Components . 357

Contents

Chapter 7: Debugging . 358

Enable Debug Mode for Lightning Components . 359
Salesforce Lightning Inspector Chrome Extension . 359

Install Salesforce Lightning Inspector . 359
Salesforce Lightning Inspector . 360

Log Messages . 373

Chapter 8: Fixing Performance Warnings . 374

<aura:if>—Clean Unrendered Body . 375
<aura:iteration>—Multiple Items Set . 376

Chapter 9: Reference . 379

Reference Doc App . 380
Supported aura:attribute Types . 380

Basic Types . 381
Function Type . 382
Object Types . 383
Standard and Custom Object Types . 383
Collection Types . 383
Custom Apex Class Types . 385
Framework-Specific Types . 385

aura:application . 387
aura:component . 388
aura:dependency . 389
aura:event . 390
aura:interface . 391
aura:method . 391
aura:set . 393

Setting Attributes Inherited from a Super Component . 393
Setting Attributes on a Component Reference . 394
Setting Attributes Inherited from an Interface . 395

Component Reference . 395
aura:expression . 396
aura:html . 396
aura:if . 396
aura:iteration . 397
aura:renderIf . 398
aura:template . 398
aura:text . 399
aura:unescapedHtml . 399
auraStorage:init . 399
force:canvasApp . 401
force:inputField . 402
force:outputField . 403

Contents

force:recordData . 405
force:recordEdit . 406
force:recordPreview . 406
force:recordView . 408
forceChatter:feed . 408
forceChatter:fullFeed . 410
forceChatter:publisher . 411
forceCommunity:appLauncher . 411
forceCommunity:navigationMenuBase . 413
forceCommunity:notifications . 415
forceCommunity:routeLink . 416
forceCommunity:waveDashboard . 417
lightning:accordion . 418
lightning:accordionSection . 419
lightning:avatar . 421
lightning:badge . 422
lightning:breadcrumb . 422
lightning:breadcrumbs . 424
lightning:button . 425
lightning:buttonGroup . 426
lightning:buttonIcon . 427
lightning:buttonIconStateful . 429
lightning:buttonMenu . 430
lightning:buttonStateful . 433
lightning:card . 435
lightning:checkboxGroup . 436
lightning:clickToDial . 438
lightning:combobox . 439
lightning:container . 441
lightning:datatable . 443
lightning:dualListbox . 449
lightning:dynamicIcon . 452
lightning:fileCard . 453
lightning:fileUpload (Beta) . 453
lightning:flexipageRegionInfo . 455
lightning:flow . 455
lightning:formattedDateTime (Beta) . 457
lightning:formattedEmail . 458
lightning:formattedLocation . 459
lightning:formattedNumber (Beta) . 460
lightning:formattedPhone . 461
lightning:formattedRichText . 462
lightning:formattedText . 464
lightning:formattedUrl . 464

Contents

lightning:helptext . 466
lightning:icon . 466
lightning:input (Beta) . 468
lightning:inputLocation . 474
lightning:inputRichText (Beta) . 476
lightning:layout . 478
lightning:layoutItem . 480
lightning:menuItem . 481
lightning:omniToolkitAPI (Beta) . 483
lightning:outputField . 485
lightning:path (Beta) . 486
lightning:picklistPath (Beta) . 487
lightning:pill . 488
lightning:progressBar . 490
lightning:progressIndicator . 491
lightning:radioGroup . 492
lightning:relativeDateTime . 494
lightning:recordViewForm . 495
lightning:select . 496
lightning:slider . 500
lightning:spinner . 502
lightning:tab (Beta) . 503
lightning:tabset (Beta) . 504
lightning:textarea . 507
lightning:tile . 509
lightning:tree . 511
lightning:utilityBarAPI . 514
lightning:verticalNavigation . 516
lightning:verticalNavigationItem . 519
lightning:verticalNavigationItemBadge . 519
lightning:verticalNavigationItemIcon . 520
lightning:verticalNavigationOverflow . 521
lightning:verticalNavigationSection . 521
lightning:workspaceAPI . 522
ltng:require . 524
ui:actionMenuItem . 525
ui:button . 526
ui:checkboxMenuItem . 528
ui:inputCheckbox . 530
ui:inputCurrency . 532
ui:inputDate . 534
ui:inputDateTime . 537
ui:inputDefaultError . 540
ui:inputEmail . 542

Contents

ui:inputNumber . 545
ui:inputPhone . 547
ui:inputRadio . 550
ui:inputRichText . 552
ui:inputSecret . 554
ui:inputSelect . 556
ui:inputSelectOption . 560
ui:inputText . 561
ui:inputTextArea . 563
ui:inputURL . 566
ui:menu . 568
ui:menuItem . 572
ui:menuItemSeparator . 573
ui:menuList . 574
ui:menuTrigger . 575
ui:menuTriggerLink . 576
ui:message . 577
ui:outputCheckbox . 579
ui:outputCurrency . 580
ui:outputDate . 582
ui:outputDateTime . 583
ui:outputEmail . 585
ui:outputNumber . 586
ui:outputPhone . 588
ui:outputRichText . 589
ui:outputText . 591
ui:outputTextArea . 592
ui:outputURL . 593
ui:radioMenuItem . 595
ui:scrollerWrapper . 596
ui:spinner . 597
wave:waveDashboard . 598

Messaging Component Reference . 600
lightning:notificationsLibrary . 600
lightning:overlayLibrary . 602

Interface Reference . 607
force:hasRecordId . 608
force:hasSObjectName . 609
lightning:actionOverride . 610
lightning:appHomeTemplate . 611
lightning:availableForChatterExtensionComposer . 611
lightning:availableForChatterExtensionRenderer . 612
lightning:homeTemplate . 612
lightning:recordHomeTemplate . 612

Contents

Event Reference . 613
force:closeQuickAction . 613
force:createRecord . 614
force:editRecord . 615
force:navigateToComponent (Beta) . 616
force:navigateToList . 617
force:navigateToObjectHome . 618
force:navigateToRelatedList . 618
force:navigateToSObject . 619
force:navigateToURL . 620
force:recordSave . 621
force:recordSaveSuccess . 621
force:refreshView . 622
force:showToast . 622
forceCommunity:analyticsInteraction . 624
forceCommunity:routeChange . 625
lightning:openFiles . 625
lightning:sendChatterExtensionPayload . 626
ltng:selectSObject . 626
ltng:sendMessage . 627
ui:clearErrors . 627
ui:collapse . 628
ui:expand . 628
ui:menuFocusChange . 629
ui:menuSelect . 629
ui:menuTriggerPress . 630
ui:validationError . 631
wave:discoverDashboard . 631
wave:discoverResponse . 632
wave:selectionChanged . 633
wave:update . 634

System Event Reference . 635
aura:doneRendering . 635
aura:doneWaiting . 636
aura:locationChange . 636
aura:systemError . 637
aura:valueChange . 638
aura:valueDestroy . 639
aura:valueInit . 640
aura:valueRender . 640
aura:waiting . 641

Supported HTML Tags . 642
Anchor Tag: <a> . 642

Contents

INDEX . 644

Contents

CHAPTER 1 What is the Lightning Component Framework?

The Lightning Component framework is a UI framework for developing dynamic web apps for mobile
and desktop devices. It’s a modern framework for building single-page applications engineered for
growth.

In this chapter ...

• What is Salesforce
Lightning?

The framework supports partitioned multi-tier component development that bridges the client and
server. It uses JavaScript on the client side and Apex on the server side.

• Why Use the
Lightning Component
Framework?

• Components

• Events

• Open Source Aura
Framework

• Browser Support
Considerations for
Lightning
Components

• Using the Developer
Console

• Online Content

1

What is Salesforce Lightning?

Lightning includes the Lightning Component Framework and some exciting tools for developers. Lightning makes it easier to build
responsive applications for any device.

Lightning includes these technologies:

• Lightning components give you a client-server framework that accelerates development, as well as app performance, and is ideal
for use with the Salesforce mobile app and Salesforce Lightning Experience.

• The Lightning App Builder empowers you to build apps visually, without code, quicker than ever before using off-the-shelf and
custom-built Lightning components. You can make your Lightning components available in the Lightning App Builder so administrators
can build custom user interfaces without code.

Using these technologies, you can seamlessly customize and easily deploy new apps to mobile devices running Salesforce. In fact, the
Salesforce mobile app and Salesforce Lightning Experience are built with Lightning components.

This guide provides you with an in-depth resource to help you create your own standalone Lightning apps, as well as custom Lightning
components that can be used in the Salesforce mobile app. You will also learn how to package applications and components and
distribute them in the AppExchange.

Why Use the Lightning Component Framework?

The benefits include an out-of-the-box set of components, event-driven architecture, and a framework optimized for performance.

Out-of-the-Box Component Set
Comes with an out-of-the-box set of components to kick start building apps. You don't have to spend your time optimizing your
apps for different devices as the components take care of that for you.

Rich component ecosystem
Create business-ready components and make them available in the Salesforce app, Lightning Experience, and Communities. Salesforce
app users access your components via the navigation menu. Customize Lightning Experience or Communities using drag-and-drop
components on a Lightning Page in the Lightning App Builder or using Community Builder. Additional components are available
for your org in the AppExchange. Similarly, you can publish your components and share them with other users.

Performance
Uses a stateful client and stateless server architecture that relies on JavaScript on the client side to manage UI component metadata
and application data. The client calls the server only when absolutely necessary; for example to get more metadata or data. The
server only sends data that is needed by the user to maximize efficiency. The framework uses JSON to exchange data between the
server and the client. It intelligently utilizes your server, browser, devices, and network so you can focus on the logic and interactions
of your apps.

Event-driven architecture
Uses an event-driven architecture for better decoupling between components. Any component can subscribe to an application
event, or to a component event they can see.

Faster development
Empowers teams to work faster with out-of-the-box components that function seamlessly with desktop and mobile devices. Building
an app with components facilitates parallel design, improving overall development efficiency.

Components are encapsulated and their internals stay private, while their public shape is visible to consumers of the component.
This strong separation gives component authors freedom to change the internal implementation details and insulates component
consumers from those changes.

2

What is Salesforce Lightning?What is the Lightning Component Framework?

Device-aware and cross browser compatibility
Apps use responsive design and provide an enjoyable user experience. The Lightning Component framework supports the latest in
browser technology such as HTML5, CSS3, and touch events.

Components

Components are the self-contained and reusable units of an app. They represent a reusable section of the UI, and can range in granularity
from a single line of text to an entire app.

The framework includes a set of prebuilt components. For example, components that come with the Lightning Design System styling
are available in the lightning namespace. These components are also known as the base Lightning components. You can assemble
and configure components to form new components in an app. Components are rendered to produce HTML DOM elements within the
browser.

A component can contain other components, as well as HTML, CSS, JavaScript, or any other Web-enabled code. This enables you to
build apps with sophisticated UIs.

The details of a component's implementation are encapsulated. This allows the consumer of a component to focus on building their
app, while the component author can innovate and make changes without breaking consumers. You configure components by setting
the named attributes that they expose in their definition. Components interact with their environment by listening to or publishing
events.

SEE ALSO:

Creating Components

Component Reference

Working with Base Lightning Components

Events

Event-driven programming is used in many languages and frameworks, such as JavaScript and Java Swing. The idea is that you write
handlers that respond to interface events as they occur.

A component registers that it may fire an event in its markup. Events are fired from JavaScript controller actions that are typically triggered
by a user interacting with the user interface.

There are two types of events in the framework:

• Component events are handled by the component itself or a component that instantiates or contains the component.

• Application events are handled by all components that are listening to the event. These events are essentially a traditional
publish-subscribe model.

You write the handlers in JavaScript controller actions.

SEE ALSO:

Communicating with Events

Handling Events with Client-Side Controllers

3

ComponentsWhat is the Lightning Component Framework?

Open Source Aura Framework

The Lightning Component framework is built on the open source Aura framework. The Aura framework enables you to build apps
completely independent of your data in Salesforce.

The Aura framework is available at https://github.com/forcedotcom/aura. Note that the open source Aura framework
has features and components that are not currently available in the Lightning Component framework. We are working to surface more
of these features and components for Salesforce developers.

The sample code in this guide uses out-of-the-box components from the Aura framework, such as aura:iteration and
ui:button. The aura namespace contains components to simplify your app logic, and the ui namespace contains components
for user interface elements like buttons and input fields. The force namespace contains components specific to Salesforce.

Browser Support Considerations for Lightning Components

EDITIONS

Salesforce Classic available
in: All Editions

EDITIONS

Lightning Experience is
available in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Browser support varies across different Salesforce products and experiences. Use this browser
support information as you build with Lightning components.

The following tables provide high-level minimum browser versions for various Salesforce features.
There are additional requirements and recommended settings for all browsers, and a number of
considerations that apply to specific browsers. See the browser compatibility details in Salesforce
Help.

Lightning Experience and Lightning-Based Features
The following table describes minimum browser version requirements for using Lightning
components within various features that are built with our next-generation user interface platform.

Apple®

Safari®
Mozilla®

Firefox®
Google
Chrome™

Microsoft®
Edge

Microsoft®
Internet
Explorer®

10.x+LatestLatestWindows 10IE 11 (EOL
December 21,
2020)1

Lightning
Experience

10.x+LatestLatestWindows 10N/ASalesforce
Console in
Lightning
Experience

10.x+LatestLatestWindows 10IE 11Lightning
Communities

N/AN/AN/AN/AIE 11Lightning for
Outlook
(Client)

10.x+LatestLatestWindows 10IE 11Lightning for
Outlook (Web)

4

Open Source Aura FrameworkWhat is the Lightning Component Framework?

https://github.com/forcedotcom/aura

Apple® Safari®Mozilla® Firefox®Google Chrome™Microsoft® EdgeMicrosoft®
Internet
Explorer®

10.x+LatestLatestWindows 10IE 11Standalone
Lightning App
(my.app)

10.x+LatestLatestWindows 10IE 9+Lightning Out

1 LockerService is disabled for IE11. We recommend using supported browsers other than IE11 for enhanced security.

Important: Support for Internet Explorer 11 to access Lightning Experience is retiring beginning in Summer ’16.

• You can continue to use IE11 to access Lightning Experience until December 16, 2017.

• If you opt in to Extended Support for IE11, you can continue to use IE11 to access Lightning Experience until December 31,
2020.

• IE11 has significant performance issues in Lightning Experience.

• This change doesn’t impact Salesforce Classic or users of orgs with Communities and no opt in is required to use IE11 with
Communities.

Lightning Components for Visualforce in Salesforce Classic
The following table describes minimum browser version requirements for using Lightning components within various features that are
built with our classic user interface platform.

Apple® Safari®Mozilla® Firefox®Google Chrome™Microsoft® EdgeMicrosoft®
Internet
Explorer®

10.x+LatestLatestWindows 10IE 9+Salesforce Classic

N/ALatestLatestWindows 10IE 9+Salesforce Console in
Salesforce Classic

10.x+LatestLatestWindows 10IE 9+Classic Communities

10.x+LatestLatestWindows 10IE 9+Force.com Sites

Note: The term “latest version” is defined by the browser vendors. Use the support for your browser(s) to understand what “latest
version” means.

SEE ALSO:

Salesforce Help: Supported Browsers

Salesforce Help: Recommendations and Requirements for All Browsers

LockerService Disabled for Unsupported Browsers

Content Security Policy Overview

5

Browser Support Considerations for Lightning ComponentsWhat is the Lightning Component Framework?

https://help.salesforce.com/articleView?id=000233325&type=1&language=en_US
https://help.salesforce.com/apex/HTViewSolution?urlname=Internet-Explorer-Performance-Characteristics-for-Lightning-Experience&language=en_US
https://help.salesforce.com/articleView?id=getstart_browser_overview.htm&language=en_US
https://help.salesforce.com/articleView?id=getstart_browser_recommendations.htm&language=en_US

Using the Developer Console

The Developer Console provides tools for developing your components and applications.

The Developer Console enables you to perform these functions.

• Use the menu bar (1) to create or open these Lightning resources.

– Application

– Component

– Interface

– Event

– Tokens

• Use the workspace (2) to work on your Lightning resources.

• Use the sidebar (3) to create or open client-side resources that are part of a specific component bundle.

– Controller

– Helper

– Style

– Documentation

– Renderer

– Design

– SVG

For more information on the Developer Console, see The Developer Console User Interface.

SEE ALSO:

Salesforce Help: Open the Developer Console

Create Lightning Components in the Developer Console

Component Bundles

Online Content

This guide is available online. To view the latest version, go to:

6

Using the Developer ConsoleWhat is the Lightning Component Framework?

https://help.salesforce.com/apex/HTViewHelpDoc?id=code_dev_console_navigating.htm&language=en_US#code_dev_console_navigating
https://help.salesforce.com/HTViewHelpDoc?id=code_dev_console_opening.htm&language=en_US

https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/

Go beyond this guide with exciting Trailhead content. To explore more of what you can do with Lightning Components, go to:

Trailhead Module: Lightning Components Basics
Link: https://trailhead.salesforce.com/module/lex_dev_lc_basics

Learn with a series of hands-on challenges on how to use Lightning Components to build modern web apps.

Quick Start: Lightning Components
Link: https://trailhead.salesforce.com/project/quickstart-lightning-components

Create your first component that renders a list of Contacts from your org.

Project: Build an Account Geolocation App
Link: https://trailhead.salesforce.com/project/account-geolocation-app

Build an app that maps your Accounts using Lightning Components.

Project: Build a Restaurant-Locator Lightning Component
Link: https://trailhead.salesforce.com/project/workshop-lightning-restaurant-locator

Build a Lightning component with Yelp’s Search API that displays a list of businesses near a certain location.

Project: Build a Lightning App with the Lightning Design System
Link: https://trailhead.salesforce.com/project/slds-lightning-components-workshop

Design a Lightning component that displays an Account list.

7

Online ContentWhat is the Lightning Component Framework?

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/
https://trailhead.salesforce.com/module/lex_dev_lc_basics
https://trailhead.salesforce.com/project/quickstart-lightning-components
https://trailhead.salesforce.com/project/account-geolocation-app
https://trailhead.salesforce.com/project/workshop-lightning-restaurant-locator
https://trailhead.salesforce.com/project/slds-lightning-components-workshop

CHAPTER 2 Quick Start

The quick start provides Trailhead resources for you to learn core Lightning components concepts, and
a short tutorial that builds a Lightning component to manage selected contacts in the Salesforce app

In this chapter ...

• Before You Begin and Lightning Experience. You’ll create all components from the Developer Console. The tutorial uses
several events to create or edit contact records, and view related cases.• Trailhead: Explore

Lightning
Components
Resources

• Create a Component
for Lightning
Experience and the
Salesforce Mobile
App

8

Before You Begin

To work with Lightning apps and components , follow these prerequisites.

1. Create a Developer Edition organization

2. Define a Custom Salesforce Domain Name

Note: For this quick start tutorial, you don’t need to create a Developer Edition organization or register a namespace prefix. But
you want to do so if you’re planning to offer managed packages. You can create Lightning components using the UI in Enterprise,
Performance, Unlimited, Developer Editions or a sandbox. If you don’t plan to use a Developer Edition organization, you can
go directly to Define a Custom Salesforce Domain Name.

Create a Developer Edition Organization
You need an org to do this quick start tutorial, and we recommend you don’t use your production org. You only need to create a Developer
Edition org if you don’t already have one.

1. In your browser, go to https://developer.salesforce.com/signup?d=70130000000td6N.

2. Fill in the fields about you and your company.

3. In the Email field, make sure to use a public address you can easily check from a Web browser.

4. Type a unique Username. Note that this field is also in the form of an email address, but it does not have to be the same as your
email address, and in fact, it’s usually better if they aren’t the same. Your username is your login and your identity on
developer.salesforce.com, so you’re often better served by choosing a username such as
firstname@lastname.com.

5. Read and then select the checkbox for the Master Subscription Agreement and then click Submit Registration.

6. In a moment you’ll receive an email with a login link. Click the link and change your password.

Define a Custom Salesforce Domain Name
A custom domain name helps you enhance access security and better manage login and authentication for your organization. If your
custom domain is universalcontainers, then your login URL would be
https://universalcontainers.lightning.force.com. For more information, see My Domain in the Salesforce Help.

Trailhead: Explore Lightning Components Resources

Get up to speed with the fundamentals of Lightning components with Trailhead resources.

Whether you’re a new Salesforce developer or a seasoned Visualforce developer, we recommend that you start with the following
Trailhead resources.

Lightning Components Basics
Use Lightning components to build modern web apps with reusable UI components. You’ll learn core Lightning components
concepts and build a simple expense tracker app that can be run in a standalone app, Salesforce app, or Lightning Experience.

Quick Start: Lightning Components
Create your first component that renders a list of contacts from your org.

Build an Account Geolocation App
Build an app that maps your accounts using Lightning components.

9

Before You BeginQuick Start

https://developer.salesforce.com/signup?d=70130000000td6N
https://help.salesforce.com/apex/HTViewHelpDoc?id=domain_name_overview.htm&language=en_US#domain_name_overview
https://trailhead.salesforce.com/modules/lex_dev_lc_basics
https://trailhead.salesforce.com/projects/quickstart-lightning-components
https://trailhead.salesforce.com/projects/account-geolocation-app

Build a Lightning App with the Lightning Design System
Design a Lightning component that displays an account list.

Build a Restaurant-Locator Lightning Component
Build a Lightning component with Yelp’s Search API that displays a list of businesses near a certain location.

Create a Component for Lightning Experience and the Salesforce Mobile
App

Explore how to create a custom UI that loads contact data and interacts with Lightning Experience and the Salesforce app.

This tutorial walks you through creating a component that:

• Displays a toast message (1) using the force:showToast event when all contacts are loaded successfully.

• Updates the number of contacts (2) based on the selected lead source.

• Filters the contacts using the lightning:select component (3) when a lead source (referral or social media) is selected.

• Displays the contact data using the lightning:card component (4).

• Navigates to the record when the Details button (5) is clicked.

10

Create a Component for Lightning Experience and the
Salesforce Mobile App

Quick Start

https://trailhead.salesforce.com/projects/slds-lightning-components-workshop
https://trailhead.salesforce.com/projects/workshop-lightning-restaurant-locator

Here’s how the component looks like in the Salesforce app. You’re creating two components, contactList and contacts, where
contactList is a container component that iterates over and displays contacts components. All contacts are displayed in
contactList, but you can select different lead sources to view a subset of contacts associated with the lead source.

11

Create a Component for Lightning Experience and the
Salesforce Mobile App

Quick Start

In the next few topics, you create the following resources.

DescriptionResource

Contacts Bundle

The component that displays individual contactscontacts.cmp

The client-side controller action that navigates to a contact record using the
force:navigateToSObject event

contactsController.js

contactList Bundle

The component that loads the list of contactscontactList.cmp

The client-side controller actions that call the helper resource to load contact data and handles the lead
source selection

contactListController.js

12

Create a Component for Lightning Experience and the
Salesforce Mobile App

Quick Start

DescriptionResource

The helper function that retrieves contact data, displays a toast message on successful loading of contact
data, displays contact data based on lead source, and update the total number of contacts

contactListHelper.js

Apex Controller

The Apex controller that queries all contact records and those records based on different lead sourcesContactController.apxc

Load the Contacts
Create an Apex controller and load your contacts. An Apex controller is the bridge that connects your components and your Salesforce
data.

Your organization must have existing contact records for this tutorial.

1. Click File > New > Apex Class, and then enter ContactController in the New Class window. A new Apex class,
ContactController.apxc, is created. Enter this code and then save.

public with sharing class ContactController {
@AuraEnabled

public static List<Contact> getContacts() {
List<Contact> contacts =

[SELECT Id, Name, MailingStreet, Phone, Email, LeadSource FROM Contact];

//Add isAccessible() check
return contacts;

}
}

ContactController contains methods that return your contact data using SOQL statements. This Apex controller is wired
up to your component in a later step. getContacts() returns all contacts with the selected fields.

2. Click File > New > Lightning Component, and then enter contacts for the Name field in the New Lightning Bundle popup
window. This creates a component, contacts.cmp. Enter this code and then save.

<aura:component>
<aura:attribute name="contact" type="Contact" />

<lightning:card variant="Narrow" title="{!v.contact.Name}"
iconName="standard:contact">

<aura:set attribute="actions">
<lightning:button name="details" label="Details" onclick="{!c.goToRecord}"

/>
</aura:set>
<aura:set attribute="footer">

<lightning:badge label="{!v.contact.Email}"/>
</aura:set>
<p class="slds-p-horizontal_small">

{!v.contact.Phone}
</p>
<p class="slds-p-horizontal_small">

{!v.contact.MailingStreet}
</p>

13

Load the ContactsQuick Start

</lightning:card>

</aura:component>

This component creates the template for your contact data using the lightning:card component, which simply creates a
visual container around a group of information. This template gets rendered for every contact that you have, so you have multiple
instances of a component in your view with different data. The onclick event handler on the lightning:button component
calls the goToRecord client-side controller action when the buton is clicked. Notice the expression {!v.contact.Name}?
v represents the view, which is the set of component attributes, and contact is the attribute of type Contact. Using this dot
notation, you can access the fields in the contact object, like Name and Email, after you wire up the Apex controller to the
component in the next step.

3. Click File > New > Lightning Component, and then enter contactList for the Name field in the New Lightning Bundle
popup window, which creates the contactList.cmp component. Enter this code and then save. If you’re using a namespace
in your organization, replace ContactController with myNamespace.ContactController. You wire up the Apex
controller to the component by using the controller="ContactController" syntax.

<aura:component implements="force:appHostable" controller="ContactController">
<!-- Handle component initialization in a client-side controller -->
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

<!-- Dynamically load the list of contacts -->
<aura:attribute name="contacts" type="Contact[]"/>
<aura:attribute name="contactList" type="Contact[]"/>
<aura:attribute name="totalContacts" type="Integer"/>

<!-- Page header with a counter that displays total number of contacts -->
<div class="slds-page-header slds-page-header_object-home">

<lightning:layout>
<lightning:layoutItem>

<lightning:icon iconName="standard:contact" />
</lightning:layoutItem>
<lightning:layoutItem class="slds-m-left_small">

<p class="slds-text-title_caps slds-line-height_reset">Contacts</p>
<h1 class="slds-page-header__title slds-p-right_x-small">Contact

Viewer</h1>
</lightning:layoutItem>

</lightning:layout>

<lightning:layout>
<lightning:layoutItem>

<p class="slds-text-body_small">{!v.totalContacts} Contacts • View
Contacts Based on Lead Sources</p>

</lightning:layoutItem>
</lightning:layout>

</div>

<!-- Body with dropdown menu and list of contacts -->
<lightning:layout>

<lightning:layoutItem padding="horizontal-medium" >
<!-- Create a dropdown menu with options -->
<lightning:select aura:id="select" label="Lead Source" name="source"

onchange="{!c.handleSelect}" class="slds-m-bottom_medium">

14

Load the ContactsQuick Start

<option value="">-- Select a Lead Source --</option>
<option value="Referral" text="Referral"/>
<option value="Social Media" text="Social Media"/>
<option value="All" text="All"/>

</lightning:select>

<!-- Iterate over the list of contacts and display them -->
<aura:iteration var="contact" items="{!v.contacts}">

<!-- If you’re using a namespace, replace with myNamespace:contacts-->
<c:contacts contact="{!contact}"/>

</aura:iteration>
</lightning:layoutItem>

</lightning:layout>
</aura:component>

Let’s dive into the code. We added the init handler to load the contact data during initialization. The handler calls the client-side
controller code in the next step. We also added two attributes, contacts and totalContacts, which stores the list of contacts
and a counter to display the total number of contacts respectively. Additionally, the contactList component is an attribute
used to store the filtered list of contacts when an option is selected on the lead source dropdown menu. The lightning:layout
components simply create grids to align your content in the view with Lightning Design System CSS classes.

The page header contains the {!v.totalContacts} expression to dynamically display the number of contacts based on the
lead source you select. For example, if you select Referral and there are 30 contacts whose Lead Source fields are set to
Referral, then the expression evaluates to 30.

Next, we create a dropdown menu with the lightning:select component. When you select an option in the dropdown
menu, the onchange event handler calls your client-side controller to update the view with a subset of the contacts. You create
the client-side logic in the next few steps.

In case you’re wondering, the force:appHostable interface enables your component to be surfaced in Lightning Experience
and the Salesforce mobile app as tabs, which we are getting into later.

4. In the contactList sidebar, click CONTROLLER to create a resource named contactListController.js. Replace the
placeholder code with the following code and then save.

({
doInit : function(component, event, helper) {

// Retrieve contacts during component initialization
helper.loadContacts(component);

},

handleSelect : function(component, event, helper) {
var contacts = component.get("v.contacts");
var contactList = component.get("v.contactList");

//Get the selected option: "Referral", "Social Media", or "All"
var selected = event.getSource().get("v.value");

var filter = [];
var k = 0;
for (var i=0; i<contactList.length; i++){

var c = contactList[i];
if (selected != "All"){

if(c.LeadSource == selected) {
filter[k] = c;

15

Load the ContactsQuick Start

k++;
}

}
else {

filter = contactList;
}

}
//Set the filtered list of contacts based on the selected option
component.set("v.contacts", filter);
helper.updateTotal(component);

}
})

The client-side controller calls helper functions to do most of the heavy-lifting, which is a recommended pattern to promote code
reuse. Helper functions also enable specialization of tasks, such as processing data and firing server-side actions, which is what we
are covering next. Recall that the onchange event handler on the lightning:select component calls the handleSelect
client-side controller action, which is triggered when you select an option in the dropdown menu. handleSelect checks the
option value that’s passed in using event.getSource().get("v.value"). It creates a filtered list of contacts by checking
that the lead source field on each contact matches the selected lead source. Finally, update the view and the total number of contacts
based on the selected lead source.

5. In the contactList sidebar, click HELPER to create a resource named contactListHelper.js. Replace the placeholder code
with the following code and then save.

({
loadContacts : function(cmp) {

// Load all contact data
var action = cmp.get("c.getContacts");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

cmp.set("v.contacts", response.getReturnValue());
cmp.set("v.contactList", response.getReturnValue());
this.updateTotal(cmp);

}

// Display toast message to indicate load status
var toastEvent = $A.get("e.force:showToast");
if (state === 'SUCCESS'){

toastEvent.setParams({
"title": "Success!",
"message": " Your contacts have been loaded successfully."

});
}
else {

toastEvent.setParams({
"title": "Error!",
"message": " Something has gone wrong."

});
}
toastEvent.fire();

});
$A.enqueueAction(action);

},

16

Load the ContactsQuick Start

updateTotal: function(cmp) {
var contacts = cmp.get("v.contacts");
cmp.set("v.totalContacts", contacts.length);

}
})

During initialization, the contactList component loads the contact data by:

• Calling the Apex controller method getContacts, which returns the contact data via a SOQL statement

• Setting the return value via cmp.set("v.contacts", response.getReturnValue()) in the action callback,
which updates the view with the contact data

• Updating the total number of contacts in the view, which is evaluated in updateTotal

You must be wondering how your component works in Lightning Experience and the Salesforce app. Let’s find out next!

6. Make the contactList component available via a custom tab in Lightning Experience and the Salesforce app.

• Add Lightning Components as Custom Tabs in Lightning Experience

• Add Lightning Components as Custom Tabs in the Salesforce App

For this tutorial, we recommend that you add the component as a custom tab in Lightning Experience.

When your component is loaded in Lightning Experience or the Salesforce app, a toast message indicates that your contacts are loaded
successfully. Select a lead source from the dropdown menu and watch your contact list and the number of contacts update in the view.

Next, wire up an event that navigates to a contact record when you click a button in the contact list.

Fire the Events
Fire the events in your client-side controller or helper functions. The force events are handled by Lightning Experience and the
Salesforce mobile app, but let’s view and test the components in Lightning Experience to simplify things.

This demo builds on the contacts component you created in Load the Contacts on page 13.

1. In the contacts sidebar, click CONTROLLER to create a resource named contactsController.js. Replace the placeholder
code with the following code and then save.

({
goToRecord : function(component, event, helper) {

// Fire the event to navigate to the contact record
var sObjectEvent = $A.get("e.force:navigateToSObject");
sObjectEvent.setParams({

"recordId": component.get("v.contact.Id")
})
sObjectEvent.fire();

}
})

The onclick event handler in the following button component triggers the goToRecord client-side controller when the
button is clicked.

<lightning:button name="details" label="Details" onclick="{!c.goToRecord}" />

You set the parameters to pass into the events using the event.setParams() syntax. In this case, you’re passing in the Id of
the contact record to navigate to. There are other events besides force:navigateToSObject that simplify navigation within

17

Fire the EventsQuick Start

Lightning Experience and the Salesforce app. For more information, see Events Handled in the Salesforce mobile app and Lightning
Experience.

2. To test the event, refresh your custom tab in Lightning Experience, and click the Details button.

The force:navigateToSObject is fired, which updates the view to display the contact record page.

We stepped through creating a component that loads contact data using a combination of client-side controllers and Apex controller
methods to create a custom UI with your Salesforce data. The possibilities of what you can do with Lightning components are endless.
While we showed you how to surface a component via a tab in Lightning Experience and the Salesforce app, you can take this tutorial
further by surfacing the component on record pages via the Lightning App Builder and even Communities. To explore the possibilities,
blaze the trail with the resources available at Trailhead: Explore Lightning Components Resources.

18

Fire the EventsQuick Start

CHAPTER 3 Creating Components

Components are the functional units of the Lightning Component framework.In this chapter ...
A component encapsulates a modular and potentially reusable section of UI, and can range in granularity
from a single line of text to an entire application.

• Create Lightning
Components in the
Developer Console

• Component Markup

• Component
Namespace

• Component Bundles

• Component IDs

• HTML in Components

• CSS in Components

• Component
Attributes

• Component
Composition

• Component Body

• Component Facets

• Best Practices for
Conditional Markup

• Component
Versioning

• Components with
Minimum API Version
Requirements

• Using Expressions

• Using Labels

• Localization

• Providing
Component
Documentation

• Working with Base
Lightning
Components

• Working with UI
Components

19

• Working with the
Flow Lightning
Component

• Supporting
Accessibility

20

Creating Components

Create Lightning Components in the Developer Console

The Developer Console is a convenient, built-in tool you can use to create new and edit existing Lightning components and other
bundles.

1. Open the Developer Console.

Select Developer Console from the Your Name or the quick access menu ().

2. Open the New Lightning Bundle panel for a Lightning component.

Select File > New > Lightning Component.

3. Name the component.

For example, enter helloWorld in the Name field.

4. Optional: Describe the component.

Use the Description field to add details about the component.

5. Optional: Add component configurations to the new component.

You can select as many options in the Component Configuration section as you wish, or select no configuration at all.

6. Click Submit to create the component.

Or, to cancel creating the component, click the panel’s close box in the top right corner.

Example:

21

Create Lightning Components in the Developer ConsoleCreating Components

IN THIS SECTION:

Lightning Bundle Configurations Available in the Developer Console

Configurations make it easier to create a component or application for a specific purpose, like a Lightning Page or Lightning
Communities Page, or a quick action or navigation item in Lightning Experience or Salesforce mobile app. The New Lightning Bundle
panel in the Developer Console offers a choice of component configurations when you create a Lightning component or application
bundle.

SEE ALSO:

Using the Developer Console

Lightning Bundle Configurations Available in the Developer Console

Lightning Bundle Configurations Available in the Developer Console
Configurations make it easier to create a component or application for a specific purpose, like a Lightning Page or Lightning Communities
Page, or a quick action or navigation item in Lightning Experience or Salesforce mobile app. The New Lightning Bundle panel in the
Developer Console offers a choice of component configurations when you create a Lightning component or application bundle.

Configurations add the interfaces required to support using the component in the desired context. For example, when you choose the
Lightning Tab configuration, your new component includes implements="force:appHostable" in the
<aura:component> tag.

Using configurations is optional. You can use them in any combination, including all or none.

The following configurations are available in the New Lightning Bundle panel.

DescriptionMarkupConfiguration

Lightning component bundle

Creates a component for use as a
navigation element in Lightning
Experience or Salesforce mobile apps.

implements="force:appHostable"Lightning Tab

22

Lightning Bundle Configurations Available in the Developer
Console

Creating Components

DescriptionMarkupConfiguration

Creates a component for use in
Lightning pages or the Lightning App
Builder.

implements="flexipage:availableForAllPageTypes"
and access="global"

Lightning Page

Creates a component for use on a
record home page in Lightning
Experience.

implements="flexipage:availableForRecordHome,
force:hasRecordId" and access="global"

Lightning Record Page

Creates a component that’s available
for drag and drop in the Community
Builder.

implements="forceCommunity:availableForAllPageTypes"
and access="global"

Lightning Communities
Page

Creates a component that can be
used with a Lightning quick action.

implements="force:lightningQuickAction"Lightning Quick Action

Lightning application bundle

Creates an empty Lightning Out
dependency app.

extends="ltng:outApp"Lightning Out
Dependency App

Note: For details of the markup added by each configuration, see the respective documentation for those features.

SEE ALSO:

Create Lightning Components in the Developer Console

Interface Reference

Configure Components for Custom Tabs

Configure Components for Custom Actions

Configure Components for Lightning Pages and the Lightning App Builder

Configure Components for Lightning Experience Record Pages

Configure Components for Communities

Component Markup

Component resources contain markup and have a .cmp suffix. The markup can contain text or references to other components, and
also declares metadata about the component.

Let's start with a simple "Hello, world!" example in a helloWorld.cmp component.

<aura:component>
Hello, world!

</aura:component>

This is about as simple as a component can get. The "Hello, world!" text is wrapped in the <aura:component> tags, which appear
at the beginning and end of every component definition.

23

Component MarkupCreating Components

Components can contain most HTML tags so you can use markup, such as <div> and . HTML5 tags are also supported.

<aura:component>
<div class="container">

<!--Other HTML tags or components here-->
</div>

</aura:component>

Note: Case sensitivity should be respected as your markup interacts with JavaScript, CSS, and Apex.

Use the Developer Console to create components.

Component Naming Rules
A component name must follow these naming rules:

• Must begin with a letter

• Must contain only alphanumeric or underscore characters

• Must be unique in the namespace

• Can’t include whitespace

• Can’t end with an underscore

• Can’t contain two consecutive underscores

SEE ALSO:

aura:component

Using the Developer Console

Component Access Control

Create a Custom Renderer

Dynamically Creating Components

Component Namespace

Every component is part of a namespace, which is used to group related components together. If your organization has a namespace
prefix set, use that namespace to access your components. Otherwise, use the default namespace to access your components.

Another component or application can reference a component by adding <myNamespace:myComponent> in its markup. For
example, the helloWorld component is in the docsample namespace. Another component can reference it by adding
<docsample:helloWorld /> in its markup.

Lightning components that Salesforce provides are grouped into several namespaces, such as aura, ui, and force. Components
from third-party managed packages have namespaces from the providing organizations.

In your organization, you can choose to set a namespace prefix. If you do, that namespace is used for all of your Lightning components.
A namespace prefix is required if you plan to offer managed packages on the AppExchange.

If you haven’t set a namespace prefix for your organization, use the default namespace c when referencing components that you’ve
created.

24

Component NamespaceCreating Components

Namespaces in Code Samples
The code samples throughout this guide use the default c namespace. Replace c with your namespace if you’ve set a namespace
prefix.

Using the Default Namespace in Organizations with No Namespace Set
If your organization hasn’t set a namespace prefix, use the default namespace c when referencing Lightning components that you’ve
created.

The following items must use the c namespace when your organization doesn’t have a namespace prefix set.

• References to components that you’ve created

• References to events that you’ve defined

The following items use an implicit namespace for your organization and don’t require you to specify a namespace.

• References to custom objects

• References to custom fields on standard and custom objects

• References to Apex controllers

See Namespace Usage Examples and Reference on page 26 for examples of all of the preceding items.

Using Your Organization’s Namespace
If your organization has set a namespace prefix, use that namespace to reference Lightning components, events, custom objects and
fields, and other items in your Lightning markup.

The following items use your organization’s namespace when your organization has a namespace prefix set.

• References to components that you’ve created

• References to events that you’ve defined

• References to custom objects

• References to custom fields on standard and custom objects

• References to Apex controllers

• References to static resources

Note: Support for the c namespace in organizations that have set a namespace prefix is incomplete. The following items can
use the c namespace if you prefer to use the shortcut, but it’s not currently a recommended practice.

• References to components that you’ve created when used in Lightning markup, but not in expressions or JavaScript

• References to events that you’ve defined when used in Lightning markup, but not in expressions or JavaScript

• References to custom objects when used in component and event type and default system attributes, but not in
expressions or JavaScript

See Namespace Usage Examples and Reference on page 26 for examples of the preceding items.

Using a Namespace in or from a Managed Package
Always use the complete namespace when referencing items from a managed package, or when creating code that you intend to
distribute in your own managed packages.

25

Using the Default Namespace in Organizations with No
Namespace Set

Creating Components

Creating a Namespace in Your Organization
Create a namespace for your organization by registering a namespace prefix.

If you’re not creating managed packages for distribution then registering a namespace prefix isn’t required, but it’s a best practice for
all but the smallest organizations.

Your namespace prefix must:

• Begin with a letter

• Contain one to 15 alphanumeric characters

• Not contain two consecutive underscores

For example, myNp123 and my_np are valid namespaces, but 123Company and my__np aren’t.

To register a namespace prefix:

1. From Setup, enter Packages in the Quick Find box. Under Create, select Packages.

Note: This item is only available in Salesforce Classic.

2. In the Developer Settings panel, click Edit.

Note: This button doesn’t appear if you’ve already configured your developer settings.

3. Review the selections that are required for configuring developer settings, and then click Continue.

4. Enter the namespace prefix you want to register.

5. Click Check Availability to determine if the namespace prefix is already in use.

6. If the namespace prefix that you entered isn’t available, repeat the previous two steps.

7. Click Review My Selections.

8. Click Save.

Namespace Usage Examples and Reference
This topic provides examples of referencing components, objects, fields, and so on in Lightning components code.

Examples are provided for the following.

• Components, events, and interfaces in your organization

• Custom objects in your organization

• Custom fields on standard and custom objects in your organization

• Server-side Apex controllers in your organization

• Dynamic creation of components in JavaScript

• Static resources in your organization

Organizations with No Namespace Prefix Set
The following illustrates references to elements in your organization when your organization doesn’t have a namespace prefix set.
References use the default namespace, c, where necessary.

26

Creating a Namespace in Your OrganizationCreating Components

ExampleReferenced Item

<c:myComponent />Component used in markup

<aura:component extends="c:myComponent">

<aura:component implements="c:myInterface">

Component used in a system
attribute

<aura:component controller="ExpenseController">Apex controller

<aura:attribute name="expense" type="Expense__c" />Custom object in attribute data type

<aura:attribute name="newExpense" type="Expense__c"
default="{ 'sobjectType': 'Expense__c',

Custom object or custom field in
attribute defaults

'Name': '',
'Amount__c': 0,
…

}" />

<ui:inputNumber value="{!v.newExpense.Amount__c}" label=…
/>

Custom field in an expression

updateTotal: function(component) {
…

Custom field in a JavaScript function

for(var i = 0 ; i < expenses.length ; i++){
var exp = expenses[i];
total += exp.Amount__c;

}
…

}

var myCmp = $A.createComponent("c:myComponent", {},
function(myCmp) { }

);

Component created dynamically in
a JavaScript function

aCmp.isInstanceOf("c:myInterface")Interface comparison in a JavaScript
function

<aura:registerEvent type="c:updateExpenseItem" name=… />Event registration

<aura:handler event="c:updateExpenseItem" action=… />Event handler

<aura:dependency resource="markup://c:myComponent" />Explicit dependency

var updateEvent = $A.get("e.c:updateExpenseItem");Application event in a JavaScript
function

<ltng:require scripts="{!$Resource.resourceName}"
styles="{!$Resource.resourceName}" />

Static resources

27

Namespace Usage Examples and ReferenceCreating Components

Organizations with a Namespace Prefix
The following illustrates references to elements in your organization when your organization has set a namespace prefix. References use
an example namespace yournamespace.

ExampleReferenced Item

<yournamespace:myComponent />Component used in markup

<aura:component extends="yournamespace:myComponent">

<aura:component implements="yournamespace:myInterface">

Component used in a system
attribute

<aura:component controller="yournamespace.ExpenseController">Apex controller

<aura:attribute name="expenses"
type="yournamespace__Expense__c[]" />

Custom object in attribute data type

<aura:attribute name="newExpense"
type="yournamespace__Expense__c"

Custom object or custom field in
attribute defaults

default="{ 'sobjectType': 'yournamespace__Expense__c',
'Name': '',
'yournamespace__Amount__c': 0,
…

}" />

<ui:inputNumber
value="{!v.newExpense.yournamespace__Amount__c}" label=… />

Custom field in an expression

updateTotal: function(component) {
…

Custom field in a JavaScript function

for(var i = 0 ; i < expenses.length ; i++){
var exp = expenses[i];
total += exp.yournamespace__Amount__c;

}
…

}

var myCmp = $A.createComponent("yournamespace:myComponent",
{},

Component created dynamically in
a JavaScript function

function(myCmp) { }
);

aCmp.isInstanceOf("yournamespace:myInterface")Interface comparison in a JavaScript
function

<aura:registerEvent type="yournamespace:updateExpenseItem"
name=… />

Event registration

<aura:handler event="yournamespace:updateExpenseItem"
action=… />

Event handler

28

Namespace Usage Examples and ReferenceCreating Components

ExampleReferenced Item

<aura:dependency resource="markup://yournamespace:myComponent"
/>

Explicit dependency

var updateEvent = $A.get("e.yournamespace:updateExpenseItem");Application event in a JavaScript
function

<ltng:require
scripts="{!$Resource.yournamespace__resourceName}"
styles="{!$Resource.yournamespace__resourceName}" />

Static resources

Component Bundles

A component bundle contains a component or an app and all its related resources.

See AlsoUsageResource NameResource

Creating Components on page
19

aura:application on page 387

The only required resource in a
bundle. Contains markup for the
component or app. Each bundle
contains only one component
or app resource.

sample.cmp or
sample.app

Component or Application

CSS in Components on page 31Contains styles for the
component.

sample.cssCSS Styles

Handling Events with Client-Side
Controllers on page 165

Contains client-side controller
methods to handle events in the
component.

sampleController.jsController

Configure Components for
Lightning Pages and the
Lightning App Builder

File required for components
used in Lightning App Builder,
Lightning pages, or Community
Builder.

sample.designDesign

Providing Component
Documentation on page 68

A description, sample code, and
one or multiple references to
example components

sample.auradocDocumentation

Create a Custom Renderer on
page 259

Client-side renderer to override
default rendering for a
component.

sampleRenderer.jsRenderer

Sharing JavaScript Code in a
Component Bundle on page 248

JavaScript functions that can be
called from any JavaScript code
in a component’s bundle

sampleHelper.jsHelper

Configure Components for
Lightning Pages and the

Custom icon resource for
components used in the

sample.svgSVG File

Lightning App Builder on page
124

Lightning App Builder or
Community Builder.

29

Component BundlesCreating Components

All resources in the component bundle follow the naming convention and are auto-wired. For example, a controller
<componentName>Controller.js is auto-wired to its component, which means that you can use the controller within the
scope of that component.

Component IDs

A component has two types of IDs: a local ID and a global ID. You can retrieve a component using its local ID in your JavaScript code. A
global ID can be useful to differentiate between multiple instances of a component or for debugging purposes.

Local IDs
A local ID is an ID that is only scoped to the component. A local ID is often unique but it’s not required to be unique.

Create a local ID by using the aura:id attribute. For example:

<lightning:button aura:id="button1" label="button1"/>

Note: aura:id doesn't support expressions. You can only assign literal string values to aura:id.

Find the button component by calling cmp.find("button1") in your client-side controller, where cmp is a reference to the
component containing the button.

find() returns different types depending on the result.

• If the local ID is unique, find() returns the component.

• If there are multiple components with the same local ID, find() returns an array of the components.

• If there is no matching local ID, find() returns undefined.

To find the local ID for a component in JavaScript, use cmp.getLocalId().

Global IDs
Every component has a unique globalId, which is the generated runtime-unique ID of the component instance. A global ID (1) is
not guaranteed to be the same beyond the lifetime of a component, so it should never be relied on. A global ID can be useful to
differentiate between multiple instances of a component or for debugging purposes.

To create a unique ID for an HTML element, you can use the globalId as a prefix or suffix for your element. For example:

<div id="{!globalId + '_footer'}"></div>

In your browser’s developer console, retrieve the element using document.getElementById("<globalId>_footer"),
where <globalId> is the generated runtime-unique ID.

30

Component IDsCreating Components

To retrieve a component’s global ID in JavaScript, use the getGlobalId() function.

var globalId = cmp.getGlobalId();

SEE ALSO:

Finding Components by ID

Which Button Was Pressed?

HTML in Components

An HTML tag is treated as a first-class component by the framework. Each HTML tag is translated into an <aura:html> component,
allowing it to enjoy the same rights and privileges as any other component.

For example, the framework automatically converts a standard HTML <div> tag to this component:

<aura:html tag="div" />

You can add HTML markup in components. Note that you must use strict XHTML. For example, use
 instead of
. You can
also use HTML attributes and DOM events, such as onclick.

Warning: Some tags, like <applet> and , aren’t supported. For a full list of unsupported tags, see Supported HTML
Tags on page 642.

Unescaping HTML
To output pre-formatted HTML, use aura:unescapedHTML. For example, this is useful if you want to display HTML that is generated
on the server and add it to the DOM. You must escape any HTML if necessary or your app might be exposed to security vulnerabilities.

You can pass in values from an expression, such as in <aura:unescapedHtml value="{!v.note.body}"/>.

{!expression} is the framework's expression syntax. For more information, see Using Expressions on page 42.

SEE ALSO:

Supported HTML Tags

CSS in Components

CSS in Components

Style your components with CSS.

Add CSS to a component bundle by clicking the STYLE button in the Developer Console sidebar.

For external CSS resources, see Styling Apps on page 226.

All top-level elements in a component have a special THIS CSS class added to them. This, effectively, adds namespacing to CSS and
helps prevent one component's CSS from blowing away another component's styling. The framework throws an error if a CSS file doesn't
follow this convention.

Let's look at a sample helloHTML.cmp component. The CSS is in helloHTML.css.

31

HTML in ComponentsCreating Components

http://www.w3.org/TR/xhtml1/

Component source

<aura:component>
<div class="white">
Hello, HTML!

</div>

<h2>Check out the style in this list.</h2>

<li class="red">I'm red.
<li class="blue">I'm blue.
<li class="green">I'm green.

</aura:component>

CSS source

.THIS {
background-color: grey;

}

.THIS.white {
background-color: white;

}

.THIS .red {
background-color: red;

}

.THIS .blue {
background-color: blue;

}

.THIS .green {
background-color: green;

}

Output

The top-level elements, h2 and ul, match the THIS class and render with a grey background. Top-level elements are tags wrapped
by the HTML body tag and not by any other tags. In this example, the li tags are not top-level because they are nested in a ul tag.

The <div class="white"> element matches the .THIS.white selector and renders with a white background. Note that
there is no space in the selector as this rule is for top-level elements.

32

CSS in ComponentsCreating Components

The <li class="red"> element matches the .THIS .red selector and renders with a red background. Note that this is a
descendant selector and it contains a space as the element is not a top-level element.

SEE ALSO:

Adding and Removing Styles

HTML in Components

Component Attributes

Component attributes are like member variables on a class in Apex. They are typed fields that are set on a specific instance of a component,
and can be referenced from within the component's markup using an expression syntax. Attributes enable you to make components
more dynamic.

Use the <aura:attribute> tag to add an attribute to the component or app. Let’s look at the following sample,
helloAttributes.app:

<aura:application>
<aura:attribute name="whom" type="String" default="world"/>
Hello {!v.whom}!

</aura:application>

All attributes have a name and a type. Attributes may be marked as required by specifying required="true", and may also specify
a default value.

In this case we've got an attribute named whom of type String. If no value is specified, it defaults to "world".

Though not a strict requirement, <aura:attribute> tags are usually the first things listed in a component’s markup, as it provides
an easy way to read the component's shape at a glance.

Attribute Naming Rules
An attribute name must follow these naming rules:

• Must begin with a letter or an underscore

• Must contain only alphanumeric or underscore characters

Expressions
helloAttributes.app contains an expression, {!v.whom}, which is responsible for the component's dynamic output.

{!expression} is the framework's expression syntax. In this case, the expression we are evaluating is v.whom. The name of the
attribute we defined is whom, while v is the value provider for a component's attribute set, which represents the view.

Note: Expressions are case sensitive. For example, if you have a custom field myNamespace__Amount__c, you must refer
to it as {!v.myObject.myNamespace__Amount__c}.

SEE ALSO:

Supported aura:attribute Types

Using Expressions

33

Component AttributesCreating Components

Component Composition

Composing fine-grained components in a larger component enables you to build more interesting components and applications.

Let's see how we can fit components together. We will first create a few simple components: c:helloHTML and
c:helloAttributes. Then, we’ll create a wrapper component, c:nestedComponents, that contains the simple components.

Here is the source for helloHTML.cmp.

<!--c:helloHTML-->
<aura:component>
<div class="white">
Hello, HTML!

</div>

<h2>Check out the style in this list.</h2>

<li class="red">I'm red.
<li class="blue">I'm blue.
<li class="green">I'm green.

</aura:component>

CSS source

.THIS {
background-color: grey;

}

.THIS.white {
background-color: white;

}

.THIS .red {
background-color: red;

}

.THIS .blue {
background-color: blue;

}

.THIS .green {
background-color: green;

}

Output

Here is the source for helloAttributes.cmp.

<!--c:helloAttributes-->
<aura:component>

34

Component CompositionCreating Components

<aura:attribute name="whom" type="String" default="world"/>
Hello {!v.whom}!

</aura:component>

nestedComponents.cmp uses composition to include other components in its markup.

<!--c:nestedComponents-->
<aura:component>

Observe! Components within components!

<c:helloHTML/>

<c:helloAttributes whom="component composition"/>
</aura:component>

Output

Including an existing component is similar to including an HTML tag. Reference the component by its "descriptor", which is of the form
namespace:component. nestedComponents.cmp references the helloHTML.cmp component, which lives in the c
namespace. Hence, its descriptor is c:helloHTML.

Note how nestedComponents.cmp also references c:helloAttributes. Just like adding attributes to an HTML tag, you
can set attribute values in a component as part of the component tag. nestedComponents.cmp sets the whom attribute of
helloAttributes.cmp to "component composition".

Attribute Passing
You can also pass attributes to nested components. nestedComponents2.cmp is similar to nestedComponents.cmp,
except that it includes an extra passthrough attribute. This value is passed through as the attribute value for c:helloAttributes.

<!--c:nestedComponents2-->
<aura:component>

<aura:attribute name="passthrough" type="String" default="passed attribute"/>
Observe! Components within components!

<c:helloHTML/>

<c:helloAttributes whom="{#v.passthrough}"/>
</aura:component>

Output

helloAttributes is now using the passed through attribute value.

35

Component CompositionCreating Components

Note: {#v.passthrough} is an unbound expression. This means that any change to the value of the whom attribute in
c:helloAttributes doesn’t propagate back to affect the value of the passthrough attribute in
c:nestedComponents2. For more information, see Data Binding Between Components on page 44.

Definitions versus Instances
In object-oriented programming, there’s a difference between a class and an instance of that class. Components have a similar concept.
When you create a .cmp resource, you are providing the definition (class) of that component. When you put a component tag in a
.cmp , you are creating a reference to (instance of) that component.

It shouldn't be surprising that we can add multiple instances of the same component with different attributes.
nestedComponents3.cmp adds another instance of c:helloAttributes with a different attribute value. The two instances
of the c:helloAttributes component have different values for their whom attribute .

<!--c:nestedComponents3-->
<aura:component>

<aura:attribute name="passthrough" type="String" default="passed attribute"/>
Observe! Components within components!

<c:helloHTML/>

<c:helloAttributes whom="{#v.passthrough}"/>

<c:helloAttributes whom="separate instance"/>
</aura:component>

Output

Component Body

The root-level tag of every component is <aura:component>. Every component inherits the body attribute from
<aura:component>.

The <aura:component> tag can contain tags, such as <aura:attribute>, <aura:registerEvent>,
<aura:handler>, <aura:set>, and so on. Any free markup that is not enclosed in one of the tags allowed in a component is
assumed to be part of the body and is set in the body attribute.

The body attribute has type Aura.Component[]. It can be an array of one component, or an empty array, but it's always an array.

In a component, use “v” to access the collection of attributes. For example, {!v.body} outputs the body of the component.

Setting the Body Content
To set the body attribute in a component, add free markup within the <aura:component> tag. For example:

<aura:component>
<!--START BODY-->

36

Component BodyCreating Components

<div>Body part</div>
<lightning:button label="Push Me" onclick="{!c.doSomething}"/>
<!--END BODY-->

</aura:component>

To set the value of an inherited attribute, use the <aura:set> tag. Setting the body content is equivalent to wrapping that free
markup inside <aura:set attribute="body">. Since the body attribute has this special behavior, you can omit <aura:set
attribute="body">.

The previous sample is a shortcut for this markup. We recommend the less verbose syntax in the previous sample.

<aura:component>
<aura:set attribute="body">

<!--START BODY-->
<div>Body part</div>
<lightning:button label="Push Me" onclick="{!c.doSomething}"/>
<!--END BODY-->

</aura:set>
</aura:component>

The same logic applies when you use any component that has a body attribute, not just <aura:component>. For example:

<lightning:tabset>
<lightning:tab label="Tab 1">

Hello world!
</lightning:tab>

</lightning:tabset>

This is a shortcut for:

<lightning:tabset>
<lightning:tab label="Tab 1">

<aura:set attribute="body">
Hello World!

</aura:set>
</lightning:tab>

</lightning:tabset>

Accessing the Component Body
To access a component body in JavaScript, use component.get("v.body").

SEE ALSO:

aura:set

Working with a Component Body in JavaScript

Component Facets

A facet is any attribute of type Aura.Component[]. The body attribute is an example of a facet.

37

Component FacetsCreating Components

To define your own facet, add an aura:attribute tag of type Aura.Component[] to your component. For example, let's
create a new component called facetHeader.cmp.

<!--c:facetHeader-->
<aura:component>

<aura:attribute name="header" type="Aura.Component[]"/>

<div>
{!v.header}

{!v.body}

</div>
</aura:component>

This component has a header facet. Note how we position the output of the header using the v.header expression.

The component doesn't have any output when you access it directly as the header and body attributes aren't set. Let’s create another
component, helloFacets.cmp, that sets these attributes.

<!--c:helloFacets-->
<aura:component>

See how we set the header facet.

<c:facetHeader>

Nice body!

<aura:set attribute="header">
Hello Header!

</aura:set>
</c:facetHeader>

</aura:component>

Note that aura:set sets the value of the header attribute of facetHeader.cmp, but you don’t need to use aura:set if
you’re setting the body attribute.

SEE ALSO:

Component Body

Best Practices for Conditional Markup

Using the <aura:if> tag is the preferred approach to conditionally display markup but there are alternatives. Consider the performance
cost and code maintainability when you design components. The best design choice depends on your use case.

38

Best Practices for Conditional MarkupCreating Components

Conditionally Create Elements with <aura:if>
Let’s look at a simple example that shows an error message when an error occurs.

<aura:if isTrue="{!v.isError}">
<div>{!v.errorMessage}</div>

</aura:if>

The <div> component and its contents are only created and rendered if the value of the isTrue expression evaluates to true. If
the value of the isTrue expression changes and evaluates to false, all the components inside the <aura:if> tag are destroyed.
The components are created again if the isTrue expression changes again and evaluates to true.

The general guideline is to use <aura:if> because it helps your components load faster initially by deferring the creation and
rendering of the enclosed element tree until the condition is fulfilled.

Toggle Visibility Using CSS
You can use CSS to toggle visibility of markup by calling $A.util.toggleClass(cmp, 'class') in JavaScript code.

Elements in markup are created and rendered up front, but they’re hidden. For an example, see Dynamically Showing or Hiding Markup.

The conditional markup is created and rendered even if it’s not used, so <aura:if> is preferred.

Dynamically Create Components in JavaScript
You can dynamically create components in JavaScript code. However, writing code is usually harder to maintain and debug than using
markup. Again, using <aura:if> is preferred but the best design choice depends on your use case.

SEE ALSO:

aura:if

Conditional Expressions

Dynamically Creating Components

Component Versioning

Component versioning enables you to declare dependencies against specific revisions of an installed managed package.

By assigning a version to your component, you have granular control over how the component functions when new versions of a
managed package are released. For example, imagine that a <packageNamespace>:button is pinned to version 2.0 of a package.
Upon installing version 3.0, the button retains its version 2.0 functionality.

Note: The package developer is responsible for inserting versioning logic into the markup when updating a component. If the
component wasn’t changed in the update or if the markup doesn’t account for version, the component behaves in the context
of the most recent version.

Versions are assigned declaratively in the Developer Console. When you’re working on a component, click Bundle Version Settings
in the right panel to define the version. You can only version a component if you’ve installed a package, and the valid versions for the
component are the available versions of that package. Versions are in the format <major>.<minor>. So if you assign a component
version 1.4, its behavior depends on the first major release and fourth minor release of the associated package.

39

Component VersioningCreating Components

When working with components, you can version:

• Apex controllers

• JavaScript controllers

• JavaScript helpers

• JavaScript renderers

• Bundle markup

– Applications (.app)

– Components (.cmp)

– Interfaces (.intf)

– Events (.evt)

You can’t version any other types of resources in bundles. Unsupported types include:

• Styles (.css)

• Documentation (.doc)

• Design (.design)

• SVG (.svg)

Once you’ve assigned versions to components, or if you’re developing components for a package, you can retrieve the version in several
contexts.

ExpressionReturn TypeResource

System.requestVersion()VersionApex

cmp.getVersion()StringJavaScript

{!Version}StringLightning component markup

You can use the retrieved version to add logic to your code or markup to assign different functionality to different versions. Here’s an
example of using versioning in an <aura:if> statement.

<aura:component>
<aura:if isTrue="{!Version > 1.0}">
<c:newVersionFunctionality/>

40

Component VersioningCreating Components

</aura:if>
<c:oldVersionFunctionality/>
...
</aura:component>

SEE ALSO:

Components with Minimum API Version Requirements

Don’t Mix Component API Versions

Components with Minimum API Version Requirements

Some built-in components require that custom components that use them are set to a minimum API version. A custom component
must be equal to or later than the latest API version required by any of the components it uses.

There are several different ways a custom component can use another component that has a minimum version requirement, and become
subject to that requirement.

• The custom component can extend from the component with the minimum version requirement.

• The custom component can add another component as a child component in markup.

• The custom component can dynamically create and add a child component in JavaScript.

In cases where the relationship between components can be determined by static analysis, the version dependency is checked when
the component is saved. If a custom component has an API version earlier than a minimum version required by any of the components
used, an error is reported, and the component isn’t saved. Depending on the tool you’re using, this error is presented in different ways.

If a component is created dynamically, it isn’t possible to determine the relationship between it and its parent component at save time.
Instead, the minimum version requirement is checked at run time, and if it fails a run-time error is reported to the current user.

Set the API version for your component in the Developer Console, the Force.com IDE, or via API.

Versioning of Built-In Components
The minimum API version required to use a built-in component is listed on the component’s reference page in the Lightning Components
Developer Guide. Components that don’t specify a minimum API version are usable with any API version supported for Lightning
components.

41

Components with Minimum API Version RequirementsCreating Components

The minimum version for built-in components that are Generally Available (GA) won’t increase in future releases. (However, as with
Visualforce components, their behavior might change depending on the API version of the containing component.)

SEE ALSO:

Component Versioning

Don’t Mix Component API Versions

Using Expressions

Expressions allow you to make calculations and access property values and other data within component markup. Use expressions for
dynamic output or passing values into components by assigning them to attributes.

An expression is any set of literal values, variables, sub-expressions, or operators that can be resolved to a single value. Method calls are
not allowed in expressions.

The expression syntax is: {!expression}

expression is a placeholder for the expression.

Anything inside the {! } delimiters is evaluated and dynamically replaced when the component is rendered or when the value is
used by the component. Whitespace is ignored.

The resulting value can be a primitive, such as an integer, string, or boolean. It can also be a JavaScript object, a component or collection,
a controller method such as an action method, and other useful results.

Note: If you're familiar with other languages, you may be tempted to read the ! as the "bang" operator, which negates boolean
values in many programming languages. In the Lightning Component framework, {! is simply the delimiter used to begin an
expression.

If you're familiar with Visualforce, this syntax will look familiar.

There is a second expression syntax: {#expression}. For more details on the difference between the two forms of expression
syntax, see Data Binding Between Components.

Identifiers in an expression, such as attribute names accessed through the view, controller values, or labels, must start with a letter or
underscore. They can also contain numbers or hyphens after the first character. For example, {!v.2count} is not valid, but
{!v.count} is.

Important: Only use the {! } syntax in markup in .app or .cmp files. In JavaScript, use string syntax to evaluate an expression.
For example:

var theLabel = cmp.get("v.label");

If you want to escape {!, use this syntax:

<aura:text value="{!"/>

This renders {! in plain text because the aura:text component never interprets {! as the start of an expression.

IN THIS SECTION:

Dynamic Output in Expressions

The simplest way to use expressions is to output dynamic values.

42

Using ExpressionsCreating Components

Conditional Expressions

Here are examples of conditional expressions using the ternary operator and the <aura:if> tag.

Data Binding Between Components

When you add a component in markup, you can use an expression to initialize attribute values in the component based on attribute
values of the container component. There are two forms of expression syntax, which exhibit different behaviors for data binding
between the components.

Value Providers

Value providers are a way to access data. Value providers encapsulate related values together, similar to how an object encapsulates
properties and methods.

Expression Evaluation

Expressions are evaluated much the same way that expressions in JavaScript or other programming languages are evaluated.

Expression Operators Reference

The expression language supports operators to enable you to create more complex expressions.

Expression Functions Reference

The expression language contains math, string, array, comparison, boolean, and conditional functions. All functions are case-sensitive.

Dynamic Output in Expressions
The simplest way to use expressions is to output dynamic values.

Values used in the expression can be from component attributes, literal values, booleans, and so on. For example:

{!v.desc}

In this expression, v represents the view, which is the set of component attributes, and desc is an attribute of the component. The
expression is simply outputting the desc attribute value for the component that contains this markup.

If you're including literal values in expressions, enclose text values within single quotes, such as {!'Some text'}.

Include numbers without quotes, for example, {!123}.

For booleans, use {!true} for true and {!false} for false.

SEE ALSO:

Component Attributes

Value Providers

Conditional Expressions
Here are examples of conditional expressions using the ternary operator and the <aura:if> tag.

Ternary Operator
This expression uses the ternary operator to conditionally output one of two values dependent on a condition.

Active

The {!v.location == '/active' ? 'selected' : ''} expression conditionally sets the class attribute of an HTML
<a> tag, by checking whether the location attribute is set to /active. If true, the expression sets class to selected.

43

Dynamic Output in ExpressionsCreating Components

Using <aura:if> for Conditional Markup
This snippet of markup uses the <aura:if> tag to conditionally display an edit button.

<aura:attribute name="edit" type="Boolean" default="true"/>
<aura:if isTrue="{!v.edit}">

<ui:button label="Edit"/>
<aura:set attribute="else">

You can’t edit this.
</aura:set>

</aura:if>

If the edit attribute is set to true, a ui:button displays. Otherwise, the text in the else attribute displays.

SEE ALSO:

Best Practices for Conditional Markup

Data Binding Between Components
When you add a component in markup, you can use an expression to initialize attribute values in the component based on attribute
values of the container component. There are two forms of expression syntax, which exhibit different behaviors for data binding between
the components.

This concept is a little tricky, but it will make more sense when we look at an example. Consider a c:parent component that has a
parentAttr attribute. c:parent contains a c:child component with a childAttr attribute that’s initialized to the value
of the parentAttr attribute. We’re passing the parentAttr attribute value from c:parent into the c:child component,
which results in a data binding, also known as a value binding, between the two components.

<!--c:parent-->
<aura:component>

<aura:attribute name="parentAttr" type="String" default="parent attribute"/>

<!-- Instantiate the child component -->
<c:child childAttr="{!v.parentAttr}" />

</aura:component>

{!v.parentAttr} is a bound expression. Any change to the value of the childAttr attribute in c:child also affects the
parentAttr attribute in c:parent and vice versa.

Now, let's change the markup from:

<c:child childAttr="{!v.parentAttr}" />

to:

<c:child childAttr="{#v.parentAttr}" />

{#v.parentAttr} is an unbound expression. Any change to the value of the childAttr attribute in c:child doesn’t affect
the parentAttr attribute in c:parent and vice versa.

Here’s a summary of the differences between the forms of expression syntax.

{#expression} (Unbound Expressions)
Data updates behave as you would expect in JavaScript. Primitives, such as String, are passed by value, and data updates for the
expression in the parent and child are decoupled.

44

Data Binding Between ComponentsCreating Components

Objects, such as Array or Map, are passed by reference, so changes to the data in the child propagate to the parent. However,
change handlers in the parent aren’t notified. The same behavior applies for changes in the parent propagating to the child.

{!expression} (Bound Expressions)
Data updates in either component are reflected through bidirectional data binding in both components. Similarly, change handlers
are triggered in both the parent and child components.

Tip: Bi-directional data binding is expensive for performance and it can create hard-to-debug errors due to the propagation
of data changes through nested components. We recommend using the {#expression} syntax instead when you pass
an expression from a parent component to a child component unless you require bi-directional data binding.

Unbound Expressions
Let’s look at another example of a c:parentExpr component that contains another component, c:childExpr.

Here is the markup for c:childExpr.

<!--c:childExpr-->
<aura:component>

<aura:attribute name="childAttr" type="String" />

<p>childExpr childAttr: {!v.childAttr}</p>
<p><lightning:button label="Update childAttr"

onclick="{!c.updateChildAttr}"/></p>
</aura:component>

Here is the markup for c:parentExpr.

<!--c:parentExpr-->
<aura:component>

<aura:attribute name="parentAttr" type="String" default="parent attribute"/>

<!-- Instantiate the child component -->
<c:childExpr childAttr="{#v.parentAttr}" />

<p>parentExpr parentAttr: {!v.parentAttr}</p>
<p><lightning:button label="Update parentAttr"

onclick="{!c.updateParentAttr}"/></p>
</aura:component>

The c:parentExpr component uses an unbound expression to set an attribute in the c:childExpr component.

<c:childExpr childAttr="{#v.parentAttr}" />

When we instantiate childExpr, we set the childAttr attribute to the value of the parentAttr attribute in c:parentExpr.
Since the {#v.parentAttr} syntax is used, the v.parentAttr expression is not bound to the value of the childAttr
attribute.

The c:exprApp application is a wrapper around c:parentExpr.

<!--c:exprApp-->
<aura:application >

<c:parentExpr />
</aura:application>

In the Developer Console, click Preview in the sidebar for c:exprApp to view the app in your browser.

Both parentAttr and childAttr are set to “parent attribute”, which is the default value of parentAttr.

45

Data Binding Between ComponentsCreating Components

Now, let’s create a client-side controller for c:childExpr so that we can dynamically update the component. Here is the source for
childExprController.js.

/* childExprController.js */
({

updateChildAttr: function(cmp) {
cmp.set("v.childAttr", "updated child attribute");

}
})

In the Developer Console, click Update Preview for c:exprApp.

Press the Update childAttr button. This updates childAttr to “updated child attribute”. The value of parentAttr is unchanged
since we used an unbound expression.

<c:childExpr childAttr="{#v.parentAttr}" />

Let’s add a client-side controller for c:parentExpr. Here is the source for parentExprController.js.

/* parentExprController.js */
({

updateParentAttr: function(cmp) {
cmp.set("v.parentAttr", "updated parent attribute");

}
})

In the Developer Console, click Update Preview for c:exprApp.

Press the Update parentAttr button. This time, parentAttr is set to “updated parent attribute” while childAttr is unchanged
due to the unbound expression.

Warning: Don’t use a component’s init event and client-side controller to initialize an attribute that is used in an unbound
expression. The attribute will not be initialized. Use a bound expression instead. For more information on a component’s init
event, see Invoking Actions on Component Initialization on page 247.

Alternatively, you can wrap the component in another component. When you instantiate the wrapped component in the wrapper
component, initialize the attribute value instead of initializing the attribute in the wrapped component’s client-side controller.

Bound Expressions
Now, let’s update the code to use a bound expression instead. Change this line in c:parentExpr:

<c:childExpr childAttr="{#v.parentAttr}" />

to:

<c:childExpr childAttr="{!v.parentAttr}" />

In the Developer Console, click Update Preview for c:exprApp.

Press the Update childAttr button. This updates both childAttr and parentAttr to “updated child attribute” even though
we only set v.childAttr in the client-side controller of childExpr. Both attributes were updated since we used a bound
expression to set the childAttr attribute.

46

Data Binding Between ComponentsCreating Components

Change Handlers and Data Binding
You can configure a component to automatically invoke a change handler, which is a client-side controller action, when a value in one
of the component's attributes changes.

When you use a bound expression, a change in the attribute in the parent or child component triggers the change handler in both
components. When you use an unbound expression, the change is not propagated between components so the change handler is only
triggered in the component that contains the changed attribute.

Let’s add change handlers to our earlier example to see how they are affected by bound versus unbound expressions.

Here is the updated markup for c:childExpr.

<!--c:childExpr-->
<aura:component>

<aura:attribute name="childAttr" type="String" />

<aura:handler name="change" value="{!v.childAttr}" action="{!c.onChildAttrChange}"/>

<p>childExpr childAttr: {!v.childAttr}</p>
<p><lightning:button label="Update childAttr"

onclick="{!c.updateChildAttr}"/></p>
</aura:component>

Notice the <aura:handler> tag with name="change", which signifies a change handler. value="{!v.childAttr}"
tells the change handler to track the childAttr attribute. When childAttr changes, the onChildAttrChange client-side
controller action is invoked.

Here is the client-side controller for c:childExpr.

/* childExprController.js */
({

updateChildAttr: function(cmp) {
cmp.set("v.childAttr", "updated child attribute");

},

onChildAttrChange: function(cmp, evt) {
console.log("childAttr has changed");
console.log("old value: " + evt.getParam("oldValue"));
console.log("current value: " + evt.getParam("value"));

}
})

Here is the updated markup for c:parentExpr with a change handler.

<!--c:parentExpr-->
<aura:component>

<aura:attribute name="parentAttr" type="String" default="parent attribute"/>

<aura:handler name="change" value="{!v.parentAttr}" action="{!c.onParentAttrChange}"/>

<!-- Instantiate the child component -->
<c:childExpr childAttr="{!v.parentAttr}" />

<p>parentExpr parentAttr: {!v.parentAttr}</p>
<p><lightning:button label="Update parentAttr"

47

Data Binding Between ComponentsCreating Components

onclick="{!c.updateParentAttr}"/></p>
</aura:component>

Here is the client-side controller for c:parentExpr.

/* parentExprController.js */
({

updateParentAttr: function(cmp) {
cmp.set("v.parentAttr", "updated parent attribute");

},

onParentAttrChange: function(cmp, evt) {
console.log("parentAttr has changed");
console.log("old value: " + evt.getParam("oldValue"));ui
console.log("current value: " + evt.getParam("value"));

}
})

In the Developer Console, click Update Preview for c:exprApp.

Open your browser’s console (More tools > Developer tools in Chrome).

Press the Update parentAttr button. The change handlers for c:parentExpr and c:childExpr are both triggered as we’re
using a bound expression.

<c:childExpr childAttr="{!v.parentAttr}" />

Change c:parentExpr to use an unbound expression instead.

<c:childExpr childAttr="{#v.parentAttr}" />

In the Developer Console, click Update Preview for c:exprApp.

Press the Update childAttr button. This time, only the change handler for c:childExpr is triggered as we’re using an unbound
expression.

SEE ALSO:

Detecting Data Changes with Change Handlers

Dynamic Output in Expressions

Component Composition

Value Providers
Value providers are a way to access data. Value providers encapsulate related values together, similar to how an object encapsulates
properties and methods.

The value providers for a component are v (view) and c (controller).

See AlsoDescriptionValue Provider

Component AttributesA component’s attribute set. This value provider enables
you to access the value of a component’s attribute in the
component’s markup.

v

48

Value ProvidersCreating Components

See AlsoDescriptionValue Provider

Handling Events with Client-Side ControllersA component’s controller, which enables you to wire up
event handlers and actions for the component

c

All components have a v value provider, but aren't required to have a controller. Both value providers are created automatically when
defined for a component.

Note: Expressions are bound to the specific component that contains them. That component is also known as the attribute value
provider, and is used to resolve any expressions that are passed to attributes of its contained components.

Global Value Providers
Global value providers are global values and methods that a component can use in expressions.

See AlsoDescriptionGlobal Value
Provider

Component IDsThe globalId global value provider returns the global
ID for a component. Every component has a unique

globalID

globalId, which is the generated runtime-unique ID
of the component instance.

$BrowserThe $Browser global value provider returns
information about the hardware and operating system
of the browser accessing the application.

$Browser

Using Custom LabelsThe $Label global value provider enables you to access
labels stored outside your code.

$Label

$LocaleThe $Locale global value provider returns information
about the current user’s preferred locale.

$Locale

$ResourceThe $Resource global value provider lets you
reference images, style sheets, and JavaScript code you’ve
uploaded in static resources.

$Resource

Accessing Fields and Related Objects
Values in a value provider are accessed as named properties. To use a value, separate the value provider and the property name with a
dot (period). For example, v.body. You can access value providers in markup or in JavaScript code.

When an attribute of a component is an object or other structured data (not a primitive value), access the values on that attribute using
the same dot notation.

For example, {!v.accounts.id} accesses the id field in the accounts record.

For deeply nested objects and attributes, continue adding dots to traverse the structure and access the nested values.

SEE ALSO:

Dynamic Output in Expressions

49

Value ProvidersCreating Components

$Browser

The $Browser global value provider returns information about the hardware and operating system of the browser accessing the
application.

DescriptionAttribute

Returns a FormFactor enum value based on the type of hardware the browser is running on.formFactor

• DESKTOP for a desktop client

• PHONE for a phone including a mobile phone with a browser and a smartphone

• TABLET for a tablet client (for which isTablet returns true)

Indicates whether the browser is running on an Android device (true) or not (false).isAndroid

Not available in all implementations. Indicates whether the browser is running on an iOS device (true)
or not (false).

isIOS

Not available in all implementations. Indicates whether the browser is running on an iPad (true) or not
(false).

isIPad

Not available in all implementations. Indicates whether the browser is running on an iPhone (true) or
not (false).

isIPhone

Indicates whether the browser is running on a phone including a mobile phone with a browser and a
smartphone (true), or not (false).

isPhone

Indicates whether the browser is running on an iPad or a tablet with Android 2.2 or later (true) or not
(false).

isTablet

Indicates whether the browser is running on a Windows phone (true) or not (false). Note that this
only detects Windows phones and does not detect tablets or other touch-enabled Windows 8 devices.

isWindowsPhone

Example: This example shows usage of the $Browser global value provider.

<aura:component>
{!$Browser.isTablet}
{!$Browser.isPhone}
{!$Browser.isAndroid}
{!$Browser.formFactor}

</aura:component>

Similarly, you can check browser information in a client-side controller using $A.get().

({
checkBrowser: function(component) {

var device = $A.get("$Browser.formFactor");
alert("You are using a " + device);

}
})

50

Value ProvidersCreating Components

$Locale

The $Locale global value provider returns information about the current user’s preferred locale.

These attributes are based on Java’s Calendar, Locale and TimeZone classes.

Sample ValueDescriptionAttribute

"US", "DE", "GB"The ISO 3166 representation of the country code
based on the language locale.

country

"$"The currency symbol.currency

"USD"The ISO 4217 representation of the currency code.currencyCode

"."The decimal separator.decimal

1The first day of the week, where 1 is Sunday.firstDayOfWeek

","The grouping separator.grouping

falseSpecifies if a name is based on eastern style, for
example, last name first name
[middle] [suffix].

isEasternNameStyle

“Today”The label for the Today link on the date picker.labelForToday

"en", "de", "zh"The language code based on the language locale.language

“en_US”, “en_GB”The locale ID.langLocale

{ fullName: “January”, shortName: “Jan” }The full and short names of the calendar monthsnameOfMonths

{ fullName: “Sunday”, shortName: “SUN” }The full and short names of the calendar weeksnameOfWeekdays

"America/Los_Angeles"The time zone ID.timezone

“US”The country based on the current user’s localeuserLocaleCountry

“en”The language based on the current user’s localeuserLocaleLang

"WIN", "MAC", "POSIX"The vendor and browser-specific code.variant

Number and Date Formatting
The framework’s number and date formatting are based on Java’s DecimalFormat and DateFormat classes.

Sample ValueDescriptionAttribute

"¤#,##0.00;(¤#,##0.00)"

¤ represents the currency sign, which is replaced
by the currency symbol.

The currency format.currencyformat

"MMM d, yyyy"The date format.dateFormat

"MMM d, yyyy h:mm:ss a"The date time format.datetimeFormat

51

Value ProvidersCreating Components

Sample ValueDescriptionAttribute

"#,##0.###"

represents a digit, the comma is a placeholder for
the grouping separator, and the period is a

The number format.numberformat

placeholder for the decimal separator. Zero (0)
replaces # to represent trailing zeros.

"#,##0%"The percentage format.percentformat

"h:mm:ss a"The time format.timeFormat

“0”The character for the zero digit.zero

Example: This example shows how to retrieve different $Locale attributes.

Component source

<aura:component>
{!$Locale.language}
{!$Locale.timezone}
{!$Locale.numberFormat}
{!$Locale.currencyFormat}

</aura:component>

Similarly, you can check locale information in a client-side controller using $A.get().

({
checkDevice: function(component) {

var locale = $A.get("$Locale.language");
alert("You are using " + locale);

}
})

SEE ALSO:

Localization

$Resource

The $Resource global value provider lets you reference images, style sheets, and JavaScript code you’ve uploaded in static resources.

Using $Resource lets you reference assets by name, without worrying about the gory details of URLs or file paths. You can use
$Resource in Lightning components markup and within JavaScript controller and helper code.

Using $Resource in Component Markup

To reference a specific resource in component markup, use $Resource.resourceName within an expression. resourceName
is the Name of the static resource. In a managed packaged, the resource name must include the package namespace prefix, such as
$Resource.yourNamespace__resourceName. For a stand-alone static resource, such as an individual graphic or script,

52

Value ProvidersCreating Components

that’s all you need. To reference an item within an archive static resource, add the rest of the path to the item using string concatenation.
Here are a few examples.

<aura:component>
<!-- Stand-alone static resources -->

<!-- Asset from an archive static resource -->

</aura:component>

Include CSS style sheets or JavaScript libraries into a component using the <ltng:require> tag. For example:

<aura:component>
<ltng:require
styles="{!$Resource.SLDSv2 + '/assets/styles/lightning-design-system-ltng.css'}"
scripts="{!$Resource.jsLibraries + '/jsLibOne.js'}"
afterScriptsLoaded="{!c.scriptsLoaded}" />

</aura:component>

Note: Due to a quirk in the way $Resource is parsed in expressions, use the join operator to include multiple $Resource
references in a single attribute. For example, if you have more than one JavaScript library to include into a component the scripts
attribute should be something like the following.

scripts="{!join(',',
$Resource.jsLibraries + '/jsLibOne.js',
$Resource.jsLibraries + '/jsLibTwo.js')}"

Using $Resource in JavaScript

To obtain a reference to a static resource in JavaScript code, use $A.get('$Resource.resourceName').

resourceName is the Name of the static resource. In a managed packaged, the resource name must include the package namespace
prefix, such as $Resource.yourNamespace__resourceName. For a stand-alone static resource, such as an individual graphic
or script, that’s all you need. To reference an item within an archive static resource, add the rest of the path to the item using string
concatenation. For example:

({
profileUrl: function(component) {

var profUrl = $A.get('$Resource.SLDSv2') + '/assets/images/avatar1.jpg';
alert("Profile URL: " + profUrl);

}
})

Note: Static resources referenced in JavaScript aren’t automatically added to packages. If your JavaScript depends on a resource
that isn’t referenced in component markup, add it manually to any packages the JavaScript code is included in.

$Resource Considerations

Global value providers in the Lightning Component framework are, behind the scenes, implemented quite differently from global
variables in Salesforce. Although $Resource looks like the global variable with the same name available in Visualforce, formula fields,
and elsewhere, there are important differences. Don’t use other documentation as a guideline for its use or behavior.

53

Value ProvidersCreating Components

Here are two specific things to keep in mind about $Resource in the Lightning Component framework.

First, $Resource isn’t available until the Lightning Component framework is loaded on the client. Some very simple components
that are composed of only markup can be rendered server-side, where $Resource isn’t available. To avoid this, when you create a
new app, stub out a client-side controller to force components to be rendered on the client.

Second, if you’ve worked with the $Resource global variable, in Visualforce or elsewhere, you’ve also used the URLFOR() formula
function to construct complete URLs to specific resources. There’s nothing similar to URLFOR() in the Lightning Component framework.
Instead, use simple string concatenation, as illustrated in the preceding examples.

SEE ALSO:

Salesforce Help: Static Resources

Expression Evaluation
Expressions are evaluated much the same way that expressions in JavaScript or other programming languages are evaluated.

Operators are a subset of those available in JavaScript, and evaluation order and precedence are generally the same as JavaScript.
Parentheses enable you to ensure a specific evaluation order. What you may find surprising about expressions is how often they are
evaluated. The framework notices when things change, and trigger re-rendering of any components that are affected. Dependencies
are handled automatically. This is one of the fundamental benefits of the framework. It knows when to re-render something on the page.
When a component is re-rendered, any expressions it uses will be re-evaluated.

Action Methods
Expressions are also used to provide action methods for user interface events: onclick, onhover, and any other component
attributes beginning with "on".

Action methods must be assigned to attributes using an expression, for example {!c.theAction}. This expression assigns a
reference to the controller function that handles the action.

Assigning action methods via expressions allows you to assign them conditionally, based on the state of the application or user interface.
For more information, see Conditional Expressions on page 43.

<aura:component>
<aura:attribute name="liked" type="Boolean" default="true"/>
<lightning:button aura:id="likeBtn"
label="{!(v.liked) ? 'Like It' : 'Unlike It'}"
onclick="{!(v.liked) ? c.likeIt : c.unlikeIt}"
/>

</aura:component>

This button will show "Like It" for items that have not yet been liked, and clicking it will call the likeIt action method. Then the
component will re-render, and the opposite user interface display and method assignment will be in place. Clicking a second time will
unlike the item, and so on.

Note: The example demonstrates how attributes can help you control the state of a button. To create a button that toggles
between states, we recommend using the lightning:buttonStateful component.

Expression Operators Reference
The expression language supports operators to enable you to create more complex expressions.

54

Expression EvaluationCreating Components

https://help.salesforce.com/apex/HTViewHelpDoc?id=pages_static_resources.htm&language=en_US

Arithmetic Operators
Expressions based on arithmetic operators result in numerical values.

DescriptionUsageOperator

Add two numbers.1 + 1+

Subtract one number from the other.2 - 1-

Multiply two numbers.2 * 2*

Divide one number by the other.4 / 2/

Return the integer remainder of dividing the first number by the
second.

5 % 2%

Unary operator. Reverses the sign of the succeeding number. For
example if the value of expenses is 100, then -expenses
is -100.

-v.exp-

Numeric Literals

DescriptionUsageLiteral

Integers are numbers without a decimal point or exponent.2Integer

Numbers with a decimal point, or numbers with an exponent.3.14

-1.1e10

Float

A literal null number. Matches the explicit null value and numbers
with an undefined value.

nullNull

String Operators
Expressions based on string operators result in string values.

DescriptionUsageOperator

Concatenates two strings together.'Title: ' + v.note.title+

String Literals
String literals must be enclosed in single quotation marks 'like this'.

DescriptionUsageLiteral

Literal strings must be enclosed in single quotation marks. Double quotation marks
are reserved for enclosing attribute values, and must be escaped in strings.

'hello world'string

55

Expression Operators ReferenceCreating Components

DescriptionUsageLiteral

Whitespace characters:'\n'\<escape>

• \t (tab)

• \n (newline)

• \r (carriage return)

Escaped characters:

• \" (literal ")

• \' (literal ')

• \\ (literal \)

A Unicode code point. The # symbols are hexadecimal digits. A Unicode literal
requires four digits.

'\u####'Unicode

A literal null string. Matches the explicit null value and strings with an undefined
value.

nullnull

Comparison Operators
Expressions based on comparison operators result in a true or false value. For comparison purposes, numbers are treated as the
same type. In all other cases, comparisons check both value and type.

DescriptionUsageAlternativeOperator

Returns true if the operands are equal. This
comparison is valid for all data types.

1 == 1

1 == 1.0

eq==

Warning: Don’t use the == operator for
objects, as opposed to basic types, such as

1 eq 1

Note:
undefined==null
evaluates to true.

Integer or String. For example,
object1==object2 evaluates
inconsistently on the client versus the server
and isn’t reliable.

Returns true if the operands are not equal. This
comparison is valid for all data types.

1 != 2

1 != true

ne!=

1 != '1'

null != false

1 ne 2

Returns true if the first operand is numerically
less than the second. You must escape the <

1 < 2

1 lt 2

lt<

operator to < to use it in component markup.
Alternatively, you can use the lt operator.

56

Expression Operators ReferenceCreating Components

DescriptionUsageAlternativeOperator

Returns true if the first operand is numerically
greater than the second.

42 > 2

42 gt 2

gt>

Returns true if the first operand is numerically
less than or equal to the second. You must escape

2 <= 42

2 le 42

le<=

the <= operator to <= to use it in component
markup. Alternatively, you can use the le operator.

Returns true if the first operand is numerically
greater than or equal to the second.

42 >= 42

42 ge 42

ge>=

Logical Operators
Expressions based on logical operators result in a true or false value.

DescriptionUsageOperator

Returns true if both operands are individually true. You must escape the && operator to
&& to use it in component markup. Alternatively, you can use the and()
function and pass it two arguments. For example, and(isEnabled, hasPermission).

isEnabled &&
hasPermission

&&

Returns true if either operand is individually true.hasPermission
|| isRequired

||

Unary operator. Returns true if the operand is false. This operator should not be confused
with the ! delimiter used to start an expression in {!. You can combine the expression

!isRequired!

delimiter with this negation operator to return the logical negation of a value, for example,
{!!true} returns false.

Logical Literals
Logical values are never equivalent to non-logical values. That is, only true == true, and only false == false; 1 !=
true, and 0 != false, and null != false.

DescriptionUsageLiteral

A boolean true value.truetrue

A boolean false value.falsefalse

Conditional Operator
There is only one conditional operator, the traditional ternary operator.

57

Expression Operators ReferenceCreating Components

DescriptionUsageOperator

The operand before the ? operator is evaluated as
a boolean. If true, the second operand is returned. If
false, the third operand is returned.

(1 != 2) ? "Obviously" : "Black
is White"

? :

SEE ALSO:

Expression Functions Reference

Expression Functions Reference
The expression language contains math, string, array, comparison, boolean, and conditional functions. All functions are case-sensitive.

Math Functions
The math functions perform math operations on numbers. They take numerical arguments. The Corresponding Operator column lists
equivalent operators, if any.

Corresponding
Operator

DescriptionUsageAlternativeFunction

+Adds the first argument
to the second.

add(1,2)concatadd

-Subtracts the second
argument from the first.

sub(10,2)subtractsub

*Multiplies the first
argument by the second.

mult(2,10)multiplymult

/Divides the first argument
by the second.

div(4,2)dividediv

%Returns the integer
remainder resulting from

mod(5,2)modulusmod

dividing the first
argument by the second.

NoneReturns the absolute
value of the argument:

abs(-5)abs

the same number if the
argument is positive, and
the number without its
negative sign if the
number is negative. For
example, abs(-5) is
5.

- (unary)Reverses the sign of the
argument. For example,
neg(100) is -100.

neg(100)negateneg

58

Expression Functions ReferenceCreating Components

String Functions

Corresponding
Operator

DescriptionUsageAlternativeFunction

+Concatenates the two
arguments.

concat('Hello ',
'world')

add('Walk ', 'the dog')

addconcat

Replaces any
parameter

format($Label.ns.labelName,
v.myVal)

format

placeholders with
Note: This function works for
arguments of type String,

comma-separated
attribute values.

Decimal, Double,
Integer, Long, Array,
String[], List, and Set.

Joins the substrings
adding the separator

join(separator, subStr1,
subStr2, subStrN)

join(' ','class1',
'class2', v.class)

join

String (first argument)
between each
subsequent argument.

Label Functions

DescriptionUsageFunction

Outputs a label and updates it.
Replaces any parameter

format($Label.np.labelName,
v.attribute1 , v.attribute2)

format($Label.np.hello, v.name)

format

placeholders with
comma-separated attribute values.
Supports ternary operators in
labels and attributes.

Informational Functions

DescriptionUsageFunction

Returns the length of an array or a string.myArray.lengthlength

Returns true if the argument is empty. An empty
argument is undefined, null, an empty array, or an

empty(v.attributeName)empty

Note: This function works for arguments
of type String, Array, Object,
List, Map, or Set.

empty string. An object with no properties is not considered
empty.

Tip: {! !empty(v.myArray)} evaluates
faster than {!v.myArray &&

59

Expression Functions ReferenceCreating Components

DescriptionUsageFunction

v.myArray.length > 0} so we recommend
empty() to improve performance.

The $A.util.isEmpty() method in JavaScript is
equivalent to the empty() expression in markup.

Comparison Functions
Comparison functions take two number arguments and return true or false depending on the comparison result. The eq and
ne functions can also take other data types for their arguments, such as strings.

Corresponding
Operator

DescriptionUsageFunction

== or eqReturns true if the specified arguments
are equal. The arguments can be any data
type.

equals(1,1)equals

!= or neReturns true if the specified arguments
are not equal. The arguments can be any
data type.

notequals(1,2)notequals

< or ltReturns true if the first argument is
numerically less than the second
argument.

lessthan(1,5)lessthan

> or gtReturns true if the first argument is
numerically greater than the second
argument.

greaterthan(5,1)greaterthan

<= or leReturns true if the first argument is
numerically less than or equal to the
second argument.

lessthanorequal(1,2)lessthanorequal

>= or geReturns true if the first argument is
numerically greather than or equal to the
second argument.

greaterthanorequal(2,1)greaterthanorequal

Boolean Functions
Boolean functions operate on Boolean arguments. They are equivalent to logical operators.

Corresponding OperatorDescriptionUsageFunction

&&Returns true if both
arguments are true.

and(isEnabled,
hasPermission)

and

||Returns true if either one of
the arguments is true.

or(hasPermission,
hasVIPPass)

or

60

Expression Functions ReferenceCreating Components

Corresponding OperatorDescriptionUsageFunction

!Returns true if the argument
is false.

not(isNew)not

Conditional Function

Corresponding OperatorDescriptionUsageFunction

?: (ternary)Evaluates the first argument as
a boolean. If true, returns the

if(isEnabled,
'Enabled', 'Not
enabled')

if

second argument. Otherwise,
returns the third argument.

Using Labels

Labels are text that presents information about the user interface, such as in the header (1), input fields (2), or buttons (3). While you can
specify labels by providing text values in component markup, you can also access labels stored outside your code using the $Label
global value provider in expression syntax.

This section discusses how to use the $Label global value provider in these contexts:

• The label attribute in input components

• The format() expression function for dynamically populating placeholder values in labels

61

Using LabelsCreating Components

IN THIS SECTION:

Using Custom Labels

Custom labels are custom text values that can be translated into any language that Salesforce supports. To access custom labels in
Lightning components, use the $Label global value provider.

Input Component Labels

A label describes the purpose of an input component. To set a label on an input component, use the label attribute.

Dynamically Populating Label Parameters

Output and update labels using the format() expression function.

Getting Labels in JavaScript

You can retrieve labels in JavaScript code. Your code performs optimally if the labels are statically defined and sent to the client
when the component is loaded.

Getting Labels in Apex

You can retrieve label values in Apex code and set them on your component using JavaScript.

Setting Label Values via a Parent Attribute

Setting label values via a parent attribute is useful if you want control over labels in child components.

Using Custom Labels
Custom labels are custom text values that can be translated into any language that Salesforce supports. To access custom labels in
Lightning components, use the $Label global value provider.

Custom labels enable developers to create multilingual applications by automatically presenting information (for example, help text or
error messages) in a user's native language.

To create custom labels, from Setup, enter Custom Labels in the Quick Find box, then select Custom Labels.

Use the following syntax to access custom labels in Lightning components.

• $Label.c.labelName for the default namespace

• $Label.namespace.labelName if your org has a namespace, or to access a label in a managed package

You can reference custom labels in component markup and in JavaScript code. Here are some examples.

Label in a markup expression using the default namespace
{!$Label.c.labelName}

Note: Label expressions in markup are supported in .cmp and .app resources only.

Label in JavaScript code if your org has a namespace
$A.get("$Label.namespace.labelName")

SEE ALSO:

Value Providers

Input Component Labels
A label describes the purpose of an input component. To set a label on an input component, use the label attribute.

62

Using Custom LabelsCreating Components

This example shows how to use labels using the label attribute on an input component.

<lightning:input type="number" name="myNumber" label="Pick a Number:" value="54" />

The label is placed on the left of the input field and can be hidden by setting variant="label-hidden", which applies the
slds-assistive-text class to the label to support accessibility.

Using $Label
Use the $Label global value provider to access labels stored in an external source. For example:

<lightning:input type="number" name="myNumber" label="{!$Label.Number.PickOne}" />

To output a label and dynamically update it, use the format() expression function. For example, if you have np.labelName set
to Hello {0}, the following expression returns Hello World if v.name is set to World.

{!format($Label.np.labelName, v.name)}

SEE ALSO:

Supporting Accessibility

Dynamically Populating Label Parameters
Output and update labels using the format() expression function.

You can provide a string with placeholders, which are replaced by the substitution values at runtime.

Add as many parameters as you need. The parameters are numbered and are zero-based. For example, if you have three parameters,
they will be named {0}, {1}, and {2}, and they will be substituted in the order they're specified.

Let's look at a custom label, $Label.mySection.myLabel, with a value of Hello {0} and {1}, where $Label is the
global value provider that accesses your labels.

This expression dynamically populates the placeholder parameters with the values of the supplied attributes.

{!format($Label.mySection.myLabel, v.attribute1, v.attribute2)}

The label is automatically refreshed if one of the attribute values changes.

Note: Always use the $Label global value provider to reference a label with placeholder parameters. You can't set a string
with placeholder parameters as the first argument for format(). For example, this syntax doesn't work:

{!format('Hello {0}', v.name)}

Use this expression instead.

{!format($Label.mySection.salutation, v.name)}

where $Label.mySection.salutation is set to Hello {0}.

Getting Labels in JavaScript
You can retrieve labels in JavaScript code. Your code performs optimally if the labels are statically defined and sent to the client when
the component is loaded.

63

Dynamically Populating Label ParametersCreating Components

Static Labels
Static labels are defined in one string, such as "$Label.c.task_mode_today". The framework parses static labels in markup
or JavaScript code and sends the labels to the client when the component is loaded. A server trip isn’t required to resolve the label.

Use $A.get() to retrieve static labels in JavaScript code. For example:

var staticLabel = $A.get("$Label.c.task_mode_today");
component.set("v.mylabel", staticLabel);

You can also retrieve label values using Apex code and send them to the component via JavaScript code. For more information, see
Getting Labels in Apex.

Dynamic Labels
$A.get(labelReference) must be able to resolve the label reference at compile time, so that the label values can be sent to
the client along with the component definition.

If you must defer label resolution until runtime, you can dynamically create labels in JavaScript code. This technique can be useful when
you need to use a label, but which specific label isn’t known until runtime.

// Assume the day variable is dynamically generated
// earlier in the code
// THIS CODE WON’T WORK
var dynamicLabel = $A.get("$Label.c." + day);

If the label is already known on the client, $A.get() displays the label. If the value is not known, an empty string is displayed in
production mode, or a placeholder value showing the label key is displayed in debug mode.

Using $A.get()with a label that can't be determined at runtime means that dynamicLabel is an empty string, and won’t be
updated to the retrieved value. Since the label, "$Label.c." + day, is dynamically generated, the framework can’t parse it or
send it to the client when the component is requested.

There are a few alternative approaches to using $A.get() so that you can work with dynamically generated labels.

If your component uses a known set of dynamically constructed labels, you can avoid a server roundtrip for the labels by adding a
reference to the labels in a JavaScript resource. The framework sends these labels to the client when the component is requested. For
example, if your component dynamically generates $Label.c.task_mode_today and $Label.c.task_mode_tomorrow
label keys, you can add references to the labels in a comment in a JavaScript resource, such as a client-side controller or helper.

// hints to ensure labels are preloaded
// $Label.c.task_mode_today
// $Label.c.task_mode_tomorrow

If your code dynamically generates many labels, this approach doesn’t scale well.

If you don’t want to add comment hints for all the potential labels, the alternative is to use $A.getReference(). This approach
comes with the added cost of a server trip to retrieve the label value.

This example dynamically constructs the label value by calling $A.getReference() and updates a tempLabelAttr component
attribute with the retrieved label.

var labelSubStr = "task_mode_today";
var labelReference = $A.getReference("$Label.c." + labelSubStr);
cmp.set("v.tempLabelAttr", labelReference);
var dynamicLabel = cmp.get("v.tempLabelAttr");

64

Getting Labels in JavaScriptCreating Components

$A.getReference() returns a reference to the label. This isn’t a string, and you shouldn’t treat it like one. You never get a string
label directly back from $A.getReference().

Instead, use the returned reference to set a component’s attribute value. Our code does this in cmp.set("v.tempLabelAttr",
labelReference);.

When the label value is asynchronously returned from the server, the attribute value is automatically updated as it’s a reference. The
component is rerendered and the label value displays.

Note: Our code sets dynamicLabel = cmp.get("v.tempLabelAttr") immediately after getting the reference.
This code displays an empty string until the label value is returned from the server. If you don’t want that behavior, use a comment
hint to ensure that the label is sent to the client without requiring a later server trip.

SEE ALSO:

Using JavaScript

Input Component Labels

Dynamically Populating Label Parameters

Getting Labels in Apex
You can retrieve label values in Apex code and set them on your component using JavaScript.

Custom Labels
Custom labels have a limit of 1,000 characters and can be accessed from an Apex class. To define custom labels, from Setup, in the Quick
Find box, enter Custom Labels, and then select Custom Labels.

In your Apex class, reference the label with the syntax System.Label.MyLabelName.

public with sharing class LabelController {
@AuraEnabled
public static String getLabel() {

String s1 = 'Hello from Apex Controller, ' ;
String s2 = System.Label.MyLabelName;
return s1 + s2;

}
}

Note: Return label values as plain text strings. You can’t return a label expression using the $Label global value provider.

The component loads the labels by requesting it from the server, such as during initialization. For example, the label is retrieved in
JavaScript code.

({
doInit : function(component, event, helper) {

var action = component.get("c.getLabel");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

component.set("v.mylabel", response.getReturnValue());
}
// error handling when state is "INCOMPLETE" or "ERROR"

});

65

Getting Labels in ApexCreating Components

$A.enqueueAction(action);
}

})

Finally, make sure you wire up the Apex class to your component. The label is set on the component during initialization.

<aura:component controller="LabelController">
<aura:handler name="init" value="{!this}" action="{!c.doInit}" />
<aura:attribute name="mylabel" type="String"/>
{!v.mylabel}

</aura:component>

Passing in Label Values
Pass label values into components using the expression syntax {!v.mylabel}. You must provide a default value to the String
attribute. Depending on your use case, the default value might be the label in the default language or, if the specific label can’t be known
until runtime, perhaps just a single space.

<aura:component controller="LabelController">
<aura:attribute name="mylabel" type="String" default=" "/>
<lightning:input name="mytext" label="{!v.mylabel}"/>

</aura:component>

You can also retrieve labels in JavaScript code, including dynamically creating labels that are generated during runtime. For more
information, see Getting Labels in JavaScript.

Setting Label Values via a Parent Attribute
Setting label values via a parent attribute is useful if you want control over labels in child components.

Let’s say that you have a container component, which contains another component, inner.cmp. You want to set a label value in
inner.cmp via an attribute on the container component. This can be done by specifying the attribute type and default value. You
must set a default value in the parent attribute if you are setting a label on an inner component, as shown in the following example.

This is the container component, which contains a default value My Label for the _label attribute .

<aura:component>
<aura:attribute name="_label"

type="String"
default="My Label"/>

<lightning:button label="Set Label" aura:id="button1" onclick="{!c.setLabel}"/>
<auradocs:inner aura:id="inner" label="{!v._label}"/>

</aura:component>

This inner component contains a text area component and a label attribute that’s set by the container component.

<aura:component>
<aura:attribute name="label" type="String"/>
<lightning:textarea aura:id="textarea"

name="myTextarea"
label="{!v.label}"/>

</aura:component>

66

Setting Label Values via a Parent AttributeCreating Components

This client-side controller action updates the label value.

({
setLabel:function(cmp) {

cmp.set("v._label", 'new label');
}

})

When the component is initialized, you’ll see a button and a text area with the label My Label. When the button in the container
component is clicked, the setLabel action updates the label value in the inner component. This action finds the label attribute
and sets its value to new label.

SEE ALSO:

Input Component Labels

Component Attributes

Localization

The framework provides client-side localization support on input and output components.

The following example shows how you can override the default timezone attribute. The output displays the time in the format
hh:mm by default.

<aura:component>
<ui:outputDateTime value="2013-10-07T00:17:08.997Z" timezone="Europe/Berlin" />

</aura:component>

The component renders as Oct 7, 2013 2:17:08 AM.

To customize the date and time formatting, we recommend using lightning:formattedDateTime. This example sets the
date and time using the init handler.

<aura:component>
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>
<aura:attribute name="datetime" type="DateTime"/>
<lightning:formattedDateTime value="{!v.datetime}" timeZone="Europe/Berlin"

year="numeric" month="short" day="2-digit" hour="2-digit"

minute="2-digit" second="2-digit"/>
</aura:component>

({
doInit : function(component, event, helper) {

var date = new Date();
component.set("v.datetime", date)

}
})

This example creates a JavaScript Date instance, which is rendered in the format MMM DD, YYYY HH:MM:SS AM.

67

LocalizationCreating Components

Although the output for this example is similar to <ui:outputDateTime value="{!v.datetime}"
timezone="Europe/Berlin" />, the attributes on lightning:formattedDateTime enable you to control formatting
at a granular level. For example, you can display the date using the MM/DD/YYYY format.

<lightning:formattedDateTime value="{!v.datetime}" timeZone="Europe/Berlin" year="numeric"
month="numeric" day="numeric"/>

Note: For more information, see lightning:formattedDateTime (Beta) and ui:outputDateTime .

Additionally, you can use the global value provider, $Locale, to obtain the locale information. The locale settings in your organization
overrides the browser’s locale information.

Working with Locale Information
In a single currency organization, Salesforce administrators set the currency locale, default language, default locale, and default time
zone for their organizations. Users can set their individual language, locale, and time zone on their personal settings pages.

Note: Single language organizations cannot change their language, although they can change their locale.

For example, setting the time zone on the Language & Time Zone page to (GMT+02:00) returns 28.09.2015 09:00:00
when you run the following code.

<ui:outputDateTime value="09/28/2015" />

Running $A.get("$Locale.timezone") returns the time zone name, for example, Europe/Paris. For more information,
see "Supported Time Zones" in the Salesforce Help.

Setting the currency locale on the Company Information page to Japanese (Japan) - JPY returns ¥100,000 when you
run the following code.

<ui:outputCurrency value="100000" />

Note: To change between using the currency symbol, code, or name, use lightning:formattedNumber instead. For
more information, see lightning:formattedNumber (Beta) .

Similarly, running $A.get("$Locale.currency") returns "¥" when your org’s currency locale is set to Japanese
(Japan) - JPY. For more information, see "Supported Currencies" in the Salesforce Help.

SEE ALSO:

Formatting Dates in JavaScript

Providing Component Documentation

Component documentation helps others understand and use your components.

You can provide two types of component reference documentation:

• Documentation definition (DocDef): Full documentation on a component, including a description, sample code, and a reference to
an example. DocDef supports extensive HTML markup and is useful for describing what a component is and what it does.

• Inline descriptions: Text-only descriptions, typically one or two sentences, set via the description attribute in a tag.

To provide a DocDef, click DOCUMENTATION in the component sidebar of the Developer Console. The following example shows the
DocDef for np:myComponent.

68

Providing Component DocumentationCreating Components

Note: DocDef is currently supported for components and applications. Events and interfaces support inline descriptions only.

<aura:documentation>
<aura:description>

<p>An <code>np:myComponent</code> component represents an element that executes
an action defined by a controller.</p>

<!--More markup here, such as <pre> for code samples-->
</aura:description>
<aura:example name="myComponentExample" ref="np:myComponentExample" label="Using the

np:myComponent Component">
<p>This example shows a simple setup of <code>myComponent</code>.</p>

</aura:example>
<aura:example name="mySecondExample" ref="np:mySecondExample" label="Customizing the

np:myComponent Component">
<p>This example shows how you can customize <code>myComponent</code>.</p>

</aura:example>
</aura:documentation>

A documentation definition contains these tags.

DescriptionTag

The top-level definition of the DocDef<aura:documentation>

Describes the component using extensive HTML markup. To include code samples in the
description, use the <pre> tag, which renders as a code block. Code entered in the <pre> tag

<aura:description>

must be escaped. For example, escape <aura:component> by entering
<aura:component>.

References an example that demonstrates how the component is used. Supports extensive HTML
markup, which displays as text preceding the visual output and example component source. The

<aura:example>

example is displayed as interactive output. Multiple examples are supported and should be wrapped
in individual <aura:example> tags.

• name: The API name of the example

• ref: The reference to the example component in the format
<namespace:exampleComponent>

• label: The label of the title

Providing an Example Component
Recall that the DocDef includes a reference to an example component. The example component is rendered as an interactive demo in
the component reference documentation when it’s wired up using aura:example.

<aura:example name="myComponentExample" ref="np:myComponentExample" label="Using the
np:myComponent Component">

The following is an example component that demonstrates how np:myComponent can be used.

<!--The np:myComponentExample example component-->
<aura:component>

<np:myComponent>

69

Providing Component DocumentationCreating Components

<aura:set attribute=”myAttribute”>This sets the attribute on the np:myComponent
component.</aura:set>

<!--More markup that demonstrates the usage of np:myComponent-->
</np:myComponent>

</aura:component>

Providing Inline Descriptions
Inline descriptions provide a brief overview of what an element is about. HTML markup is not supported in inline descriptions. These
tags support inline descriptions via the description attribute.

ExampleTag

<aura:component description="Represents a button element"><aura:component>

<aura:attribute name="label" type="String" description="The
text to be displayed inside the button."/>

<aura:attribute>

<aura:event type="COMPONENT" description="Indicates that a
keyboard key has been pressed and released"/>

<aura:event>

<aura:interface description="A common interface for date
components"/>

<aura:interface>

<aura:registerEvent name="keydown" type="ui:keydown"
description="Indicates that a key is pressed"/>

<aura:registerEvent>

Viewing the Documentation
The documentation you create will be available at
https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of
your custom Salesforce domain.

SEE ALSO:

Reference

Working with Base Lightning Components

Base Lightning components are the building blocks that make up the modern Lightning Experience, Salesforce app, and Lightning
Communities user interfaces.

Base Lightning components incorporate Lightning Design System markup and classes, providing improved performance and accessibility
with a minimum footprint.

These base components handle the details of HTML and CSS for you. Each component provides simple attributes that enable variations
in style. This means that you typically don’t need to use CSS at all. The simplicity of the base Lightning component attributes and their
clean and consistent definitions make them easy to use, enabling you to focus on your business logic.

You can find base Lightning components in the lightning namespace to complement the existing ui namespace components.
In instances where there are matching ui and lightning namespace components, we recommend that you use the lightning

70

Working with Base Lightning ComponentsCreating Components

namespace component. The lightning namespace components are optimized for common use cases. Beyond being equipped
with the Lightning Design System styling, they handle accessibility, real-time interaction, and enhanced error messages.

In subsequent releases, we intend to provide additional base Lightning components. We expect that in time the lightning namespace
will have parity with the ui namespace and go beyond it.

In addition, the base Lightning components will evolve with the Lightning Design System over time. This ensures that your customizations
continue to match Lightning Experience and the Salesforce app.

For all the components available, see the component reference at
https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of
your custom Salesforce domain or see the Component Reference section.

Container Components
The following components group related information together.

Lightning Design SystemDescriptionLightning Component
Name

Type

AccordionA collection of vertically stacked sections with multiple
content areas, only one of which is expanded at a time.

lightning:accordionAccordion

A single section that is nested in a
llightning:accordion component.

lightning:accordionSection

CardsApplies a container around a related grouping of
information.

lightning:cardCard

GridResponsive grid system for arranging containers on a
page.

lightning:layoutLayout

A container within a lightning:layout
component.

lightning:layoutItem

TabsA single tab that is nested in a
lightning:tabset component.

lightning:tabTabs

Represents a list of tabs.lightning:tabset

TilesA grouping of related information associated with a
record.

lightning:tileTile

Input Control Components
The following components are based on buttons.

Lightning Design SystemDescriptionLightning Component
Name

Type

ButtonsRepresents a button element.lightning:buttonButton

Button IconsAn icon-only HTML button.lightning:buttonIconButton Icon

71

Working with Base Lightning ComponentsCreating Components

https://www.lightningdesignsystem.com/components/accordion/
https://www.lightningdesignsystem.com/components/cards/
https://www.lightningdesignsystem.com/components/utilities/grid
https://www.lightningdesignsystem.com/components/tabs/
https://www.lightningdesignsystem.com/components/tiles/
https://www.lightningdesignsystem.com/components/buttons/
https://www.lightningdesignsystem.com/components/button-icons/

Lightning Design SystemDescriptionLightning Component
Name

Type

Button IconsAn icon-only button that retains state.lightning:buttonIconStatefulButton Icon
(Stateful)

Button GroupsRepresents a group of buttons.lightning:buttonGroupButton
Group

MenusA dropdown menu with a list of actions or functions.lightning:buttonMenuButton Menu

A list item in lightning:buttonMenu.lightning:menuItem

Button StatefulA button that toggles between states.lightning:buttonStatefulButton
Stateful

Navigation Components
The following components are based on buttons.

Lightning Design SystemDescriptionLightning Component
Name

Type

BreadcrumbsAn item in the hierarchy path of the page the user is
on.

lightning:breadcrumbBreadcrumb

A hierarchy path of the page you're currently visiting
within the website or app.

lightning:breadcrumbs

TreesDisplays a structural hierarchy with nested items.lightning:treeTree

MenusA dropdown menu with a list of actions or functions.lightning:buttonMenuButton Menu

A list item in lightning:buttonMenu.lightning:menuItem

Vertical NavigationA vertical list of links that take you to another page or
parts of the page you’re in.

lightning:verticalNavigationVertical
Navigation

A text-only link within
lightning:verticalNavigationSection

lightning:verticalNavigationItem

or
lightning:verticalNavigationOverflow

A link and badge within
lightning:verticalNavigationSection

lightning:verticalNavigationItemBadge

or
lightning:verticalNavigationOverflow

A link and icon within
lightning:verticalNavigationSection

lightning:verticalNavigationItemIcon

or
lightning:verticalNavigationOverflow

72

Working with Base Lightning ComponentsCreating Components

https://www.lightningdesignsystem.com/components/button-icons/
https://www.lightningdesignsystem.com/components/button-groups/
https://www.lightningdesignsystem.com/components/menus
https://lightningdesignsystem.com/components/buttons#flavor-stateful
https://www.lightningdesignsystem.com/components/breadcrumbs/
https://www.lightningdesignsystem.com/components/trees/
https://www.lightningdesignsystem.com/components/menus
https://www.lightningdesignsystem.com/components/vertical-navigation/

Lightning Design SystemDescriptionLightning Component
Name

Type

An overflow of items in
lightning:verticalNavigation

lightning:verticalNavigationOverflow

A section within
lightning:verticalNavigation

lightning:verticalNavigationSection

Visual Components
The following components provide informative cues, for example, like icons and loading spinners.

Lightning Design SystemDescriptionLightning Component NameType

AvatarsA visual representation of an object.lightning:avatarAvatar

BadgesA label that holds a small amount of information.lightning:badgeBadge

A table that displays columns of data, formatted
according to type.

lightning:datatableData Table

Dynamic IconsA variety of animated icons.lightning:dynamicIconDynamic
Icon

TooltipsAn icon with a popover container a small amount
of text.

lightning:helptextHelp Text
(Tooltip)

IconsA visual element that provides context.lightning:iconIcon

PillsA pill represents an existing item in a database,
as opposed to user-generated freeform text.

lightning:pillPill

Progress BarsA horizontal progress bar from left to right to
indicate the progress of an operation.

lightning:progressBarProgress Bar

Progress Indicators

Path

Displays steps in a process to indicate what has
been completed.

lightning:progressIndicatorProgress
Indicator and
Path

SpinnersDisplays an animated spinner.lightning:spinnerSpinner

Field Components
The following components enable you to enter values.

Lightning Design SystemDescriptionLightning Component
Name

Type

CheckboxEnables single or multiple selection on a
group of options.

lightning:checkboxGroupCheckbox Group

73

Working with Base Lightning ComponentsCreating Components

https://www.lightningdesignsystem.com/components/images/#flavor-avatar
https://www.lightningdesignsystem.com/components/badges/
https://www.lightningdesignsystem.com/components/dynamic-icons/
https://www.lightningdesignsystem.com/components/tooltips/
https://www.lightningdesignsystem.com/components/icons/
https://www.lightningdesignsystem.com/components/pills
https://www.lightningdesignsystem.com/components/progress-bar/
https://www.lightningdesignsystem.com/components/progress-indicator/
https://www.lightningdesignsystem.com/components/path/
https://www.lightningdesignsystem.com/components/spinners/
https://www.lightningdesignsystem.com/components/checkbox/

Lightning Design SystemDescriptionLightning Component
Name

Type

ComboboxAn input element that enables single
selection from a list of options.

lightning:comboboxCombobox

Dueling PicklistProvides an input listbox accompanied
with a listbox of selectable options.

lightning:dualListboxDual Listbox

Options can be moved between the two
lists.

File SelectorEnables file uploads to a record.lightning:fileUploadFile Uploader and
Preview

FilesDisplays a representation of uploaded
content.

lightning:fileCard

InputRepresents interactive controls that accept
user input depending on the type
attribute.

lightning:inputInput

N/AA geolocation compound field that
accepts a latitude and longitude value.

lightning:inputLocationInput Location
(Geolocation)

Radio Button

Radio Button Group

Enables single selection on a group of
options.

lightning:radioGroupRadio Group

SelectCreates an HTML select element.lightning:selectSelect

SliderAn input range slider for specifying a value
between two specified numbers.

lightning:sliderSlider

Rich Text EditorA WYSIWYG editor with a customizable
toolbar for entering rich text.

lightning:inputRichTextRich Text Area

TextareaA multiline text input.lightning:textAreaText Area

Formatted Components
The following components enable you to display read-only formatted values.

Lightning Design SystemDescriptionLightning Component
Name

Type

N/ADisplays formatted date and time.lightning:formattedDateTimeDate/Time

Displays an email as a hyperlink with the
mailto: URL scheme.

lightning:formattedEmailEmail

Displays a geolocation using the format
latitude, longitude.

lightning:formattedLocationGeolocation

Displays formatted numbers.lightning:formattedNumberNumber

74

Working with Base Lightning ComponentsCreating Components

https://www.lightningdesignsystem.com/components/combobox/
https://www.lightningdesignsystem.com/components/dueling-picklist/
https://www.lightningdesignsystem.com/components/file-selector/
https://www.lightningdesignsystem.com/components/files/
https://www.lightningdesignsystem.com/components/input/
https://www.lightningdesignsystem.com/components/radio-group/
https://www.lightningdesignsystem.com/components/radio-button-group/
https://www.lightningdesignsystem.com/components/forms/#flavor-select
https://lightningdesignsystem.com/components/slider
https://www.lightningdesignsystem.com/components/rich-text-editor
https://www.lightningdesignsystem.com/components/forms/#flavor-textarea

Lightning Design SystemDescriptionLightning Component
Name

Type

Displays a phone number as a hyperlink
with the tel: URL scheme.

lightning:formattedPhonePhone

Displays rich text that’s formatted with
whitelisted tags and attributes.

lightning:formattedRichTextRich Text

Displays text, replaces newlines with line
breaks, and linkifies if requested.

lightning:formattedTextText

Displays a URL as a hyperlink.lightning:formattedUrlURL

Displays the relative time difference
between the source date-time and the
provided date-time.

lightning:relativeDateTimeRelative
Date/Time

Base Lightning Components Considerations
Learn about the guidelines on using the base Lightning components.

We recommend that you don't depend on the markup of a Lightning component as its internals can change in the future. For example,
using cmp.get("v.body") and examining the DOM elements can cause issues in your code if the component markup change
down the road. With LockerService enforced, you can’t traverse the DOM for components you don't own. Instead of accessing the DOM
tree, take advantage of value binding with component attributes and use component methods that are available to you. For example,
to get an attribute on a component, use cmp.find("myInput").get("v.name") instead of
cmp.find("myInput").getElement().name. The latter doesn’t work if you don’t have access to the component, such as
a component in another namespace.

Many of the base Lightning components are still evolving and the following considerations can help you while you’re building your
apps.

lightning:buttonMenu (Beta)
This component contains menu items that are created only if the button is triggered. You can’t reference the menu items during
initialization or if the button isn’t triggered yet.

lightning:formattedDateTime (Beta)
This component provides fallback behavior in Apple Safari 10 and below. The following formatting options have exceptions when
using the fallback behavior in older browsers.

• era is not supported.

• timeZoneName appends GMT for short format, GMT-h:mm or GMT+h:mm for long format.

• timeZone supports UTC. If another timezone value is used, lightning:formattedDateTime uses the browser
timezone.

lightning:formattedNumber (Beta)
This component provides the following fallback behavior in Apple Safari 10 and below.

• If style is set to currency, providing a currencyCode value that’s different from the locale displays the currency code
instead of the symbol. The following example displays EUR12.34 in fallback mode and €12.34 otherwise.

<lightning:formattedNumber value="12.34" style="currency"
currencyCode="EUR"/>

75

Base Lightning Components ConsiderationsCreating Components

• currencyDisplayAs supports symbol only. The following example displays $12.34 in fallback mode only if the
currencyCode matches the user’s locale currency and USD12.34 otherwise.

<lightning:formattedNumber value="12.34" style="currency"
currencyCode="USD" currencyDisplayAs="symbol"/>

lightning:input (Beta)
Date pickers are available in the following components but they don’t inherit the Lightning Design System styling.

• <lightning:input type="date" />

• <lightning:input type="datetime-local" />

Fields for percentage and currency input must specify a step increment of 0.01 as required by the native implementation.

<lightning:input type="number" name="percentVal" label="Enter a percentage value"
formatter="percent" step="0.01" />
<lightning:input type="number" name="currencyVal" label="Enter a dollar amount"
formatter="currency" step="0.01" />

When working with checkboxes, radio buttons, and toggle switches, use aura:id to group and traverse the array of components.
Grouping them enables you to use get("v.checked") to determine which elements are checked or unchecked without
reaching into the DOM. You can also use the name and value attributes to identify each component during the iteration. The
following example groups three checkboxes together using aura:id.

<aura:component>
<form>
<fieldset>
<legend>Select your favorite color:</legend>
<lightning:input type="checkbox" label="Red"

name="color1" value="1" aura:id="colors"/>
<lightning:input type="checkbox" label="Blue"

name="color2" value="2" aura:id="colors"/>
<lightning:input type="checkbox" label="Green"

name="color3" value="3" aura:id="colors"/>
</fieldset>

<lightning:button label="Submit" onclick="{!c.submitForm}"/>
</form>

</aura:component>

In your client-side controller, you can retrieve the array using cmp.find("colors") and inspect the checked values.

When working with type="file", you must provide your own server-side logic for uploading files to Salesforce. Read the file
using the FileReader HTML object, and then encode the file contents before sending them to your Apex controller. In your Apex
controller, you can use the EncodingUtil methods to decode the file data. For example, you can use the Attachment object
to upload files to a parent object. In this case, you pass in the base64 encoded file to the Body field to save the file as an attachment
in your Apex controller.

Uploading files using this component is subject to regular Apex controller limits, which is 1 MB. To accommodate file size increase
due to base64 encoding, we recommend that you set the maximum file size to 750 KB. You must implement chunking for file size
larger than 1 MB. Files uploaded via chunking are subject to a size limit of 4 MB. For more information, see the Apex Developer Guide.

lightning:tab (Beta)
This component creates its body during runtime. You can’t reference the component during initialization. Referencing the component
using aura:id can return unexpected results, such as the component returning an undefined value when implementing
cmp.find("myComponent").

76

Base Lightning Components ConsiderationsCreating Components

https://developer.salesforce.com/docs/atlas.en-us.210.0.apexcode.meta/apexcode/

lightning:tabset (Beta)
When you load more tabs than can fit the width of the viewport, the tabset provides navigation buttons that scrolls horizontally to
display the overflow tabs.

SEE ALSO:

Component Reference

Event Handling in Base Lightning Components
Base components are lightweight and closely resemble HTML markup. They follow standard HTML practices by providing event handlers
as attributes, such as onfocus, instead of registering and firing Lightning component events, like components in the ui namespace.

Because of their markup, you might expect to access DOM elements via event.target or event.currentTarget. However,
this type of access breaks encapsulation because it provides access to another component’s DOM elements, which are subject to change.

LockerService, which will be enabled for all orgs in Summer ’17, enforces encapsulation. Use the methods described here to make your
code compliant with LockerService.

To retrieve the component that fired the event, use event.getSource().

<aura:component>
<lightning:button name="myButton" onclick="{!c.doSomething}"/>

</aura:component>

({
doSomething: function(cmp, event, helper) {

var button = event.getSource();

//The following patterns are not supported
//when you’re trying to access another component’s
//DOM elements.
var el = event.target;
var currentEl = event.currentTarget;

}
})

Retrieve a component attribute that’s passed to the event by using this syntax.

event.getSource().get("v.name")

Reusing Event Handlers
event.getSource() helps you determine which component fired an event. Let’s say you have several buttons that reuse the
same onclick handler. To retrieve the name of the button that fired the event, use event.getSource().get("v.name").

<aura:component>
<lightning:button label="New Record" name="new" onclick="{!c.handleClick}"/>
<lightning:button label="Edit" name="edit" onclick="{!c.handleClick}"/>
<lightning:button label="Delete" name="delete" onclick="{!c.handleClick}"/>

</aura:component>

({
handleClick: function(cmp, event, helper) {

77

Event Handling in Base Lightning ComponentsCreating Components

//returns "new", "edit", or "delete"
var buttonName = event.getSource().get("v.name");

}
})

Retrieving the Active Component Using the onactive Handler
When working with tabs, you want to know which one is active. The lightning:tab component enables you to obtain a reference
to the target component when it becomes active using the onactive handler . Clicking the component multiple times invokes the
handler once only.

<aura:component>
<lightning:tabset>
<lightning:tab onactive="{! c.handleActive }" label="Tab 1" id="tab1" />
<lightning:tab onactive="{! c.handleActive }" label="Tab 2" id="tab2" />

</lightning:tabset>
</aura:component>

({
handleActive: function (cmp, event) {

var tab = event.getSource();
switch (tab.get('v.id')) {

case 'tab1':
//do something when tab1 is clicked
break;

case 'tab2':
//do something when tab2 is clicked
break;

}
}

})

Retrieving the ID and Value Using the onselect Handler
Some components provide event handlers to pass in events to child components, such as the onselect event handler on the
following components.

• lightning:buttonMenu

• lightning:tabset

Although the event.detail syntax continues to be supported, we recommend that you update your JavaScript code to use the
following patterns for the onselect handler as we plan to deprecate event.detail in a future release.

• event.getParam("id")

• event.getParam("value")

For example, you want to retrieve the value of a selected menu item in a lightning:buttonMenu component from a client-side
controller.

//Before
var menuItem = event.detail.menuItem;
var itemValue = menuItem.get("v.value");
//After
var itemValue = event.getParam("value");

78

Event Handling in Base Lightning ComponentsCreating Components

Similarly, to retrieve the ID of a selected tab in a lightning:tabset component:

//Before
var tab = event.detail.selectedTab;
var tabId = tab.get("v.id");
//After
var tabId = event.getParam("id");

Note: If you need a reference to the target component, use the onactive event handler instead.

Lightning Design System Considerations
Although the base Lightning components provide Salesforce Lightning Design System styling out-of-the-box, you may still want to
write some CSS depending on your requirements.

If you're using the components outside of the Salesforce app and Lightning Experience, such as in standalone apps and Lightning Out,
extend force:slds to apply Lightning Design System styling to your components. Here are several guidelines for using Lightning
Design System in base components.

Using Utility Classes in Base Components
Lightning Design System utility classes are the fundamentals of your component's visual design and promote reusability, such as for
alignments, grid, spacing, and typography. Most base components provide a class attribute, so you can add a utility class or custom
class to the outer element of the components. For example, you can apply a spacing utility class to lightning:button.

<lightning:button name="submit" label="Submit" class="slds-m-around_medium"/>

The class you add is appended to other base classes that are applied to the component, resulting in the following markup.

<button class="slds-button slds-button_neutral slds-m-around_medium"
type="button" name="submit">Submit</button>

Similarly, you can create a custom class and pass it into the class attribute.

<lightning:badge label="My badge" class="myCustomClass"/>

You have the flexibility to customize the components at a granular level beyond the CSS scaffolding we provide. Let’s look at the
lightning:card component, where you can create your own body markup. You can apply the slds-p-horizontal_small
or slds-card__body_inner class in the body markup to add padding around the body.

<!-- lightning:card example using slds-p-horizontal_small class -->
<lightning:card>
<aura:set attribute="title">My Account</aura:set>
<aura:set attribute="footer">Footer</aura:set>
<aura:set attribute="actions">
<lightning:button label="New"/>

</aura:set>
<p class="slds-p-horizontal_small">
Card Body

</p>
</lightning:card>

<!-- lightning:card example using slds-card__body_inner -->
<lightning:card>

<aura:set attribute="title">My Account</aura:set>

79

Lightning Design System ConsiderationsCreating Components

<aura:set attribute="footer">Footer</aura:set>
<aura:set attribute="actions">
<lightning:button label="New"/>

</aura:set>
<div class="slds-card__body_inner">
Card Body

</div>
</lightning:card>

Applying Custom Component Styling
Sometimes the utility classes aren’t enough and you want to add custom styling in your component bundle. You saw earlier that you
can create a custom class and pass it into the class attribute. We recommend that you create a class instead of targeting a class name
you don’t own, since those classes might change anytime. For example, don’t try to target .slds-input or .lightningInput,
as they are CSS classes that are available by default in base components. You can also consider using tokens to ensure that your design
is consistent across your components. Specify values in the token bundle and reuse them in your components’ CSS resources.

Using the Grid for Layout
lightning:layout is your answer to a flexible grid system. You can achieve a simple layout by enclosing
lightning:layoutItem components within lightning:layout, which creates a div container with the slds-grid
class. To apply additional Lightning Design System grid classes, specify any combination of the lightning:layout attributes. For
example, specify vertical-align="stretch" to append the slds-grid_vertical-stretch class. You can apply
Lightning Design System grid classes to the component using the horizontalAlign, verticalAlign, and pullToBoundary
attributes. However, not all grid classes are available through these attributes. To provide additional grid classes, use the class attribute.
The following grid classes can be added using the class attribute.

• .slds-grid_frame

• .slds-grid_vertical

• .slds-grid_reverse

• .slds-grid_vertical-reverse

• .slds-grid_pull-padded-x-small

• .slds-grid_pull-padded-xx-small

• .slds-grid_pull-padded-xxx-small

This example adds the slds-grid_reverse class to the slds-grid class.

<lightning:layout horizontalAlign="space" class="slds-grid_reverse">
<lightning:layoutItem padding="around-small">
<!-- more markup here -->

</lightning:layoutItem>
<!-- more lightning:layoutItem components here -->

</lightning:layout>

For more information, see lightning:layout and the Grid utility.

Applying Variants to Base Components
Variants on a component refer to design variations for that component, enabling you to change the appearance of the component
easily. While we try to match base component variants to their respective Lightning Design System variants, it’s not a one-to-one

80

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/components/utilities/grid/

correspondence. Most base components provide a variant attribute. For example, lightning:button support many
variants—base, neutral, brand, destructive, and inverse—to apply different text and background colors on the buttons.

<lightning:button variant="brand" label="Brand" onclick="{! c.handleClick }" />

Notice the success variant is not supported. However, you can add the slds-button_success class to achieve the same
result.

<lightning:button name="submit" label="Submit" class="slds-button_success"/>

Let’s look at another example. You can create a group of related information using the lightning:tile component. Although
this component doesn’t provide a variant attribute, you can achieve the Lightning Design System board variant by passing in the
slds-tile_board class.

<aura:component>
<ul class="slds-has-dividers_around-space">
<li class="slds-item">
<lightning:tile label="Anypoint Connectors" href="/path/to/somewhere"

class="slds-tile_board">
<p class="slds-text-heading_medium">$500,000</p>
<p class="slds-truncate" title="Company One">Company One</p>
<p class="slds-truncate">Closing 9/30/2015</p>

</lightning:tile>

</aura:component>

If you don’t see a variant you need, check to see if you can pass in a Lightning Design System class to the base component before creating
your own custom CSS class. Don’t be afraid to experiment with Lightning Design System classes and variants in base components. For
more information, see Lightning Design System.

SEE ALSO:

Styling Apps

Styling with Design Tokens

Working with Lightning Design System Variants
Base component variants correspond to variants in Lightning Design System. Variants change the appearance of a component and are
controlled by the variant attribute.

If you pass in a variant that’s not supported, the default variant is used instead. This example creates a button with the base variant.

<lightning:button variant="base" label="Base" onclick="{! c.handleClick }"/>

The following reference describes how variants in base components correspond to variants in Lightning Design System. Base components
that don’t have any visual styling, such as lightning:formattedDateTime, are not listed here. For more information on any
of these components, see the Component Reference.

Accordion
A lightning:accordion component is a collection of vertically stacked sections with content areas, only one of which is expanded
at a time. This component does not support the variant attribute. lightning:accordion uses the styling from Accordion
in the Lightning Design System.

81

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/components/
https://www.lightningdesignsystem.com/components/accordion/

Avatar
A lightning:avatar component is an image that represents an object, such as an account or user. You can create avatars in
different sizes. lightning:avatar uses the styling from Avatar in the Lightning Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

An avatar with a rounded square shapeslds-avatarsquare (default)

An avatar with a circular shapeslds-avatar_circlecircle

Badge
A lightning:badge component is a label containing a small amount of information. This component does not support the
variant attribute. lightning:badge uses the styling from Badges in the Lightning Design System.

Breadcrumb
A lightning:breadcrumbs component is a label containing a small amount of information. This component does not support
the variant attribute. lightning:breadcrumb uses the styling from Breadcrumbs in the Lightning Design System.

Button
A lightning:button component is a button that executes an action in a client-side controller. Buttons support icons to the left
or right of the text label. lightning:button uses the styling from Buttons in the Lightning Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

A button with gray border and white backgroundslds-button_neutralneutral (default)

A button without a border, which appears like a text linkslds-buttonbase

82

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/components/avatar/
https://www.lightningdesignsystem.com/components/badges/
https://www.lightningdesignsystem.com/components/breadcrumbs/
https://www.lightningdesignsystem.com/components/buttons/

DescriptionLightning Design System
Class Name

Base Component
Variant

A blue button with white textslds-button_brandbrand

A red button with white textslds-button_desctructivedestructive

A button for dark backgroundsslds-button_inverseinverse

A green buttonslds-button_successsuccess

Button Group
A lightning:buttonGroup component is a group of buttons that can be displayed together to create a navigational bar. You
can nest lightning:button and lightning:buttonMenu components in the group. Although the button group itself
doesn’t support the variant attribute, variants are supported for buttons and the button menu components. For example, you can
nest <lightning:button variant="inverse" label="Refresh" /> in a button group. If including
lightning:buttonMenu, place it after the buttons and pass in the slds-button_last class to adjust the border.
lightning:buttonGroup uses the styling from Button Groups in the Lightning Design System.

Button Icon
A lightning:buttonIcon component is an icon-only button that executes an action in a client-side controller. You can create
button icons in different sizes. Only Lightning Design System utility icons are supported. lightning:buttonIcon uses the styling
from Button Icons in the Lightning Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

A button that contains an icon with gray borderslds-button_icon-borderborder (default)

A button that looks like a plain iconslds-button_icon-barebare

A 32px by 32px button that looks like a plain iconslds-button_icon-containercontainer

A button that contains an icon with gray border and white backgroundslds-button_icon-border-filledborder-filled

A button that contains a white icon without borders for a dark
background

slds-button_icon-inversebare-inverse

A button that contains a white icon for a dark backgroundslds-button_icon-border-inverseborder-inverse

Button Icon (Stateful)
A lightning:buttonIconStateful component is an icon-only button that retains state. You can press the button to toggle
between states. You can create button icons in different sizes. Only Lightning Design System utility icons are supported. The selected

83

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/components/button-groups/
https://lightningdesignsystem.com/icons/#utility
https://www.lightningdesignsystem.com/components/button-icons/
https://lightningdesignsystem.com/icons/#utility

attribute appends the slds-is-selected class when it’s set to true. lightning:buttonIconStateful uses the
styling from Button Icons in the Lightning Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

A button that contains an icon with gray borderslds-button_icon-borderborder (default)

A button that contains a white icon for a dark backgroundslds-button_icon-border-inverseborder-inverse

Button Menu
A lightning:buttonMenu component is a dropdown menu with a list of menu items, represented by lightning:menuItem
components. Menu items can be checked or unchecked, or execute an action in a client-side controller. You can create button menus
with icons in different sizes and position the dropdown menu in different positions relative to the button. The variant changes the
appearance of the button, and is similar to the variants on button icons. lightning:buttonMenu uses the styling from Menus
in the Lightning Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

A button that contains an icon with gray borderslds-button_icon-borderborder (default)

A button that looks like a plain iconslds-button_icon-barebare

A 32px by 32px button that looks like a plain iconslds-button_icon-containercontainer

A button that contains an icon with gray border and white backgroundslds-button_icon-border-filledborder-filled

A button that contains a white icon without borders for a dark
background

slds-button_icon-inversebare-inverse

A button that contains a white icon for a dark backgroundslds-button_icon-border-inverseborder-inverse

84

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/components/button-icons/
https://www.lightningdesignsystem.com/components/menus/

Button (Stateful)
A lightning:buttonStateful component is a button that toggles between states. Stateful buttons can show a different label
and icon based on their states. Only Lightning Design System utility icons are supported. lightning:buttonStateful uses
the styling from Buttons in the Lightning Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

A button with gray border and white backgroundslds-button_neutralneutral (default)

A blue button with white textslds-button_brandbrand

A red button with white textslds-button_destructivedestructive

A button for dark backgroundsslds-button_inverseinverse

A green buttonslds-button_successsuccess

A button that contains an icon with gray border and white backgroundslds-buttontext

Card
A lightning:card component is a group of related information in an article HTML tag. lightning:card uses the
styling from Cards in the Lightning Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

A group of related information that takes the width of the containerslds-cardbase (default)

A group of related information that has narrow widthslds-card_narrownarrow

Checkbox Group
A lightning:checkboxGroup component is a group of checkboxes that enables selection of single or multiple options. This
component is different from lightning:input of type="checkbox" as the latter is not suitable for grouping a set of
checkboxes together. Although the checkbox group doesn’t support the variant attribute, the slds-form-element class is
appended to the fieldset element that encloses the checkbox group. lightning:checkboxGroup uses the styling from
Checkbox in the Lightning Design System.

85

Lightning Design System ConsiderationsCreating Components

https://lightningdesignsystem.com/icons/#utility
https://www.lightningdesignsystem.com/components/buttons/
https://www.lightningdesignsystem.com/components/cards/
https://www.lightningdesignsystem.com/components/checkbox/

Combobox
A lightning:combobox component is an input element that enables single selection from a list of options. The result of the
selection is displayed as the value of the input. In a multi-select combobox, each selected option is displayed in a pill below the input
element. lightning:combobox uses the styling from Combobox in the Lightning Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

A combobox that enables single or multiple selectionslds-input

slds-form-element

standard (default)

slds-form-element__control

slds-combobox

An input element with a hidden labelslds-form_inlinelabel-hidden

Data Table
A lightning:datatable component is a table that displays columns of data, formatted according to type. It enables resizing of
columns, selecting of rows, and sorting of columns. Although the data table doesn’t support the variant attribute, the slds-table
and slds-table_bordered classes are appended to the table element. lightning:datatable uses the styling from
Data Tables in the Lightning Design System.

Dual Listbox
A lightning:dualListbox component provides two list boxes, where you can move one or more options to the second list
box and reorder the selected options. lightning:dualListbox uses the styling from Dueling Picklist in the Lightning Design
System.

86

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/components/combobox/
https://www.lightningdesignsystem.com/components/data-tables/
https://www.lightningdesignsystem.com/components/dueling-picklist/

DescriptionLightning Design System
Class Name

Base Component
Variant

A dual listbox with a visible labelslds-dueling-liststandard (default)

A dual listbox with a hidden labelslds-form_inlinelabel-hidden

Dynamic Icon
A lightning:dynamicIcon component represents various animated icons. The type attribute determines the animated icon
to display and corresponds to the dynamic icons in the Lightning Design System. lightning:dynamicIcon uses the styling
from Dynamic Icons in the Lightning Design System.

File Uploader
A lightning:fileUpload component enables file uploads to a record. The file uploader includes drag-and-drop functionality
and filtering by file types. Although it doesn’t support the variant attribute, the slds-file-selector class is appended to
the component. lightning:fileUpload uses the styling from FileSelector in the Lightning Design System.

Help Text (Tooltip)
A lightning:helptext component displays an icon with a popover containing a small amount of text describing an element
on screen. Although the help text doesn’t support the variant attribute, the slds-popover and slds-popover_tooltip
classes are appended to the tooltip. lightning:helptext uses the styling from Tooltips in the Lightning Design System.

87

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/components/dynamic-icons/
https://www.lightningdesignsystem.com/components/file-selector/
https://www.lightningdesignsystem.com/components/tooltips/

Icon
A lightning:icon component is a visual element that provides context and enhances usability. Although all Lightning Design
System icons are supported, only utility icons support variants. You can create icons in different sizes. lightning:icon uses the
styling from Icons in the Lightning Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

Previously named “bare”. A 32px by 32px icon.slds-iconinverse (default)

An icon with a red fillslds-icon-text-errorerror

An icon with a yellow fillslds-icon-text-warningwarning

Input
A lightning:input component is an interactive control, such as an input field or checkbox, which accepts user input.
lightning:input uses the styling from Input in the Lightning Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

An input element, which can be an input field, checkbox, toggle, radio
button, or other types. The class appended to the element depends on
the input type.

slds-input

slds-form-element

slds-form-element__control

standard (default)

88

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/components/icons/
https://www.lightningdesignsystem.com/components/input/

DescriptionLightning Design System
Class Name

Base Component
Variant

An input element with a hidden labelslds-form_inlinelabel-hidden

Layout
A lightning:layout component is a flexible grid system for arranging containers within a page or another container. Instead of
using the variant attribute, customization of the layout is controlled by horizontalAlign, verticalAlign, and
pullToBoundary. lightning:layout uses the styling from Grid in the Lightning Design System. For more information, see
the following resources.

• lightning:layout

• Lightning Design System Considerations

Pill
A lightning:pill component is a text label that’s wrapped by a rounded border and displayed with a remove button. Pills can
contain an icon or avatar next to the text label. This component does not support the variant attribute, but its content and other
attributes determine the styling applied to them. For example, a pill with hasError="true" displays as a pill with a red border
and error icon. lightning:pill uses the styling from Pills in the Lightning Design System.

Progress Bar
A lightning:progressBar component displays a horizontal progress bar from left to right to indicate the progress of an
operation. It uses the styling from Progress Bar in the Lightning Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

A basic progress barslds-progress-barbase (default)

A progress bar with circular endsslds-progress-bar_circularcircular

Progress Indicator and Path
A lightning:progressIndicator component displays the steps in a process and indicates what has been completed. The
type attribute determines if progress indicators or a path is displayed. When using type="base", the variant attribute is
available. lightning:progressIndicator uses the styling from Progress Indicator and Path in the Lightning Design System.

The variant attribute is not available when type="path".

89

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/utilities/grid/
https://www.lightningdesignsystem.com/components/pills/
https://www.lightningdesignsystem.com/components/progress-bar/
https://www.lightningdesignsystem.com/components/progress-indicator/
https://www.lightningdesignsystem.com/components/path/

Additionally, lightning:path and lightning:picklistPath enables you to display the progress of a process on a record
based on a specified picklist field. lightning:path displays a path based on your Path Settings in Setup and
lightning:picklistPath displays a path derived from the picklistFieldApiName attribute.

DescriptionLightning Design System
Class Name

Base Component
Variant

For type="base" only. Indicates steps in a process.slds-progressbase (default)

For type="base" only. Adds a shaded background to the current
step.

slds-progress_shadeshaded

Radio Group
A lightning:radioGroup component is a group of radio that enables selection of a single option. The type attribute determines
if a group of radio options or buttons is displayed. lightning:radioGroup uses the styling from Radio Group in the Lightning
Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

A group of radio options or radio buttonsslds-radio

slds-radio_button-group

standard (default)

A group of radio options with a label that’s visually hiddenslds-form_inlinelabel-hidden

Rich Text Editor
A lightning:inputRichText component is rich text editor with a customizable toolbar. The toolbar is displayed at the top of
the editor but you can change its position to below the editor using the bottom-toolbar variant. lightning:inputRichText
uses the styling from Rich Text Editor in the Lightning Design System.

90

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/components/radio-group/
https://www.lightningdesignsystem.com/components/rich-text-editor/

DescriptionLightning Design System
Class Name

Base Component
Variant

A rich text editor with a toolbar placed below the editorslds-rich-text-editor__toolbar-bottombottom-toolbar

Select
A lightning:select component is a dropdown list that enables you to select a single option. lightning:select uses
the styling from Select in the Lightning Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

A select input element that supports single selection of valuesslds-selectstandard (default)

A select input element with a hidden labelslds-form_inlinelabel-hidden

Slider
A lightning:slider component is a slider for specifying a value between two specified numbers. This component does not
support the variant attribute. The type attribute determines if a horizontal (default) or vertical slider is displayed.
lightning:slider uses the styling from Slider in the Lightning Design System.

Spinner
A lightning:spinner component is a spinner that indicates data is loading. You can create spinners in different sizes.
lightning:spinner uses the styling from Spinners in the Lightning Design System.

91

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/components/select/
https://www.lightningdesignsystem.com/components/slider/
https://www.lightningdesignsystem.com/components/spinners/

DescriptionLightning Design System
Class Name

Base Component
Variant

A gray spinnerslds-spinnerbase (default)

A blue spinnerslds-spinner_brandbrand

A white spinner for a dark backgroundslds-spinner_inverseinverse

Tabs
A lightning:tabset component is a list of tabs with corresponding content areas, represented by lightning:tab
components. lightning:tabset uses the styling from Tabs in the Lightning Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

A list of tabs and content areas without bordersslds-tabs_defaultdefault

A list of tabs and content areas with bordersslds-tabs_scopedscoped

A list of tabs that are displayed vertically to the left of the content areasslds-vertical-tabsvertical

Textarea
A lightning:textarea component is an input field for multi-line text input. It uses the styling from Textarea in the Lightning
Design System.

DescriptionLightning Design System
Class Name

Base Component
Variant

A textarea element with a text labelslds-form-elementstandard (default)

A textarea element with a hidden labelslds-form_inlinelabel-hidden

92

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/components/tabs/
https://www.lightningdesignsystem.com/components/textarea/

Tile
A lightning:tile component is a group of related information. This component does not support variants, but you can pass in
the slds-tile_board class to create a board. Similarly, use a definition list in the tile body to create a tile with an icon or uses an
unordered list to create a list of tiles with avatars. lightning:tile uses the styling from Tiles in the Lightning Design System.

Tree
A lightning:tree component is a visualization of a structure hierarchy. A tree item, also known as a branch, can be expanded or
collapsed. Although this component does not support the variant attribute, it uses the styling from Trees in the Lightning Design
System.

Vertical Navigation
A lightning:verticalNavigation component is a list of links that are one level deep, with support for icons and overflow
sections that collapse and expand. Although this component does not support the variant attribute, you can use the compact
and shaded attributes to achieve compact spacing and styling for a shaded background. lightning:verticalNavigation
uses the styling from Vertical Navigation in the Lightning Design System.

93

Lightning Design System ConsiderationsCreating Components

https://www.lightningdesignsystem.com/components/tiles/
https://www.lightningdesignsystem.com/components/trees/
https://www.lightningdesignsystem.com/components/vertical-navigation/

Working with UI Components

The framework provides common user interface components in the ui namespace. All of these components extend either
aura:component or a child component of aura:component. aura:component is an abstract component that provides
a default rendering implementation. User interface components such as ui:input and ui:output provide easy handling of
common user interface events like keyboard and mouse interactions. Each component can be styled and extended accordingly.

Note: If you are looking for components that apply the Lightning Design System styling, consider using the base lightning
components instead.

For all the components available, see the component reference at
https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of
your custom Salesforce domain.

Complex, Interactive Components
The following components contain one or more sub-components and are interactive.

DescriptionKey ComponentsType

A message notification of varying severity levelsui:messageMessage

A drop-down list with a trigger that controls its visibilityui:menuMenu

A list of menu itemsui:menuList

A menu item that triggers an actionui:actionMenuItem

A menu item that supports multiple selection and can be used to
trigger an action

ui:checkboxMenuItem

A menu item that supports single selection and can be used to
trigger an action

ui:radioMenuItem

A visual separator for menu itemsui:menuItemSeparator

94

Working with UI ComponentsCreating Components

DescriptionKey ComponentsType

An abstract and extensible component for menu items in a
ui:menuList component

ui:menuItem

A trigger that expands and collapses a menuui:menuTrigger

A link that triggers a dropdown menu. This component extends
ui:menuTrigger

ui:menuTriggerLink

Input Control Components
The following components are interactive, for example, like buttons and checkboxes.

DescriptionKey ComponentsType

An actionable button that can be pressed or clickedui:buttonButton

A selectable option that supports multiple selectionsui:inputCheckboxCheckbox

Displays a read-only value of the checkboxui:outputCheckbox

A selectable option that supports only a single selectionui:inputRadioRadio button

A drop-down list with optionsui:inputSelectDrop-down List

An option in a ui:inputSelect componentui:inputSelectOption

Visual Components
The following components provides informative cues, for example, like error messages and loading spinners.

DescriptionKey ComponentsType

An error message that is displayed when an error occursui:inputDefaultErrorField-level error

A loading spinnerui:spinnerSpinner

Field Components
The following components enables you to enter or display values.

DescriptionKey ComponentsType

An input field for entering currencyui:inputCurrencyCurrency

Displays currency in a default or specified formatui:outputCurrency

An input field for entering an email addressui:inputEmailEmail

Displays a clickable email addressui:outputEmail

An input field for entering a dateui:inputDateDate and time

95

Working with UI ComponentsCreating Components

DescriptionKey ComponentsType

An input field for entering a date and timeui:inputDateTime

Displays a date in the default or specified formatui:outputDate

Displays a date and time in the default or specified formatui:outputDateTime

An input field for entering secret textui:inputSecretPassword

An input field for entering a telephone numberui:inputPhonePhone Number

Displays a phone numberui:outputPhone

An input field for entering a numerical valueui:inputNumberNumber

Displays a numberui:outputNumber

An input field for entering a value within a rangeui:inputRangeRange

An input field for entering rich textui:inputRichTextRich Text

Displays rich textui:outputRichText

An input field for entering a single line of textui:inputTextText

Displays textui:outputText

An input field for entering multiple lines of textui:inputTextAreaText Area

Displays a read-only text areaui:outputTextArea

An input field for entering a URLui:inputURLURL

Displays a clickable URLui:outputURL

SEE ALSO:

Using the UI Components

Creating Components

Component Bundles

Event Handling in UI Components
UI components provide easy handling of user interface events such as keyboard and mouse interactions. By listening to these events,
you can also bind values on UI input components using the updateon attribute, such that the values update when those events are
fired.

Capture a UI event by defining its handler on the component. For example, you want to listen to the HTML DOM event, onblur, on a
ui:inputTextArea component.

<ui:inputTextArea aura:id="textarea" value="My text area" label="Type something"
blur="{!c.handleBlur}" />

96

Event Handling in UI ComponentsCreating Components

The blur="{!c.handleBlur}" listens to the onblur event and wires it to your client-side controller. When you trigger the
event, the following client-side controller handles the event.

handleBlur : function(cmp, event, helper){
var elem = cmp.find("textarea").getElement();
//do something else

}

For all available events on all components, see the Component Reference on page 395.

Value Binding for Browser Events
Any changes to the UI are reflected in the component attribute, and any change in that attribute is propagated to the UI. When you
load the component, the value of the input elements are initialized to those of the component attributes. Any changes to the user input
causes the value of the component variable to be updated. For example, a ui:inputText component can contain a value that’s
bound to a component attribute, and the ui:outputText component is bound to the same component attribute. The
ui:inputText component listens to the onkeyup browser event and updates the corresponding component attribute values.

<aura:attribute name="first" type="String" default="John"/>
<aura:attribute name="last" type="String" default="Doe"/>

<ui:inputText label="First Name" value="{!v.first}" updateOn="keyup"/>
<ui:inputText label="Last Name" value="{!v.last}" updateOn="keyup"/>

<!-- Returns "John Doe" -->
<ui:outputText value="{!v.first +' '+ v.last}"/>

The next example takes in numerical inputs and returns the sum of those numbers. The ui:inputNumber component listens to
the onkeyup browser event. When the value in this component changes on the keyup event, the value in the ui:outputNumber
component is updated as well, and returns the sum of the two values.

<aura:attribute name="number1" type="integer" default="1"/>
<aura:attribute name="number2" type="integer" default="2"/>

<ui:inputNumber label="Number 1" value="{!v.number1}" updateOn="keyup" />
<ui:inputNumber label="Number 2" value="{!v.number2}" updateOn="keyup" />

<!-- Adds the numbers and returns the sum -->
<ui:outputNumber value="{!(v.number1 * 1) + (v.number2 * 1)}"/>

Note: The input fields return a string value and must be properly handled to accommodate numerical values. In this example,
both values are multiplied by 1 to obtain their numerical equivalents.

Using the UI Components
Users interact with your app through input elements to select or enter values. Components such as ui:inputText and
ui:inputCheckbox correspond to common input elements. These components simplify event handling for user interface events.

Note: For all available component attributes and events, see the component reference at
https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the
name of your custom Salesforce domain .

97

Using the UI ComponentsCreating Components

To use input components in your own custom component, add them to your .cmp or .app resource. This example is a basic set up
of a text field and button. The aura:id attribute defines a unique ID that enables you to reference the component from your JavaScript
code using cmp.find("myID");.

<ui:inputText label="Name" aura:id="name" placeholder="First, Last"/>
<ui:outputText aura:id="nameOutput" value=""/>
<ui:button aura:id="outputButton" label="Submit" press="{!c.getInput}"/>

Note: All text fields must specify the label attribute to provide a textual label of the field. If you must hide the label from view,
set labelClass="assistiveText" to make the label available to assistive technologies.

The ui:outputText component acts as a placeholder for the output value of its corresponding ui:inputText component.
The value in the ui:outputText component can be set with the following client-side controller action.

getInput : function(cmp, event) {
var fullName = cmp.find("name").get("v.value");
var outName = cmp.find("nameOutput");
outName.set("v.value", fullName);

}

The following example is similar to the previous, but uses value binding without a client-side controller. The ui:outputText
component reflects the latest value on the ui:inputText component when the onkeyup browser event is fired.

<aura:attribute name="first" type="String" default="John"/>
<aura:attribute name="last" type="String" default="Doe"/>

<ui:inputText label="First Name" value="{!v.first}" updateOn="keyup"/>
<ui:inputText label="Last Name" value="{!v.last}" updateOn="keyup"/>

<!-- Returns "John Doe" -->
<ui:outputText value="{!v.first +' '+ v.last}"/>

Tip: To create and edit records in the Salesforce app, use the force:createRecord and force:recordEdit events
to utilize the built-in record create and edit pages.

Working with the Flow Lightning Component

Once you embed a flow in a Lightning component, use JavaScript and Apex code to configure the flow at run time. For example, pass
values into the flow or to control what happens when the flow finishes. lightning:flow supports only flows of type Flow and
Autolaunched Flow.

A flow is an application, built with Visual Workflow, that collects, updates, edits, and creates Salesforce information.

To embed a flow in your Lightning component, add the <lightning:flow> component to it.

<aura:component>
<aura:handler name="init" value="{!this}" action="{!c.init}" />
<lightning:flow aura:id="flowData" />

</aura:component>

({
init : function (component) {

// Find the component whose aura:id is "flowData"
var flow = component.find("flowData");
// In that component, start your flow. Reference the flow's Unique Name.

98

Working with the Flow Lightning ComponentCreating Components

flow.startFlow("myFlow");
},

})

Note: When a user opens a page that has a flow component, such as Lightning App Builder or an active Lightning page, the flow
runs when the page loads. Make sure that the flow doesn’t perform any actions – such as create or delete records – before the
first screen.

IN THIS SECTION:

Set Flow Variable Values from a Lightning Component

When you embed a flow in a Lightning component, give the flow more context by initializing its variables, sObject variables, collection
variables, or sObject collection variables. In the component's controller, create a list of maps, then pass that list to the startFlow
method.

Get Flow Variable Values to a Lightning Component

Flow variable values can be displayed or referenced in a Lightning component. Once you’ve embedded your flow in a custom
Lightning component, use the onstatuschange action to get values from the flow's output variables. Output variables are
returned as an array.

Control a Flow’s Finish Behavior in a Lightning Component

By default, when a flow user clicks Finish, the component starts a new interview and the user sees the first screen of the flow again.
However, you can shape what happens when the flow finishes by using the onstatuschange action. To redirect to another
page, use one of the force:navigateTo* events such as force:navigateToObjectHome or
force:navigateToUrl.

Resume a Flow Interview from a Lightning Component

By default, users can resume their paused interviews from the Paused Interviews component on their home page in Salesforce
Classic. If you want to customize how and where users can resume their interviews, pass the interview ID into the resumeFlow
method in your JavaScript controller.

Set Flow Variable Values from a Lightning Component
When you embed a flow in a Lightning component, give the flow more context by initializing its variables, sObject variables, collection
variables, or sObject collection variables. In the component's controller, create a list of maps, then pass that list to the startFlow method.

Note: You can set variables only at the beginning of an interview, and the variables you set must allow input access. For each
flow variable, input access is controlled by:

• The Input/Output Type variable field in the Cloud Flow Designer

• The isInput field on FlowVariable in the Metadata API

If you reference a variable that doesn’t allow input access, attempts to set the variable are ignored.

For each variable you set, provide the variable's name, type, and value. For type, use the flow data type.

Valid ValuesTypeFlow Variable
Type

String value or equivalent expressionStringText

Numeric value or equivalent expressionNumberNumber

Numeric value or equivalent expressionCurrencyCurrency

99

Set Flow Variable Values from a Lightning ComponentCreating Components

Valid ValuesTypeFlow Variable
Type

BooleanBoolean • True values: true, 1, or equivalent expression

• False values: false, 0, or equivalent expression

String value or equivalent expressionPicklistPicklist

String value or equivalent expressionMultipicklistMulti-Select Picklist

"YYYY-MM-DD" or equivalent expressionDateDate

"YYYY-MM-DDThh:mm:ssZ" or equivalent expressionDateTimeDate/Time

Map of key-value pairs or equivalent expression.SObjectsObject

{
name : "varName",
type : "flowDataType",
value : valueToSet

},
{

name : "varName",
type : "flowDataType",
value : [value1, value2]

}, ...

Example: This JavaScript controller sets values for a number variable, a date collection variable, and a couple of sObject variables.

({
init : function (component) {

// Find the component whose aura:id is "flowData"
var flow = component.find("flowData");
var inputVariables = [

{ name : "numVar", type : "Number", value: 30 },
{ name : "dateColl", type : "String", value: ["2016-10-27", "2017-08-01"]

},
// Sets values for fields in the account sObject variable. Id uses the
// value of the component's accountId attribute. Rating uses a string.
{ name : "account", type : "SObject", value: {

"Id" : component.get("v.accountId"),
"Rating" : "Warm"
}

},
// Set the contact sObject variable to the value of the component's contact

// attribute. We're assuming the attribute contains the entire sObject for
// a contact record.
{ name : "contact", type : "SObject", value: component.get("v.contact") }
},

];
flow.startFlow("myFlow", inputVariables);

100

Set Flow Variable Values from a Lightning ComponentCreating Components

}
})

Example: Here's an example of a component that gets an account via an Apex controller. The Apex controller passes the data
to the flow's sObject variable through the JavaScript controller.

<aura:component controller="AccountController" >
<aura:attribute name="account" type="Account" />
<aura:handler name="init" value="{!this}" action="{!c.init}"/>
<lightning:flow aura:id="flowData"/>

</aura:component>

public with sharing class AccountController {
@AuraEnabled
public static Account getAccount() {

return [SELECT Id, Name, LastModifiedDate FROM Account LIMIT 1];
}

}

({
init : function (component) {

// Create action to find an account
var action = component.get("c.getAccount");

// Add callback behavior for when response is received
action.setCallback(this, function(response) {

if (state === "SUCCESS") {
// Pass the account data into the component's account attribute
component.set("v.account", response.getReturnValue());
// Find the component whose aura:id is "flowData"
var flow = component.find("flowData");
// Set the account sObject variable to the value of the component's
// account attribute.
var inputVariables = [

{
name : "account",
type : "SObject",
value: component.get("v.account")

}
];

// In the component whose aura:id is "flowData, start your flow
// and initialize the account sObject variable. Reference the flow's
// Unique Name.
flow.startFlow("myFlow", inputVariables);

}
else {

console.log("Failed to get account date.");
}

});

// Send action to be executed
$A.enqueueAction(action);

101

Set Flow Variable Values from a Lightning ComponentCreating Components

}
})

Get Flow Variable Values to a Lightning Component
Flow variable values can be displayed or referenced in a Lightning component. Once you’ve embedded your flow in a custom Lightning
component, use the onstatuschange action to get values from the flow's output variables. Output variables are returned as an
array.

Note: The variable must allow output access. For each flow variable, output access is controlled by:

• The Input/Output Type variable field in the Cloud Flow Designer

• The isInput field on FlowVariable in the Metadata API

If you reference a variable that doesn’t allow output access, attempts to get the variable are ignored.

Example: This example uses the JavaScript controller to pass the flow's accountName and numberOfEmployees variables into
attributes on the component. Then, the component displays those values in output components.

<aura:component>
<aura:attribute name="accountName" type="String" />
<aura:attribute name="numberOfEmployees" type="Decimal" />

<p><lightning:formattedText value="{!v.accountName}" /></p>
<p><lightning:formattedNumber style="decimal" value="{!v.numberOfEmployees}" /></p>

<aura:handler name="init" value="{!this}" action="{!c.init}"/>
<lightning:flow aura:id="flowData" onstatuschange="{!c.handleStatusChange}" />

</aura:component>

({
init : function (component) {

// Find the component whose aura:id is "flowData"
var flow = component.find("flowData");
// In that component, start your flow. Reference the flow's Unique Name.
flow.startFlow("myFlow");

},

handleStatusChange : function (component, event) {
if(event.getParam("status") === "FINISHED") {

// Get the output variables and iterate over them
var outputVariables = event.getParam("outputVariables");
var outputVar;
for(var i = 0; i < outputVariables.length; i++) {

outputVar = outputVariables[i];
// Pass the values to the component's attributes
if(outputVar.name === "accountName") {

component.set("v.accountName", outputVar.value);
} else {

component.set("v.numberOfEmployees", outputVar.value);
}

}

102

Get Flow Variable Values to a Lightning ComponentCreating Components

}
},

})

Control a Flow’s Finish Behavior in a Lightning Component
By default, when a flow user clicks Finish, the component starts a new interview and the user sees the first screen of the flow again.
However, you can shape what happens when the flow finishes by using the onstatuschange action. To redirect to another page,
use one of the force:navigateTo* events such as force:navigateToObjectHome or force:navigateToUrl.

Note: To control what happens when an autolaunched flow finishes, check for the FINISHED_SCREEN status.

<aura:component access="global">
<aura:handler name="init" value="{!this}" action="{!c.init}" />
<lightning:flow aura:id="flowData" onstatuschange="{!c.handleStatusChange}" />

</aura:component>

// init function here
handleStatusChange : function (component, event) {

if(event.getParam("status") === "FINISHED") {
// Redirect to another page in Salesforce, or
// Redirect to a page outside of Salesforce, or
// Show a toast, or...

}
}

Example: This function redirects the user to a case created in the flow by using the force:navigateToSObject event.

handleStatusChange : function (component, event) {
if(event.getParam("status") === "FINISHED") {

var outputVariables = event.getParam("outputVariables");
var outputVar;
for(var i = 0; i < outputVariables.length; i++) {

outputVar = outputVariables[i];
if(outputVar.name === "redirect") {

var urlEvent = $A.get("e.force:navigateToSObject");
urlEvent.setParams({

"recordId": outputVar.value,
"isredirect": "true"

});
urlEvent.fire();

}
}

}
}

103

Control a Flow’s Finish Behavior in a Lightning ComponentCreating Components

Resume a Flow Interview from a Lightning Component
By default, users can resume their paused interviews from the Paused Interviews component on their home page in Salesforce Classic.
If you want to customize how and where users can resume their interviews, pass the interview ID into the resumeFlow method in
your JavaScript controller.

({
init : function (component) {

// Find the component whose aura:id is "flowData"
var flow = component.find("flowData");

// In that component, resume a paused interview. Provide the method with
// the ID of the interview that you want to resume.
flow.resumeFlow("pausedInterviewId");

},
})

Example: This example show how you can resume an interview—or start a new one. When users click Survey Customer from
a contact record, the Lightning component does one of two things.

• If the user has any paused interviews for the Survey Customers flow, it resumes the first one.

• If the user doesn’t have any paused interviews for the Survey Customers flow, it starts a new one.

<aura:component controller="InterviewsController">
<aura:handler name="init" value="{!this}" action="{!c.init}" />
<lightning:flow aura:id="flowData" />

</aura:component>

This Apex controller performs a SOQL query to get a list of paused interviews. If nothing is returned from the query,
getPausedId() returns a null value, and the component starts a new interview. If at least one interview is returned from the
query, the component resumes the first interview in that list.

public class InterviewsController {
@AuraEnabled
public static String getPausedId() {

// Get the ID of the running user
String currentUser = UserInfo.getUserId();
// Find all of that user's paused interviews for the Survey customers flow
List<FlowInterview> interviews =

[SELECT Id FROM FlowInterview
WHERE CreatedById = :currentUser AND InterviewLabel LIKE '%Survey

customers%'];

if (interviews == null || interviews.isEmpty()) {
return null; // early out

}
// Return the ID for the first interview in the list
return interviews.get(0).Id;

}
}

104

Resume a Flow Interview from a Lightning ComponentCreating Components

If the JavaScript controller got an interview ID back from the Apex controller, the component resumes that interview. If the Apex
controller returned a null interview ID, the component starts a new interview.

({
init : function (component) {

//Create request for interview ID
var action = component.get("c.getPausedId");
action.setCallback(this, function(response) {

var interviewId = response.getReturnValue();
// Find the component whose aura:id is "flowData"
var flow = component.find("flowData");
// If an interview ID was returned, resume it in the component
// whose aura:id is "flowData".
if (interviewId !== null) {

flow.resumeFlow(interviewID);
}
// Otherwise, start a new interview in that component. Reference
// the flow's Unique Name.
else {

flow.startFlow("Survey_customers");
}

});
//Send request to be enqueued
$A.enqueueAction(action);

},
})

Supporting Accessibility

When customizing components, be careful in preserving code that ensures accessibility, such as the aria attributes.

Accessible software and assistive technology enable users with disabilities to use and interact with the products you build. Aura
components are created according to W3C specifications so that they work with common assistive technologies. While we always
recommend that you follow the WCAG Guidelines for accessibility when developing with the Lightning Component framework, this
guide explains the accessibility features that you can leverage when using components in the ui namespace.

IN THIS SECTION:

Button Labels

Audio Messages

Forms, Fields, and Labels

Events

Menus

Button Labels
Buttons can appear with text only, an icon and text, or an icon without text. To create an accessible button, use lightning:button
and set a textual label using the label attribute. For more information, see lightning:button .

105

Supporting AccessibilityCreating Components

http://www.w3.org/TR/WCAG/

Note: You can create accessible buttons using ui:button but they don’t come with Lightning Design System styling. We
recommend using lightning:button instead.

Button with text only:

<lightning:button label="Search" onclick="{!c.doSomething}"/>

Button with icon and text:

<lightning:button label="Download" iconName="utility:download" onclick="{!c.doSomething}"/>

Button with icon only:

<lightning:buttonIcon iconName="utility:settings" alternativeText="Settings"
onclick="{!c.doSomething}"/>

The alternativeText attribute provides a text label that’s hidden from view and available to assistive technology.

This example shows the HTML generated by lightning:button:

<!-- Good: using span/assistiveText to hide the label visually, but show it to screen
readers -->
<button>

::before
Settings

</button>

Audio Messages
To convey audio notifications, use the ui:message component, which has role="alert" set on the component by default.
The "alert" aria role will take any text inside the div and read it out loud to screen readers without any additional action by the
user.

<ui:message title="Error" severity="error" closable="true">
This is an error message.

</ui:message>

Forms, Fields, and Labels
Input components are designed to make it easy to assign labels to form fields. Labels build a programmatic relationship between a form
field and its textual label. When using a placeholder in an input component, set the label attribute for accessibility.

Use lightning:input to create accessible input fields and forms. You can use lightning:textarea in preference to the
<textarea> tag for multi-line text input or lightning:select instead of the <select> tag.

<lightning:input name="myInput" label="Search" />

If your code fails, check the label element during component rendering. A label element should have the for attribute and match the
value of input control id attribute, OR the label should be wrapped around an input. Input controls include <input>, <textarea>,
and <select>.

Here’s an example of the HTML generated by lightning:input.

<!-- Good: using label/for= -->
<label for="fullname">Enter your full name:</label>
<input type="text" id="fullname" />

106

Audio MessagesCreating Components

<!-- Good: --using implicit label>
<label>Enter your full name:

<input type="text" id="fullname"/>
</label>

SEE ALSO:

Using Labels

Events
Although you can attach an onclick event to any type of element, for accessibility, consider only applying this event to elements
that are actionable in HTML by default, such as <a>, <button>, or <input> tags in component markup. You can use an onclick
event on a <div> tag to prevent event bubbling of a click.

Menus
A menu is a dropdown list with a trigger that controls its visibility. You must provide the trigger, which displays a text label, and a list of
menu items. The dropdown menu and its menu items are hidden by default. You can change this by setting the visible attribute
on the ui:menuList component to true. The menu items are shown only when you click the ui:menuTriggerLink
component.

This example code creates a menu with several items:

<ui:menu>
<ui:menuTriggerLink aura:id="trigger" label="Opportunity Status"/>

<ui:menuList class="actionMenu" aura:id="actionMenu">
<ui:actionMenuItem aura:id="item2" label="Open"

click="{!c.updateTriggerLabel}"/>
<ui:actionMenuItem aura:id="item3" label="Closed"

click="{!c.updateTriggerLabel}"/>
<ui:actionMenuItem aura:id="item4" label="Closed Won"

click="{!c.updateTriggerLabel}"/>
</ui:menuList>

</ui:menu>

Different menus achieve different goals. Make sure you use the right menu for the desired behavior. The three types of menus are:

Actions
Use the ui:actionMenuItem for items that create an action, like print, new, or save.

Radio button
If you want users to pick only one from a list several items, use ui:radioMenuItem.

Checkbox style
If users can pick multiple items from a list of several items, use ui:checkboxMenuItem. Checkboxes can also be used to turn
one item on or off.

Note: To create a dropdown menu with a trigger that’s a button, use lightning:buttonMenu instead.

107

EventsCreating Components

CHAPTER 4 Using Components

You can use components in many different contexts. This section shows you how.In this chapter ...

• Use Lightning
Components in
Lightning Experience
and the Salesforce
Mobile App

• Get Your Lightning
Components Ready
to Use on Lightning
Pages

• Use Lightning
Components in
Community Builder

• Add Components to
Apps

• Integrate Your
Custom Apps into the
Chatter Publisher

• Use Lightning
Components in
Visualforce Pages

• Add Lightning
Components to Any
App with Lightning
Out (Beta)

108

Use Lightning Components in Lightning Experience and the Salesforce
Mobile App

Customize and extend Lightning Experience and the Salesforce app with Lightning components. Launch components from tabs, apps,
and actions.

IN THIS SECTION:

Configure Components for Custom Tabs

Add the force:appHostable interface to a Lightning component to allow it to be used as a custom tab in Lightning Experience
or the Salesforce mobile app.

Add Lightning Components as Custom Tabs in Lightning Experience

Make your Lightning components available for Lightning Experience users by displaying them in a custom tab.

Add Lightning Components as Custom Tabs in the Salesforce App

Make your Lightning components available for Salesforce for Android, Salesforce for iOS, and Salesforce mobile web users by displaying
them in a custom tab.

Lightning Component Actions

Lightning component actions are custom actions that invoke a Lightning component. They support Apex and JavaScript and provide
a secure way to build client-side custom functionality. Lightning component actions are supported only in the Salesforce app and
Lightning Experience.

Override Standard Actions with Lightning Components

Add the lightning:actionOverride interface to a Lightning component to enable the component to be used to override
a standard action on an object. You can override the View, New, Edit, and Tab standard actions on most standard and all custom
components. Overriding standard actions allows you to customize your org using Lightning components, including completely
customizing the way you view, create, and edit records.

Configure Components for Custom Tabs
Add the force:appHostable interface to a Lightning component to allow it to be used as a custom tab in Lightning Experience
or the Salesforce mobile app.

Components that implement this interface can be used to create tabs in both Lightning Experience and the Salesforce app.

Example: Example Component

<!--simpleTab.cmp-->
<aura:component implements="force:appHostable">

<!-- Simple tab content -->

<h1>Lightning Component Tab</h1>

</aura:component>

The appHostable interface makes the component available for use as a custom tab. It doesn’t require you to add anything
else to the component.

109

Use Lightning Components in Lightning Experience and the
Salesforce Mobile App

Using Components

Add Lightning Components as Custom Tabs in Lightning Experience

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available for use in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Create Lightning
components using the UI in
Enterprise, Performance,
Unlimited, Developer
Editions or a sandbox.

USER PERMISSIONS

To create Lightning
Component Tabs:
• Customize Application

Make your Lightning components available for Lightning Experience users by displaying them in
a custom tab.

In the components you wish to include in Lightning Experience, add
implements="force:appHostable" in the aura:component tag and save your
changes.

<aura:component implements="force:appHostable">

Use the Developer Console to create Lightning components.

Follow these steps to include your components in Lightning Experience and make them available to users in your organization.

1. Create a custom tab for this component.

a. From Setup, enter Tabs in the Quick Find box, then select Tabs.

b. Click New in the Lightning Component Tabs related list.

c. Select the Lightning component that you want to make available to users.

d. Enter a label to display on the tab.

e. Select the tab style and click Next.

f. When prompted to add the tab to profiles, accept the default and click Save.

2. Add your Lightning components to the App Launcher.

a. From Setup, enter Apps in the Quick Find box, then select Apps.

b. Click New. Select Custom app and then click Next.

c. Enter Lightning for App Labeland click Next.

d. In the Available Tabs dropdown menu, select the Lightning Component tab you created and click the right arrow button
to add it to the custom app.

e. Click Next. Select the Visible checkbox to assign the app to profiles and then Save.

110

Add Lightning Components as Custom Tabs in Lightning
Experience

Using Components

3. Check your output by navigating to the App Launcher in Lightning Experience. Your custom app should appear in theApp Launcher.
Click the custom app to see the components you added.

Add Lightning Components as Custom Tabs in the Salesforce App

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available for use in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Create Lightning
components using the UI in
Enterprise, Performance,
Unlimited, Developer
Editions or a sandbox.

USER PERMISSIONS

To create Lightning
Component Tabs:
• Customize Application

Make your Lightning components available for Salesforce for Android, Salesforce for iOS, and
Salesforce mobile web users by displaying them in a custom tab.

In the component you wish to add, include implements="force:appHostable" in your
aura:component tag and save your changes.

<aura:component implements="force:appHostable">

The appHostable interface makes the component available as a custom tab.

Use the Developer Console to create Lightning components.

Include your components in the navigation menu by following these steps.

1. Create a custom Lightning component tab for the component. From Setup, enter Tabs in the Quick Find box, then select
Tabs.

Note: You must create a custom Lightning component tab before you can add your component to the navigation menu.
Accessing your Lightning component from the full Salesforce site is not supported.

2. Add your Lightning component to the Salesforce app navigation menu.

a. From Setup, enter Navigation in the Quick Find box, then select Salesforce Navigation.

b. Select the custom tab you just created and click Add.

c. Sort items by selecting them and clicking Up or Down.

In the navigation menu, items appear in the order you specify. The first item in the Selected list becomes your users’ landing
page.

3. Check your output by going to Salesforce mobile web. Your new menu item should appear in the navigation menu.

111

Add Lightning Components as Custom Tabs in the Salesforce
App

Using Components

Note: By default, Salesforce mobile web is turned on for your org. For more information on using mobile web, see the Salesforce
App Developer Guide.

Lightning Component Actions

EDITIONS

Available in: both the
Salesforce app and
Lightning Experience

Available in: Essentials,
Group, Professional,
Enterprise, Performance,
Unlimited, Contact
Manager, and Developer
Editions

Lightning component actions are custom actions that invoke a Lightning component. They support
Apex and JavaScript and provide a secure way to build client-side custom functionality. Lightning
component actions are supported only in the Salesforce app and Lightning Experience.

Note: My Domain must be deployed in your org for Lightning component actions to work
properly.

You can add Lightning component actions to an object’s page layout using the page layout editor.
If you have Lightning component actions in your org, you can find them in the Mobile & Lightning
Actions category in the page layout editor’s palette.

Lightning component actions can’t call just any Lightning component in your org. For a component
to work as a Lightning component action, it has to be configured specifically for that purpose and
implement either the force:LightningQuickAction or
force:LightningQuickActionWithoutHeader interfaces.

If you plan on packaging a Lightning component action, the component the action invokes must be marked as access=global.

IN THIS SECTION:

Configure Components for Custom Actions

Add the force:lightningQuickAction or force:lightningQuickActionWithoutHeader interface to a
Lightning component to enable it to be used as a custom action in Lightning Experience or the Salesforce mobile app. You can use
components that implement one of these interfaces as object-specific or global actions in both Lightning Experience and the
Salesforce app.

Configure Components for Record-Specific Actions

Add the force:hasRecordId interface to a Lightning component to enable the component to be assigned the ID of the
current record. The current record ID is useful if the component is used on a Lightning record page, as an object-specific custom
action or action override in Lightning Experience or the Salesforce app, and so on.

Configure Components for Custom Actions
Add the force:lightningQuickAction or force:lightningQuickActionWithoutHeader interface to a
Lightning component to enable it to be used as a custom action in Lightning Experience or the Salesforce mobile app. You can use
components that implement one of these interfaces as object-specific or global actions in both Lightning Experience and the Salesforce
app.

When used as actions, components that implement the force:lightningQuickAction interface display in a panel with
standard action controls, such as a Cancel button. These components can display and implement their own controls in the body of the
panel, but can’t affect the standard controls. It should nevertheless be prepared to handle events from the standard controls.

If instead you want complete control over the user interface, use the force:lightningQuickActionWithoutHeader
interface. Components that implement force:lightningQuickActionWithoutHeader display in a panel without additional
controls and are expected to provide a complete user interface for the action.

112

Lightning Component ActionsUsing Components

https://resources.docs.salesforce.com/210/latest/en-us/sfdc/pdf/salesforce1_guide.pdf
https://resources.docs.salesforce.com/210/latest/en-us/sfdc/pdf/salesforce1_guide.pdf

These interfaces are mutually exclusive. That is, components can implement either the force:lightningQuickAction interface
or the force:lightningQuickActionWithoutHeader interface, but not both. This should make sense; a component can’t
both present standard user interface elements and not present standard user interface elements.

Example: Example Component

Here’s an example of a component that can be used for a custom action, which you can name whatever you want—perhaps
“Quick Add”. (A component and an action that uses it don’t need to have matching names.) This component allows you to quickly
add two numbers together.

<!--quickAdd.cmp-->
<aura:component implements="force:lightningQuickAction">

<!-- Very simple addition -->

<lightning:input type="number" name="myNumber" aura:id="num1" label="Number 1"/>
+

<lightning:input type="number" name="myNumber" aura:id="num2" label="Number 2"/>

<lightning:button label="Add" onclick="{!c.clickAdd}"/>

</aura:component>

The component markup simply presents two input fields, and an Add button.

The component’s controller does all the real work.

/*quickAddController.js*/
({

clickAdd: function(component, event, helper) {

// Get the values from the form
var n1 = component.find("num1").get("v.value");
var n2 = component.find("num2").get("v.value");

// Display the total in a "toast" status message
var resultsToast = $A.get("e.force:showToast");
resultsToast.setParams({

"title": "Quick Add: " + n1 + " + " + n2,
"message": "The total is: " + (n1 + n2) + "."

});
resultsToast.fire();

// Close the action panel
var dismissActionPanel = $A.get("e.force:closeQuickAction");
dismissActionPanel.fire();

}

})

Retrieving the two numbers entered by the user is straightforward, though a more robust component would check for valid inputs,
and so on. The interesting part of this example is what happens to the numbers and how the custom action resolves.

The results of the add calculation are displayed in a “toast,” which is a status message that appears at the top of the page. The
toast is created by firing the force:showToast event. A toast isn’t the only way you could display the results, nor are actions

113

Lightning Component ActionsUsing Components

the only use for toasts. It’s just a handy way to show a message at the top of the screen in Lightning Experience or the Salesforce
app.

What’s interesting about using a toast here, though, is what happens afterward. The clickAdd controller action fires the
force:closeQuickAction event, which dismisses the action panel. But, even though the action panel is closed, the toast
still displays. The force:closeQuickAction event is handled by the action panel, which closes. The force:showToast
event is handled by the one.app container, so it doesn’t need the panel to work.

SEE ALSO:

Configure Components for Record-Specific Actions

Configure Components for Record-Specific Actions
Add the force:hasRecordId interface to a Lightning component to enable the component to be assigned the ID of the current
record. The current record ID is useful if the component is used on a Lightning record page, as an object-specific custom action or action
override in Lightning Experience or the Salesforce app, and so on.

The force:hasRecordId interface does two things to a component that implements it.

• It adds an attribute named recordId to your component. This attribute is of type String, and its value is an 18-character Salesforce
record ID, for example: 001xx000003DGSWAA4. If you added it yourself, the attribute definition would look like the following markup:

<aura:attribute name="recordId" type="String" />

Note: If your component implements force:hasRecordId, you don’t need to add a recordId attribute to the
component yourself. If you do add it, don’t change the access level or type of the attribute or the component will cause a
runtime error.

• When your component is invoked in a record context in Lightning Experience or the Salesforce app, the recordId is set to the
ID of the record being viewed.

This behavior is different than you might expect for an interface in a programming language. This difference is because
force:hasRecordId is a marker interface. A marker interface is a signal to the component’s container to add the interface’s behavior
to the component.

The recordId attribute is set only when you place or invoke the component in an explicit record context. For example, when you
place the component directly on a record page layout, or invoke it as an object-specific action from a record page or object home. In all
other cases, such as when you invoke the component as a global action, or create the component programmatically inside another
component, recordId isn’t set, and your component shouldn’t depend on it.

Example: Example of a Component for a Record-Specific Action

This extended example shows a component designed to be invoked as a custom object-specific action from the detail page of
an account record. After creating the component, you need to create the custom action on the account object, and then add the
action to an account page layout. When opened using an action, the component appears in an action panel that looks like this:

114

Lightning Component ActionsUsing Components

The component definition begins by implementing both the force:lightningQuickActionWithoutHeader and
the force:hasRecordId interfaces. The first makes it available for use as an action and prevents the standard controls from
displaying. The second adds the interface’s automatic record ID attribute and value assignment behavior, when the component
is invoked in a record context.

quickContact.cmp

<aura:component controller="QuickContactController"
implements="force:lightningQuickActionWithoutHeader,force:hasRecordId">

<aura:attribute name="account" type="Account" />
<aura:attribute name="newContact" type="Contact"

default="{ 'sobjectType': 'Contact' }" /> <!-- default to empty record -->

<aura:handler name="init" value="{!this}" action="{!c.doInit}" />

<!-- Display a header with details about the account -->
<div class="slds-page-header" role="banner">

<p class="slds-text-heading_label">{!v.account.Name}</p>
<h1 class="slds-page-header__title slds-m-right_small

slds-truncate slds-align-left">Create New Contact</h1>
</div>

<!-- Display the new contact form -->
<lightning:input aura:id="contactField" name="firstName" label="First Name"

value="{!v.newContact.FirstName}" required="true"/>

<lightning:input aura:id="contactField" name="lastname" label="Last Name"

115

Lightning Component ActionsUsing Components

value="{!v.newContact.LastName}" required="true"/>

<lightning:input aura:id="contactField" name="title" label="Title"
value="{!v.newContact.Title}" />

<lightning:input aura:id="contactField" type="phone" name="phone" label="Phone
Number"

pattern="^(1?(-?\d{3})-?)?(\d{3})(-?\d{4})$"
messageWhenPatternMismatch="The phone number must contain 7, 10,

or 11 digits. Hyphens are optional."
value="{!v.newContact.Phone}" required="true"/>

<lightning:input aura:id="contactField" type="email" name="email" label="Email"
value="{!v.newContact.Email}" />

<lightning:button label="Cancel" onclick="{!c.handleCancel}"
class="slds-m-top_medium" />

<lightning:button label="Save Contact" onclick="{!c.handleSaveContact}"
variant="brand" class="slds-m-top_medium"/>

</aura:component>

The component defines the following attributes, which are used as member variables.

• account—holds the full account record, after it’s loaded in the init handler

• newContact—an empty contact, used to capture the form field values

The rest of the component definition is a standard form that displays an error on the field if the required fields are empty or the
phone field doesn’t match the specified pattern.

The component’s controller has all of the interesting code, in three action handlers.

quickContactController.js

({
doInit : function(component, event, helper) {

// Prepare the action to load account record
var action = component.get("c.getAccount");
action.setParams({"accountId": component.get("v.recordId")});

// Configure response handler
action.setCallback(this, function(response) {

var state = response.getState();
if(state === "SUCCESS") {

component.set("v.account", response.getReturnValue());
} else {

console.log('Problem getting account, response state: ' + state);
}

});
$A.enqueueAction(action);

},

handleSaveContact: function(component, event, helper) {
if(helper.validateContactForm(component)) {

116

Lightning Component ActionsUsing Components

// Prepare the action to create the new contact
var saveContactAction = component.get("c.saveContactWithAccount");
saveContactAction.setParams({

"contact": component.get("v.newContact"),
"accountId": component.get("v.recordId")

});

// Configure the response handler for the action
saveContactAction.setCallback(this, function(response) {

var state = response.getState();
if(state === "SUCCESS") {

// Prepare a toast UI message
var resultsToast = $A.get("e.force:showToast");
resultsToast.setParams({

"title": "Contact Saved",
"message": "The new contact was created."

});

// Update the UI: close panel, show toast, refresh account page
$A.get("e.force:closeQuickAction").fire();
resultsToast.fire();
$A.get("e.force:refreshView").fire();

}
else if (state === "ERROR") {

console.log('Problem saving contact, response state: ' + state);
}
else {

console.log('Unknown problem, response state: ' + state);
}

});

// Send the request to create the new contact
$A.enqueueAction(saveContactAction);

}

},

handleCancel: function(component, event, helper) {
$A.get("e.force:closeQuickAction").fire();
}

})

The first action handler, doInit, is an init handler. Its job is to use the record ID that’s provided via the force:hasRecordId
interface and load the full account record. Note that there’s nothing to stop this component from being used in an action on
another object, like a lead, opportunity, or custom object. In that case, doInit will fail to load a record, but the form will still
display.

The handleSaveContact action handler validates the form by calling a helper function. If the form isn’t valid, the field-level
errors are displayed. If the form is valid, then the action handler:

• Prepares the server action to save the new contact.

• Defines a callback function, called the response handler, for when the server completes the action. The response handler is
discussed in a moment.

117

Lightning Component ActionsUsing Components

• Enqueues the server action.

The server action’s response handler does very little itself. If the server action was successful, the response handler:

• Closes the action panel by firing the force:closeQuickAction event.

• Displays a “toast” message that the contact was created by firing the force:showToast event.

• Updates the record page by firing the force:refreshView event, which tells the record page to update itself.

This last item displays the new record in the list of contacts, once that list updates itself in response to the refresh event.

The handleCancel action handler closes the action panel by firing the force:closeQuickAction event.

The component helper provided here is minimal, sufficient to illustrate its use. You’ll likely have more work to do in any production
quality form validation code.

quickContactHelper.js

({
validateContactForm: function(component) {

var validContact = true;

// Show error messages if required fields are blank
var allValid = component.find('contactField').reduce(function (validFields,

inputCmp) {
inputCmp.showHelpMessageIfInvalid();
return validFields && inputCmp.get('v.validity').valid;

}, true);

if (allValid) {
// Verify we have an account to attach it to
var account = component.get("v.account");
if($A.util.isEmpty(account)) {

validContact = false;
console.log("Quick action context doesn't have a valid account.");

}

return(validContact);
}

}
})

Finally, the Apex class used as the server-side controller for this component is deliberately simple to the point of being obvious.

QuickContactController.apxc

public with sharing class QuickContactController {

@AuraEnabled
public static Account getAccount(Id accountId) {

// Perform isAccessible() checks here
return [SELECT Name, BillingCity, BillingState FROM Account WHERE Id =

:accountId];
}

@AuraEnabled
public static Contact saveContactWithAccount(Contact contact, Id accountId) {

// Perform isAccessible() and isUpdateable() checks here

118

Lightning Component ActionsUsing Components

contact.AccountId = accountId;
upsert contact;
return contact;

}

}

One method retrieves an account based on the record ID. The other associates a new contact record with an account, and then
saves it to the database.

SEE ALSO:

Configure Components for Custom Actions

force:hasRecordId

force:hasSObjectName

Override Standard Actions with Lightning Components
Add the lightning:actionOverride interface to a Lightning component to enable the component to be used to override a
standard action on an object. You can override the View, New, Edit, and Tab standard actions on most standard and all custom components.
Overriding standard actions allows you to customize your org using Lightning components, including completely customizing the way
you view, create, and edit records.

Overriding an action with a Lightning component closely parallels overriding an action with a Visualforce page. Choose a Lightning
component instead of a Visualforce page in the Override Properties for an action.

However, there are important differences from Visualforce in how you create Lightning components that can be used as action overrides,
and significant differences in how Salesforce uses them. You’ll want to read the details thoroughly before you get started, and test
carefully in your sandbox or Developer Edition org before deploying to production.

119

Override Standard Actions with Lightning ComponentsUsing Components

IN THIS SECTION:

Standard Actions and Overrides Basics

There are six standard actions available on most standard and all custom objects: Tab, List, View, Edit, New, and Delete. In Salesforce
Classic, these are all distinct actions.

Override a Standard Action with a Lightning Component

You can override a standard action in both Salesforce Classic and Lightning Experience. While the destination is the same, the
navigation paths are different.

Creating a Lightning Component for Use as an Action Override

Add the lightning:actionOverride interface to a Lightning component to allow it to be used as an action override in
Lightning Experience or the Salesforce mobile app. Only components that implement this interface appear in the Lightning
Component Bundle menu of an object action Override Properties panel.

Packaging Action Overrides

Action overrides for custom objects are automatically packaged with the custom object. Action overrides for standard objects can’t
be packaged.

SEE ALSO:

lightning:actionOverride

Standard Actions and Overrides Basics
There are six standard actions available on most standard and all custom objects: Tab, List, View, Edit, New, and Delete. In Salesforce
Classic, these are all distinct actions.

Lightning Experience and the Salesforcemobile app combine the Tab and List actions into one action, Object Home. However, Object
Home is reached via the Tab action in Lightning Experience, and the List action in the Salesforce app. In this release, you can only override
the Tab action with a Lightning component, so you can’t use a component to override the List action for the Salesforce app. Finally, the
Salesforce app has a unique Search action (reached via Tab). (Yes, it’s a bit awkward and complicated.)

This table lists the standard actions you can override for an object as the actions are named in Setup, and the resulting action that’s
overridden in the three different user experiences.

Saleforce1Lightning ExperienceSalesforce ClassicOverride in Setup

searchobject homeobject tabTab

object homen/aobject listList

record homerecord homerecord viewView

record editrecord editrecord editEdit

record createrecord createrecord createNew

record deleterecord deleterecord deleteDelete

Note:

• “n/a” doesn’t mean you can’t access the standard behavior, and it doesn’t mean you can’t override the standard behavior. It
means you can’t access the override. It’s the override’s functionality that’s not available.

120

Override Standard Actions with Lightning ComponentsUsing Components

• There are two additional standard actions, Accept and Clone. These actions are more complex, and overriding them is an
advanced project. Overriding them with Lightning components isn’t supported.

How and Where You Can Use Lightning Component Action Overrides
Lightning components can be used to override the View, New, Edit, and Tab standard actions in Lightning Experience and the Salesforce
app. Unlike Visualforce, overrides that use Lightning components don’t affect Salesforce Classic. That is:

• If you override a standard action with a Visualforce page, it overrides the action in Salesforce Classic, Lightning Experience, and the
Salesforce app.

• If you override a standard action with a Lightning component, it overrides the action in Lightning Experience and the Salesforce
app, but the standard Salesforce page is used in Salesforce Classic.

A Lightning record page for an object takes precedence over an override of the object’s View action. That is, if you override the View
action for an object, and you also create and assign a Lightning record page for the object, the Lightning record page is used. The override
has no effect. This is true whether the override uses a Lightning component or a Visualforce page.

Action overrides aren’t supported in Lightning console apps, and are silently ignored when invoked. If a Lightning console app user
triggers an action that has been overridden, they see the standard action instead. If they trigger the same action outside of a Lightning
console app, they see the overridden action. This behavior can result in an inconsistent user experience, which you should warn users
about. Also ensure that you meet your data validation requirements using triggers and validation rules, rather than code that only runs
in the action override. This strategy ensures that your data is valid, whether it’s changed using a standard action or an action override.

Override a Standard Action with a Lightning Component
You can override a standard action in both Salesforce Classic and Lightning Experience. While the destination is the same, the navigation
paths are different.

You need at least one Lightning component in your org that implements the lightning:actionOverride interface. You can
use a custom component of your own, or a component from a managed package.

Go to the object management settings for the object with the action you plan to override.

1. Select Buttons, Links, and Actions.

2. Select Edit for the action you want to override.

3. For Override With, select Lightning Component Bundle.

4. From the drop-down menu, select the name of the Lightning component to use as the action override.

5. Select Save.

Note: Users won’t see changes to action overrides until they reload Lightning Experience or the Salesforce app.

SEE ALSO:

Salesforce Help: Find Object Management Settings

Salesforce Help: Override Standard Buttons and Tab Home Pages

121

Override Standard Actions with Lightning ComponentsUsing Components

https://help.salesforce.com/HTViewHelpDoc?id=extend_click_find_objectmgmt_parent.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=links_customize_override.htm&language=en_US

Creating a Lightning Component for Use as an Action Override
Add the lightning:actionOverride interface to a Lightning component to allow it to be used as an action override in
Lightning Experience or the Salesforce mobile app. Only components that implement this interface appear in the Lightning Component
Bundle menu of an object action Override Properties panel.

<aura:component
implements="lightning:actionOverride,force:hasRecordId,force:hasSObjectName">

<article class="slds-card">
<div class="slds-card__header slds-grid">
<header class="slds-media slds-media_center slds-has-flexi-truncate">
<div class="slds-media__body">
<h2>Expense Details</h2>

</div>
</header>
<div class="slds-no-flex">

<lightning:button label="Edit" onclick="{!c.handleEdit}"/>
</div>

</div>
<div class="slds-card__body">(expense details go here)</div>

</article>
</aura:component>

In Lightning Experience, the standard Tab and View actions display as a page, while the standard New and Edit actions display in an
overlaid panel. When used as action overrides, Lightning components that implement the lightning:actionOverride interface
replace the standard behavior completely. However, overridden actions always display as a page, not as a panel. Your component displays
without controls, except for the main Lightning Experience navigation bar. Your component is expected to provide a complete user
interface for the action, including navigation or actions beyond the navigation bar.

One important difference from Visualforce that’s worth noting is how components are added to the Lightning Component Bundle
menu. The Visualforce Page menu lists pages that either use the standard controller for the specific object, or that don’t use a standard
controller at all. This filtering means that the menu options vary from object to object, and offer only pages that are specific to the object,
or completely generic.

The Lightning Component Bundle menu includes every component that implements the lightning:actionOverride
interface. A component that implements lightning:actionOverride can’t restrict an admin to overriding only certain actions,
or only for certain objects. We recommend that your organization adopt processes and component naming conventions to ensure that
components are used to override only the intended actions on intended objects. Even so, it’s your responsibility as the component
developer to ensure that components that implement the lightning:actionOverride interface gracefully respond to being
used with any action on any object.

Access Current Record Details
Components you plan to use as action overrides usually need details about the object type they’re working with, and often the ID of the
current record. Your component can implement the following interfaces to access those object and record details.

122

Override Standard Actions with Lightning ComponentsUsing Components

force:hasRecordId

Add the force:hasRecordId interface to a Lightning component to enable the component to be assigned the ID of the current
record. The current record ID is useful if the component is used on a Lightning record page, as an object-specific custom action or action
override in Lightning Experience or the Salesforce app, and so on.

force:hasSObjectName

Add the force:hasSObjectName interface to a Lightning component to enable the component to be assigned the API name of
current record’s sObject type. The sObject name is useful if the component can be used with records of different sObject types, and
needs to adapt to the specific type of the current record.

SEE ALSO:

force:hasRecordId

force:hasSObjectName

Packaging Action Overrides
Action overrides for custom objects are automatically packaged with the custom object. Action overrides for standard objects can’t be
packaged.

When you package a custom object, overrides on that object’s standard actions are packaged with it. This includes any Lightning
components used by the overrides. Your experience should be “it just works.”

However, standard objects can’t be packaged. As a consequence, there’s no way to package overrides on the object’s standard actions.

To override standard actions on standard objects in a package, do the following:

• Manually package any Lightning components that are used by the overrides.

• Provide instructions for subscribing orgs to manually override the relevant standard actions on the affected standard objects.

SEE ALSO:

Override a Standard Action with a Lightning Component

Metadata API Developer Guide : ActionOverride

Get Your Lightning Components Ready to Use on Lightning Pages

Custom Lightning components don’t work on Lightning pages or in the Lightning App Builder right out of the box. To use a custom
component in either of these places, you must configure the component and its component bundle so that they’re compatible.

IN THIS SECTION:

Configure Components for Lightning Pages and the Lightning App Builder

There are a few steps to take before you can use your custom Lightning components in either Lightning pages or the Lightning App
Builder.

Lightning Component Bundle Design Resources

Use a design resource to control which attributes are exposed to builder tools like the Lightning App Builder. A design resource lives
in the same folder as your .cmp resource, and describes the design-time behavior of the Lightning component—information that
visual tools need to display the component in a page or app.

123

Get Your Lightning Components Ready to Use on Lightning
Pages

Using Components

https://developer.salesforce.com/docs/atlas.en-us.210.0.api_meta.meta/api_meta/actionoverride.htm

Configure Components for Lightning Experience Record Pages

After your component is set up to work on Lightning pages and in the Lightning App Builder, use these guidelines to configure the
component so it works on record pages in Lightning Experience.

Create Components for Lightning for Outlook and Lightning for Gmail

Create custom Lightning components that are available for drag-and-drop in the Email Application Pane for Lightning for Outlook
and Lightning for Gmail.

Create Dynamic Picklists for Your Custom Components

You can expose a component property as a picklist when the component is configured in the Lightning App Builder. The picklist’s
values are provided by an Apex class that you create.

Create a Custom Lightning Page Template Component

Every standard Lightning page is associated with a default template component, which defines the page’s regions and what
components the page includes. Custom Lightning page template components let you create page templates to fit your business
needs with the structure and components that you define. Once implemented, your custom template is available in the Lightning
App Builder’s new page wizard for your page creators to use.

Lightning Page Template Component Best Practices

Keep these best practices and limitations in mind when creating Lightning page template components.

Make Your Lightning Page Components Width-Aware with lightning:flexipageRegionInfo

When you add a component to a region on a page in the Lightning App Builder, the lightning:flexipageRegionInfo
sub-component passes the width of that region to its parent component. With lightning:flexipageRegionInfo and
some strategic CSS, you can tell the parent component to render in different ways in different regions at runtime.

Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder

Keep these guidelines in mind when creating components and component bundles for Lightning pages and the Lightning App
Builder.

Configure Components for Lightning Pages and the Lightning App Builder
There are a few steps to take before you can use your custom Lightning components in either Lightning pages or the Lightning App
Builder.

1. Deploy My Domain in Your Org
You must deploy My Domain in your org if you want to use Lightning components in Lightning tabs, Lightning pages, as custom
Lightning page templates, or as standalone apps.

For more information about My Domain, see the Salesforce Help.

2. Add a New Interface to Your Component
To appear in the Lightning App Builder or on a Lightning page, a component must implement one of these interfaces.

DescriptionInterface

Makes your component available for record pages and any other
type of page, including a Lightning app’s utility bar.

flexipage:availableForAllPageTypes

124

Configure Components for Lightning Pages and the Lightning
App Builder

Using Components

https://help.salesforce.com/HTViewHelpDoc?id=domain_name_overview.htm&language=en_US

DescriptionInterface

If your component is designed for record pages only, implement
this interface instead of
flexipage:availableForAllPageTypes.

For more information, see Configure Components for Lightning
Experience Record Pages on page 128.

flexipage:availableForRecordHome

Enables your component to appear on a Mail App Lightning page
in the Lightning App Builder and in Lightning for Outlook or
Lightning for Gmail.

clients:availableForMailAppAppPage

Here’s the sample code for a simple “Hello World” component.

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<aura:attribute name="greeting" type="String" default="Hello" access="global" />
<aura:attribute name="subject" type="String" default="World" access="global" />

<div style="box">
{!v.greeting}, {!v.subject}!

</div>
</aura:component>

Note: Mark your resources, such as a component, with access="global" to make the resource usable outside of your own
org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Community
Builder user in another org.

3. Add a Design Resource to Your Component Bundle
Use a design resource to control which attributes are exposed to builder tools like the Lightning App Builder. A design resource lives in
the same folder as your .cmp resource, and describes the design-time behavior of the Lightning component—information that visual
tools need to display the component in a page or app.

For example, if you want to restrict a component to one or more objects, set a default value on an attribute, or make a Lightning
component attribute available for administrators to edit in the Lightning App Builder, you need a design resource in your component
bundle.

Here’s the design resource that goes in the bundle with the “Hello World” component.

<design:component label="Hello World">
<design:attribute name="subject" label="Subject" description="Name of the person you

want to greet" />
<design:attribute name="greeting" label="Greeting" />

</design:component>

Design resources must be named componentName.design.

Optional: Add an SVG Resource to Your Component Bundle
You can use an SVG resource to define a custom icon for your component when it appears in the Lightning App Builder’s component
pane. Include it in the component bundle.

125

Configure Components for Lightning Pages and the Lightning
App Builder

Using Components

Here’s a simple red circle SVG resource to go with the “Hello World” component.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns="http://www.w3.org/2000/svg"
width="400" height="400">

<circle cx="100" cy="100" r="50" stroke="black"
stroke-width="5" fill="red" />

</svg>

SVG resources must be named componentName.svg.

SEE ALSO:

Lightning Component Bundle Design Resources

Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder

Component Bundles

Interface Reference

Lightning Component Bundle Design Resources
Use a design resource to control which attributes are exposed to builder tools like the Lightning App Builder. A design resource lives in
the same folder as your .cmp resource, and describes the design-time behavior of the Lightning component—information that visual
tools need to display the component in a page or app.

For example, here’s a simple design resource that goes in a bundle with a “Hello World” component.

<design:component label="Hello World">
<design:attribute name="subject" label="Subject" description="Name of the person you

want to greet" />
<design:attribute name="greeting" label="Greeting" />

</design:component>

design:component

This is the root element for the design resource. It contains the component’s design-time configuration for tools such as the App Builder
to use.

DescriptionAttribute

Sets the label of the component when it displays in the Lightning App Builder. When creating a
custom Lightning page template component, this text displays as the name of the template in the
Lightning App Builder new page wizard.

label

Note: Label expressions in markup are supported in .cmp and .app resources only.

126

Lightning Component Bundle Design ResourcesUsing Components

design:attribute

To make a Lightning component attribute available for administrators to edit in the Lightning App Builder, add a design:attribute
node for the attribute into the design resource. An attribute marked as required in the component definition automatically appears for
users in the Lightning App Builder, unless it has a default value assigned to it.

A design resource supports only attributes of type Integer, String, or Boolean.

DescriptionAttribute

Renders a field as a picklist, with static values. Only supported for String attributes.

<design:attribute name="Name" datasource="value1,value2,value3" />

datasource

You can also set the picklist values dynamically using an Apex class. See Create Dynamic Picklists for
Your Custom Components on page 134 for more information.

Any String attribute with a datasource in a design resource is treated as a picklist.

Sets a default value on an attribute in a design resource.

<design:attribute name="Name" datasource="value1,value2,value3"
default="value1" />

default

Displays as an i-bubble for the attribute in the properties pane.description

Attribute label that displays in the properties pane.label

If the attribute is an Integer, this sets its maximum allowed value. If the attribute is a String,
this is the maximum length allowed.

max

If the attribute is an Integer, this sets its minimum allowed value. If the attribute is a String,
this is the minimum length allowed.

min

Required attribute. Its value must match the aura:attribute name value in the .cmp resource.name

Input placeholder text for the attribute when it displays in the properties pane.placeholder

Denotes whether the attribute is required. If omitted, defaults to false.required

Note: Label expressions in markup are supported in .cmp and .app resources only.

<sfdc:object> and <sfdc:objects>
Use these tag sets to restrict your component to one or more objects.

Note: <sfdc:object> and <sfdc:objects> aren’t supported in Community Builder. They’re also ignored when setting
a component to use as an object-specific action or to override a standard action.

Here’s the same “Hello World” component’s design resource restricted to two objects.

<design:component label="Hello World">
<design:attribute name="subject" label="Subject" description="Name of the person you

want to greet" />
<design:attribute name="greeting" label="Greeting" />

127

Lightning Component Bundle Design ResourcesUsing Components

<sfdc:objects>
<sfdc:object>Custom__c</sfdc:object>
<sfdc:object>Opportunity</sfdc:object>

</sfdc:objects>
</design:component>

If an object is installed from a package, add the namespace__ string to the beginning of the object name when including it in the
<sfdc:object> tag set. For example: objectNamespace__ObjectApiName__c.

SEE ALSO:

Configure Components for Lightning Pages and the Lightning App Builder

Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder

Configure Components for Lightning Experience Record Pages
After your component is set up to work on Lightning pages and in the Lightning App Builder, use these guidelines to configure the
component so it works on record pages in Lightning Experience.

Record pages are different from app pages in a key way: they have the context of a record. To make your components display content
that is based on the current record, use a combination of an interface and an attribute.

• If your component is available for both record pages and any other type of page, implement
flexipage:availableForAllPageTypes.

• If your component is designed only for record pages, implement the flexipage:availableForRecordHome interface
instead of flexipage:availableForAllPageTypes.

• If your component needs the record ID, also implement the force:hasRecordId interface.

• If your component needs the object’s API name, also implement the force:hasSObjectName interface.

Note: If your managed component implements the flexipage or forceCommunity interfaces, its upload is blocked if
the component and its attributes aren’t set to access="global". For more information on access checks, see Controlling
Access.

force:hasRecordId

Useful for components invoked in a context associated with a specific record, such as record page components or custom object actions.
Add this interface if you want your component to receive the ID of the currently displaying record.

The force:hasRecordId interface does two things to a component that implements it.

• It adds an attribute named recordId to your component. This attribute is of type String, and its value is an 18-character Salesforce
record ID, for example: 001xx000003DGSWAA4. If you added it yourself, the attribute definition would look like the following markup:

<aura:attribute name="recordId" type="String" />

Note: If your component implements force:hasRecordId, you don’t need to add a recordId attribute to the
component yourself. If you do add it, don’t change the access level or type of the attribute or the component will cause a
runtime error.

• When your component is invoked in a record context in Lightning Experience or the Salesforce app, the recordId is set to the
ID of the record being viewed.

128

Configure Components for Lightning Experience Record PagesUsing Components

Don’t expose the recordId attribute to the Lightning App Builder—don’t put it in the component’s design resource. You don’t want
admins supplying a record ID.

The recordId attribute is set only when you place or invoke the component in an explicit record context. For example, when you
place the component directly on a record page layout, or invoke it as an object-specific action from a record page or object home. In all
other cases, such as when you invoke the component as a global action, or create the component programmatically inside another
component, recordId isn’t set, and your component shouldn’t depend on it.

force:hasSObjectName

Useful for record page components. Implement this interface if your component needs to know the API name of the object of the
currently displaying record.

This interface adds an attribute named sObjectName to your component. This attribute is of type String, and its value is the API
name of an object, such as Account or myNamespace__myObject__c. For example:

<aura:attribute name="sObjectName" type="String" />

Note: If your component implements force:hasSObjectName, you don’t need to add an sObjectName attribute to
the component yourself. If you do add it, don’t change the access level or type of the attribute or the component will cause a
runtime error.

The sObjectName attribute is set only when you place or invoke the component in an explicit record context. For example, when
you place the component directly on a record page layout, or invoke it as an object-specific action from a record page or object home.
In all other cases, such as when you invoke the component as a global action, or create the component programmatically inside another
component, sObjectName isn’t set, and your component shouldn’t depend on it.

SEE ALSO:

Configure Components for Lightning Pages and the Lightning App Builder

Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder

Working with Salesforce Records

force:hasRecordId

force:hasSObjectName

Create Components for Lightning for Outlook and Lightning for Gmail
Create custom Lightning components that are available for drag-and-drop in the Email Application Pane for Lightning for Outlook and
Lightning for Gmail.

To add a component to email application panes in Lightning for Outlook or Lightning for Gmail, implement the
clients:availableForMailAppAppPage interface.

To allow the component access to email or calendar events, implement the clients:hasItemContext interface.

The clients:hasItemContext interface adds attributes to your component that it can use to implement record- or context-specific
logic. The attributes included are:

• The source attribute, which indicates the email or appointment source. Possible values include email and event.

<aura:attribute name="source" type="String" />

129

Create Components for Lightning for Outlook and Lightning
for Gmail

Using Components

• The people attribute indicates recipients’ email addresses on the current email or appointment.

<aura:attribute name="people" type="Object" />

The shape of the people attribute changes according to the value of the source attribute.

When the source attribute is set to email, the people object contains the following elements.

{
to: [{ name: nameString, email: emailString }, ...],
cc: [...],
from: [{ name: senderName, email: senderEmail }],

}

When the source attribute is set to event, the people object contains the following elements.

{
requiredAttendees: [{ name: attendeenameString, email: emailString }, ...],
optionalAttendees: [{ name: optattendeenameString, email: emailString }, ...],
organizer: [{ name: organizerName, email: senderEmail }],

}

• The subject indicates the subject on the current email.

<aura:attribute name="subject" type="String" />

• The messageBody indicates the email message on the current email.

<aura:attribute name="messageBody" type="String" />

To provide the component with an event’s date or location, implement the clients:hasEventContext interface.

dates: {
"start": value (String),
"end": value (String),

}

Lightning for Outlook and Lightning for Gmail don’t support the following events:

• force:navigateToList

• force:navigateToRelatedList

• force:navigateToObjectHome

• force:refreshView

Note: To ensure that custom components appear correctly in Lightning for Outlook or Lightning for Gmail, enable them to adjust
to variable widths.

IN THIS SECTION:

Sample Custom Components for Lightning for Outlook and Lightning for Gmail

Review samples of custom Lightning components that you can implement in the Email Application Pane for Lightning for Outlook
and Lightning for Gmail.

130

Create Components for Lightning for Outlook and Lightning
for Gmail

Using Components

Sample Custom Components for Lightning for Outlook and Lightning for Gmail
Review samples of custom Lightning components that you can implement in the Email Application Pane for Lightning for Outlook and
Lightning for Gmail.

Here’s an example of a custom Lightning Component you can include in your email application pane for Lightning for Outlook or
Lightning for Gmail. This component leverages the context of the selected email or appointment.

<aura:component implements="clients:availableForMailAppAppPage,clients:hasItemContext">

<!--
Add these handlers to customize what happens when the attributes change
<aura:handler name="change" value="{!v.subject}" action="{!c.handleSubjectChange}" />

<aura:handler name="change" value="{!v.people}" action="{!c.handlePeopleChange}" />
-->

<div id="content">
<h1>Email subject</h1>
{!v.subject}

<h1>To:</h1>
<aura:iteration items="{!v.people.to}" var="to">

{!to.name} - {!to.email}

</aura:iteration>

<h1>From:</h1>
{!v.people.from.name} - {!v.people.from.email}

<h1>CC:</h1>
<aura:iteration items="{!v.people.cc}" var="cc">

{!cc.name} - {!cc.email}

</aura:iteration>

New Email Arrived, {!v.subject}!
</div>

</aura:component>

In this example, the custom component displays account and opportunity information based on the email recipients’ email addresses.
The component calls a JavaScript controller function, handlePeopleChange(), on initialization. The JavaScript controller calls
methods on an Apex server-side controller to query the information and compute the accounts ages and opportunities days until closing.
The Apex controller, JavaScript controller, and helper are listed next.

<!--
This component handles the email context on initialization.
It retrieves accounts and opportunities based on the email addresses included
in the email recipients list.
It then calculates the account and opportunity ages based on when the accounts
were created and when the opportunities will close.
-->

<aura:component
implements="clients:availableForMailAppAppPage,clients:hasItemContext"
controller="ComponentController">

131

Create Components for Lightning for Outlook and Lightning
for Gmail

Using Components

<aura:handler name="init" value="{!this}" action="{!c.handlePeopleChange}" />
<aura:attribute name="accounts" type="List" />
<aura:attribute name="opportunities" type="List" />
<aura:iteration items="{!v.accounts}" var="acc">

{!acc.name} => {!acc.age}
</aura:iteration>
<aura:iteration items="{!v.opportunities}" var="opp">

{!opp.name} => {!opp.closesIn} Days till closing
</aura:iteration>

</aura:component>

/*
On the server side, the Apex controller includes
Aura-enabled methods that accept a list of emails as parameters.
*/

public class ComponentController {
/*
This method searches for Contacts with matching emails in the email list,
and includes Account information in the fields. Then, it filters the
information to return a list of objects to use on the client side.
*/
@AuraEnabled
public static List<Map<String, Object>> findAccountAges(List<String> emails) {
List<Map<String, Object>> ret = new List<Map<String, Object>>();
List<Contact> contacts = [SELECT Name, Account.Name, Account.CreatedDate

FROM Contact
WHERE Contact.Email IN :emails];

for (Contact c: contacts) {
Map<String, Object> item = new Map<String, Object>();
item.put('name', c.Account.Name);
item.put('age',

Date.valueOf(c.Account.CreatedDate).daysBetween(
System.Date.today()));

ret.add(item);
}
return ret;

}

/*
This method searches for OpportunityContactRoles with matching emails
in the email list.
Then, it calculates the number of days until closing to return a list
of objects to use on the client side.
*/
@AuraEnabled
public static List<Map<String, Object>> findOpportunityCloseDateTime(List<String>

emails) {
List<Map<String, Object>> ret = new List<Map<String, Object>>();
List<OpportunityContactRole> contacts =

[SELECT Opportunity.Name, Opportunity.CloseDate

132

Create Components for Lightning for Outlook and Lightning
for Gmail

Using Components

FROM OpportunityContactRole
WHERE isPrimary=true AND Contact.Email IN :emails];

for (OpportunityContactRole c: contacts) {
Map<String, Object> item = new Map<String, Object>();
item.put('name', c.Opportunity.Name);
item.put('closesIn',

System.Date.today().daysBetween(
Date.valueOf(c.Opportunity.CloseDate)));

ret.add(item);
}
return ret;

}
}

({
/*
This JavaScript controller is called on component initialization and relies
on the helper functionality to build a list of email addresses from the
available people. It then makes a caller to the server to run the actions to
display information.
Once the server returns the values, it sets the appropriate values to display
on the client side.
*/

handlePeopleChange: function(component, event, helper){
var people = component.get("v.people");
var peopleEmails = helper.filterEmails(people);
var action = component.get("c.findOpportunityCloseDateTime");
action.setParam("emails", peopleEmails);

action.setCallback(this, function(response){
var state = response.getState();
if(state === "SUCCESS"){

component.set("v.opportunities", response.getReturnValue());
} else{

component.set("v.opportunities",[]);
}

});
$A.enqueueAction(action);
var action = component.get("c.findAccountAges");
action.setParam("emails", peopleEmails);

action.setCallback(this, function(response){
var state = response.getState();
if(state === "SUCCESS"){

component.set("v.accounts", response.getReturnValue());
} else{

component.set("v.accounts",[]);
}

});
$A.enqueueAction(action);

133

Create Components for Lightning for Outlook and Lightning
for Gmail

Using Components

}
})

({
/*
This helper function filters emails from objects.
*/
filterEmails : function(people){

return this.getEmailsFromList(people.to).concat(
this.getEmailsFromList(people.cc));

},

getEmailsFromList : function(list){
var ret = [];
for (var i in list) {
ret.push(list[i].email);

}
return ret;

}
})

Create Dynamic Picklists for Your Custom Components
You can expose a component property as a picklist when the component is configured in the Lightning App Builder. The picklist’s values
are provided by an Apex class that you create.

For example, let’s say you’re creating a component for the Home page to display a custom Company Announcement record. You can
use an Apex class to put the titles of all Company Announcement records in a picklist in the component’s properties in the Lightning
App Builder. Then, when admins add the component to a Home page, they can easily select the appropriate announcement to place
on the page.

1. Create a custom Apex class to use as a datasource for the picklist. The Apex class must extend the
VisualEditor.DynamicPickList abstract class.

2. Add an attribute to your design file that specifies your custom Apex class as the datasource.

Here’s a simple example.

Create an Apex Class
global class MyCustomPickList extends VisualEditor.DynamicPickList{

global override VisualEditor.DataRow getDefaultValue(){
VisualEditor.DataRow defaultValue = new VisualEditor.DataRow('red', 'RED');
return defaultValue;

}
global override VisualEditor.DynamicPickListRows getValues() {

VisualEditor.DataRow value1 = new VisualEditor.DataRow('red', 'RED');
VisualEditor.DataRow value2 = new VisualEditor.DataRow('yellow', 'YELLOW');

VisualEditor.DynamicPickListRows myValues = new VisualEditor.DynamicPickListRows();

myValues.addRow(value1);
myValues.addRow(value2);

134

Create Dynamic Picklists for Your Custom ComponentsUsing Components

return myValues;
}

}

Note: Although VisualEditor.DataRow allows you to specify any Object as its value, you can specify a datasource only
for String attributes. The default implementation for isValid() and getLabel() assumes that the object passed in the
parameter is a String for comparison.

For more information on the VisualEditor.DynamicPickList abstract class, see the Apex Developer Guide.

Add the Apex Class to Your Design File
To specify an Apex class as a datasource in an existing component, add the datasource property to the attribute with a value consisting
of the Apex namespace and Apex class name.

<design:component>
<design:attribute name="property1" datasource="apex://MyCustomPickList"/>

</design:component>

Dynamic Picklist Considerations
• Specifying the Apex datasource as public isn’t respected in managed packages. If an Apex class is public and part of a managed

package, it can be used as a datasource for custom components in the subscriber org.

• Profile access on the Apex class isn’t respected when the Apex class is used as a datasource. If an admin’s profile doesn’t have access
to the Apex class but does have access to the custom component, the admin sees values provided by the Apex class on the component
in the Lightning App Builder.

Create a Custom Lightning Page Template Component
Every standard Lightning page is associated with a default template component, which defines the page’s regions and what components
the page includes. Custom Lightning page template components let you create page templates to fit your business needs with the
structure and components that you define. Once implemented, your custom template is available in the Lightning App Builder’s new
page wizard for your page creators to use.

Note: My Domain must be enabled in your org before you can use custom template components in the Lightning App Builder.

Custom Lightning page template components are supported for record pages, app pages, and Home pages. Each page type has a
different interface that the template component must implement.

• lightning:appHomeTemplate

• lightning:homeTemplate

• lightning:recordHomeTemplate

Important: Each template component should implement only one template interface. Template components shouldn’t implement
any other type of interface, such as flexipage:availableForAllPageTypes or force:hasRecordId. A template
component can’t multi-task as a regular Lightning component. It’s either a template, or it’s not.

135

Create a Custom Lightning Page Template ComponentUsing Components

https://developer.salesforce.com/docs/atlas.en-us.210.0.apexcode.meta/apexcode/apex_class_VisualEditor_DynamicPickList.htm

1. Build the Template Component Structure
A custom template is a Lightning component bundle that should include at least a .cmp resource and a design resource. The .cmp
resource must implement a template interface, and declare an attribute of type Aura.Component[] for each template region. The
Aura.Component[] type defines the attribute as a collection of components.

Note: The Aura.Component[] attribute is interpreted as a region only if it’s also specified as a region in the design resource.

Here’s an example of a two-column app page template .cmp resource that uses the lightning:layout component and the
Salesforce Lightning Design System (SLDS) for styling.

When the template is viewed on a desktop, its right column takes up 30% (4 SLDS columns), and the left column takes up the remaining
70% of the page width. On non-desktop form factors, the columns display as 50/50.

<aura:component implements="lightning:appHomeTemplate" description="Main column
and right sidebar. On a phone, the regions are of equal width">

<aura:attribute name="left" type="Aura.Component[]" />
<aura:attribute name="right" type="Aura.Component[]" />

<div>
<lightning:layout horizontalAlign="spread">

<lightning:layoutItem flexibility="grow"
class="slds-m-right_small">

{!v.left}
</lightning:layoutItem>
<lightning:layoutItem size="{! $Browser.isDesktop ? '4' : '6' }"

class="slds-m-left_small">
{!v.right}

</lightning:layoutItem>
</lightning:layout>

</div>

</aura:component>

The description attribute on the aura:component tag is optional, but recommended. If you define a description, it displays
as the template description beneath the template image in the Lightning App Builder new page wizard.

2. Configure Template Regions and Components in the Design Resource
The design resource controls what kind of page can be built on the template by specifying what regions a page that uses the template
must have and what kinds of components can be put into those regions.

Regions inherit the interface assignments that you set for the overall page, as set in the .cmp resource.

Specify regions and components using these tags:

flexipage:template
This tag has no attributes and acts as a wrapper for the flexipage:region tag. Text literals are not allowed.

flexipage:region
This tag defines a region on the template and has these attributes. Text literals are not allowed.

DescriptionAttribute

The name of an attribute in the .cmp resource marked type Aura.Component[]. Flags the
attribute as a region.

name

136

Create a Custom Lightning Page Template ComponentUsing Components

DescriptionAttribute

Specifies the default width of the region. This attribute is required for all regions. Valid values are:
Small, Medium, Large, and Xlarge.

defaultWidth

flexipage:formFactor
Use this tag to specify how much space the component takes on the page based on the type of device that it renders on. This tag
should be specified as a child of the flexipage:region tag. Use multiple flexipage:formFactor tags per
flexipage:region to define flexible behavior across form factors.

DescriptionAttribute

The type of form factor or device the template renders on, such as a desktop or tablet. Valid values
are: Medium (tablet), and Large (desktop). Because the only reasonable width value for a

type

Small form factor (phone) is Small, you don’t have to specify a Small type. Salesforce
takes care of that association automatically.

The available size of the area that the component in this region has to render in. Valid values are:
Small, Medium, Large, and Xlarge.

width

For example, in this code snippet, the region has a large width to render in when the template is rendered on a large form factor,
and a small width to render in when the template is rendered on a medium form factor.

<flexipage:region name="right" defaultWidth="Large">
<flexipage:formFactor type="Large" width="Large" />
<flexipage:formFactor type="Medium" width="Small" />

</flexipage:region>

Tip: You can use the lightning:flexipageRegionInfo sub-component to pass region width information to a
component, which lets you configure your page components to render differently based on what size region they display in.

Here’s the design file that goes with the sample .cmp resource. The label text in the design file displays as the name of the template in
the new page wizard.

<design:component label="Two Column Custom App Page Template">
<flexipage:template >

<!-- The default width for the "left" region is "MEDIUM". In tablets,
the width is "SMALL" -->

<flexipage:region name="left" defaultWidth="MEDIUM">
<flexipage:formfactor type="MEDIUM" width="SMALL" />

</flexipage:region>
<flexipage:region name="right" defaultWidth="SMALL" />

</flexipage:template>
</design:component>

3. (Optional) Add a Template Image
If you added a description to your .cmp resource, both it and the template image display when a user selects your template in the
Lightning App Builder new page wizard.

You can use an SVG resource to define the custom template image.

137

Create a Custom Lightning Page Template ComponentUsing Components

We recommend that your SVG resource be no larger than 150KB, and no more than 160px high and 560px wide.

SEE ALSO:

Lightning Page Template Component Best Practices

Make Your Lightning Page Components Width-Aware with lightning:flexipageRegionInfo

Lightning Components Developer Guide: lightning:layout

Lightning Page Template Component Best Practices
Keep these best practices and limitations in mind when creating Lightning page template components.

• Don’t add custom background styling to a template component. It interferes with Salesforce’s Lightning Experience page themes.

• Including scrolling regions in your template component can cause problems when you try to view it in the Lightning App Builder.

• Custom templates can’t be extensible nor extended—you can’t extend a template from anything else, nor can you extend other
things from a template.

• Using getters to get the regions as variables works at design time but not at run time. Here’s an example of what we mean.

<aura:component implements="lightning:appHomeTemplate">
<aura:attribute name="region" type="Aura.Component[]" />
<aura:handler name="init" value="{!this}" action="{!c.init}" />

<div>
{!region}

</div>

138

Lightning Page Template Component Best PracticesUsing Components

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/aura_compref_lightning_layout.htm

</aura:component>

{
init : function(component, event, helper) {

var region = cmp.get('v.region'); // This will fail at run time.
...

}
}

• You can remove regions from a template as long as it’s not being used by a Lightning page, and as long as it’s not set to access=global.
You can add regions at any time.

• A region can be used more than once in the code, but only one instance of the region should render at run time.

• A template component can contain up to 25 regions.

Make Your Lightning Page Components Width-Aware with
lightning:flexipageRegionInfo
When you add a component to a region on a page in the Lightning App Builder, the lightning:flexipageRegionInfo
sub-component passes the width of that region to its parent component. With lightning:flexipageRegionInfo and some
strategic CSS, you can tell the parent component to render in different ways in different regions at runtime.

For example, the List View component renders differently in a large region than it does in a small region as it’s a width-aware component.

Valid region width values are: Small, Medium, Large, and Xlarge.

You can use CSS to style your component and to help determine how your component renders. Here’s an example.

139

Make Your Lightning Page Components Width-Aware with
lightning:flexipageRegionInfo

Using Components

This simple component has two fields, field1 and field2. The component renders with the fields side by side, filling 50% of the region’s
available width when not in a small region. When the component is in a small region, the fields render as a list, using 100% of the region’s
width.

<aura:component implements="flexipage:availableForAllPageTypes">
<aura:attribute name="width" type="String"/>
<lightning:flexipageRegionInfo width="{!v.width}"/>
<div class="{! 'container' + (v.width=='SMALL'?' narrowRegion':'')}">

<div class="{! 'eachField f1' + (v.width=='SMALL'?' narrowRegion':'')}">
<lightning:input name="field1" label="First Name"/>

</div>
<div class="{! 'eachField f2' + (v.width=='SMALL'?' narrowRegion':'')}">

<lightning:input name="field2" label="Last Name"/>
</div>

</div>
</aura:component>

Here’s the CSS file that goes with the component.

.THIS .eachField.narrowRegion{
width:100%;

}
.THIS .eachField{

width:50%;
display:inline-block;

}

Tips and Considerations for Configuring Components for Lightning Pages
and the Lightning App Builder
Keep these guidelines in mind when creating components and component bundles for Lightning pages and the Lightning App Builder.

Note: Mark your resources, such as a component, with access="global" to make the resource usable outside of your own
org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Community
Builder user in another org.

Components
• Set a friendly name for the component using the label attribute in the element in the design file, such as <design:component

label="foo">.

• Design your components to fill 100% of the width (including margins) of the region that they display in.

• Components must provide an appropriate placeholder behavior in declarative tools if they require interaction.

• A component must never display a blank box. Think of how other sites work. For example, Facebook displays an outline of the feed
before the actual feed items come back from the server. This improves the user’s perception of UI responsiveness.

• If the component depends on a fired event, then give it a default state that displays before the event fires.

• Style components in a manner consistent with the styling of Lightning Experience and consistent with the Salesforce Design System.

• If you don’t have My Domain enabled in your org and you activate a Lightning page that contains a custom component, the
component is dropped from the page at runtime.

140

Tips and Considerations for Configuring Components for
Lightning Pages and the Lightning App Builder

Using Components

Attributes
• Use the design file to control which attributes are exposed to the Lightning App Builder.

• Make your attributes easy to use and understandable to an administrator. Don’t expose SOQL queries, JSON objects, or Apex class
names.

• Give your required attributes default values. When a component that has required attributes with no default values is added to the
App Builder, it appears invalid, which is a poor user experience.

• Use basic supported types (string, integer, boolean) for any exposed attributes.

• Specify a min and max attribute for integer attributes in the <design:attribute> element to control the range of accepted
values.

• String attributes can provide a datasource with a set of predefined values allowing the attribute to expose its configuration as a
picklist.

• Give all attributes a label with a friendly display name.

• Provide descriptions to explain the expected data and any guidelines, such as data format or expected range of values. Description
text appears as a tooltip in the Property Editor.

• To delete a design attribute for a component that implements the flexipage:availableForAllPageTypes or
forceCommunity:availableForAllPageTypes interface, first remove the interface from the component before
deleting the design attribute. Then re-implement the interface. If the component is referenced in a Lightning page, you must remove
the component from the page before you can change it.

Limitations
The Lightning App Builder doesn’t support the Map, Object, or java:// complex types.

SEE ALSO:

Configure Components for Lightning Pages and the Lightning App Builder

Configure Components for Lightning Experience Record Pages

Use Lightning Components in Community Builder

To use a custom Lightning component in Community Builder, you must configure the component and its component bundle so that
they’re compatible.

IN THIS SECTION:

Configure Components for Communities

Make your custom Lightning components available for drag and drop in the Lightning Components pane in Community Builder.

Create Custom Theme Layout Components for Communities

Create a custom theme layout to transform the appearance and overall structure of the pages in the Customer Service (Napili)
template.

Create Custom Search and Profile Menu Components for Communities

Create custom components to replace the Customer Service (Napili) template’s standard Profile Header and Search & Post Publisher
components in Community Builder.

141

Use Lightning Components in Community BuilderUsing Components

Create Custom Content Layout Components for Communities

Community Builder includes several ready-to-use layouts that define the content regions of your page, such as a two-column layout
with a 2:1 ratio. However, if you need a layout that’s customized for your community, create a custom content layout component
to use when building new pages in Community Builder. You can also update the content layout of the default pages that come with
your community template.

Configure Components for Communities
Make your custom Lightning components available for drag and drop in the Lightning Components pane in Community Builder.

Add a New Interface to Your Component
To appear in Community Builder, a component must implement the forceCommunity:availableForAllPageTypes
interface.

Here’s the sample code for a simple “Hello World” component.

<aura:component implements="forceCommunity:availableForAllPageTypes" access="global">
<aura:attribute name="greeting" type="String" default="Hello" access="global" />
<aura:attribute name="subject" type="String" default="World" access="global" />

<div style="box">
{!v.greeting}, {!v.subject}!

</div>
</aura:component>

Note: Mark your resources, such as a component, with access="global" to make the resource usable outside of your own
org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Community
Builder user in another org.

Next, add a design resource to your component bundle. A design resource describes the design-time behavior of a Lightning
component—information that visual tools need to allow adding the component to a page or app. It contains attributes that are available
for administrators to edit in Community Builder.

Adding this resource is similar to adding it for the Lightning App Builder. For more information, see Configure Components for Lightning
Pages and the Lightning App Builder.

Important: When you add custom components to your community, they can bypass the object- and field-level security (FLS)
you set for the guest user profile. Lightning components don’t automatically enforce CRUD and FLS when referencing objects or
retrieving the objects from an Apex controller. This means that the framework continues to display records and fields for which
users don’t have CRUD permissions and FLS visibility. You must manually enforce CRUD and FLS in your Apex controllers.

SEE ALSO:

Component Bundles

Standard Design Tokens for Communities

Create Custom Theme Layout Components for Communities
Create a custom theme layout to transform the appearance and overall structure of the pages in the Customer Service (Napili) template.

142

Configure Components for CommunitiesUsing Components

https://developer.salesforce.com/page/Enforcing_CRUD_and_FLS

A theme layout is the top-level layout for the template pages (1) in your community. It includes the common header and footer (2), and
often includes navigation, search, and the user profile menu. In contrast, the content layout (3) defines the content regions of your pages,
such as a two-column layout.

A theme layout type categorizes the pages in your community that share the same theme layout.

When you create a custom theme layout component in the Developer Console, it appears in Community Builder in the Settings >
Theme area. Here you can assign it to new or existing theme layout types. Then you apply the theme layout type—and thereby the
theme layout—in the page’s properties.

1. Add an Interface to Your Theme Layout Component
A theme layout component must implement the forceCommunity:themeLayout interface to appear in Community Builder
in the Settings > Theme area.

Explicitly declare {!v.body} in your code to ensure that your theme layout includes the content layout. Add {!v.body} wherever
you want the page’s contents to appear within the theme layout.

You can add components to the regions in your markup or leave regions open for users to drag-and-drop components into. Attributes
declared as Aura.Component[] and included in your markup are rendered as open regions in the theme layout that users can
add components to.

In Customer Service (Napili), the Template Header consists of these locked regions:

• search, which contains the Search Publisher component

• profileMenu, which contains the User Profile Menu component

• navBar, which contains the Navigation Menu component

To create a custom theme layout that reuses the existing components in the Template Header region, declare search, profileMenu,
or navBar as the attribute name value, as appropriate. For example:

<aura:attribute name="navBar" type="Aura.Component[]" required="false" />

Tip: If you create a custom profile menu or a search component, declaring the attribute name value also lets users select the
custom component when using your theme layout.

143

Create Custom Theme Layout Components for CommunitiesUsing Components

Here’s the sample code for a simple theme layout.

<aura:component implements="forceCommunity:themeLayout" access="global" description="Sample
Custom Theme Layout">

<aura:attribute name="search" type="Aura.Component[]" required="false"/>
<aura:attribute name="profileMenu" type="Aura.Component[]" required="false"/>
<aura:attribute name="navBar" type="Aura.Component[]" required="false"/>
<aura:attribute name="newHeader" type="Aura.Component[]" required="false"/>
<div>

<div class="searchRegion">
{!v.search}

</div>
<div class="profileMenuRegion">

{!v.profileMenu}
</div>
<div class="navigation">

{!v.navBar}
</div>
<div class="newHeader">

{!v.newHeader}
</div>
<div class="mainContentArea">

{!v.body}
</div>

</div>
</aura:component>

Note: Mark your resources, such as a component, with access="global" to make the resource usable outside of your own
org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Community
Builder user in another org.

2. Add a Design Resource to Include Theme Properties
You can expose theme layout properties in Community Builder by adding a design resource to your bundle.

This example adds two checkboxes to a theme layout called Small Header.

<design:component label="Small Header">
<design:attribute name="blueBackground" label="Blue Background"/>
<design:attribute name="smallLogo" label="Small Logo"/>

</design:component>

The design resource only exposes the properties. You must implement the properties in the component.

<aura:component implements="forceCommunity:themeLayout" access="global" description="Small
Header">

<aura:attribute name="blueBackground" type="Boolean" default="false"/>
<aura:attribute name="smallLogo" type="Boolean" default="false" />
...

Design resources must be named componentName.design.

3. Add a CSS Resource to Avoid Overlapping Issues
Add a CSS resource to your bundle to style the theme layout as needed.

144

Create Custom Theme Layout Components for CommunitiesUsing Components

To avoid overlapping issues with positioned elements, such as dialog boxes or hovers:

• Apply CSS styles.

.THIS {
position: relative;
z-index: 1;

}

• Wrap the elements in your custom theme layout in a div tag.

<div class="mainContentArea">
{!v.body}

</div>

Note: For custom theme layouts, SLDS is loaded by default.

CSS resources must be named componentName.css.

SEE ALSO:

Create Custom Search and Profile Menu Components for Communities

forceCommunity:navigationMenuBase

Salesforce Help: Custom Theme Layouts and Theme Layout Types

Create Custom Search and Profile Menu Components for Communities
Create custom components to replace the Customer Service (Napili) template’s standard Profile Header and Search & Post Publisher
components in Community Builder.

forceCommunity:profileMenuInterface

Add the forceCommunity:profileMenuInterface interface to a Lightning component to allow it to be used as a custom
profile menu component for the Customer Service (Napili) community template. After you create a custom profile menu component,
admins can select it in Community Builder in Settings > Theme to replace the template’s standard Profile Header component.

Here’s the sample code for a simple profile menu component.

<aura:component implements="forceCommunity:profileMenuInterface" access="global">
<aura:attribute name="options" type="String[]" default="Option 1, Option 2"/>
<ui:menu >

<ui:menuTriggerLink aura:id="trigger" label="Profile Menu"/>
<ui:menuList class="actionMenu" aura:id="actionMenu">

<aura:iteration items="{!v.options}" var="itemLabel">
<ui:actionMenuItem label="{!itemLabel}" click="{!c.handleClick}"/>

</aura:iteration>
</ui:menuList>

</ui:menu>
</aura:component>

145

Create Custom Search and Profile Menu Components for
Communities

Using Components

https://help.salesforce.com/HTViewHelpDoc?id=community_builder_theme.htm&language=en_US

forceCommunity:searchInterface

Add the forceCommunity:searchInterface interface to a Lightning component to allow it to be used as a custom search
component for the Customer Service (Napili) community template. After you create a custom search component, admins can select it
in Community Builder in Settings > Theme to replace the template’s standard Search & Post Publisher component.

Here’s the sample code for a simple search component.

<aura:component implements="forceCommunity:searchInterface" access="global">
<div class="search">

<div class="search-wrapper">
<form class="search-form">

<div class="search-input-wrapper">
<input class="search-input" type="text" placeholder="My Search"/>

</div>
<input type="hidden" name="language" value="en" />

</form>
</div>

</div>
</aura:component>

SEE ALSO:

Create Custom Theme Layout Components for Communities

forceCommunity:navigationMenuBase

Salesforce Help: Custom Theme Layouts and Theme Layout Types

Create Custom Content Layout Components for Communities
Community Builder includes several ready-to-use layouts that define the content regions of your page, such as a two-column layout
with a 2:1 ratio. However, if you need a layout that’s customized for your community, create a custom content layout component to use
when building new pages in Community Builder. You can also update the content layout of the default pages that come with your
community template.

When you create a custom content layout component in the Developer Console, it appears in Community Builder in the New Page and
the Change Layout dialog boxes.

1. Add a New Interface to Your Content Layout Component
To appear in the New Page and the Change Layout dialog boxes in Community Builder, a content layout component must implement
the forceCommunity:layout interface.

Here’s the sample code for a simple two-column content layout.

<aura:component implements="forceCommunity:layout" description=”Custom Content Layout”
access="global">

<aura:attribute name="column1" type="Aura.Component[]" required="false"></aura:attribute>

<aura:attribute name="column2" type="Aura.Component[]" required="false"></aura:attribute>

<div class="container">
<div class="contentPanel">

146

Create Custom Content Layout Components for CommunitiesUsing Components

https://help.salesforce.com/HTViewHelpDoc?id=community_builder_theme.htm&language=en_US

<div class="left">
{!v.column1}

</div>
<div class="right">

{!v.column2}
</div>

</div>
</div>

</aura:component>

Note: Mark your resources, such as a component, with access="global" to make the resource usable outside of your own
org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Community
Builder user in another org.

2. Add a CSS Resource to Your Component Bundle
Next, add a CSS resource to style the content layout as needed.

Here’s the sample CSS for our simple two-column content layout.

.THIS .contentPanel:before,

.THIS .contentPanel:after {
content: " ";
display: table;

}
.THIS .contentPanel:after {

clear: both;
}
.THIS .left {

float: left;
width: 50%;

}
.THIS .right {

float: right;
width: 50%;

}

CSS resources must be named componentName.css.

3. Optional: Add an SVG Resource to Your Component Bundle
You can include an SVG resource in your component bundle to define a custom icon for the content layout component when it appears
in the Community Builder.

The recommended image size for a content layout component in Community Builder is 170px by 170px. However, if the image has
different dimensions, Community Builder scales the image to fit.

SVG resources must be named componentName.svg.

SEE ALSO:

Component Bundles

Standard Design Tokens for Communities

147

Create Custom Content Layout Components for CommunitiesUsing Components

Add Components to Apps

When you’re ready to add components to your app, you should first look at the out-of-the-box components that come with the framework.
You can also leverage these components by extending them or using composition to add them to custom components that you’re
building.

Note: For all the out-of-the-box components, see the Components folder at
https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the
name of your custom Salesforce domain. The ui namespace includes many components that are common on Web pages.

Components are encapsulated and their internals stay private, while their public shape is visible to consumers of the component. This
strong separation gives component authors freedom to change the internal implementation details and insulates component consumers
from those changes.

The public shape of a component is defined by the attributes that can be set and the events that interact with the component. The
shape is essentially the API for developers to interact with the component. To design a new component, think about the attributes that
you want to expose and the events that the component should initiate or respond to.

Once you have defined the shape of any new components, developers can work on the components in parallel. This is a useful approach
if you have a team working on an app.

To add a new custom component to your app, see Using the Developer Console on page 6.

SEE ALSO:

Component Composition

Using Object-Oriented Development

Component Attributes

Communicating with Events

Integrate Your Custom Apps into the Chatter Publisher

Use the Chatter Rich Publisher Apps API to integrate your custom apps into the Chatter publisher. The Rich Publisher Apps API enables
developers to attach any custom payload to a feed item. Rich Publisher Apps uses lightning components for composition and rendering.
We provide two lightning interfaces and a lightning event to assist with integration. You can package your apps and upload them to
AppExchange. A community admin page provides a selector for choosing which five of your apps to add to the Chatter publisher for
that community.

Note: Rich Publisher Apps are available to Lightning communities in topics, group, and profile feeds and in direct messages.

Use the lightning:availableForChatterExtensionComposer and
lightning:availableForChatterExtensionRenderer interfaces with the
lightning:sendChatterExtensionPayload event to integrate your custom apps into the Chatter publisher and carry
your apps’ payload into a Chatter feed.

Note: The payload must be an object.

Example: Example of a Custom App Integrated into a Chatter Publisher

This example shows a Chatter publisher with three custom app integrations. There are icons for a video meeting app (1), an emoji
app (2), and an app for selecting a daily quotation (3).

148

Add Components to AppsUsing Components

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/ref_attr_types_object.htm

Example of a Custom App Payload in a Chatter Feed Post

This example shows the custom app’s payload included in a Chatter feed.

The next sections describe how we integrated the custom quotation app with the Chatter publisher.

149

Integrate Your Custom Apps into the Chatter PublisherUsing Components

1. Set Up the Composer Component
For the composer component, we created component, controller, helper, and style files.

Here is the component markup in quotesCompose.cmp. In this file, we implement the
lightning:availableForChatterExtensionComposer interface.

<aura:component implements="lightning:availableForChatterExtensionComposer">
<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<div class="container">

<ui:button label="Get next Quote" press="{!c.getQuote}"/>

</div>

</aura:component>

Use your controller and helper to initialize the composer component and to get the quote from a source. Once you get the quote, fire
the event sendChatterExtensionPayload. Firing the event enables the Add button so the platform can associate the app’s
payload with the feed item. You can also add a title and description as metadata for the payload. The title and description are shown in
a non-Lightning context, like Salesforce Classic.

getQuote: function(cmp, event, helper) {
// get quote from the source
var compEvent = cmp.getEvent("sendChatterExtensionPayload");
compEvent.setParams({

"payload" : "<payload object>",
"extensionTitle" : "<title to use when extension is rendered>",
"extensionDescription" : "<description to use when extension is rendered>"

});
compEvent.fire();

}

Add a CSS resource to your component bundle to style your composition component.

2. Set Up the Renderer Component
For the renderer component, we created component, controller, and style files.

Here is the component markup in quotesRender.cmp. In this file, we implement the
lightning:availableForChatterExtensionRenderer interface, which provides the payload as an attribute in the
component.

<aura:component implements="lightning:availableForChatterExtensionRenderer">
<aura:attribute name="_quote" type="String"/>
<aura:attribute name="_author" type="String"/>
<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<div class="container">
{!v._quote}

--- {!v._author} ---
</div>

</aura:component>

150

Integrate Your Custom Apps into the Chatter PublisherUsing Components

You have a couple of ways of dealing with the payload. You can use the payload directly in the component {!v.payload}. You can
use your controller to parse the payload provided by the lightning:availableForChatterExtensionRenderer
interface and set its attributes yourself. Add a CSS resource to your renderer bundle to style your renderer component.

3. Set Up a New ChatterExtension Entity
After you create these components, go to Workbench (or install your own instance). Make sure that you’re using at least API version
41.0. Log in to your org, and create a ChatterExtension entity.

From the Data menu, select Insert.

From the Object Type list, select ChatterExtension.

In the Value column, provide values for ChatterExtension fields (see ChatterExtension for values and descriptions).

151

Integrate Your Custom Apps into the Chatter PublisherUsing Components

https://developer.salesforce.com/page/Workbench
https://github.com/ryanbrainard/forceworkbench

Get the IconId for the file asset. Go to Workbench > utilities > REST Explorer and make a new POST request for
creating a file asset with a fileId from your org.

Note: Rich Publisher Apps information is cached, so there can be a 5-minute wait before your app appears in the publisher.

4. Package Your App and Upload It to the App Exchange
The ISVforce Guide provides useful information about packaging your apps and uploading them to the AppExchange.

152

Integrate Your Custom Apps into the Chatter PublisherUsing Components

https://developer.salesforce.com/docs/atlas.en-us.210.0.chatterapi.meta/chatterapi/connect_resources_files_asset.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.packagingGuide.meta/packagingGuide/packaging_intro.htm

5. Select the Apps to Embed in the Chatter Publisher
An admin page is available in each community for selecting and arranging the apps to show in the Chatter publisher. Select up to five
apps, and arrange them in the order you like. The order you set here controls the order the app icons appear in the publisher.

In your community, go to Community Workspaces and open the Administration page. Click Rich Publisher Apps to open the page.

After you move apps to the Selected Items column and click Save, the selected apps appear in the Chatter Publisher.

SEE ALSO:

lightning:availableForChatterExtensionComposer

lightning:availableForChatterExtensionRenderer

lightning:sendChatterExtensionPayload

Use Lightning Components in Visualforce Pages

Add Lightning components to your Visualforce pages to combine features you’ve built using both solutions. Implement new functionality
using Lightning components and then use it with existing Visualforce pages.

Important: Lightning Components for Visualforce is based on Lightning Out, a powerful and flexible feature that lets you embed
Lightning components into almost any web page. When used with Visualforce, some of the details become simpler. For example,
you don’t need to deal with authentication, and you don’t need to configure a Connected App.

In other ways using Lightning Components for Visualforce is just like using Lightning Out. Refer to the Lightning Out section of
this guide for additional details.

There are three steps to add Lightning components to a Visualforce page.

1. Add the Lightning Components for Visualforce JavaScript library to your Visualforce page using the
<apex:includeLightning/> component.

2. Create and reference a Lightning app that declares your component dependencies.

3. Write a JavaScript function that creates the component on the page using $Lightning.createComponent().

153

Use Lightning Components in Visualforce PagesUsing Components

Add the Lightning Components for Visualforce JavaScript Library
Add <apex:includeLightning/> at the beginning of your page. This component loads the JavaScript file used by Lightning
Components for Visualforce.

Create and Reference a Lightning Dependency App
To use Lightning Components for Visualforce, define component dependencies by referencing a Lightning dependency app. This app
is globally accessible and extends ltng:outApp. The app declares dependencies on any Lightning definitions (like components)
that it uses.

Here’s an example of a simple app named lcvfTest.app. The app uses the <aura:dependency> tag to indicate that it uses
the standard Lightning component, ui:button.

<aura:application access="GLOBAL" extends="ltng:outApp">
<aura:dependency resource="ui:button"/>

</aura:application>

Note: Extending from ltng:outApp adds SLDS resources to the page to allow your Lightning components to be styled with
the Salesforce Lightning Design System (SLDS). If you don’t want SLDS resources added to the page, extend from
ltng:outAppUnstyled instead.

To reference this app on your page, use the following JavaScript code, where theNamespace is the namespace prefix for the app.
That is, either your org’s namespace, or the namespace of the managed package that provides the app.

$Lightning.use("theNamespace:lcvfTest", function() {});

If the app is defined in your org (that is, not in a managed package), you can use the default “c” namespace instead, as shown in the
next example. If your org doesn’t have a namespace defined, you must use the default namespace.

For further details about creating a Lightning dependency app, see Lightning Out Dependencies.

Creating a Component on a Page
Finally, add your top-level component to a page using $Lightning.createComponent(String type, Object
attributes, String locator, function callback). This function is similar to $A.createComponent(), but
includes an additional parameter, domLocator, which specifies the DOM element where you want the component inserted.

Let’s look at a sample Visualforce page that creates a ui:button using the lcvfTest.app from the previous example.

<apex:page>
<apex:includeLightning />

<div id="lightning" />

<script>
$Lightning.use("c:lcvfTest", function() {
$Lightning.createComponent("ui:button",
{ label : "Press Me!" },
"lightning",
function(cmp) {
// do some stuff

});
});

154

Use Lightning Components in Visualforce PagesUsing Components

</script>
</apex:page>

This code creates a DOM element with the ID “lightning”, which is then referenced in the $Lightning.createComponent()
method. This method creates a ui:button that says “Press Me!”, and then executes the callback function.

Important: You can call $Lightning.use() multiple times on a page, but all calls must reference the same Lightning
dependency app.

For further details about using $Lightning.use() and $Lightning.createComponent(), see Lightning Out Markup.

SEE ALSO:

Lightning Out Dependencies

Add Lightning Components to Any App with Lightning Out (Beta)

Lightning Out Markup

Share Lightning Out Apps with Non-Authenticated Users

Lightning Out Considerations and Limitations

Add Lightning Components to Any App with Lightning Out (Beta)

Use Lightning Out to run Lightning components apps outside of Salesforce servers. Whether it’s a Node.js app running on Heroku, a
department server inside the firewall, or even SharePoint, build your custom app with Force.com and run it wherever your users are.

Note: This release contains a beta version of Lightning Out, which means it’s a high quality feature with known limitations. You
can provide feedback and suggestions for Lightning Out on the IdeaExchange.

Developing Lightning components that you can deploy anywhere is for the most part the same as developing them to run within
Salesforce. Everything you already know about Lightning components development still applies. The only real difference is in how you
embed your Lightning components app in the remote web container, or origin server.

Lightning Out is added to external apps in the form of a JavaScript library you include in the page on the origin server, and markup you
add to configure and activate your Lightning components app. Once initialized, Lightning Out pulls in your Lightning components app
over a secure connection, spins it up, and inserts it into the DOM of the page it’s running on. Once it reaches this point, your “normal”
Lightning components code takes over and runs the show.

Note: This approach is quite different from embedding an app using an iframe. Lightning components running via Lightning
Out are full citizens on the page. If you choose to, you can enable interaction between your Lightning components app and the
page or app you’ve embedded it in. This interaction is handled using Lightning events.

In addition to some straightforward markup, there’s a modest amount of setup and preparation within Salesforce to enable the secure
connection between Salesforce and the origin server. And, because the origin server is hosting the app, you need to manage authentication
with your own code.

This setup process is similar to what you’d do for an application that connects to Salesforce using the Force.com REST API, and you
should expect it to require an equivalent amount of work.

IN THIS SECTION:

Lightning Out Requirements

Deploying a Lightning components app using Lightning Out has a few modest requirements to ensure connectivity and security.

155

Add Lightning Components to Any App with Lightning Out
(Beta)

Using Components

https://success.salesforce.com/ideaView?id=08730000000cJO9AAM

Lightning Out Dependencies

Create a special Lightning dependency app to describe the component dependencies of a Lightning components app to be deployed
using Lightning Out or Lightning Components for Visualforce.

Lightning Out Markup

Lightning Out requires some simple markup on the page, and is activated using two straightforward JavaScript functions.

Authentication from Lightning Out

Lightning Out doesn’t handle authentication. Instead, you manually provide a Salesforce session ID or authentication token when
you initialize a Lightning Out app.

Share Lightning Out Apps with Non-Authenticated Users

Add the ltng:allowGuestAccess interface to your Lightning Out dependency app to make it available to users without
requiring them to authenticate with Salesforce. This interface lets you build your app with Lightning components, and deploy it
anywhere and to anyone.

Lightning Out Considerations and Limitations

Creating an app using Lightning Out is, for the most part, much like creating any app with Lightning components. However, because
your components are running “outside” of Salesforce, there are a few issues you want to be aware of. And it’s possible there are
changes you might need to make to your components or your app.

SEE ALSO:

Idea Exchange: Lightning Components Anywhere / Everywhere

Lightning Out Requirements
Deploying a Lightning components app using Lightning Out has a few modest requirements to ensure connectivity and security.

The remote web container, or origin server, must support the following.

• Ability to modify the markup served to the client browser, including both HTML and JavaScript. You need to be able to add the
Lightning Out markup.

• Ability to acquire a valid Salesforce session ID. This will most likely require you to configure a Connected App for the origin server.

• Ability to access your Salesforce instance. For example, if the origin server is behind a firewall, it needs permission to access the
Internet, at least to reach Salesforce.

Your Salesforce org must be configured to allow the following.

• The ability for the origin server to authenticate and connect. This will most likely require you to configure a Connected App for the
origin server.

• The origin server must be added to the Cross-Origin Resource Sharing (CORS) whitelist.

Finally, you create a special Lightning components app that contains dependency information for the Lightning components to be
hosted on the origin server. This app is only used by Lightning Out or Lightning Components for Visualforce.

Lightning Out Dependencies
Create a special Lightning dependency app to describe the component dependencies of a Lightning components app to be deployed
using Lightning Out or Lightning Components for Visualforce.

When a Lightning components app is initialized using Lightning Out, Lightning Out loads the definitions for the components in the app.
To do this efficiently, Lightning Out requires you to specify the component dependencies in advance, so that the definitions can be
loaded once, at startup time.

156

Lightning Out RequirementsUsing Components

https://success.salesforce.com/ideaView?id=08730000000cJO9AAM

The mechanism for specifying dependencies is a Lightning dependency app. A dependency app is simply an <aura:application>
with a few attributes, and the dependent components described using the <aura:dependency> tag. A Lightning dependency
app isn’t one you’d ever actually deploy as an app for people to use directly. A Lightning dependency app is used only to specify
the dependencies for Lightning Out. (Or for Lightning Components for Visualforce, which uses Lightning Out under the covers.)

A basic Lightning dependency app looks like the following.

<aura:application access="GLOBAL" extends="ltng:outApp">
<aura:dependency resource="c:myAppComponent"/>

</aura:application>

A Lightning dependency app must do the following.

• Set access control to GLOBAL.

• Extend from either ltng:outApp or ltng:outAppUnstyled.

• List as a dependency every component that is referenced in a call to $Lightning.createComponent().

In this example, <c:myAppComponent> is the top-level component for the Lightning components app you are planning to create
on the origin server using $Lightning.createComponent(). Create a dependency for each different component you add to
the page with $Lightning.createComponent().

Note: Don’t worry about components used within the top-level component. The Lightning Component framework handles
dependency resolution for child components.

Defining a Styling Dependency
You have two options for styling your Lightning Out apps: Salesforce Lightning Design System and unstyled. Lightning Design System
styling is the default, and Lightning Out automatically includes the current version of the Lightning Design System onto the page that’s
using Lightning Out. To omit Lightning Design System resources and take full control of your styles, perhaps to match the styling of the
origin server, set your dependency app to extend from ltng:outAppUnstyled instead of ltng:outApp.

Usage Notes
A Lightning dependency app isn’t a normal Lightning app, and you shouldn’t treat it like one. Use it only to specify the dependencies
for your Lightning Out app.

In particular, note the following.

• You can’t add a template to a Lightning dependency app.

• Content you add to the body of the Lightning dependency app won’t be rendered.

SEE ALSO:

Create a Connected App

Use CORS to Access Supported Salesforce APIs, Apex REST, and Lightning Out

aura:dependency

Using the Salesforce Lightning Design System in Apps

Lightning Out Markup
Lightning Out requires some simple markup on the page, and is activated using two straightforward JavaScript functions.

157

Lightning Out MarkupUsing Components

https://help.salesforce.com/apex/HTViewHelpDoc?id=connected_app_create.htm&language=en_US#connected_app_create
https://help.salesforce.com/apex/HTViewHelpDoc?id=extend_code_cors.htm&language=en_US#extend_code_cors

The markup and JavaScript functions in the Lightning Out library are the only things specific to Lightning Out. Everything else is the
Lightning components code you already know and love.

Adding the Lightning Out Library to the Page
Enable an origin server for use with Lightning Out by including the Lightning Out JavaScript library in the app or page hosting your
Lightning components app. Including the library requires a single line of markup.

<script src="https://myDomain.my.salesforce.com/lightning/lightning.out.js"></script>

Important: Use your custom domain for the host. Don’t copy-and-paste someone else’s instance from example source code. If
you do this, your app will break whenever there’s a version mismatch between your Salesforce instance and the instance from
which you’re loading the Lightning Out library. This happens at least three times a year, during regular upgrades of Salesforce.
Don’t do it!

Loading and Initializing Your Lightning Components App
Load and initialize the Lightning Component framework and your Lightning components app with the $Lightning.use()
function.

The $Lightning.use() function takes four arguments.

DescriptionTypeName

Required. The name of your Lightning dependency app, including the
namespace. For example, "c:expenseAppDependencies".

stringappName

A function to call once the Lightning Component framework and your app
have fully loaded. The callback receives no arguments.

This callback is usually where you call
$Lightning.createComponent() to add your app to the page

functioncallback

(see the next section). You might also update your display in other ways, or
otherwise respond to your Lightning components app being ready.

The URL for the Lightning domain on your Salesforce instance. For example,
“https://myDomain.lightning.force.com”.

stringlightningEndPointURI

The session ID or OAuth access token for a valid, active Salesforce session.stringauthToken

Note: You must obtain this token in your own code. Lightning Out
doesn’t handle authentication for you. See Authentication from
Lightning Out.

appName is required. The other three parameters are optional. In normal use you provide all four parameters.

Note: You can’t use more than one Lightning dependency app on a page. You can call $Lightning.use() more than
once, but you must reference the same dependency app in every call.

158

Lightning Out MarkupUsing Components

Adding Your Lightning Components to the Page
Add to and activate your Lightning components on the page with the $Lightning.createComponent() function.

The $Lightning.createComponent() function takes four arguments.

DescriptionTypeName

Required. The name of the Lightning component to add to the page,
including the namespace. For example, "c:newExpenseForm".

stringcomponentName

Required. The attributes to set on the component when it’s created. For
example, { name: theName, amount: theAmount }. If the
component doesn’t require any attributes, pass in an empty object, { }.

Objectattributes

Required. The DOM element or element ID that indicates where on the page
to insert the created component.

Element or stringdomLocator

A function to call once the component is added to and active on the page.
The callback receives the component created as its only argument.

functioncallback

Note: You can add more than one Lightning component to a page. That is, you can call $Lightning.createComponent()
multiple times, with multiple DOM locators, to add components to different parts of the page. Each component created this way
must be specified in the page’s Lightning dependency app.

Behind the scenes $Lightning.createComponent() calls the standard $A.createComponent() function. Except for
the DOM locator, the arguments are the same. And except for wrapping the call in some Lightning Out semantics, the behavior is the
same, too.

SEE ALSO:

Dynamically Creating Components

Authentication from Lightning Out
Lightning Out doesn’t handle authentication. Instead, you manually provide a Salesforce session ID or authentication token when you
initialize a Lightning Out app.

There are two supported ways to obtain an authentication token for use with Lightning Out.

• On a Visualforce page, using Lightning Components for Visualforce, you can obtain the current Visualforce session ID using the
expression {! $Api.Session_ID }. This session is intended for use only on Visualforce pages.

• Elsewhere, an authenticated session is obtained using OAuth, following the same process you’d use to obtain an authenticated
session to use with the Force.com REST API. In this case, you obtain an OAuth token, and can use it anywhere.

Important: Lightning Out isn’t in the business of authentication. The $Lightning.use() function simply passes along to
the security subsystem whatever authentication token you provide it. For most organizations, this will be a session ID or an OAuth
token.

Lightning Out has the same privileges as the session from which you obtain the authentication token. For Visualforce using {!
$Api.Session_ID }, the session has the privileges of the current user. For OAuth it’s whatever OAuth scope setting that
the OAuth Connected App is defined with. In most cases, using Lightning Out with OAuth requires you to grant “Full Access” scope
to the Connected App returning the OAuth token.

159

Authentication from Lightning OutUsing Components

Share Lightning Out Apps with Non-Authenticated Users
Add the ltng:allowGuestAccess interface to your Lightning Out dependency app to make it available to users without requiring
them to authenticate with Salesforce. This interface lets you build your app with Lightning components, and deploy it anywhere and
to anyone.

A Lightning Out dependency app with the ltng:allowGuestAccess interface can be used with Lightning Components for
Visualforce and with Lightning Out.

• Using Lightning Components for Visualforce, you can add your Lightning app to a Visualforce page, and then use that page in
Salesforce Tabs + Visualforce communities. Then you can allow public access to that page.

• Using Lightning Out, you can deploy your Lightning app anywhere Lightning Out is supported—which is almost anywhere!

The ltng:allowGuestAccess interface is only usable in orgs that have Communities enabled, and your Lightning Out app is
associated with all community endpoints that you’ve defined in your org.

Important: When you make a Lightning app accessible to guest users by adding the ltng:allowGuestAccess interface,
it’s available through every community in your org, whether that community is enabled for public access or not. You can’t prevent
it from being accessible via community URLs, and you can’t make it available for some communities but not others.

Warning: Be extremely careful about apps you open for guest access. Apps enabled for guest access bypass the object- and
field-level security (FLS) you set for your community’s guest user profile. Lightning components don’t automatically enforce CRUD
and FLS when you reference objects or retrieve the objects from an Apex controller. This means that the framework continues to
display records and fields for which users don’t have CRUD access and FLS visibility. You must manually enforce CRUD and FLS in
your Apex controllers. A mistake in code used in an app enabled for guest access can open your org’s data to the world.

Lightning Out Lightning Components for Visualforce

Usage
To begin with, add the ltng:allowGuestAccess interface to your Lightning Out dependency app. For example:

<aura:application access="GLOBAL" extends="ltng:outApp"
implements="ltng:allowGuestAccess">

<aura:dependency resource="c:storeLocatorMain"/>

</aura:application>

Note: You can only add the ltng:allowGuestAccess interface to Lightning apps, not to individual components.

Next, add the Lightning Out JavaScript library to your page.

• With Lightning Components for Visualforce, simply add the <apex:includeLightning /> tag anywhere on your page.

• With Lightning Out, add a <script> tag that references the library directly, using a community endpoint URL. For example:

<script
src="https://yourCommunityDomain/communityURL/lightning/lightning.out.js"></script>

For example, https://universalcontainers.force.com/ourstores/lightning/lightning.out.js

160

Share Lightning Out Apps with Non-Authenticated UsersUsing Components

Finally, add the JavaScript code to load and activate your Lightning app. This code is standard Lightning Out, with the important addition
that you must use one of your org’s community URLs for the endpoint. The endpoint URL takes the form
https://yourCommunityDomain/communityURL/. The relevant line is emphasized in the following sample.

<script>
$Lightning.use("c:locatorApp", // name of the Lightning app

function() { // Callback once framework and app loaded
$Lightning.createComponent(

"c:storeLocatorMain", // top-level component of your app
{ }, // attributes to set on the component when created
"lightningLocator", // the DOM location to insert the component
function(cmp) {

// callback when component is created and active on the page
}

);
},
'https://universalcontainers.force.com/ourstores/' // Community endpoint

);
</script>

SEE ALSO:

Salesforce Help: Create Communities

Use Lightning Components in Visualforce Pages

Lightning Out Considerations and Limitations
Creating an app using Lightning Out is, for the most part, much like creating any app with Lightning components. However, because
your components are running “outside” of Salesforce, there are a few issues you want to be aware of. And it’s possible there are changes
you might need to make to your components or your app.

The issues you should be aware of can be divided into two categories.

Considerations for Using Lightning Out
Because Lightning Out apps run outside of any Salesforce container, there are things you need to keep in mind, and possibly address.

First, Lightning components depend on setting cookies in a user’s browser. Since Lightning Out runs Lightning components outside of
Salesforce, those cookies are “third-party” cookies. Your users need to allow third-party cookies in their browser settings.

The most significant and obvious issue is authentication. There’s no Salesforce container to handle authentication for you, so you have
to handle it yourself. This essential topic is discussed in detail in “Authentication from Lightning Out.”

Another important consideration is more subtle. Many important actions your apps support are accomplished by firing various Lightning
events. But events are sort of like that tree that falls in the forest. If no one’s listening, does it have an effect? In the case of many core
Lightning events, the “listener” is the Lightning Experience or Salesforce app container, one.app. And if one.app isn’t there to
handle the events, they indeed have no effect. Firing those events silently fails.

Standard events are listed in “Event Reference.” Events not supported for use in Lightning Out include the following note:

Note: This event is handled by the one.app container. It’s supported in Lightning Experience and Salesforce app only.

161

Lightning Out Considerations and LimitationsUsing Components

https://help.salesforce.com/articleView?id=networks_creating.htm&language=en_US

Limitations With Standard Components
While the core Lightning Out functionality is stable and complete, there are a few interactions with other Salesforce features that we’re
still working on.

Chief among these is the standard components built into the Lightning Component framework. Many standard components don’t
behave correctly when used in a stand-alone context, such as Lightning Out, and Lightning Components for Visualforce, which is based
on Lightning Out. This is because the components implicitly depend on resources available in the one.app container.

Avoid this issue with your own components by making all of their dependencies explicit. Use ltng:require to reference all required
JavaScript and CSS resources that aren’t embedded in the component itself.

If you’re using standard components in your apps, they might not be fully styled, or behave as documented, when they’re used in
Lightning Out or Lightning Components for Visualforce.

SEE ALSO:

Browser Support Considerations for Lightning Components

Authentication from Lightning Out

System Event Reference

Use Lightning Components in Visualforce Pages

162

Lightning Out Considerations and LimitationsUsing Components

CHAPTER 5 Communicating with Events

The framework uses event-driven programming. You write handlers that respond to interface events as
they occur. The events may or may not have been triggered by user interaction.

In this chapter ...

• Actions and Events
In the Lightning Component framework, events are fired from JavaScript controller actions. Events can
contain attributes that can be set before the event is fired and read when the event is handled.• Handling Events with

Client-Side
Controllers Events are declared by the aura:event tag in a .evt resource, and they can have one of two types:

component or application.• Component Events
Component Events

A component event is fired from an instance of a component. A component event can be handled
by the component that fired the event or by a component in the containment hierarchy that receives
the event.

• Application Events

• Event Handling
Lifecycle

• Advanced Events
Example Application Events

Application events follow a traditional publish-subscribe model. An application event is fired from
an instance of a component. All components that provide a handler for the event are notified.

• Firing Lightning
Events from
Non-Lightning Code Note: Always try to use a component event instead of an application event, if possible. Component

events can only be handled by components above them in the containment hierarchy so their• Events Best Practices

• Events Fired During
the Rendering
Lifecycle

usage is more localized to the components that need to know about them. Application events
are best used for something that should be handled at the application level, such as navigating
to a specific record. Application events allow communication between components that are in
separate parts of the application and have no direct containment relationship.• Events Handled in

the Salesforce mobile
app and Lightning
Experience

• System Events

163

Actions and Events

The framework uses events to communicate data between components. Events are usually triggered by a user action.

Actions
User interaction with an element on a component or app. User actions trigger events, but events aren’t always explicitly triggered
by user actions. This type of action is not the same as a client-side JavaScript controller, which is sometimes known as a controller
action. The following button is wired up to a browser onclick event in response to a button click.

<lightning:button label = "Click Me" onclick = "{!c.handleClick}" />

Clicking the button invokes the handleClick method in the component’s client-side controller.

Events
A notification by the browser regarding an action. Browser events are handled by client-side JavaScript controllers, as shown in the
previous example. A browser event is not the same as a framework component event or application event, which you can create and
fire in a JavaScript controller to communicate data between components. For example, you can wire up the click event of a checkbox
to a client-side controller, which fires a component event to communicate relevant data to a parent component.

Another type of event, known as a system event, is fired automatically by the framework during its lifecycle, such as during component
initialization, change of an attribute value, and rendering. Components can handle a system event by registering the event in the
component markup.

The following diagram describes what happens when a user clicks a button that requires the component to retrieve data from the server.

1. User clicks a button or interacts with a component, triggering a browser event. For example, you want to save data from the server
when the button is clicked.

2. The button click invokes a client-side JavaScript controller, which provides some custom logic before invoking a helper function.

3. The JavaScript controller invokes a helper function. A helper function improves code reuse but it’s optional for this example.

4. The helper function calls an Apex controller method and queues the action.

5. The Apex method is invoked and data is returned.

6. A JavaScript callback function is invoked when the Apex method completes.

7. The JavaScript callback function evaluates logic and updates the component’s UI.

164

Actions and EventsCommunicating with Events

8. User sees the updated component.

SEE ALSO:

Handling Events with Client-Side Controllers

Detecting Data Changes with Change Handlers

Calling a Server-Side Action

Events Fired During the Rendering Lifecycle

Handling Events with Client-Side Controllers

A client-side controller handles events within a component. It’s a JavaScript resource that defines the functions for all of the component’s
actions.

A client-side controller is a JavaScript object in object-literal notation containing a map of name-value pairs. Each name corresponds to
a client-side action. Its value is the function code associated with the action. Client-side controllers are surrounded by parentheses and
curly braces. Separate action handlers with commas (as you would with any JavaScript map).

({
myAction : function(cmp, event, helper) {

// add code for the action
},

anotherAction : function(cmp, event, helper) {
// add code for the action

}
})

Each action function takes in three parameters:

1. cmp—The component to which the controller belongs.

2. event—The event that the action is handling.

3. helper—The component’s helper, which is optional. A helper contains functions that can be reused by any JavaScript code in
the component bundle.

Creating a Client-Side Controller
A client-side controller is part of the component bundle. It is auto-wired via the naming convention,
componentNameController.js.

To create a client-side controller using the Developer Console, click CONTROLLER in the sidebar of the component.

Calling Client-Side Controller Actions
The following example component creates two buttons to contrast an HTML button with <lightning:button>, which is a
standard Lightning component. Clicking on these buttons updates the text component attribute with the specified values.
target.get("v.label") refers to the label attribute value on the button.

165

Handling Events with Client-Side ControllersCommunicating with Events

Component source

<aura:component>
<aura:attribute name="text" type="String" default="Just a string. Waiting for change."/>

<input type="button" value="Flawed HTML Button"
onclick="alert('this will not work')"/>

<lightning:button label="Framework Button" onclick="{!c.handleClick}"/>

{!v.text}

</aura:component>

If you know some JavaScript, you might be tempted to write something like the first "Flawed" button because you know that HTML tags
are first-class citizens in the framework. However, the "Flawed" button won't work because arbitrary JavaScript, such as the alert()
call, in the component is ignored.

The framework has its own event system. DOM events are mapped to Lightning events, since HTML tags are mapped to Lightning
components.

Any browser DOM element event starting with on, such as onclick or onkeypress, can be wired to a controller action. You can
only wire browser events to controller actions.

The "Framework" button wires the onclick attribute in the <lightning:button> component to the handleClick action
in the controller.

Client-side controller source

({
handleClick : function(cmp, event) {

var attributeValue = cmp.get("v.text");
console.log("current text: " + attributeValue);

var target = event.getSource();
cmp.set("v.text", target.get("v.label"));

}
})

The handleClick action uses event.getSource() to get the source component that fired this component event. In this
case, the source component is the <lightning:button> in the markup.

The code then sets the value of the text component attribute to the value of the button’s label attribute. The text component
attribute is defined in the <aura:attribute> tag in the markup.

Tip: Use unique names for client-side and server-side actions in a component. A JavaScript function (client-side action) with the
same name as an Apex method (server-side action) can lead to hard-to-debug issues. In debug mode, the framework logs a
browser console warning about the clashing client-side and server-side action names.

Handling Framework Events
Handle framework events using actions in client-side component controllers. Framework events for common mouse and keyboard
interactions are available with out-of-the-box components.

166

Handling Events with Client-Side ControllersCommunicating with Events

Accessing Component Attributes
In the handleClick function, notice that the first argument to every action is the component to which the controller belongs. One
of the most common things you'll want to do with this component is look at and change its attribute values.

cmp.get("v.attributeName") returns the value of the attributeName attribute.

cmp.set("v.attributeName", "attribute value") sets the value of the attributeName attribute.

Invoking Another Action in the Controller
To call an action method from another method, put the common code in a helper function and invoke it using
helper.someFunction(cmp).

SEE ALSO:

Sharing JavaScript Code in a Component Bundle

Event Handling Lifecycle

Creating Server-Side Logic with Controllers

Component Events

A component event is fired from an instance of a component. A component event can be handled by the component that fired the
event or by a component in the containment hierarchy that receives the event.

IN THIS SECTION:

Component Event Propagation

The framework supports capture and bubble phases for the propagation of component events. These phases are similar to DOM
handling patterns and provide an opportunity for interested components to interact with an event and potentially control the
behavior for subsequent handlers.

Create Custom Component Events

Create a custom component event using the <aura:event> tag in a .evt resource. Events can contain attributes that can
be set before the event is fired and read when the event is handled.

Fire Component Events

Fire a component event to communicate data to another component. A component event can be handled by the component that
fired the event or by a component in the containment hierarchy that receives the event.

167

Component EventsCommunicating with Events

Handling Component Events

A component event can be handled by the component that fired the event or by a component in the containment hierarchy that
receives the event.

SEE ALSO:

aura:method

Application Events

Handling Events with Client-Side Controllers

Advanced Events Example

What is Inherited?

Component Event Propagation
The framework supports capture and bubble phases for the propagation of component events. These phases are similar to DOM handling
patterns and provide an opportunity for interested components to interact with an event and potentially control the behavior for
subsequent handlers.

The component that fires an event is known as the source component. The framework allows you to handle the event in different phases.
These phases give you flexibility for how to best process the event for your application.

The phases are:

Capture
The event is captured and trickles down from the application root to the source component. The event can be handled by a component
in the containment hierarchy that receives the captured event.

Event handlers are invoked in order from the application root down to the source component that fired the event.

Any registered handler in this phase can stop the event from propagating, at which point no more handlers are called in this phase
or the bubble phase.

Bubble
The component that fired the event can handle it. The event then bubbles up from the source component to the application root.
The event can be handled by a component in the containment hierarchy that receives the bubbled event.

Event handlers are invoked in order from the source component that fired the event up to the application root.

Any registered handler in this phase can stop the event from propagating, at which point no more handlers are called in this phase.

Here’s the sequence of component event propagation.

1. Event fired—A component event is fired.

2. Capture phase—The framework executes the capture phase from the application root to the source component until all components
are traversed. Any handling event can stop propagation by calling stopPropagation() on the event.

3. Bubble phase—The framework executes the bubble phase from the source component to the application root until all components
are traversed or stopPropagation() is called.

Note: Application events have a separate default phase. There’s no separate default phase for component events. The default
phase is the bubble phase.

168

Component Event PropagationCommunicating with Events

Create Custom Component Events
Create a custom component event using the <aura:event> tag in a .evt resource. Events can contain attributes that can be set
before the event is fired and read when the event is handled.

Use type="COMPONENT" in the <aura:event> tag for a component event. For example, this c:compEvent component
event has one attribute with a name of message.

<!--c:compEvent-->
<aura:event type="COMPONENT">

<!-- Add aura:attribute tags to define event shape.
One sample attribute here. -->

<aura:attribute name="message" type="String"/>
</aura:event>

The component that fires an event can set the event’s data. To set the attribute values, call event.setParam() or
event.setParams(). A parameter name set in the event must match the name attribute of an <aura:attribute> in the
event. For example, if you fire c:compEvent, you could use:

event.setParam("message", "event message here");

The component that handles an event can retrieve the event data. To retrieve the attribute value in this event, call
event.getParam("message") in the handler’s client-side controller.

Fire Component Events
Fire a component event to communicate data to another component. A component event can be handled by the component that fired
the event or by a component in the containment hierarchy that receives the event.

Register an Event
A component registers that it may fire an event by using <aura:registerEvent> in its markup. For example:

<aura:registerEvent name="sampleComponentEvent" type="c:compEvent"/>

We’ll see how the value of the name attribute is used for firing and handling events.

Fire an Event
To get a reference to a component event in JavaScript, use cmp.getEvent("evtName") where evtName matches the name
attribute in <aura:registerEvent>.

Use fire() to fire the event from an instance of a component. For example, in an action function in a client-side controller:

var compEvent = cmp.getEvent("sampleComponentEvent");
// Optional: set some data for the event (also known as event shape)
// A parameter’s name must match the name attribute
// of one of the event’s <aura:attribute> tags
// compEvent.setParams({"myParam" : myValue });
compEvent.fire();

SEE ALSO:

Fire Application Events

169

Create Custom Component EventsCommunicating with Events

Handling Component Events
A component event can be handled by the component that fired the event or by a component in the containment hierarchy that receives
the event.

Use <aura:handler> in the markup of the handler component. For example:

<aura:handler name="sampleComponentEvent" event="c:compEvent"
action="{!c.handleComponentEvent}"/>

The name attribute in <aura:handler> must match the name attribute in the <aura:registerEvent> tag in the
component that fires the event.

The action attribute of <aura:handler> sets the client-side controller action to handle the event.

The event attribute specifies the event being handled. The format is namespace:eventName.

In this example, when the event is fired, the handleComponentEvent client-side controller action is called.

Event Handling Phases
Component event handlers are associated with the bubble phase by default. To add a handler for the capture phase instead, use the
phase attribute.

<aura:handler name="sampleComponentEvent" event="ns:eventName"
action="{!c.handleComponentEvent}" phase="capture" />

Get the Source of an Event
In the client-side controller action for an <aura:handler> tag, use evt.getSource() to find out which component fired the
event, where evt is a reference to the event. To retrieve the source element, use evt.getSource().getElement().

IN THIS SECTION:

Component Handling Its Own Event

A component can handle its own event by using the <aura:handler> tag in its markup.

Handle Component Event of Instantiated Component

A parent component can set a handler action when it instantiates a child component in its markup.

Handling Bubbled or Captured Component Events

Event propagation rules determine which components in the containment hierarchy can handle events by default in the bubble or
capture phases. Learn about the rules and how to handle events in the bubble or capture phases.

Handling Component Events Dynamically

A component can have its handler bound dynamically via JavaScript. This is useful if a component is created in JavaScript on the
client-side.

SEE ALSO:

Component Event Propagation

Handling Application Events

170

Handling Component EventsCommunicating with Events

Component Handling Its Own Event
A component can handle its own event by using the <aura:handler> tag in its markup.

The action attribute of <aura:handler> sets the client-side controller action to handle the event. For example:

<aura:registerEvent name="sampleComponentEvent" type="c:compEvent"/>
<aura:handler name="sampleComponentEvent" event="c:compEvent"

action="{!c.handleSampleEvent}"/>

Note: The name attributes in <aura:registerEvent> and <aura:handler> must match, since each event is
defined by its name.

SEE ALSO:

Handle Component Event of Instantiated Component

Handle Component Event of Instantiated Component
A parent component can set a handler action when it instantiates a child component in its markup.

Let’s a look at an example. c:child registers that it may fire a sampleComponentEvent event by using
<aura:registerEvent> in its markup.

<!-- c:child -->
<aura:component>

<aura:registerEvent name="sampleComponentEvent" type="c:compEvent"/>
</aura:component>

c:parent sets a handler for this event when it instantiates c:child in its markup.

<!-- parent.cmp -->
<aura:component>

<c:child sampleComponentEvent="{!c.handleChildEvent}"/>
</aura:component>

Note how c:parent uses the following syntax to set a handler for the sampleComponentEvent event fired by c:child.

<c:child sampleComponentEvent="{!c.handleChildEvent}"/>

The syntax looks similar to how you set an attribute called sampleComponentEvent. However, in this case,
sampleComponentEvent isn’t an attribute. sampleComponentEvent matches the event name declared in c:child.

<aura:registerEvent name="sampleComponentEvent" type="c:compEvent"/>

The preceding syntax is a convenient shortcut for the normal way that a component declares a handler for an event. The parent component
can only use this syntax to handle events from a direct descendent. If you want to be more explicit in c:parent that you’re handling
an event, or if the event might be fired by a component further down the component hierarchy, use an <aura:handler> tag
instead of declaring the handler within the <c:child> tag.

<!-- parent.cmp -->
<aura:component>

<aura:handler name="sampleComponentEvent" event="c:compEvent"
action="{!c.handleSampleEvent}"/>

<c:child />
</aura:component>

171

Handling Component EventsCommunicating with Events

The two versions of c:parent markup behave the same. However, using <aura:handler> makes it more obvious that you’re
handling a sampleComponentEvent event.

SEE ALSO:

Component Handling Its Own Event

Handling Bubbled or Captured Component Events

Handling Bubbled or Captured Component Events
Event propagation rules determine which components in the containment hierarchy can handle events by default in the bubble or
capture phases. Learn about the rules and how to handle events in the bubble or capture phases.

The framework supports capture and bubble phases for the propagation of component events. These phases are similar to DOM handling
patterns and provide an opportunity for interested components to interact with an event and potentially control the behavior for
subsequent handlers. The capture phase executes before the bubble phase.

Default Event Propagation Rules
By default, every parent in the containment hierarchy can’t handle an event during the capture and bubble phases. Instead, the event
propagates to every owner in the containment hierarchy.

A component’s owner is the component that is responsible for its creation. For declaratively created components, the owner is the
outermost component containing the markup that references the component firing the event. For programmatically created components,
the owner component is the component that invoked $A.createComponent to create it.

The same rules apply for the capture phase, although the direction of event propagation (down) is the opposite of the bubble phase
(up).

Confused? It makes more sense when you look at an example in the bubbling phase.

c:owner contains c:container, which in turn contains c:eventSource.

<!--c:owner-->
<aura:component>

<c:container>
<c:eventSource />

</c:container>
</aura:component>

If c:eventSource fires an event, it can handle the event itself. The event then bubbles up the containment hierarchy.

c:container contains c:eventSource but it’s not the owner because it’s not the outermost component in the markup, so it
can’t handle the bubbled event.

c:owner is the owner because c:container is in its markup. c:owner can handle the event.

Propagation to All Container Components
The default behavior doesn’t allow an event to be handled by every parent in the containment hierarchy. Some components contain
other components but aren’t the owner of those components. These components are known as container components. In the example,
c:container is a container component because it’s not the owner for c:eventSource. By default, c:container can’t
handle events fired by c:eventSource.

172

Handling Component EventsCommunicating with Events

A container component has a facet attribute whose type is Aura.Component[], such as the default body attribute. The container
component includes those components in its definition using an expression, such as {!v.body}. The container component isn’t the
owner of the components rendered with that expression.

To allow a container component to handle the event, add includeFacets="true" to the <aura:handler> tag of the
container component. For example, adding includeFacets="true" to the handler in the container component, c:container,
enables it to handle the component event bubbled from c:eventSource.

<aura:handler name="bubblingEvent" event="c:compEvent" action="{!c.handleBubbling}"
includeFacets="true" />

Handle Bubbled Event
A component that fires a component event registers that it fires the event by using the <aura:registerEvent> tag.

<aura:component>
<aura:registerEvent name="compEvent" type="c:compEvent" />

</aura:component>

A component handling the event in the bubble phase uses the <aura:handler> tag to assign a handling action in its client-side
controller.

<aura:component>
<aura:handler name="compEvent" event="c:compEvent" action="{!c.handleBubbling}"/>

</aura:component>

Note: The name attribute in <aura:handler> must match the name attribute in the <aura:registerEvent> tag
in the component that fires the event.

Handle Captured Event
A component handling the event in the capture phase uses the <aura:handler> tag to assign a handling action in its client-side
controller.

<aura:component>
<aura:handler name="compEvent" event="c:compEvent" action="{!c.handleCapture}"

phase="capture" />
</aura:component>

The default handling phase for component events is bubble if no phase attribute is set.

Stop Event Propagation
Use the stopPropagation() method in the Event object to stop the event propagating to other components.

Pausing Event Propagation for Asynchronous Code Execution
Use event.pause() to pause event handling and propagation until event.resume() is called. This flow-control mechanism
is useful for any decision that depends on the response from the execution of asynchronous code. For example, you might make a
decision about event propagation based on the response from an asynchronous call to native mobile code.

You can call pause() or resume() in the capture or bubble phases.

173

Handling Component EventsCommunicating with Events

Event Bubbling Example
Let’s look at an example so you can play around with it yourself.

<!--c:eventBubblingParent-->
<aura:component>

<c:eventBubblingChild>
<c:eventBubblingGrandchild />

</c:eventBubblingChild>
</aura:component>

Note: This sample code uses the default c namespace. If your org has a namespace, use that namespace instead.

First, we define a simple component event.

<!--c:compEvent-->
<aura:event type="COMPONENT">

<!--simple event with no attributes-->
</aura:event>

c:eventBubblingEmitter is the component that fires c:compEvent.

<!--c:eventBubblingEmitter-->
<aura:component>

<aura:registerEvent name="bubblingEvent" type="c:compEvent" />
<lightning:button onclick="{!c.fireEvent}" label="Start Bubbling"/>

</aura:component>

Here’s the controller for c:eventBubblingEmitter. When you press the button, it fires the bubblingEvent event registered
in the markup.

/*eventBubblingEmitterController.js*/
{

fireEvent : function(cmp) {
var cmpEvent = cmp.getEvent("bubblingEvent");
cmpEvent.fire();

}
}

c:eventBubblingGrandchild contains c:eventBubblingEmitter and uses <aura:handler> to assign a handler
for the event.

<!--c:eventBubblingGrandchild-->
<aura:component>

<aura:handler name="bubblingEvent" event="c:compEvent" action="{!c.handleBubbling}"/>

<div class="grandchild">
<c:eventBubblingEmitter />

</div>
</aura:component>

Here’s the controller for c:eventBubblingGrandchild.

/*eventBubblingGrandchildController.js*/
{

handleBubbling : function(component, event) {

174

Handling Component EventsCommunicating with Events

console.log("Grandchild handler for " + event.getName());
}

}

The controller logs the event name when the handler is called.

Here’s the markup for c:eventBubblingChild. We will pass c:eventBubblingGrandchild in as the body of
c:eventBubblingChild when we create c:eventBubblingParent later in this example.

<!--c:eventBubblingChild-->
<aura:component>

<aura:handler name="bubblingEvent" event="c:compEvent" action="{!c.handleBubbling}"/>

<div class="child">
{!v.body}

</div>
</aura:component>

Here’s the controller for c:eventBubblingChild.

/*eventBubblingChildController.js*/
{

handleBubbling : function(component, event) {
console.log("Child handler for " + event.getName());

}
}

c:eventBubblingParent contains c:eventBubblingChild, which in turn contains c:eventBubblingGrandchild.

<!--c:eventBubblingParent-->
<aura:component>

<aura:handler name="bubblingEvent" event="c:compEvent" action="{!c.handleBubbling}"/>

<div class="parent">
<c:eventBubblingChild>

<c:eventBubblingGrandchild />
</c:eventBubblingChild>

</div>
</aura:component>

Here’s the controller for c:eventBubblingParent.

/*eventBubblingParentController.js*/
{

handleBubbling : function(component, event) {
console.log("Parent handler for " + event.getName());

}
}

Now, let’s see what happens when you run the code.

1. In your browser, navigate to c:eventBubblingParent. Create a .app resource that contains
<c:eventBubblingParent />.

2. Click the Start Bubbling button that is part of the markup in c:eventBubblingEmitter.

175

Handling Component EventsCommunicating with Events

3. Note the output in your browser’s console:

Grandchild handler for bubblingEvent
Parent handler for bubblingEvent

The c:compEvent event is bubbled to c:eventBubblingGrandchild and c:eventBubblingParent as they are
owners in the containment hierarchy. The event is not handled by c:eventBubblingChild as c:eventBubblingChild
is in the markup for c:eventBubblingParent but it’s not an owner as it’s not the outermost component in that markup.

Now, let’s see how to stop event propagation. Edit the controller for c:eventBubblingGrandchild to stop propagation.

/*eventBubblingGrandchildController.js*/
{

handleBubbling : function(component, event) {
console.log("Grandchild handler for " + event.getName());
event.stopPropagation();

}
}

Now, navigate to c:eventBubblingParent and click the Start Bubbling button.

Note the output in your browser’s console:

Grandchild handler for bubblingEvent

The event no longer bubbles up to the c:eventBubblingParent component.

SEE ALSO:

Component Event Propagation

Handle Component Event of Instantiated Component

Handling Component Events Dynamically
A component can have its handler bound dynamically via JavaScript. This is useful if a component is created in JavaScript on the client-side.

For more information, see Dynamically Adding Event Handlers To a Component on page 282.

Component Event Example
Here’s a simple use case of using a component event to update an attribute in another component.

1. A user clicks a button in the notifier component, ceNotifier.cmp.

2. The client-side controller for ceNotifier.cmp sets a message in a component event and fires the event.

3. The handler component, ceHandler.cmp, contains the notifier component, and handles the fired event.

4. The client-side controller for ceHandler.cmp sets an attribute in ceHandler.cmp based on the data sent in the event.

Note: The event and components in this example use the default c namespace. If your org has a namespace, use that namespace
instead.

176

Component Event ExampleCommunicating with Events

Component Event
The ceEvent.evt component event has one attribute. We’ll use this attribute to pass some data in the event when it’s fired.

<!--c:ceEvent-->
<aura:event type="COMPONENT">

<aura:attribute name="message" type="String"/>
</aura:event>

Notifier Component
The c:ceNotifier component uses aura:registerEvent to declare that it may fire the component event.

The button in the component contains an onclick browser event that is wired to the fireComponentEvent action in the
client-side controller. The action is invoked when you click the button.

<!--c:ceNotifier-->
<aura:component>

<aura:registerEvent name="cmpEvent" type="c:ceEvent"/>

<h1>Simple Component Event Sample</h1>
<p><lightning:button

label="Click here to fire a component event"
onclick="{!c.fireComponentEvent}" />

</p>
</aura:component>

The client-side controller gets an instance of the event by calling cmp.getEvent("cmpEvent"), where cmpEvent matches
the value of the name attribute in the <aura:registerEvent> tag in the component markup. The controller sets the message
attribute of the event and fires the event.

/* ceNotifierController.js */
{

fireComponentEvent : function(cmp, event) {
// Get the component event by using the
// name value from aura:registerEvent
var cmpEvent = cmp.getEvent("cmpEvent");
cmpEvent.setParams({

"message" : "A component event fired me. " +
"It all happened so fast. Now, I'm here!" });

cmpEvent.fire();
}

}

Handler Component
The c:ceHandler handler component contains the c:ceNotifier component. The <aura:handler> tag uses the same
value of the name attribute, cmpEvent, from the <aura:registerEvent> tag in c:ceNotifier. This wires up
c:ceHandler to handle the event bubbled up from c:ceNotifier.

When the event is fired, the handleComponentEvent action in the client-side controller of the handler component is invoked.

<!--c:ceHandler-->
<aura:component>

<aura:attribute name="messageFromEvent" type="String"/>

177

Component Event ExampleCommunicating with Events

<aura:attribute name="numEvents" type="Integer" default="0"/>

<!-- Note that name="cmpEvent" in aura:registerEvent
in ceNotifier.cmp -->
<aura:handler name="cmpEvent" event="c:ceEvent" action="{!c.handleComponentEvent}"/>

<!-- handler contains the notifier component -->
<c:ceNotifier />

<p>{!v.messageFromEvent}</p>
<p>Number of events: {!v.numEvents}</p>

</aura:component>

The controller retrieves the data sent in the event and uses it to update the messageFromEvent attribute in the handler component.

/* ceHandlerController.js */
{

handleComponentEvent : function(cmp, event) {
var message = event.getParam("message");

// set the handler attributes based on event data
cmp.set("v.messageFromEvent", message);
var numEventsHandled = parseInt(cmp.get("v.numEvents")) + 1;
cmp.set("v.numEvents", numEventsHandled);

}
}

Put It All Together
Add the c:ceHandler component to a c:ceHandlerApp application. Navigate to the application and click the button to fire
the component event.

https://<myDomain>.lightning.force.com/c/ceHandlerApp.app, where <myDomain> is the name of your
custom Salesforce domain.

If you want to access data on the server, you could extend this example to call a server-side controller from the handler’s client-side
controller.

SEE ALSO:

Component Events

Creating Server-Side Logic with Controllers

Application Event Example

Application Events

Application events follow a traditional publish-subscribe model. An application event is fired from an instance of a component. All
components that provide a handler for the event are notified.

178

Application EventsCommunicating with Events

IN THIS SECTION:

Application Event Propagation

The framework supports capture, bubble, and default phases for the propagation of application events. The capture and bubble
phases are similar to DOM handling patterns and provide an opportunity for interested components to interact with an event and
potentially control the behavior for subsequent handlers. The default phase preserves the framework’s original handling behavior.

Create Custom Application Events

Create a custom application event using the <aura:event> tag in a .evt resource. Events can contain attributes that can be
set before the event is fired and read when the event is handled.

Fire Application Events

Application events follow a traditional publish-subscribe model. An application event is fired from an instance of a component. All
components that provide a handler for the event are notified.

Handling Application Events

Use <aura:handler> in the markup of the handler component.

SEE ALSO:

Component Events

Handling Events with Client-Side Controllers

Application Event Propagation

Advanced Events Example

Application Event Propagation
The framework supports capture, bubble, and default phases for the propagation of application events. The capture and bubble phases
are similar to DOM handling patterns and provide an opportunity for interested components to interact with an event and potentially
control the behavior for subsequent handlers. The default phase preserves the framework’s original handling behavior.

The component that fires an event is known as the source component. The framework allows you to handle the event in different phases.
These phases give you flexibility for how to best process the event for your application.

The phases are:

179

Application Event PropagationCommunicating with Events

Capture
The event is captured and trickles down from the application root to the source component. The event can be handled by a component
in the containment hierarchy that receives the captured event.

Event handlers are invoked in order from the application root down to the source component that fired the event.

Any registered handler in this phase can stop the event from propagating, at which point no more handlers are called in this phase
or the bubble phase. If a component stops the event propagation using event.stopPropagation(), the component
becomes the root node used in the default phase.

Any registered handler in this phase can cancel the default behavior of the event by calling event.preventDefault(). This
call prevents execution of any of the handlers in the default phase.

Bubble
The component that fired the event can handle it. The event then bubbles up from the source component to the application root.
The event can be handled by a component in the containment hierarchy that receives the bubbled event.

Event handlers are invoked in order from the source component that fired the event up to the application root.

Any registered handler in this phase can stop the event from propagating, at which point no more handlers will be called in this
phase. If a component stops the event propagation using event.stopPropagation(), the component becomes the root
node used in the default phase.

Any registered handler in this phase can cancel the default behavior of the event by calling event.preventDefault(). This
call prevents execution of any of the handlers in the default phase.

Default
Event handlers are invoked in a non-deterministic order from the root node through its subtree. The default phase doesn’t have the
same propagation rules related to component hierarchy as the capture and bubble phases. The default phase can be useful for
handling application events that affect components in different sub-trees of your app.

If the event’s propagation wasn’t stopped in a previous phase, the root node defaults to the application root. If the event’s propagation
was stopped in a previous phase, the root node is set to the component whose handler invoked event.stopPropagation().

Here is the sequence of application event propagation.

1. Event fired—An application event is fired. The component that fires the event is known as the source component.

2. Capture phase—The framework executes the capture phase from the application root to the source component until all components
are traversed. Any handling event can stop propagation by calling stopPropagation() on the event.

3. Bubble phase—The framework executes the bubble phase from the source component to the application root until all components
are traversed or stopPropagation() is called.

4. Default phase—The framework executes the default phase from the root node unless preventDefault() was called in the
capture or bubble phases. If the event’s propagation wasn’t stopped in a previous phase, the root node defaults to the application
root. If the event’s propagation was stopped in a previous phase, the root node is set to the component whose handler invoked
event.stopPropagation().

Create Custom Application Events
Create a custom application event using the <aura:event> tag in a .evt resource. Events can contain attributes that can be set
before the event is fired and read when the event is handled.

Use type="APPLICATION" in the <aura:event> tag for an application event. For example, this c:appEvent application
event has one attribute with a name of message.

<!--c:appEvent-->
<aura:event type="APPLICATION">

180

Create Custom Application EventsCommunicating with Events

<!-- Add aura:attribute tags to define event shape.
One sample attribute here. -->

<aura:attribute name="message" type="String"/>
</aura:event>

The component that fires an event can set the event’s data. To set the attribute values, call event.setParam() or
event.setParams(). A parameter name set in the event must match the name attribute of an <aura:attribute> in the
event. For example, if you fire c:appEvent, you could use:

event.setParam("message", "event message here");

The component that handles an event can retrieve the event data. To retrieve the attribute in this event, call
event.getParam("message") in the handler’s client-side controller.

Fire Application Events
Application events follow a traditional publish-subscribe model. An application event is fired from an instance of a component. All
components that provide a handler for the event are notified.

Register an Event
A component registers that it may fire an application event by using <aura:registerEvent> in its markup. The name attribute
is required but not used for application events. The name attribute is only relevant for component events. This example uses
name="appEvent" but the value isn’t used anywhere.

<aura:registerEvent name="appEvent" type="c:appEvent"/>

Fire an Event
Use $A.get("e.myNamespace:myAppEvent") in JavaScript to get an instance of the myAppEvent event in the
myNamespace namespace.

Note: The syntax to get an instance of an application event is different than the syntax to get a component event, which is
cmp.getEvent("evtName").

Use fire() to fire the event.

var appEvent = $A.get("e.c:appEvent");
// Optional: set some data for the event (also known as event shape)
// A parameter’s name must match the name attribute
// of one of the event’s <aura:attribute> tags
//appEvent.setParams({ "myParam" : myValue });
appEvent.fire();

Events Fired on App Rendering
Several events are fired when an app is rendering. All init events are fired to indicate the component or app has been initialized. If a
component is contained in another component or app, the inner component is initialized first.

If a server call is made during rendering, aura:waiting is fired. When the framework receives a server response,
aura:doneWaiting is fired.

Finally, aura:doneRendering is fired when all rendering has been completed.

181

Fire Application EventsCommunicating with Events

Note: We don't recommend using the legacy aura:waiting, aura:doneWaiting, and aura:doneRendering
application events except as a last resort. The aura:waiting and aura:doneWaiting application events are fired for
every batched server request, even for requests from other components in your app. Unless your component is running in complete
isolation in a standalone app and not included in Lightning Experience or the Salesforce app, you probably don’t want to handle
these application events. The container app may fire server-side actions and trigger your event handlers multiple times.

For more information, see Events Fired During the Rendering Lifecycle on page 194.

SEE ALSO:

Fire Component Events

Handling Application Events
Use <aura:handler> in the markup of the handler component.

For example:

<aura:handler event="c:appEvent" action="{!c.handleApplicationEvent}"/>

The event attribute specifies the event being handled. The format is namespace:eventName.

The action attribute of <aura:handler> sets the client-side controller action to handle the event.

Note: The handler for an application event won’t work if you set the name attribute in <aura:handler>. Use the name
attribute only when you’re handling component events.

In this example, when the event is fired, the handleApplicationEvent client-side controller action is called.

Event Handling Phases
The framework allows you to handle the event in different phases. These phases give you flexibility for how to best process the event
for your application.

Application event handlers are associated with the default phase. To add a handler for the capture or bubble phases instead, use the
phase attribute.

Get the Source of an Event
In the client-side controller action for an <aura:handler> tag, use evt.getSource() to find out which component fired the
event, where evt is a reference to the event. To retrieve the source element, use evt.getSource().getElement().

IN THIS SECTION:

Handling Bubbled or Captured Application Events

Event propagation rules determine which components in the containment hierarchy can handle events by default in the bubble or
capture phases. Learn about the rules and how to handle events in the bubble or capture phases.

SEE ALSO:

Handling Component Events

182

Handling Application EventsCommunicating with Events

Handling Bubbled or Captured Application Events
Event propagation rules determine which components in the containment hierarchy can handle events by default in the bubble or
capture phases. Learn about the rules and how to handle events in the bubble or capture phases.

The framework supports capture, bubble, and default phases for the propagation of application events. The capture and bubble phases
are similar to DOM handling patterns and provide an opportunity for interested components to interact with an event and potentially
control the behavior for subsequent handlers. The default phase preserves the framework’s original handling behavior.

Default Event Propagation Rules
By default, every parent in the containment hierarchy can’t handle an event during the capture and bubble phases. Instead, the event
propagates to every owner in the containment hierarchy.

A component’s owner is the component that is responsible for its creation. For declaratively created components, the owner is the
outermost component containing the markup that references the component firing the event. For programmatically created components,
the owner component is the component that invoked $A.createComponent to create it.

The same rules apply for the capture phase, although the direction of event propagation (down) is the opposite of the bubble phase
(up).

Confused? It makes more sense when you look at an example in the bubbling phase.

c:owner contains c:container, which in turn contains c:eventSource.

<!--c:owner-->
<aura:component>

<c:container>
<c:eventSource />

</c:container>
</aura:component>

If c:eventSource fires an event, it can handle the event itself. The event then bubbles up the containment hierarchy.

c:container contains c:eventSource but it’s not the owner because it’s not the outermost component in the markup, so it
can’t handle the bubbled event.

c:owner is the owner because c:container is in its markup. c:owner can handle the event.

Propagation to All Container Components
The default behavior doesn’t allow an event to be handled by every parent in the containment hierarchy. Some components contain
other components but aren’t the owner of those components. These components are known as container components. In the example,
c:container is a container component because it’s not the owner for c:eventSource. By default, c:container can’t
handle events fired by c:eventSource.

A container component has a facet attribute whose type is Aura.Component[], such as the default body attribute. The container
component includes those components in its definition using an expression, such as {!v.body}. The container component isn’t the
owner of the components rendered with that expression.

To allow a container component to handle the event, add includeFacets="true" to the <aura:handler> tag of the
container component. For example, adding includeFacets="true" to the handler in the container component, c:container,
enables it to handle the component event bubbled from c:eventSource.

<aura:handler name="bubblingEvent" event="c:compEvent" action="{!c.handleBubbling}"
includeFacets="true" />

183

Handling Application EventsCommunicating with Events

Handle Bubbled Event
To add a handler for the bubble phase, set phase="bubble".

<aura:handler event="c:appEvent" action="{!c.handleBubbledEvent}"
phase="bubble" />

The event attribute specifies the event being handled. The format is namespace:eventName.

The action attribute of <aura:handler> sets the client-side controller action to handle the event.

Handle Captured Event
To add a handler for the capture phase, set phase="capture".

<aura:handler event="c:appEvent" action="{!c.handleCapturedEvent}"
phase="capture" />

Stop Event Propagation
Use the stopPropagation() method in the Event object to stop the event propagating to other components.

Pausing Event Propagation for Asynchronous Code Execution
Use event.pause() to pause event handling and propagation until event.resume() is called. This flow-control mechanism
is useful for any decision that depends on the response from the execution of asynchronous code. For example, you might make a
decision about event propagation based on the response from an asynchronous call to native mobile code.

You can call pause() or resume() in the capture or bubble phases.

Application Event Example
Here’s a simple use case of using an application event to update an attribute in another component.

1. A user clicks a button in the notifier component, aeNotifier.cmp.

2. The client-side controller for aeNotifier.cmp sets a message in a component event and fires the event.

3. The handler component, aeHandler.cmp, handles the fired event.

4. The client-side controller for aeHandler.cmp sets an attribute in aeHandler.cmp based on the data sent in the event.

Note: The event and components in this example use the default c namespace. If your org has a namespace, use that namespace
instead.

Application Event
The aeEvent.evt application event has one attribute. We’ll use this attribute to pass some data in the event when it’s fired.

<!--c:aeEvent-->
<aura:event type="APPLICATION">

<aura:attribute name="message" type="String"/>
</aura:event>

184

Application Event ExampleCommunicating with Events

Notifier Component
The aeNotifier.cmp notifier component uses aura:registerEvent to declare that it may fire the application event. The
name attribute is required but not used for application events. The name attribute is only relevant for component events.

The button in the component contains a onclick browser event that is wired to the fireApplicationEvent action in the
client-side controller. Clicking this button invokes the action.

<!--c:aeNotifier-->
<aura:component>

<aura:registerEvent name="appEvent" type="c:aeEvent"/>

<h1>Simple Application Event Sample</h1>
<p><lightning:button

label="Click here to fire an application event"
onclick="{!c.fireApplicationEvent}" />

</p>
</aura:component>

The client-side controller gets an instance of the event by calling $A.get("e.c:aeEvent"). The controller sets the message
attribute of the event and fires the event.

/* aeNotifierController.js */
{

fireApplicationEvent : function(cmp, event) {
// Get the application event by using the
// e.<namespace>.<event> syntax
var appEvent = $A.get("e.c:aeEvent");
appEvent.setParams({

"message" : "An application event fired me. " +
"It all happened so fast. Now, I'm everywhere!" });

appEvent.fire();
}

}

Handler Component
The aeHandler.cmp handler component uses the <aura:handler> tag to register that it handles the application event.

Note: The handler for an application event won’t work if you set the name attribute in <aura:handler>. Use the name
attribute only when you’re handling component events.

When the event is fired, the handleApplicationEvent action in the client-side controller of the handler component is invoked.

<!--c:aeHandler-->
<aura:component>

<aura:attribute name="messageFromEvent" type="String"/>
<aura:attribute name="numEvents" type="Integer" default="0"/>

<aura:handler event="c:aeEvent" action="{!c.handleApplicationEvent}"/>

<p>{!v.messageFromEvent}</p>
<p>Number of events: {!v.numEvents}</p>

</aura:component>

185

Application Event ExampleCommunicating with Events

The controller retrieves the data sent in the event and uses it to update the messageFromEvent attribute in the handler component.

/* aeHandlerController.js */
{

handleApplicationEvent : function(cmp, event) {
var message = event.getParam("message");

// set the handler attributes based on event data
cmp.set("v.messageFromEvent", message);
var numEventsHandled = parseInt(cmp.get("v.numEvents")) + 1;
cmp.set("v.numEvents", numEventsHandled);

}
}

Container Component
The aeContainer.cmp container component contains the notifier and handler components. This is different from the component
event example where the handler contains the notifier component.

<!--c:aeContainer-->
<aura:component>

<c:aeNotifier/>
<c:aeHandler/>

</aura:component>

Put It All Together
You can test this code by adding <c:aeContainer> to a sample aeWrapper.app application and navigating to the application.

https://<myDomain>.lightning.force.com/c/aeWrapper.app, where <myDomain> is the name of your custom
Salesforce domain.

If you want to access data on the server, you could extend this example to call a server-side controller from the handler’s client-side
controller.

SEE ALSO:

Application Events

Creating Server-Side Logic with Controllers

Component Event Example

Event Handling Lifecycle

The following chart summarizes how the framework handles events.

186

Event Handling LifecycleCommunicating with Events

1 Detect Firing of Event

The framework detects the firing of an event. For example, the event could be triggered by a button click in a notifier component.

2 Determine the Event Type

2.1 Component Event

The parent or container component instance that fired the event is identified. This container component locates all relevant event
handlers for further processing.

2.2 Application Event

Any component can have an event handler for this event. All relevant event handlers are located.

3 Execute each Handler

3.1 Executing a Component Event Handler

Each of the event handlers defined in the container component for the event are executed by the handler controller, which can also:

187

Event Handling LifecycleCommunicating with Events

• Set attributes or modify data on the component (causing a re-rendering of the component).

• Fire another event or invoke a client-side or server-side action.

3.2 Executing an Application Event Handler

All event handlers are executed. When the event handler is executed, the event instance is passed into the event handler.

4 Re-render Component (optional)

After the event handlers and any callback actions are executed, a component might be automatically re-rendered if it was modified
during the event handling process.

SEE ALSO:

Create a Custom Renderer

Advanced Events Example

This example builds on the simpler component and application event examples. It uses one notifier component and one handler
component that work with both component and application events. Before we see a component wired up to events, let's look at the
individual resources involved.

This table summarizes the roles of the various resources used in the example. The source code for these resources is included after the
table.

UsageResource NameResource

Defines the component and application events in
separate resources. eventsContainer.cmp

Component event (compEvent.evt)
and application event (appEvent.evt)

Event files

shows how to use both component and application
events.

The notifier contains an onclick browser event to
initiate the event. The controller fires the event.

Component (eventsNotifier.cmp)
and its controller
(eventsNotifierController.js)

Notifier

The handler component contains the notifier
component (or a <aura:handler> tag for

Component (eventsHandler.cmp)
and its controller
(eventsHandlerController.js)

Handler

application events), and calls the controller action that
is executed after the event is fired.

Displays the event handlers on the UI for the complete
demo.

eventsContainer.cmpContainer Component

The definitions of component and application events are stored in separate .evt resources, but individual notifier and handler
component bundles can contain code to work with both types of events.

The component and application events both contain a context attribute that defines the shape of the event. This is the data that is
passed to handlers of the event.

188

Advanced Events ExampleCommunicating with Events

Component Event
Here is the markup for compEvent.evt.

<!--c:compEvent-->
<aura:event type="COMPONENT">

<!-- pass context of where the event was fired to the handler. -->
<aura:attribute name="context" type="String"/>

</aura:event>

Application Event
Here is the markup for appEvent.evt.

<!--c:appEvent-->
<aura:event type="APPLICATION">

<!-- pass context of where the event was fired to the handler. -->
<aura:attribute name="context" type="String"/>

</aura:event>

Notifier Component
The eventsNotifier.cmp notifier component contains buttons to initiate a component or application event.

The notifier uses aura:registerEvent tags to declare that it may fire the component and application events. Note that the
name attribute is required but the value is only relevant for the component event; the value is not used anywhere else for the application
event.

The parentName attribute is not set yet. We will see how this attribute is set and surfaced in eventsContainer.cmp.

<!--c:eventsNotifier-->
<aura:component>
<aura:attribute name="parentName" type="String"/>
<aura:registerEvent name="componentEventFired" type="c:compEvent"/>
<aura:registerEvent name="appEvent" type="c:appEvent"/>

<div>
<h3>This is {!v.parentName}'s eventsNotifier.cmp instance</h3>
<p><ui:button

label="Click here to fire a component event"
press="{!c.fireComponentEvent}" />

</p>
<p><ui:button

label="Click here to fire an application event"
press="{!c.fireApplicationEvent}" />

</p>
</div>

</aura:component>

CSS source

The CSS is in eventsNotifier.css.

/* eventsNotifier.css */
.cEventsNotifier {

189

Advanced Events ExampleCommunicating with Events

display: block;
margin: 10px;
padding: 10px;
border: 1px solid black;

}

Client-side controller source

The eventsNotifierController.js controller fires the event.

/* eventsNotifierController.js */
{

fireComponentEvent : function(cmp, event) {
var parentName = cmp.get("v.parentName");

// Look up event by name, not by type
var compEvents = cmp.getEvent("componentEventFired");

compEvents.setParams({ "context" : parentName });
compEvents.fire();

},

fireApplicationEvent : function(cmp, event) {
var parentName = cmp.get("v.parentName");

// note different syntax for getting application event
var appEvent = $A.get("e.c:appEvent");

appEvent.setParams({ "context" : parentName });
appEvent.fire();

}
}

You can click the buttons to fire component and application events but there is no change to the output because we haven't wired up
the handler component to react to the events yet.

The controller sets the context attribute of the component or application event to the parentName of the notifier component
before firing the event. We will see how this affects the output when we look at the handler component.

Handler Component
The eventsHandler.cmp handler component contains the c:eventsNotifier notifier component and <aura:handler>
tags for the application and component events.

<!--c:eventsHandler-->
<aura:component>
<aura:attribute name="name" type="String"/>
<aura:attribute name="mostRecentEvent" type="String" default="Most recent event handled:"/>

<aura:attribute name="numComponentEventsHandled" type="Integer" default="0"/>
<aura:attribute name="numApplicationEventsHandled" type="Integer" default="0"/>

<aura:handler event="c:appEvent" action="{!c.handleApplicationEventFired}"/>
<aura:handler name="componentEventFired" event="c:compEvent"

action="{!c.handleComponentEventFired}"/>

190

Advanced Events ExampleCommunicating with Events

<div>
<h3>This is {!v.name}</h3>
<p>{!v.mostRecentEvent}</p>
<p># component events handled: {!v.numComponentEventsHandled}</p>
<p># application events handled: {!v.numApplicationEventsHandled}</p>
<c:eventsNotifier parentName="{#v.name}" />

</div>
</aura:component>

Note: {#v.name} is an unbound expression. This means that any change to the value of the parentName attribute in
c:eventsNotifier doesn’t propagate back to affect the value of the name attribute in c:eventsHandler. For more
information, see Data Binding Between Components on page 44.

CSS source

The CSS is in eventsHandler.css.

/* eventsHandler.css */
.cEventsHandler {
display: block;
margin: 10px;
padding: 10px;
border: 1px solid black;

}

Client-side controller source

The client-side controller is in eventsHandlerController.js.

/* eventsHandlerController.js */
{

handleComponentEventFired : function(cmp, event) {
var context = event.getParam("context");
cmp.set("v.mostRecentEvent",

"Most recent event handled: COMPONENT event, from " + context);

var numComponentEventsHandled =
parseInt(cmp.get("v.numComponentEventsHandled")) + 1;

cmp.set("v.numComponentEventsHandled", numComponentEventsHandled);
},

handleApplicationEventFired : function(cmp, event) {
var context = event.getParam("context");
cmp.set("v.mostRecentEvent",

"Most recent event handled: APPLICATION event, from " + context);

var numApplicationEventsHandled =
parseInt(cmp.get("v.numApplicationEventsHandled")) + 1;

cmp.set("v.numApplicationEventsHandled", numApplicationEventsHandled);
}

}

The name attribute is not set yet. We will see how this attribute is set and surfaced in eventsContainer.cmp.

191

Advanced Events ExampleCommunicating with Events

You can click buttons and the UI now changes to indicate the type of event. The click count increments to indicate whether it's a
component or application event. We aren't finished yet though. Notice that the source of the event is undefined as the event context
attribute hasn't been set .

Container Component
Here is the markup for eventsContainer.cmp.

<!--c:eventsContainer-->
<aura:component>

<c:eventsHandler name="eventsHandler1"/>
<c:eventsHandler name="eventsHandler2"/>

</aura:component>

The container component contains two handler components. It sets the name attribute of both handler components, which is passed
through to set the parentName attribute of the notifier components. This fills in the gaps in the UI text that we saw when we looked
at the notifier or handler components directly.

Add the c:eventsContainer component to a c:eventsContainerApp application. Navigate to the application.

https://<myDomain>.lightning.force.com/c/eventsContainerApp.app, where <myDomain> is the name
of your custom Salesforce domain.

Click the Click here to fire a component event button for either of the event handlers. Notice that the # component events handled
counter only increments for that component because only the firing component's handler is notified.

Click the Click here to fire an application event button for either of the event handlers. Notice that the # application events handled
counter increments for both the components this time because all the handling components are notified.

SEE ALSO:

Component Event Example

Application Event Example

Event Handling Lifecycle

Firing Lightning Events from Non-Lightning Code

You can fire Lightning events from JavaScript code outside a Lightning app. For example, your Lightning app might need to call out to
some non-Lightning code, and then have that code communicate back to your Lightning app once it's done.

For example, you could call external code that needs to log into another system and return some data to your Lightning app. Let's call
this event mynamespace:externalEvent. You'll fire this event when your non-Lightning code is done by including this JavaScript
in your non-Lightning code.

var myExternalEvent;
if(window.opener.$A &&
(myExternalEvent = window.opener.$A.get("e.mynamespace:externalEvent"))) {

myExternalEvent.setParams({isOauthed:true});
myExternalEvent.fire();

}

192

Firing Lightning Events from Non-Lightning CodeCommunicating with Events

window.opener.$A.get() references the master window where your Lightning app is loaded.

SEE ALSO:

Application Events

Modifying Components Outside the Framework Lifecycle

Events Best Practices

Here are some best practices for working with events.

Use Component Events Whenever Possible
Always try to use a component event instead of an application event, if possible. Component events can only be handled by components
above them in the containment hierarchy so their usage is more localized to the components that need to know about them. Application
events are best used for something that should be handled at the application level, such as navigating to a specific record. Application
events allow communication between components that are in separate parts of the application and have no direct containment
relationship.

Separate Low-Level Events from Business Logic Events
It's a good practice to handle low-level events, such as a click, in your event handler and refire them as higher-level events, such as an
approvalChange event or whatever is appropriate for your business logic.

Dynamic Actions based on Component State
If you need to invoke a different action on a click event depending on the state of the component, try this approach:

1. Store the component state as a discrete value, such as New or Pending, in a component attribute.

2. Put logic in your client-side controller to determine the next action to take.

3. If you need to reuse the logic in your component bundle, put the logic in the helper.

For example:

1. Your component markup contains <ui:button label="do something" press="{!c.click}" />.

2. In your controller, define the click function, which delegates to the appropriate helper function or potentially fires the correct
event.

Using a Dispatcher Component to Listen and Relay Events
If you have a large number of handler component instances listening for an event, it may be better to identify a dispatcher component
to listen for the event. The dispatcher component can perform some logic to decide which component instances should receive further
information and fire another component or application event targeted at those component instances.

SEE ALSO:

Handling Events with Client-Side Controllers

Events Anti-Patterns

193

Events Best PracticesCommunicating with Events

Events Anti-Patterns
These are some anti-patterns that you should avoid when using events.

Don't Fire an Event in a Renderer
Firing an event in a renderer can cause an infinite rendering loop.

Don’t do this!

afterRender: function(cmp, helper) {
this.superAfterRender();
$A.get("e.myns:mycmp").fire();

}

Instead, use the init hook to run a controller action after component construction but before rendering. Add this code to your
component:

<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

For more details, see .Invoking Actions on Component Initialization on page 247.

Don’t Use onclick and ontouchend Events
You can’t use different actions for onclick and ontouchend events in a component. The framework translates touch-tap events
into clicks and activates any onclick handlers that are present.

SEE ALSO:

Create a Custom Renderer

Events Best Practices

Events Fired During the Rendering Lifecycle

A component is instantiated, rendered, and rerendered during its lifecycle. A component is rerendered only when there’s a programmatic
or value change that would require a rerender, such as when a browser event triggers an action that updates its data.

Component Creation
The component lifecycle starts when the client sends an HTTP request to the server and the component configuration data is returned
to the client. No server trip is made if the component definition is already on the client from a previous request and the component has
no server dependencies.

Let’s look at an app with several nested components. The framework instantiates the app and goes through the children of the v.body
facet to create each component, First, it creates the component definition, its entire parent hierarchy, and then creates the facets within
those components. The framework also creates any component dependencies on the server, including definitions for attributes, interfaces,
controllers, and actions.

The following image lists the order of component creation.

194

Events Anti-PatternsCommunicating with Events

After creating a component instance, the serialized component definitions and instances are sent down to the client. Definitions are
cached but not the instance data. The client deserializes the response to create the JavaScript objects or maps, resulting in an instance
tree that’s used to render the component instance. When the component tree is ready, the init event is fired for all the components,
starting from the children component and finishing in the parent component.

Component Rendering
The rendering lifecycle happens once in the lifetime of a component unless the component gets explicitly unrendered. When you create
a component:

The following image depicts a typical rendering lifecycle of a component on the client, after the component definitions and instances
are deserialized.

1. The init event is fired by the component service that constructs the components to signal that initialization has completed.

<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

You can customize the init handler and add your own controller logic before the component starts rendering. For more information,
see Invoking Actions on Component Initialization on page 247.

2. For each component in the tree, the base implementation of render() or your custom renderer is called to start component
rendering. For more information, see Create a Custom Renderer on page 259. Similar to the component creation process, rendering
starts at the root component, its children components and their super components, if any, and finally the subchildren components.

3. Once your components are rendered to the DOM, afterRender() is called to signal that rendering is completed for each of
these component definitions. It enables you to interact with the DOM tree after the framework rendering service has created the
DOM elements.

4. To indicate that the client is done waiting for a response to the server request XHR, the aura:doneWaiting event is fired. You
can handle this event by adding a handler wired to a client-side controller action.

Note: We don't recommend using the legacy aura:doneWaiting event except as a last resort. The
aura:doneWaiting application event is fired for every server response, even for responses from other components in
your app. Unless your component is running in complete isolation in a standalone app and not included in Lightning Experience
or the Salesforce app, you probably don’t want to handle this application event. The container app may fire server-side actions
and trigger your event handler multiple times.

195

Events Fired During the Rendering LifecycleCommunicating with Events

5. The framework fires a render event, enabling you to interact with the DOM tree after the framework’s rendering service has
inserted DOM elements. Handling the render event is preferred to creating a custom renderer and overriding afterRender().
For more information, see Handle the render Event.

6. Finally, the aura:doneRendering event is fired at the end of the rendering lifecycle.

Note: We don't recommend using the legacy aura:doneRendering event except as a last resort. Unless your component
is running in complete isolation in a standalone app and not included in complex apps, such as Lightning Experience or the
Salesforce app, you probably don’t want to handle this application event. The container app may trigger your event handler
multiple times.

Rendering Nested Components
Let’s say that you have an app myApp.app that contains a component myCmp.cmp with a ui:button component.

During initialization, the init() event is fired in this order: ui:button, ui:myCmp, and myApp.app.

SEE ALSO:

Create a Custom Renderer

System Event Reference

Events Handled in the Salesforce mobile app and Lightning Experience

The Salesforce app and Lightning Experience handle some events, which you can fire in your Lightning component.

If you fire one of these force or lightning events in your Lightning apps or components outside of the Salesforce app or Lightning
Experience:

• You must handle the event by using the <aura:handler> tag in the handling component.

• Use the <aura:registerEvent> or <aura:dependency> tags to ensure that the event is sent to the client, when
needed.

DescriptionEvent Name

Closes a quick action panel. Only one quick action panel can be open in the app
at a time.

force:closeQuickAction

196

Events Handled in the Salesforce mobile app and Lightning
Experience

Communicating with Events

DescriptionEvent Name

Opens a page to create a record for the specified entityApiName, for example,
“Account” or “myNamespace__MyObject__c”.

force:createRecord

Opens the page to edit the record specified by recordId.force:editRecord

Navigates from one Lightning component to another.force:navigateToComponent (Beta)

Navigates to the list view specified by listViewId.force:navigateToList

Navigates to the object home specified by the scope attribute.force:navigateToObjectHome

Navigates to the related list specified by parentRecordId.force:navigateToRelatedList

Navigates to an sObject record specified by recordId.force:navigateToSObject

Navigates to the specified URL.force:navigateToURL

Saves a record.force:recordSave

Indicates that the record has been successfully saved.force:recordSaveSuccess

Reloads the view.force:refreshView

Displays a toast notification with a message. (Not available on login pages.)force:showToast

Opens one or more file records from the ContentDocument and ContentHubItem
objects.

lightning:openFiles

Customizing Client-Side Logic for the Salesforce app, Lightning Experience,
and Standalone Apps
Since the Salesforce app and Lightning Experience automatically handle many events, you have to do extra work if your component
runs in a standalone app. Instantiating the event using $A.get() can help you determine if your component is running within the
Salesforce app and Lightning Experience or a standalone app. For example, you want to display a toast when a component loads in the
Salesforce app and Lightning Experience. You can fire the force:showToast event and set its parameters for the Salesforce app
and Lightning Experience, but you have to create your own implementation for a standalone app.

displayToast : function (component, event, helper) {
var toast = $A.get("e.force:showToast");
if (toast){

//fire the toast event in Salesforce app and Lightning Experience
toast.setParams({

"title": "Success!",
"message": "The component loaded successfully."

});
toast.fire();

} else {
//your toast implementation for a standalone app here

197

Events Handled in the Salesforce mobile app and Lightning
Experience

Communicating with Events

}
}

SEE ALSO:

Event Reference

aura:dependency

Fire Component Events

Fire Application Events

System Events

The framework fires several system events during its lifecycle.

You can handle these events in your Lightning apps or components, and within the Salesforce mobile app.

DescriptionEvent Name

Indicates that the initial rendering of the root application has completed. We
don't recommend using the legacy aura:doneRendering event except

aura:doneRendering

as a last resort. Unless your component is running in complete isolation in a
standalone app and not included in complex apps, such as Lightning Experience
or the Salesforce app, you probably don’t want to handle this application event.
The container app may trigger your event handler multiple times.

Indicates that the app is done waiting for a response to a server request. This
event is preceded by an aura:waiting event. We don't recommend using

aura:doneWaiting

the legacy aura:doneWaiting event except as a last resort. The
aura:doneWaiting application event is fired for every server response,
even for responses from other components in your app. Unless your component
is running in complete isolation in a standalone app and not included in Lightning
Experience or the Salesforce app, you probably don’t want to handle this
application event. The container app may fire server-side actions and trigger your
event handler multiple times.

Indicates that the hash part of the URL has changed.aura:locationChange

Indicates that a requested resource is not accessible due to security constraints
on that resource.

aura:noAccess

Indicates that an error has occurred.aura:systemError

Indicates that an attribute value has changed.aura:valueChange

Indicates that a component has been destroyed.aura:valueDestroy

Indicates that an app or component has been initialized.aura:valueInit

Indicates that an app or component has been rendered or rerendered.aura:valueRender

Indicates that the app is waiting for a response to a server request. We don't
recommend using the legacy aura:waiting event except as a last resort.

aura:waiting

198

System EventsCommunicating with Events

DescriptionEvent Name

The aura:waiting application event is fired for every server request, even
for requests from other components in your app. Unless your component is
running in complete isolation in a standalone app and not included in Lightning
Experience or the Salesforce app, you probably don’t want to handle this
application event. The container app may fire server-side actions and trigger your
event handler multiple times.

SEE ALSO:

System Event Reference

199

System EventsCommunicating with Events

CHAPTER 6 Creating Apps

Components are the building blocks of an app. This section shows you a typical workflow to put the
pieces together to create a new app.

In this chapter ...

• App Overview
First, you should decide whether you’re creating a component for a standalone app or for Salesforce
apps, such as Lightning Experience or Salesforce for Android, iOS, and mobile web. Both components• Designing App UI

• Creating App
Templates

can access your Salesforce data, but only a component created for Lightning Experience or Salesforce
for Android, iOS, and mobile web can automatically handle Salesforce events that take advantage of
record create and edit pages, among other benefits.• Developing Secure

Code
The Quick Start on page 8 walks you through creating components for a standalone app and
components for Salesforce for Android, iOS, and mobile web to help you determine which one you need.• Validations for

Lightning Component
Code

• Styling Apps

• Using JavaScript

• JavaScript Cookbook

• Using Apex

• Lightning Data
Service

• Lightning Container

• Controlling Access

• Using
Object-Oriented
Development

• Using the AppCache

• Distributing
Applications and
Components

200

App Overview

An app is a special top-level component whose markup is in a .app resource.

On a production server, the .app resource is the only addressable unit in a browser URL. Access an app using the URL:

https://<myDomain>.lightning.force.com/<namespace>/<appName>.app, where <myDomain> is the
name of your custom Salesforce domain

SEE ALSO:

aura:application

Supported HTML Tags

Designing App UI

Design your app's UI by including markup in the .app resource. Each part of your UI corresponds to a component, which can in turn
contain nested components. Compose components to create a sophisticated app.

An app’s markup starts with the <aura:application> tag.

Note: Creating a standalone app enables you to host your components outside of Salesforce for Android, iOS, and mobile web
or Lightning Experience, such as with Lightning Out or Lightning components in Visualforce pages. To learn more about the
<aura:application> tag, see aura:application.

Let's look at a sample.app file, which starts with the <aura:application> tag.

<aura:application extends="force:slds">
<lightning:layout>

<lightning:layoutItem padding="around-large">
<h1 class="slds-text-heading_large">Sample App</h1>

</lightning:layoutItem>
</lightning:layout>
<lightning:layout>

<lightning:layoutItem padding="around-small">
Sidebar
<!-- Other component markup here -->

</lightning:layoutItem>
<lightning:layoutItem padding="around-small">

Content
<!-- Other component markup here -->

</lightning:layoutItem>
</lightning:layout>

</aura:application>

The sample.app file contains HTML tags, such as <h1>, as well as components, such as <lightning:layout>. We won't go
into the details for all the components here but note how simple the markup is. The <lightning:layoutItem> component
can contain other components or HTML markup.

SEE ALSO:

aura:application

201

App OverviewCreating Apps

Creating App Templates

An app template bootstraps the loading of the framework and the app. Customize an app’s template by creating a component that
extends the default aura:template template.

A template must have the isTemplate system attribute in the <aura:component> tag set to true. This informs the framework
to allow restricted items, such as <script> tags, which aren't allowed in regular components.

For example, a sample app has a np:template template that extends aura:template. np:template looks like:

<aura:component isTemplate="true" extends="aura:template">
<aura:set attribute="title" value="My App"/>
...

</aura:component>

Note how the component extends aura:template and sets the title attribute using aura:set.

The app points at the custom template by setting the template system attribute in <aura:application>.

<aura:application template="np:template">
...

</aura:application>

A template can only extend a component or another template. A component or an application can't extend a template.

Developing Secure Code

The LockerService architectural layer enhances security by isolating individual Lightning components in their own containers and
enforcing coding best practices.

The framework uses Content Security Policy (CSP) to control the source of content that can be loaded on a page.

IN THIS SECTION:

What is LockerService?

LockerService is a powerful security architecture for Lightning components. LockerService enhances security by isolating Lightning
components in their own namespace. LockerService also promotes best practices that improve the supportability of your code by
only allowing access to supported APIs and eliminating access to non-published framework internals.

Content Security Policy Overview

The Lightning Component framework uses Content Security Policy (CSP), which is a W3C standard, to control the source of content
that can be loaded on a page.

What is LockerService?
LockerService is a powerful security architecture for Lightning components. LockerService enhances security by isolating Lightning
components in their own namespace. LockerService also promotes best practices that improve the supportability of your code by only
allowing access to supported APIs and eliminating access to non-published framework internals.

202

Creating App TemplatesCreating Apps

IN THIS SECTION:

JavaScript ES5 Strict Mode Enforcement

LockerService implicitly enables JavaScript ES5 strict mode. You don’t need to specify "use strict" in your code. JavaScript
strict mode makes code more robust and supportable. For example, it throws some errors that would otherwise be suppressed.

DOM Access Containment

A component can only traverse the DOM and access elements created by a component in the same namespace. This behavior
prevents the anti-pattern of reaching into DOM elements owned by components in another namespace.

Secure Wrappers for Global References

LockerService applies restrictions to global references. LockerService provides secure versions of non-intrinsic objects, such as
window. For example, the secure version of window is SecureWindow. You can interact with a secure wrapper in the same
way as you interact with the non-intrinsic object, but the secure wrappers filter access to the object and its properties. The secure
wrappers expose a subset of the API of the underlying objects.

Access to Supported JavaScript API Framework Methods Only

You can access published, supported JavaScript API framework methods only. These methods are published in the reference doc
app at https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is
the name of your custom Salesforce domain. Previously, unsupported methods were accessible, which exposed your code to the
risk of breaking when unsupported methods were changed or removed.

What Does LockerService Affect?

Find out what’s affected and what’s not affected by LockerService.

Disabling LockerService for a Component

You can disable LockerService for a component by setting API version 39.0 or lower for the component. If a component is set to at
least API version 40.0, LockerService is enabled. API version 40.0 corresponds to Summer ’17, when LockerService was enabled for
all orgs.

Don’t Mix Component API Versions

For consistency and ease of debugging, we recommend that you set the same API version for all custom components in your app,
containment hierarchy (component within component), or extension hierarchy (component extending component).

LockerService Disabled for Unsupported Browsers

LockerService relies on some JavaScript features in the browser: support for strict mode, the Map object, and the Proxy object.
If a browser doesn’t meet the requirements, LockerService can’t enforce all its security features and is disabled.

SEE ALSO:

Content Security Policy Overview

Modifying the DOM

Reference Doc App

Salesforce Lightning CLI (Deprecated)

Salesforce Help: Supported Browsers for Lightning Experience

JavaScript ES5 Strict Mode Enforcement
LockerService implicitly enables JavaScript ES5 strict mode. You don’t need to specify "use strict" in your code. JavaScript strict
mode makes code more robust and supportable. For example, it throws some errors that would otherwise be suppressed.

A few common stumbling points when using strict mode are:

• You must declare variables with the var keyword.

203

What is LockerService?Creating Apps

https://help.salesforce.com/articleView?id=getstart_browsers_sfx.htm&language=en_US

• You must explicitly attach a variable to the window object to make the variable available outside a library. For more information,
see Sharing JavaScript Code Across Components.

• The libraries that your components use must also work in strict mode.

For more information about JavaScript strict mode, see the Mozilla Developer Network.

DOM Access Containment
A component can only traverse the DOM and access elements created by a component in the same namespace. This behavior prevents
the anti-pattern of reaching into DOM elements owned by components in another namespace.

Note: It’s an anti-pattern for any component to “reach into” another component, regardless of namespace. LockerService only
prevents cross-namespace access. Your good judgment should prevent cross-component access within your own namespace as
it makes components tightly coupled and more likely to break.

Let’s look at a sample component that demonstrates DOM containment.

<!--c:domLocker-->
<aura:component>

<div id="myDiv" aura:id="div1">
<p>See how LockerService restricts DOM access</p>

</div>
<lightning:button name="myButton" label="Peek in DOM"

aura:id="button1" onclick="{!c.peekInDom}"/>
</aura:component>

The c:domLocker component creates a <div> element and a <lightning:button> component.

Here’s the client-side controller that peeks around in the DOM.

({ /* domLockerController.js */
peekInDom : function(cmp, event, helper) {

console.log("cmp.getElements(): ", cmp.getElements());
// access the DOM in c:domLocker
console.log("div1: ", cmp.find("div1").getElement());
console.log("button1: ", cmp.find("button1"));
console.log("button name: ", event.getSource().get("v.name"));

// returns an error
//console.log("button1 element: ", cmp.find("button1").getElement());

}
})

Valid DOM Access
The following methods are valid DOM access because the elements are created by c:domLocker.

cmp.getElements()
Returns the elements in the DOM rendered by the component.

cmp.find()
Returns the div and button components, identified by their aura:id attributes.

cmp.find("div1").getElement()
Returns the DOM element for the div as c:domLocker created the div.

204

What is LockerService?Creating Apps

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

event.getSource().get("v.name")
Returns the name of the button that dispatched the event; in this case, myButton.

Invalid DOM Access
You can’t use cmp.find("button1").getElement() to access the DOM element created by <lightning:button>.
LockerService doesn’t allow c:domLocker to access the DOM for <lightning:button> because the button is in the
lightning namespace and c:domLocker is in the c namespace.

If you uncomment the code for cmp.find("button1").getElement(), you’ll see an error:

c:domLocker$controller$peekInDom [cmp.find(...).getElement is not a function]

IN THIS SECTION:

How LockerService Uses the Proxy Object

LockerService uses the standard JavaScript Proxy object to filter a component’s access to underlying JavaScript objects. The
Proxy object ensures that a component only sees DOM elements created by a component in the same namespace.

SEE ALSO:

What is LockerService?

Using JavaScript

How LockerService Uses the Proxy Object

LockerService uses the standard JavaScript Proxy object to filter a component’s access to underlying JavaScript objects. The Proxy
object ensures that a component only sees DOM elements created by a component in the same namespace.

You can interact with a Proxy object in the same way as you interact with the raw JavaScript object, but the object shows up in the
browser’s console as a Proxy. It’s useful to understand LockerService’s usage of Proxy if you drop into your browser’s debugger and
start poking around.

When a component creates an intrinsic JavaScript object, LockerService returns the raw JavaScript object. When LockerService filters
the object, it returns a Proxy object. Some scenarios where LockerService filters an object and returns a Proxy object are:

• Passing an object to a component in a different namespace.

• Passing an object from a component on API version less than 40.0 to the method of a component on API version greater than or
equal to 40.0.

• Calling cmp.get() to retrieve an attribute value that you set with the value of a native JavaScript object or array. The object or
array isn’t filtered when it’s originally created.

When you access these objects, LockerService returns a Proxy object.

• Any object that implements the HTMLCollection interface

• A SecureElement object, which represents an HTML element.

205

What is LockerService?Creating Apps

https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection

For more information about standard JavaScript Proxy object, see the Mozilla Developer Network.

SEE ALSO:

DOM Access Containment

Secure Wrappers for Global References

Don’t Mix Component API Versions

Secure Wrappers for Global References
LockerService applies restrictions to global references. LockerService provides secure versions of non-intrinsic objects, such as window.
For example, the secure version of window is SecureWindow. You can interact with a secure wrapper in the same way as you
interact with the non-intrinsic object, but the secure wrappers filter access to the object and its properties. The secure wrappers expose
a subset of the API of the underlying objects.

Here’s a list of the secure objects that you’ll most commonly encounter.

SecureAura
Secure wrapper for $A, which is the entry point for using the framework in JavaScript code.

SecureComponent
Secure wrapper for the Component object.

SecureComponentRef
SecureComponentRef is a subset of SecureComponent that provides the external API for a component in a different
namespace.

When you’re in a controller or helper, you have access to a SecureComponent, essentially the this object. In other contexts
when you’re working with a component, you get a SecureComponentRef instead if you reference a component in a different
namespace. For example, if your markup includes a lightning:button and you call cmp.find("buttonAuraId"),
you get a SecureComponentRef as lightning:button is in a different namespace from the component containing
the button markup.

SecureDocument
Secure wrapper for the Document object, which represents the root node of the HTML document or page. The Document
object is the entry point into the page’s content, which is the DOM tree.

SecureElement
Secure wrapper for the Element object, which represents an HTML element. SecureElement is wrapped in a Proxy object
as a performance optimization so that its data can be lazily filtered when it’s accessed. The HTML element is represented by a Proxy
object if you’re debugging in the browser console.

SecureObject
Secure wrapper for an object that is wrapped by LockerService. When you see a SecureObject, it typically means you don’t
have access to the object so some properties aren’t available.

SecureWindow
Secure wrapper for the Window object, which represents a window containing a DOM document.

Example
Let’s look at a sample component that demonstrates some of the secure wrappers.

<!--c:secureWrappers-->
<aura:component >

206

What is LockerService?Creating Apps

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy

<div id="myDiv" aura:id="div1">
<p>See how LockerService uses secure wrappers</p>

</div>
<lightning:button name="myButton" label="Peek in DOM"

aura:id="button1" onclick="{!c.peekInDom}"/>
</aura:component>

The c:secureWrappers component creates a <div> HTML element and a <lightning:button> component.

Here’s the client-side controller that peeks around in the DOM.

({ /* secureWrappersController.js */
peekInDom : function(cmp, event, helper) {

console.log("div1: ", cmp.find("div1").getElement());

console.log("button1: ", cmp.find("button1"));
console.log("button name: ", event.getSource().get("v.name"));
// add debugger statement for inspection
// always remove this from production code
debugger;

}
})

We use console.log() to look at the <div> element and the button. The <div> SecureElement is wrapped in a Proxy
object as a performance optimization so that its data can be lazily filtered when it’s accessed.

We put a debugger statement in the code so that we could inspect the elements in the browser console.

Type these expressions into the browser console and look at the results.

cmp
cmp+""
cmp.find("button1")
cmp.find("button1")+""
window
window+""
$A
$A+""

We add an empty string to some expressions so that the object is converted to a String. You could also use the toString()
method.

Here’s the output.

207

What is LockerService?Creating Apps

Let’s examine some of the output.

cmp+""
Returns a SecureComponent object for cmp, which represents the c:secureWrappers component.

cmp.find("button1")+""
Returns a SecureComponentRef, which represents the external API for a component in a different namespace. In this example,
the component is lightning:button.

window+""
Returns a SecureWindow object.

$A+""
Returns a SecureAura object.

IN THIS SECTION:

JavaScript API for Secure Wrappers

The secure wrappers, such as SecureWindow, expose a subset of the API of the objects that they wrap. The API for the secure
wrappers is documented in the LockerService API Viewer app or the reference doc app.

SEE ALSO:

How LockerService Uses the Proxy Object

JavaScript API for Secure Wrappers
The secure wrappers, such as SecureWindow, expose a subset of the API of the objects that they wrap. The API for the secure wrappers
is documented in the LockerService API Viewer app or the reference doc app.

LockerService API Viewer

The LockerService API Viewer shows the DOM APIs exposed by LockerService versus the standard DOM APIs. The API Viewer app lists
the API for SecureDocument, SecureElement, and SecureWindow.

The API Viewer lets you quickly see the difference between the standard DOM APIs and the LockerService APIs.

• An orange row indicates an API that behaves differently in LockerService.

208

What is LockerService?Creating Apps

http://documentation.auraframework.org/lockerApiTest/index.app?aura.mode=DEV

• A red row means the API isn’t supported in LockerService.

There are several ways to validate your code to ensure compatibility with Lightning component APIs. For more information, see Validations
for Lightning Component Code.

Reference Doc App

The reference doc app lists the API for SecureComponent under JavaScript API > Component.

SecureAura is the wrapper for $A.

Access the reference doc app at:

https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of
your custom Salesforce domain.

SEE ALSO:

Secure Wrappers for Global References

Access to Supported JavaScript API Framework Methods Only
You can access published, supported JavaScript API framework methods only. These methods are published in the reference doc app
at https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name
of your custom Salesforce domain. Previously, unsupported methods were accessible, which exposed your code to the risk of breaking
when unsupported methods were changed or removed.

What Does LockerService Affect?
Find out what’s affected and what’s not affected by LockerService.

LockerService enforces security and best practices for custom Lightning components you use in:

• Lightning Experience

• Salesforce app

• Lightning Communities

• Standalone apps that you create (for example, myApp.app)

• Any other app where you can add a custom Lightning component, such as Salesforce Console in Lightning Experience

• Lightning Out

LockerService doesn’t affect the following except for usage of Lightning components in Visualforce in these contexts:

• Salesforce Classic

• Visualforce-based communities

• Any apps for Salesforce Classic, such as Salesforce Console in Salesforce Classic

Disabling LockerService for a Component
You can disable LockerService for a component by setting API version 39.0 or lower for the component. If a component is set to at least
API version 40.0, LockerService is enabled. API version 40.0 corresponds to Summer ’17, when LockerService was enabled for all orgs.

LockerService is disabled for any component created before Summer ’17 because these components have an API version less than 40.0.

209

What is LockerService?Creating Apps

Component versioning enables you to associate a component with an API version. When you create a component, the default version
is the latest API version. In Developer Console, click Bundle Version Settings in the right panel to set the component version.

For consistency and ease of debugging, we recommend that you set the same API version for all components in your app, when possible.

SEE ALSO:

Don’t Mix Component API Versions

Component Versioning

Create Lightning Components in the Developer Console

Don’t Mix Component API Versions
For consistency and ease of debugging, we recommend that you set the same API version for all custom components in your app,
containment hierarchy (component within component), or extension hierarchy (component extending component).

If you mix API versions in your containment or extension hierarchy and LockerService is enabled for some components and disabled for
other components, your app will be harder to debug.

Extension Hierarchy
LockerService is enabled for a component or an application purely based on component version. The extension hierarchy for a component
doesn’t factor into LockerService enforcement.

Let’s look at an example where a Car component extends a Vehicle component. Car has API version 39.0 so LockerService is
disabled. Vehicle has API version 40.0 so LockerService is enabled.

Now, let’s say that Vehicle adds an expando property, _counter, to the window object by assigning a value to
window._counter. Since LockerService is enabled for Vehicle, the _counter property is added to SecureWindow, the
secure wrapper for window for the component’s namespace. The property isn’t added to the native window object.

LockerService is disabled for Car so the component has access to the native window object. Car can’t see the _counter property
as it’s only available in the SecureWindow object.

This subtle behavior can cause much gnashing of teeth when your code doesn’t work as you expect. You’ll never get that debugging
time back! Save yourself some grief and use the same API version for all components in an extension hierarchy.

Containment Hierarchy
The containment hierarchy within an application or a component doesn’t factor into LockerService enforcement.

Let’s look at an example where a Bicycle component contains a Wheel component. If Bicycle has API version 40.0, LockerService
is enabled. If Wheel has API version 39.0, LockerService is disabled for Wheel even though it’s contained in a component, Bicycle,
that has LockerService enabled.

Due to the mix of component API versions, you’re likely to run into issues similar to those for the extension hierarchy. We recommend
that you set the same API version for all components in your app or component hierarchy, when possible.

SEE ALSO:

Component Versioning

Disabling LockerService for a Component

Secure Wrappers for Global References

Sharing JavaScript Code Across Components

210

What is LockerService?Creating Apps

LockerService Disabled for Unsupported Browsers
LockerService relies on some JavaScript features in the browser: support for strict mode, the Map object, and the Proxy object. If a
browser doesn’t meet the requirements, LockerService can’t enforce all its security features and is disabled.

LockerService is disabled for unsupported browsers. If you use an unsupported browser, you’re likely to encounter issues that won’t be
fixed. Make your life easier and your browsing experience more secure by using a supported browser.

Note: The LockerService requirements align with the supported browsers for Lightning Experience, except for IE11. LockerService
is disabled for IE11. We recommend using supported browsers other than IE11 for enhanced security.

SEE ALSO:

Browser Support Considerations for Lightning Components

Salesforce Help: Supported Browsers for Lightning Experience

Content Security Policy Overview
The Lightning Component framework uses Content Security Policy (CSP), which is a W3C standard, to control the source of content that
can be loaded on a page.

CSP is a Candidate Recommendation of the W3C working group on Web Application Security. The framework uses the Content-
Security-Policy HTTP header recommended by the W3C.

The framework’s CSP covers these resources:

JavaScript Libraries
All JavaScript libraries must be uploaded to Salesforce static resources. For more information, see Using External JavaScript Libraries
on page 252.

HTTPS Connections for Resources
All external fonts, images, frames, and CSS must use an HTTPS URL.

You can change the CSP policy and expand access to third-party resources by adding CSP Trusted Sites.

Browser Support
CSP isn’t enforced by all browsers. For a list of browsers that enforce CSP, see caniuse.com.

Note: IE11 doesn’t support CSP, so we recommend using other supported browsers for enhanced security.

Finding CSP Violations
Any policy violations are logged in the browser’s developer console. The violations look like the following message.

Refused to load the script 'https://externaljs.docsample.com/externalLib.js'
because it violates the following Content Security Policy directive: ...

If your app’s functionality isn’t affected, you can ignore the CSP violation.

211

Content Security Policy OverviewCreating Apps

https://help.salesforce.com/articleView?id=getstart_browsers_sfx.htm&language=en_US
http://www.w3.org/TR/CSP/
http://caniuse.com/contentsecuritypolicy

IN THIS SECTION:

Critical Update for Stricter CSP Restrictions

The Lightning Component framework already uses Content Security Policy (CSP), which is a W3C standard, to control the source of
content that can be loaded on a page. The “Enable Stricter Content Security Policy for Lightning Components” critical update tightens
CSP to mitigate the risk of cross-site scripting attacks. Stricter CSP is only enforced in sandboxes and Developer Edition orgs.

SEE ALSO:

Browser Support Considerations for Lightning Components

Making API Calls from Components

Create CSP Trusted Sites to Access Third-Party APIs

Salesforce Help: Supported Browsers for Lightning Experience

Critical Update for Stricter CSP Restrictions
The Lightning Component framework already uses Content Security Policy (CSP), which is a W3C standard, to control the source of
content that can be loaded on a page. The “Enable Stricter Content Security Policy for Lightning Components” critical update tightens
CSP to mitigate the risk of cross-site scripting attacks. Stricter CSP is only enforced in sandboxes and Developer Edition orgs.

The stricter CSP disallows the unsafe-inline and unsafe-eval keywords for inline scripts (script-src). Ensure that your
code and third-party libraries you use adhere to these rules by removing all calls using eval() or inline JavaScript code execution.
You might have to update your third-party libraries to modern versions that don’t depend on unsafe-inline or unsafe-eval.

Note: Stricter CSP was originally part of the LockerService critical update, which was automatically activated for all orgs in Summer
’17. Stricter CSP was decoupled from LockerService in Summer ’17 to give you more time to update your code.

Critical Update Timeline
Stricter CSP will gradually be available in more orgs. This is the planned timeline but the schedule might change for future releases.

Winter ’18
The critical update is only available in sandboxes and Developer Edition orgs.

Spring ’18 (future plans)
The critical update will be extended to all orgs, including production orgs.

Winter ’19 (future plans)
The critical update will be automatically activated for all orgs when the critical update expires.

Activate the Critical Update
Stricter CSP is enabled by default for sandboxes and Developer Edition orgs that have previously enabled the “Enable Lightning
LockerService Security” critical update. For all other sandboxes and Developer Edition orgs, stricter CSP is disabled by default.

To enable stricter CSP:

1. From Setup, enter Critical Updates in the Quick Find box, and then select Critical Updates.

2. For “Enable Stricter Content Security Policy for Lightning Components”, click Activate.

3. Refresh your browser page to proceed with stricter CSP enabled.

212

Content Security Policy OverviewCreating Apps

https://help.salesforce.com/articleView?id=getstart_browsers_sfx.htm&language=en_US

What Does This Critical Update Affect?
The “Enable Stricter Content Security Policy for Lightning Components” critical update enables stricter CSP in sandboxes and Developer
Edition orgs for:

• Lightning Experience

• Salesforce app

• Standalone apps that you create (for example, myApp.app)

Note: There is a separate “Enable Stricter Content Security Policy for Lightning Components in Communities” critical update to
enable stricter CSP for Communities.

The critical update doesn’t affect:

• Salesforce Classic

• Any apps for Salesforce Classic, such as Salesforce Console in Salesforce Classic

• Lightning Out, which allows you to run Lightning components in a container outside of Lightning apps, such as Lightning components
in Visualforce and Visualforce-based Communities. The container defines the CSP rules.

Validations for Lightning Component Code

Validate your Lightning component code to ensure compatibility with Lightning component APIs, best practices, and avoidance of
anti-patterns. There are several ways to validate your code. Minimal save-time validations catch the most significant issues only, while
Salesforce DX tools provide more comprehensive static code analysis.

IN THIS SECTION:

Validation When You Save Code Changes

Lightning component JavaScript code is validated when you save it. Validation ensures that your components are written using best
practices and avoid common pitfalls that can make them incompatible with LockerService. Validation happens automatically when
you save Lightning component resources in the Developer Console, in your favorite IDE, and via API.

Validation During Development Using the Salesforce CLI

Salesforce DX includes a code analysis and validation tool usable via the Salesforce CLI. Use force:lightning:lint to scan
and improve your code during development. Validation using the Salesforce CLI doesn’t just help you avoid LockerService conflicts
and anti-patterns. It’s a terrific practice for improving your code quality and consistency, and to uncover subtle bugs before you
commit them to your codebase.

Review and Resolve Validation Errors and Warnings

When you run validations on your Lightning component code, the results include details for each issue found in the files scanned.
Review the results and resolve problems in your code.

Lightning Component Validation Rules

Rules built into Lightning component code validations cover restrictions under LockerService, correct use of Lightning APIs, and a
number of best practices for writing Lightning component code. Each rule, when triggered by your code, points to an area where
your code might have an issue.

Salesforce Lightning CLI (Deprecated)

Lightning CLI was a Heroku Toolbelt plugin to scan your code for general JavaScript coding issues and Lightning-specific issues.
Lightning CLI is deprecated in favor of the force:lightning:lint tool available in the Salesforce DX CLI.

213

Validations for Lightning Component CodeCreating Apps

Validation When You Save Code Changes
Lightning component JavaScript code is validated when you save it. Validation ensures that your components are written using best
practices and avoid common pitfalls that can make them incompatible with LockerService. Validation happens automatically when you
save Lightning component resources in the Developer Console, in your favorite IDE, and via API.

Validation failures are treated as errors and block changes from being saved. Error messages explain the failures. Depending on the tool
you’re using, these errors are presented in different ways. For example, the Developer Console shows an alert for the first error it encounters
(1), and lists all of the validation errors discovered in the Problems tab (2).

Validations are applied only to components set to API version 41.0 and later. If the validation service prevents you from saving important
changes, set the component version to API 40.0 or earlier to disable validations temporarily. When you’ve corrected the coding errors,
return your component to API 41.0 or later to save it with passing validations.

214

Validation When You Save Code ChangesCreating Apps

Validation During Development Using the Salesforce CLI
Salesforce DX includes a code analysis and validation tool usable via the Salesforce CLI. Use force:lightning:lint to scan and
improve your code during development. Validation using the Salesforce CLI doesn’t just help you avoid LockerService conflicts and
anti-patterns. It’s a terrific practice for improving your code quality and consistency, and to uncover subtle bugs before you commit
them to your codebase.

Validations using the Salesforce CLI are done separately from saving your code to Salesforce. The results are informational only. Validations
performed by the Salesforce CLI fall into two categories, failures and warnings. Error messages explain both, and are displayed in your
shell window. Here’s some example output:

error secure-document Invalid SecureDocument API
Line:109:29
scraping = document.innerHTML;
^

warning no-plusplus Unary operator '++' used
Line:120:50
for (var i = (index+1); i < sibs.length; i++) {
^

error secure-window Invalid SecureWindow API
Line:33:21
var req = new XMLHttpRequest();
^

error default-case Expected a default case
Line:108:13
switch (e.keyCode) {
^

Validations performed using the Salesforce CLI are different from validations performed at save time in the following important ways.

• The Salesforce CLI uses many more rules to analyze your component code. Save time validations prevent you from making the most
fundamental mistakes only. Validation with the Salesforce CLI errs on the side of giving you more information.

• Validation via the Salesforce CLI ignores the API version of your components. Save time validations are performed only for components
set to API 41.0 and later.

IN THIS SECTION:

Use force:lightning:lint

Run force:lightning:lint just like any other lint command-line tool. The only trick is invoking it through the sfdx
command. Your shell window shows the results.

force:lightning:lint Options

Use options to modify the behavior of force:lightning:lint.

Custom “House Style” Rules

Customize the JavaScript style rules that force:lightning:lint applies to your code.

Use force:lightning:lint
Run force:lightning:lint just like any other lint command-line tool. The only trick is invoking it through the sfdx command.
Your shell window shows the results.

215

Validation During Development Using the Salesforce CLICreating Apps

Normal Use
You can run the force:lightning:lint lint tool on any folder that contains Lightning components:

sfdx force:lightning:lint ./path/to/lightning/components/

Note: force:lightning:lint runs only on local files. Use Salesforce DX or third-party tools to download your component
code to your machine. Options include Salesforce CLI commands like force:mdapi:retrieve and force:source:pull,
or other tools such as the Force.com IDE, the Force.com Migration Tool, or various third-party options.

The default output only shows errors. To see warnings too, use the verbose mode option.

See “Review and Resolve Validation Errors and Warnings” for what to do with the output of running force:lightning:lint.

SEE ALSO:

force:lightning:lint Options

force:lightning:lint Options
Use options to modify the behavior of force:lightning:lint.

Common Options
Filtering Files

Sometimes, you just want to scan a particular kind of file. The --files argument allows you to set a pattern to match files against.

For example, the following command allows you to scan controllers only:

sfdx force:lightning:lint ./path/to/lightning/components/ --files **/*Controller.js

Verbose Mode

The default output shows only errors so you can focus on bigger issues. The --verbose argument allows you to see both warning
messages and errors during the linting process.

For a complete list of command line parameters and how they affect tool behavior, see the Salesforce CLI Command Reference.

force:lightning:lint has built-in help, which you can access with the following command:

sfdx force:lightning:lint --help

SEE ALSO:

Use force:lightning:lint

Custom “House Style” Rules
Customize the JavaScript style rules that force:lightning:lint applies to your code.

It’s common that different organizations or projects will adopt different JavaScript rules. Lightning component validations help you work
with Lightning component APIs, not enforce Salesforce coding conventions. To that end, the validation rules are divided into two sets,
security rules and style rules. The security rules can’t be modified, but you can modify or add to the style rules.

Use the --config argument to provide a custom rules configuration file. A custom rules configuration file allows you to define your
own code style rules, which affect the style rules used by force:lightning:lint.

216

Validation During Development Using the Salesforce CLICreating Apps

https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_force_lightning.htm

Note: If failure of a custom rule generates a warning, the warning doesn’t appear in the default output. To see warnings, use the
--verbose flag.

The default style rules are provided below. Copy the rules to a new file, and modify them to match your preferred style rules. Alternatively,
you can use your existing ESLint rule configuration file directly. For example:

sfdx force:lightning:lint ./path/to/lightning/components/ --config ~/.eslintrc

Note: Not all ESLint rules can be added or modified using --config. Only rules that we consider benign are usable. And again,
you can’t override the security rules.

Default Style Rules
Here are the default style rules used by force:lightning:lint.

/*
* Copyright (C) 2016 salesforce.com, inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

module.exports = {
rules: {

// code style rules, these are the default value, but the user can
// customize them via --config in the linter by providing custom values
// for each of these rules.
"no-trailing-spaces": 1,
"no-spaced-func": 1,
"no-mixed-spaces-and-tabs": 0,
"no-multi-spaces": 0,
"no-multiple-empty-lines": 0,
"no-lone-blocks": 1,
"no-lonely-if": 1,
"no-inline-comments": 0,
"no-extra-parens": 0,
"no-extra-semi": 1,

"no-warning-comments": [0, { "terms": ["todo", "fixme", "xxx"], "location": "start"
}],

"block-scoped-var": 1,
"brace-style": [1, "1tbs"],
"camelcase": 1,
"comma-dangle": [1, "never"],
"comma-spacing": 1,
"comma-style": 1,
"complexity": [0, 11],

217

Validation During Development Using the Salesforce CLICreating Apps

"consistent-this": [0, "that"],
"curly": [1, "all"],
"eol-last": 0,
"func-names": 0,
"func-style": [0, "declaration"],
"generator-star-spacing": 0,
"indent": 0,
"key-spacing": 0,
"keyword-spacing": [0, "always"],
"max-depth": [0, 4],
"max-len": [0, 80, 4],
"max-nested-callbacks": [0, 2],
"max-params": [0, 3],
"max-statements": [0, 10],
"new-cap": 0,
"newline-after-var": 0,
"one-var": [0, "never"],
"operator-assignment": [0, "always"],
"padded-blocks": 0,
"quote-props": 0,
"quotes": 0,
"semi": 1,
"semi-spacing": [0, {"before": false, "after": true}],
"sort-vars": 0,
"space-after-function-name": [0, "never"],
"space-before-blocks": [0, "always"],
"space-before-function-paren": [0, "always"],
"space-before-function-parentheses": [0, "always"],
"space-in-brackets": [0, "never"],
"space-in-parens": [0, "never"],
"space-infix-ops": 0,
"space-unary-ops": [1, { "words": true, "nonwords": false }],
"spaced-comment": [0, "always"],
"vars-on-top": 0,
"valid-jsdoc": 0,
"wrap-regex": 0,
"yoda": [1, "never"]

}
};

Review and Resolve Validation Errors and Warnings
When you run validations on your Lightning component code, the results include details for each issue found in the files scanned. Review
the results and resolve problems in your code.

For example, here is some example output from the force:lightning:lint command.

error secure-document Invalid SecureDocument API
Line:109:29
scraping = document.innerHTML;
^

warning no-plusplus Unary operator '++' used
Line:120:50

218

Review and Resolve Validation Errors and WarningsCreating Apps

for (var i = (index+1); i < sibs.length; i++) {
^

error secure-window Invalid SecureWindow API
Line:33:21
var req = new XMLHttpRequest();
^

error default-case Expected a default case
Line:108:13
switch (e.keyCode) {
^

Results vary in appearance depending on the tool you use to run validations. However, the essential elements are the same for each
issue found.

Issues are displayed, one for each warning or error. Each issue includes the line number, severity, and a brief description of the issue. It
also includes the rule name, which you can use to look up a more detailed description of the issue. See “Lightning Component Validation
Rules” for the rules applied by Lightning code validations, as well as possible resolutions and options for further reading.

Your mission is to review each issue, examine the code in question, and to revise it to eliminate all of the genuine problems.

While no automated tool is perfect, we expect that most errors and warnings generated by Lightning code validations will point to
genuine issues in your code, which you should plan to fix as soon as you can.

SEE ALSO:

Lightning Component Validation Rules

Lightning Component Validation Rules
Rules built into Lightning component code validations cover restrictions under LockerService, correct use of Lightning APIs, and a number
of best practices for writing Lightning component code. Each rule, when triggered by your code, points to an area where your code
might have an issue.

In addition to the Lightning-specific rules we’ve created, other rules are active in Lightning validations, included from ESLint basic rules.
Documentation for these rules is available on the ESLint project site. If you encounter an error or warning from a rule not described here,
search for it on the ESLint Rules page.

The set of rules used to validate your code varies depending on the tool you use, and the way you use it. Minimal save-time validations
catch the most significant issues only, while Salesforce DX tools provide more comprehensive static code analysis.

IN THIS SECTION:

Validation Rules Used at Save Time

The following rules are used for validations that are done when you save your Lightning component code.

Validate JavaScript Intrinsic APIs (ecma-intrinsics)

This rule deals with the intrinsic APIs in JavaScript, more formally known as ECMAScript.

Validate Aura API (aura-api)

This rule verifies that use of the framework APIs is according to the published documentation. The use of undocumented or private
features is disallowed.

Validate Lightning Component Public API (secure-component)

This rule validates that only public, supported framework API functions and properties are used.

219

Lightning Component Validation RulesCreating Apps

http://eslint.org/docs/rules/

Validate Secure Document Public API (secure-document)

This rule validates that only supported functions and properties of the document global are accessed.

Validate Secure Window Public API (secure-window)

This rule validates that only supported functions and properties of the window global are accessed.

Disallow Use of caller and callee (no-caller)

Prevent the use of arguments.caller and arguments.callee. These are also forbidden in ECMAScript 5 and later when
in strict mode, which is enabled under LockerService. This is a standard rule built into ESLint.

Disallow Use of eval() (no-eval)

Prevent the use of eval() to execute arbitrary code. eval() represents a significant security risk, and is forbidden under
LockerService. This is a standard rule built into ESLint.

Disallow Implied Use of eval() (no-implied-eval)

Prevent the indirect use of eval() by passing code as a string to built-in functions that will evaluate it, such as setTimeout().
Pass in a real function instead. This is a standard rule built into ESLint.

Disallow Script URLs (no-script-url)

Prevents the use of javascript: URLs, which is yet another way to try to eval() a string. This is a standard rule built into
ESLint.

Disallow Extending Native Objects (no-extend-native)

Prevent changing the behavior of built-in JavaScript objects, such as Object or Array, by modifying their prototypes. This is a standard
rule built into ESLint.

Disallow Use of Function Constructor (no-new-func)

Prevents the creation of new functions using the Function() constructor. This is a non-standard, hard to read, and therefore
terrible practice. It also requires parsing a string as code in much the same way eval() does. This is a standard rule built into
ESLint.

Disallow Calling Global Object Properties as Functions (no-obj-calls)

Prevents calling the Math, JSON, and Reflect global objects as though they were functions. For example, Math() is
disallowed. This follows the ECMAScript 5 specification. This is a standard rule built into ESLint.

Disallow Use of __iterator__ Property (no-iterator)

Prevents using the obsolete __iterator__ property. Use standard JavaScript iterators and generators instead. This is a standard
rule built into ESLint.

Disallow Use of __proto__ (no-proto)

Prevents using the obsolete __proto__ property, which was deprecated in ECMAScript 3.1. Use Object.getPrototypeOf()
instead. This is a standard rule built into ESLint.

Disallow with Statements (no-with)

Prevents using with statements, which adds members of an object to the current scope in a way that makes it hard to predict or
view impact or behavior. This is a standard rule built into ESLint.

Validation Rules Used at Save Time
The following rules are used for validations that are done when you save your Lightning component code.

Validation failures for any of these rules prevents saving changes to your code.

Lightning Platform Rules
These rules are specific to Lightning component JavaScript code. These custom rules are written and maintained by Salesforce.

220

Lightning Component Validation RulesCreating Apps

Validate Aura API (aura-api)
This rule verifies that use of the framework APIs is according to the published documentation. The use of undocumented or private
features is disallowed.

Validate Secure Document Public API (secure-document)
This rule validates that only supported functions and properties of the document global are accessed.

Validate Secure Window Public API (secure-window)
This rule validates that only supported functions and properties of the window global are accessed.

General JavaScript Rules
These rules are general JavaScript rules, which enforce basic correct use of JavaScript required for Lightning components. These rules
are built into the ESLint tool.

Disallow Use of caller and callee (no-caller)
Prevent the use of arguments.caller and arguments.callee. These are also forbidden in ECMAScript 5 and later when
in strict mode, which is enabled under LockerService.

Disallow Use of eval() (no-eval)
Prevent the use of eval() to execute arbitrary code. eval() represents a significant security risk, and is forbidden under
LockerService.

Disallow Extending Native Objects (no-extend-native)
Prevent changing the behavior of built-in JavaScript objects, such as Object or Array, by modifying their prototypes.

Disallow Implied Use of eval() (no-implied-eval)
Prevent the indirect use of eval() by passing code as a string to built-in functions that will evaluate it, such as setTimeout().
Pass in a real function instead.

Disallow Use of __iterator__ Property (no-iterator)
Prevents using the obsolete __iterator__ property. Use standard JavaScript iterators and generators instead.

Disallow Use of Function Constructor (no-new-func)
Prevents the creation of new functions using the Function() constructor. This is a non-standard, hard to read, and therefore
terrible practice. It also requires parsing a string as code in much the same way eval() does.

Disallow Calling Global Object Properties as Functions (no-obj-calls)
Prevents calling the Math, JSON, and Reflect global objects as though they were functions. For example, Math() is
disallowed. This follows the ECMAScript 5 specification.

Disallow Use of __proto__ (no-proto)
Prevents using the obsolete __proto__ property, which was deprecated in ECMAScript 3.1. Use Object.getPrototypeOf()
instead.

Disallow Script URLs (no-script-url)
Prevents the use of javascript: URLs, which is yet another way to try to eval() a string.

Disallow with Statements (no-with)
Prevents using with statements, which adds members of an object to the current scope in a way that makes it hard to predict or
view impact or behavior.

Validate JavaScript Intrinsic APIs (ecma-intrinsics)
This rule deals with the intrinsic APIs in JavaScript, more formally known as ECMAScript.

221

Lightning Component Validation RulesCreating Apps

When LockerService is enabled, the framework prevents the use of unsupported API objects or calls. That means your Lightning
components code is allowed to use:

• Features built into JavaScript (“intrinsic” features)

• Published, supported features built into the Lightning Component framework

• Published, supported features built into LockerService SecureObject objects

What exactly are these “intrinsic APIs”? They’re the APIs defined in the ECMAScript Language Specification. That is, things built into
JavaScript. This includes Annex B of the specification, which deals with legacy browser features that aren’t part of the “core” of JavaScript,
but are nevertheless still supported for JavaScript running inside a web browser.

Note that some features of JavaScript that you might consider intrinsic—for example, the window and document global variables—are
superceded by SecureObject objects, which offer a more constrained API.

Rule Details
This rule verifies that use of the intrinsic JavaScript APIs is according to the published specification. The use of non-standard, deprecated,
and removed language features is disallowed.

Further Reading

• ECMAScript specification

• Annex B: Additional ECMAScript Features for Web Browsers

• Intrinsic Objects (JavaScript)

SEE ALSO:

Validate Aura API (aura-api)

Validate Lightning Component Public API (secure-component)

Validate Secure Document Public API (secure-document)

Validate Secure Window Public API (secure-window)

Validate Aura API (aura-api)
This rule verifies that use of the framework APIs is according to the published documentation. The use of undocumented or private
features is disallowed.

When LockerService is enabled, the framework prevents the use of unsupported API objects or calls. That means your Lightning
components code is allowed to use:

• Features built into JavaScript (“intrinsic” features)

• Published, supported features built into the Lightning Component framework

• Published, supported features built into LockerService SecureObject objects

This rule deals with the supported, public framework APIs, for example, those available through the framework global $A.

Why is this rule called “Aura API”? Because the core of the the Lightning Component framework is the open source Aura Framework.
And this rule verifies permitted uses of that framework, rather than anything specific to Lightning Components.

222

Lightning Component Validation RulesCreating Apps

https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/#sec-additional-built-in-properties
https://msdn.microsoft.com/en-us/library/4zx5dkc9(v=vs.94).aspx

Rule Details
The following patterns are considered problematic:

Aura.something(); // Use $A instead
$A.util.fake(); // fake is not available in $A.util

Further Reading
For details of all of the methods available in the framework, including $A, see the JavaScript API at
https://myDomain.lightning.force.com/auradocs/reference.app, where myDomain is the name of your
custom Salesforce domain.

SEE ALSO:

Validate Lightning Component Public API (secure-component)

Validate Secure Document Public API (secure-document)

Validate Secure Window Public API (secure-window)

Validate Lightning Component Public API (secure-component)
This rule validates that only public, supported framework API functions and properties are used.

When LockerService is enabled, the framework prevents the use of unsupported API objects or calls. That means your Lightning
components code is allowed to use:

• Features built into JavaScript (“intrinsic” features)

• Published, supported features built into the Lightning Component framework

• Published, supported features built into LockerService SecureObject objects

Prior to LockerService, when you created or obtained a reference to a component, you could call any function and access any property
available on that component, even if it wasn’t public. When LockerService is enabled, components are “wrapped” by a new
SecureComponent object, which controls access to the component and its functions and properties. SecureComponent restricts you to
using only published, supported component API.

Rule Details
The reference doc app lists the API for SecureComponent. Access the reference doc app at:

https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of
your custom Salesforce domain.

The API for SecureComponent is listed at JavaScript API > Component.

Further Reading

• SecureComponent.js Implementation

SEE ALSO:

Validate Aura API (aura-api)

Validate Secure Document Public API (secure-document)

Validate Secure Window Public API (secure-window)

223

Lightning Component Validation RulesCreating Apps

https://github.com/forcedotcom/aura/blob/master/aura-impl/src/main/resources/aura/locker/SecureComponent.js

Validate Secure Document Public API (secure-document)
This rule validates that only supported functions and properties of the document global are accessed.

When LockerService is enabled, the framework prevents the use of unsupported API objects or calls. That means your Lightning
components code is allowed to use:

• Features built into JavaScript (“intrinsic” features)

• Published, supported features built into the Lightning Component framework

• Published, supported features built into LockerService SecureObject objects

Prior to LockerService, when you accessed the document global, you could call any function and access any property available. When
LockerService is enabled, the document global is “wrapped” by a new SecureDocument object, which controls access to document
and its functions and properties. SecureDocument restricts you to using only “safe” features of the document global.

Further Reading

• SecureDocument.js Implementation

SEE ALSO:

Validate Aura API (aura-api)

Validate Lightning Component Public API (secure-component)

Validate Secure Window Public API (secure-window)

Validate Secure Window Public API (secure-window)
This rule validates that only supported functions and properties of the window global are accessed.

When LockerService is enabled, the framework prevents the use of unsupported API objects or calls. That means your Lightning
components code is allowed to use:

• Features built into JavaScript (“intrinsic” features)

• Published, supported features built into the Lightning Component framework

• Published, supported features built into LockerService SecureObject objects

Prior to LockerService, when you accessed the window global, you could call any function and access any property available. When
LockerService is enabled, the window global is “wrapped” by a new SecureWindow object, which controls access to window and
its functions and properties. SecureWindow restricts you to using only “safe” features of the window global.

Further Reading

• SecureWindow.js Implementation

SEE ALSO:

Validate Aura API (aura-api)

Validate Lightning Component Public API (secure-component)

Validate Secure Document Public API (secure-document)

224

Lightning Component Validation RulesCreating Apps

https://github.com/forcedotcom/aura/blob/master/aura-impl/src/main/resources/aura/locker/SecureDocument.js
https://github.com/forcedotcom/aura/blob/master/aura-impl/src/main/resources/aura/locker/SecureWindow.js

Disallow Use of caller and callee (no-caller)
Prevent the use of arguments.caller and arguments.callee. These are also forbidden in ECMAScript 5 and later when
in strict mode, which is enabled under LockerService. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Use of caller/callee
(no-caller).

Disallow Use of eval() (no-eval)
Prevent the use of eval() to execute arbitrary code. eval() represents a significant security risk, and is forbidden under LockerService.
This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow eval() (no-eval).

Disallow Implied Use of eval() (no-implied-eval)
Prevent the indirect use of eval() by passing code as a string to built-in functions that will evaluate it, such as setTimeout().
Pass in a real function instead. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Implied eval()
(no-implied-eval).

Disallow Script URLs (no-script-url)
Prevents the use of javascript: URLs, which is yet another way to try to eval() a string. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Script URLs (no-script-url).

Disallow Extending Native Objects (no-extend-native)
Prevent changing the behavior of built-in JavaScript objects, such as Object or Array, by modifying their prototypes. This is a standard
rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Extending of Native
Objects (no-extend-native).

Disallow Use of Function Constructor (no-new-func)
Prevents the creation of new functions using the Function() constructor. This is a non-standard, hard to read, and therefore terrible
practice. It also requires parsing a string as code in much the same way eval() does. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Function Constructor
(no-new-func).

Disallow Calling Global Object Properties as Functions (no-obj-calls)
Prevents calling the Math, JSON, and Reflect global objects as though they were functions. For example, Math() is disallowed.
This follows the ECMAScript 5 specification. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, disallow calling global object
properties as functions (no-obj-calls).

225

Lightning Component Validation RulesCreating Apps

https://eslint.org/docs/rules/no-caller
https://eslint.org/docs/rules/no-caller
https://eslint.org/docs/rules/no-eval
https://eslint.org/docs/rules/no-implied-eval
https://eslint.org/docs/rules/no-implied-eval
https://eslint.org/docs/rules/no-script-url
https://eslint.org/docs/rules/no-extend-native
https://eslint.org/docs/rules/no-extend-native
https://eslint.org/docs/rules/no-new-func
https://eslint.org/docs/rules/no-new-func
https://eslint.org/docs/rules/no-obj-calls
https://eslint.org/docs/rules/no-obj-calls

Disallow Use of __iterator__ Property (no-iterator)
Prevents using the obsolete __iterator__ property. Use standard JavaScript iterators and generators instead. This is a standard
rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Iterator (no-iterator).

Disallow Use of __proto__ (no-proto)
Prevents using the obsolete __proto__ property, which was deprecated in ECMAScript 3.1. Use Object.getPrototypeOf()
instead. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, Disallow Use of __proto__
(no-proto).

Disallow with Statements (no-with)
Prevents using with statements, which adds members of an object to the current scope in a way that makes it hard to predict or view
impact or behavior. This is a standard rule built into ESLint.

For complete details about this rule, including examples, see the corresponding ESLint documentation, disallow with statements (no-with).

Salesforce Lightning CLI (Deprecated)
Lightning CLI was a Heroku Toolbelt plugin to scan your code for general JavaScript coding issues and Lightning-specific issues. Lightning
CLI is deprecated in favor of the force:lightning:lint tool available in the Salesforce DX CLI.

For more information about code validation using Salesforce DX, see the Salesforce CLI Command Reference.

IN THIS SECTION:

Install Salesforce Lightning CLI (Deprecated)

Lightning CLI was a Heroku Toolbelt plugin to scan your code for general JavaScript coding issues and Lightning-specific issues.
Lightning CLI is deprecated in favor of the force:lightning:lint tool available in the Salesforce DX CLI.

Install Salesforce Lightning CLI (Deprecated)
Lightning CLI was a Heroku Toolbelt plugin to scan your code for general JavaScript coding issues and Lightning-specific issues. Lightning
CLI is deprecated in favor of the force:lightning:lint tool available in the Salesforce DX CLI.

For instructions on how to install the Salesforce DX CLI, see “Install the Salesforce CLI” in the Salesforce DX Setup Guide.

Styling Apps

An app is a special top-level component whose markup is in a .app resource. Just like any other component, you can put CSS in its
bundle in a resource called <appName>.css.

For example, if the app markup is in notes.app, its CSS is in notes.css.

When viewed in Salesforce for Android, iOS, and mobile web and Lightning Experience, the UI components include styling that matches
those visual themes. For example, the ui:button includes the button--neutral class to display a neutral style. The input

226

Salesforce Lightning CLI (Deprecated)Creating Apps

https://eslint.org/docs/rules/no-iterator
https://eslint.org/docs/rules/no-proto
https://eslint.org/docs/rules/no-proto
https://eslint.org/docs/rules/no-with
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_force_lightning.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm

components that extend ui:input include the uiInput--input class to display the input fields using a custom font in addition
to other styling.

Note: Styles added to UI components in Salesforce for Android, iOS, and mobile web and Lightning Experience don’t apply to
components in standalone apps.

IN THIS SECTION:

Using the Salesforce Lightning Design System in Apps

The Salesforce Lightning Design System provides a look and feel that’s consistent with Lightning Experience. Use Lightning Design
System styles to give your custom applications a UI that is consistent with Salesforce, without having to reverse-engineer our styles.

Using External CSS

To reference an external CSS resource that you’ve uploaded as a static resource, use a <ltng:require> tag in your .cmp or
.app markup.

More Readable Styling Markup with the join Expression

Markup can get messy when you specify the class names to apply based on the component attribute values. Try using a join
expression for easier-to-read markup.

Tips for CSS in Components

Here are some tips for configuring the CSS for components that you plan to use in Lightning pages, the Lightning App Builder, or
the Community Builder.

Styling with Design Tokens

Capture the essential values of your visual design into named tokens. Define the token values once and reuse them throughout your
Lightning components CSS resources. Tokens make it easy to ensure that your design is consistent, and even easier to update it as
your design evolves.

SEE ALSO:

CSS in Components

Add Lightning Components as Custom Tabs in the Salesforce App

Using the Salesforce Lightning Design System in Apps
The Salesforce Lightning Design System provides a look and feel that’s consistent with Lightning Experience. Use Lightning Design
System styles to give your custom applications a UI that is consistent with Salesforce, without having to reverse-engineer our styles.

Your application automatically gets Lightning Design System styles and design tokens if it extends force:slds. This method is the
easiest way to stay up to date and consistent with Lightning Design System enhancements.

To extend force:slds:

<aura:application extends="force:slds">
<!-- customize your application here -->

</aura:application>

Using a Static Resource
When you extend force:slds, the version of Lightning Design System styles are automatically updated whenever the CSS changes.
If you want to use a specific Lightning Design System version, download the version and add it to your org as a static resource.

227

Using the Salesforce Lightning Design System in AppsCreating Apps

Note: We recommend extending force:slds instead so that you automatically get the latest Lightning Design System styles.
If you stick to a specific Lightning Design System version, your app’s styles will gradually start to drift from later versions in Lightning
Experience or incur the cost of duplicate CSS downloads.

To download the latest version of Lightning Design System, generate and download it.

We recommend that you name the Lightning Design System archive static resource using the name format SLDS###, where ### is
the Lightning Design System version number (for example, SLDS203). This lets you have multiple versions of the Lightning Design
System installed, and manage version usage in your components.

To use the static version of the Lightning Design System in a component, include it using <ltng:require/>. For example:

<aura:component>
<ltng:require

styles="{!$Resource.SLDS203 + '/assets/styles/lightning-design-system-ltng.css'}"/>
</aura:component>

SEE ALSO:

Styling with Design Tokens

Using External CSS
To reference an external CSS resource that you’ve uploaded as a static resource, use a <ltng:require> tag in your .cmp or .app
markup.

Here’s an example of using <ltng:require>:

<ltng:require styles="{!$Resource.resourceName}" />

resourceName is the Name of the static resource. In a managed packaged, the resource name must include the package namespace
prefix, such as $Resource.yourNamespace__resourceName. For a stand-alone static resource, such as an individual graphic
or script, that’s all you need. To reference an item within an archive static resource, add the rest of the path to the item using string
concatenation.

Here are some considerations for loading styles:

Loading Sets of CSS
Specify a comma-separated list of resources in the styles attribute to load a set of CSS.

Note: Due to a quirk in the way $Resource is parsed in expressions, use the join operator to include multiple
$Resource references in a single attribute. For example, if you have more than one style sheet to include into a component
the styles attribute should be something like the following.

styles="{!join(',',
$Resource.myStyles + '/stylesheetOne.css',
$Resource.myStyles + '/moreStyles.css')}"

Loading Order
The styles are loaded in the order that they are listed.

One-Time Loading
The styles load only once, even if they’re specified in multiple <ltng:require> tags in the same component or across different
components.

228

Using External CSSCreating Apps

https://tools.lightningdesignsystem.com/css-customizer

Encapsulation
To ensure encapsulation and reusability, add the <ltng:require> tag to every .cmp or .app resource that uses the CSS
resource.

<ltng:require> also has a scripts attribute to load a list of JavaScript libraries. The afterScriptsLoaded event enables
you to call a controller action after the scripts are loaded. It's only triggered by loading of the scripts and is never triggered
when the CSS in styles is loaded.

For more information on static resources, see “Static Resources” in the Salesforce online help.

Styling Components for Lightning Experience or Salesforce for Android, iOS, and
mobile web
To prevent styling conflicts in Lightning Experience or Salesforce for Android, iOS, and mobile web, prefix your external CSS with a unique
namespace. For example, if you prefix your external CSS declarations with .myBootstrap, wrap your component markup with a
<div> tag that specifies the myBootstrap class.

<ltng:require styles="{!$Resource.bootstrap}"/>
<div class="myBootstrap">

<c:myComponent />
<!-- Other component markup -->

</div>

Note: Prefixing your CSS with a unique namespace only applies to external CSS. If you’re using CSS within a component bundle,
the .THIS keyword becomes .namespaceComponentName during runtime.

SEE ALSO:

Using External JavaScript Libraries

CSS in Components

$Resource

More Readable Styling Markup with the join Expression
Markup can get messy when you specify the class names to apply based on the component attribute values. Try using a join expression
for easier-to-read markup.

This example sets the class names based on the component attribute values. It’s readable, but the spaces between class names are easy
to forget.

<li class="{! 'calendarEvent ' +
v.zoomDirection + ' ' +
(v.past ? 'pastEvent ' : '') +
(v.zoomed ? 'zoom ' : '') +
(v.multiDayFragment ? 'multiDayFragment ' : '')}">
<!-- content here -->

Sometimes, if the markup is not broken into multiple lines, it can hurt your eyes or make you mutter profanities under your breath.

<li class="{! 'calendarEvent ' + v.zoomDirection + ' ' + (v.past ? 'pastEvent ' : '') +
(v.zoomed ? 'zoom ' : '') + (v.multiDayFragment ? 'multiDayFragment ' : '')}">

229

More Readable Styling Markup with the join ExpressionCreating Apps

<!-- content here -->

Try using a join expression instead for easier-to-read markup. This example join expression sets ' ' as the first argument so that
you don’t have to specify it for each subsequent argument in the expression.

<li
class="{! join(' ',

'calendarEvent',
v.zoomDirection,
v.past ? 'pastEvent' : '',
v.zoomed ? 'zoom' : '',
v.multiDayFragment ? 'multiDayFragment' : ''

)}">
<!-- content here -->

You can also use a join expression for dynamic styling.

<div style="{! join(';',
'top:' + v.timeOffsetTop + '%',
'left:' + v.timeOffsetLeft + '%',
'width:' + v.timeOffsetWidth + '%'

)}">
<!-- content here -->

</div>

SEE ALSO:

Expression Functions Reference

Tips for CSS in Components
Here are some tips for configuring the CSS for components that you plan to use in Lightning pages, the Lightning App Builder, or the
Community Builder.

Components must be set to 100% width
Because they can be moved to different locations on a Lightning page, components must not have a specific width nor a left or
right margin. Components should take up 100% of whatever container they display in. Adding a left or right margin changes the
width of a component and can break the layout of the page.

Don’t remove HTML elements from the flow of the document
Some CSS rules remove the HTML element from the flow of the document. For example:

float: left;
float: right;
position: absolute;
position: fixed;

Because they can be moved to different locations on the page as well as used on different pages entirely, components must rely on
the normal document flow. Using floats and absolute or fixed positions breaks the layout of the page the component is on. Even if
they don’t break the layout of the page you’re looking at, they will break the layout of some page the component can be put on.

230

Tips for CSS in ComponentsCreating Apps

Child elements shouldn’t be styled to be larger than the root element
The Lightning page maintains consistent spacing between components, and can’t do that if child elements are larger than the root
element.

For example, avoid these patterns:

<div style="height: 100px">
<div style="height: 200px">
<!--Other markup here-->

</div>
</div>

<!--Margin increases the element’s effective size-->
<div style="height: 100px">
<div style="height: 100px margin: 10px">
<!--Other markup here-->

</div>
</div>

Vendor Prefixes
Vendor prefixes, such as —moz- and —webkit- among many others, are automatically added in Lightning.

You only need to write the unprefixed version, and the framework automatically adds any prefixes that are necessary when generating
the CSS output. If you choose to add them, they are used as-is. This enables you to specify alternative values for certain prefixes.

Example: For example, this is an unprefixed version of border-radius.

.class {
border-radius: 2px;

}

The previous declaration results in the following declarations.

.class {
-webkit-border-radius: 2px;
-moz-border-radius: 2px;
border-radius: 2px;

}

Styling with Design Tokens
Capture the essential values of your visual design into named tokens. Define the token values once and reuse them throughout your
Lightning components CSS resources. Tokens make it easy to ensure that your design is consistent, and even easier to update it as your
design evolves.

Design tokens are visual design “atoms” for building a design for your components or apps. Specifically, they’re named entities that store
visual design attributes, such as pixel values for margins and spacing, font sizes and families, or hex values for colors. Tokens are a terrific
way to centralize the low-level values, which you then use to compose the styles that make up the design of your component or app.

IN THIS SECTION:

Tokens Bundles

Tokens are a type of bundle, just like components, events, and interfaces.

231

Vendor PrefixesCreating Apps

Create a Tokens Bundle

Create a tokens bundle in your org using the Developer Console.

Defining and Using Tokens

A token is a name-value pair that you specify using the <aura:token> component. Define tokens in a tokens bundle, and then
use tokens in your components’ CSS styles resources.

Using Expressions in Tokens

Tokens support a restricted set of expressions. Use expressions to reuse one token value in another token, or to combine tokens to
form a more complex style property.

Extending Tokens Bundles

Use the extends attribute to extend one tokens bundle from another.

Using Standard Design Tokens

Salesforce exposes a set of “base” tokens that you can access in your component style resources. Use these standard tokens to mimic
the look-and-feel of the Salesforce Lightning Design System (SLDS) in your own custom components. As the SLDS evolves, components
that are styled using the standard design tokens will evolve along with it.

Tokens Bundles
Tokens are a type of bundle, just like components, events, and interfaces.

A tokens bundle contains only one resource, a tokens collection definition.

UsageResource NameResource

The only required resource in a tokens bundle. Contains markup
for one or more tokens. Each tokens bundle contains only one
tokens resource.

defaultTokens.tokensTokens Collection

Note: You can’t edit the tokens bundle name or description in the Developer Console after you create it. The bundle’s
AuraBundleDefinition can be modified using the Metadata API.

A tokens collection starts with the <aura:tokens> tag. It can only contain <aura:token> tags to define tokens.

Tokens collections have restricted support for expressions; see Using Expressions in Tokens. You can’t use other markup, renderers,
controllers, or anything else in a tokens collection.

SEE ALSO:

Using Expressions in Tokens

Create a Tokens Bundle
Create a tokens bundle in your org using the Developer Console.

To create a tokens bundle:

1. In the Developer Console, select File > New > Lightning Tokens.

2. Enter a name for the tokens bundle.

232

Styling with Design TokensCreating Apps

Your first tokens bundle should be named defaultTokens. The tokens defined within defaultTokens are automatically
accessible in your Lightning components. Tokens defined in any other bundle won’t be accessible in your components unless you
import them into the defaultTokens bundle.

You have an empty tokens bundle, ready to edit.

<aura:tokens>

</aura:tokens>

Note: You can’t edit the tokens bundle name or description in the Developer Console after you create it. The bundle’s
AuraBundleDefinition can be modified using the Metadata API. Although you can set a version on a tokens bundle,
doing so has no effect.

Defining and Using Tokens
A token is a name-value pair that you specify using the <aura:token> component. Define tokens in a tokens bundle, and then use
tokens in your components’ CSS styles resources.

Defining Tokens
Add new tokens as child components of the bundle’s <aura:tokens> component. For example:

<aura:tokens>
<aura:token name="myBodyTextFontFace"

value="'Salesforce Sans', Helvetica, Arial, sans-serif"/>
<aura:token name="myBodyTextFontWeight" value="normal"/>
<aura:token name="myBackgroundColor" value="#f4f6f9"/>
<aura:token name="myDefaultMargin" value="6px"/>

</aura:tokens>

The only allowed attributes for the <aura:token> tag are name and value.

Using Tokens
Tokens created in the defaultTokens bundle are automatically available in components in your namespace. To use a design token,
reference it using the token() function and the token name in the CSS resource of a component bundle. For example:

.THIS p {
font-family: token(myBodyTextFontFace);
font-weight: token(myBodyTextFontWeight);

}

If you prefer a more concise function name for referencing tokens, you can use the t() function instead of token(). The two are
equivalent. If your token names follow a naming convention or are sufficiently descriptive, the use of the more terse function name
won’t affect the clarity of your CSS styles.

Using Expressions in Tokens
Tokens support a restricted set of expressions. Use expressions to reuse one token value in another token, or to combine tokens to form
a more complex style property.

233

Styling with Design TokensCreating Apps

Cross-Referencing Tokens
To reference one token’s value in another token’s definition, wrap the token to be referenced in standard expression syntax.

In the following example, we’ll reference tokens provided by Salesforce in our custom tokens. Although you can’t see the standard tokens
directly, we’ll imagine they look something like the following.

<!-- force:base tokens (SLDS standard tokens) -->
<aura:tokens>
...
<aura:token name="colorBackground" value="rgb(244, 246, 249)" />
<aura:token name="fontFamily" value="'Salesforce Sans', Arial, sans-serif" />
...

</aura:tokens>

With the preceding in mind, you can reference the standard tokens in your custom tokens, as in the following.

<!-- defaultTokens.tokens (your tokens) -->
<aura:tokens extends="force:base">
<aura:token name="mainColor" value="{! colorBackground }" />
<aura:token name="btnColor" value="{! mainColor }" />
<aura:token name="myFont" value="{! fontFamily }" />

</aura:tokens>

You can only cross-reference tokens defined in the same file or a parent.

Expression syntax in tokens resources is restricted to references to other tokens.

Combining Tokens
To support combining individual token values into more complex CSS style properties, the token() function supports string
concatenation. For example, if you have the following tokens defined:

<!-- defaultTokens.tokens (your tokens) -->
<aura:tokens>
<aura:token name="defaultHorizonalSpacing" value="12px" />
<aura:token name="defaultVerticalSpacing" value="6px" />

</aura:tokens>

You can combine these two tokens in a CSS style definition. For example:

/* myComponent.css */
.THIS div.notification {
margin: token(defaultVerticalSpacing + ' ' + defaultHorizonalSpacing);
/* more styles here */

}

You can mix tokens with strings as much as necessary to create the right style definition. For example, use margin:
token(defaultVerticalSpacing + ' ' + defaultHorizonalSpacing + ' 3px'); to hard code the bottom
spacing in the preceding definition.

The only operator supported within the token() function is “+” for string concatenation.

SEE ALSO:

Defining and Using Tokens

234

Styling with Design TokensCreating Apps

Extending Tokens Bundles
Use the extends attribute to extend one tokens bundle from another.

To add tokens from one bundle to another, extend the “child” tokens bundle from the “parent” tokens, like this.

<aura:tokens extends="yourNamespace:parentTokens">
<!-- additional tokens here -->

</aura:tokens>

Overriding tokens values works mostly as you’d expect: tokens in a child tokens bundle override tokens with the same name from a
parent bundle. The exception is if you’re using standard tokens. You can’t override standard tokens in Lightning Experience or the
Salesforce app.

Important: Overriding standard token values is undefined behavior and unsupported. If you create a token with the same name
as a standard token, it overrides the standard token’s value in some contexts, and has no effect in others. This behavior will change
in a future release. Don’t use it.

SEE ALSO:

Using Standard Design Tokens

Using Standard Design Tokens
Salesforce exposes a set of “base” tokens that you can access in your component style resources. Use these standard tokens to mimic
the look-and-feel of the Salesforce Lightning Design System (SLDS) in your own custom components. As the SLDS evolves, components
that are styled using the standard design tokens will evolve along with it.

To add the standard tokens to your org, extend a tokens bundle from the base tokens, like so.

<aura:tokens extends="force:base">
<!-- your own tokens here -->

</aura:tokens>

Once added to defaultTokens (or another tokens bundle that defaultTokens extends) you can reference tokens from
force:base just like your own tokens, using the token() function and token name. For example:

.THIS p {
font-family: token(fontFamily);
font-weight: token(fontWeightRegular);

}

You can mix-and-match your tokens with the standard tokens. It’s a best practice to develop a naming system for your own tokens to
make them easily distinguishable from standard tokens. Consider prefixing your token names with “my”, or something else easily
identifiable.

IN THIS SECTION:

Overriding Standard Tokens (Developer Preview)

Standard tokens provide the look-and-feel of the Lightning Design System in your custom components. You can override standard
tokens to customize and apply branding to your Lightning apps.

Standard Design Tokens—force:base

The standard tokens available are a subset of the design tokens offered in the Salesforce Lightning Design System (SLDS). The
following tokens are available when extending from force:base.

235

Styling with Design TokensCreating Apps

Standard Design Tokens for Communities

Use a subset of the standard design tokens to make your components compatible with the Branding panel in Community Builder.
The Branding panel enables administrators to quickly style an entire community using branding properties. Each property in the
Branding panel maps to one or more standard design tokens. When an administrator updates a property in the Branding panel, the
system automatically updates any Lightning components that use the tokens associated with that branding property.

SEE ALSO:

Extending Tokens Bundles

Overriding Standard Tokens (Developer Preview)
Standard tokens provide the look-and-feel of the Lightning Design System in your custom components. You can override standard
tokens to customize and apply branding to your Lightning apps.

Note: Overriding standard tokens is available as a developer preview. This feature isn’t generally available unless or until Salesforce
announces its general availability in documentation or in press releases or public statements. You can provide feedback and
suggestions for this feature on the IdeaExchange.

To override a standard token for your Lightning app, create a tokens bundle with a unique name, for example myOverrides. In the
tokens resource, redefine the value for a standard token:

<aura:tokens>
<aura:token name="colorTextBrand" value="#8d7d74"/>

</aura:tokens>

In your Lightning app, specify the tokens bundle in the tokens attribute:

<aura:application tokens="c:myOverrides">
<!-- Your app markup here -->

</aura:application>

Token overrides apply across your app, including resources and components provided by Salesforce and components of your own that
use tokens.

Packaging apps that use the tokens attribute is unsupported.

Important: Overriding standard token values within defaultTokens.tokens, a required resource in a tokens bundle, is
unsupported. If you create a token with the same name as a standard token, it overrides the standard token’s value in some contexts,
and has no effect in others. Overrides should only be done in a separate resource as described above.

SEE ALSO:

Standard Design Tokens—force:base

Standard Design Tokens—force:base

The standard tokens available are a subset of the design tokens offered in the Salesforce Lightning Design System (SLDS). The following
tokens are available when extending from force:base.

Available Tokens

Important: The standard token values evolve along with SLDS. Available tokens and their values can change without notice.
Token values presented here are for example only.

236

Styling with Design TokensCreating Apps

https://success.salesforce.com/

Example ValueToken Name

1pxborderWidthThin

2pxborderWidthThick

0.125remspacingXxxSmall

0.25remspacingXxSmall

0.5remspacingXSmall

0.75remspacingSmall

1remspacingMedium

1.5remspacingLarge

2remspacingXLarge

6remsizeXxSmall

12remsizeXSmall

15remsizeSmall

20remsizeMedium

25remsizeLarge

40remsizeXLarge

60remsizeXxLarge

1remsquareIconUtilitySmall

1.25remsquareIconUtilityMedium

1.5remsquareIconUtilityLarge

3remsquareIconLargeBoundary

5remsquareIconLargeBoundaryAlt

2remsquareIconLargeContent

2remsquareIconMediumBoundary

2.25remsquareIconMediumBoundaryAlt

1remsquareIconMediumContent

1.5remsquareIconSmallBoundary

.75remsquareIconSmallContent

1.25remsquareIconXSmallBoundary

.5remsquareIconXSmallContent

300fontWeightLight

237

Styling with Design TokensCreating Apps

Example ValueToken Name

400fontWeightRegular

700fontWeightBold

1.25lineHeightHeading

1.375lineHeightText

1lineHeightReset

2.5remlineHeightTab

'Salesforce Sans', Arial, sans-seriffontFamily

.125remborderRadiusSmall

.25remborderRadiusMedium

.5remborderRadiusLarge

15remborderRadiusPill

50%borderRadiusCircle

rgb(216, 221, 230)colorBorder

rgb(21, 137, 238)colorBorderBrand

rgb(194, 57, 52)colorBorderError

rgb(75, 202, 129)colorBorderSuccess

rgb(255, 183, 93)colorBorderWarning

rgb(0, 112, 210)colorBorderTabSelected

rgb(244, 246, 249)colorBorderSeparator

rgb(216, 221, 230)colorBorderSeparatorAlt

rgb(42, 66, 108)colorBorderSeparatorInverse

rgb(0, 112, 210)colorBorderRowSelected

rgb(21, 137, 238)colorBorderRowSelectedHover

rgb(0, 112, 210)colorBorderButtonBrand

rgba(0, 0, 0, 0)colorBorderButtonBrandDisabled

rgb(216, 221, 230)colorBorderButtonDefault

rgba(255, 255, 255, 0.15)colorBorderButtonInverseDisabled

rgb(216, 221, 230)colorBorderInput

rgb(21, 137, 238)colorBorderInputActive

rgb(168, 183, 199)colorBorderInputDisabled

238

Styling with Design TokensCreating Apps

Example ValueToken Name

rgb(255, 255, 255)colorBorderInputCheckboxSelectedCheckmark

rgb(244, 246, 249)colorBackground

rgb(255, 255, 255)colorBackgroundAlt

rgb(22, 50, 92)colorBackgroundAltInverse

rgb(244, 246, 249)colorBackgroundRowHover

rgb(238, 241, 246)colorBackgroundRowActive

rgb(240, 248, 252)colorBackgroundRowSelected

rgb(217, 255, 223)colorBackgroundRowNew

rgb(6, 28, 63)colorBackgroundInverse

rgb(84, 105, 141)colorBackgroundBrowser

rgb(0, 112, 210)colorBackgroundChromeMobile

rgb(255, 255, 255)colorBackgroundChromeDesktop

rgb(250, 255, 189)colorBackgroundHighlight

rgb(255, 255, 255)colorBackgroundModal

rgb(0, 112, 210)colorBackgroundModalBrand

rgb(194, 57, 52)colorBackgroundNotificationBadge

rgb(0, 95, 178)colorBackgroundNotificationBadgeHover

rgb(0, 95, 178)colorBackgroundNotificationBadgeFocus

rgb(0, 57, 107)colorBackgroundNotificationBadgeActive

rgb(240, 248, 252)colorBackgroundNotificationNew

rgb(244, 246, 249)colorBackgroundPayload

rgb(224, 229, 238)colorBackgroundShade

rgb(238, 241, 246)colorBackgroundStencil

rgb(224, 229, 238)colorBackgroundStencilAlt

rgb(224, 229, 238)colorBackgroundScrollbar

rgb(168, 183, 199)colorBackgroundScrollbarTrack

rgb(21, 137, 238)colorBrand

rgb(0, 112, 210)colorBrandDark

rgba(0, 0, 0, 0.07)colorBackgroundModalButton

rgba(0, 0, 0, 0.16)colorBackgroundModalButtonActive

239

Styling with Design TokensCreating Apps

Example ValueToken Name

rgb(255, 255, 255)colorBackgroundInput

rgb(255, 255, 255)colorBackgroundInputActive

rgb(255, 255, 255)colorBackgroundInputCheckbox

rgb(216, 221, 230)colorBackgroundInputCheckboxDisabled

rgb(21, 137, 238)colorBackgroundInputCheckboxSelected

rgb(224, 229, 238)colorBackgroundInputDisabled

rgb(255, 221, 225)colorBackgroundInputError

rgb(255, 255, 255)colorBackgroundPill

rgba(84, 105, 141, 0.95)colorBackgroundToast

rgb(4, 132, 75)colorBackgroundToastSuccess

rgba(194, 57, 52, 0.95)colorBackgroundToastError

0 2px 4px 0 rgba(0, 0, 0, 0.40)shadowDrag

0 2px 3px 0 rgba(0, 0, 0, 0.16)shadowDropDown

0 2px 4px rgba(0, 0, 0, 0.07)shadowHeader

0 0 3px #0070D2shadowButtonFocus

0 0 3px #E0E5EEshadowButtonFocusInverse

rgb(84, 105, 141)colorTextActionLabel

rgb(22, 50, 92)colorTextActionLabelActive

rgb(21, 137, 238)colorTextBrand

rgb(255, 255, 255)colorTextBrowser

rgba(0, 0, 0, 0.4)colorTextBrowserActive

rgb(22, 50, 92)colorTextDefault

rgb(194, 57, 52)colorTextError

rgb(84, 105, 141)colorTextInputDisabled

rgb(22, 50, 92)colorTextInputFocusInverse

rgb(159, 170, 181)colorTextInputIcon

rgb(255, 255, 255)colorTextInverse

rgb(159, 170, 181)colorTextInverseWeak

rgb(94, 180, 255)colorTextInverseActive

rgb(159, 170, 181)colorTextInverseHover

240

Styling with Design TokensCreating Apps

Example ValueToken Name

rgb(0, 112, 210)colorTextLink

rgb(0, 57, 107)colorTextLinkActive

rgb(22, 50, 92)colorTextLinkDisabled

rgb(0, 95, 178)colorTextLinkFocus

rgb(0, 95, 178)colorTextLinkHover

rgb(255, 255, 255)colorTextLinkInverse

rgba(255, 255, 255, 0.75)colorTextLinkInverseHover

rgba(255, 255, 255, 0.5)colorTextLinkInverseActive

rgba(255, 255, 255, 0.15)colorTextLinkInverseDisabled

rgb(255, 255, 255)colorTextModal

rgb(84, 105, 141)colorTextModalButton

rgb(224, 229, 238)colorTextStageLeft

rgb(22, 50, 92)colorTextTabLabel

rgb(0, 112, 210)colorTextTabLabelSelected

rgb(0, 95, 178)colorTextTabLabelHover

rgb(0, 95, 178)colorTextTabLabelFocus

rgb(0, 57, 107)colorTextTabLabelActive

rgb(224, 229, 238)colorTextTabLabelDisabled

rgb(224, 229, 238)colorTextToast

rgb(84, 105, 141)colorTextWeak

rgb(0, 112, 210)colorTextIconBrand

rgb(255, 255, 255)colorTextButtonBrand

rgb(255, 255, 255)colorTextButtonBrandHover

rgb(255, 255, 255)colorTextButtonBrandActive

rgb(255, 255, 255)colorTextButtonBrandDisabled

rgb(0, 112, 210)colorTextButtonDefault

rgb(0, 112, 210)colorTextButtonDefaultHover

rgb(0, 112, 210)colorTextButtonDefaultActive

rgb(216, 221, 230)colorTextButtonDefaultDisabled

rgb(159, 170, 181)colorTextButtonDefaultHint

241

Styling with Design TokensCreating Apps

Example ValueToken Name

rgb(224, 229, 238)colorTextButtonInverse

rgba(255, 255, 255, 0.15)colorTextButtonInverseDisabled

rgb(84, 105, 141)colorTextIconDefault

rgb(159, 170, 181)colorTextIconDefaultHint

rgb(0, 112, 210)colorTextIconDefaultHover

rgb(0, 57, 107)colorTextIconDefaultActive

rgb(216, 221, 230)colorTextIconDefaultDisabled

rgb(255, 255, 255)colorTextIconInverse

rgb(255, 255, 255)colorTextIconInverseHover

rgb(255, 255, 255)colorTextIconInverseActive

rgba(255, 255, 255, 0.15)colorTextIconInverseDisabled

rgb(84, 105, 141)colorTextLabel

rgb(84, 105, 141)colorTextPlaceholder

rgb(224, 229, 238)colorTextPlaceholderInverse

rgb(194, 57, 52)colorTextRequired

rgb(0, 112, 210)colorTextPill

0sdurationInstantly

0.05sdurationImmediately

0.1sdurationQuickly

0.2sdurationPromptly

0.4sdurationSlowly

3.2sdurationPaused

rgb(0, 112, 210)colorBackgroundButtonBrand

rgb(0, 57, 107)colorBackgroundButtonBrandActive

rgb(0, 95, 178)colorBackgroundButtonBrandHover

rgb(224, 229, 238)colorBackgroundButtonBrandDisabled

rgb(255, 255, 255)colorBackgroundButtonDefault

rgb(244, 246, 249)colorBackgroundButtonDefaultHover

rgb(244, 246, 249)colorBackgroundButtonDefaultFocus

rgb(238, 241, 246)colorBackgroundButtonDefaultActive

242

Styling with Design TokensCreating Apps

Example ValueToken Name

rgb(255, 255, 255)colorBackgroundButtonDefaultDisabled

rgba(0, 0, 0, 0)colorBackgroundButtonIcon

rgb(244, 246, 249)colorBackgroundButtonIconHover

rgb(244, 246, 249)colorBackgroundButtonIconFocus

rgb(238, 241, 246)colorBackgroundButtonIconActive

rgb(255, 255, 255)colorBackgroundButtonIconDisabled

rgba(0, 0, 0, 0)colorBackgroundButtonInverse

rgba(0, 0, 0, 0.24)colorBackgroundButtonInverseActive

rgba(0, 0, 0, 0)colorBackgroundButtonInverseDisabled

1.875remlineHeightButton

1.75remlineHeightButtonSmall

rgb(244, 246, 249)colorBackgroundAnchor

For a complete list of the design tokens available in the SLDS, see Design Tokens on the Lightning Design System site.

SEE ALSO:

Extending Tokens Bundles

Standard Design Tokens for Communities
Use a subset of the standard design tokens to make your components compatible with the Branding panel in Community Builder. The
Branding panel enables administrators to quickly style an entire community using branding properties. Each property in the Branding
panel maps to one or more standard design tokens. When an administrator updates a property in the Branding panel, the system
automatically updates any Lightning components that use the tokens associated with that branding property.

243

Styling with Design TokensCreating Apps

http://www.lightningdesignsystem.com/resources/tokens/

Available Tokens for Communities

For Communities using the Customer Service (Napili) template, the following standard tokens are available when extending from
force:base.

Important: The standard token values evolve along with SLDS. Available tokens and their values can change without notice.

...map to these standard design tokensThese Branding panel properties...

colorTextDefaultText Color

Detail Text Color • colorTextLabel

• colorTextPlaceholder

• colorTextWeak

Action Color • colorBackgroundButtonBrand

• colorBackgroundHighlight

• colorBorderBrand

• colorBorderButtonBrand

• colorBrand

• colorTextBrand

244

Styling with Design TokensCreating Apps

...map to these standard design tokensThese Branding panel properties...

colorTextLinkLink Color

Overlay Text Color • colorTextButtonBrand

• colorTextButtonBrandHover

• colorTextInverse

Border Color • colorBorder

• colorBorderButtonDefault

• colorBorderInput

• colorBorderSeparatorAlt

fontFamilyPrimary Font

textTransformText Case

In addition, the following standard tokens are available for derived branding properties in the Customer Service (Napili) template. You
can indirectly access derived branding properties when you update the properties in the Branding panel. For example, if you change
the Action Color property in the Branding panel, the system automatically recalculates the Action Color Darker value based on the new
value.

...map to these standard design tokensThese derived branding properties...

Action Color Darker

(Derived from Action Color)
• colorBackgroundButtonBrandActive

• colorBackgroundButtonBrandHover

Hover Color

(Derived from Action Color)
• colorBackgroundButtonDefaultHover

• colorBackgroundRowHover

• colorBackgroundRowSelected

• colorBackgroundShade

Link Color Darker

(Derived from Link Color)
• colorTextLinkActive

• colorTextLinkHover

For a complete list of the design tokens available in the SLDS, see Design Tokens on the Lightning Design System site.

SEE ALSO:

Configure Components for Communities

Using JavaScript

Use JavaScript for client-side code. The $A namespace is the entry point for using the framework in JavaScript code.

245

Using JavaScriptCreating Apps

http://www.lightningdesignsystem.com/resources/tokens/

For all the methods available in $A, see the JavaScript API at
https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of
your custom Salesforce domain.

A component bundle can contain JavaScript code in a client-side controller, helper, or renderer. Client-side controllers are the most
commonly used of these JavaScript resources.

Expressions in JavaScript Code
In JavaScript, use string syntax to evaluate an expression. For example, this expression retrieves the label attribute in a component.

var theLabel = cmp.get("v.label");

Note: Only use the {! } expression syntax in markup in .app or .cmp resources.

IN THIS SECTION:

Invoking Actions on Component Initialization

Use the init event to initialize a component or fire an event after component construction but before rendering.

Sharing JavaScript Code in a Component Bundle

Put functions that you want to reuse in the component’s helper. Helper functions also enable specialization of tasks, such as processing
data and firing server-side actions.

Sharing JavaScript Code Across Components

You can build simple Lightning components that are entirely self-contained. However, if you build more complex applications, you
probably want to share code, or even client-side data, between components.

Using External JavaScript Libraries

To reference a JavaScript library that you’ve uploaded as a static resource, use a <ltng:require> tag in your .cmp or .app
markup.

Working with Attribute Values in JavaScript

These are useful and common patterns for working with attribute values in JavaScript.

Working with a Component Body in JavaScript

These are useful and common patterns for working with a component’s body in JavaScript.

Working with Events in JavaScript

These are useful and common patterns for working with events in JavaScript.

Modifying the DOM

The Document Object Model (DOM) is the language-independent model for representing and interacting with objects in HTML and
XML documents. It’s important to know how to modify the DOM safely so that the framework’s rendering service doesn’t stomp on
your changes and give you unexpected results.

Checking Component Validity

If you navigate elsewhere in the UI while asynchronous code is executing, the framework unrenders and destroys the component
that made the asynchronous request. You can still have a reference to that component, but it is no longer valid. The
cmp.isValid() call returns false for an invalid component.

Modifying Components Outside the Framework Lifecycle

Use $A.getCallback() to wrap any code that modifies a component outside the normal rerendering lifecycle, such as in a
setTimeout() call. The $A.getCallback() call ensures that the framework rerenders the modified component and
processes any enqueued actions.

246

Using JavaScriptCreating Apps

Validating Fields

Validate user input, handle errors, and display error messages on input fields.

Throwing and Handling Errors

The framework gives you flexibility in handling unrecoverable and recoverable app errors in JavaScript code. For example, you can
throw these errors in a callback when handling an error in a server-side response.

Calling Component Methods

Use <aura:method> to define a method as part of a component's API. This enables you to directly call a method in a component’s
client-side controller instead of firing and handling a component event. Using <aura:method> simplifies the code needed for
a parent component to call a method on a child component that it contains.

Using JavaScript Promises

You can use ES6 Promises in JavaScript code. Promises can simplify code that handles the success or failure of asynchronous calls,
or code that chains together multiple asynchronous calls.

Making API Calls from Components

By default, you can’t make calls to third-party APIs from client-side code. Add a remote site as a CSP Trusted Site to allow client-side
component code to load assets from and make API requests to that site’s domain.

Create CSP Trusted Sites to Access Third-Party APIs

The Lightning Component framework uses Content Security Policy (CSP), which is a W3C standard, to control the source of content
that can be loaded on a page. To use third-party APIs that make requests to an external (non-Salesforce) server, add the server as a
CSP Trusted Site.

SEE ALSO:

Handling Events with Client-Side Controllers

Invoking Actions on Component Initialization
Use the init event to initialize a component or fire an event after component construction but before rendering.

Component source

<aura:component>
<aura:attribute name="setMeOnInit" type="String" default="default value" />
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

<p>This value is set in the controller after the component initializes and before
rendering.</p>

<p>{!v.setMeOnInit}</p>

</aura:component>

Client-side controller source

({
doInit: function(cmp) {

// Set the attribute value.
// You could also fire an event here instead.
cmp.set("v.setMeOnInit", "controller init magic!");

}
})

247

Invoking Actions on Component InitializationCreating Apps

Let's look at the Component source to see how this works. The magic happens in this line.

<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

This registers an init event handler for the component. init is a predefined event sent to every component. After the component
is initialized, the doInit action is called in the component's controller. In this sample, the controller action sets an attribute value, but
it could do something more interesting, such as firing an event.

Setting value="{!this}" marks this as a value event. You should always use this setting for an init event.

SEE ALSO:

Handling Events with Client-Side Controllers

Create a Custom Renderer

Component Attributes

Detecting Data Changes with Change Handlers

Sharing JavaScript Code in a Component Bundle
Put functions that you want to reuse in the component’s helper. Helper functions also enable specialization of tasks, such as processing
data and firing server-side actions.

A helper function can be called from any JavaScript code in a component’s bundle, such as from a client-side controller or renderer.

Helper functions are similar to client-side controller functions in shape, surrounded by parentheses and curly braces to denote a JavaScript
object in object-literal notation containing a map of name-value pairs. A helper function can pass in any arguments required by the
function, such as the component it belongs to, a callback, or any other objects.

({
helperMethod1 : function() {

// logic here
},

helperMethod2 : function(component) {
// logic here
this.helperMethod3(var1, var2);

},

helperMethod3 : function(var1, var2) {
// do something with var1 and var2 here

}
})

Creating a Helper
A helper resource is part of the component bundle and is auto-wired via the naming convention, <componentName>Helper.js.

To create a helper using the Developer Console, click HELPER in the sidebar of the component. This helper file is valid for the scope of
the component to which it’s auto-wired.

248

Sharing JavaScript Code in a Component BundleCreating Apps

Using a Helper in a Controller
Add a helper argument to a controller function to enable the function to use the helper. Specify (component, event,
helper) in the controller. These are standard parameters and you don't have to access them in the function. You can also pass in an
instance variable as a parameter, for example, createExpense: function(component, expense){...}, where
expense is a variable defined in the component.

The following code shows you how to call the updateItem helper function in a controller, which can be used with a custom event
handler.

/* controller */
({

newItemEvent: function(component, event, helper) {
helper.updateItem(component, event.getParam("item"));

}
})

Helper functions are local to a component, improve code reuse, and move the heavy lifting of JavaScript logic away from the client-side
controller where possible. The following code shows the helper function, which takes in the value parameter set in the controller via
the item argument. The code walks through calling a server-side action and returning a callback but you can do something else in
the helper function.

/* helper */
({

updateItem : function(component, item, callback) {
//Update the items via a server-side action
var action = component.get("c.saveItem");
action.setParams({"item" : item});
//Set any optional callback and enqueue the action
if (callback) {

action.setCallback(this, callback);
}
$A.enqueueAction(action);

}
})

Using a Helper in a Renderer
Add a helper argument to a renderer function to enable the function to use the helper. In the renderer, specify (component,
helper) as parameters in a function signature to enable the function to access the component's helper. These are standard parameters
and you don't have to access them in the function. The following code shows an example on how you can override the afterRender()
function in the renderer and call open in the helper method.

detailsRenderer.js

({
afterRender : function(component, helper){

helper.open(component, null, "new");
}

})

detailsHelper.js

({
open : function(component, note, mode, sort){

249

Sharing JavaScript Code in a Component BundleCreating Apps

if(mode === "new") {
//do something

}
// do something else, such as firing an event

}
})

SEE ALSO:

Create a Custom Renderer

Component Bundles

Handling Events with Client-Side Controllers

Sharing JavaScript Code Across Components
You can build simple Lightning components that are entirely self-contained. However, if you build more complex applications, you
probably want to share code, or even client-side data, between components.

The <ltng:require> tag enables you to load external JavaScript libraries after you upload them as static resources. You can also
use <ltng:require> to import your own JavaScript libraries of utility methods.

Let’s look at a simple counter library that provides a getValue() method, which returns the current value of the counter, and an
increment() method, which increments the value of that counter.

Create the JavaScript Library
1. In the Developer Console, click File > New > Static Resource.

2. Enter counter in the Name field.

3. Select text/javascript in the MIME Type field.

4. Click Submit.

5. Enter this code and click File > Save.

window._counter = (function() {
var value = 0; // private

return { //public API
increment: function() {

value = value + 1;
return value;

},

getValue: function() {
return value;

}
};

}());

This code uses the JavaScript module pattern. Using this closure-based pattern, the value variable remains private to your library.
Components using the library can’t access value directly.

250

Sharing JavaScript Code Across ComponentsCreating Apps

The most important line of the code to note is:

window._counter = (function() {

You must attach _counter to the window object as a requirement of JavaScript strict mode, which is implicitly enabled in
LockerService. Even though window._counter looks like a global declaration, _counter is attached to the LockerService secure
window object and therefore is a namespace variable, not a global variable.

If you use _counter instead of window._counter, _counter isn’t available. When you try to access it, you get an error similar
to:

Action failed: ... [_counter is not defined]

Use the JavaScript Library
Let’s use the library in a MyCounter component that has a simple UI to exercise the counter methods.

<!--c:MyCounter-->
<aura:component access="global">

<ltng:require scripts="{!$Resource.counter}"
afterScriptsLoaded="{!c.getValue}"/>

<aura:attribute name="value" type="Integer"/>

<h1>MyCounter</h1>
<p>{!v.value}</p>
<lightning:button label="Get Value" onclick="{!c.getValue}"/>
<lightning:button label="Increment" onclick="{!c.increment}"/>

</aura:component>

The <ltng:require> tag loads the counter library and calls the getValue action in the component’s client-side controller after
the library is loaded.

Here’s the client-side controller.

/* MyCounterController.js */
({

getValue : function(component, event, helper) {
component.set("v.value", _counter.getValue());

},

increment : function(component, event, helper) {
component.set("v.value", _counter.increment());

}
})

You can access properties of the window object without having to type the window. prefix. Therefore, you can use
_counter.getValue() as shorthand for window._counter.getValue().

Click the buttons to get the value or increment it.

251

Sharing JavaScript Code Across ComponentsCreating Apps

Our counter library shares the counter value between any components that use the library. If you need each component to have a
separate counter, you could modify the counter implementation. To see the per-component code and for more details, see this blog
post about Modularizing Code in Lightning Components.

SEE ALSO:

Using External JavaScript Libraries

ltng:require

JavaScript ES5 Strict Mode Enforcement

Using External JavaScript Libraries
To reference a JavaScript library that you’ve uploaded as a static resource, use a <ltng:require> tag in your .cmp or .app
markup.

The framework’s content security policy mandates that external JavaScript libraries must be uploaded to Salesforce static resources. For
more information on static resources, see “Static Resources” in the Salesforce online help.

Here’s an example of using <ltng:require>.

<ltng:require scripts="{!$Resource.resourceName}"
afterScriptsLoaded="{!c.afterScriptsLoaded}" />

resourceName is the Name of the static resource. In a managed packaged, the resource name must include the package namespace
prefix, such as $Resource.yourNamespace__resourceName. For a stand-alone static resource, such as an individual graphic
or script, that’s all you need. To reference an item within an archive static resource, add the rest of the path to the item using string
concatenation.

The afterScriptsLoaded action in the client-side controller is called after the scripts are loaded. Don't use the init event to
access scripts loaded by <ltng:require>. These scripts load asynchronously and are most likely not available when the init
event handler is called.

Here are some considerations for loading scripts:

Loading Sets of Scripts
Specify a comma-separated list of resources in the scripts attribute to load a set of resources.

Note: Due to a quirk in the way $Resource is parsed in expressions, use the join operator to include multiple
$Resource references in a single attribute. For example, if you have more than one JavaScript library to include into a
component the scripts attribute should be something like the following.

scripts="{!join(',',
$Resource.jsLibraries + '/jsLibOne.js',
$Resource.jsLibraries + '/jsLibTwo.js')}"

Loading Order
The scripts are loaded in the order that they are listed.

One-Time Loading
Scripts load only once, even if they’re specified in multiple <ltng:require> tags in the same component or across different
components.

Parallel Loading
Use separate <ltng:require> tags for parallel loading if you have multiple sets of scripts that are not dependent on each
other.

252

Using External JavaScript LibrariesCreating Apps

https://developer.salesforce.com/blogs/developer-relations/2016/12/lightning-components-code-sharing.html

Encapsulation
To ensure encapsulation and reusability, add the <ltng:require> tag to every .cmp or .app resource that uses the JavaScript
library.

<ltng:require> also has a styles attribute to load a list of CSS resources. You can set the scripts and styles attributes
in one <ltng:require> tag.

If you’re using an external library to work with your HTML elements after rendering, use afterScriptsLoaded to wire up a
client-side controller. The following example sets up a chart using the Chart.js library, which is uploaded as a static resource.

<ltng:require scripts="{!$Resource.chart}"
afterScriptsLoaded="{!c.setup}"/>

<canvas aura:id="chart" id="myChart" width="400" height="400"/>

The component’s client-side controller sets up the chart after component initialization and rendering.

setup : function(component, event, helper) {
var data = {

labels: ["January", "February", "March"],
datasets: [{

data: [65, 59, 80, 81, 56, 55, 40]
}]

};
var el = component.find("chart").getElement();
var ctx = el.getContext("2d");
var myNewChart = new Chart(ctx).Line(data);

}

SEE ALSO:

Reference Doc App

Content Security Policy Overview

Using External CSS

$Resource

Working with Attribute Values in JavaScript
These are useful and common patterns for working with attribute values in JavaScript.

component.get(String key) and component.set(String key, Object value) retrieves and assigns values
associated with the specified key on the component. Keys are passed in as an expression, which represents attribute values. To retrieve
an attribute value of a component reference, use component.find("cmpId").get("v.value"). Similarly, use
component.find("cmpId").set("v.value", myValue) to set the attribute value of a component reference. This
example shows how you can retrieve and set attribute values on a component reference, represented by the button with an ID of
button1.

<aura:component>
<aura:attribute name="buttonLabel" type="String"/>
<lightning:button aura:id="button1" label="Button 1"/>
{!v.buttonLabel}
<lightning:button label="Get Label" onclick="{!c.getLabel}"/>

</aura:component>

253

Working with Attribute Values in JavaScriptCreating Apps

This controller action retrieves the label attribute value of a button in a component and sets its value on the buttonLabel
attribute.

({
getLabel : function(component, event, helper) {

var myLabel = component.find("button1").get("v.label");
component.set("v.buttonLabel", myLabel);

}
})

In the following examples, cmp is a reference to a component in your JavaScript code.

Get an Attribute Value
To get the value of a component’s label attribute:

var label = cmp.get("v.label");

Set an Attribute Value
To set the value of a component’s label attribute:

cmp.set("v.label","This is a label");

Validate that an Attribute Value is Defined
To determine if a component’s label attribute is defined:

var isDefined = !$A.util.isUndefined(cmp.get("v.label"));

Validate that an Attribute Value is Empty
To determine if a component’s label attribute is empty:

var isEmpty = $A.util.isEmpty(cmp.get("v.label"));

SEE ALSO:

Working with a Component Body in JavaScript

Working with a Component Body in JavaScript
These are useful and common patterns for working with a component’s body in JavaScript.

In these examples, cmp is a reference to a component in your JavaScript code. It’s usually easy to get a reference to a component in
JavaScript code. Remember that the body attribute is an array of components, so you can use the JavaScript Array methods on it.

Note: When you use cmp.set("v.body", ...) to set the component body, you must explicitly include {!v.body}
in your component markup.

254

Working with a Component Body in JavaScriptCreating Apps

Replace a Component's Body
To replace the current value of a component’s body with another component:

// newCmp is a reference to another component
cmp.set("v.body", newCmp);

Clear a Component's Body
To clear or empty the current value of a component’s body:

cmp.set("v.body", []);

Append a Component to a Component's Body
To append a newCmp component to a component’s body:

var body = cmp.get("v.body");
// newCmp is a reference to another component
body.push(newCmp);
cmp.set("v.body", body);

Prepend a Component to a Component's Body
To prepend a newCmp component to a component’s body:

var body = cmp.get("v.body");
body.unshift(newCmp);
cmp.set("v.body", body);

Remove a Component from a Component's Body
To remove an indexed entry from a component’s body:

var body = cmp.get("v.body");
// Index (3) is zero-based so remove the fourth component in the body
body.splice(3, 1);
cmp.set("v.body", body);

SEE ALSO:

Component Body

Working with Attribute Values in JavaScript

Working with Events in JavaScript
These are useful and common patterns for working with events in JavaScript.

Events communicate data across components. Events can contain attributes with values set before the event is fired and read when the
event is handled.

255

Working with Events in JavaScriptCreating Apps

Fire an Event
Fire a component event or an application event that’s registered on a component.

//Fire a component event
var compEvent = cmp.getEvent("sampleComponentEvent");
compEvent.fire();

//Fire an application event
var appEvent = $A.get("e.c:appEvent");
appEvent.fire();

For more information, see:

• Fire Component Events

• Fire Application Events

Get an Event Name
To get the name of the event that’s fired:

event.getSource().getName();

Get an Event Parameter
To get an attribute that’s passed into an event:

event.getParam("value");

Get Parameters on an Event
To get all attributes that are passed into an event:

event.getParams();

event.getParams() returns an object containing all event parameters.

Get the Current Phase of an Event
To get the current phase of an event:

event.getPhase();

If the event hasn’t been fired, event.getPhase() returns undefined. Possible return values for component and application
events are capture, bubble, and default. Value events return default. For more information, see:

• Component Event Propagation

• Application Event Propagation

Get the Source Component
To get the component that fired the event:

event.getSource();

256

Working with Events in JavaScriptCreating Apps

To retrieve an attribute on the component that fired the event:

event.getSource().get("v.myName");

Pause the Event
To pause the fired event:

event.pause();

If paused, the event is not handled until event.resume() is called. You can pause an event in the capture or bubble phase
only. For more information, see:

• Handling Bubbled or Captured Component Events

• Handling Bubbled or Captured Application Events

Prevent the Default Event Execution
To cancel the default action on the event:

event.preventDefault();

For example, you can prevent a lightning:button component from submitting a form when it’s clicked.

Resume a Paused Event
To resume event handling for a paused event:

event.resume();

You can resume a paused event in the capture or bubble phase only. For more information, see:

• Handling Bubbled or Captured Component Events

• Handling Bubbled or Captured Application Events

Set a Value for an Event Parameter
To set a value for an event parameter:

event.setParam("name", cmp.get("v.myName");

If the event has already been fired, setting a parameter value has no effect on the event.

Set Values for Event Parameters
To set values for parameters on an event:

event.setParams({
key : value

});

If the event has already been fired, setting the parameter values has no effect on the event.

257

Working with Events in JavaScriptCreating Apps

Stop Event Propagation
To prevent further propagation of an event:

event.stopPropagation();

You can stop event propagation in the capture or bubble phase only.

Modifying the DOM
The Document Object Model (DOM) is the language-independent model for representing and interacting with objects in HTML and
XML documents. It’s important to know how to modify the DOM safely so that the framework’s rendering service doesn’t stomp on your
changes and give you unexpected results.

IN THIS SECTION:

Modifying DOM Elements Managed by the Lightning Component Framework

The framework creates and manages the DOM elements owned by a component. If you want to modify these DOM elements created
by the framework, modify the DOM elements in the handler for the component’s render event or in a custom renderer. Otherwise,
the framework will override your changes when the component is rerendered.

Modifying DOM Elements Managed by External Libraries

You can use different libraries, such as a charting library, to create and manage DOM elements. You don’t have to modify these DOM
elements within the render event handler or a renderer because they are managed by the external library.

Modifying DOM Elements Managed by the Lightning Component Framework
The framework creates and manages the DOM elements owned by a component. If you want to modify these DOM elements created
by the framework, modify the DOM elements in the handler for the component’s render event or in a custom renderer. Otherwise,
the framework will override your changes when the component is rerendered.

For example, if you modify DOM elements directly from a client-side controller, the changes may be overwritten when the component
is rendered.

You can read from the DOM outside a render event handler or a custom renderer.

The simplest approach is to leave DOM updates to the framework. Update a component’s attribute and use an expression in the markup.
The framework’s rendering service takes care of the DOM updates.

You can modify CSS classes for a component outside a renderer by using the $A.util.addClass(), $A.util.removeClass(),
and $A.util.toggleClass() methods.

There are some use cases where you want to perform post-processing on the DOM or react to rendering or rerendering of a component.
For these use cases, there are a few options.

IN THIS SECTION:

Handle the render Event

When a component is rendered or rerendered, the aura:valueRender event, also known as the render event, is fired.
Handle this event to perform post-processing on the DOM or react to component rendering or rerendering. The event is preferred
and easier to use than the alternative of creating a custom renderer.

258

Modifying the DOMCreating Apps

Create a Custom Renderer

The framework’s rendering service takes in-memory component state and creates and manages the DOM elements owned by the
component. If you want to modify DOM elements created by the framework for a component, you can modify the DOM elements
in the component’s renderer. Otherwise, the framework will override your changes when the component is rerendered.

SEE ALSO:

Modifying DOM Elements Managed by External Libraries

Using Expressions

Dynamically Showing or Hiding Markup

Handle the render Event

When a component is rendered or rerendered, the aura:valueRender event, also known as the render event, is fired. Handle
this event to perform post-processing on the DOM or react to component rendering or rerendering. The event is preferred and easier
to use than the alternative of creating a custom renderer.

The render event is fired after all methods in a custom renderer are invoked. For more details on the sequence in the rendering or
rerendering lifecycles, see Create a Custom Renderer.

Handling the aura:valueRender event is similar to handling the init hook. Add a handler to your component's markup.

<aura:handler name="render" value="{!this}" action="{!c.onRender}"/>

In this example, the onRender action in your client-side controller handles initial rendering and rerendering of the component. You
can choose any name for the action attribute.

SEE ALSO:

Invoking Actions on Component Initialization

Create a Custom Renderer

Create a Custom Renderer
The framework’s rendering service takes in-memory component state and creates and manages the DOM elements owned by the
component. If you want to modify DOM elements created by the framework for a component, you can modify the DOM elements in
the component’s renderer. Otherwise, the framework will override your changes when the component is rerendered.

The DOM is the language-independent model for representing and interacting with objects in HTML and XML documents. The framework
automatically renders your components so you don’t have to know anything more about rendering unless you need to customize the
default rendering behavior for a component.

Note: It’s preferred and easier to handle the render event rather than the alternative of creating a custom renderer.

Base Component Rendering

The base component in the framework is aura:component. Every component extends this base component.

The renderer for aura:component is in componentRenderer.js. This renderer has base implementations for the four phases
of the rendering and rerendering cycles:

• render()

• rerender()

259

Modifying the DOMCreating Apps

• afterRender()

• unrender()

The framework calls these functions as part of the rendering and rerendering lifecycles and we will learn more about them soon. You
can override the base rendering functions in a custom renderer.

Rendering Lifecycle

The rendering lifecycle happens once in the lifetime of a component unless the component gets explicitly unrendered. When you create
a component:

1. The framework fires an init event, enabling you to update a component or fire an event after component construction but before
rendering.

2. The render() method is called to render the component’s body.

3. The afterRender() method is called to enable you to interact with the DOM tree after the framework’s rendering service has
inserted DOM elements.

4. The framework fires a render event, enabling you to interact with the DOM tree after the framework’s rendering service has
inserted DOM elements. Handling the render event is preferred to creating a custom renderer and overriding afterRender().

Rerendering Lifecycle

The rerendering lifecycle automatically handles rerendering of components whenever the underlying data changes. Here is a typical
sequence.

1. A browser event triggers one or more Lightning events.

2. Each Lightning event triggers one or more actions that can update data. The updated data can fire more events.

3. The rendering service tracks the stack of events that are fired.

4. The framework rerenders all the components that own modified data by calling each component’s rerender() method.

5. The framework fires a render event, enabling you to interact with the DOM tree after the framework rerenders a component.
Handling the render event is preferred to creating a custom renderer and overriding rerender().

The component rerendering lifecycle repeats whenever the underlying data changes as long as the component is valid and not explicitly
unrendered.

For more information, see Events Fired During the Rendering Lifecycle .

Custom Renderer

You don’t normally have to write a custom renderer, but it’s useful when you want to interact with the DOM tree after the framework’s
rendering service has inserted DOM elements. If you want to customize rendering behavior and you can’t do it in markup or by using
the init event, you can create a client-side renderer.

A renderer file is part of the component bundle and is auto-wired if you follow the naming convention,
<componentName>Renderer.js. For example, the renderer for sample.cmp would be in sampleRenderer.js.

Note: These guidelines are important when you customize rendering.

• Only modify DOM elements that are part of the component. Never break component encapsulation by reaching in to another
component and changing its DOM elements, even if you are reaching in from the parent component.

• Never fire an event as it can trigger new rendering cycles. An alternative is to use an init event instead.

• Don’t set attribute values on other components as these changes can trigger new rendering cycles.

260

Modifying the DOMCreating Apps

• Move as much of the UI concerns, including positioning, to CSS.

Customize Component Rendering

Customize rendering by creating a render() function in your component’s renderer to override the base render() function,
which updates the DOM.

The render() function returns a DOM node, an array of DOM nodes, or nothing. The base HTML component expects DOM nodes
when it renders a component.

You generally want to extend default rendering by calling superRender() from your render() function before you add your
custom rendering code. Calling superRender() creates the DOM nodes specified in the markup.

This code outlines a custom render() function.

render : function(cmp, helper) {
var ret = this.superRender();
// do custom rendering here
return ret;

},

Rerender Components

When an event is fired, it may trigger actions to change data and call rerender() on affected components. The rerender()
function enables components to update themselves based on updates to other components since they were last rendered. This function
doesn’t return a value.

If you update data in a component, the framework automatically calls rerender().

You generally want to extend default rerendering by calling superRerender() from your renderer() function before you
add your custom rerendering code. Calling superRerender() chains the rerendering to the components in the body attribute.

This code outlines a custom rerender() function.

rerender : function(cmp, helper){
this.superRerender();
// do custom rerendering here

}

Access the DOM After Rendering

The afterRender() function enables you to interact with the DOM tree after the framework’s rendering service has inserted DOM
elements. It’s not necessarily the final call in the rendering lifecycle; it’s simply called after render() and it doesn’t return a value.

You generally want to extend default after rendering by calling superAfterRender() function before you add your custom code.

This code outlines a custom afterRender() function.

afterRender: function (component, helper) {
this.superAfterRender();
// interact with the DOM here

},

261

Modifying the DOMCreating Apps

Unrender Components

The base unrender() function deletes all the DOM nodes rendered by a component’s render() function. It is called by the
framework when a component is being destroyed. Customize this behavior by overriding unrender() in your component’s renderer.
This method can be useful when you are working with third-party libraries that are not native to the framework.

You generally want to extend default unrendering by calling superUnrender() from your unrender() function before you
add your custom code.

This code outlines a custom unrender() function.

unrender: function () {
this.superUnrender();
// do custom unrendering here

}

SEE ALSO:

Modifying the DOM

Invoking Actions on Component Initialization

Component Bundles

Modifying Components Outside the Framework Lifecycle

Sharing JavaScript Code in a Component Bundle

Modifying DOM Elements Managed by External Libraries
You can use different libraries, such as a charting library, to create and manage DOM elements. You don’t have to modify these DOM
elements within the render event handler or a renderer because they are managed by the external library.

A render event handler or a renderer are used only to customize DOM elements created and managed by the Lightning Component
framework.

To use external libraries, use <ltng:require>. The afterScriptsLoaded attribute enables you to interact with the DOM
after your libraries have loaded and the DOM is ready. <ltng:require> tag orchestrates the loading of your library of choice with
the rendering cycle of the Lightning Component framework to ensure that everything works in concert.

SEE ALSO:

ltng:require

Using External JavaScript Libraries

Modifying DOM Elements Managed by the Lightning Component Framework

Checking Component Validity
If you navigate elsewhere in the UI while asynchronous code is executing, the framework unrenders and destroys the component that
made the asynchronous request. You can still have a reference to that component, but it is no longer valid. The cmp.isValid()
call returns false for an invalid component.

If you call cmp.get() on an invalid component, cmp.get() returns null.

If you call cmp.set() on an invalid component, nothing happens and no error occurs. It’s essentially a no op.

262

Checking Component ValidityCreating Apps

In many scenarios, the cmp.isValid() call isn’t necessary because a null check on a value retrieved from cmp.get() is
sufficient. The main reason to call cmp.isValid() is if you’re making multiple calls against the component and you want to avoid
a null check for each result.

Inside the Framework Lifecycle
You don’t need a cmp.isValid() check in the callback in a client-side controller when you reference the component associated
with the client-side controller. The framework automatically checks that the component is valid. Similarly, you don’t need a
cmp.isValid() check during event handling or in a framework lifecycle hook, such as the init event.

Let’s look at a sample client-side controller.

({
"doSomething" : function(cmp) {

var action = cmp.get("c.serverEcho");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

if (cmp.get("v.displayResult)) {
alert("From server: " + response.getReturnValue());

}
}
// other state handling omitted for brevity

});

$A.enqueueAction(action);
}

})

The component wired to the client-side controller is passed into the doSomething action as the cmp parameter. When
cmp.get("v.displayResult) is called, we don’t need a cmp.isValid() check.

However, if you hold a reference to another component that may not be valid despite your component being valid, you might need a
cmp.isValid() check for the other component. Let’s look at another example of a component that has a reference to another
component with a local ID of child.

({
"doSomething" : function(cmp) {

var action = cmp.get("c.serverEcho");
var child = cmp.find("child");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

if (child.get("v.displayResult)) {
alert("From server: " + response.getReturnValue());

}
}
// other state handling omitted for brevity

});

$A.enqueueAction(action);
}

})

263

Checking Component ValidityCreating Apps

This line in the previous example without the child component:

if (cmp.get("v.displayResult)) {

changed to:

if (child.get("v.displayResult)) {

You don’t need a child.isValid() call here as child.get("v.displayResult) will return null if the child component
is invalid. Add a child.isValid() check only if you’re making multiple calls against the child component and you want to avoid
a null check for each result.

Outside the Framework Lifecycle
If you reference a component in asynchronous code, such as setTimeout() or setInterval(), or when you use Promises, a
cmp.isValid() call checks that the component is still valid before processing the results of the asynchronous request. In many
scenarios, the cmp.isValid() call isn’t necessary because a null check on a value retrieved from cmp.get() is sufficient.
The main reason to call cmp.isValid() is if you’re making multiple calls against the component and you want to avoid a null
check for each result.

For example, you don’t need a cmp.isValid() check within this setTimeout() call as the cmp.set() call doesn’t do
anything when the component is invalid.

window.setTimeout(
$A.getCallback(function() {

cmp.set("v.visible", true);
}), 5000

);

SEE ALSO:

Handling Events with Client-Side Controllers

Invoking Actions on Component Initialization

Modifying Components Outside the Framework Lifecycle

Modifying Components Outside the Framework Lifecycle
Use $A.getCallback() to wrap any code that modifies a component outside the normal rerendering lifecycle, such as in a
setTimeout() call. The $A.getCallback() call ensures that the framework rerenders the modified component and processes
any enqueued actions.

Note: $A.run() is deprecated. Use $A.getCallback() instead.

You don't need to use $A.getCallback() if your code is executed as part of the framework's call stack; for example, your code is
handling an event or in the callback for a server-side controller action.

An example of where you need to use $A.getCallback() is calling window.setTimeout() in an event handler to execute
some logic after a time delay. This puts your code outside the framework's call stack.

This sample sets the visible attribute on a component to true after a five-second delay.

window.setTimeout(
$A.getCallback(function() {

cmp.set("v.visible", true);

264

Modifying Components Outside the Framework LifecycleCreating Apps

}), 5000
);

Note how the code updating a component attribute is wrapped in $A.getCallback(), which ensures that the framework rerenders
the modified component.

Note: You don't need a cmp.isValid() check within this setTimeout() call as the cmp.set() call doesn't do
anything when the component is invalid.

Warning: Don't save a reference to a function wrapped in $A.getCallback(). If you use the reference later to send actions,
the saved transaction state will cause the actions to be aborted.

SEE ALSO:

Handling Events with Client-Side Controllers

Checking Component Validity

Firing Lightning Events from Non-Lightning Code

Communicating with Events

Validating Fields
Validate user input, handle errors, and display error messages on input fields.

Client-side input validation is available for the following components:

• lightning:input

• lightning:select

• lightning:textarea

• ui:input*

Components in the lightning namespace simplify input validation by providing attributes to define error conditions, enabling you
to handle errors by checking the component’s validity state. For example, you can set a minimum length for a field , display an error
message when the condition is not met, and handle the error based on the given validity state. For more information, see the lightning
namespace components in the Component Reference.

Alternatively, input components in the ui namespace let you define and handle errors in a client-side controller, enabling you to iterate
through a list of errors.

The following sections discuss error handling for ui:input* components.

Default Error Handling
The framework can handle and display errors using the default error component, ui:inputDefaultError. This component is
dynamically created when you set the errors using the inputCmp.set("v.errors",[{message:"my error
message"}]) syntax. The following example shows how you can handle a validation error and display an error message. Here is the
markup.

<!--c:errorHandling-->
<aura:component>

Enter a number: <ui:inputNumber aura:id="inputCmp"/>

<lightning:button label="Submit" onclick="{!c.doAction}"/>

</aura:component>

265

Validating FieldsCreating Apps

Here is the client-side controller.

/*errorHandlingController.js*/
{

doAction : function(component) {
var inputCmp = component.find("inputCmp");
var value = inputCmp.get("v.value");

// Is input numeric?
if (isNaN(value)) {

// Set error
inputCmp.set("v.errors", [{message:"Input not a number: " + value}]);

} else {
// Clear error
inputCmp.set("v.errors", null);

}
}

}

When you enter a value and click Submit, doAction in the controller validates the input and displays an error message if the input
is not a number. Entering a valid input clears the error. Add error messages to the input component using the errors attribute.

Custom Error Handling
ui:input and its child components can handle errors using the onError and onClearErrors events, which are wired to
your custom error handlers defined in a controller. onError maps to a ui:validationError event, and onClearErrors
maps to ui:clearErrors.

The following example shows how you can handle a validation error using custom error handlers and display the error message using
the default error component. Here is the markup.

<!--c:errorHandlingCustom-->
<aura:component>

Enter a number: <ui:inputNumber aura:id="inputCmp" onError="{!c.handleError}"
onClearErrors="{!c.handleClearError}"/>

<ui:button label="Submit" press="{!c.doAction}"/>
</aura:component>

Here is the client-side controller.

/*errorHandlingCustomController.js*/
{

doAction : function(component, event) {
var inputCmp = component.find("inputCmp");
var value = inputCmp.get("v.value");

// is input numeric?
if (isNaN(value)) {

inputCmp.set("v.errors", [{message:"Input not a number: " + value}]);
} else {

inputCmp.set("v.errors", null);
}

},

handleError: function(component, event){

266

Validating FieldsCreating Apps

/* do any custom error handling
* logic desired here */
// get v.errors, which is an Object[]
var errorsArr = event.getParam("errors");
for (var i = 0; i < errorsArr.length; i++) {

console.log("error " + i + ": " + JSON.stringify(errorsArr[i]));
}

},

handleClearError: function(component, event) {
/* do any custom error handling
* logic desired here */

}
}

When you enter a value and click Submit, doAction in the controller executes. However, instead of letting the framework handle
the errors, we define a custom error handler using the onError event in <ui:inputNumber>. If the validation fails, doAction
adds an error message using the errors attribute. This automatically fires the handleError custom error handler.

Similarly, you can customize clearing the errors by using the onClearErrors event. See the handleClearError handler in
the controller for an example.

SEE ALSO:

Handling Events with Client-Side Controllers

Component Events

Throwing and Handling Errors
The framework gives you flexibility in handling unrecoverable and recoverable app errors in JavaScript code. For example, you can throw
these errors in a callback when handling an error in a server-side response.

Unrecoverable Errors
Use throw new Error("error message here") for unrecoverable errors, such as an error that prevents your app from
starting successfully. The error message is displayed.

Note: $A.error() is deprecated. Throw the native JavaScript Error object instead by using throw new Error().

This example shows you the basics of throwing an unrecoverable error in a JavaScript controller.

<!--c:unrecoverableError-->
<aura:component>

<lightning:button label="throw error" onclick="{!c.throwError}"/>
</aura:component>

Here is the client-side controller source.

/*unrecoverableErrorController.js*/
({

throwError : function(component, event){
throw new Error("I can’t go on. This is the end.");

}
})

267

Throwing and Handling ErrorsCreating Apps

Recoverable Errors
To handle recoverable errors, use a component, such as ui:message, to tell users about the problem.

This sample shows you the basics of throwing and catching a recoverable error in a JavaScript controller.

<!--c:recoverableError-->
<aura:component>

<p>Click the button to trigger the controller to throw an error.</p>
<div aura:id="div1"></div>

<lightning:button label="Throw an Error" onclick="{!c.throwErrorForKicks}"/>
</aura:component>

Here is the client-side controller source.

/*recoverableErrorController.js*/
({

throwErrorForKicks: function(cmp) {
// this sample always throws an error to demo try/catch
var hasPerm = false;
try {

if (!hasPerm) {
throw new Error("You don't have permission to edit this record.");

}
}
catch (e) {

$A.createComponents([
["ui:message",{

"title" : "Sample Thrown Error",
"severity" : "error",

}],
["ui:outputText",{

"value" : e.message
}]
],
function(components, status, errorMessage){

if (status === "SUCCESS") {
var message = components[0];
var outputText = components[1];
// set the body of the ui:message to be the ui:outputText
message.set("v.body", outputText);
var div1 = cmp.find("div1");
// Replace div body with the dynamic component
div1.set("v.body", message);

}
else if (status === "INCOMPLETE") {

console.log("No response from server or client is offline.")
// Show offline error

}
else if (status === "ERROR") {

console.log("Error: " + errorMessage);
// Show error message

}
}

);

268

Throwing and Handling ErrorsCreating Apps

}
}

})

The controller code always throws an error and catches it in this example. The message in the error is displayed to the user in a dynamically
created ui:message component. The body of the ui:message is a ui:outputText component containing the error text.

SEE ALSO:

Validating Fields

Dynamically Creating Components

Calling Component Methods
Use <aura:method> to define a method as part of a component's API. This enables you to directly call a method in a component’s
client-side controller instead of firing and handling a component event. Using <aura:method> simplifies the code needed for a
parent component to call a method on a child component that it contains.

Communicate Between Components
Use aura:method to communicate down the containment hierarchy. For example, a parent component calls an aura:method
on a child component that it contains.

To communicate up the containment hierarchy, fire a component event in the child component and handle it in the parent component.

Syntax
Use this syntax to call a method in JavaScript code.

cmp.sampleMethod(arg1, … argN);

cmp is a reference to the component.

sampleMethod is the name of the aura:method.

arg1, … argN is an optional comma-separated list of arguments passed to the method. Each argument corresponds to an
aura:attribute defined in the aura:method markup.

Using Inherited Methods
A sub component that extends a super component has access to any methods defined in the super component.

An interface can also include an <aura:method> tag. A component that implements the interface can access the method.

Example
Let's look at an example app.

<!-- c:auraMethodCallerWrapper.app -->
<aura:application >

<c:auraMethodCaller />
</aura:application>

269

Calling Component MethodsCreating Apps

c:auraMethodCallerWrapper.app contains a c:auraMethodCaller component.

<!-- c:auraMethodCaller.cmp -->
<aura:component >

<p>Parent component calls aura:method in child component</p>
<c:auraMethod aura:id="child" />

...
</aura:component>

c:auraMethodCaller is the parent component. c:auraMethodCaller contains the child component, c:auraMethod.

We'll show how c:auraMethodCaller calls an aura:method defined in c:auraMethod.

We'll use c:auraMethodCallerWrapper.app to see how to return results from synchronous and asynchronous code.

IN THIS SECTION:

Return Result for Synchronous Code

aura:method executes synchronously. A synchronous method finishes executing before it returns. Use the return statement
to return a value from synchronous JavaScript code.

Return Result for Asynchronous Code

aura:method executes synchronously. Use the return statement to return a value from synchronous JavaScript code. JavaScript
code that calls a server-side action is asynchronous. Asynchronous code can continue to execute after it returns. You can’t use the
return statement to return the result of an asynchronous call because the aura:method returns before the asynchronous
code completes. For asynchronous code, use a callback instead of a return statement.

SEE ALSO:

aura:method

Component Events

Return Result for Synchronous Code
aura:method executes synchronously. A synchronous method finishes executing before it returns. Use the return statement to
return a value from synchronous JavaScript code.

An asynchronous method can continue to execute after it returns. JavaScript code often uses the callback pattern to return a result after
asynchronous code completes. We’ll describe later how to return a result for an asynchronous action.

Step 1: Define aura:method in Markup

Let’s look at a logParam aura:method that executes synchronous code. We’ll use the c:auraMethodCallerWrapper.app
and components outlined in Calling Component Methods. Here’s the markup that defines the aura:method.

<!-- c:auraMethod -->
<aura:component>

<aura:method name="logParam"
description="Sample method with parameter">
<aura:attribute name="message" type="String" default="default message" />

</aura:method>

270

Calling Component MethodsCreating Apps

<p>This component has an aura:method definition.</p>
</aura:component>

The logParam aura:method has an aura:attribute with a name of message. This attribute enables you to set a
message parameter when you call the logParam method.

The name attribute of logParam configures the aura:method to invoke logParam() in the client-side controller.

An aura:method can have multiple aura:attribute tags. Each aura:attribute corresponds to a parameter that you
can pass into the aura:method. For more details on the syntax, see aura:method.

You don’t explicitly declare a return value in the aura:method markup. You just use a return statement in the JavaScript controller.

Step 2: Implement aura:method Logic in Controller

The logParam aura:method invokes logParam() in auraMethodController.js. Let’s look at that source.

/* auraMethodController.js */
({

logParam : function(cmp, event) {
var params = event.getParam('arguments');
if (params) {

var message = params.message;
console.log("message: " + message);
return message;

}
},

})

logParam() simply logs the parameter passed in and returns the parameter value to demonstrate how to use the return statement.
If your code is synchronous, you can use a return statement; for example, you’re not making an asynchronous server-side action call.

Step 3: Call aura:method from Parent Controller

callAuraMethod() in the controller for c:auraMethodCaller calls the logParam aura:method defined in its child
component, c:auraMethod. Here’s the controller for c:auraMethodCaller.

/* auraMethodCallerController.js */
({

callAuraMethod : function(component, event, helper) {
var childCmp = component.find("child");
// call the aura:method in the child component
var auraMethodResult =
childCmp.logParam("message sent by parent component");

console.log("auraMethodResult: " + auraMethodResult);
},

})

callAuraMethod() finds the child component, c:auraMethod, and calls its logParam aura:method with an argument
for the message parameter of the aura:method.

childCmp.logParam("message sent by parent component");

auraMethodResult is the value returned from logParam.

271

Calling Component MethodsCreating Apps

Step 4: Add Button to Initiate Call to aura:method

The c:auraMethodCaller markup contains a lightning:button that invokes callAuraMethod() in
auraMethodCallerController.js. We use this button to initiate the call to aura:method in the child component.

<!-- c:auraMethodCaller.cmp -->
<aura:component >

<p>Parent component calls aura:method in child component</p>
<c:auraMethod aura:id="child" />

<lightning:button label="Call aura:method in child component"
onclick="{! c.callAuraMethod}" />

</aura:component>

SEE ALSO:

Return Result for Asynchronous Code

Calling Component Methods

aura:method

Return Result for Asynchronous Code
aura:method executes synchronously. Use the return statement to return a value from synchronous JavaScript code. JavaScript
code that calls a server-side action is asynchronous. Asynchronous code can continue to execute after it returns. You can’t use the
return statement to return the result of an asynchronous call because the aura:method returns before the asynchronous code
completes. For asynchronous code, use a callback instead of a return statement.

Step 1: Define aura:method in Markup

Let’s look at an echo aura:method that uses a callback. We’ll use the c:auraMethodCallerWrapper.app and components
outlined in Calling Component Methods. Here’s the echo aura:method in the c:auraMethod component.

<!-- c:auraMethod -->
<aura:component controller="SimpleServerSideController">

<aura:method name="echo"
description="Sample method with server-side call">
<aura:attribute name="callback" type="Function" />

</aura:method>

<p>This component has an aura:method definition.</p>
</aura:component>

The echo aura:method has an aura:attribute with a name of callback. This attribute enables you to set a callback that’s
invoked by the aura:method after execution of the server-side action in SimpleServerSideController.

Step 2: Implement aura:method Logic in Controller

The echo aura:method invokes echo() in auraMethodController.js. Let’s look at the source.

/* auraMethodController.js */
({

echo : function(cmp, event) {
var params = event.getParam('arguments');

272

Calling Component MethodsCreating Apps

var callback;
if (params) {

callback = params.callback;
}

var action = cmp.get("c.serverEcho");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

console.log("From server: " + response.getReturnValue());
// return doesn't work for async server action call
//return response.getReturnValue();
// call the callback passed into aura:method
if (callback) callback(response.getReturnValue());

}
else if (state === "INCOMPLETE") {

// do something
}
else if (state === "ERROR") {

var errors = response.getError();
if (errors) {

if (errors[0] && errors[0].message) {
console.log("Error message: " +
errors[0].message);

}
} else {

console.log("Unknown error");
}

}
});
$A.enqueueAction(action);

},
})

echo() calls the serverEcho() server-side controller action, which we’ll create next.

Note: You can’t return the result with a return statement. The aura:method returns before the asynchronous server-side
action call completes. Instead, we invoke the callback passed into the aura:method and set the result as a parameter in the
callback.

Step 3: Create Apex Server-Side Controller
The echo aura:method calls a server-side controller action called serverEcho. Here’s the source for the server-side controller.

public with sharing class SimpleServerSideController {
@AuraEnabled
public static String serverEcho() {

return ('Hello from the server');
}

}

The serverEcho() method returns a String.

273

Calling Component MethodsCreating Apps

Step 4: Call aura:method from Parent Controller

Here’s the controller for c:auraMethodCaller. It calls the echo aura:method in its child component, c:auraMethod.

/* auraMethodCallerController.js */
({

callAuraMethodServerTrip : function(component, event, helper) {
var childCmp = component.find("child");
// call the aura:method in the child component
childCmp.echo(function(result) {

console.log("callback for aura:method was executed");
console.log("result: " + result);

});
},

})

callAuraMethodServerTrip() finds the child component, c:auraMethod, and calls its echo aura:method. echo()
passes a callback function into the aura:method.

The callback configured in auraMethodCallerController.js logs the result.

function(result) {
console.log("callback for aura:method was executed");
console.log("result: " + result);

}

Step 5: Add Button to Initiate Call to aura:method

The c:auraMethodCaller markup contains a lightning:button that invokes callAuraMethodServerTrip()
in auraMethodCallerController.js. We use this button to initiate the call to the aura:method in the child component.

Here’s the markup for c:auraMethodCaller.

<!-- c:auraMethodCaller.cmp -->
<aura:component >

<p>Parent component calls aura:method in child component</p>
<c:auraMethod aura:id="child" />

<lightning:button label="Call aura:method (server trip) in child component"
onclick="{! c.callAuraMethodServerTrip}" />

</aura:component>

SEE ALSO:

Return Result for Synchronous Code

Calling Component Methods

aura:method

Using JavaScript Promises
You can use ES6 Promises in JavaScript code. Promises can simplify code that handles the success or failure of asynchronous calls, or
code that chains together multiple asynchronous calls.

If the browser doesn’t provide a native version, the framework uses a polyfill so that promises work in all browsers supported for Lightning
Experience.

274

Using JavaScript PromisesCreating Apps

We assume that you are familiar with the fundamentals of promises. For a great introduction to promises, see
https://developers.google.com/web/fundamentals/getting-started/primers/promises.

Promises are an optional feature. Some people love them, some don’t. Use them if they make sense for your use case.

Create a Promise
This firstPromise function returns a Promise.

firstPromise : function() {
return new Promise($A.getCallback(function(resolve, reject) {
// do something

if (/* success */) {
resolve("Resolved");

}
else {
reject("Rejected");

}
}));

}

The promise constructor determines the conditions for calling resolve() or reject() on the promise.

Chaining Promises
When you need to coordinate or chain together multiple callbacks, promises can be useful. The generic pattern is:

firstPromise()
.then(

// resolve handler
$A.getCallback(function(result) {

return anotherPromise();
}),

// reject handler
$A.getCallback(function(error) {

console.log("Promise was rejected: ", error);
return errorRecoveryPromise();

})
)
.then(

// resolve handler
$A.getCallback(function() {

return yetAnotherPromise();
})

);

The then() method chains multiple promises. In this example, each resolve handler returns another promise.

then() is part of the Promises API. It takes two arguments:

1. A callback for a fulfilled promise (resolve handler)

2. A callback for a rejected promise (reject handler)

275

Using JavaScript PromisesCreating Apps

https://developers.google.com/web/fundamentals/getting-started/primers/promises

The first callback, function(result), is called when resolve() is called in the promise constructor. The result object in
the callback is the object passed as the argument to resolve().

The second callback, function(error), is called when reject() is called in the promise constructor. The error object in
the callback is the object passed as the argument to reject().

Note: The two callbacks are wrapped by $A.getCallback() in our example. What’s that all about? Promises execute their
resolve and reject functions asynchronously so the code is outside the Lightning event loop and normal rendering lifecycle. If the
resolve or reject code makes any calls to the Lightning Component framework, such as setting a component attribute, use
$A.getCallback() to wrap the code. For more information, see Modifying Components Outside the Framework Lifecycle
on page 264.

Always Use catch() or a Reject Handler
The reject handler in the first then() method returns a promise with errorRecoveryPromise(). Reject handlers are often
used "midstream" in a promise chain to trigger an error recovery mechanism.

The Promises API includes a catch() method to optionally catch unhandled errors. Always include a reject handler or a catch()
method in your promise chain.

Throwing an error in a promise doesn’t trigger window.onerror, which is where the framework configures its global error handler.
If you don't have a catch() method, keep an eye on your browser’s console during development for reports about uncaught errors
in a promise. To show an error message in a catch() method, use $A.reportError(). The syntax for catch() is:

promise.then(...)
.catch(function(error) {

$A.reportError("error message here", error);
});

For more information on catch(), see the Mozilla Developer Network.

Don’t Use Storable Actions in Promises
The framework stores the response for storable actions in client-side cache. This stored response can dramatically improve the performance
of your app and allow offline usage for devices that temporarily don’t have a network connection. Storable actions are only suitable for
read-only actions.

Storable actions might have their callbacks invoked more than once: first with cached data, then with updated data from the server. The
multiple invocations don't align well with promises, which are expected to resolve or reject only once.

SEE ALSO:

Storable Actions

Making API Calls from Components
By default, you can’t make calls to third-party APIs from client-side code. Add a remote site as a CSP Trusted Site to allow client-side
component code to load assets from and make API requests to that site’s domain.

The Lightning Component framework uses Content Security Policy (CSP), which is a W3C standard, to control the source of content that
can be loaded on a page. Lightning apps are served from a different domain than Salesforce APIs, and the default CSP policy doesn’t
allow API calls from JavaScript code. You change the policy, and the content of the CSP header, by adding CSP Trusted Sites.

276

Making API Calls from ComponentsCreating Apps

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/catch

Important: You can’t load JavaScript resources from a third-party site, even a CSP Trusted Site. To use a JavaScript library from a
third-party site, add it to a static resource, and then add the static resource to your component. After the library is loaded from the
static resource, you can use it as normal.

Sometimes, you have to make API calls from server-side controllers rather than client-side code. In particular, you can’t make calls to
Salesforce APIs from client-side Lightning component code. For information about making API calls from server-side controllers, see
Making API Calls from Apex on page 311.

SEE ALSO:

Content Security Policy Overview

Create CSP Trusted Sites to Access Third-Party APIs

Create CSP Trusted Sites to Access Third-Party APIs

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Developer,
Enterprise, Performance,
and Unlimited

USER PERMISSIONS

To create, read, update, and
delete:
• Customize Application

or Modify All Data

The Lightning Component framework uses Content Security Policy (CSP), which is a W3C standard,
to control the source of content that can be loaded on a page. To use third-party APIs that make
requests to an external (non-Salesforce) server, add the server as a CSP Trusted Site.

CSP is a Candidate Recommendation of the W3C working group on Web Application Security. The
framework uses the Content-Security-Policy HTTP header recommended by the W3C.
By default, the framework’s headers allow content to be loaded only from secure (HTTPS) URLs and
forbid XHR requests from JavaScript.

When you define a CSP Trusted Site, the site’s URL is added to the list of allowed sites for the following
directives in the CSP header.

• connect-src

• frame-src

• img-src

• style-src

• font-src

• media-src

This change to the CSP header directives allows Lightning components to load resources, such as images, styles, and fonts, from the
site. It also allows client-side code to make requests to the site.

Important: You can’t load JavaScript resources from a third-party site, even a CSP Trusted Site. To use a JavaScript library from a
third-party site, add it to a static resource, and then add the static resource to your component. After the library is loaded from the
static resource, you can use it as normal.

1. From Setup, enter CSP in the Quick Find box, then select CSP Trusted Sites.
This page displays a list of any CSP Trusted Sites already registered, and provides additional information about each site, including
site name and URL.

2. Select New Trusted Site.

3. Name the Trusted Site.

For example, enter Google Maps.

4. Enter the URL for the Trusted Site.

The URL must begin with http:// or https://. It must include a domain name, and can include a port.

277

Create CSP Trusted Sites to Access Third-Party APIsCreating Apps

http://www.w3.org/TR/CSP/

Warning: The default CSP requires secure (HTTPS) connections for external resources. Configuring a CSP Trusted Site with
an insecure (HTTP) URL is an anti-pattern, and compromises the security of your org.

5. Optional: Enter a description for the Trusted Site.

6. Optional: To temporarily disable a Trusted Site without actually deleting it, deselect the Active checkbox.

7. Select Save.

Note: CSP Trusted Sites affect the CSP header only for Lightning Component framework requests. To enable corresponding access
for Visualforce or Apex, create a Remote Site.

CSP isn’t enforced by all browsers. For a list of browsers that enforce CSP, see caniuse.com.

IE11 doesn’t support CSP, so we recommend using other supported browsers for enhanced security.

SEE ALSO:

Content Security Policy Overview

Making API Calls from Components

Browser Support Considerations for Lightning Components

JavaScript Cookbook

This section includes code snippets and samples that can be used in various JavaScript files.

IN THIS SECTION:

Dynamically Creating Components

Create a component dynamically in your client-side JavaScript code by using the $A.createComponent() method. To create
multiple components, use $A.createComponents().

Detecting Data Changes with Change Handlers

Configure a component to automatically invoke a change handler, which is a client-side controller action, when a value in one of
the component's attributes changes.

Finding Components by ID

Retrieve a component by its ID in JavaScript code.

Dynamically Adding Event Handlers To a Component

You can dynamically add a handler for an event that a component fires.

Dynamically Showing or Hiding Markup

You can use CSS to toggle markup visibility. However, <aura:if> is the preferred approach because it defers the creation and
rendering of the enclosed element tree until needed.

Adding and Removing Styles

You can add or remove a CSS style on a component or element during runtime.

Which Button Was Pressed?

To find out which button was pressed in a component containing multiple buttons, use Component.getLocalId().

Formatting Dates in JavaScript

The AuraLocalizationService JavaScript API provides methods for formatting and localizing dates.

278

JavaScript CookbookCreating Apps

http://caniuse.com/contentsecuritypolicy

Dynamically Creating Components
Create a component dynamically in your client-side JavaScript code by using the $A.createComponent() method. To create
multiple components, use $A.createComponents().

Note: Use $A.createComponent() instead of the deprecated $A.newCmp() and $A.newCmpAsync() methods.

The syntax is:

$A.createComponent(String type, Object attributes, function callback)

1. type—The type of component to create; for example, "ui:button".

2. attributes—A map of attributes for the component, including the local Id (aura:id).

3. callback(cmp, status, errorMessage)—The callback to invoke after the component is created. The callback has
three parameters.

a. cmp—The component that was created. This enables you to do something with the new component, such as add it to the
body of the component that creates it. If there’s an error, cmp is null.

b. status—The status of the call. The possible values are SUCCESS, INCOMPLETE, or ERROR. Always check that the status
is SUCCESS before you try to use the component.

c. errorMessage—The error message if the status is ERROR.

Let’s add a dynamically created button to this sample component.

<!--c:createComponent-->
<aura:component>

<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

<p>Dynamically created button</p>
{!v.body}

</aura:component>

The client-side controller calls $A.createComponent() to create a ui:button with a local ID and a handler for the press
event. The function(newButton, ...) callback appends the button to the body of c:createComponent. The
newButton that’s dynamically created by $A.createComponent() is passed as the first argument to the callback.

/*createComponentController.js*/
({

doInit : function(cmp) {
$A.createComponent(

"lightning:button",
{

"aura:id": "findableAuraId",
"label": "Press Me",
"onclick": cmp.getReference("c.handlePress")

},
function(newButton, status, errorMessage){

//Add the new button to the body array
if (status === "SUCCESS") {

var body = cmp.get("v.body");
body.push(newButton);
cmp.set("v.body", body);

}
else if (status === "INCOMPLETE") {

279

Dynamically Creating ComponentsCreating Apps

console.log("No response from server or client is offline.")
// Show offline error

}
else if (status === "ERROR") {

console.log("Error: " + errorMessage);
// Show error message

}
}

);
},

handlePress : function(cmp) {
console.log("button pressed");

}
})

Note: c:createComponent contains a {!v.body} expression. When you use cmp.set("v.body", ...) to set
the component body, you must explicitly include {!v.body} in your component markup.

Creating Nested Components
To dynamically create a component in the body of another component, use $A.createComponents() to create the components.
In the function callback, nest the components by setting the inner component in the body of the outer component. This example
creates a ui:outputText component in the body of a ui:message component.

$A.createComponents([
["ui:message",{

"title" : "Sample Thrown Error",
"severity" : "error",

}],
["ui:outputText",{

"value" : e.message
}]
],
function(components, status, errorMessage){

if (status === "SUCCESS") {
var message = components[0];
var outputText = components[1];
// set the body of the ui:message to be the ui:outputText
message.set("v.body", outputText);

}
else if (status === "INCOMPLETE") {

console.log("No response from server or client is offline.")
// Show offline error

}
else if (status === "ERROR") {

console.log("Error: " + errorMessage);
// Show error message

}
}

);

280

Dynamically Creating ComponentsCreating Apps

Destroying Dynamically Created Components
After a component that is declared in markup is no longer in use, the framework automatically destroys it and frees up its memory.

If you create a component dynamically in JavaScript and that component isn't added to a facet (v.body or another attribute of type
Aura.Component[]), you have to destroy it manually using Component.destroy() to avoid memory leaks.

Avoiding a Server Trip
The createComponent() and createComponents() methods support both client-side and server-side component creation.
For performance and other reasons, client-side creation is preferred. If no server-side dependencies are found, the methods are executed
client-side. The top-level component determines whether a server request is necessary for component creation.

The framework automatically tracks dependencies between definitions, such as components, defined in markup. These dependencies
are loaded with the component. However, some dependencies aren’t easily discoverable by the framework; for example, if you dynamically
create a component that isn’t directly referenced in the component’s markup. To tell the framework about such a dynamic dependency,
use the <aura:dependency> tag. This declaration ensures that the component and its dependencies are sent to the client.

A component with server-side dependencies must be created on the server. Server-side dependencies include dynamically created
component definitions, dynamically loaded labels, and other elements that can’t be predetermined by static markup analysis.

Note: A server-side controller isn’t a server-side dependency for component creation because controller actions are only called
after the component has been created.

A single call to createComponent() or createComponents() can result in many components being created. The call creates
the requested component and all its child components. In addition to performance considerations, server-side component creation has
a limit of 10,000 components that can be created in a single request. If you hit this limit, ensure you’re explicitly declaring component
dependencies with the <aura:dependency> tag or otherwise pre-loading dependent elements, so that your component can be
created on the client side instead.

There’s no limit on component creation on the client side.

Note: Creating components where the top-level components don’t have server dependencies but nested inner components do
isn’t currently supported.

SEE ALSO:

Reference Doc App

aura:dependency

Invoking Actions on Component Initialization

Dynamically Adding Event Handlers To a Component

Detecting Data Changes with Change Handlers
Configure a component to automatically invoke a change handler, which is a client-side controller action, when a value in one of the
component's attributes changes.

When the value changes, the valueChange.evt event is automatically fired. The event has type="VALUE".

In the component, define a handler with name="change".

<aura:handler name="change" value="{!v.numItems}" action="{!c.itemsChange}"/>

The value attribute sets the component attribute that the change handler tracks.

The action attribute sets the client-side controller action to invoke when the attribute value changes.

281

Detecting Data Changes with Change HandlersCreating Apps

A component can have multiple <aura:handler name="change"> tags to detect changes to different attributes.

In the controller, define the action for the handler.

({
itemsChange: function(cmp, evt) {

console.log("numItems has changed");
console.log("old value: " + evt.getParam("oldValue"));
console.log("current value: " + evt.getParam("value"));

}
})

The valueChange event gives you access to the previous value (oldValue) and the current value (value) in the handler action.

When a change occurs to a value that is represented by the change handler, the framework handles the firing of the event and
rerendering of the component.

SEE ALSO:

Invoking Actions on Component Initialization

aura:valueChange

Finding Components by ID
Retrieve a component by its ID in JavaScript code.

Use aura:id to add a local ID of button1 to the lightning:button component.

<lightning:button aura:id="button1" label="button1"/>

You can find the component by calling cmp.find("button1"), where cmp is a reference to the component containing the
button. The find() function has one parameter, which is the local ID of a component within the markup.

find() returns different types depending on the result.

• If the local ID is unique, find() returns the component.

• If there are multiple components with the same local ID, find() returns an array of the components.

• If there is no matching local ID, find() returns undefined.

SEE ALSO:

Component IDs

Value Providers

Dynamically Adding Event Handlers To a Component
You can dynamically add a handler for an event that a component fires.

The addEventHandler() method in the Component object replaces the deprecated addHandler() method.

To add an event handler to a component dynamically, use the addEventHandler() method.

addEventHandler(String event, Function handler, String phase, String includeFacets)

282

Finding Components by IDCreating Apps

event
The first argument is the name of the event that triggers the handler. You can’t force a component to start firing events that it doesn’t
fire, so make sure that this argument corresponds to an event that the component fires. The <aura:registerEvent> tag in
a component’s markup advertises an event that the component fires.

• For a component event, set this argument to match the name attribute of the <aura:registerEvent> tag.

• For an application event, set this argument to match the event descriptor in the format namespace:eventName.

handler
The second argument is the action that handles the event. The format is similar to the value you would put in the action attribute
in the <aura:handler> tag if the handler was statically defined in the markup. There are two options for this argument.

• To use a controller action, use the format: cmp.getReference("c.actionName").

• To use an anonymous function, use the format:

function(auraEvent) {
// handling logic here

}

For a description of the other arguments, see the JavaScript API in the doc reference app.

You can also add an event handler to a component that is created dynamically in the callback function of $A.createComponent().
For more information, see Dynamically Creating Components.

Example
This component has buttons to fire and handle a component event and an application event.

<!--c:dynamicHandler-->
<aura:component >

<aura:registerEvent name="compEvent" type="c:sampleEvent"/>
<aura:registerEvent name="appEvent" type="c:appEvent"/>
<h1>Add dynamic handler for event</h1>
<p>

<lightning:button label="Fire component event" onclick="{!c.fireEvent}" />
<lightning:button label="Add dynamic event handler for component event"

onclick="{!c.addEventHandler}" />
</p>
<p>

<lightning:button label="Fire application event" onclick="{!c.fireAppEvent}" />
<lightning:button label="Add dynamic event handler for application event"

onclick="{!c.addAppEventHandler}" />
</p>

</aura:component>

Here’s the client-side controller.

/* dynamicHandlerController.js */
({

fireEvent : function(cmp, event) {
// Get the component event by using the
// name value from <aura:registerEvent> tag
var compEvent = cmp.getEvent("compEvent");
compEvent.fire();

283

Dynamically Adding Event Handlers To a ComponentCreating Apps

console.log("Fired a component event");
},

addEventHandler : function(cmp, event) {
// First param matches name attribute in <aura:registerEvent> tag
cmp.addEventHandler("compEvent", cmp.getReference("c.handleEvent"));
console.log("Added handler for component event");

},

handleEvent : function(cmp, event) {
alert("Handled the component event");

},

fireAppEvent : function(cmp, event) {
var appEvent = $A.get("e.c:appEvent");
appEvent.fire();
console.log("Fired an application event");

},

addAppEventHandler : function(cmp, event) {
// Can use cmp.getReference() or anonymous function for handler
// First param is event descriptor, "c:appEvent", for application events
cmp.addEventHandler("c:appEvent", cmp.getReference("c.handleAppEvent"));
// Can alternatively use anonymous function for handler
//cmp.addEventHandler("c:appEvent", function(auraEvent) {

// console.log("Handled the application event in anonymous function");
//});
console.log("Added handler for application event");

},

handleAppEvent : function(cmp, event) {
alert("Handled the application event");

}
})

Notice the first parameter of the addEventHandler() calls. The syntax for a component event is:

cmp.addEventHandler("compEvent", cmp.getReference("c.handleEvent"));

The syntax for an application event is:

cmp.addEventHandler("c:appEvent", cmp.getReference("c.handleAppEvent"));

For either a component or application event, you can use an anonymous function as a handler instead of using cmp.getReference()
for a controller action.

For example, the application event handler could be:

cmp.addEventHandler("c:appEvent", function(auraEvent) {
// add handler logic here

284

Dynamically Adding Event Handlers To a ComponentCreating Apps

console.log("Handled the application event in anonymous function");
});

SEE ALSO:

Handling Events with Client-Side Controllers

Handling Component Events

Reference Doc App

Dynamically Showing or Hiding Markup
You can use CSS to toggle markup visibility. However, <aura:if> is the preferred approach because it defers the creation and
rendering of the enclosed element tree until needed.

For an example using <aura:if>, see Best Practices for Conditional Markup.

This example uses $A.util.toggleClass(cmp, 'class') to toggle visibility of markup.

<!--c:toggleCss-->
<aura:component>

<lightning:button label="Toggle" onclick="{!c.toggle}"/>
<p aura:id="text">Now you see me</p>

</aura:component>

/*toggleCssController.js*/
({

toggle : function(component, event, helper) {
var toggleText = component.find("text");
$A.util.toggleClass(toggleText, "toggle");

}
})

/*toggleCss.css*/
.THIS.toggle {

display: none;
}

Click the Toggle button to hide or show the text by toggling the CSS class.

SEE ALSO:

Handling Events with Client-Side Controllers

Component Attributes

Adding and Removing Styles

Adding and Removing Styles
You can add or remove a CSS style on a component or element during runtime.

To retrieve the class name on a component, use component.find('myCmp').get('v.class'), where myCmp is the
aura:id attribute value.

285

Dynamically Showing or Hiding MarkupCreating Apps

To append and remove CSS classes from a component or element, use the $A.util.addClass(cmpTarget, 'class')
and $A.util.removeClass(cmpTarget, 'class') methods.

Component source

<aura:component>
<div aura:id="changeIt">Change Me!</div>

<lightning:button onclick="{!c.applyCSS}" label="Add Style" />
<lightning:button onclick="{!c.removeCSS}" label="Remove Style" />

</aura:component>

CSS source

.THIS.changeMe {
background-color:yellow;
width:200px;

}

Client-side controller source

{
applyCSS: function(cmp, event) {

var cmpTarget = cmp.find('changeIt');
$A.util.addClass(cmpTarget, 'changeMe');

},

removeCSS: function(cmp, event) {
var cmpTarget = cmp.find('changeIt');
$A.util.removeClass(cmpTarget, 'changeMe');

}
}

The buttons in this demo are wired to controller actions that append or remove the CSS styles. To append a CSS style to a component,
use $A.util.addClass(cmpTarget, 'class'). Similarly, remove the class by using
$A.util.removeClass(cmpTarget, 'class') in your controller. cmp.find() locates the component using the local
ID, denoted by aura:id="changeIt" in this demo.

Toggling a Class
To toggle a class, use $A.util.toggleClass(cmp, 'class'), which adds or removes the class.

The cmp parameter can be component or a DOM element.

Note: We recommend using a component instead of a DOM element. If the utility function is not used inside afterRender()
or rerender(), passing in cmp.getElement() might result in your class not being applied when the components are
rerendered. For more information, see Events Fired During the Rendering Lifecycle on page 194.

To hide or show markup dynamically, see Dynamically Showing or Hiding Markup on page 285.

To conditionally set a class for an array of components, pass in the array to $A.util.toggleClass().

mapClasses: function(arr, cssClass) {
for(var cmp in arr) {

$A.util.toggleClass(arr[cmp], cssClass);

286

Adding and Removing StylesCreating Apps

}
}

SEE ALSO:

Handling Events with Client-Side Controllers

CSS in Components

Component Bundles

Which Button Was Pressed?
To find out which button was pressed in a component containing multiple buttons, use Component.getLocalId().

The framework provides two button components—ui:button and lightning:button.

Note: We recommend that you use lightning:button, a button component that comes with Lightning Design System
styling.

Let’s look at an example with multiple ui:button components. Each button has a unique local ID, set by an aura:id attribute.

<!--c:buttonPressed-->
<aura:component>

<aura:attribute name="whichButton" type="String" />

<p>You clicked: {!v.whichButton}</p>

<ui:button aura:id="button1" label="Click me" press="{!c.nameThatButton}"/>
<ui:button aura:id="button2" label="Click me too" press="{!c.nameThatButton}"/>

</aura:component>

Use event.getSource() in the client-side controller to get the button component that was clicked. Call getLocalId() to
get the aura:id of the clicked button.

/* buttonPressedController.js */
({

nameThatButton : function(cmp, event, helper) {
var whichOne = event.getSource().getLocalId();
console.log(whichOne);
cmp.set("v.whichButton", whichOne);

}
})

If you’re using lightning:button, use the onclick event handler instead of the press event handler.

<aura:component>
<aura:attribute name="whichButton" type="String" />

<p>You clicked: {!v.whichButton}</p>

<lightning:button aura:id="button1" name="buttonname1" label="Click me"
onclick="{!c.nameThatButton}"/>

<lightning:button aura:id="button2" name="buttonname2" label="Click me"
onclick="{!c.nameThatButton}"/>
</aura:component>

287

Which Button Was Pressed?Creating Apps

In the client-side controller, you can use one of the following methods to find out which button was clicked.

• event.getSource().getLocalId() returns the aura:id of the clicked button.

• event.getSource().get("v.name") returns the name of the clicked button.

SEE ALSO:

Component IDs

Finding Components by ID

Formatting Dates in JavaScript
The AuraLocalizationService JavaScript API provides methods for formatting and localizing dates.

For example, the formatDate() method formats a date based on the formatString parameter set as the second argument.

formatDate (String | Number | Date date, String formatString)

The date parameter can be a String, Number, or most typically a JavaScript Date. If you provide a String value, use ISO 8601 format to
avoid parsing warnings.

The formatString parameter contains tokens to format a date and time. For example, "YYYY-MM-DD" formats 15th
January, 2017 as "2017-01-15". The default format string comes from the $Locale value provider.

This table shows the list of tokens supported in formatString.

OutputTokenDescription

1 … 31dDay of month

1 ... 12MMonth

Jan … DecMMMMonth (short name)

January … DecemberMMMMMonth (full name)

2017yYear

2017YYear (identical to y)

17YYYear (two digit)

2017YYYYYear (four digit)

1 … 12hHour of day (1-12)

0 … 23HHour of day (0-23)

1 … 24kHour of day (1-24)

0 … 59mMinute

0 … 59sSecond

000 … 999SSSFraction of second

AM or PMaAM or PM

AM or PMAAM or PM (identical to a)

288

Formatting Dates in JavaScriptCreating Apps

https://www.iso.org/iso-8601-date-and-time-format.html

OutputTokenDescription

-12:00 … +14:00ZZone offset from UTC

1 … 4QQuarter of year

1 … 53wWeek of year

1 … 53WWeek of year (ISO)

There are similar methods that differ in their default output values.

• formatDateTime()—The default formatString outputs datetime instead of date.

• formatDateTimeUTC()—Formats a datetime in UTC standard time.

• formatDateUTC()—Formats a date in UTC standard time.

For more information on all the methods in AuraLocalizationService, see the JavaScript API in the Reference Doc App.

Example: Use $A.localizationService to use the methods in AuraLocalizationService.

var now = new Date();
var dateString = "2017-01-15";

// Returns date in the format "Jun 8, 2017"
console.log($A.localizationService.formatDate(now));

// Returns date in the format "Jan 15, 2017"
console.log($A.localizationService.formatDate(dateString));

// Returns date in the format "2017 01 15"
console.log($A.localizationService.formatDate(dateString, "YYYY MM DD"));

// Returns date in the format "June 08 2017, 01:45:49 PM"
console.log($A.localizationService.formatDate(now, "MMMM DD YYYY, hh:mm:ss a"));

// Returns date in the format "Jun 08 2017, 01:48:26 PM"
console.log($A.localizationService.formatDate(now, "MMM DD YYYY, hh:mm:ss a"));

SEE ALSO:

Localization

Using Apex

Use Apex to write server-side code, such as controllers and test classes.

Server-side controllers handle requests from client-side controllers. For example, a client-side controller might handle an event and call
a server-side controller action to persist a record. A server-side controller can also load your record data.

289

Using ApexCreating Apps

IN THIS SECTION:

Creating Server-Side Logic with Controllers

The framework supports client-side and server-side controllers. An event is always wired to a client-side controller action, which can
in turn call a server-side controller action. For example, a client-side controller might handle an event and call a server-side controller
action to persist a record.

Working with Salesforce Records

It’s easy to work with your Salesforce records in Apex.

Testing Your Apex Code

Before you can upload a managed package, you must write and execute tests for your Apex code to meet minimum code coverage
requirements. Also, all tests must run without errors when you upload your package to AppExchange.

Making API Calls from Apex

Make API calls from an Apex controller. You can’t make Salesforce API calls from JavaScript code.

Creating Components in Apex

Creating components on the server side in Apex, using the Cmp.<myNamespace>.<myComponent> syntax, is deprecated.
Use $A.createComponent() in client-side JavaScript code instead.

Creating Server-Side Logic with Controllers
The framework supports client-side and server-side controllers. An event is always wired to a client-side controller action, which can in
turn call a server-side controller action. For example, a client-side controller might handle an event and call a server-side controller action
to persist a record.

Server-side actions need to make a round trip, from the client to the server and back again, so they usually complete more slowly than
client-side actions.

For more details on the process of calling a server-side action, see Calling a Server-Side Action on page 295.

IN THIS SECTION:

Apex Server-Side Controller Overview

Create a server-side controller in Apex and use the @AuraEnabled annotation to enable access to the controller method.

Creating an Apex Server-Side Controller

Use the Developer Console to create an Apex server-side controller.

Returning Data from an Apex Server-Side Controller

Return results from a server-side controller to a client-side controller using the return statement. Results data must be serializable
into JSON format.

Returning Errors from an Apex Server-Side Controller

Create and throw a System.AuraHandledException from your server-side controller to return a custom error message.

AuraEnabled Annotation

The AuraEnabled annotation provides support for Apex methods and properties to be used with the Lightning Component
framework.

Calling a Server-Side Action

Call a server-side controller action from a client-side controller. In the client-side controller, you set a callback, which is called after
the server-side action is completed. A server-side action can return any object containing serializable JSON data.

290

Creating Server-Side Logic with ControllersCreating Apps

Queueing of Server-Side Actions

The framework queues up actions before sending them to the server. This mechanism is largely transparent to you when you’re
writing code but it enables the framework to minimize network traffic by batching multiple actions into one request (XHR).

Foreground and Background Actions

Foreground actions are the default. An action can be marked as a background action. This is useful when you want your app to
remain responsive to a user while it executes a low priority, long-running action. A rough guideline is to use a background action if
it takes more than five seconds for the response to return from the server.

Storable Actions

Enhance your component’s performance by marking actions as storable to quickly show cached data from client-side storage without
waiting for a server trip. If the cached data is stale, the framework retrieves the latest data from the server. Caching is especially
beneficial for users on high latency, slow, or unreliable connections such as 3G networks.

Abortable Actions

Mark an action as abortable to make it potentially abortable while it's queued to be sent to the server. An abortable action in the
queue is not sent to the server if the component that created the action is no longer valid, that is cmp.isValid() == false.
A component is automatically destroyed and marked invalid by the framework when it is unrendered.

Apex Server-Side Controller Overview
Create a server-side controller in Apex and use the @AuraEnabled annotation to enable access to the controller method.

Only methods that you have explicitly annotated with @AuraEnabled are exposed. Calling server-side actions aren’t counted against
your org’s API limits. However, your server-side controller actions are written in Apex, and as such are subject to all the usual Apex limits.

This Apex controller contains a serverEcho action that prepends a string to the value passed in.

public with sharing class SimpleServerSideController {

//Use @AuraEnabled to enable client- and server-side access to the method
@AuraEnabled
public static String serverEcho(String firstName) {

return ('Hello from the server, ' + firstName);
}

}

In addition to using the @AuraEnabled annotation, your Apex controller must follow these requirements.

• Methods must be static and marked public or global. Non-static methods aren’t supported.

• If a method returns an object, instance methods that retrieve the value of the object’s instance field must be public.

• Use unique names for client-side and server-side actions in a component. A JavaScript function (client-side action) with the same
name as an Apex method (server-side action) can lead to hard-to-debug issues. In debug mode, the framework logs a browser
console warning about the clashing client-side and server-side action names.

Tip: Don’t store component state in your controller (client-side or server-side). Store state in a component’s client-side attributes
instead.

For more information, see Classes in the Apex Developer Guide.

SEE ALSO:

Calling a Server-Side Action

Creating an Apex Server-Side Controller

AuraEnabled Annotation

291

Creating Server-Side Logic with ControllersCreating Apps

https://developer.salesforce.com/docs/atlas.en-us.210.0.apexcode.meta/apexcode/

Creating an Apex Server-Side Controller
Use the Developer Console to create an Apex server-side controller.

1. Open the Developer Console.

2. Click File > New > Apex Class.

3. Enter a name for your server-side controller.

4. Click OK.

5. Enter a method for each server-side action in the body of the class.

Add the @AuraEnabled annotation to a method to expose it as a server-side action. Additionally, server-side actions must be
static methods, and either global or public.

6. Click File > Save.

7. Open the component that you want to wire to the new controller class.

8. Add a controller system attribute to the <aura:component> tag to wire the component to the controller. For example:

<aura:component controller="SimpleServerSideController">

SEE ALSO:

Salesforce Help: Open the Developer Console

Returning Data from an Apex Server-Side Controller

AuraEnabled Annotation

Returning Data from an Apex Server-Side Controller
Return results from a server-side controller to a client-side controller using the return statement. Results data must be serializable
into JSON format.

Return data types can be any of the following.

• Simple—String, Integer, and so on. See Basic Types for details.

• sObject—standard and custom sObjects are both supported. See Standard and Custom Object Types.

• Apex—an instance of an Apex class. (Most often a custom class.) See Custom Apex Class Types.

• Collection—a collection of any of the other types. See Collection Types.

Returning Apex Objects
Here’s an example of a controller that returns a collection of custom Apex objects.

public with sharing class SimpleAccountController {

@AuraEnabled
public static List<SimpleAccount> getAccounts() {

// Perform isAccessible() check here

// SimpleAccount is a simple "wrapper" Apex class for transport
List<SimpleAccount> simpleAccounts = new List<SimpleAccount>();

292

Creating Server-Side Logic with ControllersCreating Apps

https://help.salesforce.com/HTViewHelpDoc?id=code_dev_console_opening.htm&language=en_US

List<Account> accounts = [SELECT Id, Name, Phone FROM Account LIMIT 5];
for (Account acct : accounts) {

simpleAccounts.add(new SimpleAccount(acct.Id, acct.Name, acct.Phone));
}

return simpleAccounts;
}

}

When an instance of an Apex class is returned from a server-side action, the instance is serialized to JSON by the framework. Only the
values of public instance properties and methods annotated with @AuraEnabled are serialized and returned.

For example, here’s a simple “wrapper” Apex class that contains a few details for an account record. This class is used to package a few
details of an account record in a serializable format.

public class SimpleAccount {

@AuraEnabled public String Id { get; set; }
@AuraEnabled public String Name { get; set; }
public String Phone { get; set; }

// Trivial constructor, for server-side Apex -> client-side JavaScript
public SimpleAccount(String id, String name, String phone) {

this.Id = id;
this.Name = name;
this.Phone = phone;

}

// Default, no-arg constructor, for client-side -> server-side
public SimpleAccount() {}

}

When returned from a remote Apex controller action, the Id and Name properties are defined on the client-side. However, because it
doesn’t have the @AuraEnabled annotation, the Phone property isn’t serialized on the server side, and isn’t returned as part of the
result data.

SEE ALSO:

AuraEnabled Annotation

Custom Apex Class Types

Returning Errors from an Apex Server-Side Controller
Create and throw a System.AuraHandledException from your server-side controller to return a custom error message.

Errors happen. Sometimes they’re expected, such as invalid input from a user, or a duplicate record in a database. Sometimes they’re
unexpected, such as... Well, if you’ve been programming for any length of time, you know that the range of unexpected errors is nearly
infinite.

When your server-side controller code experiences an error, two things can happen. You can catch it there and handle it in Apex.
Otherwise, the error is passed back in the controller’s response.

If you handle the error Apex, you again have two ways you can go. You can process the error, perhaps recovering from it, and return a
normal response to the client. Or, you can create and throw an AuraHandledException.

293

Creating Server-Side Logic with ControllersCreating Apps

The benefit of throwing AuraHandledException, instead of letting a system exception be returned, is that you have a chance
to handle the exception more gracefully in your client code. System exceptions have important details stripped out for security purposes,
and result in the dreaded “An internal server error has occurred…” message. Nobody likes that. When you use an
AuraHandledException you have an opportunity to add some detail back into the response returned to your client-side code.
More importantly, you can choose a better message to show your users.

Here’s an example of creating and throwing an AuraHandledException in response to bad input. However, the real benefit of
using AuraHandledException comes when you use it in response to a system exception. For example, throw an
AuraHandledException in response to catching a DML exception, instead of allowing that to propagate down to your client
component code.

public with sharing class SimpleErrorController {

static final List<String> BAD_WORDS = new List<String> {
'bad',
'words',
'here'

};

@AuraEnabled
public static String helloOrThrowAnError(String name) {

// Make sure we're not seeing something naughty
for(String badWordStem : BAD_WORDS) {

if(name.containsIgnoreCase(badWordStem)) {
// How rude! Gracefully return an error...
throw new AuraHandledException('NSFW name detected.');

}
}

// No bad word found, so...
return ('Hello ' + name + '!');

}

}

AuraEnabled Annotation
The AuraEnabled annotation provides support for Apex methods and properties to be used with the Lightning Component
framework.

The AuraEnabled annotation is overloaded, and is used for two separate and distinct purposes.

• Use @AuraEnabled on Apex class static methods to make them accessible as remote controller actions in your Lightning
components.

• Use @AuraEnabled on Apex instance methods and properties to make them serializable when an instance of the class is
returned as data from a server-side action.

Important:

• Don’t mix-and-match these different uses of @AuraEnabled in the same Apex class.

294

Creating Server-Side Logic with ControllersCreating Apps

• Only static @AuraEnabled Apex methods can be called from client-side code. Visualforce-style instance properties and
getter/setter methods aren’t available. Use client-side component attributes instead.

SEE ALSO:

Returning Data from an Apex Server-Side Controller

Custom Apex Class Types

Calling a Server-Side Action
Call a server-side controller action from a client-side controller. In the client-side controller, you set a callback, which is called after the
server-side action is completed. A server-side action can return any object containing serializable JSON data.

A client-side controller is a JavaScript object in object-literal notation containing a map of name-value pairs.

Let’s say that you want to trigger a server-call from a component. The following component contains a button that’s wired to a client-side
controller echo action. SimpleServerSideController contains a method that returns a string passed in from the client-side
controller.

<aura:component controller="SimpleServerSideController">
<aura:attribute name="firstName" type="String" default="world"/>
<lightning:button label="Call server" onclick="{!c.echo}"/>

</aura:component>

This client-side controller includes an echo action that executes a serverEcho method on a server-side controller.

Tip: Use unique names for client-side and server-side actions in a component. A JavaScript function (client-side action) with the
same name as an Apex method (server-side action) can lead to hard-to-debug issues. In debug mode, the framework logs a
browser console warning about the clashing client-side and server-side action names.

({
"echo" : function(cmp) {

// create a one-time use instance of the serverEcho action
// in the server-side controller
var action = cmp.get("c.serverEcho");
action.setParams({ firstName : cmp.get("v.firstName") });

// Create a callback that is executed after
// the server-side action returns
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

// Alert the user with the value returned
// from the server
alert("From server: " + response.getReturnValue());

// You would typically fire a event here to trigger
// client-side notification that the server-side
// action is complete

}
else if (state === "INCOMPLETE") {

// do something
}
else if (state === "ERROR") {

295

Creating Server-Side Logic with ControllersCreating Apps

var errors = response.getError();
if (errors) {

if (errors[0] && errors[0].message) {
console.log("Error message: " +

errors[0].message);
}

} else {
console.log("Unknown error");

}
}

});

// optionally set storable, abortable, background flag here

// A client-side action could cause multiple events,
// which could trigger other events and
// other server-side action calls.
// $A.enqueueAction adds the server-side action to the queue.
$A.enqueueAction(action);

}
})

In the client-side controller, we use the value provider of c to invoke a server-side controller action. We also use the c syntax in markup
to invoke a client-side controller action.

The cmp.get("c.serverEcho") call indicates that we’re calling the serverEcho method in the server-side controller. The
method name in the server-side controller must match everything after the c. in the client-side call. In this case, that’s serverEcho.

Use action.setParams() to set data to be passed to the server-side controller. The following call sets the value of the firstName
argument on the server-side controller’s serverEcho method based on the firstName attribute value.

action.setParams({ firstName : cmp.get("v.firstName") });

action.setCallback() sets a callback action that is invoked after the server-side action returns.

action.setCallback(this, function(response) { ... });

The server-side action results are available in the response variable, which is the argument of the callback.

response.getState() gets the state of the action returned from the server.

Note: You don’t need a cmp.isValid() check in the callback in a client-side controller when you reference the component
associated with the client-side controller. The framework automatically checks that the component is valid.

response.getReturnValue() gets the value returned from the server. In this example, the callback function alerts the user
with the value returned from the server.

$A.enqueueAction(action) adds the server-side controller action to the queue of actions to be executed. All actions that are
enqueued will run at the end of the event loop. Rather than sending a separate request for each individual action, the framework
processes the event chain and batches the actions in the queue into one request. The actions are asynchronous and have callbacks.

Tip: If your action is not executing, make sure that you’re not executing code outside the framework’s normal rerendering lifecycle.
For example, if you use window.setTimeout() in an event handler to execute some logic after a time delay, wrap your
code in $A.getCallback(). You don't need to use $A.getCallback() if your code is executed as part of the framework's
call stack; for example, your code is handling an event or in the callback for a server-side controller action.

296

Creating Server-Side Logic with ControllersCreating Apps

Client Payload Data Limit
Use action.setParams() to set data for an action to be passed to a server-side controller.

The framework batches the actions in the queue into one server request. The request payload includes all of the actions and their data
serialized into JSON. The request payload limit is 4 MB.

IN THIS SECTION:

Action States

Call a server-side controller action from a client-side controller. The action can have different states during processing.

SEE ALSO:

Handling Events with Client-Side Controllers

Queueing of Server-Side Actions

Action States

Checking Component Validity

Action States
Call a server-side controller action from a client-side controller. The action can have different states during processing.

The possible action states are:

NEW
The action was created but is not in progress yet

RUNNING
The action is in progress

SUCCESS
The action executed successfully

ERROR
The server returned an error

INCOMPLETE
The server didn’t return a response. The server might be down or the client might be offline. The framework guarantees that an
action’s callback is always invoked as long as the component is valid. If the socket to the server is never successfully opened, or closes
abruptly, or any other network error occurs, the XHR resolves and the callback is invoked with state equal to INCOMPLETE.

ABORTED
The action was aborted. This action state is deprecated. A callback for an aborted action is never executed so you can’t do anything
to handle this state.

SEE ALSO:

Calling a Server-Side Action

Queueing of Server-Side Actions
The framework queues up actions before sending them to the server. This mechanism is largely transparent to you when you’re writing
code but it enables the framework to minimize network traffic by batching multiple actions into one request (XHR).

The batching of actions is also known as boxcar’ing, similar to a train that couples boxcars together.

297

Creating Server-Side Logic with ControllersCreating Apps

The framework uses a stack to keep track of the actions to send to the server. When the browser finishes processing events and JavaScript
on the client, the enqueued actions on the stack are sent to the server in a batch.

Tip: If your action is not executing, make sure that you’re not executing code outside the framework’s normal rerendering lifecycle.
For example, if you use window.setTimeout() in an event handler to execute some logic after a time delay, wrap your
code in $A.getCallback().

There are some properties that you can set on an action to influence how the framework manages the action while it’s in the queue
waiting to be sent to the server. For more information, see:

• Foreground and Background Actions on page 298

• Storable Actions on page 299

• Abortable Actions on page 302

SEE ALSO:

Modifying Components Outside the Framework Lifecycle

Foreground and Background Actions
Foreground actions are the default. An action can be marked as a background action. This is useful when you want your app to remain
responsive to a user while it executes a low priority, long-running action. A rough guideline is to use a background action if it takes more
than five seconds for the response to return from the server.

Batching of Actions
Multiple queued foreground actions are batched in a single request (XHR) to minimize network traffic. The batching of actions is also
known as boxcar’ing, similar to a train that couples boxcars together.

The server sends the XHR response to the client when all actions have been processed on the server. If a long-running action is in the
boxcar, the XHR response is held until that long-running action completes. Marking an action as background results in that action being
sent separately from any foreground actions. The separate transmission ensures that the background action doesn’t impact the response
time of the foreground actions.

When the server-side actions in the queue are executed, the foreground actions execute first and then the background actions execute.
Background actions run in parallel with foreground actions and responses of foreground and background actions may come back in
either order.

We don’t make any guarantees for the order of execution of action callbacks. XHR responses may return in a different order than the
order in which the XHR requests were sent due to server processing time.

Note: Don’t rely on each background action being sent in its own request as that behavior isn’t guaranteed and it can lead to
performance issues. Remember that the motivation for background actions is to isolate long-running requests into a separate
request to avoid slowing the response for foreground actions.

If two actions must be executed sequentially, the component must orchestrate the ordering. The component can enqueue the first
action. In the first action’s callback, the component can then enqueue the second action.

Framework-Managed Request Throttling
The framework throttles foreground and background requests separately. This means that the framework can control the number of
foreground requests and the number of background actions running at any time. The framework automatically throttles requests and
it’s not user controlled. The framework manages the number of foreground and background XHRs, which varies depending on available
resources.

298

Creating Server-Side Logic with ControllersCreating Apps

Even with separate throttling, background actions might affect performance in some conditions, such as an excessive number of requests
to the server.

Setting Background Actions
To set an action as a background action, call the setBackground() method on the action object in JavaScript.

// set up the server-action action
var action = cmp.get("c.serverEcho");
// optionally set actions params
//action.setParams({ firstName : cmp.get("v.firstName") });
// set as a background action
action.setBackground();

Note: A background action can’t be set back to a foreground action. In other words, calling setBackground to set it to
false will have no effect.

SEE ALSO:

Queueing of Server-Side Actions

Calling a Server-Side Action

Storable Actions
Enhance your component’s performance by marking actions as storable to quickly show cached data from client-side storage without
waiting for a server trip. If the cached data is stale, the framework retrieves the latest data from the server. Caching is especially beneficial
for users on high latency, slow, or unreliable connections such as 3G networks.

Warning:

• A storable action might result in no call to the server. Never mark as storable an action that updates or deletes data.

• For storable actions in the cache, the framework returns the cached response immediately and also refreshes the data if it’s
stale. Therefore, storable actions might have their callbacks invoked more than once: first with cached data, then with updated
data from the server.

Most server requests are read-only and idempotent, which means that a request can be repeated or retried as often as necessary without
causing data changes. The responses to idempotent actions can be cached and quickly reused for subsequent identical actions. For
storable actions, the key for determining an identical action is a combination of:

• Apex controller name

• Method name

• Method parameter values

Marking an Action as Storable
To mark a server-side action as storable, call setStorable() on the action in JavaScript code, as follows.

action.setStorable();

Note: Storable actions are always implicitly marked as abortable too.

The setStorable function takes an optional argument, which is a configuration map of key-value pairs representing the storage
options and values to set. You can only set the following property:

299

Creating Server-Side Logic with ControllersCreating Apps

ignoreExisting
Set to true to bypass the cache. The default value is false.

This property is useful when you know that any cached data is invalid, such as after a record modification. This property should be
used rarely because it explicitly defeats caching.

To set the storage options for the action response, pass this configuration map into setStorable(configObj).

IN THIS SECTION:

Lifecycle of Storable Actions

This image describes the sequence of callback execution for storable actions.

Enable Storable Actions in an Application

Storable actions are automatically configured in Lightning Experience and the Salesforce mobile app. To use storable actions in a
standalone app (.app resource), you must configure client-side storage for cached action responses.

Storage Service Adapters

The Storage Service supports multiple implementations of storage and selects an adapter at runtime based on browser support and
specified characteristics of persistence and security. Storage can be persistent and secure. With persistent storage, cached data is
preserved between user sessions in the browser. With secure storage, cached data is encrypted.

Lifecycle of Storable Actions
This image describes the sequence of callback execution for storable actions.

Note: An action might have its callback invoked more than once:

• First with the cached response, if it’s in storage.

• Second with updated data from the server, if the stored response has exceeded the time to refresh entries.

Cache Miss

If the action is not a cache hit as it doesn’t match a storage entry:

300

Creating Server-Side Logic with ControllersCreating Apps

1. The action is sent to the server-side controller.

2. If the response is SUCCESS, the response is added to storage.

3. The callback in the client-side controller is executed.

Cache Hit

If the action is a cache hit as it matches a storage entry:

1. The callback in the client-side controller is executed with the cached action response.

2. If the response has been cached for longer than the refresh time, the storage entry is refreshed.

When an application enables storable actions, a refresh time is configured. The refresh time is the duration in seconds before an
entry is refreshed in storage. The refresh time is automatically configured in Lightning Experience and the Salesforce mobile app.

3. The action is sent to the server-side controller.

4. If the response is SUCCESS, the response is added to storage.

5. If the refreshed response is different from the cached response, the callback in the client-side controller is executed for a second
time.

SEE ALSO:

Storable Actions

Enable Storable Actions in an Application

Enable Storable Actions in an Application
Storable actions are automatically configured in Lightning Experience and the Salesforce mobile app. To use storable actions in a
standalone app (.app resource), you must configure client-side storage for cached action responses.

To configure client-side storage for your standalone app, use <auraStorage:init> in the auraPreInitBlock attribute of
your application’s template. For example:

<aura:component isTemplate="true" extends="aura:template">
<aura:set attribute="auraPreInitBlock">

<auraStorage:init
name="actions"
persistent="false"
secure="true"
maxSize="1024"
defaultExpiration="900"
defaultAutoRefreshInterval="30" />

</aura:set>
</aura:component>

name
The storage name must be actions. Storable actions are the only currently supported type of storage.

persistent
Set to true to preserve cached data between user sessions in the browser.

secure
Set to true to encrypt cached data.

301

Creating Server-Side Logic with ControllersCreating Apps

maxsize
The maximum size in KB of the storage.

defaultExpiration
The duration in seconds that an entry is retained in storage.

defaultAutoRefreshInterval
The duration in seconds before an entry is refreshed in storage.

For more information, see the Reference Doc App.

Storable actions use the Storage Service. The Storage Service supports multiple implementations of storage and selects an adapter at
runtime based on browser support and specified characteristics of persistence and security.

SEE ALSO:

Storage Service Adapters

Storage Service Adapters
The Storage Service supports multiple implementations of storage and selects an adapter at runtime based on browser support and
specified characteristics of persistence and security. Storage can be persistent and secure. With persistent storage, cached data is preserved
between user sessions in the browser. With secure storage, cached data is encrypted.

SecurePersistentStorage Adapter Name

falsetrueIndexedDB

truefalseMemory

IndexedDB
(Persistent but not secure) Provides access to an API for client-side storage and search of structured data. For more information, see
the Indexed Database API.

Memory
(Not persistent but secure) Provides access to JavaScript memory for caching data. The stored cache persists only per browser page.
Browsing to a new page resets the cache.

The Storage Service selects a storage adapter on your behalf that matches the persistent and secure options you specify when initializing
the service. For example, if you request a persistent and insecure storage service, the Storage Service returns the IndexedDB storage if
the browser supports it.

Abortable Actions
Mark an action as abortable to make it potentially abortable while it's queued to be sent to the server. An abortable action in the queue
is not sent to the server if the component that created the action is no longer valid, that is cmp.isValid() == false. A component
is automatically destroyed and marked invalid by the framework when it is unrendered.

Note: We recommend that you only use abortable actions for read-only operations as they are not guaranteed to be sent to the
server.

An abortable action is sent to the server and executed normally unless the component that created the action is invalid before the action
is sent to the server.

A non-abortable action is always sent to the server and can't be aborted in the queue.

302

Creating Server-Side Logic with ControllersCreating Apps

http://www.w3.org/TR/IndexedDB/

If an action response returns from the server and the associated component is now invalid, the logic has been executed on the server
but the action callback isn’t executed. This is true whether or not the action is marked as abortable.

Marking an Action as Abortable
Mark a server-side action as abortable by using the setAbortable() method on the Action object in JavaScript. For example:

var action = cmp.get("c.serverEcho");
action.setAbortable();

SEE ALSO:

Creating Server-Side Logic with Controllers

Queueing of Server-Side Actions

Calling a Server-Side Action

Working with Salesforce Records
It’s easy to work with your Salesforce records in Apex.

The term sObject refers to any object that can be stored in Force.com. This could be a standard object, such as Account, or a custom
object that you create, such as a Merchandise object.

An sObject variable represents a row of data, also known as a record. To work with an object in Apex, declare it using the SOAP
API name of the object. For example:

Account a = new Account();
MyCustomObject__c co = new MyCustomObject__c();

For more information on working on records with Apex, see Working with Data in Apex.

This example controller persists an updated Account record. Note that the update method has the @AuraEnabled annotation,
which enables it to be called as a server-side controller action.

public with sharing class AccountController {

@AuraEnabled
public static void updateAnnualRevenue(String accountId, Decimal annualRevenue) {

Account acct = [SELECT Id, Name, BillingCity FROM Account WHERE Id = :accountId];

acct.AnnualRevenue = annualRevenue;

// Perform isAccessible() and isUpdateable() checks here
update acct;

}
}

For an example of calling Apex code from JavaScript code, see the Quick Start on page 8.

303

Working with Salesforce RecordsCreating Apps

https://developer.salesforce.com/docs/atlas.en-us.210.0.apexcode.meta/apexcode/apex_data_intro.htm

Loading Record Data from a Standard Object
Load records from a standard object in a server-side controller. The following server-side controller has methods that return a list of
opportunity records and an individual opportunity record.

public with sharing class OpportunityController {

@AuraEnabled
public static List<Opportunity> getOpportunities() {

List<Opportunity> opportunities =
[SELECT Id, Name, CloseDate FROM Opportunity];

return opportunities;
}

@AuraEnabled
public static Opportunity getOpportunity(Id id) {

Opportunity opportunity = [
SELECT Id, Account.Name, Name, CloseDate,

Owner.Name, Amount, Description, StageName
FROM Opportunity
WHERE Id = :id

];

// Perform isAccessible() check here
return opportunity;

}
}

This example component uses the previous server-side controller to display a list of opportunity records when you press a button.

<aura:component controller="OpportunityController">
<aura:attribute name="opportunities" type="Opportunity[]"/>

<ui:button label="Get Opportunities" press="{!c.getOpps}"/>
<aura:iteration var="opportunity" items="{!v.opportunities}">
<p>{!opportunity.Name} : {!opportunity.CloseDate}</p>
</aura:iteration>

</aura:component>

When you press the button, the following client-side controller calls the getOpportunities() server-side controller and sets the
opportunities attribute on the component. For more information about calling server-side controller methods, see Calling a
Server-Side Action on page 295.

({
getOpps: function(cmp){

var action = cmp.get("c.getOpportunities");
action.setCallback(this, function(response){

var state = response.getState();
if (state === "SUCCESS") {

cmp.set("v.opportunities", response.getReturnValue());
}

});
$A.enqueueAction(action);
}

})

304

Working with Salesforce RecordsCreating Apps

Note: To load record data during component initialization, use the init handler.

Loading Record Data from a Custom Object
Load record data using an Apex controller and setting the data on a component attribute. This server-side controller returns records on
a custom object myObj__c.

public with sharing class MyObjController {

@AuraEnabled
public static List<MyObj__c> getMyObjects() {

// Perform isAccessible() checks here
return [SELECT Id, Name, myField__c FROM MyObj__c];

}
}

This example component uses the previous controller to display a list of records from the myObj__c custom object.

<aura:component controller="MyObjController"/>
<aura:attribute name="myObjects" type="namespace.MyObj__c[]"/>
<aura:iteration items="{!v.myObjects}" var="obj">

{!obj.Name}, {!obj.namespace__myField__c}
</aura:iteration>

This client-side controller sets the myObjects component attribute with the record data by calling the getMyObjects() method
in the server-side controller. This step can also be done during component initialization using the init handler.

getMyObjects: function(cmp){
var action = cmp.get("c.getMyObjects");
action.setCallback(this, function(response){

var state = response.getState();
if (state === "SUCCESS") {

cmp.set("v.myObjects", response.getReturnValue());
}

});
$A.enqueueAction(action);

}

For an example on loading and updating records using controllers, see the Quick Start on page 8.

IN THIS SECTION:

CRUD and Field-Level Security (FLS)

Lightning components don’t automatically enforce CRUD and FLS when you reference objects or retrieve the objects from an Apex
controller. This means that the framework continues to display records and fields for which users don’t have CRUD access and FLS
visibility. You must manually enforce CRUD and FLS in your Apex controllers.

Saving Records

You can take advantage of the built-in create and edit record pages in Salesforce for Android, iOS, and mobile web to create or edit
records via a Lightning component.

305

Working with Salesforce RecordsCreating Apps

Deleting Records

You can delete records via a Lightning component to remove them from both the view and database.

SEE ALSO:

CRUD and Field-Level Security (FLS)

CRUD and Field-Level Security (FLS)
Lightning components don’t automatically enforce CRUD and FLS when you reference objects or retrieve the objects from an Apex
controller. This means that the framework continues to display records and fields for which users don’t have CRUD access and FLS
visibility. You must manually enforce CRUD and FLS in your Apex controllers.

For example, including the with sharing keyword in an Apex controller ensures that users see only the records they have access
to in a Lightning component. Additionally, you must explicitly check for isAccessible(), isCreateable(), isDeletable(),
and isUpdateable() prior to performing operations on records or objects.

This example shows the recommended way to perform an operation on a custom expense object.

public with sharing class ExpenseController {

// ns refers to namespace; leave out ns__ if not needed
// This method is vulnerable.
@AuraEnabled
public static List<ns__Expense__c> get_UNSAFE_Expenses() {

return [SELECT Id, Name, ns__Amount__c, ns__Client__c, ns__Date__c,
ns__Reimbursed__c, CreatedDate FROM ns__Expense__c];

}

// This method is recommended.
@AuraEnabled
public static List<ns__Expense__c> getExpenses() {

String [] expenseAccessFields = new String [] {'Id',
'Name',
'ns__Amount__c',
'ns__Client__c',
'ns__Date__c',
'ns__Reimbursed__c',
'CreatedDate'
};

// Obtain the field name/token map for the Expense object
Map<String,Schema.SObjectField> m = Schema.SObjectType.ns__Expense__c.fields.getMap();

for (String fieldToCheck : expenseAccessFields) {

// Check if the user has access to view field
if (!m.get(fieldToCheck).getDescribe().isAccessible()) {

// Pass error to client
throw new System.NoAccessException();

306

Working with Salesforce RecordsCreating Apps

// Suppress editor logs
return null;

}
}

// Query the object safely
return [SELECT Id, Name, ns__Amount__c, ns__Client__c, ns__Date__c,

ns__Reimbursed__c, CreatedDate FROM ns__Expense__c];
}

}

Note: For more information, see the articles on Enforcing CRUD and FLS and Lightning Security.

Saving Records
You can take advantage of the built-in create and edit record pages in Salesforce for Android, iOS, and mobile web to create or edit
records via a Lightning component.

The following component contains a button that calls a client-side controller to display the edit record page.

<aura:component>
<lightning:button label="Edit Record" onclick="{!c.edit}"/>

</aura:component>

The client-side controller fires the force:recordEdit event, which displays the edit record page for a given contact ID. For this
event to be handled correctly, the component must be included in Salesforce for Android, iOS, and mobile web.

edit : function(component, event, helper) {
var editRecordEvent = $A.get("e.force:editRecord");
editRecordEvent.setParams({

"recordId": component.get("v.contact.Id")
});
editRecordEvent.fire();

}

Records updated using the force:recordEdit event are persisted by default.

Saving Records using a Lightning Component
Alternatively, you might have a Lightning component that provides a custom form for users to add a record. To save the new record,
wire up a client-side controller to an Apex controller. The following list shows how you can persist a record via a component and Apex
controller.

Note: If you create a custom form to handle record updates, you must provide your own field validation.

Create an Apex controller to save your updates with the upsert operation. The following example is an Apex controller for upserting
record data.

@AuraEnabled
public static Expense__c saveExpense(Expense__c expense) {

// Perform isUpdateable() check here
upsert expense;
return expense;

}

307

Working with Salesforce RecordsCreating Apps

https://developer.salesforce.com/page/Enforcing_CRUD_and_FLS
https://developer.salesforce.com/page/Lightning_Security

Call a client-side controller from your component. For example, <lightning:button label="Submit"
onclick="{!c.createExpense}"/>.

In your client-side controller, provide any field validation and pass the record data to a helper function.

createExpense : function(component, event, helper) {
// Validate form fields
// Pass form data to a helper function
var newExpense = component.get("v.newExpense");
helper.createExpense(component, newExpense);

}

In your component helper, get an instance of the server-side controller and set a callback. The following example upserts a record on a
custom object. Recall that setParams() sets the value of the expense argument on the server-side controller’s saveExpense()
method.

createExpense: function(component, expense) {
//Save the expense and update the view
this.upsertExpense(component, expense, function(a) {

var expenses = component.get("v.expenses");
expenses.push(a.getReturnValue());
component.set("v.expenses", expenses);

});
},
upsertExpense : function(component, expense, callback) {
var action = component.get("c.saveExpense");
action.setParams({

"expense": expense
});
if (callback) {

action.setCallback(this, callback);
}
$A.enqueueAction(action);

}

SEE ALSO:

CRUD and Field-Level Security (FLS)

Deleting Records
You can delete records via a Lightning component to remove them from both the view and database.

Create an Apex controller to delete a specified record with the delete operation. The following Apex controller deletes an expense
object record.

@AuraEnabled
public static Expense__c deleteExpense(Expense__c expense) {

// Perform isDeletable() check here
delete expense;
return expense;

}

Depending on how your components are set up, you might need to create an event to tell another component that a record has been
deleted. For example, you have a component that contains a sub-component that is iterated over to display the records. Your

308

Working with Salesforce RecordsCreating Apps

sub-component contains a button (1), which when pressed fires an event that’s handled by the container component (2), which deletes
the record that’s clicked on.

<aura:registerEvent name="deleteExpenseItem" type="c:deleteExpenseItem"/>
<lightning:button label="Delete" onclick="{!c.delete}"/>

Create a component event to capture and pass the record that’s to be deleted. Name the event deleteExpenseItem.

<aura:event type="COMPONENT">
<aura:attribute name="expense" type="Expense__c"/>

</aura:event>

Then, pass in the record to be deleted and fire the event in your client-side controller.

delete : function(component, evt, helper) {
var expense = component.get("v.expense");
var deleteEvent = component.getEvent("deleteExpenseItem");
deleteEvent.setParams({ "expense": expense }).fire();

}

In the container component, include a handler for the event. In this example, c:expenseList is the sub-component that displays
records.

<aura:handler name="deleteExpenseItem" event="c:deleteExpenseItem" action="c:deleteEvent"/>
<aura:iteration items="{!v.expenses}" var="expense">

309

Working with Salesforce RecordsCreating Apps

<c:expenseList expense="{!expense}"/>
</aura:iteration>

And handle the event in the client-side controller of the container component.

deleteEvent : function(component, event, helper) {
// Call the helper function to delete record and update view
helper.deleteExpense(component, event.getParam("expense"));

}

Finally, in the helper function of the container component, call your Apex controller to delete the record and update the view.

deleteExpense : function(component, expense, callback) {
// Call the Apex controller and update the view in the callback
var action = component.get("c.deleteExpense");
action.setParams({

"expense": expense
});
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

// Remove only the deleted expense from view
var expenses = component.get("v.expenses");
var items = [];
for (i = 0; i < expenses.length; i++) {

if(expenses[i]!==expense) {
items.push(expenses[i]);

}
}
component.set("v.expenses", items);
// Other client-side logic

}
});
$A.enqueueAction(action);

}

The helper function calls the Apex controller to delete the record in the database. In the callback function,
component.set("v.expenses", items) updates the view with the updated array of records.

SEE ALSO:

CRUD and Field-Level Security (FLS)

Component Events

Calling a Server-Side Action

Testing Your Apex Code
Before you can upload a managed package, you must write and execute tests for your Apex code to meet minimum code coverage
requirements. Also, all tests must run without errors when you upload your package to AppExchange.

To package your application and components that depend on Apex code, the following must be true.

• At least 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following.

310

Testing Your Apex CodeCreating Apps

When deploying Apex to a production organization, each unit test in your organization namespace is executed by default.–

– Calls to System.debug are not counted as part of Apex code coverage.

– Test methods and test classes are not counted as part of Apex code coverage.

– While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is covered.
Instead, you should make sure that every use case of your application is covered, including positive and negative cases, as well
as bulk and single records. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger must have some test coverage.

• All classes and triggers must compile successfully.

This sample shows an Apex test class for a custom object that’s wired up to a component.

@isTest
class TestExpenseController {

static testMethod void test() {
//Create new expense and insert it into the database
Expense__c exp = new Expense__c(name='My New Expense',

amount__c=20, client__c='ABC',
reimbursed__c=false, date__c=null);

ExpenseController.saveExpense(exp);

//Assert the name field and saved expense
System.assertEquals('My New Expense',

ExpenseController.getExpenses()[0].Name,
'Name does not match');

System.assertEquals(exp, ExpenseController.saveExpense(exp));
}

}

Note: Apex classes must be manually added to your package.

For more information on distributing Apex code, see the Apex Code Developer's Guide.

SEE ALSO:

Distributing Applications and Components

Making API Calls from Apex
Make API calls from an Apex controller. You can’t make Salesforce API calls from JavaScript code.

For security reasons, the Lightning Component framework places restrictions on making API calls from JavaScript code. To call third-party
APIs from your component’s JavaScript code, add the API endpoint as a CSP Trusted Site.

To call Salesforce APIs, make the API calls from your component’s Apex controller. Use a named credential to authenticate to Salesforce.

Note: By security policy, sessions created by Lightning components aren’t enabled for API access. This prevents even your Apex
code from making API calls to Salesforce. Using a named credential for specific API calls allows you to carefully and selectively
bypass this security restriction.

The restrictions on API-enabled sessions aren’t accidental. Carefully review any code that uses a named credential to ensure you’re
not creating a vulnerability.

311

Making API Calls from ApexCreating Apps

https://resources.docs.salesforce.com/210/latest/en-us/sfdc/pdf/salesforce_apex_language_reference.pdf

For information about making API calls from Apex, see the Apex Developer Guide.

SEE ALSO:

Apex Developer Guide: Named Credentials as Callout Endpoints

Making API Calls from Components

Create CSP Trusted Sites to Access Third-Party APIs

Content Security Policy Overview

Creating Components in Apex
Creating components on the server side in Apex, using the Cmp.<myNamespace>.<myComponent> syntax, is deprecated. Use
$A.createComponent() in client-side JavaScript code instead.

SEE ALSO:

Dynamically Creating Components

Lightning Data Service

Use Lightning Data Service to load, create, edit, or delete a record in your component without requiring Apex code. Lightning Data
Service handles sharing rules and field-level security for you. In addition to not needing Apex, Lightning Data Service improves performance
and user interface consistency.

At the simplest level, you can think of Lightning Data Service as the Lightning Components version of the Visualforce standard controller.
While this statement is an over-simplification, it serves to illustrate a point. Whenever possible, use Lightning Data Service to read and
modify Salesforce data in your components.

Data access with Lightning Data Service is simpler than the equivalent using a server-side Apex controller. Read-only access can be
entirely declarative in your component’s markup. For code that modifies data, your component’s JavaScript controller is roughly the
same amount of code, and you eliminate the Apex entirely. All your data access code is consolidated into your component, which
significantly reduces complexity.

Lightning Data Service provides other benefits aside from the code. It’s built on highly efficient local storage that’s shared across all
components that use it. Records loaded in Lightning Data Service are cached and shared across components. Components accessing
the same record see significant performance improvements, because a record is loaded only once, no matter how many components
are using it. Shared records also improve user interface consistency. When one component updates a record, the other components
using it are notified, and in most cases, refresh automatically.

IN THIS SECTION:

Loading a Record

Loading a record is the simplest operation in Lightning Data Service. You can accomplish it entirely in markup.

Saving a Record

To save a record using Lightning Data Service, call saveRecord on the force:recordData component, and pass in a
callback function to be invoked after the save operation completes.

312

Creating Components in ApexCreating Apps

https://developer.salesforce.com/docs/atlas.en-us.210.0.apexcode.meta/apexcode/apex_callouts.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.apexcode.meta/apexcode/apex_callouts_named_credentials.htm

Creating a Record

To create a record using Lightning Data Service, declare force:recordData without assigning a recordId. Next, load a
record template by calling the getNewRecord function on force:recordData. Finally, apply values to the new record,
and save the record by calling the saveRecord function on force:recordData.

Deleting a Record

To delete a record using Lightning Data Service, call deleteRecord on the force:recordData component, and pass in
a callback function to be invoked after the delete operation completes.

Record Changes

To perform tasks beyond rerendering the record when the record changes, handle the recordUpdated event. You can handle
record loaded, updated, and deleted changes, applying different actions to each change type.

Errors

To act when an error occurs, handle the recordUpdated event and handle the case where the changeType is “ERROR”.

Considerations

Lightning Data Service is powerful and simple to use. However, it’s not a complete replacement for writing your own data access
code. Here are some considerations to keep in mind when using it.

Lightning Data Service Example

Here’s a longer, more detailed example of using Lightning Data Service to create a Quick Contact action panel.

SaveRecordResult

Represents the result of a Lightning Data Service operation that makes a persistent change to record data.

Loading a Record
Loading a record is the simplest operation in Lightning Data Service. You can accomplish it entirely in markup.

To load a record using Lightning Data Service, add the force:recordData tag to your component. In the force:recordData
tag, specify the ID of the record to be loaded, a list of fields, and the attribute to which to assign the loaded record. force:recordData
must specify the following.

• The ID of the record to load

• Which component attribute to assign the loaded record

• A list of fields to load

You can explicitly specify the list of fields to load with the fields attribute. For example,
fields="Name,BillingCity,BillingState".

Alternatively, you can specify a layout using the layoutType attribute. All fields on that layout are loaded for the record. Layouts are
typically modified by administrators. Loading record data using layoutType allows your component to adapt to those layout
definitions. Valid values for layoutType are FULL and COMPACT.

Example: Loading a Record

The following example illustrates the essentials of loading a record using Lightning Data Service. This component can be added
to a record home page in the Lightning App Builder, or as a custom action. The record ID is supplied by the implicit recordId
attribute added by the force:hasRecordId interface.

ldsLoad.cmp

<aura:component
implements="flexipage:availableForRecordHome,force:lightningQuickActionWithoutHeader,
force:hasRecordId">

313

Loading a RecordCreating Apps

<aura:attribute name="record" type="Object"/>
<aura:attribute name="simpleRecord" type="Object"/>
<aura:attribute name="recordError" type="String"/>

<force:recordData aura:id="recordLoader"
recordId="{!v.recordId}"
layoutType="FULL"
targetRecord="{!v.record}"
targetFields="{!v.simpleRecord}"
targetError="{!v.recordError}"
recordUpdated="{!c.handleRecordUpdated}"
/>

<!-- Display a header with details about the record -->
<div class="slds-page-header" role="banner">

<p class="slds-text-heading_label">{!v.simpleRecord.Name}</p>
<h1 class="slds-page-header__title slds-m-right_small

slds-truncate slds-align-left">{!v.simpleRecord.BillingCity},
{!v.simpleRecord.BillingState}</h1>

</div>

<!-- Display Lightning Data Service errors, if any -->
<aura:if isTrue="{!not(empty(v.recordError))}">

<div class="recordError">
<ui:message title="Error" severity="error" closable="true">

{!v.recordError}
</ui:message>

</div>
</aura:if>

</aura:component>

ldsLoadController.js

({
handleRecordUpdated: function(component, event, helper) {

var eventParams = event.getParams();
if(eventParams.changeType === "LOADED") {

// record is loaded (render other component which needs record data value)

console.log("Record is loaded successfully.");
} else if(eventParams.changeType === "CHANGED") {

// record is changed
} else if(eventParams.changeType === "REMOVED") {

// record is deleted
} else if(eventParams.changeType === "ERROR") {

// there’s an error while loading, saving, or deleting the record
}

314

Loading a RecordCreating Apps

}
})

SEE ALSO:

Configure Components for Lightning Experience Record Pages

Configure Components for Record-Specific Actions

force:recordPreview

Saving a Record
To save a record using Lightning Data Service, call saveRecord on the force:recordData component, and pass in a callback
function to be invoked after the save operation completes.

The Lightning Data Service save operation is used in two cases.

• To save changes to an existing record

• To create and save a new record

To save changes to an existing record, load the record in EDIT mode and call saveRecord on the force:recordData component.

To save a new record, and thus create it, create the record from a record template, as described in Creating a Record. Then call
saveRecord on the force:recordData component.

Load a Record in EDIT Mode
To load a record that might be updated, set the force:recordData tag’s mode attribute to “EDIT”. Other than explicitly setting
the mode, loading a record for editing is the same as loading it for any other purpose.

Note: Since Lightning Data Service records are shared across multiple components, loading records load the component with a
copy of the record instead of a direct reference. If a component loads a record in VIEW mode, Lightning Data Service will automatically
overwrite that copy with a newer copy of the record when the record is changed. If a record is loaded in EDIT mode, the record is
not updated when the record is changed. This prevents unsaved changes from appearing in components that reference the record
while the record is being edited, and prevents any edits in progress from being overwritten. Notifications are still sent in both
modes.

Call saveRecord to Save Record Changes
To perform the save operation, call saveRecord on the force:recordData component from the appropriate controller action
handler. saveRecord takes one argument—a callback function to be invoked when the operation completes. This callback function
receives a SaveRecordResult as its only parameter. SaveRecordResult includes a state attribute that indicates success
or error, and other details you can use to handle the result of the operation.

Example: Saving a Record

The following example illustrates the essentials of saving a record using Lightning Data Service. It’s intended for use on a record
page. The record ID is supplied by the implicit recordId attribute added by the force:hasRecordId interface.

ldsSave.cmp

<<aura:component implements="flexipage:availableForRecordHome,force:hasRecordId">

<aura:attribute name="record" type="Object"/>

315

Saving a RecordCreating Apps

<aura:attribute name="simpleRecord" type="Object"/>
<aura:attribute name="recordError" type="String"/>

<force:recordData aura:id="recordHandler"
recordId="{!v.recordId}"
layoutType="FULL"
targetRecord="{!v.record}"
targetFields="{!v.simpleRecord}"
targetError="{!v.recordError}"
mode="EDIT"
recordUpdated="{!c.handleRecordUpdated}"
/>

<!-- Display a header with details about the record -->
<div class="slds-page-header" role="banner">

<p class="slds-text-heading_label">Edit Record</p>
<h1 class="slds-page-header__title slds-m-right_small

slds-truncate slds-align-left">{!v.simpleRecord.Name}</h1>
</div>

<!-- Display Lightning Data Service errors, if any -->
<aura:if isTrue="{!not(empty(v.recordError))}">

<div class="recordError">
<ui:message title="Error" severity="error" closable="true">

{!v.recordError}
</ui:message>

</div>
</aura:if>

<!-- Display an editing form -->
<lightning:input aura:id="recordName" name="recordName" label="Name"

value="{!v.simpleRecord.Name}" required="true"/>

<lightning:button label="Save Record" onclick="{!c.handleSaveRecord}"
variant="brand" class="slds-m-top_medium"/>

</aura:component>

Note: If you’re using this component with an object that has a first and last name, such as contacts, create a separate
lightning:input component for {!v.simpleRecord.FirstName} and
{!v.simpleRecord.LastName}.

This component loads a record using force:recordData set to EDIT mode, and provides a form for editing record values.
(In this simple example, just the record name field.)

ldsSaveController.js

({
handleSaveRecord: function(component, event, helper) {

component.find("recordHandler").saveRecord($A.getCallback(function(saveResult)
{

// NOTE: If you want a specific behavior(an action or UI behavior) when
this action is successful

// then handle that in a callback (generic logic when record is changed
should be handled in recordUpdated event handler)

if (saveResult.state === "SUCCESS" || saveResult.state === "DRAFT") {

316

Saving a RecordCreating Apps

// handle component related logic in event handler
} else if (saveResult.state === "INCOMPLETE") {

console.log("User is offline, device doesn't support drafts.");
} else if (saveResult.state === "ERROR") {

console.log('Problem saving record, error: ' +
JSON.stringify(saveResult.error));

} else {
console.log('Unknown problem, state: ' + saveResult.state + ', error:

' + JSON.stringify(saveResult.error));
}

}));
},

/**
* Control the component behavior here when record is changed (via any component)

*/
handleRecordUpdated: function(component, event, helper) {

var eventParams = event.getParams();
if(eventParams.changeType === "CHANGED") {

// get the fields that changed for this record
var changedFields = eventParams.changedFields;
console.log('Fields that are changed: ' + JSON.stringify(changedFields));

// record is changed, so refresh the component (or other component logic)

var resultsToast = $A.get("e.force:showToast");
resultsToast.setParams({

"title": "Saved",
"message": "The record was updated."

});
resultsToast.fire();

} else if(eventParams.changeType === "LOADED") {
// record is loaded in the cache

} else if(eventParams.changeType === "REMOVED") {
// record is deleted and removed from the cache

} else if(eventParams.changeType === "ERROR") {
// there’s an error while loading, saving or deleting the record

}
}

})

The handleSaveRecord action here is a minimal version. There’s no form validation or real error handling. Whatever is
entered in the form is attempted to be saved to the record.

SEE ALSO:

SaveRecordResult

Configure Components for Lightning Experience Record Pages

Configure Components for Record-Specific Actions

force:recordPreview

317

Saving a RecordCreating Apps

Creating a Record
To create a record using Lightning Data Service, declare force:recordData without assigning a recordId. Next, load a record
template by calling the getNewRecord function on force:recordData. Finally, apply values to the new record, and save the
record by calling the saveRecord function on force:recordData.

1. Call getNewRecord to create an empty record from a record template. You can use this record as the backing store for a form
or otherwise have its values set to data intended to be saved.

2. Call saveRecord to commit the record. This is described in Saving a Record.

Create an Empty Record from a Record Template
To create an empty record from a record template, you can’t set a recordId on the force:recordData tag. Without a
recordId, Lightning Data Service doesn’t load an existing record.

In your component’s init or another handler, call the getNewRecord on force:recordData. getNewRecord takes the
following arguments.

DescriptionTypeAttribute Name

The object API name for the new record.StringobjectApiName

The 18 character ID of the record type for the new record.

If not specified, the default record type for the object is used, as defined in the
user’s profile.

StringrecordTypeId

Whether to load the record template from the server instead of the client-side
Lightning Data Service cache. Defaults to false.

BooleanskipCache

A function invoked after the empty record is created. This function receives no
arguments.

Functioncallback

getNewRecord doesn’t return a result. It simply prepares an empty record and assigns it to the targetRecord attribute.

Example: Creating a Record

The following example illustrates the essentials of creating a record using Lightning Data Service. This example is intended to be
added to an account record Lightning page.

ldsCreate.cmp

<aura:component implements="flexipage:availableForRecordHome, force:hasRecordId">

<aura:attribute name="newContact" type="Object"/>
<aura:attribute name="simpleNewContact" type="Object"/>
<aura:attribute name="newContactError" type="String"/>

<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

<force:recordData aura:id="contactRecordCreator"
layoutType="FULL"
targetRecord="{!v.newContact}"
targetFields="{!v.simpleNewContact}"

318

Creating a RecordCreating Apps

targetError="{!v.newContactError}" />

<div class="slds-page-header" role="banner">
<p class="slds-text-heading_label">Create Contact</p>

</div>

<!-- Display Lightning Data Service errors -->
<aura:if isTrue="{!not(empty(v.newContactError))}">

<div class="recordError">
<ui:message title="Error" severity="error" closable="true">

{!v.newContactError}
</ui:message>

</div>
</aura:if>

<!-- Display the new contact form -->
<div class="slds-form_stacked">

<lightning:input aura:id="contactField" name="firstName" label="First Name"
value="{!v.simpleNewContact.FirstName}" required="true"/>

<lightning:input aura:id="contactField" name="lastname" label="Last Name"
value="{!v.simpleNewContact.LastName}" required="true"/>

<lightning:input aura:id="contactField" name="title" label="Title"
value="{!v.simpleNewContact.Title}" />

<lightning:button label="Save contact" onclick="{!c.handleSaveContact}"
variant="brand" class="slds-m-top_medium"/>

</div>

</aura:component>

This component doesn’t set the recordId attribute of force:recordData. This tells Lightning Data Service to expect a
new record. Here, that’s created in the component’s init handler.

ldsCreateController.js

({
doInit: function(component, event, helper) {

// Prepare a new record from template
component.find("contactRecordCreator").getNewRecord(

"Contact", // sObject type (objectApiName)
null, // recordTypeId
false, // skip cache?
$A.getCallback(function() {

var rec = component.get("v.newContact");
var error = component.get("v.newContactError");
if(error || (rec === null)) {

console.log("Error initializing record template: " + error);
return;

}
console.log("Record template initialized: " + rec.sobjectType);

})
);

},

319

Creating a RecordCreating Apps

handleSaveContact: function(component, event, helper) {
if(helper.validateContactForm(component)) {

component.set("v.simpleNewContact.AccountId", component.get("v.recordId"));

component.find("contactRecordCreator").saveRecord(function(saveResult) {
if (saveResult.state === "SUCCESS" || saveResult.state === "DRAFT") {

// record is saved successfully
var resultsToast = $A.get("e.force:showToast");
resultsToast.setParams({

"title": "Saved",
"message": "The record was saved."

});
resultsToast.fire();

} else if (saveResult.state === "INCOMPLETE") {
// handle the incomplete state
console.log("User is offline, device doesn't support drafts.");

} else if (saveResult.state === "ERROR") {
// handle the error state
console.log('Problem saving contact, error: ' +

JSON.stringify(saveResult.error));
} else {

console.log('Unknown problem, state: ' + saveResult.state + ',
error: ' + JSON.stringify(saveResult.error));

}
});

}
}

})

The doInit init handler calls getNewRecord() on the force:recordData component, passing in a simple callback
handler. This call creates a new, empty contact record, which is used by the contact form in the component’s markup.

Note: The callback passed to getNewRecord() must be wrapped in $A.getCallback() to ensure correct access
context when the callback is invoked. If the callback is passed in without being wrapped in $A.getCallback(), any
attempt to access private attributes of your component results in access check failures.

Even if you’re not accessing private attributes, it’s a best practice to always wrap the callback function for getNewRecord()
in $A.getCallback(). Never mix (contexts), never worry.

The handleSaveContact handler is called when the Save Contact button is clicked. It’s a straightforward application of
saving the contact, as described in Saving a Record, and then updating the user interface.

320

Creating a RecordCreating Apps

Note: The helper function, validateContactForm, isn’t shown. It simply validates the form values. For an example
of this validation, see Lightning Data Service Example.

SEE ALSO:

Saving a Record

Configure Components for Lightning Experience Record Pages

Configure Components for Record-Specific Actions

Controlling Access

force:recordPreview

Deleting a Record
To delete a record using Lightning Data Service, call deleteRecord on the force:recordData component, and pass in a
callback function to be invoked after the delete operation completes.

Delete operations with Lightning Data Service are straightforward. The force:recordData tag can include minimal details. If you
don’t need any record data, set the fields attribute to just Id. If you know that the only operation is a delete, any mode can be
used.

To perform the delete operation, call deleteRecord on the force:recordData component from the appropriate controller
action handler. deleteRecord takes one argument, a callback function to be invoked when the operation completes. This callback
function receives a SaveRecordResult as its only parameter. SaveRecordResult includes a state attribute that indicates
success or error, and other details you can use to handle the result of the operation.

Example: Deleting a Record

The following example illustrates the essentials of deleting a record using Lightning Data Service. This component adds a Delete
Record button to a record page, which deletes the record being displayed. The record ID is supplied by the implicit recordId
attribute added by the force:hasRecordId interface.

ldsDelete.cmp

<aura:component implements="flexipage:availableForRecordHome,force:hasRecordId">

<aura:attribute name="recordError" type="String" access="private"/>

<force:recordData aura:id="recordHandler"
recordId="{!v.recordId}"
fields="Id"
targetError="{!v.recordError}"
recordUpdated="{!c.handleRecordUpdated}" />

<!-- Display Lightning Data Service errors, if any -->
<aura:if isTrue="{!not(empty(v.recordError))}">

<div class="recordError">
<ui:message title="Error" severity="error" closable="true">

{!v.recordError}
</ui:message>

</div>
</aura:if>

<div class="slds-form-element">

321

Deleting a RecordCreating Apps

<lightning:button
label="Delete Record"
onclick="{!c.handleDeleteRecord}"
variant="brand" />

</div>
</aura:component>

Notice that the force:recordData tag includes only the recordId and a nearly empty fields list—the absolute
minimum required. If you want to display record values in the user interface, for example, as part of a confirmation message, define
the force:recordData tag as you would for a load operation instead of this minimal delete example.

ldsDeleteController.js

({
handleDeleteRecord: function(component, event, helper) {

component.find("recordHandler").deleteRecord($A.getCallback(function(deleteResult) {
// NOTE: If you want a specific behavior(an action or UI behavior) when

this action is successful
// then handle that in a callback (generic logic when record is changed

should be handled in recordUpdated event handler)
if (deleteResult.state === "SUCCESS" || deleteResult.state === "DRAFT") {

// record is deleted
console.log("Record is deleted.");

} else if (deleteResult.state === "INCOMPLETE") {
console.log("User is offline, device doesn't support drafts.");

} else if (deleteResult.state === "ERROR") {
console.log('Problem deleting record, error: ' +

JSON.stringify(deleteResult.error));
} else {

console.log('Unknown problem, state: ' + deleteResult.state + ', error:
' + JSON.stringify(deleteResult.error));

}
}));

},

/**
* Control the component behavior here when record is changed (via any component)

*/
handleRecordUpdated: function(component, event, helper) {

var eventParams = event.getParams();
if(eventParams.changeType === "CHANGED") {

// record is changed
} else if(eventParams.changeType === "LOADED") {

// record is loaded in the cache
} else if(eventParams.changeType === "REMOVED") {

// record is deleted, show a toast UI message
var resultsToast = $A.get("e.force:showToast");
resultsToast.setParams({

"title": "Deleted",
"message": "The record was deleted."

});
resultsToast.fire();

322

Deleting a RecordCreating Apps

} else if(eventParams.changeType === "ERROR") {
// there’s an error while loading, saving, or deleting the record

}
}

})

When the record is deleted, navigate away from the record page. Otherwise, you see a “record not found” error when the component
refreshes. Here the controller uses the objectApiName property in the SaveRecordResult provided to the callback
function, and navigates to the object home page.

SEE ALSO:

SaveRecordResult

Configure Components for Lightning Experience Record Pages

Configure Components for Record-Specific Actions

force:recordPreview

Record Changes
To perform tasks beyond rerendering the record when the record changes, handle the recordUpdated event. You can handle
record loaded, updated, and deleted changes, applying different actions to each change type.

If a component performs logic that is record data specific, it must run that logic again when the record changes. A common example is
a business process in which the actions that apply to a record change depending on the record’s values. For example, different actions
apply to opportunities at different stages of the sales cycle.

Note: Lightning Data Service notifies listeners about data changes only if the changed fields are the same as in the listener’s fields
or layout.

Example: Declare that your component handles the recordUpdated event.

<force:recordData aura:id="forceRecord"

recordId="{!v.recordId}"

layoutType="FULL"

targetRecord="{!v._record}"

targetFields="{!v.simpleRecord}"

targetError="{!v._error}"

recordUpdated="{!c.recordUpdated}" />

Implement an action handler that handles the change.

({
recordUpdated: function(component, event, helper) {

var changeType = event.getParams().changeType;

if (changeType === "ERROR") { /* handle error; do this first! */ }
else if (changeType === "LOADED") { /* handle record load */ }
else if (changeType === "REMOVED") { /* handle record removal */ }

323

Record ChangesCreating Apps

else if (changeType === "CHANGED") { /* handle record change */ }
})

When loading a record in edit mode, the record is not automatically updated to prevent edits currently in progress from being
overwritten. To update the record, use the reloadRecord method in the action handler.

<force:recordData aura:id="forceRecord"
recordId="{!v.recordId}"
layoutType="FULL"
targetRecord="{!v._record}"
targetFields="{!v.simpleRecord}"
targetError="{!v._error}"
mode=”EDIT”
recordUpdated="{!c.recordUpdated}" />

({
recordUpdated : function(component, event, helper) {

var changeType = event.getParams().changeType;

if (changeType === "ERROR") { /* handle error; do this first! */ }
else if (changeType === "LOADED") { /* handle record load */ }
else if (changeType === "REMOVED") { /* handle record removal */ }
else if (changeType === "CHANGED") {
/* handle record change; reloadRecord will cause you to lose your current record,

including any changes you’ve made */
component.find("forceRecord").reloadRecord();}

}
})

Errors
To act when an error occurs, handle the recordUpdated event and handle the case where the changeType is “ERROR”.

Example: Declare that your component handles the recordUpdated event.

<force:recordData aura:id="forceRecord"

recordId="{!v.recordId}"

layoutType="FULL"

targetRecord="{!v._record}"

targetFields="{!v.simpleRecord}"

targetError="{!v._error}"

recordUpdated="{!c.recordUpdated}" />

Implement an action handler that handles the error.

({
recordUpdated: function(component, event, helper) {

var changeType = event.getParams().changeType;

if (changeType === "ERROR") { /* handle error; do this first! */ }

324

ErrorsCreating Apps

else if (changeType === "LOADED") { /* handle record load */ }
else if (changeType === "REMOVED") { /* handle record removal */ }
else if (changeType === "CHANGED") { /* handle record change */ }

})

If an error occurs when the record begins to load, targetError is set to a localized error message. An error occurs if:

• Input is invalid because of an invalid attribute value, or combination of attribute values. For example, an invalid recordId,
or omitting both the layoutType and the fields attributes.

• The record isn’t in the cache and the server is unreachable (offline).

If the record becomes inaccessible on the server, the recordUpdated event is fired with changeType set to "REMOVED."
No error is set on targetError, since records becoming inaccessible is sometimes the expected outcome of an operation.
For example, after lead convert the lead record becomes inaccessible.

Records can become inaccessible for the following reasons.

• Record or entity sharing or visibility settings

• Record or entity being deleted

When the record becomes inaccessible on the server, the record’s JavaScript object assigned to targetRecord is unchanged.

Considerations
Lightning Data Service is powerful and simple to use. However, it’s not a complete replacement for writing your own data access code.
Here are some considerations to keep in mind when using it.

Lightning Data Service is only available in Lightning Experience and the Salesforce app. Using Lightning Data Service in other containers,
such as Lightning Components for Visualforce, Lightning Out, or Communities isn’t supported. This is true even if these containers are
accessed inside Lightning Experience or the Salesforce mobile app, for example, a Visualforce page added to Lightning Experience.

Lightning Data Service supports primitive DML operations—create, read, update, and delete. It operates on one record at a time, which
you retrieve or modify using the record ID. Lightning Data Service supports spanned fields with a maximum depth of five levels. Support
for working with collections of records or for querying for a record by anything other than the record ID isn’t available. If you must support
higher-level operations or multiple operations in one transaction, use standard @AuraEnabled Apex methods.

Lightning Data Service shared data storage provides notifications to all components that use a record whenever a component changes
that record. It doesn’t notify components if that record is changed on the server, for example, if someone else modifies it. Records
changed on the server aren’t updated locally until they’re reloaded. Lightning Data Service notifies listeners about data changes only if
the changed fields are the same as in the listener’s fields or layout.

Supported Objects
Lightning Data Service supports custom objects and the following.

• Account

• AccountTeamMember

• Asset

• AssetRelationship

• AssignedResource

• AttachedContentNote

• BusinessAccount

• Campaign

325

ConsiderationsCreating Apps

• CampaignMember

• Case

• Contact

• ContentDocument

• ContentNote

• ContentVersion

• ContentWorkspace

• Contract

• ContractContactRole

• ContractLineItem

• Custom Object

• Entitlement

• EnvironmentHubMember

• Lead

• LicensingRequest

• MaintenanceAsset

• MaintenancePlan

• MarketingAction

• MarketingResource

• Note

• OperatingHours

• Opportunity

• OpportunityLineItem

• OpportunityTeamMember

• Order

• OrderItem

• PersonAccount

• Pricebook2

• PricebookEntry

• Product2

• Quote

• QuoteDocument

• QuoteLineItem

• ResourceAbsence

• ResourcePreference

• ServiceAppointment

• ServiceContract

• ServiceCrew

• ServiceCrewMember

• ServiceResource

326

ConsiderationsCreating Apps

• ServiceResourceCapacity

• ServiceResourceSkill

• ServiceTerritory

• ServiceTerritoryLocation

• ServiceTerritoryMember

• Shipment

• SkillRequirement

• SocialPost

• Tenant

• TimeSheet

• TimeSheetEntry

• TimeSlot

• UsageEntitlement

• UsageEntitlementPeriod

• User

• WorkOrder

• WorkOrderLineItem

• WorkType

Lightning Data Service Example
Here’s a longer, more detailed example of using Lightning Data Service to create a Quick Contact action panel.

Example: This example is intended to be added as a Lightning action on the account object. Clicking the action’s button on the
account layout opens a panel to create a new contact.

327

Lightning Data Service ExampleCreating Apps

This example is similar to the example provided in Configure Components for Record-Specific Actions. Compare the two examples
to better understand the differences between using @AuraEnabled Apex controllers and using Lightning Data Service.

ldsQuickContact.cmp

<aura:component implements="force:lightningQuickActionWithoutHeader,force:hasRecordId">

<aura:attribute name="account" type="Object"/>
<aura:attribute name="simpleAccount" type="Object"/>
<aura:attribute name="accountError" type="String"/>
<force:recordData aura:id="accountRecordLoader"

recordId="{!v.recordId}"
fields="Name,BillingCity,BillingState"
targetRecord="{!v.account}"
targetFields="{!v.simpleAccount}"
targetError="{!v.accountError}"

/>

<aura:attribute name="newContact" type="Object" access="private"/>
<aura:attribute name="simpleNewContact" type="Object" access="private"/>
<aura:attribute name="newContactError" type="String" access="private"/>
<force:recordData aura:id="contactRecordCreator"

layoutType="FULL"
targetRecord="{!v.newContact}"
targetFields="{!v.simpleNewContact}"
targetError="{!v.newContactError}"
/>

<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

328

Lightning Data Service ExampleCreating Apps

<!-- Display a header with details about the account -->
<div class="slds-page-header" role="banner">

<p class="slds-text-heading_label">{!v.simpleAccount.Name}</p>
<h1 class="slds-page-header__title slds-m-right_small

slds-truncate slds-align-left">Create New Contact</h1>
</div>

<!-- Display Lightning Data Service errors, if any -->
<aura:if isTrue="{!not(empty(v.accountError))}">

<div class="recordError">
<ui:message title="Error" severity="error" closable="true">

{!v.accountError}
</ui:message>

</div>
</aura:if>
<aura:if isTrue="{!not(empty(v.newContactError))}">

<div class="recordError">
<ui:message title="Error" severity="error" closable="true">

{!v.newContactError}
</ui:message>

</div>
</aura:if>

<!-- Display the new contact form -->
<lightning:input aura:id="contactField" name="firstName" label="First Name"

value="{!v.simpleNewContact.FirstName}" required="true"/>

<lightning:input aura:id="contactField" name="lastname" label="Last Name"
value="{!v.simpleNewContact.LastName}" required="true"/>

<lightning:input aura:id="contactField" name="title" label="Title"
value="{!v.simpleNewContact.Title}" />

<lightning:input aura:id="contactField" type="phone" name="phone" label="Phone
Number"

pattern="^(1?(-?\d{3})-?)?(\d{3})(-?\d{4})$"
messageWhenPatternMismatch="The phone number must contain 7, 10,

or 11 digits. Hyphens are optional."
value="{!v.simpleNewContact.Phone}" required="true"/>

<lightning:input aura:id="contactField" type="email" name="email" label="Email"
value="{!v.simpleNewContact.Email}" />

<lightning:button label="Cancel" onclick="{!c.handleCancel}"
class="slds-m-top_medium" />

<lightning:button label="Save Contact" onclick="{!c.handleSaveContact}"
variant="brand" class="slds-m-top_medium"/>

</aura:component>

ldsQuickContactController.js

({
doInit: function(component, event, helper) {

329

Lightning Data Service ExampleCreating Apps

component.find("contactRecordCreator").getNewRecord(
"Contact", // objectApiName
null, // recordTypeId
false, // skip cache?
$A.getCallback(function() {

var rec = component.get("v.newContact");
var error = component.get("v.newContactError");
if(error || (rec === null)) {

console.log("Error initializing record template: " + error);
}
else {

console.log("Record template initialized: " + rec.sobjectType);
}

})
);

},

handleSaveContact: function(component, event, helper) {
if(helper.validateContactForm(component)) {

component.set("v.simpleNewContact.AccountId", component.get("v.recordId"));

component.find("contactRecordCreator").saveRecord(function(saveResult) {
if (saveResult.state === "SUCCESS" || saveResult.state === "DRAFT") {

// Success! Prepare a toast UI message
var resultsToast = $A.get("e.force:showToast");
resultsToast.setParams({

"title": "Contact Saved",
"message": "The new contact was created."

});

// Update the UI: close panel, show toast, refresh account page
$A.get("e.force:closeQuickAction").fire();
resultsToast.fire();

// Reload the view so components not using force:recordData
// are updated
$A.get("e.force:refreshView").fire();

}
else if (saveResult.state === "INCOMPLETE") {

console.log("User is offline, device doesn't support drafts.");
}
else if (saveResult.state === "ERROR") {

console.log('Problem saving contact, error: ' +
JSON.stringify(saveResult.error));

}
else {

console.log('Unknown problem, state: ' + saveResult.state +
', error: ' + JSON.stringify(saveResult.error));

}
});

}
},

330

Lightning Data Service ExampleCreating Apps

handleCancel: function(component, event, helper) {
$A.get("e.force:closeQuickAction").fire();

},
})

Note: The callback passed to getNewRecord() must be wrapped in $A.getCallback() to ensure correct access
context when the callback is invoked. If the callback is passed in without being wrapped in $A.getCallback(), any
attempt to access private attributes of your component results in access check failures.

Even if you’re not accessing private attributes, it’s a best practice to always wrap the callback function for getNewRecord()
in $A.getCallback(). Never mix (contexts), never worry.

ldsQuickContactHelper.js

({
validateContactForm: function(component) {

var validContact = true;

// Show error messages if required fields are blank
var allValid = component.find('contactField').reduce(function (validFields,

inputCmp) {
inputCmp.showHelpMessageIfInvalid();
return validFields && inputCmp.get('v.validity').valid;

}, true);

if (allValid) {
// Verify we have an account to attach it to
var account = component.get("v.account");
if($A.util.isEmpty(account)) {

validContact = false;
console.log("Quick action context doesn't have a valid account.");

}
return(validContact);

}
}

})

SEE ALSO:

Configure Components for Record-Specific Actions

Controlling Access

force:recordPreview

SaveRecordResult
Represents the result of a Lightning Data Service operation that makes a persistent change to record data.

331

SaveRecordResultCreating Apps

SaveRecordResult Object
Callback functions for the saveRecord and deleteRecord functions receive a SaveRecordResult object as their only
argument.

DescriptionTypeAttribute Name

The object API name for the record.StringobjectApiName

The label for the name of the sObject of the record.StringentityLabel

Error is one of the following.Stringerror

• A localized message indicating what went wrong.

• An array of errors, including a localized message indicating what went wrong.
It might also include further data to help handle the error, such as field- or
page-level errors.

error is undefined if the save state is SUCCESS or DRAFT.

The 18-character ID of the record affected.StringrecordId

The result state of the operation. Possible values are:Stringstate

• SUCCESS—The operation completed on the server successfully.

• DRAFT—The server wasn’t reachable, so the operation was saved locally as
a draft. The change is applied to the server when it’s reachable.

• INCOMPLETE—The server wasn’t reachable, and the device doesn’t support
drafts. (Drafts are supported only in the Salesforce app.) Try this operation
again later.

• ERROR—The operation couldn’t be completed. Check the error attribute
for more information.

Lightning Container

Upload an app developed with a third-party framework as a static resource, and host the content in a Lightning component using
lightning:container. Use lightning:container to use third-party frameworks like AngularJS or React within your
Lightning pages.

The lightning:container component hosts content in an iframe. You can implement communication to and from the framed
application, allowing it to interact with the Lightning component. lightning:container provides the message() method,
which you can use in the JavaScript controller to send messages to the application. In the component, specify a method for handling
messages with the onmessage attribute.

IN THIS SECTION:

Lightning Container Component Limits

Understand the limits of lightning:container.

The Lightning Realty App

The Lightning Realty App is a more robust example of messaging between the Lightning Container Component and Salesforce.

332

Lightning ContainerCreating Apps

lightning-container NPM Module Reference

Use methods included in the lightning-container NPM module in your JavaScript code to send and receive messages to and from
your custom Lightning component, and to interact with the Salesforce REST API.

Using a Third-Party Framework
lightning:container allows you to use an app developed with a third-party framework, such as AngularJS or React, in a Lightning
component. Upload the app as a static resource.

Your application must have a launch page, which is specified with the lightning:container src attribute. By convention, the
launch page is index.html, but you can specify another launch page by adding a manifest file to your static resource. The following
example shows a simple Lightning component that references myApp, an app uploaded as a static resource, with a launch page of
index.html.

<aura:component>
<lightning:container src="{!$Resource.myApp + '/index.html'}" />

</aura:component>

The contents of the static resource are up to you. It should include the JavaScript that makes up your app, any associated assets, and a
launch page.

As in other Lightning components, you can specify custom attributes. This example references the same static resource, myApp, and
has three attributes, messageToSend, messageReceived, and error. Because this component includes
implements="flexipage:availableForAllPageTypes", it can be used in the Lightning App Builder and added to
Lightning pages.

Note: The examples in this section are accessible on the Developerforce Github Repository.

<aura:component access="global" implements="flexipage:availableForAllPageTypes" >
<aura:attribute access="private" name="messageToSend" type="String" default=""/>
<aura:attribute access="private" name="messageReceived" type="String" default=""/>
<aura:attribute access="private" name="error" type="String" default=""/>

<div>
<lightning:input name="messageToSend" value="{!v.messageToSend}" label="Message

to send to React app: "/>
<lightning:button label="Send" onclick="{!c.sendMessage}"/>

<lightning:textarea value="{!v.messageReceived}" label="Message received from React
app: "/>

<aura:if isTrue="{! !empty(v.error)}">

<lightning:textarea name="errorTextArea" value="{!v.error}" label="Error: "/>

</aura:if>

<lightning:container aura:id="ReactApp"
src="{!$Resource.SendReceiveMessages + '/index.html'}"
onmessage="{!c.handleMessage}"
onerror="{!c.handleError}"/>

</div>
</aura:component>

333

Using a Third-Party FrameworkCreating Apps

https://github.com/developerforce/LightningContainerExamples

The component includes a lightning:input element, allowing users to enter a value for messageToSend. When a user hits
Send, the component calls the controller method sendMessage. This component also provides methods for handling messages
and errors.

This snippet doesn’t include the component’s controller or other code, but don’t worry. We’ll dive in, break it down, and explain how to
implement message and error handling as we go in Sending Messages from the Lightning Container Component and Handling Errors
in Your Container.

SEE ALSO:

Lightning Container

Sending Messages from the Lightning Container Component

Handling Errors in Your Container

Sending Messages from the Lightning Container Component
Use the onmessage attribute of lightning:container to specify a method for handling messages to and from the contents
of the component—that is, the embedded app. The contents of lightning:container are wrapped within an iframe, and this
method allows you to communicate across the frame boundary.

This example shows a Lightning component that includes lightning:container and has three attributes, messageToSend,
messageReceived, and error.

This example uses the same code as the one in Using a Third-Party Framework. You can download the complete version of this example
from the Developerforce Github Repository.

<aura:component access="global" implements="flexipage:availableForAllPageTypes" >
<aura:attribute access="private" name="messageToSend" type="String" default=""/>
<aura:attribute access="private" name="messageReceived" type="String" default=""/>
<aura:attribute access="private" name="error" type="String" default=""/>

<div>
<lightning:input name="messageToSend" value="{!v.messageToSend}" label="Message

to send to React app: "/>
<lightning:button label="Send" onclick="{!c.sendMessage}"/>

<lightning:textarea value="{!v.messageReceived}" label="Message received from React
app: "/>

<aura:if isTrue="{! !empty(v.error)}">

<lightning:textarea name="errorTextArea" value="{!v.error}" label="Error: "/>

</aura:if>

<lightning:container aura:id="ReactApp"
src="{!$Resource.SendReceiveMessages + '/index.html'}"
onmessage="{!c.handleMessage}"
onerror="{!c.handleError}"/>

</div>
</aura:component>

messageToSend represents a message sent from Salesforce to the framed app, while messageReceived represents a message
sent by the app to the Lightning component. lightning:container includes the required src attribute, an aura:id, and

334

Using a Third-Party FrameworkCreating Apps

https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/metadata/aura/SendReceiveMessages/SendReceiveMessages.cmp

the onmessage attribute. The onmessage attribute specifies the message-handling method in your JavaScript controller, and the
aura:id allows that method to reference the component.

This example shows the component’s JavaScript controller.

({
sendMessage : function(component, event, helper) {

var msg = {
name: "General",
value: component.get("v.messageToSend")

};
component.find("ReactApp").message(msg);

},

handleMessage: function(component, message, helper) {
var payload = message.getParams().payload;
var name = payload.name;
if (name === "General") {

var value = payload.value;
component.set("v.messageReceived", value);

}
else if (name === "Foo") {

// A different response
}

},

handleError: function(component, error, helper) {
var e = error;

}
})

This code does a couple of different things. The sendMessage action sends a message from the enclosing Lightning component to
the embedded app. It creates a variable, msg, that has a JSON definition including a name and a value. This definition of the message
is user-defined—the message’s payload can be a value, a structured JSON response, or something else. The messageToSend attribute
of the Lightning component populates the value of the message. The method then uses the component’s aura:id and the
message() function to send the message back to the Lightning component.

The handleMessage method receives a message from the embedded app and handles it appropriately. It takes a component, a
message, and a helper as arguments. The method uses conditional logic to parse the message. If this is the message with the name
and value we’re expecting, the method sets the Lightning component’s messageReceived attribute to the value of the
message. Although this code only defines one message, the conditional statement allows you to handle different types of message,
which are defined in the sendMessage method.

The handler code for sending and receiving messages can be complicated. It helps to understand the flow of a message between the
Lightning component, its controller, and the app. The process begins when user enters a message as the messageToSend attribute.
When the user clicks Send, the component calls sendMessage. sendMessage defines the message payload and uses the
message() method to send it to the app. Within the static resource that defines the app, the specified message handler function
receives the message. Specify the message handling function within your JavaScript code using the lightning-container module’s
addMessageHandler() method. See the lightning-container NPM Module Reference for more information.

When lightning:container receives a message from the framed app, it calls the component controller’s handleMessage
method, as set in the onmessage attribute of lightning:container. The handleMessage method takes the message,
and sets its value as the messageReceived attribute. Finally, the component displays messageReceived in a
lightning:textarea.

335

Using a Third-Party FrameworkCreating Apps

This is a simple example of message handling across the container. Because you implement the controller-side code and the functionality
of the app, you can use this functionality for any kind of communication between Salesforce and the app embedded in
lightning:container.

Important: Don't send cryptographic secrets like an API key in a message. It's important to keep your API key secure.

SEE ALSO:

Lightning Container

Using a Third-Party Framework

Handling Errors in Your Container

Sending Messages to the Lightning Container Component
Use the methods in the lightning-container NPM module to send messages from the JavaScript code framed by
lightning:container.

The Lightning-container NPM module provides methods to send and receive messages between your JavaScript app and the Lightning
container component. You can see the lightning-container module on the NPM website.

Add the lightning-container module as a dependency in your code to implement the messaging framework in your app.

import LCC from 'lightning-container';

lightning-container must also be listed as a dependency in your app’s package.json file.

The code to send a message to lightning:container from the app is simple. This code corresponds to the code samples in
Sending Messages from the Lightning Container Component and Handling Errors in Your Container, and can be downloaded from the
Developerforce Github Repository.

sendMessage() {
LCC.sendMessage({name: "General", value: this.state.messageToSend});

}

This code, part of the static resource, sends a message as an object containing a name and a value, which is user-defined.

When the app receives a message, it’s handled by the function mounted by the addMessageHandler() method. In a React app,
functions must be mounted to be part of the document-object model and rendered in the output.

The lightning-container module provides similar methods for defining a function to handle errors in the messaging framework. For more
information, see lightning-container NPM Module Reference

Important: Don't send cryptographic secrets like an API key in a message. It's important to keep your API key secure.

Handling Errors in Your Container
Handle errors in Lightning container with a method in your component’s controller.

This example uses the same code as the examples in Using a Third-Party Framework and Sending Messages from the Lightning Container
Component.

In this component, the onerror attribute of lightning:container specifies handleError as the error handling method.
To display the error, the component markup uses a conditional statement, and another attribute, error, for holding an error message.

<aura:component access="global" implements="flexipage:availableForAllPageTypes" >

336

Using a Third-Party FrameworkCreating Apps

https://www.npmjs.com/package/lightning-container
https://github.com/developerforce/LightningContainerExamples/tree/master/ReactJS/Javascript/send-receive-messages/src

<aura:attribute access="private" name="messageToSend" type="String" default=""/>
<aura:attribute access="private" name="messageReceived" type="String" default=""/>
<aura:attribute access="private" name="error" type="String" default=""/>

<div>
<lightning:input name="messageToSend" value="{!v.messageToSend}" label="Message

to send to React app: "/><lightning:button label="Send" onclick="{!c.sendMessage}"/>

<lightning:textarea name="messageReceived" value="{!v.messageReceived}"
label="Message received from React app: "/>

<aura:if isTrue="{! !empty(v.error)}">
<lightning:textarea name="errorMessage" value="{!v.error}" label="Error: "/>

</aura:if>

<lightning:container aura:id="ReactApp"
src="{!$Resource.SendReceiveMessages + '/index.html'}"
onmessage="{!c.handleMessage}"
onerror="{!c.handleError}"/>

</div>

</aura:component>

This is the component’s controller.

({
sendMessage : function(component, event, helper) {

var msg = {
name: "General",
value: component.get("v.messageToSend")

};
component.find("ReactApp").message(msg);

},

handleMessage: function(component, message, helper) {
var payload = message.getParams().payload;
var name = payload.name;
if (name === "General") {

var value = payload.value;
component.set("v.messageReceived", value);

}
else if (name === "Foo") {

// A different response
}

},

handleError: function(component, error, helper) {
var description = error.getParams().description;
component.set("v.error", description);

337

Using a Third-Party FrameworkCreating Apps

}
})

If the Lightning container application throws an error, the error handling function sets the error attribute. Then, in the component
markup, the conditional expression checks if the error attribute is empty. If it isn’t, the component populates a lightning:textarea
element with the error message stored in error.

SEE ALSO:

Lightning Container

Using a Third-Party Framework

Sending Messages from the Lightning Container Component

Using Apex Services from Your Container
Use the lightning-container NPM module to call Apex methods from your Lightning container component.

To call Apex methods from lightning:container, you must set the CSP level to low in the manifest.json file. A CSP
level of low allows the Lightning container component load resources from outside of the Lightning domain.

This is a Lightning component that including a Lightning container component that uses Apex services:

<aura:component access="global" implements="flexipage:availableForAllPageTypes">

<aura:attribute access="private" name="error" type="String" default=""/>

<div>
<aura:if isTrue="{! !empty(v.error)}">

<lightning:textarea name="errorTextArea" value="{!v.error}" label="Error: "/>

</aura:if>

<lightning:container aura:id="ReactApp"
src="/ApexController/index.html"
onerror="{!c.handleError}"/>

</div>

</aura:component>

This is the component’s controller:

({
handleError: function(component, error, helper) {

var description = error.getParams().description;
component.set("v.error", description);

}
})

Note: You can download the complete version of this example from the Developerforce Github Repository.

There’s not a lot going on in the component’s JavaScript controller—the real action is in the JavaScript app, uploaded as a static resource,
that the Lightning container references.

import React, { Component } from 'react';
import LCC from "lightning-container";

338

Using a Third-Party FrameworkCreating Apps

https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/metadata/aura/SendReceiveMessages/SendReceiveMessages.cmp

import logo from './logo.svg';
import './App.css';

class App extends Component {

callApex() {
LCC.callApex("lcc1.ApexController.getAccount",

this.state.name,
this.handleAccountQueryResponse,
{escape: true});

}

handleAccountQueryResponse(result, event) {
if (event.status) {
this.setState({account: result});

}
else if (event.type === "exception") {
console.log(event.message + " : " + event.where);

}
}

render() {
var account = this.state.account;

return (
<div className="App">
<div className="App-header">

<h2>Welcome to LCC</h2>

</div>
<p className="App-intro">
Account Name: <input type="text" id="accountName" value={this.state.name}

onChange={e => this.onAccountNameChange(e)}/>

<input type="submit" value="Call Apex Controller" onClick={this.callApex}/>

Id: {account.Id}

Phone: {account.Phone}

Type: {account.Type}

Number of Employees: {account.NumberOfEmployees}

</p>
</div>

);
}

constructor(props) {
super(props);
this.state = {
name: "",
account: {}

};

this.handleAccountQueryResponse = this.handleAccountQueryResponse.bind(this);
this.onAccountNameChange = this.onAccountNameChange.bind(this);
this.callApex = this.callApex.bind(this);

339

Using a Third-Party FrameworkCreating Apps

}

onAccountNameChange(e) {
this.setState({name: e.target.value});

}
}

export default App;

The first function, callApex(), uses the LCC.callApex method to call getAccount, an Apex method that gets and displays
an account’s information.

Lightning Container Component Limits
Understand the limits of lightning:container.

lightning:container has known limitations. You might observe performance and scrolling issues associated with the use of
iframes. This component isn’t designed for the multi-page model, and it doesn’t integrate with browser navigation history.

If you navigate away from the page and a lightning:container component is on, the component doesn’t automatically
remember its state. The content within the iframe doesn’t use the same offline and caching schemes as the rest of Lightning Experience.

Creating a Lightning app that loads a Lightning container static resource from another namespace is not supported. If you install a
package, your apps should use the custom Lightning components published by that package, not their static resources directly. Any
static resource you use as the lightning:container src attribute should have your own namespace.

Previous versions of lightning:container allowed developers to specify the Content Security Policy (CSP) of the iframed content.
We removed this functionality for security reasons. The CSP level of all pages is now set to high. This value provides the greatest security,
because content can be loaded only from the Lightning domain.

Apps that use lightning:container should work with data, not metadata. Don’t use the session key for your app to manage
custom objects or fields. You can use the session key to create and update object records.

Content in lightning:container is served from the Lightning container domain and is available in Lightning Experience and
the Salesforce mobile app. lightning:container can’t be used in Lightning pages that aren’t served from the Lightning domain,
such as Visualforce pages, Community Builder, or in external apps through Lightning Out.

SEE ALSO:

Lightning Container

The Lightning Realty App
The Lightning Realty App is a more robust example of messaging between the Lightning Container Component and Salesforce.

The Lightning realty app’s messaging framework relies on code in a Lightning component, the component’s handler, and the static
resource referenced by lightning:container. The Lightning container component points to the message handling function in
the Lightning component’s JavaScript controller. The message handling function takes in a message sent by the source JavaScript, which
uses a method provided by the lightning-container NPM module.

See Install the Example Lightning Realty App for instructions to install this example in your development org.

340

Lightning Container Component LimitsCreating Apps

Let’s look at the Lightning component first. Although the code that defines the Realty component is simple, it allows the JavaScript of
the realty app to communicate with Salesforce and load sample data.

<aura:component access="global" implements="flexipage:availableForAllPageTypes" >

<aura:attribute access="global" name="mainTitle" type="String" required="true"
default="My Properties"/>

<aura:attribute access="private" name="messageReceived" type="String" default=""/>
<aura:attribute access="private" name="error" type="String" default=""/>

<div>
<aura:if isTrue="{! !empty(v.messageReceived)}">

<lightning:textarea name="messageReceivedTextArea" value="{!v.messageReceived}"
label=" "/>

</aura:if>

<aura:if isTrue="{! !empty(v.error)}">
<lightning:textarea name="errorTextArea" value="{!v.error}" label="Error: "/>

</aura:if>

<lightning:container aura:id="ReactApp"
src="{!$Resource.Realty + '/index.html?mainTitle=' +

v.mainTitle}"
onmessage="{!c.handleMessage}"
onerror="{!c.handleError}"/>

</div>

</aura:component>

This code is similar to the example code in Sending Messages from the Lightning Container Component and Handling Errors in Your
Container.

There’s also code in the Lightning component’s controller and in the source JavaScript that allows the iframed app to communicate
with Salesforce. In PropertyHome.js, part of the source, the realty app calls LCC.sendMessage. This segment of code filters
the list of properties, then creates a message to send back to the container that includes the selected property’s address, price, city, state,
zip code, and description.

saveHandler(property) {
let filteredProperty = propertyService.filterProperty(property);
propertyService.createItem(filteredProperty).then(() => {

propertyService.findAll(this.state.sort).then(properties => {
let filteredProperties = propertyService.filterFoundProperties(properties);
this.setState({addingProperty: false, properties:filteredProperties});

});
let message = {};
message.address = property.address;
message.price = property.price;
message.city = property.city;
message.state = property.state;
message.zip = property.zip;
message.description = property.description;
LCC.sendMessage({name: "PropertyCreated", value: message});

341

The Lightning Realty AppCreating Apps

});
},

Then, the JavaScript calls LCC.sendMessage with a name-value pair. This code uses the sendMessage method, which is part
of the messaging API provided by the lightning-container NPM module. For more information, see Sending Messages to the Lightning
Container Component.

The last bit of action happens in the component’s controller, in the handleMessage() function.

handleMessage: function(component, message, helper) {
var payload = message.getParams().payload;
var name = payload.name;
if (name === "PropertyCreated") {

var value = payload.value;
var messageToUser;
if (value.price > 1000000) {

messageToUser = "Big Real Estate Opportunity in " + value.city + ", " +
value.state + " : $" + value.price;

}
else {

messageToUser = "Small Real Estate Opportunity in " + value.city + ", " +
value.state + " : $" + value.price;

}
var log = component.get("v.log");
log.push(messageToUser);
component.set("v.log", log);

}
},

This function takes a message as an argument, and checks that the name is "PropertyCreated". This is the same name set by
LCC.sendMessage in the app’s JavaScript.

This function takes the message payload—in this case, a JSON array describing a property—and checks the value of the property. If the
value is over $1 million, it sends a message to the user telling him or her that there’s a big real estate opportunity. Otherwise, it returns
a message telling the user that there’s a smaller real estate opportunity.

IN THIS SECTION:

Install the Example Lightning Realty App

See further examples of lightning:container in the Developerforce Git repository.

Install the Example Lightning Realty App
See further examples of lightning:container in the Developerforce Git repository.

Implement a more in-depth example of lightning:container with the code included in
https://github.com/developerforce/LightningContainerExamples. This example uses React and lightning:container to show
a real estate listing app in a Lightning page.

To implement this example, use npm. The easiest way to install npm is by installing node.js. Once you’ve installed npm, install the latest
version by running npm install --save latest-version from the command line.

To create custom Lightning components, you also need to have enabled My Domain in your org. For more information on My Domain,
see My Domain in the Salesforce Help.

342

The Lightning Realty AppCreating Apps

https://github.com/developerforce/LightningContainerExamples
https://nodejs.org/en/
https://help.salesforce.com/apex/HTViewHelpDoc?id=domain_name_overview.htm&language=en_US#domain_name_overview

1. Clone the Git repository. From the command line, enter git clone
https://github.com/developerforce/LightningContainerExamples

2. From the command line, navigate to LightningContainerExamples/ReactJS/Javascript/Realty and build
the project’s dependencies by entering npm install.

3. From the command line, build the app by entering npm run build.

4. Edit package.json and add your Salesforce login credentials where indicated.

5. From the command line, enter npm run deploy.

6. Log in to Salesforce and activate the new Realty Lightning page in the Lightning App Builder by adding it to a Lightning app.

7. To upload sample data to your org, enter npm run load from the command line.

See the Lightning realty app in action in your org. The app uses lightning:container to embed a React app in a Lightning
page, displaying sample real estate listing data.

The component and handler code are similar to the examples in Sending Messages from the Lightning Container Component and
Handling Errors in Your Container.

lightning-container NPM Module Reference
Use methods included in the lightning-container NPM module in your JavaScript code to send and receive messages to and from your
custom Lightning component, and to interact with the Salesforce REST API.

343

lightning-container NPM Module ReferenceCreating Apps

IN THIS SECTION:

addMessageErrorHandler()

Mounts an error handling function, to be called when the messaging framework encounters an error.

addMessageHandler()

Mounts a message handling function, used to handle messages sent from the Lightning component to the framed JavaScript app.

callApex()

Makes an Apex call.

getRESTAPISessionKey()

Returns the Salesforce REST API session key.

removeMessageErrorHandler()

Unmounts the error handling function.

removeMessageHandler()

Unmounts the message-handling function.

sendMessage()

Sends a message from the framed JavaScript code to the Lightning component.

addMessageErrorHandler()

Mounts an error handling function, to be called when the messaging framework encounters an error.

Sample
Used within a JavaScript app uploaded as a static resource and referenced by lightning:container, this example mounts a
message error handling function. In a React app, functions must be mounted to be part of the document-object model and rendered
in the output.

componentDidMount() {
LCC.addMessageErrorHandler(this.onMessageError);

}

You can view and download this example in the Developerforce Github Repository.

Arguments

DescriptionTypeName

The function that handles error messages encountered in
the messaging framework.

functionhandler: (errorMsg:
string) => void)

Response
None.

addMessageHandler()

Mounts a message handling function, used to handle messages sent from the Lightning component to the framed JavaScript app.

344

lightning-container NPM Module ReferenceCreating Apps

https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/src/App.js

Sample
Used within a JavaScript app uploaded as a static resource and referenced by lightning:container, this example mounts a
message handling function. In a React app, functions must be mounted to be part of the document-object model and rendered in the
output.

componentDidMount() {
LCC.addMessageHandler(this.onMessage);

}

onMessage(msg) {
let name = msg.name;
if (name === "General") {
let value = msg.value;
this.setState({messageReceived: value});

}
else if (name === "Foo") {
// A different response

}
}

You can view and download this example in the Developerforce Github Repository.

Arguments

DescriptionTypeName

The function that handles messages sent from the Lightning
component.

functionhandler: (userMsg: any)
=> void

Response
None.

callApex()

Makes an Apex call.

Sample
Used within a JavaScript app uploaded as a static resource and referenced by lightning:container, this example calls the Apex
method getAccount.

callApex() {
LCC.callApex("lcc1.ApexController.getAccount",

this.state.name,
this.handleAccountQueryResponse,
{escape: true});

}

You can view and download this example in the Developerforce Github Repository.

345

lightning-container NPM Module ReferenceCreating Apps

https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/src/App.js
https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/src/App.js

Arguments

DescriptionTypeName

The name of the Apex method.stringfullyQualifiedApexMethodName

A JSON array of arguments for the Apex method.arrayapexMethodParameters

A callback function.functioncallbackFunction

Configuration parameters for the Apex call.arrayapexCallConfiguration

Response
None.

getRESTAPISessionKey()

Returns the Salesforce REST API session key.

Use this method when your embedded app needs to interact with the Salesforce REST API, such as executing a SOQL query.

Don’t use the session key to manage custom objects or fields. You can use the session key to create and update object records. Apps
that use lightning:container should work with data, not metadata.

Important: It's important to keep your API key secure. Don't give this key to code you don't trust, and don't include it in URLs or
hyperlinks, even to another page in your app.

Salesforce uses the no-referrer policy to protect against leaking your app's URL to outside servers, such as image hosts. However,
this policy doesn't protect some browsers, meaning your app's URLs could be included in outside requests.

Sample
Used within a JavaScript app uploaded as a static resource and referenced by lightning:container, this example gets the REST
API session key and uses it to execute a SOQL query.

componentDidMount() {
let sid = LCC.getRESTAPISessionKey();
let conn = new JSForce.Connection({accessToken: sid});
conn.query("SELECT Id, Name from Account LIMIT 50", this.handleAccountQueryResponse);

}

You can view and download this example in the Developerforce Github Repository.

Arguments
None.

Response

DescriptionTypeName

The REST API session key.stringkey

346

lightning-container NPM Module ReferenceCreating Apps

https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/soql/src/App.js

removeMessageErrorHandler()

Unmounts the error handling function.

When using React, it’s necessary to unmount functions to remove them from the DOM and perform necessary cleanup.

Sample
Used within a JavaScript app uploaded as a static resource and referenced by lightning:container, this example unmounts a
message error handling function. In a React app, functions must be mounted to be part of the document-object model and rendered
in the output.

componentWillUnmount() {
LCC.removeMessageErrorHandler(this.onMessageError);

}

You can view and download this example in the Developerforce Github Repository.

Arguments

DescriptionTypeName

The function that handles error messages encountered in
the messaging framework.

functionhandler: (errorMsg:
string) => void)

Response
None.

removeMessageHandler()

Unmounts the message-handling function.

When using React, it’s necessary to unmount functions to remove them from the DOM and perform necessary cleanup.

Sample
Used within a JavaScript app uploaded as a static resource and referenced by lightning:container, this example unmounts a
message handling function.

componentWillUnmount() {
LCC.removeMessageHandler(this.onMessage);

}

You can view and download this example in the Developerforce Github Repository.

Arguments

DescriptionTypeName

The function that handles messages sent from the Lightning
component.

functionhandler: (userMsg: any)
=> void

347

lightning-container NPM Module ReferenceCreating Apps

https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/src/App.js
https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/src/App.js

Response
None.

sendMessage()

Sends a message from the framed JavaScript code to the Lightning component.

Sample
Used within a JavaScript app uploaded as a static resource and referenced by lightning:container, this example sends a
message from the app to lightning:container.

sendMessage() {
LCC.sendMessage({name: "General", value: this.state.messageToSend});

}

You can view and download this example in the Developerforce Github Repository.

Arguments

DescriptionTypeName

While the data sent in the message is entirely under your
control, by convention it’s an object with name and value
fields.

anyuserMsg

Response
None.

Controlling Access

The framework enables you to control access to your applications, attributes, components, events, interfaces, and methods via the
access system attribute. The access system attribute indicates whether the resource can be used outside of its own namespace.

Use the access system attribute on these tags:

• <aura:application>

• <aura:attribute>

• <aura:component>

• <aura:event>

• <aura:interface>

• <aura:method>

Access Values
You can specify these values for the access system attribute.

348

Controlling AccessCreating Apps

https://github.com/developerforce/LightningContainerExamples/blob/master/ReactJS/Javascript/send-receive-messages/src/App.js

private
Available within the component, app, interface, event, or method and can’t be referenced outside the resource. This value can only
be used for <aura:attribute> or <aura:method>.

Marking an attribute as private makes it easier to refactor the attribute in the future as the attribute can only be used within the
resource.

Accessing a private attribute returns undefined unless you reference it from the component in which it’s declared. You can’t
access a private attribute from a sub-component that extends the component containing the private attribute.

public
Available within your org only. This is the default access value.

global
Available in all orgs.

Note: Mark your resources, such as a component, with access="global" to make the resource usable outside of your
own org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a
Community Builder user in another org.

Example
This sample component has global access.

<aura:component access="global">
...

</aura:component>

Access Violations
If your code accesses a resource, such as a component, that doesn’t have an access system attribute allowing you to access the
resource:

• Client-side code doesn’t execute or returns undefined. If you enabled debug mode, you see an error message in your browser
console.

• Server-side code results in the component failing to load. If you enabled debug mode, you see a popup error message.

Anatomy of an Access Check Error Message
Here is a sample access check error message for an access violation.

Access Check Failed ! ComponentService.getDef():'markup://c:targetComponent' is not
visible to 'markup://c:sourceComponent'.

An error message has four parts:

1. The context (who is trying to access the resource). In our example, this is markup://c:sourceComponent.

2. The target (the resource being accessed). In our example, this is markup://c:targetComponent.

3. The type of failure. In our example, this is not visible.

4. The code that triggered the failure. This is usually a class method. In our example, this is ComponentService.getDef(),
which means that the target definition (component) was not accessible. A definition describes metadata for a resource, such as a
component.

349

Controlling AccessCreating Apps

Fixing Access Check Errors
Tip: If your code isn’t working as you expect, enable debug mode to get better error reporting.

You can fix access check errors using one or more of these techniques.

• Add appropriate access system attributes to the resources that you own.

• Remove references in your code to resources that aren’t available. In the earlier example, markup://c:targetComponent
doesn’t have an access value allowing markup://c:sourceComponent to access it.

• Ensure that an attribute that you’re accessing exists by looking at its <aura:attribute> definition. Confirm that you’re using
the correct case-sensitive spelling for the name.

Accessing an undefined attribute or an attribute that is out of scope, for example a private attribute, triggers the same access violation
message. The access context doesn’t know whether the attribute is undefined or inaccessible.

Example: is not visible to 'undefined'

ComponentService.getDef():'markup://c:targetComponent' is not visible to 'undefined'

The key word in this error message is undefined, which indicates that the framework has lost context. This happens when your code
accesses a component outside the normal framework lifecycle, such as in a setTimeout() or setInterval() call or in an ES6
Promise.

Fix this error by wrapping the code in a $A.getCallback() call. For more information, see Modifying Components Outside the
Framework Lifecycle.

Example: Cannot read property 'Yb' of undefined

Action failed: c$sourceComponent$controller$doInit [Cannot read property 'Yb' of undefined]

This error message happens when you reference a property on a variable with a value of undefined. The error can happen in many
contexts, one of which is the side-effect of an access check failure. For example, let’s see what happens when you try to access an
undefined attribute, imaginaryAttribute, in JavaScript.

var whatDoYouExpect = cmp.get("v.imaginaryAttribute");

This is an access check error and whatDoYouExpect is set to undefined. Now, if you try to access a property on
whatDoYouExpect, you get an error.

Action failed: c$sourceComponent$controller$doInit [Cannot read property 'Yb' of undefined]

The c$sourceComponent$controller$doInit portion of the error message tells you that the error is in the doInit
method of the controller of the sourceComponent component in the c namespace.

IN THIS SECTION:

Application Access Control

The access attribute on the aura:application tag controls whether the app can be used outside of the app’s namespace.

Interface Access Control

The access attribute on the aura:interface tag controls whether the interface can be used outside of the interface’s
namespace.

350

Controlling AccessCreating Apps

Component Access Control

The access attribute on the aura:component tag controls whether the component can be used outside of the component’s
namespace.

Attribute Access Control

The access attribute on the aura:attribute tag controls whether the attribute can be used outside of the attribute’s
namespace.

Event Access Control

The access attribute on the aura:event tag controls whether the event can be used outside of the event’s namespace.

SEE ALSO:

Enable Debug Mode for Lightning Components

Application Access Control
The access attribute on the aura:application tag controls whether the app can be used outside of the app’s namespace.

Possible values are listed below.

DescriptionModifier

Available within your org only. This is the default access value.public

Available in all orgs.global

Interface Access Control
The access attribute on the aura:interface tag controls whether the interface can be used outside of the interface’s namespace.

Possible values are listed below.

DescriptionModifier

Available within your org only. This is the default access value.public

Available in all orgs.global

A component can implement an interface using the implements attribute on the aura:component tag.

Component Access Control
The access attribute on the aura:component tag controls whether the component can be used outside of the component’s
namespace.

Possible values are listed below.

DescriptionModifier

Available within your org only. This is the default access value.public

351

Application Access ControlCreating Apps

DescriptionModifier

Available in all orgs.global

Note: Components aren’t directly addressable via a URL. To check your component output, embed your component in a .app
resource.

Attribute Access Control
The access attribute on the aura:attribute tag controls whether the attribute can be used outside of the attribute’s namespace.

Possible values are listed below.

DescriptionAccess

Available within the component, app, interface, event, or method and can’t be referenced outside
the resource.

private

Note: Accessing a private attribute returns undefined unless you reference it from the
component in which it’s declared. You can’t access a private attribute from a sub-component
that extends the component containing the private attribute.

Available within your org only. This is the default access value.public

Available in all orgs.global

Event Access Control
The access attribute on the aura:event tag controls whether the event can be used outside of the event’s namespace.

Possible values are listed below.

DescriptionModifier

Available within your org only. This is the default access value.public

Available in all orgs.global

Using Object-Oriented Development

The framework provides the basic constructs of inheritance and encapsulation from object-oriented programming and applies them to
presentation layer development.

For example, components are encapsulated and their internals stay private. Consumers of the component can access the public shape
(attributes and registered events) of the component, but can't access other implementation details in the component bundle. This strong
separation gives component authors freedom to change the internal implementation details and insulates component consumers from
those changes.

You can extend a component, app, or interface, or you can implement a component interface.

352

Attribute Access ControlCreating Apps

What is Inherited?
This topic lists what is inherited when you extend a definition, such as a component.

When a component contains another component, we refer in the documentation to parent and child components in the containment
hierarchy. When a component extends another component, we refer to sub and super components in the inheritance hierarchy.

Component Attributes
A sub component that extends a super component inherits the attributes of the super component. Use <aura:set> in the markup
of a sub component to set the value of an attribute inherited from a super component.

Events
A sub component that extends a super component can handle events fired by the super component. The sub component automatically
inherits the event handlers from the super component.

The super and sub component can handle the same event in different ways by adding an <aura:handler> tag to the sub component.
The framework doesn't guarantee the order of event handling.

Helpers
A sub component's helper inherits the methods from the helper of its super component. A sub component can override a super
component's helper method by defining a method with the same name as an inherited method.

Controllers
A sub component that extends a super component can call actions in the super component's client-side controller. For example, if the
super component has an action called doSomething, the sub component can directly call the action using the {!c.doSomething}
syntax.

Note: We don't recommend using inheritance of client-side controllers as this feature may be deprecated in the future to preserve
better component encapsulation. We recommend that you put common code in a helper instead.

SEE ALSO:

Component Attributes

Communicating with Events

Sharing JavaScript Code in a Component Bundle

Handling Events with Client-Side Controllers

aura:set

Inherited Component Attributes
A sub component that extends a super component inherits the attributes of the super component.

Attribute values are identical at any level of extension. There is an exception to this rule for the body attribute, which we'll look at more
closely soon.

353

What is Inherited?Creating Apps

Let's start with a simple example. c:super has a description attribute with a value of "Default description",

<!--c:super-->
<aura:component extensible="true">

<aura:attribute name="description" type="String" default="Default description" />

<p>super.cmp description: {!v.description}</p>

{!v.body}
</aura:component>

Don’t worry about the {!v.body} expression for now. We’ll explain that when we talk about the body attribute.

c:sub extends c:super by setting extends="c:super" in its <aura:component> tag.

<!--c:sub-->
<aura:component extends="c:super">

<p>sub.cmp description: {!v.description}</p>
</aura:component

Note that sub.cmp has access to the inherited description attribute and it has the same value in sub.cmp and super.cmp.

Use <aura:set> in the markup of a sub component to set the value of an inherited attribute.

Inherited body Attribute
Every component inherits the body attribute from <aura:component>. The inheritance behavior of body is different than other
attributes. It can have different values at each level of component extension to enable different output from each component in the
inheritance chain. This will be clearer when we look at an example.

Any free markup that is not enclosed in another tag is assumed to be part of the body. It's equivalent to wrapping that free markup
inside <aura:set attribute="body">.

The default renderer for a component iterates through its body attribute, renders everything, and passes the rendered data to its super
component. The super component can output the data passed to it by including {!v.body} in its markup. If there is no super
component, you've hit the root component and the data is inserted into document.body.

Let's look at a simple example to understand how the body attribute behaves at different levels of component extension. We have
three components.

c:superBody is the super component. It inherently extends <aura:component>.

<!--c:superBody-->
<aura:component extensible="true">

Parent body: {!v.body}
</aura:component>

At this point, c:superBody doesn’t output anything for {!v.body} as it’s just a placeholder for data that will be passed in by a
component that extends c:superBody.

c:subBody extends c:superBody by setting extends="c:superBody" in its <aura:component> tag.

<!--c:subBody-->
<aura:component extends="c:superBody">

Child body: {!v.body}
</aura:component>

354

Inherited Component AttributesCreating Apps

c:subBody outputs:

Parent body: Child body:

In other words, c:subBody sets the value for {!v.body} in its super component, c:superBody.

c:containerBody contains a reference to c:subBody.

<!--c:containerBody-->
<aura:component>

<c:subBody>
Body value

</c:subBody>
</aura:component>

In c:containerBody, we set the body attribute of c:subBody to Body value. c:containerBody outputs:

Parent body: Child body: Body value

SEE ALSO:

aura:set

Component Body

Component Markup

Abstract Components
Object-oriented languages, such as Java, support the concept of an abstract class that provides a partial implementation for an object
but leaves the remaining implementation to concrete sub-classes. An abstract class in Java can't be instantiated directly, but a non-abstract
subclass can.

Similarly, the Lightning Component framework supports the concept of abstract components that have a partial implementation but
leave the remaining implementation to concrete sub-components.

To use an abstract component, you must extend it and fill out the remaining implementation. An abstract component can't be used
directly in markup.

The <aura:component> tag has a boolean abstract attribute. Set abstract="true" to make the component abstract.

SEE ALSO:

Interfaces

Interfaces
Object-oriented languages, such as Java, support the concept of an interface that defines a set of method signatures. A class that
implements the interface must provide the method implementations. An interface in Java can't be instantiated directly, but a class that
implements the interface can.

Similarly, the Lightning Component framework supports the concept of interfaces that define a component's shape by defining its
attributes.

An interface starts with the <aura:interface> tag. It can only contain these tags:

• <aura:attribute> tags to define the interface's attributes.

355

Abstract ComponentsCreating Apps

• <aura:registerEvent> tags to define the events that it may fire.

You can't use markup, renderers, controllers, or anything else in an interface.

To use an interface, you must implement it. An interface can't be used directly in markup otherwise. Set the implements system
attribute in the <aura:component> tag to the name of the interface that you are implementing. For example:

<aura:component implements="mynamespace:myinterface" >

A component can implement an interface and extend another component.

<aura:component extends="ns1:cmp1" implements="ns2:intf1" >

An interface can extend multiple interfaces using a comma-separated list.

<aura:interface extends="ns:intf1,ns:int2" >

Note: Use <aura:set> in a sub component to set the value of any attribute that is inherited from the super component. This
usage works for components and abstract components, but it doesn't work for interfaces. To set the value of an attribute inherited
from an interface, redefine the attribute in the sub component using <aura:attribute> and set the value in its default
attribute.

Since there are fewer restrictions on the content of abstract components, they are more common than interfaces. A component can
implement multiple interfaces but can only extend one abstract component, so interfaces can be more useful for some design patterns.

SEE ALSO:

Setting Attributes Inherited from an Interface

Abstract Components

Marker Interfaces
You can use an interface as a marker interface that is implemented by a set of components that you want to easily identify for specific
usage in your app.

In JavaScript, you can determine if a component implements an interface by using
myCmp.isInstanceOf("mynamespace:myinterface").

Inheritance Rules
This table describes the inheritance rules for various elements.

Default Base ElementimplementsextendsElement

<aura:component>multiple interfacesone extensible componentcomponent

<aura:application>N/Aone extensible appapp

N/AN/Amultiple interfaces using a comma-separated list
(extends="ns:intf1,ns:int2")

interface

SEE ALSO:

Interfaces

356

Inheritance RulesCreating Apps

Using the AppCache

AppCache support is deprecated. Browser vendors have deprecated AppCache, so we followed their lead. Remove the useAppcache
attribute in the <aura:application> tag of your standalone apps (.app resources) to avoid cross-browser support issues due
to deprecation by browser vendors.

If you don’t currently set useAppcache in an <aura:application> tag, you don’t have to do anything because the default
value of useAppcache is false.

Note: See an introduction to AppCache for more information.

SEE ALSO:

aura:application

Distributing Applications and Components

As an ISV or Salesforce partner, you can package and distribute applications and components to other Salesforce users and organizations,
including those outside your company.

Publish applications and components to and install them from AppExchange. When adding an application or component to a package,
all definition bundles referenced by the application or component are automatically included, such as other components, events, and
interfaces. Custom fields, custom objects, list views, page layouts, and Apex classes referenced by the application or component are also
included. However, when you add a custom object to a package, the application and other definition bundles that reference that custom
object must be explicitly added to the package. Other dependencies that must be explicitly added to a package include the following.

• CSP Trusted Sites

• Remote Site Settings

A managed package ensures that your application and other resources are fully upgradeable. To create and work with managed packages,
you must use a Developer Edition organization and register a namespace prefix. A managed package includes your namespace prefix
in the component names and prevents naming conflicts in an installer’s organization. An organization can create a single managed
package that can be downloaded and installed by other organizations. After installation from a managed package, the application or
component names are locked, but the following attributes are editable.

• API Version

• Description

• Label

• Language

• Markup

Any Apex that is included as part of your definition bundle must have at least 75% cumulative test coverage. When you upload your
package to AppExchange, all tests are run to ensure that they run without errors. The tests are also run when the package is installed.

For more information on packaging and distributing, see the ISVforce Guide.

SEE ALSO:

Testing Your Apex Code

357

Using the AppCacheCreating Apps

http://www.html5rocks.com/en/tutorials/appcache/beginner/
https://resources.docs.salesforce.com/210/latest/en-us/sfdc/pdf/salesforce_packaging_guide.pdf

CHAPTER 7 Debugging

There are a few basic tools and techniques that can help you to debug applications.In this chapter ...
Use Chrome DevTools to debug your client-side code.• Enable Debug Mode

for Lightning
Components

• To open DevTools on Windows and Linux, press Control-Shift-I in your Google Chrome browser. On
Mac, press Option-Command-I.

• Salesforce Lightning
Inspector Chrome
Extension

• To quickly find which line of code is failing, enable the Pause on all exceptions option before
running your code.

To learn more about debugging JavaScript on Google Chrome, refer to the Google Chrome's DevTools
website.• Log Messages

358

https://developers.google.com/web/tools/chrome-devtools/

Enable Debug Mode for Lightning Components

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available for use in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Create Lightning
components using the UI in
Enterprise, Performance,
Unlimited, Developer
Editions or a sandbox.

Enable debug mode to make it easier to debug JavaScript code in your Lightning components.

There are two modes: production and debug. By default, the Lightning Component framework
runs in production mode. This mode is optimized for performance. It uses the Google Closure
Compiler to optimize and minimize the size of the JavaScript code. The method names and code
are heavily obfuscated.

When you enable debug mode, the JavaScript code isn’t minimized and is easier to read and debug.
Debug mode also adds more detailed output for some warnings and errors.

Important: Debug mode has a significant performance impact. The setting affects all users
in your org. For this reason, we recommend using it only in sandbox and Developer Edition
orgs. Don’t leave debug mode on permanently in your production org.

To enable debug mode for your org:

1. From Setup, enter Lightning Components in the Quick Find box, then select
Lightning Components.

2. Select the Enable Debug Mode checkbox.

3. Click Save.

Salesforce Lightning Inspector Chrome Extension

The Salesforce Lightning Inspector is a Google Chrome DevTools extension that enables you to navigate the component tree, inspect
component attributes, and profile component performance. The extension also helps you to understand the sequence of event firing
and handling.

The extension helps you to:

• Navigate the component tree in your app, inspect components and their associated DOM elements.

• Identify performance bottlenecks by looking at a graph of component creation time.

• Debug server interactions faster by monitoring and modifying responses.

• Test the fault tolerance of your app by simulating error conditions or dropped action responses.

• Track the sequence of event firing and handling for one or more actions.

This documentation assumes that you are familiar with Google Chrome DevTools.

IN THIS SECTION:

Install Salesforce Lightning Inspector

Install the Google Chrome DevTools extension to help you debug and profile component performance.

Salesforce Lightning Inspector

The Chrome extension adds a Lightning tab to the DevTools menu. Use it to inspect different aspects of your app.

Install Salesforce Lightning Inspector
Install the Google Chrome DevTools extension to help you debug and profile component performance.

1. In Google Chrome, navigate to the Salesforce Lightning Inspector extension page on the Chrome Web Store.

359

Enable Debug Mode for Lightning ComponentsDebugging

https://developer.chrome.com/devtools
https://chrome.google.com/webstore/detail/salesforce-lightning-insp/pcpmcffcomlcjgpcheokdfcjipanjdpc

2. Click the Add to Chrome button.

Salesforce Lightning Inspector
The Chrome extension adds a Lightning tab to the DevTools menu. Use it to inspect different aspects of your app.

1. Navigate to a page containing a Lightning component, such as Lightning Experience (one.app).

2. Open the Chrome DevTools (More tools > Developer tools in the Chrome control menu).

You should see a Lightning tab in the DevTools menu.

To get information quickly about an element on a Lightning page, right-click the element and select Inspect Lightning Component.

You can also click a Lightning component in the DevTools Elements tab or an element with a data-aura-rendered-by
attribute to see a description and attributes.

Use the following subtabs to inspect different aspects of your app.

360

Salesforce Lightning InspectorDebugging

IN THIS SECTION:

Component Tree Tab

This tab shows the component markup including the tree of nested components.

Performance Tab

The Performance tab shows a flame graph of the creation time for your components. Look at longer and deeper portions of the
graph for potential performance bottlenecks.

Transactions Tab

Some apps delivered by Salesforce include transaction markers that enable you to see fine-grained metrics for actions within those
transactions. You can’t create your own transactions.

Event Log Tab

This tab shows all the events fired. The event graph helps you to understand the sequence of events and handlers for one or more
actions.

Actions Tab

This tab shows the server-side actions executed. The list automatically refreshes when the page updates.

Storage Tab

This tab shows the client-side storage for Lightning applications. Actions marked as storable are stored in the actions store. Use
this tab to analyze storage in the Salesforce mobile app and Lightning Experience.

Component Tree Tab
This tab shows the component markup including the tree of nested components.

Collapse or Expand Markup
Expand or collapse the component hierarchy by clicking a triangle at the start of a line.

Refresh the Data
The component tree is expensive to serialize, and doesn't respond to component updates. You must manually update the tree when

necessary by scrolling to the top of the panel and clicking the Refresh icon.

361

Salesforce Lightning InspectorDebugging

See More Details for a Component
Click a node to see a sidebar with more details for that selected component. While you must manually refresh the component tree, the
component details in the sidebar are automatically refreshed.

The sidebar contains these sections:

Top Panel

• Descriptor—Description of a component in a format of prefix://namespace:name

• Global ID—The unique identifier for the component for the lifetime of the application

• aura:id—The local ID for the component, if it’s defined

• IsRendered—A component can be present in the component tree but not rendered in the app. The component is rendered
when it's included in v.body or in an expression, such as {!v.myCmp}.

• IsValid—When a component is destroyed, it becomes invalid. While you can still hold a reference to an invalid component, it
should not be used.

• HTML Elements—The count of HTML elements for the component (including children components)

• Rerendered—The number of times the component has been rerendered since you opened the Inspector. Changing properties
on a component makes it dirty, which triggers a rerender. Rerendering can be an expensive operation, and you generally want
to avoid it, if possible.

• Attribute & Facet Value Provider—The attribute value provider and facet value provider are usually the same component. If
so, they are consolidated into one entry.

The attribute value provider is the component that provides attribute values for expressions. In the following example, the name
attribute of <c:myComponent> gets its value from the avpName attribute of its attribute value provider.

<c:myComponent name="{!v.avpName}" />

The facet value provider is the value provider for facet attributes (attributes of type Aura.Component[]). The facet value
provider can be different than the attribute value provider for the component. We won't get into that here as it's complicated!
However, it's important to know that if you have expressions in facets, the expressions use the facet value provider instead of
the attribute value provider.

Attributes
Shows the attribute values for a component. Use v.attributeName when you reference an attribute in an expression or code.

[[Super]]
When a component extends another component, the sub component creates an instance of the super component during its creation.
Each of these super components has their own set of properties. While a super component has its own attributes section, the super
component only has a body attribute. All other attribute values are shared in the extension hierarchy.

362

Salesforce Lightning InspectorDebugging

Model
Some components you see might have a Model section. Models are a deprecated feature and they are included simply for debugging
purposes. Don't reference models or your code will break.

Get a Reference to a Component in the Console
Click a component reference anywhere in the Inspector to generate a $auraTemp variable that points at that component. You can
explore the component further by referring to $auraTemp in the Console tab.

These commands are useful to explore the component contents using the $auraTemp variable.

$auraTemp+""
Returns the component descriptor.

$auraTemp.get("v.attributeName")
Returns the value for the attributeName attribute.

$auraTemp.getElement()
Returns the corresponding DOM element.

inspect($auraTemp.getElement())
Opens the Elements tab and inspects the DOM element for the component.

Performance Tab
The Performance tab shows a flame graph of the creation time for your components. Look at longer and deeper portions of the graph
for potential performance bottlenecks.

363

Salesforce Lightning InspectorDebugging

Record Performance Data

Use the Record , Clear , and Show current collected buttons to gather performance data about specific user actions or
collections of user actions.

1. To start gathering performance data, press .

2. Take one or more actions in the app.

3. To stop gathering performance data, press .

The flame graph for your actions displays. To see the graph before you stop recording, press the button.

See More Performance Details for a Component
Hover over a component in the flame graph to see more detailed information about that component in the bottom-left corner. The
component complexity and timing information can help diagnose performance issues.

Is the time it took to complete...This measure...

The current function. It excludes the completion time for functions
it invoked.

Self time

All invocations of the function across the recorded timeline. It
excludes the completion time for functions it invoked.

Aggregated self time

The current function and all functions that it invoked.Total time

All invocations of the function across the recorded timeline,
including completion time for functions it invoked.

Aggregated total time

Narrow the Timeline
Drag the vertical handles on the timeline to select a time window to focus on. Zoom in on a smaller time window to inspect component
creation time for potential performance hot spots.

364

Salesforce Lightning InspectorDebugging

Transactions Tab
Some apps delivered by Salesforce include transaction markers that enable you to see fine-grained metrics for actions within those
transactions. You can’t create your own transactions.

DescriptionMeasure

The page duration since the page start time, in millisecondsDuration

The start time when the page was last loaded or refreshed, in millisecondsStart Time

The start and end times of a transaction, represented by a colored bar:Timeline

• Green — How long the action took on the server

• Yellow — XMLHttpRequest transaction

• Blue — Queued time until the XMLHttpRequest transaction was sent

• Purple — Custom transaction

365

Salesforce Lightning InspectorDebugging

Event Log Tab
This tab shows all the events fired. The event graph helps you to understand the sequence of events and handlers for one or more
actions.

Record Events

Use the Toggle recording and Clear buttons to capture specific user actions or collections of user actions.

1. To start gathering event data, press .

2. Take one or more actions in the app.

3. To stop gathering event data, press .

View Event Details
Expand an event to see more details. In the call stack, click an event handler (for example, c.handleDataChange) to see where
it’s defined in code. The handler in the yellow row is the most current.

Filter the List of Events
By default, both application and component events are shown. You can hide or show both types of events by toggling the App Events
and Cmp Events buttons.

Enter a search string in the Filter field to match any substring.

366

Salesforce Lightning InspectorDebugging

Invert the filter by starting the search string with !. For example, !aura returns all events that don’t contain the string aura.

Show Unhandled Events
Show events that are fired but are not handled. Unhandled events aren't listed by default but can be useful to see during development.

View Graph of Events
Expand an event to see more details. Click the Toggle Grid button to generate a network graph showing the events fired before and
after this event, and the components handling those events. Event-driven programming can be confusing when a cacophony of events
explode. The event graph helps you to join the dots and understand the sequence of events and handlers.

The graph is color coded.

• Black—The current event

• Maroon—A controller action

• Blue—Another event fired before or after the current event

SEE ALSO:

Communicating with Events

Actions Tab
This tab shows the server-side actions executed. The list automatically refreshes when the page updates.

367

Salesforce Lightning InspectorDebugging

Filter the List of Actions
To filter the list of actions, toggle the buttons related to the different action types or states.

• Storable—Storable actions whose responses can be cached.

• Cached—Storable actions whose responses are cached. Toggle this button off to show cache misses and non-storable actions. This
information can be valuable if you're investigating performance bottlenecks.

• Background—Not supported for Lightning components. Available in the open-source Aura framework.

• Success—Actions that were executed successfully.

• Incomplete—Actions with no server response. The server might be down or the client might be offline.

• Error—Actions that returned a server error.

• Aborted—Actions that were aborted.

Enter a search string in the Filter field to match any substring.

Invert the filter by starting the search string with !. For example, !aura returns all actions that don't contain the string aura and
filters out many framework-level actions.

IN THIS SECTION:

Manually Override Server Responses

The Overrides panel on the right side of the Actions tab lets you manually tweak the server responses and investigate the fault
tolerance of your app.

SEE ALSO:

Calling a Server-Side Action

Manually Override Server Responses
The Overrides panel on the right side of the Actions tab lets you manually tweak the server responses and investigate the fault tolerance
of your app.

368

Salesforce Lightning InspectorDebugging

Drag an action from the list on the left side to the PENDING OVERRIDES section.

The next time the same action is enqueued to be sent to the server, the framework won't send it. Instead, the framework mocks the
response based on the override option that you choose. Here are the override options.

• Override the Result

• Error Response Next Time

• Drop the Action

Note: The same action means an action with the same name. The action parameters don't have to be identical.

IN THIS SECTION:

Modify an Action Response

Modify an action response in the Salesforce Lightning Inspector by changing one of the JSON object values and see how the UI is
affected. The server returns a JSON object when you call a server-side action.

Set an Error Response

Your app should degrade gracefully when an error occurs so that users understand what happened or know how to proceed. Use
the Salesforce Lightning Inspector to simulate an error condition and see how the user experience is affected.

Drop an Action Response

Your app should degrade gracefully when a server-side action times out or the response is dropped. Use the Salesforce Lightning
Inspector to simulate a dropped action response and see how the user experience is affected.

Modify an Action Response

Modify an action response in the Salesforce Lightning Inspector by changing one of the JSON object values and see how the UI is affected.
The server returns a JSON object when you call a server-side action.

1. Drag the action whose response you want to modify to the PENDING OVERRIDES section.

369

Salesforce Lightning InspectorDebugging

2. Select Override the Result in the drop-down list.

3. Select a response key to modify in the Key field.

4. Enter a modified value for the key in the New Value field.

5. Click Save.

6. To trigger execution of the action, refresh the page.
The modified action response moves from the PENDING OVERRIDES section to the PROCESSED OVERRIDES section.

7. Note the UI change, if any, related to your change.

Set an Error Response

Your app should degrade gracefully when an error occurs so that users understand what happened or know how to proceed. Use the
Salesforce Lightning Inspector to simulate an error condition and see how the user experience is affected.

1. Drag the action whose response you want to modify to the PENDING OVERRIDES section.

2. Select Error Response Next Time in the drop-down list.

3. Add an Error Message.

4. Add some text in the Error Stack field.

370

Salesforce Lightning InspectorDebugging

5. Click Save.

6. To trigger execution of the action, refresh the page.

• The modified action response moves from the PENDING OVERRIDES section to the PROCESSED OVERRIDES section.

• The action response displays in the COMPLETED section in the left panel with a State equals ERROR.

7. Note the UI change, if any, related to your change. The UI should handle errors by alerting the user or allowing them to continue
using the app.

To degrade gracefully, make sure that your action response callback handles an error response (response.getState() ===
"ERROR").

SEE ALSO:

Calling a Server-Side Action

Drop an Action Response

Your app should degrade gracefully when a server-side action times out or the response is dropped. Use the Salesforce Lightning
Inspector to simulate a dropped action response and see how the user experience is affected.

1. Drag the action whose response you want to modify to the PENDING OVERRIDES section.

371

Salesforce Lightning InspectorDebugging

2. Select Drop the Action in the drop-down list.

3. To trigger execution of the action, refresh the page.

• The modified action response moves from the PENDING OVERRIDES section to the PROCESSED OVERRIDES section.

• The action response displays in the COMPLETED section in the left panel with a State equals INCOMPLETE.

4. Note the UI change, if any, related to your change. The UI should handle the dropped action by alerting the user or allowing them
to continue using the app.

To degrade gracefully, make sure that your action response callback handles an incomplete response (response.getState()
=== "INCOMPLETE").

SEE ALSO:

Calling a Server-Side Action

Storage Tab
This tab shows the client-side storage for Lightning applications. Actions marked as storable are stored in the actions store. Use this
tab to analyze storage in the Salesforce mobile app and Lightning Experience.

372

Salesforce Lightning InspectorDebugging

Log Messages

To help debug your client-side code, you can write output to the JavaScript console of a web browser using console.log() if your
browser supports it..

For instructions on using the JavaScript console, refer to the instructions for your web browser.

373

Log MessagesDebugging

CHAPTER 8 Fixing Performance Warnings

A few common performance anti-patterns in code prompt the framework to log warning messages to
the browser console. Fix the warning messages to speed up your components!

In this chapter ...

• <aura:if>—Clean
Unrendered Body The warnings display in the browser console only if you enabled debug mode.

SEE ALSO:

Enable Debug Mode for Lightning Components

• <aura:iteration>—Multiple
Items Set

374

<aura:if>—Clean Unrendered Body

This warning occurs when you change the isTrue attribute of an <aura:if> tag from true to false in the same rendering
cycle. The unrendered body of the <aura:if> must be destroyed, which is avoidable work for the framework that slows down
rendering time.

Example
This component shows the anti-pattern.

<!--c:ifCleanUnrendered-->
<aura:component>

<aura:attribute name="isVisible" type="boolean" default="true"/>
<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<aura:if isTrue="{!v.isVisible}">
<p>I am visible</p>

</aura:if>
</aura:component>

Here’s the component’s client-side controller.

/* c:ifCleanUnrenderedController.js */
({

init: function(cmp) {
/* Some logic */
cmp.set("v.isVisible", false); // Performance warning trigger

}
})

When the component is created, the isTrue attribute of the <aura:if> tag is evaluated. The value of the isVisible attribute
is true by default so the framework creates the body of the <aura:if> tag. After the component is created but before rendering,
the init event is triggered.

The init() function in the client-side controller toggles the isVisible value from true to false. The isTrue attribute
of the <aura:if> tag is now false so the framework must destroy the body of the <aura:if> tag. This warning displays in
the browser console only if you enabled debug mode.

WARNING: [Performance degradation] markup://aura:if ["5:0"] in c:ifCleanUnrendered ["3:0"]
needed to clear unrendered body.

Click the expand button beside the warning to see a stack trace for the warning.

Click the link for the ifCleanUnrendered entry in the stack trace to see the offending line of code in the Sources pane of the
browser console.

375

<aura:if>—Clean Unrendered BodyFixing Performance Warnings

How to Fix the Warning
Reverse the logic for the isTrue expression. Instead of setting the isTrue attribute to true by default, set it to false. Set the
isTrue expression to true in the init() method, if needed.

Here’s the fixed component:

<!--c:ifCleanUnrenderedFixed-->
<aura:component>

<!-- FIX: Change default to false.
Update isTrue expression in controller instead. -->

<aura:attribute name="isVisible" type="boolean" default="false"/>
<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<aura:if isTrue="{!v.isVisible}">
<p>I am visible</p>

</aura:if>
</aura:component>

Here’s the fixed controller:

/* c:ifCleanUnrenderedFixedController.js */
({

init: function(cmp) {
// Some logic
// FIX: set isVisible to true if logic criteria met
cmp.set("v.isVisible", true);

}
})

SEE ALSO:

aura:if

Enable Debug Mode for Lightning Components

<aura:iteration>—Multiple Items Set

This warning occurs when you set the items attribute of an <aura:iteration> tag multiple times in the same rendering cycle.

There’s no easy and performant way to check if two collections are the same in JavaScript. Even if the old value of items is the same
as the new value, the framework deletes and replaces the previously created body of the <aura:iteration> tag.

Example
This component shows the anti-pattern.

<!--c:iterationMultipleItemsSet-->
<aura:component>

<aura:attribute name="groceries" type="List"
default="['Eggs', 'Bacon', 'Bread']"/>

<aura:handler name="init" value="{!this}" action="{!c.init}"/>

376

<aura:iteration>—Multiple Items SetFixing Performance Warnings

<aura:iteration items="{!v.groceries}" var="item">
<p>{!item}</p>

</aura:iteration>
</aura:component>

Here’s the component’s client-side controller.

/* c:iterationMultipleItemsSetController.js */
({

init: function(cmp) {
var list = cmp.get('v.groceries');
// Some logic
cmp.set('v.groceries', list); // Performance warning trigger

}
})

When the component is created, the items attribute of the <aura:iteration> tag is set to the default value of the groceries
attribute. After the component is created but before rendering, the init event is triggered.

The init() function in the client-side controller sets the groceries attribute, which resets the items attribute of the
<aura:iteration> tag. This warning displays in the browser console only if you enabled debug mode.

WARNING: [Performance degradation] markup://aura:iteration [id:5:0] in
c:iterationMultipleItemsSet ["3:0"]
had multiple items set in the same Aura cycle.

Click the expand button beside the warning to see a stack trace for the warning.

Click the link for the iterationMultipleItemsSet entry in the stack trace to see the offending line of code in the Sources
pane of the browser console.

How to Fix the Warning
Make sure that you don’t modify the items attribute of an <aura:iteration> tag multiple times. The easiest solution is to
remove the default value for the groceries attribute in the markup. Set the value for the groceries attribute in the controller
instead.

The alternate solution is to create a second attribute whose only purpose is to store the default value. When you’ve completed your
logic in the controller, set the groceries attribute.

Here’s the fixed component:

<!--c:iterationMultipleItemsSetFixed-->
<aura:component>

<!-- FIX: Remove the default from the attribute -->
<aura:attribute name="groceries" type="List" />
<!-- FIX (ALTERNATE): Create a separate attribute containing the default -->
<aura:attribute name="groceriesDefault" type="List"

377

<aura:iteration>—Multiple Items SetFixing Performance Warnings

default="['Eggs', 'Bacon', 'Bread']"/>

<aura:handler name="init" value="{!this}" action="{!c.init}"/>

<aura:iteration items="{!v.groceries}" var="item">
<p>{!item}</p>

</aura:iteration>
</aura:component>

Here’s the fixed controller:

/* c:iterationMultipleItemsSetFixedController.js */
({

init: function(cmp) {
// FIX (ALTERNATE) if need to set default in markup
// use a different attribute
// var list = cmp.get('v.groceriesDefault');
// FIX: Set the value in code
var list = ['Eggs', 'Bacon', 'Bread'];
// Some logic
cmp.set('v.groceries', list);

}
})

SEE ALSO:

aura:iteration

Enable Debug Mode for Lightning Components

378

<aura:iteration>—Multiple Items SetFixing Performance Warnings

CHAPTER 9 Reference

This section contains reference documentation including details of the various tags available in the
framework.

In this chapter ...

• Reference Doc App
Note that the the Lightning Component framework provides a subset of what’s available in the
open-source Aura framework, in addition to components and events that are specific to Salesforce.• Supported

aura:attribute Types

• aura:application

• aura:component

• aura:dependency

• aura:event

• aura:interface

• aura:method

• aura:set

• Component
Reference

• Messaging
Component
Reference

• Interface Reference

• Event Reference

• System Event
Reference

• Supported HTML
Tags

379

Reference Doc App

Explore the look and feel of Lightning components in the Component Library (Beta) at
https://<myDomain>.lightning.force.com/componentReference/suite.app where <myDomain> is the
name of your custom Salesforce domain.

You can also continue to use the reference doc app, which includes reference information, as well as the JavaScript API. Access the app
at:

https://<myDomain>.lightning.force.com/auradocs/reference.app, where <myDomain> is the name of
your custom Salesforce domain.

Supported aura:attribute Types

aura:attribute describes an attribute available on an app, interface, component, or event.

DescriptionTypeAttribute Name

Indicates whether the attribute can be used outside of its own namespace.
Possible values are public (default), and global, and private.

Stringaccess

Required. The name of the attribute. For example, if you set
<aura:attribute name="isTrue" type="Boolean" />

Stringname

on a component called aura:newCmp, you can set this attribute when you
instantiate the component; for example,<aura:newCmp
isTrue="false" />.

Required. The type of the attribute. For a list of basic types supported, see Basic
Types.

Stringtype

The default value for the attribute, which can be overwritten as needed. When
setting a default value, expressions using the $Label, $Locale, and

Stringdefault

$Browser global value providers are supported. Alternatively, to set a
dynamic default, use an init event. See Invoking Actions on Component
Initialization on page 247.

Determines if the attribute is required. The default is false.Booleanrequired

A summary of the attribute and its usage.Stringdescription

All <aura:attribute> tags have name and type values. For example:

<aura:attribute name="whom" type="String" />

Note: Although type values are case insensitive, case sensitivity should be respected as your markup interacts with JavaScript,
CSS, and Apex.

SEE ALSO:

Component Attributes

380

Reference Doc AppReference

Basic Types
Here are the supported basic type values. Some of these types correspond to the wrapper objects for primitives in Java. Since the
framework is written in Java, defaults, such as maximum size for a number, for these basic types are defined by the Java objects that
they map to.

DescriptionExampletype

Valid values are true or false. To set a default value
of true, add default="true".

<aura:attribute
name="showDetail"
type="Boolean" />

Boolean

A date corresponding to a calendar day in the format
yyyy-mm-dd. The hh:mm:ss portion of the date is not stored.
To include time fields, use DateTime instead.

<aura:attribute
name="startDate" type="Date"
/>

Date

A date corresponding to a timestamp. It includes date and
time details with millisecond precision.

<aura:attribute
name="lastModifiedDate"
type="DateTime" />

DateTime

Decimal values can contain fractional portions (digits to
the right of the decimal). Maps to java.math.BigDecimal.

Decimal is better than Double for maintaining
precision for floating-point calculations. It’s preferable for
currency fields.

<aura:attribute
name="totalPrice"
type="Decimal" />

Decimal

Double values can contain fractional portions. Maps to
java.lang.Double. Use Decimal for currency fields instead.

<aura:attribute
name="widthInchesFractional"
type="Double" />

Double

Integer values can contain numbers with no fractional
portion. Maps to java.lang.Integer, which defines its limits,
such as maximum size.

<aura:attribute
name="numRecords"
type="Integer" />

Integer

Long values can contain numbers with no fractional
portion. Maps to java.lang.Long, which defines its limits,
such as maximum size.

Use this data type when you need a range of values wider
than those provided by Integer.

<aura:attribute
name="numSwissBankAccount"
type="Long" />

Long

A sequence of characters.<aura:attribute name="message"
type="String" />

String

You can use arrays for each of these basic types. For example:

<aura:attribute name="favoriteColors" type="String[]" default="['red','green','blue']" />

381

Basic TypesReference

http://docs.oracle.com/javase/6/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Double.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/6/docs/api/java/lang/Long.html

Retrieving Data from an Apex Controller
To retrieve the string array from an Apex controller, bind the component to the controller. This component retrieves the string array
when a button is clicked.

<aura:component controller="namespace.AttributeTypes">
<aura:attribute name="favoriteColors" type="String[]" default="cyan, yellow, magenta"/>

<aura:iteration items="{!v.favoriteColors}" var="s">
{!s}

</aura:iteration>
<lightning:button onclick="{!c.getString}" label="Update"/>

</aura:component>

Set the Apex controller to return a List<String> object.

public class AttributeTypes {
private final String[] arrayItems;

@AuraEnabled
public static List<String> getStringArray() {

String[] arrayItems = new String[]{ 'red', 'green', 'blue' };
return arrayItems;

}

}

This client-side controller retrieves the string array from the Apex controller and displays it using the {!v.favoriteColors}
expression.

({
getString : function(component, event) {
var action = component.get("c.getStringArray");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

var stringItems = response.getReturnValue();
component.set("v.favoriteColors", stringItems);

}
});
$A.enqueueAction(action);

}
})

Function Type
An attribute can have a type corresponding to a JavaScript function.

<aura:attribute name="callback" type="Function" />

For an example, see Return Result for Asynchronous Code.

Note: Don’t send attributes with type="Function" to the server. These attributes are intended to only be used on the
client side.

382

Function TypeReference

Object Types
An attribute can have a type corresponding to an Object. For example:

<aura:attribute name="data" type="Object" />

Warning: We recommend using type="Map" instead of type="Object" to avoid some deserialization issues on the
server. For example, when an attribute of type="Object" is serialized to the server, everything is converted to a string. Deep
expressions, such as v.data.property can throw an exception when they are evaluated as a string on the server. Using
type="Map" avoids these exceptions for deep expressions, and other deserialization issues.

Checking for Types
To determine a variable type, use typeof or a standard JavaScript method instead. The instanceof operator is unreliable due to
the potential presence of multiple windows or frames.

SEE ALSO:

Working with Salesforce Records

Standard and Custom Object Types
An attribute can have a type corresponding to a standard or custom object. For example, this is an attribute for a standard Account
object:

<aura:attribute name="acct" type="Account" />

This is an attribute for an Expense__c custom object:

<aura:attribute name="expense" type="Expense__c" />

SEE ALSO:

Working with Salesforce Records

Collection Types
Here are the supported collection type values.

DescriptionExampletype

An array of items of a defined type.<aura:attribute
name="colorPalette"

type[] (Array)

type="String[]" default="['red',
'green', 'blue']" />

An ordered collection of items.<aura:attribute
name="colorPalette" type="List"

List

default="['red', 'green',
'blue']" />

383

Object TypesReference

DescriptionExampletype

A collection that maps keys to values. A map can’t
contain duplicate keys. Each key can map to at

<aura:attribute
name="sectionLabels" type="Map"

Map

most one value. Defaults to an empty object, {}.default="{ a: 'label1', b:
'label2' }" /> Retrieve values by using

cmp.get("v.sectionLabels")['a'].

A collection that contains no duplicate elements.
The order for set items is not guaranteed. For

<aura:attribute name="collection"
type="Set" default="['red',
'green', 'blue']" />

Set

example, "red,green,blue" might be
returned as "blue,green,red".

Checking for Types
To determine a variable type, use typeof or a standard JavaScript method, such as Array.isArray(), instead. The instanceof
operator is unreliable due to the potential presence of multiple windows or frames.

Setting List Items
There are several ways to set items in a list. To use a client-side controller, create an attribute of type List and set the items using
component.set().

This example retrieves a list of numbers from a client-side controller when a button is clicked.

<aura:attribute name="numbers" type="List"/>
<lightning:button onclick="{!c.getNumbers}" label="Display Numbers" />
<aura:iteration var="num" items="{!v.numbers}">
{!num.value}

</aura:iteration>

/** Client-side Controller **/
({
getNumbers: function(component, event, helper) {
var numbers = [];
for (var i = 0; i < 20; i++) {
numbers.push({
value: i

});
}
component.set("v.numbers", numbers);
}

})

To retrieve list data from a controller, use aura:iteration.

Setting Map Items
To add a key and value pair to a map, use the syntax myMap['myNewKey'] = myNewValue.

var myMap = cmp.get("v.sectionLabels");
myMap['c'] = 'label3';

384

Collection TypesReference

The following example retrieves data from a map.

for (var key in myMap){
//do something

}

Custom Apex Class Types
An attribute can have a type corresponding to an Apex class. For example, this is an attribute for a Color Apex class:

<aura:attribute name="color" type="docSampleNamespace.Color" />

When an instance of an Apex class is returned from a server-side action, the instance is serialized to JSON by the framework. Only the
values of public instance properties and methods annotated with @AuraEnabled are serialized and returned.

Using Arrays
If an attribute can contain more than one element, use an array.

This aura:attribute tag shows the syntax for an array of Apex objects:

<aura:attribute name="colorPalette" type="docSampleNamespace.Color[]" />

SEE ALSO:

Returning Data from an Apex Server-Side Controller

AuraEnabled Annotation

Working with Salesforce Records

Framework-Specific Types
Here are the supported type values that are specific to the framework.

DescriptionExampletype

A single component. We recommend using
Aura.Component[] instead.

N/AAura.Component

Use this type to set blocks of markup. An
attribute of type Aura.Component[]
is called a facet.

<aura:attribute
name="detail"
type="Aura.Component[]"/>

To set a default value for
type="Aura.Component[]", put

Aura.Component[]

the default markup in the body of
aura:attribute. For example:

<aura:component>
<aura:attribute

name="detail"
type="Aura.Component[]">

<p>default
paragraph1</p>

385

Custom Apex Class TypesReference

DescriptionExampletype

</aura:attribute>
Default value is:

{!v.detail}
</aura:component>

Use this type to pass an action to a
component. See Using the Aura.Action
Attribute Type.

<aura:attribute
name="onclick"
type="Aura.Action"/>

Aura.Action

SEE ALSO:

Component Body

Component Facets

Using the Aura.Action Attribute Type
An Aura.Action is a reference to an action in the framework. If a child component has an Aura.Action attribute, a parent
component can pass in an action handler when it instantiates the child component in its markup. This pattern is a shortcut to pass a
controller action from a parent component to a child component that it contains, and is used for on* handlers, such as onclick.

Warning: Although Aura.Action works for passing an action handler to a child component, we recommend registering an
event in the child component and firing the event in the child’s controller instead. Then, handle the event in the parent component.
The event approach requires a few extra steps in creating or choosing an event and firing it but events are the standard way to
communicate between components.

Aura.Action shouldn’t be used for other use cases. Here are some known limitations of Aura.Action.

• Don’t use cmp.set() in JavaScript code to reset an attribute of type="Aura.Action" after it’s previously been set.
Doing so generates an error.

Unable to set value for key 'c.passedAction'. Value provider does not implement
'set(key, value)'. : false

• Don’t use $A.enqueueAction() in the child component to enqueue the action passed to the Aura.Action attribute.

Example
This example demonstrates how to pass an action handler from a parent component to a child component.

Here’s the child component with the Aura.Action attribute. The onclick handler for the button uses the value of the onclick
attribute, which has type of Aura.Action.

<!-- child.cmp -->
<aura:component>

<aura:attribute name="onclick" type="Aura.Action"/>

<p>Child component with Aura.Action attribute</p>
<lightning:button label="Execute the passed action" onclick="{!v.onclick}"/>

</aura:component>

386

Framework-Specific TypesReference

Here’s the parent component that contains the child component in its markup.

<!-- parent.cmp -->
<aura:component>

<p>Parent component passes handler action to c:child</p>
<c:child onclick="{!c.parentAction}"/>

</aura:component>

When you click the button in c:child, the parentAction action in the controller of c:parent is executed.

Instead of an Aura.Action attribute, you could use <aura:registerEvent> to register an onclick event in the child
component. You’d have to define the event and create an action in the child’s controller to fire the event. This event-based approach
requires a few extra steps but it’s more in line with standard practices for communicating between components.

SEE ALSO:

Framework-Specific Types

Handling Events with Client-Side Controllers

aura:application

An app is a special top-level component whose markup is in a .app resource.

The markup looks similar to HTML and can contain components as well as a set of supported HTML tags. The .app resource is a
standalone entry point for the app and enables you to define the overall application layout, style sheets, and global JavaScript includes.
It starts with the top-level <aura:application> tag, which contains optional system attributes. These system attributes tell the
framework how to configure the app.

DescriptionTypeSystem Attribute

Indicates whether the app can be extended by another app outside of a namespace.
Possible values are public (default), and global.

Stringaccess

The server-side controller class for the app. The format is
namespace.myController.

Stringcontroller

A brief description of the app.Stringdescription

The app to be extended, if applicable. For example,
extends="namespace:yourApp".

Componentextends

Indicates whether the app is extensible by another app. Defaults to false.Booleanextensible

A comma-separated list of interfaces that the app implements.Stringimplements

The name of the template used to bootstrap the loading of the framework and
the app. The default value is aura:template. You can customize the template
by creating your own component that extends the default template. For example:

<aura:component extends="aura:template" ... >

Componenttemplate

A comma-separated list of tokens bundles for the application. For example,
tokens="ns:myAppTokens". Tokens make it easy to ensure that your

Stringtokens

design is consistent, and even easier to update it as your design evolves. Define
the token values once and reuse them throughout your application.

387

aura:applicationReference

DescriptionTypeSystem Attribute

Deprecated. Browser vendors have deprecated AppCache, so we followed their
lead. Remove the useAppcache attribute in the <aura:application>

BooleanuseAppcache

tag of your standalone apps (.app resources) to avoid cross-browser support
issues due to deprecation by browser vendors.

If you don’t currently set useAppcache in an <aura:application> tag,
you don’t have to do anything because the default value of useAppcache is
false.

aura:application also includes a body attribute defined in a <aura:attribute> tag. Attributes usually control the output
or behavior of a component, but not the configuration information in system attributes.

DescriptionTypeAttribute

The body of the app. In markup, this is
everything in the body of the tag.

Component[]body

SEE ALSO:

Creating Apps

Using the AppCache

Application Access Control

aura:component

The root of the component hierarchy. Provides a default rendering implementation.

Components are the functional units of Aura, which encapsulate modular and reusable sections of UI. They can contain other components
or HTML markup. The public parts of a component are its attributes and events. Aura provides out-of-the-box components in the aura
and ui namespaces.

Every component is part of a namespace. For example, the button component is saved as button.cmp in the ui namespace
can be referenced in another component with the syntax <ui:button label="Submit"/>, where label="Submit" is
an attribute setting.

To create a component, follow this syntax.

<aura:component>
<!-- Optional coponent attributes here -->
<!-- Optional HTML markup -->
<div class="container">

Hello world!
<!-- Other components -->

</div>
</aura:component>

A component has the following optional attributes.

388

aura:componentReference

DescriptionTypeAttribute

Indicates whether the component can be used outside of its own
namespace. Possible values are public (default), and global.

Stringaccess

The server-side controller class for the component. The format is
namespace.myController.

Stringcontroller

A description of the component.Stringdescription

The component to be extended.Componentextends

Set to true if the component can be extended. The default is
false.

Booleanextensible

A comma-separated list of interfaces that the component implements.Stringimplements

Set to true if the component is a template. The default is false.
A template must have isTemplate="true" set in its
<aura:component> tag.

<aura:component isTemplate="true"
extends="aura:template">

BooleanisTemplate

The template for this component. A template bootstraps loading of
the framework and app. The default template is aura:template.

Componenttemplate

You can customize the template by creating your own component
that extends the default template. For example:

<aura:component extends="aura:template" ...
>

aura:component includes a body attribute defined in a <aura:attribute> tag. Attributes usually control the output or
behavior of a component, but not the configuration information in system attributes.

DescriptionTypeAttribute

The body of the component. In markup, this
is everything in the body of the tag.

Component[]body

aura:dependency

The <aura:dependency> tag enables you to declare dependencies, which improves their discoverability by the framework.

The framework automatically tracks dependencies between definitions, such as components, defined in markup. This enables the
framework to send the definitions to the browser. However, if a component’s JavaScript code dynamically instantiates another component
or fires an event that isn’t directly referenced in the component’s markup, use <aura:dependency> in the component’s markup
to explicitly tell the framework about the dependency. Adding the <aura:dependency> tag ensures that a definition, such as a
component, and its dependencies are sent to the client, when needed.

389

aura:dependencyReference

For example, adding this tag to a component marks the sampleNamespace:sampleComponent component as a dependency.

<aura:dependency resource="markup://sampleNamespace:sampleComponent" />

Add this tag to component markup to mark the event as a dependency.

<aura:dependency resource="markup://force:navigateToComponent" type="EVENT"/>

Use the <aura:dependency> tag if you fire an event in JavaScript code and you’re not registering the event in component markup
using <aura:registerEvent>. Using an <aura:registerEvent> tag is the preferred approach.

The <aura:dependency> tag includes these system attributes.

DescriptionSystem Attribute

The resource that the component depends on, such as a component or event. For example,
resource="markup://sampleNamespace:sampleComponent" refers to the
sampleComponent in the sampleNamespace namespace.

resource

Note: Using an asterisk (*) for wildcard matching is deprecated. Instead, add an
<aura:dependency> tag for each resource that’s not directly referenced in the
component’s markup. Wildcard matching can cause save validation errors when no
resources match. Wildcard matching can also slow page load time because it sends more
definitions than needed to the client.

The type of resource that the component depends on. The default value is COMPONENT.type

Note: Using an asterisk (*) for wildcard matching is deprecated. Instead, add an
<aura:dependency> tag for each resource that’s not directly referenced in the
component’s markup. Be as selective as possible in the types of definitions that you send
to the client.

The most commonly used values are:

• COMPONENT

• EVENT

• INTERFACE

• APPLICATION

Use a comma-separated list for multiple types; for example: COMPONENT,APPLICATION.

SEE ALSO:

Dynamically Creating Components

Fire Component Events

Fire Application Events

aura:event

An event is represented by the aura:event tag, which has the following attributes.

390

aura:eventReference

DescriptionTypeAttribute

Indicates whether the event can be extended or used outside of its
own namespace. Possible values are public (default), and
global.

Stringaccess

A description of the event.Stringdescription

The event to be extended. For example,
extends="namespace:myEvent".

Componentextends

Required. Possible values are COMPONENT or APPLICATION.Stringtype

SEE ALSO:

Communicating with Events

Event Access Control

aura:interface

The aura:interface tag has the following optional attributes.

DescriptionTypeAttribute

Indicates whether the interface can be extended or used outside of
its own namespace. Possible values are public (default), and
global.

Stringaccess

A description of the interface.Stringdescription

The comma-seperated list of interfaces to be extended. For example,
extends="namespace:intfB".

Componentextends

SEE ALSO:

Interfaces

Interface Access Control

aura:method

Use <aura:method> to define a method as part of a component's API. This enables you to directly call a method in a component’s
client-side controller instead of firing and handling a component event. Using <aura:method> simplifies the code needed for a
parent component to call a method on a child component that it contains.

The <aura:method> tag has these system attributes.

391

aura:interfaceReference

DescriptionTypeAttribute

The method name. Use the method name to call the method in
JavaScript code. For example:

cmp.sampleMethod(param1);

Stringname

The client-side controller action to execute. For example:

action="{!c.sampleAction}"

Expressionaction

sampleAction is an action in the client-side controller. If you
don’t specify an action value, the controller action defaults to
the value of the method name.

The access control for the method. Valid values are:Stringaccess

• public—Any component in the same namespace can call the
method. This is the default access level.

• global—Any component in any namespace can call the
method.

The method description.Stringdescription

Declaring Parameters
An <aura:method> can optionally include parameters. Use an <aura:attribute> tag within an <aura:method> to
declare a parameter for the method. For example:

<aura:method name="sampleMethod" action="{!c.doAction}"
description="Sample method with parameters">
<aura:attribute name="param1" type="String" default="parameter 1"/>
<aura:attribute name="param2" type="Object" />

</aura:method>

Note: You don’t need an access system attribute in the <aura:attribute> tag for a parameter.

Creating a Handler Action
This handler action shows how to access the arguments passed to the method.

({
doAction : function(cmp, event) {

var params = event.getParam('arguments');
if (params) {

var param1 = params.param1;
// add your code here

}
}

})

392

aura:methodReference

Retrieve the arguments using event.getParam('arguments'). It returns an object if there are arguments or an empty array
if there are no arguments.

Returning a Value
aura:method executes synchronously.

• A synchronous method finishes executing before it returns. Use the return statement to return a value from synchronous JavaScript
code. See Return Result for Synchronous Code.

• An asynchronous method may continue to execute after it returns. Use a callback to return a value from asynchronous JavaScript
code. See Return Result for Asynchronous Code.

SEE ALSO:

Calling Component Methods

Component Events

aura:set

Use <aura:set> in markup to set the value of an attribute inherited from a super component, event, or interface.

To learn more, see:

• Setting Attributes Inherited from a Super Component

• Setting Attributes on a Component Reference

• Setting Attributes Inherited from an Interface

Setting Attributes Inherited from a Super Component
Use <aura:set> in the markup of a sub component to set the value of an inherited attribute.

Let's look at an example. Here is the c:setTagSuper component.

<!--c:setTagSuper-->
<aura:component extensible="true">

<aura:attribute name="address1" type="String" />
setTagSuper address1: {!v.address1}

</aura:component>

c:setTagSuper outputs:

setTagSuper address1:

The address1 attribute doesn't output any value yet as it hasn't been set.

Here is the c:setTagSub component that extends c:setTagSuper.

<!--c:setTagSub-->
<aura:component extends="c:setTagSuper">

<aura:set attribute="address1" value="808 State St" />
</aura:component>

393

aura:setReference

c:setTagSub outputs:

setTagSuper address1: 808 State St

sampleSetTagExc:setTagSub sets a value for the address1 attribute inherited from the super component,
c:setTagSuper.

Warning: This usage of <aura:set> works for components and abstract components, but it doesn’t work for interfaces. For
more information, see Setting Attributes Inherited from an Interface on page 395.

If you’re using a component by making a reference to it in your component, you can set the attribute value directly in the markup. For
example, c:setTagSuperRef makes a reference to c:setTagSuper and sets the address1 attribute directly without using
aura:set.

<!--c:setTagSuperRef-->
<aura:component>

<c:setTagSuper address1="1 Sesame St" />
</aura:component>

c:setTagSuperRef outputs:

setTagSuper address1: 1 Sesame St

SEE ALSO:

Component Body

Inherited Component Attributes

Setting Attributes on a Component Reference

Setting Attributes on a Component Reference
When you include another component, such as <ui:button>, in a component, we call that a component reference to <ui:button>.
You can use <aura:set> to set an attribute on the component reference. For example, if your component includes a reference to
<ui:button>:

<ui:button label="Save">
<aura:set attribute="buttonTitle" value="Click to save the record"/>

</ui:button>

This is equivalent to:

<ui:button label="Save" buttonTitle="Click to save the record" />

The latter syntax without aura:set makes more sense in this simple example. You can also use this simpler syntax in component
references to set values for attributes that are inherited from parent components.

aura:set is more useful when you want to set markup as the attribute value. For example, this sample specifies the markup for the
else attribute in the aura:if tag.

<aura:component>
<aura:attribute name="display" type="Boolean" default="true"/>
<aura:if isTrue="{!v.display}">

Show this if condition is true
<aura:set attribute="else">

<ui:button label="Save" press="{!c.saveRecord}" />
</aura:set>

394

Setting Attributes on a Component ReferenceReference

</aura:if>
</aura:component>

SEE ALSO:

Setting Attributes Inherited from a Super Component

Setting Attributes Inherited from an Interface
To set the value of an attribute inherited from an interface, redefine the attribute in the component and set its default value. Let’s look
at an example with the c:myIntf interface.

<!--c:myIntf-->
<aura:interface>

<aura:attribute name="myBoolean" type="Boolean" default="true" />
</aura:interface>

This component implements the interface and sets myBoolean to false.

<!--c:myIntfImpl-->
<aura:component implements="c:myIntf">

<aura:attribute name="myBoolean" type="Boolean" default="false" />

<p>myBoolean: {!v.myBoolean}</p>
</aura:component>

Component Reference

Use out-of-the-box components for Lightning Experience, Salesforce mobile app, or for your Lightning apps. These components belong
to different namespaces, including:

aura
Provides components that are part of the framework’s building blocks.

force
Provides components for field- and record-specific implementations.

forceChatter
Provides components for the Chatter feed.

forceCommunity
Provides components for Communities.

lightning
Provides components with Lightning Design System styling. For components in this namespace that are used in standalone Lightning
apps, extend force:slds to implement Lightning Design System styling. In instances where there are matching ui and
lightning namespace components, we recommend that you use the lightning namespace component. The lightning
namespace components are optimized for common use cases. Event handling for lightning namespace components follows
standard HTML practices and are simpler than that for the ui namespace components. For more information, see Event Handling
in Base Lightning Components.

ui
Provides an older implementation of user interface components that don’t match the look and feel of Lightning Experience and the
Salesforce mobile app. Components in this namespace support multiple styling mechanism, and are usually more complex.

395

Setting Attributes Inherited from an InterfaceReference

aura:expression
Renders the value to which an expression evaluates. Creates an instance of this component which renders the referenced "property
reference value" set to the value attribute when expressions are found in free text or markup.

An expression is any set of literal values, variables, sub-expressions, or operators that can be resolved to a single value. It is used for
dynamic output or passing a value into components by assigning them to attributes.

The syntax for an expression is {!expression}. expression is evaluated and dynamically replaced when the component is
rendered or when the value is used by the component. The resulting value can be a primitive (integer, string, and so on), a boolean, a
JavaScript or Aura object, an Aura component or collection, a controller method such as an action method, and other useful results.

An expression uses a value provider to access data and can also use operators and functions for more complex expressions. Value
providers include m (data from model), v(attribute data from component), and c (controller action). This example show an expression
{!v.num} whose value is resolved by the attribute num.

<aura:attribute name="num" type="integer" default="10"/>
<ui:inputNumber label="Enter age" aura:id="num" value="{!v.num}"/>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The expression to evaluate and render.Stringvalue

aura:html
A meta component that represents all html elements. Any html found in your markup causes the creation of one of these.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A map of attributes to set on the html element.MapHTMLAttributes

The name of the html element that should be rendered.Stringtag

aura:if
Conditionally instantiates and renders either the body or the components in the else attribute.

aura:if evaluates the isTrue expression on the server and instantiates components in either its body or else attribute. Only
one branch is created and rendered. Switching condition unrenders and destroys the current branch and generates the other

<aura:component>
<aura:if isTrue="{!v.truthy}">

396

aura:expressionReference

True
<aura:set attribute="else">
False

</aura:set>
</aura:if>

</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

YesThe components to render when isTrue evaluates to true.ComponentDefRef[]body

The alternative to render when isTrue evaluates to false, and the body is
not rendered. Should always be set using the aura:set tag.

ComponentDefRef[]else

YesAn expression that must be fulfilled in order to display the body.BooleanisTrue

aura:iteration
Renders a view of a collection of items. Supports iterations containing components that can be created exclusively on the client-side.

aura:iteration iterates over a collection of items and renders the body of the tag for each item. Data changes in the collection
are rerendered automatically on the page. It also supports iterations containing components that are created exclusively on the client-side
or components that have server-side dependencies.

This example shows a basic way to use aura:iteration exclusively on the client-side.

<aura:component>

<aura:iteration items="1,2,3,4,5" var="item">
<meter value="{!item / 5}"/>

</aura:iteration>

</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

YesTemplate to use when creating components for each iteration.ComponentDefRef[]body

The index of the collection to stop at (exclusive)Integerend

The name of variable to use for the index of each item inside the iterationStringindexVar

YesThe collection of data to iterate overListitems

True if the iteration has finished loading the set of templates.Booleanloaded

The index of the collection to start at (inclusive)Integerstart

397

aura:iterationReference

Required?DescriptionAttribute TypeAttribute Name

The template that is used to generate components. By default, this is set
from the body markup on first load.

ComponentDefRef[]template

YesThe name of the variable to use for each item inside the iterationStringvar

aura:renderIf
Deprecated. Use aura:if instead. This component allows you to conditionally render its contents. It renders its body only if isTrue evaluates
to true. The else attribute allows you to render an alternative when isTrue evaluates to false.

The expression in isTrue is re-evaluated every time any value used in the expression changes. When the results of the expression
change, it triggers a re-rendering of the component. Use aura:renderIf if you expect to show the components for both the true
and false states, and it would require a server round trip to instantiate the components that aren't initially rendered. Switching condition
unrenders current branch and renders the other. Otherwise, use aura:if instead if you want to instantiate the components in either
its body or the else attribute, but not both.

<aura:component>
<aura:renderIf isTrue="{!v.truthy}">
True
<aura:set attribute="else">
False

</aura:set>
</aura:renderIf>

</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

The alternative content to render when isTrue evaluates to false, and the
body is not rendered. Set using the <aura:set> tag.

Component[]else

YesAn expression that must evaluate to true to display the body of the
component.

BooleanisTrue

aura:template
Default template used to bootstrap Aura framework. To use another template, extend aura:template and set attributes using aura:set.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The block of content that is rendered before Aura initialization.Component[]auraPreInitBlock

398

aura:renderIfReference

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

Extra body CSS stylesStringbodyClass

Default body CSS styles.StringdefaultBodyClass

The DOCTYPE declaration for the template.Stringdoctype

Error loading textStringerrorMessage

Error title when an error has occured.StringerrorTitle

Loading textStringloadingText

The title of the template.Stringtitle

aura:text
Renders plain text. When any free text (not a tag or attribute value) is found in markup, an instance of this component is created with
the value attribute set to the text found in the markup.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The String to be rendered.Stringvalue

aura:unescapedHtml
The value assigned to this component will be rendered as-is, without altering its contents. It's intended for outputting pre-formatted
HTML, for example, where the formatting is arbitrary, or expensive to calculate. The body of this component is ignored, and won't be
rendered. Warning: this component outputs value as unescaped HTML, which introduces the possibility of security vulnerabilities in
your code. You must sanitize user input before rendering it unescaped, or you will create a cross-site scripting (XSS) vulnerability. Only
use <aura:unescapedHtml> with trusted or sanitized sources of data.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of <aura:unescapedHtml> is ignored and won't be rendered.Component[]body

The string that should be rendered as unescaped HTML.Stringvalue

auraStorage:init
Initializes a storage instance using an adapter that satisfies the provided criteria.

399

aura:textReference

Use auraStorage:init to initialize storage in your app’s template for caching server-side action response values.

This example uses a template to initialize storage for server-side action response values. The template contains an auraStorage:init
tag that specifies storage initialization properties.

<aura:component isTemplate="true" extends="aura:template">
<aura:set attribute="auraPreInitBlock">

<!-- Note that the maxSize attribute in auraStorage:init is in KB -->
<auraStorage:init name="actions" persistent="false" secure="false"

maxSize="1024" />
</aura:set>

</aura:component>

When you initialize storage, you can set certain options, such as the name, maximum cache size, and the default expiration time.

Storage for server-side actions caches action response values. The storage name must be actions.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

Set to true to delete all previous data on initialization (relevant for
persistent storage only). This value defaults to true.

BooleanclearStorageOnInit

Set to true to enable debug logging with $A.log(). This value defaults to
false.

BooleandebugLoggingEnabled

The default duration (seconds) before an auto refresh request will be
initiated. Actions may override this on a per-entry basis with
Action.setStorable(). This value defaults to 30.

IntegerdefaultAutoRefreshInterval

The default duration (seconds) that an object will be retained in storage.
Actions may override this on a per-entry basis with Action.setStorable().
This value defaults to 10.

IntegerdefaultExpiration

Maximum size (KB) of the storage instance. Existing items will be evicted
to make room for new items; algorithm is adapter-specific. This value
defaults to 1000.

IntegermaxSize

YesThe programmatic name for the storage instance.Stringname

Set to true if this storage desires persistence. This value defaults to false.Booleanpersistent

Set to true if this storage requires secure storage support. This value
defaults to false.

Booleansecure

Version to associate with all stored items.Stringversion

400

auraStorage:initReference

force:canvasApp
Enables you to include a Force.com Canvas app in a Lightning component.

A force:canvasApp component represents a canvas app that's embedded in your Lightning component. You can create a web
app in the language of your choice and expose it in Salesforce as a canvas app. Use the Canvas App Previewer to test and debug the
canvas app before embedding it in a Lightning component.

If you have a namespace prefix, specify it using the namespacePrefix attribute. Either the developerName or
applicationName attribute is required. This example embeds a canvas app in a Lightning component.

<aura:component>
<force:canvasApp developerName="MyCanvasApp" namespacePrefix="myNamespace" />

</aura:component />

For more information on building canvas apps, see the Force.com Canvas Developer's Guide.

Attributes

Required?DescriptionAttribute TypeAttribute Name

Name of the canvas app. Either applicationName or developerName is
required.

StringapplicationName

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

Width of the canvas app border, in pixels. If not specified, defaults to 0
px.

Stringborder

An unique label within a page for the Canvas app window. This should
be used when targeting events to this canvas app.

StringcanvasId

An html element id in which canvas app is rendered. The container needs
to be defined before canvasApp cmp usage.

StringcontainerId

Developer name of the canvas app. This name is defined when the canvas
app is created and can be viewed in the Canvas App Previewer. Either
developerName or applicationName is required.

StringdeveloperName

The location in the application where the canvas app is currently being
called from.

StringdisplayLocation

Canvas app window height, in pixels. If not specified, defaults to 900 px.Stringheight

The maximum height of the Canvas app window in pixels. Defaults to
2000 px; 'infinite' is also a valid value.

StringmaxHeight

The maximum width of the Canvas app window in pixels. Defaults to
1000 px; 'infinite' is also a valid value.

StringmaxWidth

Namespace value of the Developer Edition organization in which the
canvas app was created. Optional if the canvas app wasn’t created in a
Developer Edition organization. If not specified, defaults to null.

StringnamespacePrefix

401

force:canvasAppReference

Required?DescriptionAttribute TypeAttribute Name

Name of the JavaScript function to be called if the canvas app fails to
render.

StringonCanvasAppError

Name of the JavaScript function to be called after the canvas app loads.StringonCanvasAppLoad

Name of the JavaScript function to be called after the canvas app registers
with the parent.

StringonCanvasSubscribed

Object representation of parameters passed to the canvas app. This
should be supplied in JSON format or as a JavaScript object literal. Here’s

Stringparameters

an example of parameters in a JavaScript object literal:
{param1:'value1',param2:'value2'}. If not specified, defaults to null.

The reference id of the canvas app, if set this is used instead of
developerName, applicationName and namespacePrefix

StringreferenceId

Canvas window scrollingStringscrolling

The sublocation is the location in the application where the canvas app
is currently being called from, for ex, displayLocation can be PageLayout

Stringsublocation

and sublocation can be S1MobileCardPreview or S1MobileCardFullview,
etc

Title for the linkStringtitle

Renders a link if set to trueBooleanwatermark

Canvas app window width, in pixels. If not specified, defaults to 800 px.Stringwidth

force:inputField
A component that provides a concrete type-specific input component implementation based on the data to which it is bound.

Represents an input field that corresponds to a field on a Salesforce object. This component respects the attributes of the associated
field. For example, if the component is a number field with 2 decimal places, then the default input value contains the same number of
decimal places. It loads the input field according to the field type. If the component corresponds to a date field, a date picker is displayed
in the field. Dependent picklists and rich text fields are not supported. Required fields are not enforced client-side.

This example creates an input field that displays data for a contact name. Bind the field using the value attribute and provide a default
value to initialize the object.

<aura:component controller="ContactController">
<aura:attribute name="contact" type="Contact"

default="{ 'sobjectType': 'Contact' }"/>
<aura:handler name="init" value="{!this}" action="{!c.doInit}" />
<force:inputField value="{!v.contact.Name}"/>

</aura:component>

In this example, the v.contact.Name expression bounds the value to the Name field on the contact. To load record data, wire up
the container component to an Apex controller that returns the contact.

public with sharing class ContactController {
@AuraEnabled

402

force:inputFieldReference

public static Contact getContact() {
return [select Id, Name from Contact Limit 1];

}
}

Pass the contact data to the component via a client-side controller.

({
doInit : function(component, event, helper) {

var action = component.get("c.getContact");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

component.set("v.contact", response.getReturnValue());
console.log(response.getReturnValue());

}
});
$A.enqueueAction(action);

}
})

This component doesn't use the Lightning Design System styling. Use lightning:input if you want an input field that inherits
the Lightning Design System styling.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

The CSS style used to display the field.Stringclass

For internal use only. Displays error messages for the field.Component[]errorComponent

Specifies whether this field is required or not.Booleanrequired

Data value of Salesforce field to which to bind.Objectvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user changes the content of the input.COMPONENTchange

force:outputField
A component that provides a concrete type-specific output component implementation based on the data to which it is bound.

Represents a read-only display of a value for a field on a Salesforce object. This component respects the attributes of the associated field
and how it should be displayed. For example, if the component contains a date and time value, then the default output value contains
the date and time in the user's locale.

403

force:outputFieldReference

As of Winter '18, we recommend using lightning:outputField instead.

This example displays data for a contact name. Bind the field using the value attribute and provide a default value to initialize the
object.

<aura:component controller="ContactController">
<aura:attribute name="contact" type="Contact"

default="{ 'sobjectType': 'Contact' }"/>
<aura:handler name="init" value="{!this}" action="{!c.doInit}" />
<force:outputField value="{!v.contact.Name}"/>

</aura:component>

To load record data, wire up the container component to an Apex controller that returns the contact.

public with sharing class ContactController {
@AuraEnabled
public static Contact getContact() {

return [select Id, Name from Contact Limit 1];
}

}

Pass the contact data to the component via a client-side controller.

({
doInit : function(component, event, helper) {

var action = component.get("c.getContact");
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

component.set("v.contact", response.getReturnValue());
console.log(response.getReturnValue());

}
});
$A.enqueueAction(action);

}
})

This component doesn't use the Lightning Design System styling. Use lightning:input if you want an input field that inherits
the Lightning Design System styling.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Data value of Salesforce field to which to bind.Objectvalue

404

force:outputFieldReference

force:recordData
Provides the ability to create, read, update, and delete Salesforce records in Lightning.

A force:recordData component defines the parameters for accessing, modifying, or creating a record using Lightning Data
Service.

<aura:component>
<force:recordData aura:id="forceRecordCmp"

recordId="{!v.recordId}"
layoutType="{!v.layout}"
fields="{!v.fieldsToQuery}"
mode="VIEW"
targetRecord="{!v.record}"
targetFields="{!v.simpleRecord}"
targetError="{!v.error}" />

</aura:component>

Methods

This component supports the following methods.

• getNewRecord: Loads a record template and sets it to the targetRecord attribute, including predefined values for the
object and record type.

• reloadRecord: Performs the same load function as on init using the current configuration values (recordId, layoutType,
mode, and others). Doesn’t force a server trip unless required.

• saveRecord: Saves the record.

• deleteRecord: Deletes the record.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

Specifies which of the record's fields to query.String[]fields

Name of the layout to query, which determines the fields included. Valid
values are FULL or COMPACT. The layoutType and/or fields attribute must
be specified.

StringlayoutType

The mode in which to load the record: VIEW (default) or EDIT.Stringmode

The record IdStringrecordId

Will be set to the localized error message if the record can't be provided.StringtargetError

A simplified view of the fields in targetRecord, to reference record fields
in component markup.

ObjecttargetFields

The provided record. This attribute will contain only the fields relevant
to the requested layoutType and/or fields atributes.

ObjecttargetRecord

405

force:recordDataReference

Events

DescriptionEvent TypeEvent Name

Event fired when the record has changed.COMPONENTrecordUpdated

force:recordEdit
Generates an editable view of the specified Salesforce record.

A force:recordEdit component represents the record edit UI for the specified recordId.

This example displays the record edit UI and a button, which when pressed saves the record.

<force:recordEdit aura:id="edit" recordId="a02D0000006V8Ni"/>
<ui:button label="Save" press="{!c.save}"/>

This client-side controller fires the recordSave event, which saves the record.

save : function(component, event, helper) {
component.find("edit").get("e.recordSave").fire();
}

You can provide a dynamic ID for the recordId attribute using the format {!v.myObject.recordId}. To load record data,
wire up the container component to an Apex controller that returns the data. See Working with Salesforce Records in the Lightning
Components Developer Guide for more information.

To indicate that the record has been successfully saved, handle the force:recordSaveSuccess event.

To use this component in a standalone app, extend force:slds for the component to be styled correctly.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

The Id of the record to load, optional if record attribute is specified.StringrecordId

Events

DescriptionEvent TypeEvent Name

User fired event to indicate request to save the record.COMPONENTrecordSave

Fired when record saving was successful.COMPONENTonSaveSuccess

force:recordPreview
force:recordPreview has been deprecated. Use force:recordData instead.

406

force:recordEditReference

Methods

This component supports the following methods.

getNewRecord: Loads a record template and sets it to force:recordPreview’s targetRecord attribute, including
predefined values for the entity and record type.

reloadRecord: Performs the same load function as on init using the current configuration values (recordId, layoutType,
mode, and others). Doesn’t force a server trip unless required.

saveRecord: Saves the record.

deleteRecord: Deletes the record.

Attributes

Required?DescriptionAttribute TypeAttribute Name

List of fields to query.

This attribute or layoutType must be specified. If you specify both,
the list of fields queried is the union of fields from fields and
layoutType.

String[]fields

Whether to skip the cache and force a server request. Defaults to false.

Setting this attribute to true is useful for handling user-triggered
actions such as pull-to-refresh.

BooleanignoreExistingAction

Name of the layout to query, which determines the fields included. Valid
values are the following.

StringlayoutType

• FULL

• COMPACT

This attribute or fields must be specified. If you specify both, the list
of fields queried is the union of fields from fields and layoutType.

The mode in which to access the record. Valid values are the following.Stringmode

• VIEW

• EDIT

Defaults to VIEW.

The 15-character or 18-character ID of the record to load, modify, or
delete. Defaults to null, to create a record.

StringrecordId

A reference to a component attribute to which a localized error message
is assigned if necessary.

StringtargetError

A reference to a component attribute, to which the loaded record is
assigned.

Changes to the record are also assigned to this value, which triggers
change handlers, re-renders, and so on.

RecordtargetRecord

407

force:recordPreviewReference

Events

DescriptionEvent TypeEvent Name

The event fired when the record is loaded, changed, updated, or removed.COMPONENTrecordUpdated

force:recordView
Generates a view of the specified Salesforce record.

A force:recordView component represents a read-only view of a record. You can display the record view using different layout
types. By default, the record view uses the full layout to display all fields of the record. The mini layout displays fields corresponding to
the compact layout. You can change the fields and the order they appear in the component by going to Compact Layouts in Setup for
the particular object.

This example shows a record view with a mini layout.

<force:recordView recordId="a02D0000006V8Ov" type="MINI"/>

You can provide a dynamic ID for the recordId attribute using the format {!v.myObject.recordId}. To load record data,
wire up the container component to an Apex controller that returns the data. See Working with Salesforce Records in the Lightning
Components Developer Guide for more information.

To use this component in a standalone app, extend force:slds for the component to be styled correctly.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

The record (SObject) to load, optional if recordId attribute is specified.SObjectRowrecord

The Id of the record to load, optional if record attribute is specified.StringrecordId

The type of layout to use to display the record. Possible values: FULL,
MINI. The default is FULL.

Stringtype

forceChatter:feed
Represents a Chatter Feed

A forceChatter:feed component represents a feed that's specified by its type. Use the type attribute to display a specific feed
type. For example, set type="groups" to display the feed from all groups the context user either owns or is a member of.

<aura:component implements="force:appHostable">
<forceChatter:feed type="groups"/>

</aura:component>

408

force:recordViewReference

You can also display a feed depending on the type selected. This example provides a drop-down menu that controls the type of feed
to display.

<aura:component implements="force:appHostable">
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>
<aura:attribute name="options" type="List" />
<aura:attribute name="type" type="String" default="News" description="The type of feed"

access="GLOBAL"/>
<aura:attribute name="types" type="String[]"

default="Bookmarks,Company,DirectMessages,Feeds,Files,Filter,Groups,Home,Moderation,Mute,News,PendingReview,Record,Streams,To,Topics,UserProfile"

description="A list of feed types"/>
<h1>My Feeds</h1>

<lightning:select aura:id="typeSelect" onchange="{!c.onChangeType}" label="Type"
name="typeSelect">

<aura:iteration items="{!v.options}" var="item">
<option text="{!item.label}" value="{!item.value}" selected="{!item.selected}"/>

</aura:iteration>
</lightning:select>
<div aura:id="feedContainer" class="feed-container">

<forceChatter:feed />
</div>

</aura:component>

The types attribute specifies the feed types, which are set on the lightning:select component during component initialization.
When a user selects a feed type, the feed is dynamically created and displayed.

({
// Handle component initialization
doInit : function(component, event, helper) {

var type = component.get("v.type");
var types = component.get("v.types");
var opts = new Array();

// Set the feed types on the lightning:select component
for (var i = 0; i < types.length; i++) {

opts.push({label: types[i], value: types[i], selected: types[i] === type});
}
component.set("v.options", opts);

},

onChangeType : function(component, event, helper) {
var typeSelect = component.find("typeSelect");
var type = typeSelect.get("v.value");
component.set("v.type", type);

// Dynamically create the feed with the specified type
$A.createComponent("forceChatter:feed", {"type": type}, function(feed) {

var feedContainer = component.find("feedContainer");
feedContainer.set("v.body", feed);

});
}

})

409

forceChatter:feedReference

The feed component is supported for Lightning Experience and communities based on the Customer Service template.

For a list of feed types, see the Chatter REST API Developer's Guide.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

Valid values include DEFAULT (shows inline comments on desktop, a bit
more detail) or BROWSE (primarily an overview of the feed items)

StringfeedDesign

For most feeds tied to an entity, this is used specified the desired entity.
Defaults to the current user if not specified

StringsubjectId

The strategy used to find items associated with the subject. Valid values
include: Bookmarks, Company, DirectMessages, Feeds, Files, Filter, Groups,

Stringtype

Home, Moderation, Mute, News, PendingReview, Record, Streams, To,
Topics, UserProfile.

forceChatter:fullFeed
A Chatter feed that is full length.

The fullFeed component is still considered BETA and as such shouldn't be considered ready for production.

The fullFeed component is intended for use with Lightning Out or other apps outside of Salesforce for Android, iOS, and mobile web
and Lightning Experience.

Including the fullFeed component in Lightning Experience at this time will result in unexpected behaviour such as posts being duplicated
(temporarily in the UI). To implement a Chatter feed in Lightning Experience, use forceChatter:publisher and
forceChatter:feed instead.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

Should this component handle navigation events for entities and urls. If
true then navigation events will result in the entity or url being opened
in a new window.

BooleanhandleNavigationEvents

For most feeds tied to an entity, this is used specified the desired entity.
Defaults to the current user if not specified

StringsubjectId

The strategy used to find items associated with the subject. Valid values
include: News, Home, Record, To.

Stringtype

410

forceChatter:fullFeedReference

forceChatter:publisher
Lets users create posts on records or groups and upload attachments from their desktops in Lightning Experience and communities and
from their mobile devices in communities. Note that this component is not available to mobile devices in Lightning Experience.

The forceChatter:publisher component is a standalone publisher component you can place on a record page. It works
together with the forceChatter:feed component available in the Lightning App Builder to provide a complete Chatter experience.
The advantage of having separate components for publisher and feed is the flexibility it gives you in arranging page components. The
connection between publisher and feed is automatic and requires no additional coding.

The forceChatter:publisher component includes the context attribute, which determines what type of feed is shown.
Use RECORD for a record feed, and GLOBAL for all other feed types.

<aura:component implements="flexipage:availableForAllPageTypes" description="Sample
Component">

<forceChatter:publisher context="GLOBAL" />
<forceChatter:feed type="Company" />

</aura:component>

This component is supported for Lightning Experience and communities based on the Customer Service template.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

YesThe context in which the component is being displayed (RECORD or
GLOBAL). RECORD is for a record feed, and GLOBAL is for all other feed
types. This attribute is case-sensitive.

Stringcontext

The record IdStringrecordId

forceCommunity:appLauncher
Displays the App Launcher in Lightning communities to make it easy for members to move between their communities and their
Salesforce org. Add this component to any custom Lightning component in communities.

A forceCommunity:appLauncher component represents an App Launcher icon. Clicking this icon presents users with tiles
that link to their communities, connected apps, Salesforce apps, and on-premises applications. Members see only the communities and
apps that they’re authorized to see according to their profile or permission sets. To let members see the App Launcher, you must also
enable the Show App Launcher in Communities permission in user profiles in Setup. This component is not available in the Salesforce
mobile app or in Salesforce Tabs + Visualforce communities.

<aura:component>
<forceCommunity:appLauncher/>

</aura:component>

If you include the App Launcher in a custom theme layout, it is visible to all pages that use that custom theme layout.

411

forceChatter:publisherReference

Here’s an example custom theme layout component that uses the default Navigation Menu and includes
forceCommunity:appLauncher.

<aura:component implements="forceCommunity:themeLayout" access="global" description="Sample
Custom Theme Layout">

<aura:attribute name="search" type="Aura.Component[]" required="false"/>
<aura:attribute name="profileMenu" type="Aura.Component[]" required="false"/>
<aura:attribute name="navBar" type="Aura.Component[]" required="false"/>
<aura:attribute name="newHeader" type="Aura.Component[]" required="false"/>
<div>

<div class="appLauncher">
<forceCommunity:appLauncher/>

</div>
<div class="searchRegion">

{!v.search}
</div>
<div class="profileMenuRegion">

{!v.profileMenu}
</div>
<div class="navigation">

{!v.navBar}
</div>
<div class="newHeader">

{!v.newHeader}
</div>
<div class="mainContentArea">

{!v.body}
</div>

</div>
</aura:component>

You can either use the App Launcher that’s included in the default Navigation Menu, or include it in the custom theme layout and hide
the App Launcher in the default Navigation Menu. To remove the App Launcher in the default Navigation Menu, select Hide App Launcher
in community header in the Navigation Menu property editor in Community Builder.

Alternatively, you could create a custom Navigation Menu that includes a forceCommunity:appLauncher component. Then
you could use this menu in a custom theme layout.

Here's an example custom navigation menu component that includes the forceCommunity:appLauncher component.

<aura:component extends="forceCommunity:navigationMenuBase"
implements="forceCommunity:availableForAllPageTypes">

<ul onclick="{!c.onClick}">
<forceCommunity:appLauncher/>
<aura:iteration items="{!v.menuItems}" var="item">

<aura:if isTrue="{!item.subMenu}">
{!item.label}

<aura:iteration items="{!item.subMenu}" var="subItem">

<a data-menu-item-id="{!subItem.id}"
href="">{!subItem.label}

</aura:iteration>

<aura:set attribute="else">
<a data-menu-item-id="{!item.id}" href="">{!item.label}

412

forceCommunity:appLauncherReference

</aura:set>
</aura:if>

</aura:iteration>

</aura:component>

Here’s an example custom theme layout component that uses a custom Navigation Menu that includes the
forceCommunity:appLauncher component. The custom Navigation Menu is provided by the custom component
c:CustomNavMenu for this example.

<aura:component implements="forceCommunity:themeLayout" access="global" description="Sample
Custom Theme Layout">

<aura:attribute name="search" type="Aura.Component[]" required="false"/>
<aura:attribute name="profileMenu" type="Aura.Component[]" required="false"/>
<aura:attribute name="navBar" type="Aura.Component[]" required="false"/>
<aura:attribute name="newHeader" type="Aura.Component[]" required="false"/>
<div>

<div class="searchRegion">
{!v.search}

</div>
<div class="profileMenuRegion">

{!v.profileMenu}
</div>
<div class="navigation">

<c:CustomNavMenu/>
</div>
<div class="newHeader">

{!v.newHeader}
</div>
<div class="mainContentArea">

{!v.body}
</div>

</div>
</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

forceCommunity:navigationMenuBase
An abstract component for customizing the navigation menu in a community, which loads menu data and handles navigation. The
menu’s look and feel is controlled by the component that's extending it.

Extend the forceCommunity:navigationMenuBase component to create a customized navigation component for the
Customer Service (Napili) or custom community templates. Provide navigation menu data using the menu editor in Community Builder
or via the NavigationMenuItem entity.

The menuItems attribute is automatically populated with an array of top-level menu items, each with the following properties:

413

forceCommunity:navigationMenuBaseReference

• id: Used by the navigate method.

• label: The menu item’s display label.

• subMenu: An optional property, which is an array of menu items.

Here's an example of a custom Navigation Menu component:

<aura:component extends="forceCommunity:navigationMenuBase"
implements="forceCommunity:availableForAllPageTypes">

<ul onclick="{!c.onClick}">
<aura:iteration items="{!v.menuItems}" var="item" >

<aura:if isTrue="{!item.subMenu}">
{!item.label}

<aura:iteration items="{!item.subMenu}" var="subItem">
<a data-menu-item-id="{!subItem.id}"

href="">{!subItem.label}
</aura:iteration>

<aura:set attribute="else">

<a data-menu-item-id="{!item.id}" href="">{!item.label}
</aura:set>
</aura:if>

</aura:iteration>

</aura:component>

Here's an example of a controller:

({
onClick : function(component, event, helper) {

var id = event.target.dataset.menuItemId;
if (id) {

component.getSuper().navigate(id);
}

}
})

Methods

navigate(menuItemId): Navigates to the page the menu item points to. Takes the id of the menu item as a parameter.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

Automatically populated with menu item’s data. This attribute is
read-only.

ObjectmenuItems

414

forceCommunity:navigationMenuBaseReference

forceCommunity:notifications
The Notifications tool lets your members receive notifications wherever they are working, whether in their communities or in their apps.
Members receive notifications on any screen—mobile, tablet, and desktop. All events that trigger notifications (@mentions and group
posts) are supported. When a member clicks a notification, the originating detail page or other appropriate location is displayed for
seamless collaboration across communities and apps.

A forceCommunity:notifications component represents a Notifications icon. Notifications alert users when key events
occur, such as when they are mentioned in Chatter posts. This component is supported for Lightning Experience, Salesforce mobile app,
and Lightning communities.

<aura:component>
<forceCommunity:notifications/>

</aura:component>

Notifications let users receive notifications wherever they are working, whether in their communities, or in their apps. All events that
trigger notifications (@mentions and group posts) are supported. Users can even trigger notifications on record feeds For example, an
internal user can trigger a notification from the Salesforce org by @mentioning an external user on a lead or opportunity.

Here’s an example custom theme layout component that includes forceCommunity:notifications.

<aura:component implements="forceCommunity:themeLayout" access="global" description="Sample
Custom Theme Layout">

<aura:attribute name="search" type="Aura.Component[]" required="false"/>
<aura:attribute name="profileMenu" type="Aura.Component[]" required="false"/>
<aura:attribute name="navBar" type="Aura.Component[]" required="false"/>
<aura:attribute name="newHeader" type="Aura.Component[]" required="false"/>
<div>

<div class="notifications">
<forceCommunity:notifications/>

</div>
<div class="searchRegion">

{!v.search}
</div>
<div class="profileMenuRegion">

{!v.profileMenu}
</div>
<div class="navigation">

{!v.navBar}
</div>
<div class="newHeader">

{!v.newHeader}
</div>
<div class="mainContentArea">

{!v.body}
</div>

</div>
</aura:component>

415

forceCommunity:notificationsReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

forceCommunity:routeLink
Sets an HTML anchor tag with an href attribute that’s automatically generated from the provided record ID. Use it to improve SEO link
equity in template-based communities.

Because the href attribute is automatically generated from the provided record ID, forceCommunity:routeLink is only
suitable for creating internal links to recordId-based pages in your community, such as the Article Detail or the Case Detail pages.

Internal links help establish an SEO-friendly site hierarchy and spread link equity (or link juice) to your community’s pages.

Here's an example of a forceCommunity:routeLink component:

<aura:component implements="forceCommunity:availableForAllPageTypes">
<aura:attribute name="recordId" type="String" default="500xx000000YkvU" />
<aura:attribute name="routeInput" type="Map"/>
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>
<forceCommunity:routeLink id="myCaseId" class="caseClass" title="My Case Tooltip"

label="My Case Link Text" routeInput="{!v.routeInput}" onClick="{!c.onClick}"/>
</aura:component>

To create the link, the client-side controller sets the record ID on the routeInput attribute during initialization. Clicking the link
enables you to navigate to the record page.

({
doInit : function(component, event, helper) {
component.set('v.routeInput', {recordId: component.get('v.recordId')});
},

onClick : function(component, event, helper) {
var navEvt = $A.get("e.force:navigateToSObject");
navEvt.setParams({
"recordId": component.get('v.recordId')

});
navEvt.fire();

}
})

The previous example renders the following anchor tag:

<a class="caseClass" href="/myCommunity/s/case/500xx000000YkvU/mycase"
id="myCaseId" title="My Case Tooltip">My Case Link Text

416

forceCommunity:routeLinkReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the anchor tag.Stringclass

The ID of the anchor tag.Stringid

The text displayed in the link.Stringlabel

Action to trigger when the anchor is clicked.ActiononClick

YesThe map of dynamic parameters that create the link. Only recordId-based
routes are supported.

HashMaprouteInput

The text to display for the link tooltip.Stringtitle

forceCommunity:waveDashboard
Use this component to add a Salesforce Analytics dashboard to a Community page.

Add Analytics Wave dashboard components to community pages to provide interactive visualizations of your data. Users can drill in and
explore the dashboard within the frame on the community page or in an Analytics window.

The Wave dashboard component is available in the Customer Service (Napili) template as a drag-and-drop component, however, you
can also create your own Wave dashboard component using forceCommunity:waveDashboard.

Here's an example of a forceCommunity:waveDashboard component:

<aura:component implements="forceCommunity:availableForAllPageTypes">
<forceCommunity:waveDashboard dashboardId="0FKxx000000000uGAA" />
</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

A valid access token obtained by logging into Salesforce. Useful when
the component is used by Lightning Out in a non-Salesforce domain.

StringaccessToken

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

The unique ID of the dashboard. You can get a dashboard’s ID, an
18-character code beginning with 0FK, from the dashboard's URL, or you

StringdashboardId

can request it through the API. This attribute can be used instead of the
developer name, but it can't be included if the name has been set. One
of the two is required.

417

forceCommunity:waveDashboardReference

Required?DescriptionAttribute TypeAttribute Name

The unique developer name of the dashboard. You can request the
developer name through the API. This attribute can be used instead of

StringdeveloperName

the dashboard ID, but it can't be included if the ID has been set. One of
the two is required.

Adds selections or filters to the embedded dashboard at runtime. The
filter attribute is configured using JSON. For filtering by dimension, use

Stringfilter

this syntax: {'datasets' : {'dataset1': [{'fields': ['field1'], 'selection': ['$value1',
'$value2']}, {'fields': ['field2'], 'filter': { 'operator': 'operator1', 'values':
['$value3', '$value4']}}]}}. For filtering on measures, use this syntax:
{'datasets' : {'dataset1': [{'fields': ['field1'], 'selection': ['$value1', '$value2']},
{'fields': ['field2'], 'filter': { 'operator': 'operator1', 'values': [[$value3]]}}]}}.
With the selection option, the dashboard is shown with all its data, and
the specified dimension values are highlighted. With the filter option,
the dashboard is shown with only filtered data. For more information,
see
https://help.salesforce.com/articleView?id=bi_embed_community_builder.htm.

Specifies the height of the dashboard, in pixels.Integerheight

Controls whether or not users see a dashboard that has an error. When
this attribute is set to true, if the dashboard has an error, it won’t appear

BooleanhideOnError

on the page. When set to false, the dashboard appears but doesn’t show
any data. An error can occur when a user doesn't have access to the
dashboard or it has been deleted.

If false, links to other dashboards will be opened in the same window.BooleanopenLinksInNewWindow

Id of the current entity in the context of which the component is being
displayed.

StringrecordId

If true, the dashboard is displayed with a header bar that includes
dashboard information and controls. If false, the dashboard appears

BooleanshowHeader

without a header bar. Note that the header bar automatically appears
when either showSharing or showTitle is true.

If true, and the dashboard is shareable, then the dashboard shows the
Share icon. If false, the dashboard doesn't show the Share icon. To show

BooleanshowSharing

the Share icon in the dashboard, the smallest supported frame size is 800
x 612 pixels.

If true, the dashboard’s title is included above the dashboard. If false, the
dashboard appears without a title.

BooleanshowTitle

lightning:accordion
A collection of vertically stacked sections with multiple content areas. This component requires version 41.0 and later.

A lightning:accordion component groups related content in a single container. Only one accordion section is expanded at a
time. When you select a section, it's expanded or collapsed. Each section can hold one or more Lightning components.

418

lightning:accordionReference

This component inherits styling from accordion in the Lightning Design System.

To additionally style this component, use the Lightning Design System helper classes.

This example creates a basic accordion with three sections, where section B is expanded by default.

<aura:component>
<lightning:accordion activeSectionName="B">
<lightning:accordionSection name="A" label="Accordion Title A">This is the content

area for section A</lightning:accordionSection>
<lightning:accordionSection name="B" label="Accordion Title B">This is the content

area for section B</lightning:accordionSection>
<lightning:accordionSection name="C" label="Accordion Title C">This is the content

area for section C</lightning:accordionSection>
</lightning:accordion>

</aura:component>

Usage Considerations

The first section in the lightning:accordion is expanded by default. To change the default, use the activeSectionName
attribute. This attribute is case-sensitive.

If two or more sections use the same name and that name is also specified as the activeSectionName, the first section is expanded
by default.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The activeSectionName changes the default expanded section. The first
section in the accordion is expanded by default.

StringactiveSectionName

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

lightning:accordionSection
A single section that is nested in a lightning:accordion component. This component requires version 41.0 and later.

A lightning:accordionSection component keeps related content in a single container. When you select a section, it's
expanded or collapsed. Each section can hold one or more Lightning components. This component is intended to be used with
lightning:accordion.

This component inherits styling from accordion in the Lightning Design System.

To additionally style this component, use the Lightning Design System helper classes.

This example creates a basic accordion with three sections, where section B is expanded by default.

<aura:component>

419

lightning:accordionSectionReference

https://www.lightningdesignsystem.com/components/accordion
https://www.lightningdesignsystem.com/components/accordion

<lightning:accordion activeSectionName="B">
<lightning:accordionSection label="Accordion Title A" name="A">This is the content

area for section A</lightning:accordionSection>
<lightning:accordionSection label="Accordion Title B" name="B">This is the content

area for section B</lightning:accordionSection>
<lightning:accordionSection label="Accordion Title C" name="C">This is the content

area for section C</lightning:accordionSection>
</lightning:accordion>

</aura:component>

This example creates the same basic accordion with an added buttonMenu on the first section.

<aura:component>
<lightning:accordion>

<lightning:accordionSection label="Accordion Title A" name="A">This is the content
area for section A

<aura:set attribute="actions">
<lightning:buttonMenu aura:id="menu" alternativeText="Show menu">

<lightning:menuItem value="New" label="Menu Item One" />
</lightning:buttonMenu>

</aura:set>
</lightning:accordionSection>
<lightning:accordionSection label="Accordion Title B" name="B">This is the content

area for section B</lightning:accordionSection>
<lightning:accordionSection label="Accordion Title C" name="C">This is the content

area for section C</lightning:accordionSection>
</lightning:accordion>

</aura:component>

Usage Considerations

The first section in the lightning:accordion is expanded by default. To change the default, use the activeSectionName
attribute.

If two or more sections use the same name and that name is also specified as the activeSectionName, the first section is expanded
by default.

Attributes

Required?DescriptionAttribute TypeAttribute Name

Enables a custom menu implementation. Actions are displayed to the
right of the section title.

Component[]actions

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

The text that displays as the title of the section.Stringlabel

The unique section name to use with the activeSectionName attribute
in the lightning:accordion component.

Stringname

420

lightning:accordionSectionReference

Required?DescriptionAttribute TypeAttribute Name

Displays tooltip text when the mouse moves over the element.Stringtitle

lightning:avatar
A visual representation of an object.

A lightning:avatar component is an image that represents an object, such as an account or user. By default, the image renders
in medium sizing with a rounded rectangle, which is also known as the square variant.

This component inherits styling from avatars in the Lightning Design System.

Use the class attribute to apply additional styling.

Here is an example.

<aura:component>
<lightning:avatar src="/images/codey.jpg" alternativeText="Codey Bear"/>

</aura:component>

Handling Invalid Image Paths

The src attribute resolves the relative path to an image, but sometimes the image path doesn't resolve correctly because the app is
offline or the image has been deleted. To handle an invalid image path, you can provide fallback initials using the initials attribute.
This example displays the initials "Sa" if the image path is invalid.

<lightning:avatar src="/bad/image/url.jpg" initials="Sa"
fallbackIconName="standard:account" alternativeText="Salesforce"/>

In the previous example, the fallback icon "standard:account" is displayed if initials are not provided.

Accessibility

Use the alternativeText attribute to describe the avatar, such as a user's initials or name. This description provides the value for
the alt attribute in the img HTML tag.

Attributes

Required?DescriptionAttribute TypeAttribute Name

YesThe alternative text used to describe the avatar, which is displayed as
hover text on the image.

StringalternativeText

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

The Lightning Design System name of the icon used as a fallback when
the image fails to load. The initials fallback relies on this for its background

StringfallbackIconName

color. Names are written in the format 'standard:account' where 'standard'
is the category, and 'account' is the specific icon to be displayed. Only
icons from the standard and custom categories are allowed.

421

lightning:avatarReference

https://www.lightningdesignsystem.com/components/avatar/

Required?DescriptionAttribute TypeAttribute Name

If the record name contains two words, like first and last name, use the
first capitalized letter of each. For records that only have a single word

Stringinitials

name, use the first two letters of that word using one capital and one
lower case letter.

The size of the avatar. Valid values are x-small, small, medium, and large.
This value defaults to medium.

Stringsize

YesThe URL for the image.Stringsrc

Displays tooltip text when the mouse moves over the element.Stringtitle

The variant changes the shape of the avatar. Valid values are empty, circle,
and square. This value defaults to square.

Stringvariant

lightning:badge
Represents a label which holds a small amount of information, such as the number of unread notifications.

A lightning:badge is a label that holds small amounts of information. A badge can be used to display unread notifications, or to
label a block of text. Badges don’t work for navigation because they can't include a hyperlink.

This component inherits styling from badges in the Lightning Design System.

Here is an example.

<aura:component>
<lightning:badge label="Label" />

</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesThe text to be displayed inside the badge.Stringlabel

lightning:breadcrumb
An item in the hierarchy path of the page the user is on.

A lightning:breadcrumb component displays the path of a page relative to a parent page. Breadcrumbs are nested in a
lightning:breadcrumbs component. Each breadcrumb is actionable and separated by a greater-than sign. The order the
breadcrumbs appear depends on the order they are listed in markup.

422

lightning:badgeReference

https://www.lightningdesignsystem.com/components/badges/

This component inherits styling from breadcrumbs in the Lightning Design System.

Here is an example.

<aura:component>
<lightning:breadcrumbs>

<lightning:breadcrumb label="Parent Account" href="path/to/place/1"/>
<lightning:breadcrumb label="Case" href="path/to/place/2"/>

</lightning:breadcrumbs>
</aura:component>

The behavior of a breadcrumb is similar to a link. If a link is not provided via the href attribute, the value defaults to
javascript:void(0);. To provide custom navigation, use an onclick handler. For example, using onclick is useful if
you're navigating using an event like force:navigateToSObject. If you provide a link in the href attribute, calling
event.preventDefault() enables you to bypass the link and use your custom navigation instead.

<aura:component>
<lightning:breadcrumbs>

<lightning:breadcrumb label="Parent Account" href="path/to/place/1" onclick="{!
c.navigateToCustomPage1 }"/>

<lightning:breadcrumb label="Case" href="path/to/place/2" onclick="{!
c.navigateToCustomPage2 }"/>

</lightning:breadcrumbs>
</aura:component>

/** Client-Side Controller **/
({

navigateToCustomPage1: function (cmp, event) {
event.preventDefault();
//your custom navigation here

},
navigateToCustomPage2: function (cmp, event) {

event.preventDefault();
//your custom navigation here

}
})

Generating Breadcrumbs with aura:iteration

Iterate over a list of items using aura:iteration to generate breadcrumbs. For example, you can create an array of breadcrumbs
with label and name values. Set these values in the init handler.

<aura:component>
<aura:attribute name="myBreadcrumbs" type="Object"/>
<aura:handler name="init" value="{! this }" action="{! c.init }"/>
<lightning:breadcrumbs>

<aura:iteration items="{! v.myBreadcrumbs }" var="crumbs">
<lightning:breadcrumb label="{! crumbs.label }" onclick="{! c.navigateTo }"

name="{! crumbs.name }"/>
</aura:iteration>

</lightning:breadcrumbs>
</aura:component>

/* Client-Side Controller */
({

init: function (cmp, event, helper) {

423

lightning:breadcrumbReference

https://www.lightningdesignsystem.com/components/breadcrumbs/

var myBreadcrumbs = [
{label: 'Account', name: 'objectName' },
{label: 'Record Name', name: 'record' }

];
cmp.set('v.myBreadcrumbs', myBreadcrumbs);

},
navigateTo: function (cmp, event, helper) {

//get the name of the breadcrumb that's clicked
var name = event.getSource().get('v.name');

//your custom navigation here
}

})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

The URL of the page that the breadcrumb goes to.Stringhref

YesThe text label for the breadcrumb.Stringlabel

The name for the breadcrumb component. This value is optional and
can be used to identify the breadcrumb in a callback.

Stringname

The action triggered when the breadcrumb is clicked.Actiononclick

Displays tooltip text when the mouse moves over the element.Stringtitle

lightning:breadcrumbs
A hierarchy path of the page you're currently visiting within the website or app.

A lightning:breadcrumbs component is an ordered list that displays the path of a page and helps you navigate back to the
parent. Each breadcrumb item is represented by a lightning:breadcrumb component. Breadcrumbs are actionable and separated
by a greater-than sign.

This component inherits styling from breadcrumbs in the Lightning Design System.

For more information, see lightning:breadcrumb.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

424

lightning:breadcrumbsReference

https://www.lightningdesignsystem.com/components/breadcrumbs/

Required?DescriptionAttribute TypeAttribute Name

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

lightning:button
Represents a button element.

A lightning:button component represents a button element that executes an action in a controller. Clicking the button triggers
the client-side controller method set for onclick. Buttons can be either a label only, label and icon, body only, or body and icon. Use
lightning:buttonIcon if you need an icon-only button.

Use the variant and class attributes to apply additional styling.

The Lightning Design System utility icon category provides nearly 200 utility icons that can be used in lightning:button along
with label text. Although SLDS provides several categories of icons, only the utility category can be used in this component.

Visit https://lightningdesignsystem.com/icons/#utility to view the utility icons.

This component inherits styling from buttons in the Lightning Design System.

Here are two examples.

<aura:component>
<lightning:button variant="brand" label="Submit" onclick="{! c.handleClick }" />

</aura:component>

<aura:component>
<lightning:button variant="brand" label="Download" iconName="utility:download"

iconPosition="left" onclick="{! c.handleClick }" />
</aura:component>

Accessibility

To inform screen readers that a button is disabled, set the disabled attribute to true.

Methods

This component supports the following method.

focus(): Sets the focus on the element.

Attributes

Required?DescriptionAttribute TypeAttribute Name

Specifies a shortcut key to activate or focus an element.Stringaccesskey

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

425

lightning:buttonReference

https://lightningdesignsystem.com/icons/#utility
https://www.lightningdesignsystem.com/components/buttons/

Required?DescriptionAttribute TypeAttribute Name

Specifies whether this button should be displayed in a disabled state.
Disabled buttons can't be clicked. This value defaults to false.

Booleandisabled

The Lightning Design System name of the icon. Names are written in the
format '\utility:down\' where 'utility' is the category, and 'down' is the
specific icon to be displayed.

StringiconName

Describes the position of the icon with respect to body. Options include
left and right. This value defaults to left.

StringiconPosition

The text to be displayed inside the button.Stringlabel

The name for the button element. This value is optional and can be used
to identify the button in a callback.

Stringname

The action triggered when the element releases focus.Actiononblur

The action triggered when the button is clicked.Actiononclick

The action triggered when the element receives focus.Actiononfocus

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

Displays tooltip text when the mouse moves over the element.Stringtitle

Specifies the type of button. Valid values are button, reset, and submit.
This value defaults to button.

Stringtype

The value for the button element. This value is optional and can be used
when submitting a form.

Stringvalue

The variant changes the appearance of the button. Accepted variants
include base, neutral, brand, destructive, inverse, and success. This value
defaults to neutral.

Stringvariant

lightning:buttonGroup
Represents a group of buttons.

A lightning:buttonGroup component represents a set of buttons that can be displayed together to create a navigational bar.
The body of the component can contain lightning:button or lightning:buttonMenu. If navigational tabs are needed,
use lightning:tabset instead of lightning:buttonGroup.

This component inherits styling from button groups in the Lightning Design System.

To create buttons, use the lightning:button component as shown in this example.

<aura:component>
<lightning:buttonGroup>

<lightning:button label="Refresh" onclick="{!c.handleClick}"/>
<lightning:button label="Edit" onclick="{!c.handleClick}"/>
<lightning:button label="Save" onclick="{!c.handleClick}"/>

</lightning:buttonGroup>

426

lightning:buttonGroupReference

https://www.lightningdesignsystem.com/components/button-groups/

</aura:component>

The onclick handler in lightning:button calls the handleClick client-side controller, which returns the label of the
button that was clicked.

({
handleClick: function (cmp, event, helper) {

var selectedButtonLabel = event.getSource().get("v.label");
alert("Button label: " + selectedButtonLabel);

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

lightning:buttonIcon
An icon-only HTML button.

A lightning:buttonIcon component represents an icon-only button element that executes an action in a controller. Clicking
the button triggers the client-side controller method set for onclick.

You can use a combination of the variant, size, class, and iconClass attributes to customize the button and icon styles.
To customize styling on the button container, use the class attribute. For the bare variant, the size class applies to the icon itself.
For non-bare variants, the size class applies to the button. To customize styling on the icon element, use the iconClass attribute.
This example creates an icon-only button with bare variant and custom icon styling.

<!-- Bare variant with custom "dark" CSS class added to icon svg element -->
<lightning:buttonIcon iconName="utility:settings" variant="bare" alternativeText="Settings"
iconClass="dark"/>

The Lightning Design System utility icon category offers nearly 200 utility icons that can be used in lightning:buttonIcon.
Although the Lightning Design System provides several categories of icons, only the utility category can be used in
lightning:buttonIcon.

Visit https://lightningdesignsystem.com/icons/#utility to view the utility icons.

This component inherits styling from button icons in the Lightning Design System.

Here is an example.

<aura:component>
<lightning:buttonIcon iconName="utility:close" variant="bare" onclick="{! c.handleClick

}" alternativeText="Close window." />
</aura:component>

427

lightning:buttonIconReference

https://lightningdesignsystem.com/icons/#utility
https://www.lightningdesignsystem.com/components/button-icons/

Usage Considerations

When using lightning:buttonIcon in a standalone app, extend force:slds to resolve the icon resources correctly.

<aura:application extends="force:slds">
<lightning:buttonIcon iconName="utility:close" alternativeText="Close"/>

</aura:application>

Accessibility

Use the alternativeText attribute to describe the icon. The description should indicate what happens when you click the button,
for example 'Upload File', not what the icon looks like, 'Paperclip'.

Methods

This component supports the following method.

focus(): Sets focus on the element.

Attributes

Required?DescriptionAttribute TypeAttribute Name

Specifies a shortcut key to activate or focus an element.Stringaccesskey

YesThe alternative text used to describe the icon. This text should describe
what happens when you click the button, for example 'Upload File', not
what the icon looks like, 'Paperclip'.

StringalternativeText

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Specifies whether this button should be displayed in a disabled state.
Disabled buttons can't be clicked. This value defaults to false.

Booleandisabled

The class to be applied to the contained icon element.StringiconClass

YesThe Lightning Design System name of the icon. Names are written in the
format '\utility:down\' where 'utility' is the category, and 'down' is the

StringiconName

specific icon to be displayed. Note: Only utility icons can be used in this
component.

The name for the button element. This value is optional and can be used
to identify the button in a callback.

Stringname

The action triggered when the element releases focus.Actiononblur

The action that will be run when the button is clicked.Actiononclick

The action triggered when the element receives focus.Actiononfocus

The size of the buttonIcon. For the bare variant, options include x-small,
small, medium, and large. For non-bare variants, options include xx-small,
x-small, small, and medium. This value defaults to medium.

Stringsize

428

lightning:buttonIconReference

Required?DescriptionAttribute TypeAttribute Name

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

Displays tooltip text when the mouse moves over the element.Stringtitle

Specifies the type of button. Valid values are button, reset, and submit.
This value defaults to button.

Stringtype

The value for the button element. This value is optional and can be used
when submitting a form.

Stringvalue

The variant changes the appearance of buttonIcon. Accepted variants
include bare, container, border, border-filled, bare-inverse, and
border-inverse. This value defaults to border.

Stringvariant

lightning:buttonIconStateful
An icon-only button that retains state. This component requires API version 41.0 and later.

A lightning:buttonIconStateful component represents an icon-only button element that toggles between two states.
For example, you can use this component for capturing a customer's feedback on a blog post (like or dislike). Clicking the button triggers
the client-side controller method set for onclick and changes the state of the icon using the selected attribute.

The Lightning Design System utility icon category offers nearly 200 utility icons that can be used in
lightning:buttonIconStateful. Although the Lightning Design System provides several categories of icons, only the utility
category can be used with this component.

Visit https://lightningdesignsystem.com/icons/#utility to view the utility icons.

This component inherits styling from button icons in the Lightning Design System.

You can use a combination of the variant, size, and class attributes to customize the button and icon styles. To customize
styling on the button container, use the class attribute.

This example creates a like button that toggles between two states. The like button is selected by default. The button's state is stored
in the selected attribute.

<aura:component>
<aura:attribute name="liked" type="Boolean" default="true"/>
<lightning:buttonIconStateful iconName="utility:like" selected="{!v.liked}"

alternativeText="Like" onclick="{! c.handleToggle }"/>
<aura:component>

Selecting the dislike button also toggles the state on the like button and deselects it.

({
handleToggle : function (cmp, event) {

var liked = cmp.get("v.liked");
cmp.set("v.liked", !liked);

}
})

Methods

This component supports the following method.

429

lightning:buttonIconStatefulReference

https://lightningdesignsystem.com/icons/#utility
https://www.lightningdesignsystem.com/components/button-icons/

focus(): Sets focus on the element.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

Specifies a shortcut key to activate or focus an element.Stringaccesskey

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

The action triggered when the element receives focus.Actiononfocus

The action triggered when the element releases focus.Actiononblur

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

The name for the button element. This value is optional and can be used
to identify the button in a callback.

Stringname

The value for the button element. This value is optional and can be used
when submitting a form.

Stringvalue

YesThe Lightning Design System name of the icon. Names are written in the
format '\utility:down\' where 'utility' is the category, and 'down' is the

StringiconName

specific icon to be displayed. Note: Only utility icons can be used in this
component.

The variant changes the appearance of buttonIcon. Accepted variants
border, and border-inverse. This value defaults to border.

Stringvariant

The size of the buttonIcon. Options include xx-small, x-small, small, and
medium. This value defaults to medium.

Stringsize

Specifies whether this button should be displayed in a disabled state.
Disabled buttons can't be clicked. This value defaults to false.

Booleandisabled

YesThe alternative text used to describe the icon. This text should describe
what happens when you click the button, for example 'Upload File', not
what the icon looks like, 'Paperclip'.

StringalternativeText

The action that will be run when the button is clicked.Actiononclick

Specifies whether button is in selected state or notBooleanselected

lightning:buttonMenu
Represents a dropdown menu with a list of actions or functions.

430

lightning:buttonMenuReference

A lightning:buttonMenu represents a button that when clicked displays a dropdown menu of actions or functions that a user
can access.

Use the variant, size, or class attributes to customize the styling.

This component inherits styling from menus in the Lightning Design System.

This example shows a dropdown menu with three items.

<lightning:buttonMenu iconName="utility:settings" alternativeText="Settings" onselect="{!
c.handleMenuSelect }">

<lightning:menuItem label="Font" value="font" />
<lightning:menuItem label="Size" value="size"/>
<lightning:menuItem label="Format" value="format" />

</lightning:buttonMenu>

When onselect is triggered, its event will have a value parameter, which is the value of the selected menu item. Here's an example
of how to read that value.

handleMenuSelect: function(cmp, event, helper) {
var selectedMenuItemValue = event.getParam("value");

}

You can create menu items that can be checked or unchecked using the checked attribute in the lightning:menuItem
component, toggling it as needed. To enable toggling of a menu item, you must set an initial value on the checked attribute, specifying
either true or false.

The menu closes when you click away from it, and it will also close and will put the focus back on the button when a menu item is
selected.

Generating Menu Items with aura:iteration

This example creates a button menu with several items during initialization.

<aura:component>
<aura:handler name="init" value="{!this}" action="{!c.createItems}" />
<lightning:buttonMenu alternativeText="Action" onselect="{! c.handleMenuSelect }">

<aura:iteration var="action" items="{! v.actions }">
<lightning:menuItem aura:id="actionMenuItems" label="{! action.label }"

value="{! action.value }"/>
</aura:iteration>

</lightning:buttonMenu>
</aura:component>

The client-side controller creates the array of menu items and set its value on the actions attribute.

({
createItems: function (cmp, event) {

var items = [
{ label: "New", value: "new" },
{ label: "Edit", value: "edit" },
{ label: "Delete", value: "delete" }

];
cmp.set("v.actions", items);

}
})

Usage Considerations

431

lightning:buttonMenuReference

https://www.lightningdesignsystem.com/components/menus/

This component contains menu items that are created only if the button is triggered. You won't be able to reference the menu items
during initialization or if the button isn't triggered yet.

Accessibility

To inform screen readers that a button is disabled, set the disabled attribute to true.

Methods

This component supports the following method.

focus(): Sets the focus on the element.

Attributes

Required?DescriptionAttribute TypeAttribute Name

Specifies a shortcut key to activate or focus an element.Stringaccesskey

The assistive text for the button.StringalternativeText

The body of the component.ComponentDefRef[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

If true, the menu is disabled. Disabling the menu prevents users from
opening it. This value defaults to false.

Booleandisabled

The name of the icon to be used in the format \'utility:down\'. This value
defaults to utility:down. If an icon other than utility:down or

StringiconName

utility:chevrondown is used, a utility:down icon is appended to the right
of that icon.

The size of the icon. Options include xx-small, x-small, medium, or large.
This value defaults to medium.

StringiconSize

Determines the alignment of the menu relative to the button. Available
options are: left, center, right. This value defaults to left.

StringmenuAlignment

The name for the button element. This value is optional and can be used
to identify the button in a callback.

Stringname

The action triggered when the element releases focus.Actiononblur

The action triggered when the element receives focus.Actiononfocus

Action fired when a menu item is selected. The 'detail.menuItem' property
of the passed event is the selected menu item.

Actiononselect

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

Tooltip text on the button.Stringtitle

The value for the button element. This value is optional and can be used
when submitting a form.

Stringvalue

432

lightning:buttonMenuReference

Required?DescriptionAttribute TypeAttribute Name

The variant changes the look of the button. Accepted variants include
bare, container, border, border-filled, bare-inverse, and border-inverse.
This value defaults to border.

Stringvariant

If true, the menu items are displayed. This value defaults to false.Booleanvisible

lightning:buttonStateful
A button that toggles between states.

A lightning:buttonStateful component represents a button that toggles between states, similar to a like button on social
media. Stateful buttons can show a different label and icon based on their states.

Use the variant and class attributes to apply additional styling.

The Lightning Design System utility icon category provides nearly 200 utility icons that can be used in lightning:button along
with a text label. Although the Lightning Design System provides several categories of icons, only the utility category can be used with
this component.

Visit https://lightningdesignsystem.com/icons/#utility to view the utility icons.

This component inherits styling from stateful buttons in the Lightning Design System.

To handle the state change when the button is clicked, use the onclick event handler. This example enables you to toggle the button
between states, displaying the "Follow" label by default, and replacing it with "Following" when the button is selected. Selecting the
button toggles the state to true, and deselecting it toggles the state to false. When the state is true, the button displays "Unfollow" when
you mouse over it or when it receives focus.

<aura:component>
<aura:attribute name="buttonstate" type="Boolean" default="false"/>
<lightning:buttonStateful

labelWhenOff="Follow"
labelWhenOn="Following"
labelWhenHover="Unfollow"
iconNameWhenOff="utility:add"
iconNameWhenOn="utility:check"
iconNameWhenHover="utility:close"
state="{! v.buttonstate }"
onclick="{! c.handleClick }"

/>
</aura:component>

The client-side controller toggles the state via the buttonstate attribute.

({
handleClick : function (cmp, event, helper) {

var buttonstate = cmp.get('v.buttonstate');
cmp.set('v.buttonstate', !buttonstate);

}
})

Accessibility

For accessibility, include the attribute aria-live="assertive" on the button. The aria-live="assertive" attribute
means the value of the inside the button will be spoken whenever it changes.

433

lightning:buttonStatefulReference

https://lightningdesignsystem.com/icons/#utility
https://www.lightningdesignsystem.com/components/buttons/#flavor-stateful

To inform screen readers that a button is disabled, set the disabled attribute to true.

Methods

This component supports the following method.

focus(): Sets focus on the element.

Attributes

Required?DescriptionAttribute TypeAttribute Name

Specifies a shortcut key to activate or focus an element.Stringaccesskey

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

The name of the icon to be used in the format \'utility:close\' when the
state is true and the button receives focus.

StringiconNameWhenHover

The name of the icon to be used in the format \'utility:add\' when the
state is false.

StringiconNameWhenOff

The name of the icon to be used in the format \'utility:check\' when the
state is true.

StringiconNameWhenOn

The text to be displayed inside the button when state is true and the
button receives focus.

StringlabelWhenHover

YesThe text to be displayed inside the button when state is false.StringlabelWhenOff

YesThe text to be displayed inside the button when state is true.StringlabelWhenOn

The action triggered when the element releases focus.Actiononblur

The action triggered when the button is clicked.Actiononclick

The action triggered when the element receives focus.Actiononfocus

The state of the button, which shows whether the button has been
selected or not. The default state is false.

Booleanstate

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

Displays tooltip text when the mouse moves over the element.Stringtitle

The variant changes the appearance of the button. Accepted variants
include brand, destructive, inverse, neutral, success, and text. This value
defaults to neutral.

Stringvariant

434

lightning:buttonStatefulReference

lightning:card
Cards are used to apply a container around a related grouping of information.

A lightning:card is used to apply a stylized container around a grouping of information. The information could be a single item
or a group of items such as a related list.

Use the variant or class attributes to customize the styling.

A lightning:card contains a title, body, and footer. To style the card body, use the Lightning Design System helper classes.

This component inherits styling from cards in the Lightning Design System.

Here is an example.

<aura:component>
<lightning:card>

<aura:set attribute="title">
Hello!

</aura:set>
<aura:set attribute="footer">

<lightning:badge label="footer"/>
</aura:set>
<aura:set attribute="actions">

<lightning:button label="New"/>
</aura:set>
<p class="slds-p-horizontal_small">

Card Body (custom component)
</p>

</lightning:card>
</aura:component>

Usage Considerations

The title and footer attributes are of type Object, which means that you can pass in values of String or Component[]
types among some others. The previous example passes in the title and footer attributes as a Component[] type, also known
as a facet. The Component[] type is useful if you need to pass in markup to the title or footer, as shown in this example.

<aura:component>
<aura:attribute name="name" type="String" default="Your Name"/>
<aura:attribute name="myTitleName" type="Aura.Component[]">

<h1>Hello {! v.name }</h1>
</aura:attribute>
<lightning:card footer="Card Footer">

<aura:set attribute="title">
{!v.myTitleName}

</aura:set>
<!-- actions and body markup here -->

</lightning:card>
</aura:component>

To pass in a value of String type, you can include it in the <lightning:card> tag.

<aura:component>
<aura:attribute name="myTitle" type="String" default="My Card Title"/>
<lightning:card title="{!v.myTitle}" footer="Card Footer">

<aura:set attribute="actions">
<lightning:button label="New"/>

435

lightning:cardReference

https://www.lightningdesignsystem.com/components/cards/

</aura:set>
<p class="slds-p-horizontal_small">

Card Body (custom component)
</p>

</lightning:card>

Attributes

Required?DescriptionAttribute TypeAttribute Name

Actions are components such as button or buttonIcon. Actions are
displayed in the header.

Component[]actions

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

The footer can include text or another componentObjectfooter

The Lightning Design System name of the icon. Names are written in the
format '\utility:down\' where 'utility' is the category, and 'down' is the

StringiconName

specific icon to be displayed. The icon is displayed in the header to the
left of the title.

YesThe title can include text or another component, and is displayed in the
header.

Objecttitle

The variant changes the appearance of the card. Accepted variants include
base or narrow. This value defaults to base.

Stringvariant

lightning:checkboxGroup
A checkbox group that enables selection of single or multiple options. This component requires API version 41.0 and later.

A lightning:checkboxGroup component represents a checkbox group that enables selection of single or multiple options.

If the required attribute is set to true, at least one checkbox must be selected. When a user interacts with the checkbox group
and doesn't make a selection, an error message is displayed. You can provide a custom error message using the
messageWhenValueMissing attribute.

If the disabled attribute is set to true, checkbox selections can't be changed.

This component inherits styling from Checkbox in the Lightning Design System.

This example creates a checkbox group with two options and option1 is selected by default. At least one checkbox must be selected
as the required attribute is true.

<aura:component>
<aura:attribute name="options" type="List" default="[
{'label': 'Ross', 'value': 'option1'},
{'label': 'Rachel', 'value': 'option2'},

436

lightning:checkboxGroupReference

https://www.lightningdesignsystem.com/components/checkbox/

]"/>
<aura:attribute name="value" type="List" default="option1"/>
<lightning:checkboxGroup

aura:id="mygroup"
name="checkboxGroup"
label="Checkbox Group"
options="{! v.options }"
value="{! v.value }"
onchange="{! c.handleChange }"
required="true" />

</aura:component>

You can check which values are selected by using cmp.find("mygroup").get("v.value"). To retrieve the values when a
checkbox is selected or deselected, use the onchange event handler and call event.getParam("value").

({
handleChange: function (cmp, event) {

var changeValue = event.getParam("value");
alert(changeValue);

}
});

Usage Considerations

lightning:checkboxGroup is useful for grouping a set of checkboxes. If you have a single checkbox, use lightning:input
type="checkbox" instead.

Accessibility

The checkbox group is nested in a fieldset element that contains a legend element. The legend contains the label value.
The fieldset element enables grouping of related checkboxes to facilitate tabbing navigation and speech navigation for accessibility
purposes. Similarly, the legend element improves accessibility by enabling a caption to be assigned to the fieldset.

Methods

This component supports the following method.

checkValidity(): Returns the valid property value (Boolean) on the ValidityState object to indicate whether the checkbox group
has any validity errors.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesThe name of the checkbox group.Stringname

YesText label for the checkbox group.Stringlabel

437

lightning:checkboxGroupReference

Required?DescriptionAttribute typeAttribute Name

YesArray of label-value pairs for each checkbox.Listoptions

YesThe list of selected checkboxes. Each array entry contains the value of a
selected checkbox. The value of each checkbox is set in the options
attribute.

String[]value

Optional message displayed when no checkbox is selected and the
required attribute is set to true.

StringmessageWhenValueMissing

Set to true if at least one checkbox must be selected. This value defaults
to false.

Booleanrequired

Set to true if the checkbox group is disabled. Checkbox selections can't
be changed for a disabled checkbox group. This value defaults to false.

Booleandisabled

The action triggered when the checkbox group releases focus.Actiononblur

The action triggered when a checkbox value changes.Actiononchange

The action triggered when the checkbox group receives focus.Actiononfocus

lightning:clickToDial
Renders a formatted phone number as click-to-dial enabled or disabled for Open CTI and Voice. This component requires API version
41.0 and later.

A lightning:clickToDial component respects any existing click-to-dial commands for computer-telephony integrations (CTI)
with Salesforce, such as Open CTI and Voice.

To dial phone numbers in the component, you must first enable the phone system. After the phone system is enabled, when a user
clicks on a phone number the component notifies the phone system that the number was clicked. Then, the component passes along
any information that's required by the phone system to make an outbound call.

Here's an example of how you can use a lightning:clickToDial component. The first phone number doesn't have a recordId
or any parameters. The second phone number has a recordId. The third phone number has a recordId and parameters.

<aura:component>
<lightning:clickToDial value="14155555551"/>
<lightning:clickToDial value="14155555552" recordId="5003000000D9duF"/>
<lightning:clickToDial value="14155555553" recordId="5003000000D8cuI"

params="accountSid=xxx, sourceId=xxx, apiVersion=123"/>
</aura:component>

Open CTI Usage Considerations

The lightning:clickToDial component works in conjunction with the Open CTI for Lightning Experience API methods,
enableClickToDial, disableClickToDial, and onClickToDial. For more information, see the Open CTI Developer
Guide. The component doesn't support iFrames, which means that it can’t be used in utilities, such as a phone utility, or Lightning Out
apps that are hosted on iFrames.

To dial phone numbers using lightning:clickToDial, first enable the phone system with the Open CTI method
enableClickToDial. To disable the phone system, use the Open CTI method disableClickToDial.

438

lightning:clickToDialReference

https://developer.salesforce.com/docs/atlas.en-us.210.0.api_cti.meta/api_cti/
https://developer.salesforce.com/docs/atlas.en-us.210.0.api_cti.meta/api_cti/

When a phone number is clicked, the onClickToDial listener that’s registered with the Open CTI method onClickToDial is
invoked.

lightning:clickToDial can contain a recordId attribute. If you pass this attribute, the payload that’s passed to the Open CTI
method onClickToDial contains the record information associated with this record ID. For example, record name and object type.
If the recordId isn’t passed, no record information is provided to the onClickToDial handler.

A formatted phone number follows the North American format of 123 456 7890.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesThe phone number.Stringvalue

The Salesforce record Id that's associated with the phone number.StringrecordId

Comma-separated list of parameters to pass to the third-party phone
system.

Stringparams

lightning:combobox
A widget that provides an input field that is readonly, accompanied with a dropdown list of selectable options.

lightning:combobox is an input element that enables single selection from a list of options. The result of the selection is displayed
as the value of the input.

This component inherits styling from combobox in the Lightning Design System.

This example creates a list of options during init with a default selection.

<aura:component>
<aura:attribute name="statusOptions" type="List" default="[]"/>
<aura:handler name="init" value="{! this }" action="{! c.loadOptions }"/>
<lightning:combobox aura:id="selectItem" name="status" label="Status"

placeholder="Choose Status"
value="new"
onchange="{!c.handleOptionSelected}"
options="{!v.statusOptions}"/>

</aura:component>

In your client-side controller, define an array of options and assign it to the statusOptions attribute. Each option corresponds to
a list item on the dropdown list.

({
loadOptions: function (component, event, helper) {

var options = [
{ value: "new", label: "New" },

439

lightning:comboboxReference

https://www.lightningdesignsystem.com/components/combobox/

{ value: "in-progress", label: "In Progress" },
{ value: "finished", label: "Finished" }

];
component.set("v.statusOptions", options);

},
handleChange: function (cmp, event) {

// Get the string of the "value" attribute on the selected option
var selectedOptionValue = event.getParam("value");
alert("Option selected with value: '" + selectedOptionValue + "'");

}
})

Selecting an option triggers the onchange event, which calls the handleChange client-side controller. To check which option
has been clicked, use event.getParam("value"). Calling cmp.find("mycombobox").get("v.value"); returns
the currently selected option.

Input Validation

Client-side input validation is available for this component. You can make the the selection required by setting required="true".
An error message is automatically displayed when an item is not selected and required="true".

To check the validity states of an input, use the validity attribute, which is based on the ValidityState object. You can access
the validity states in your client-side controller. This validity attribute returns an object with boolean properties. See
lightning:input for more information.

You can override the default message by providing your own value for messageWhenValueMissing.

Accessibility

You must provide a text label for accessibility to make the information available to assistive technology. The label attribute creates an
HTML label element for your input component. To hide a label from view and make it available to assistive technology, use the
label-hidden variant.

Methods

This component supports the following methods.

focus(): Sets focus on the element.

checkValidity(): Returns the valid property value (Boolean) on the ValidityState object to indicate whether the combobox has
any validity errors.

setCustomValidity(message): Sets a custom error message to be displayed when the combobox value is submitted.

• message (String): The string that describes the error. If message is an empty string, the error message is reset.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

YesSpecifies the name of an input element.Stringname

Specifies the value of an input element.Objectvalue

The variant changes the appearance of an input field. Accepted variants
include standard and label-hidden. This value defaults to standard.

Stringvariant

440

lightning:comboboxReference

Required?DescriptionAttribute typeAttribute Name

Specifies that an input element should be disabled. This value defaults
to false.

Booleandisabled

Specifies that an input field is read-only. This value defaults to false.Booleanreadonly

Specifies that an input field must be filled out before submitting the form.
This value defaults to false.

Booleanrequired

Represents the validity states that an element can be in, with respect to
constraint validation.

Objectvalidity

The action triggered when a value attribute changes.Actiononchange

Specifies a shortcut key to activate or focus an element.Stringaccesskey

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

The action triggered when the element receives focus.Actiononfocus

The action triggered when the element releases focus.Actiononblur

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesA list of options that are available for selection. Each option has the
following attributes: class, selected, label, and value.

Object[]options

YesText label for the combobox.Stringlabel

Text that is displayed before an option is selected, to prompt the user to
select an option. The default is "Select an Option".

Stringplaceholder

Determines the alignment of the drop-down relative to the input.
Available values are left, center, right, bottom-left, bottom-center,
bottom-right. The default is left.

StringdropdownAlignment

Error message to be displayed when the value is missing and input is
required.

StringmessageWhenValueMissing

lightning:container
Used to contain content that uses a third-party javascript framework such as Angular or React.

The lightning:container component allows you to host content developed with a third-party framework within a Lightning
component. The content is uploaded as a static resource, and hosted in an iFrame. The lightning:container component can
be used for single-page applications only.

This is a simple example of lightning:container.

<aura:component access="global" implements="flexipage:availableForAllPageTypes">
<lightning:container src="{!$Resource.myReactApp + '/index.html'}"/>

</aura:component>

441

lightning:containerReference

You can also implement communication to and from the framed application, allowing it to interact with Salesforce. Use the message()
function in the Javascript controller to send messages to the application, and specify a method for handling messages with the component’s
onmessage attribute.

This example of a Javascript controller uses the message() function to send a simple JSON payload to the third-party content, in this
case an AngularJS app.

({
sendMessage : function(component, event, helper) {

var msg = {
name: "General",
value: component.get("v.messageToSend")

};
component.find("AngularApp").message(msg);

},
handleMessage: function(component, message, helper) {

var payload = message.payload;
var name = payload.name;
if (name === "General") {

var value = payload.value;
component.set("v.messageReceived", value);

}
else if (name === "Foo") {

// A different response
}

},
})

The accompanying component definition defines attributes for a message to send from the container to the Lightning component and
for a message received. The onmessage attribute of lightning:container references the Javascript method
handleMessage.

<aura:component access="global" implements="flexipage:availableForAllPageTypes" >
<aura:attribute name="messageToSend" type="String" default=""/>
<aura:attribute name="messageReceived" type="String" default=""/>
<div>

<lightning:input name="messageToSend" value="{!v.messageToSend}" label="Message
to send to Angular app: "/>

<lightning:button label="Send" onclick="{!c.sendMessage}"/>
<lightning:textarea name="messageReceived" value="{!v.messageReceived}"

label="Message received from Angular app: "/>
<lightning:container aura:id="AngularApp"

src="{!$Resource.SendReceiveMessages + '/index.html'}"
onmessage="{!c.handleMessage}"/>

</div>
</aura:component>

Because you define the controller-side message handling yourself, you can use it to handle any kind of message payload. You can, for
example, send just a text string or return a structured JSON response.

Usage Considerations

When specifying the src of the container, don’t specify a hostname. Instead, use $Resource with dot notation to reference your
application, uploaded as a static resource.

Accessibility

442

lightning:containerReference

Use the alternativeText attribute to provide assistive text for the lightning:container.

Methods

The component supports the following method.

message(): Sends a user-defined message from the component to the iFrame content.

Attributes

Required?DescriptionAttribute TypeAttribute Name

Used for alternative text in accessibility scenarios.StringalternativeText

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

The CSS class for the iframe element.Stringclass

The client-side controller action to run when an error occurs when
sending a message to the contained app.

Actiononerror

The client-side controller action to run when a message is received from
the contained content.

Actiononmessage

YesThe resource name, landing page and query params in url format.
Navigation is supported only for the single page identified.

Stringsrc

lightning:datatable
A table that displays columns of data, formatted according to type. This component requires API version 41.0 and later.

A lightning:datatable component displays tabular data where each column can be displayed based on the data type. For
example, an email address is displayed as a hyperlink with the mailto: URL scheme by specifying the email type. The default type
is text.

This component inherits styling from data tables in the Lightning Design System.

Inline editing is currently not supported. Supported features include:

• Displaying and formatting of columns with appropriate data types

• Resizing of columns

• Selecting of rows

• Sorting of columns by ascending and descending order

Tables can be populated during initialization using the data, columns, and keyField attributes. This example creates a table
with 6 columns, where the first column displays a checkbox for row selection. The table data is loaded using the init handler. Selecting
the checkbox enables you to select the entire row of data and triggers the onrowselection event handler.

<aura:component>
<aura:attribute name="mydata" type="Object"/>
<aura:attribute name="mycolumns" type="List"/>
<aura:handler name="init" value="{! this }" action="{! c.init }"/>
<lightning:datatable data="{! v.mydata }"

columns="{! v.mycolumns }"

443

lightning:datatableReference

https://www.lightningdesignsystem.com/components/data-tables/

keyField="id"
onrowselection="{! c.getSelectedName }"/>

</aura:component>

Here's the client-side controller that creates selectable rows and the columns object to their corresponding column data.

({
init: function (cmp, event, helper) {
cmp.set('v.mycolumns', [

{label: 'Opportunity name', fieldName: 'opportunityName', type: 'text'},
{label: 'Confidence', fieldName: 'confidence', type: 'percent'},
{label: 'Amount', fieldName: 'amount', type: 'currency', typeAttributes:

{ currencyCode: 'EUR'}},
{label: 'Contact Email', fieldName: 'contact', type: 'email'},
{label: 'Contact Phone', fieldName: 'phone', type: 'phone'}

]);
cmp.set('v.mydata', [{

id: 'a',
opportunityName: 'Cloudhub',
confidence: 0.2,
amount: 25000,
contact: 'jrogers@cloudhub.com',
phone: '2352235235'

},
{

id: 'b',
opportunityName: 'Quip',
confidence: 0.78,
amount: 740000,
contact: 'quipy@quip.com',
phone: '2352235235'

}]);
},
getSelectedName: function (cmp, event) {

var selectedRows = event.getParam('selectedRows');
// Display that fieldName of the selected rows
for (var i = 0; i < selectedRows.length; i++){

alert("You selected: " + selectedRows[i].opportunityName);
}

}
})

In the previous example, the first row of data displays a checkbox in the first column, and columns with the following data: Cloudhub,
20%, $25,000.00, jrogers@cloudhub.com, and (235) 223-5235. The last two columns are displayed as hyperlinks to represent an email
address and telephone number.

Retrieving Data Using an Apex Controller

Let's say you want to display data on the Contact object. Create an Apex controller that queries the fields you want to display.

public with sharing class ContactController {
@AuraEnabled
public static List<Contact> getContacts() {

List<Contact> contacts =
[SELECT Id, Name, Phone, Email FROM Contact];

//Add isAccessible() check

444

lightning:datatableReference

return contacts;
}

}

Wire this up to your component via the controller attribute. The markup looks similar to the previous example.

<aura:component controller="ContactController">
<aura:attribute name="mydata" type="Object"/>
<aura:attribute name="mycolumns" type="List"/>
<aura:handler name="init" value="{! this }" action="{! c.init }"/>
<lightning:datatable data="{! v.mydata }"

columns="{! v.mycolumns }"
keyField="Id"
hideCheckboxColumn="true"/>

</aura:component>

Initialize the column data by mapping the fieldName property to the API name of the field.

({
init: function (cmp, event, helper) {

cmp.set('v.mycolumns', [
{label: 'Contact Name', fieldName: 'Name', type: 'text'},
{label: 'Phone', fieldName: 'Phone', type: 'phone'},
{label: 'Email', fieldName: 'Email', type: 'email'}

]);
helper.getData(cmp);

}
})

Finally, retrieve the contacts in your helper.

({
getData : function(cmp) {

var action = cmp.get('c.getContacts');
action.setCallback(this, $A.getCallback(function (response) {

var state = response.getState();
if (state === "SUCCESS") {

cmp.set('v.mydata', response.getReturnValue());
} else if (state === "ERROR") {

var errors = response.getError();
console.error(errors);

}
}));
$A.enqueueAction(action);

}
})

Working with Column Data

Besides providing the column data, you must define the following column properties.

• label: Required. The text label displayed in the column header.

• fieldName: Required. The name that binds the columns properties to the associated data. Each columns property must
correspond to an item in the data array.

• type: Required. The data type to be used for data formatting.

445

lightning:datatableReference

• initialWidth: The width of the column when it's initialized, which must be within the minColumnWidth and
maxColumnWidth values, or within 50px and 1000px if they are not provided.

• typeAttributes: Provides custom formatting with component attributes for the data type. For example, currencyCode
for the currency type.

• sortable: Specifies whether sorting by columns is enabled. The default is false.

Formatting with Data Types

The data table determines the format based on the type you specify. Each data type is associated to a base Lightning component. For
example, specifying the text type renders the associated data using a lightning:formattedText component. Some of
these types allow you to pass in the attributes via the typeAttributes property to customize your output. For supported attribute
values, refer to the component’s reference documentation. Valid data types and their supported attributes include:

Supported Type AttributesDescriptionType

N/ADisplays a date and time based on
the locale using
lightning:formattedDateTime

date

N/ADisplays an email address using
lightning:formattedEmail

email

latitude, longitudeDisplays a latitude and longitude of
a location using
lightning:formattedLocation

location

minimumIntegerDigits, minimumFractionDigits,
maximumFractionDigits, minimumSignificanentryigits,
maximumSignificanentryigits

Displays a number using
lightning:formattedNumber

number

currencyCode, currencyDisplayAsDisplays a currency using
lightning:formattedNumber

currency

Same as number typeDisplays a percentage using
lightning:formattedNumber

percent

N/ADisplays a phone number using
lightning:formattedPhone

phone

N/ADisplays text using
lightning:formattedText

text

targetDisplays a URL using
lightning:formattedUrl

url

To customize the formatting based on the data type, pass in the attributes for the corresponding base Lightning component. For example,
pass in a custom currencyCode value to override the default currency code.

columns: [
{label: 'Amount', fieldName: 'amount', type: 'currency', typeAttributes: { currencyCode:

'EUR' }}
]

When using currency or date and time types, the default user locale is used when no locale formatting is provided.

446

lightning:datatableReference

For more information on attributes, see the corresponding component documentation.

Resizing Tables and Columns

The width and height of the datatable is determined by the container element. A scroller is appended to the table body if there are more
rows to display. For example, you can restrict the height to 300px by applying CSS styling to the container element.

<div style="height: 300px;">
<!-- lightning:datatable goes here -->

</div>

By default, columns are resizable. Users can click and drag the width to a minimum of 50px and a maximum of 1000px, unless the default
values are changed. Columns can be resized by default. You can disable column resizing by setting resizeColumnDisabled to
true. To change the minimum and maximum width column, use the minColumnWidth and maxColumnWidth attributes.

Sorting Data By Column

To enable sorting of row data by a column label, set sortable to true for the column on which you want to enable sorting. Set
sortedBy to match the fieldName property on the column. Clicking a column header sorts rows by ascending order unless the
defaultSortDirection is changed, and clicking it subsequently reverses the order. Handle the onsort event handler to
update the table with the new column index and sort direction.

Here's an example of the client-side controller that's called by the onsort event handler.

({
// Client-side controller called by the onsort event handler
updateColumnSorting: function (cmp, event, helper) {

var fieldName = event.getParam('fieldName');
var sortDirection = event.getParam('sortDirection');

// assign the latest attribute with the sorted column fieldName and sorted direction

cmp.set("v.sortedBy", fieldName);
cmp.set("v.sortedDirection", sortDirection);
helper.sortData(cmp, fieldName, sortDirection);

}
})

The helper function is as follows.

({
sortData: function (cmp, fieldName, sortDirection) {

var data = cmp.get("v.data");
var reverse = sortDirection !== 'asc';
//sorts the rows based on the column header that's clicked
data.sort(this.sortBy(fieldName, reverse))
cmp.set("v.data", data);

},
sortBy: function (field, reverse, primer) {

var key = primer ?
function(x) {return primer(x[field])} :
function(x) {return x[field]};

//checks if the two rows should switch places
reverse = !reverse ? 1 : -1;
return function (a, b) {

return a = key(a), b = key(b), reverse * ((a > b) - (b > a));
}

}
})

447

lightning:datatableReference

Accessibility

You can use data tables in navigation mode and action mode using the keyboard. To enter navigation mode, tab into the data table,
which triggers focus on the first data cell in the table body. Use the arrow keys to move around the table.

Columns can be resized in action mode. To resize a column, navigate to the header by pressing the Up Arrow key. Press the Enter key
or Space Bar to enter action mode. Then, press the Tab key to activate the column divider, and resize the column using the Left Arrow
and Right Arrow key. To finish resizing the column and return to navigation mode, press the Tab key.

Methods

This component supports the following method.

getSelectedRows(): Returns an array of data in each selected row.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesRequired for better performance. Associates each row with a unique ID.StringkeyField

Array of the columns object that's used to define the data types. Required
properties include 'label', 'fieldName', and 'type'. The default type is 'text'.

Listcolumns

The array of data to be displayed.Objectdata

Hides or displays the checkbox column for row selection. To hide the
checkbox column, set hideCheckboxColumn to true. The default is false.

BooleanhideCheckboxColumn

Specifies whether column resizing is disabled. The default is false.BooleanresizeColumnDisabled

The minimum width for all columns. The default is 50px.IntegerminColumnWidth

The maximum width for all columns. The default is 1000px.IntegermaxColumnWidth

The width to resize the column when user press left or right arrow. The
default is 10px.

IntegerresizeStep

The column fieldName that controls the sorting order. Sort the data using
the onsort event handler.

StringsortedBy

Specifies the sorting direction. Sort the data using the onsort event
handler. Valid options include 'asc' and 'desc'.

StringsortedDirection

Specifies the default sorting direction on an unsorted column. Valid
options include 'asc' and 'desc'. The default is 'asc' for sorting in ascending
order.

StringdefaultSortDirection

The action triggered when a row is selected.Actiononrowselection

448

lightning:datatableReference

Required?DescriptionAttribute TypeAttribute Name

The action triggered when a column is sorted.Actiononsort

lightning:dualListbox
A widget that provides an input listbox, accompanied with a listbox of selectable options. Order of selected options is saved. This
component requires API version 41.0 and later.

A lightning:dualListbox component represents two side-by-side list boxes. Select one or more options in the list on the left.
Move selected options to the list on the right. The order of the selected options is maintained and you can reorder options.

This component inherits styling from Dueling Picklist in the Lightning Design System.

Here's an example that creates a simple dual list box with 8 options. Options 7, 2 and 3 are selected under the "Second Category" list
box. Options 2 and 7 are required options.

<aura:component>
<aura:attribute name="listOptions" type="List" default="[]"/>
<aura:attribute name="defaultOptions" type="List" default="[]"/>
<aura:attribute name="requiredOptions" type="List" default="[]"/>
<aura:handler name="init" value="{! this }" action="{! c.initialize }"/>
<lightning:dualListbox aura:id="selectOptions" name="Select Options" label= "Select

Options"
sourceLabel="Available Options"
selectedLabel="Selected Options"
options="{! v.listOptions }"
value="{! v.defaultOptions }"
requiredOptions="{! v.requiredOptions }"
onchange="{! c.handleChange }"/>

</aura:component>

Here's the client-side controller that loads the options and handles value changes.

/** Client-Side Controller **/
({

initialize: function (component, event, helper) {
var options = [

{ value: "1", label: "Option 1" },
{ value: "2", label: "Option 2" },
{ value: "3", label: "Option 3" },
{ value: "4", label: "Option 4" },
{ value: "5", label: "Option 5" },
{ value: "6", label: "Option 6" },
{ value: "7", label: "Option 7" },
{ value: "8", label: "Option 8" },

];
var values = ["7", "2", "3"];
var required = ["2", "7"];
component.set("v.listOptions", options);
component.set("v.defaultOptions", values);
component.set("v.requiredOptions", required);

},

449

lightning:dualListboxReference

https://www.lightningdesignsystem.com/components/dueling-picklist/

handleChange: function (cmp, event) {
// Get the list of the "value" attribute on all the selected options
var selectedOptionsList = event.getParam("value");
alert("Options selected: '" + selectedOptionsList + "'");

}
})

To specify the number of options users can select, use the min and max attributes. For example, if you set min to 3 and max to 8,
users must select at least 3 options and at most 8 options.

Usage Considerations

To retrieve the selected values, use the onchange handler.

({
onChange: function (cmp, event) {
// Retrieve an array of the selected options
var selectedOptionValue = event.getParam("value");
}

})

The onchange handler is triggered when you click the left and right buttons to move options from one list to another or when you
change the order of options in the selected options list.

Accessibility

Use the following keyboard shortcuts to work with dual list boxes.

• Click - Select a single option.

• Cmd+Click - Select multiple options or deselect selected options.

• Shift+Click - Select all options between the current and last clicked option.

When focus is on options:

• Up Arrow - Move selection to previous option.

• Down Arrow - Move selection to next option.

• Cmd/Ctrl+Up Arrow - Move focus to previous option.

• Cmd/Ctrl+Down Arrow - Move focus to next option.

• Ctrl+Space - Toggle selection of focused option.

• Cmd/Ctrl+Right Arrow - Move selected options to right list box.

• Cmd/Ctrl+Left Arrow - Move selected options to left list box.

• Tab - Move focus to next element.

When focus is on a button:

• Enter - Perform the operation associated with that button.

Methods

This component supports the following methods.

focus(): Sets focus on the element.

checkValidity(): Returns the valid property value (Boolean) on the ValidityState object to indicate whether the dual listbox has
any validity errors.

setCustomValidity(message): Sets a custom error message to be displayed when the dual listbox value is submitted.

450

lightning:dualListboxReference

• message (String): The string that describes the error. If message is an empty string, the error message is reset.

showHelpMessageIfInvalid(): Shows the help message if the form control is in an invalid state.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

YesSpecifies the name of an input element.Stringname

Specifies the value of an input element.Objectvalue

The variant changes the appearance of an input field. Accepted variants
include standard and label-hidden. This value defaults to standard.

Stringvariant

Specifies that an input element should be disabled. This value defaults
to false.

Booleandisabled

Specifies that an input field is read-only. This value defaults to false.Booleanreadonly

Specifies that an input field must be filled out before submitting the form.
This value defaults to false.

Booleanrequired

Represents the validity states that an element can be in, with respect to
constraint validation.

Objectvalidity

The action triggered when a value attribute changes.Actiononchange

Specifies a shortcut key to activate or focus an element.Stringaccesskey

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

The action triggered when the element receives focus.Actiononfocus

The action triggered when the element releases focus.Actiononblur

YesLabel for the dual list box.Stringlabel

YesLabel for source options list box.StringsourceLabel

YesLabel for selected options list box.StringselectedLabel

YesA list of options that are available for selection. Each option has the
following attributes: label and value.

Object[]options

A list of required options that cannot be removed from selected options
list box. This list is populated with values from options attribute.

ListrequiredOptions

A list of default options that are included in the selected options list box.
This list is populated with values from the options attribute.

Listvalues

Minimum number of options required in the selected options list box.Integermin

Maximum number of options required in the selected options list box.Integermax

451

lightning:dualListboxReference

lightning:dynamicIcon
Represents various animated icons with different states. This component requires API version 41.0 and later.

A lightning:dynamicIcon component visually displays an event that's in progress, such as a graph that's loading.

This component inherits styling from dynamic icons in the Lightning Design System.

Here’s an example of an ellie icon with alternative text.

<aura:component>
<lightning:dynamicIcon type="ellie" alternativeText="Your calculation is running."/>

</aura:component>

Usage Considerations

The following options are available.

• Use the type="ellie" attribute to show a pulsing blue circle, which pulses and stops after one animation cycle. This icon is
great for field calculations or a process that’s running in the background.

• Use the type="eq" attribute to show an animated graph with three bars that rise and fall randomly. This icon is great for a graph
that’s refreshing.

• Use the type="score" attribute to show a green filled circle or a red unfilled circle. This icon is great for showing positive and
negative indicators.

• Use the type="strength" attribute to show three animated horizontal circles that are colored green or red. This icon is great
for Einstein calculations or indicating password strengths.

• Use the type="trend" attribute to show animated arrows that point up, down, or straight. This icon is great for showing
movement of a value from one range to another, like a forecast score.

• Use the type="waffle" attribute to show a square made up of a 3x3 grid of circles. This icon animates on hover. This icon is
great for app-related items, like the App Launcher in Lightning Experience.

Accessibility

Optionally, you can use the alternativeText attribute to describe the dynamicIcon.

Sometimes a dynamicIcon is decorative and doesn’t need a description. However, on smaller screens and windows the
dynamicIcon can also be informational. In this case, include alternativeText. If you don’t include alternativeText,
check smaller screens and windows to ensure that the dynamicIcon is only decorative on all formats.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesThe Lightning Design System name of the dynamicIcon. Valid values are:
ellie, eq, score, strength, trend, and waffle.

Stringtype

The option attribute changes the appearance of the dynamicIcon. The
options available depend on the type attribute. For eq: play (default) or

Stringoption

452

lightning:dynamicIconReference

https://www.lightningdesignsystem.com/components/dynamic-icons/

Required?DescriptionAttribute typeAttribute Name

stop For score: positive (default) or negative For strength: -3, -2, -1, 0
(default), 1, 2, 3 For trend: neutral (default), up, or down

The alternative text used to describe the dynamicIcon. This text should
describe what’s happening. For example, 'Graph is refreshing',
not what the icon looks like, 'Graph'.

StringalternativeText

The action triggered when the icon is clicked.Actiononclick

lightning:fileCard
Displays a preview of an uploaded file available in Salesforce CRM Content or Salesforce Files.

A lightning:fileCard component displays a preview of a file. On desktops, clicking the file preview opens the SVG file preview
player, enabling you to preview images, documents, and other files in the browser. The file preview player provides quick access to file
actions, such as upload, delete, download, and share. On mobile devices, clicking the file preview downloads the file. If a title is available,
it's displayed below the file preview in the caption area. The file type determines the icon used on the file preview and caption area.

This component inherits styling from files in the Lightning Design System.

Here's an example of a file preview. The fileId value must be a valid 15 character ContentDocument ID.

<aura:component>
<lightning:fileCard fileId="069XXXXXXXXXXXX"/>

</aura:component>

Usage Considerations

Opening the file preview player is supported in Lightning Experience, the Salesforce mobile web, and Lightning communities.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

YesThe Salesforce File ID (ContentDocument).StringfileId

lightning:fileUpload (Beta)
A file uploader for uploading and attaching files to records.

A lightning:fileUpload component provides an easy and integrated way for users to upload multiple files. The file uploader
includes drag-and-drop functionality and filtering by file types.

This component inherits styling from file selector in the Lightning Design System.

File uploads are always associated to a record, hence the recordId attribute is required. Uploaded files are available in Files Home
under the Owned by Me filter and on the record's Attachments related list on the record detail page. Although all file formats that are
supported by Salesforce are allowed, you can restrict the file formats using the accept attribute.

453

lightning:fileCardReference

https://www.lightningdesignsystem.com/components/files/
https://www.lightningdesignsystem.com/components/file-selector

This example creates a file uploader that allows multiple PDF and PNG files to be uploaded. Change the recordId value to your own.

<aura:component>
<aura:attribute name="myRecordId" type="String" description="Record to which the files

should be attached" />
<lightning:fileUpload label="Attach receipt"

multiple="true"
accept=".pdf, .png"
recordId="{!v.myRecordId}"
onuploadfinished="{!c.handleUploadFinished}" />

</aura:component

You must handle the onuploadfinished event, which is fired when the upload is finished.

({
handleUploadFinished: function (cmp, event) {

// Get the list of uploaded files
var uploadedFiles = event.getParam("files");
alert("Files uploaded : " + uploadedFiles.length);

}
})

event.getParam("files") returns a list of uploaded files with the properties name and documentId.

• name: The file name in the format filename.extension, for example, account.jpg.

• documentId: The ContentDocument Id in the format 069XXXXXXXXXXXX.

File Upload Limits

By default, you can upload up to 10 files simultaneously unless your Salesforce admin has changed that limit. The org limit for the number
of files simultaneously uploaded is a maximum of 25 files and a minimum of 3 files. The maximum file size you can upload is 2 GB. In
Communities, the file size limits and types allowed follow the settings determined by community file moderation.

Usage Considerations

This component is not supported in Lightning Out or standalone apps, and displays as a disabled input. Additionally, if the Don't
allow HTML uploads as attachments or document records security setting is enabled for your organization,
the file uploader cannot be used to upload files with the following file extensions: .htm, .html, .htt, .htx, .mhtm, .mhtml, .shtm, .shtml,
.acgi, .svg. For more information, see Upload and Share Files in Salesforce Help.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesThe text label for the file uploader.Stringlabel

YesThe record Id of the record that the uploaded file is associated to.StringrecordId

454

lightning:fileUpload (Beta)Reference

Required?DescriptionAttribute typeAttribute Name

Specifies whether a user can upload more than one file simultanesouly.
This value defaults to false.

Booleanmultiple

Specifies whether this component should be displayed in a disabled
state. Disabled components can't be clicked. This value defaults to false.

Booleandisabled

Comma-separated list of file extensions that can be uploaded in the
format .ext, such as .pdf, .jpg, or .png

Listaccept

The action triggered when files have finished uploading.Actiononuploadfinished

lightning:flexipageRegionInfo
Provides Lightning page region information to the component that contains it.

The lightning:flexipageRegionInfo component provides Lightning page region information to the component that
contains it. It passes the width of the region that the component is dropped into in the Lightning App Builder. For more information,
see "Make Your Lightning Page Components Width Aware With lightning:flexipageRegionInfo."

<aura:component implements="flexipage:availableForAllPageTypes">
<aura:attribute name="width" type="String" description=" width of parent region"/>
<lightning:flexipageRegionInfo width="{!v.width}"/>

<div id="MyCustomComponent" class="{! v.width}">
<!-- Your custom component here -->

</div>
</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

The width of the region that the component resides in.Stringwidth

lightning:flow
Represents a flow interview in Lightning runtime. This component requires API version 41.0 and later.

A lightning:flow component represents a flow interview in Lightning runtime.

Specify which flow to render with the name attribute. If it’s appropriate for your flow, initialize the flow’s input variables with the
inputVariables attribute.

This example renders the Survey Customers flow (from the Create a Satisfaction Survey Trailhead project).

<aura:component>
<aura:handler name="init" value="{!this}" action="{!c.init}"/>

455

lightning:flexipageRegionInfoReference

https://trailhead.salesforce.com/en/projects/flow_satisfaction

<lightning:flow aura:id="flowData"/>
</aura:component>

In your client-side controller, identify which flow to start.

({
init : function (cmp) {
var flow = cmp.find("flowData");
flow.startFlow("Survey_customers");

}
})

Usage Considerations

The referenced flow must be active.

Valid statuses for a flow interview are:

• STARTED: the interview successfully started.

• PAUSED: the interview was successfully paused.

• FINISHED: the interview for a flow with screens finished.

• FINISHED_SCREEN: the interview for a flow without screens finished, and the component displayed a default screen with this
message: “Your flow finished”

• ERROR: something went wrong and the interview has failed.

Each flow component includes navigation buttons (Back, Next, Pause, and Finish), which navigate within the flow. By default, when the
flow finishes, the component reloads the first screen for a new interview. To customize what happens when the flow finishes, add an
event handler for the onstatuschange action when status contains FINISHED.

Methods

This component supports the following methods.

startFlow(flowName, inputVariables): Starts a flow interview.

• flowName (String): The unique name of the flow to render.

• inputVariables (Object[]): Sets initial values for the flow’s input variables.

resumeFlow(interviewId): Resumes a paused flow interview.

• interviewId (String): ID of the interview to resume.

For more information, see Working with the Flow Lightning Component in the Lightning Components Developer Guide.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

The current status of the flow interview.Actiononstatuschange

456

lightning:flowReference

lightning:formattedDateTime (Beta)
Displays formatted date and time.

A lightning:formattedDateTime component displays formatted date and time. This component uses the Intl.DateTimeFormat
JavaScript object to format date values. The locale set in the app's user preferences determines the formatting. The following input
values are supported.

• Date object

• ISO8601 formatted string

• Timestamp

An ISO8601 formatted string matches one of the following patterns.

• YYYY

• YYYY-MM

• YYYY-MM-DD

• YYYY-MM-DDThh:mmTZD

• YYYY-MM-DDThh:mm:ssTZD

• YYYY-MM-DDThh:mm:ss.sTZD

Here are some examples based on a locale of en-US.

Displays: 8/2/2016

<aura:component>
<lightning:formattedDateTime value="1470174029742" />

</aura:component>

Displays: Tuesday, Aug 02, 16

<aura:component>
<lightning:formattedDateTime value="1470174029742" year="2-digit" month="short"

day="2-digit" weekday="long"/>
</aura:component>

Displays: 8/2/2016, 3:15 PM PDT

<aura:component>
<lightning:formattedDateTime value="1470174029742" year="numeric" month="numeric"

day="numeric" hour="2-digit" minute="2-digit" timeZoneName="short" />
</aura:component>

Usage Considerations

This component provides fallback behavior in Apple Safari 10 and below. The following formatting options have exceptions when using
the fallback behavior in older browsers.

• era is not supported.

• timeZoneName appends GMT for short format, GMT-h:mm or GMT+h:mm for long format.

• timeZone supports UTC. If another timezone value is used, lightning:formattedDateTime uses the browser timezone.

457

lightning:formattedDateTime (Beta)Reference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Allowed values are numeric or 2-digit.Stringday

Allowed values are narrow, short, or long.Stringera

Allowed values are numeric or 2-digit.Stringhour

Determines whether time is displayed as 12-hour. If false, time displays
as 24-hour. The default setting is determined by the user's locale.

Booleanhour12

Allowed values are numeric or 2-digit.Stringminute

Allowed values are 2-digit, narrow, short, or long.Stringmonth

Allowed values are numeric or 2-digit.Stringsecond

The time zone to use. Implementations can include any time zone listed
in the IANA time zone database. The default is the runtime's default time
zone. Use this attribute only if you want to override the default time zone.

StringtimeZone

Allowed values are short or long. For example, the Pacific Time zone
would display as 'PST' if you select 'short', or 'Pacific Standard Time' if you
select 'long.'

StringtimeZoneName

Displays tooltip text when the mouse moves over the element.Stringtitle

YesThe value to be formatted, which can be a Date object, timestamp, or
an ISO8601 formatted string.

Objectvalue

Allowed values are narrow, short, or long.Stringweekday

Allowed values are numeric or 2-digit.Stringyear

lightning:formattedEmail
Displays an email as a hyperlink with the mailto: URL scheme. This component requires API version 41.0 and later.

A lightning:formattedEmail component displays a read-only representation of an email address as a hyperlink using the
mailto: URL scheme. Clicking on the email address opens the default mail application for the desktop or mobile device.

This example displays an email address with an email icon. The email address is displayed as the default label.

<aura:component>
<lightning:formattedEmail value="hello@myemail.com" />

</aura:component>

458

lightning:formattedEmailReference

Multiple email addresses are supported. The label "Send a group email" is displayed as a hyperlink in this example.

<aura:component>
<lightning:formattedEmail value="hello@email1.com,hello@email2.com" label="Send a group

email" />
</aura:component>

This example creates an email address with values for cc, subject, and email body. The label is displayed as a hyperlink.

<aura:component>
<lightning:formattedEmail value="hello@myemail.com?cc=cc@myemail.com&subject=My%20subject

&body=The%20email%20body"
label="Send us your feedback" />

</aura:component>

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesThe email address that's displayed if a label is not provided.Stringvalue

The text label for the email.Stringlabel

The action triggered when the email is clicked.Actiononclick

lightning:formattedLocation
Displays a geolocation in Decimal degrees (DD) using the format [latitude, longitude]. This component requires API version 41.0 and
later.

A lightning:formattedLocation component displays a read-only representation of a latitude and longitude value. Latitude
and longitude are geographic coordinates specified in decimal degrees. If one of the values are invalid or outside the allowed range,
this component doesn't display anything.

Here are a few examples of latitudes: -30, 45, 37.12345678, -10.0. Values such as 90.5 or -90.5 are not valid latitudes. Here are a few
examples of longitudes: -100, -120.9762, 115.84. Values such as 180.5 or -180.5 are not valid longitudes.

This example displays a geolocation with a latitude of 37.7938460 and a longitude of -122.3948370.

<aura:component>
<lightning:formattedLocation latitude="37.7938460" longitude="-122.3948370"/>

</aura:component>

459

lightning:formattedLocationReference

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesThe latitude value of the geolocation. Latitude values must be within -90
and 90.

Decimallatitude

YesThe longitude value of the geolocation. Longitude values must be within
-180 and 180.

Decimallongitude

lightning:formattedNumber (Beta)
Displays formatted numbers for decimals, currency, and percentages.

A lightning:formattedNumber component displays formatted numbers for decimals, currency, and percentages. This
component uses the Intl.NumberFormat JavaScript object to format numerical values. The locale set in the app's user preferences
determines how numbers are formatted.

The component has several attributes that specify how number formatting is handled in your app. Among these attributes are
minimumSignificantDigits and maximumSignificantDigits. Significant digits refer the accuracy of a number. For
example, 1000 has one significant digit, but 1000.0 has five significant digits. Additionally, the number of decimal places can be customized
using maximumFractionDigits.

Decimal numbers default to 3 decimal places. This example returns 1234.568.

<aura:component>
<lightning:formattedNumber value="1234.5678" />

</aura:component>

Currencies default to 2 decimal places. In this example, the formatted number displays as $5,000.00.

<aura:component>
<lightning:formattedNumber value="5000" style="currency" currencyCode="USD" />

</aura:component>

Percentages default to 0 decimal places. In this example, the formatted number displays as 50%.

<aura:component>
<lightning:formattedNumber value="0.5" style="percent" />

</aura:component>

Usage Considerations

This component provides the following fallback behavior in Apple Safari 10 and below.

460

lightning:formattedNumber (Beta)Reference

• If style is set to currency, providing a currencyCode value that’s different from the locale displays the currency code
instead of the symbol. The following example displays EUR12.34 in fallback mode and €12.34 otherwise.

<lightning:formattedNumber value="12.34" style="currency"
currencyCode="EUR"/>

• currencyDisplayAs supports symbol only. The following example displays $12.34 in fallback mode only if currencyCode
matches the user’s locale currency and USD12.34 otherwise.

<lightning:formattedNumber value="12.34" style="currency"
currencyCode="USD" currencyDisplayAs="symbol"/>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Only used if style='currency', this attribute determines which currency
is displayed. Possible values are the ISO 4217 currency codes, such as
'USD' for the US dollar.

StringcurrencyCode

Determines how currency is displayed. Possible values are symbol, code,
and name. This value defaults to symbol.

StringcurrencyDisplayAs

The maximum number of fraction digits that are allowed.IntegermaximumFractionDigits

The maximum number of significant digits that are allowed. Possible
values are from 1 to 21.

IntegermaximumSignificantDigits

The minimum number of fraction digits that are required.IntegerminimumFractionDigits

The minimum number of integer digits that are required. Possible values
are from 1 to 21.

IntegerminimumIntegerDigits

The minimum number of significant digits that are required. Possible
values are from 1 to 21.

IntegerminimumSignificantDigits

The number formatting style to use. Possible values are decimal, currency,
and percent. This value defaults to decimal.

Stringstyle

Displays tooltip text when the mouse moves over the element.Stringtitle

YesThe value to be formatted.BigDecimalvalue

lightning:formattedPhone
Displays a phone number as a hyperlink with the tel: URL scheme. This component requires API version 41.0 and later.

461

lightning:formattedPhoneReference

A lightning:formattedPhone component displays a read-only representation of a phone number as a hyperlink using the
tel: URL scheme. Clicking the phone number opens the default VOIP call application on a desktop. On mobile devices, clicking the
phone number calls the number.

Providing a phone number with 10 or 11 digits that starts with 1 displays the number in the format (999) 999-9999. Including a "+" sign
before the number displays the number in the format +19999999999.

Here are two ways to display (425) 333-4444 as a hyperlink.

<aura:component>
<p><lightning:formattedPhone value="4253334444"></lightning:formattedPhone></p>
<p><lightning:formattedPhone value="14253334444"></lightning:formattedPhone></p>

</aura:component>

The previous example renders the following HTML.

(425) 333-4444
(425) 333-4444

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

Sets the phone number to display.Integervalue

The action triggered when the phone number is clicked.Actiononclick

lightning:formattedRichText
Displays rich text that's formatted with whitelisted tags and attributes. Other tags and attributes are removed and only their text content
is displayed. This component requires API version 41.0 and later.

A lightning:formattedRichText component is a read-only representation of rich text. Rich text refers to text that's formatted
by HTML tags, such as for bold text or <u> for underlined text. You can pass in rich text to this component using the
lightning:inputRichText component or programmatically by setting a value in the client-side controller.

This example creates a rich text editor that's wired up to a lightning:formattedRichText component. The rich text content
is set during initialization.

<aura:component>
<aura:handler name="init" value="{! this }" action="{! c.init }" />
<aura:attribute name="richtext" type="String"/>
<!-- Rich text editor and formatted output -->
<lightning:inputRichText value="{!v.richtext}"/>
<lightning:formattedRichText value="{!v.richtext}" />

</aura:component>

462

lightning:formattedRichTextReference

Initialize the rich text content in the client-side controller.

({
init: function(cmp) {

var content = "<h1>Hello!</h1>";
cmp.set("v.richtext", content);

}
})

To use double quotes in your value definitions, escape them using the \ character.

var rte = "<h1 style=\"color:blue;\">This is a blue heading</h1>";
cmp.set("v.richtext", rte);

To pass in HTML tags in your component markup, escape the tags like this.

<lightning:formattedRichText value="<h1>TEST</h1>" />

Supported HTML Tags and Attributes

The component sanitizes HTML tags passed to the value attribute to prevent XSS vulnerabilities. It also ensures that the formatted
output is valid HTML. For example, if you have mismatched tags like <div>My Title</h1>, the component returns <div>My
Title</div>.

If you set unsupported tags via a client-side controller, those tags are removed and the text content is preserved. The supported HTML
tags are: a, abbr, acronym, address, b, br, big, blockquote, caption, cite, code, col, colgroup, del, div,
dl, dd, dt, em, font, h1, h2, h3, h4, h5, h6, hr, i, img, ins, kbd, li, ol, p, q, s, samp, small, span, strong,
sub, sup, table, tbody, td, tfoot, th, thead, tr, tt, u, ul, var, strike.

Supported HTML attributes include: accept, action, align, alt, autocomplete, background, bgcolor, border,
cellpadding, cellspacing, checked, cite, class, clear, color, cols, colspan, coords, data-fileid,
datetime, default, dir, disabled, download, enctype, face, for, headers, height, hidden, high, href,
hreflang, id, ismap, label, lang, list, loop, low, max, maxlength, media, method, min, multiple, name,
noshade, novalidate, nowrap, open, optimum, pattern, placeholder, poster, preload, pubdate,
radiogroup, readonly, rel, required, rev, reversed, rows, rowspan, spellcheck, scope, selected,
shape, size, span, srclang, start, src, step, style, summary, tabindex, target, title, type, usemap,
valign, value, width, xmlns.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

Sets the rich text to display.Stringvalue

463

lightning:formattedRichTextReference

lightning:formattedText
Displays text, replaces newlines with line breaks, and linkifies if requested. This component requires API version 41.0 and later.

A lightning:formattedText component displays a read-only representation of text, wrapping URLs and email addresses in
anchor tags (also known as "linkify"). It also converts the \r or \n characters into
 tags.

To display URLs and email addresses in a block of text in anchor tags, set linkify="true". If not set, URLs and email addresses
display as plain text. Setting linkify="true" wraps URLs and email addresses in anchor tags with format="html"
scope="external" type="new-window:HTML". URLs and email addresses are appended by http:// and mailto://
respectively.

<aura:component>
<lightning:formattedText linkify="true" value="I like salesforce.com and

trailhead.salesforce.com." />
</aura:component>

The previous example renders like this.

I like <a format="html" scope="external" type="new-window:HTML"
href="http://salesforce.com">salesforce.com
and <a format="html" scope="external" type="new-window:HTML"
href="http://trailhead.salesforce.com">trailhead.salesforce.com.

Usage Considerations

lightning:formattedText supports the following protocols: http, https, ftp and mailto.

If you're working with hyperlinks and need to specify the target value, use lightning:formattedURL instead. If you're
working with email addresses only, use lightning:formattedEmail.

For rich text that uses tags beyond anchor tags, use lightning:formattedRichText instead.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

Text to output.Stringvalue

Specifies whether the text should be converted to a link. If set to true,
URLs and email addresses are displayed in anchor tags.

Booleanlinkify

lightning:formattedUrl
Displays a URL as a hyperlink. This component requires API version 41.0 and later.

464

lightning:formattedTextReference

A lightning:formattedUrl component displays a read-only representation of a URL as a hyperlink with an href attribute.
The link can be a relative or absolute URL. Absolute URLs use protocols such as http://, https://, and ftp://. This component
renders an anchor link with the absolute URL as the href value and the label as the displayed text. If no label is provided, the
absolute url is used as the displayed text. Clicking the URL takes you to the URL in the same window as it was clicked.

An absolute URL displays using the http:// protocol by default.

<aura:component>
<lightning:formattedUrl value="www.salesforce.com" />

</aura:component>

The previous example renders the following HTML.

http://www.salesforce.com

A relative URL navigates to a path within the current site you're on.

<aura:component>
<!-- Resolves to http://current-domain/my/path -->
<lightning:formattedUrl value="/my/path" />

</aura:component>

Usage Considerations

Use the target attribute to change where the link should open. If you don't provide a target, the hyperlink renders without the href
attribute. Supported target values are:

• _blank: Opens the link in a new window or tab.

• _self: Opens the link in the same frame as it was clicked. This is the default behavior.

• _parent: Opens the link in the parent frame. If there's no parent, this is similar to _self.

• _top: Opens the link into the top-level browsing context. If there's no parent, this is similar to _self.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

The URL to be formatted.Stringvalue

Specifies where to open the link. Options include _blank, _parent, _self,
and _top.

Stringtarget

The text to display in the link.Stringlabel

The text to display when the mouse hovers over the link.Stringtooltip

The action triggered when the URL is clicked.Actiononclick

465

lightning:formattedUrlReference

lightning:helptext
An icon with a text popover. This component requires API version 41.0 and later.

A lightning:helptext component displays an icon with a popover containing a small amount of text describing an element
on screen. The popover is displayed when you hover or focus on the icon that's attached to it. This component is similar to a tooltip and
is useful to display field-level help text, for example. HTML markup is not supported in the tooltip content.

This component inherits styling from tooltips in the Lightning Design System.

By default, the tooltip uses the utility:info icon. The Lightning Design System utility icon category offers nearly 200 utility icons
that can be used in lightning:helptext. Although the Lightning Design System provides several categories of icons, only the
utility category can be used in lightning:buttonIcon.

Visit https://lightningdesignsystem.com/icons/#utility to view the utility icons.

This example creates an icon with a tooltip.

<aura:component>
<lightning:helptext

content="Your email address will be your login name" />
</aura:component>

The popover is anchored on the lower left of the icon and shown above the icon if space is available. It automatically adjusts its position
according to the viewport.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

Text to be shown in the popover.Stringcontent

The Lightning Design System name of the icon used as the visible
element. Names are written in the format 'utility:info' where 'utility' is the

StringiconName

category, and 'info' is the specific icon to be displayed. The default value
is 'utility:info'.

lightning:icon
Represents a visual element that provides context and enhances usability.

A lightning:icon is a visual element that provides context and enhances usability. Icons can be used inside the body of another
component or on their own.

Visit https://lightningdesignsystem.com/icons to view the available icons.

466

lightning:helptextReference

https://www.lightningdesignsystem.com/components/tooltips/
https://lightningdesignsystem.com/icons/#utility
https://lightningdesignsystem.com/icons

Here is an example.

<aura:component>
<lightning:icon iconName="action:approval" size="large" alternativeText="Indicates

approval"/>
</aura:component>

Use the variant, size, or class attributes to customize the styling. The variant attribute changes the appearance of a utility
icon. For example, the error variant adds a red fill to the error utility icon.

<lightning:icon iconName="utility:error" variant="error"/>

If you want to make additional changes to the color or styling of an icon, use the class attribute.

Usage Considerations

When using lightning:icon in a standalone app, extend force:slds to resolve the icon resources correctly.

<aura:application extends="force:slds">
<lightning:icon iconName="utility:error" variant="error"/>

</aura:application>

Accessibility

Use the alternativeText attribute to describe the icon. The description should indicate what happens when you click the button,
for example 'Upload File', not what the icon looks like, 'Paperclip'.

Sometimes an icon is decorative and does not need a description. But icons can switch between being decorative or informational based
on the screen size. If you choose not to include an alternativeText description, check smaller screens and windows to ensure
that the icon is decorative on all formats.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The alternative text used to describe the icon. This text should describe
what happens when you click the button, for example 'Upload File', not
what the icon looks like, 'Paperclip'.

StringalternativeText

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

YesThe Lightning Design System name of the icon. Names are written in the
format '\utility:down\' where 'utility' is the category, and 'down' is the
specific icon to be displayed.

StringiconName

The size of the icon. Options include xx-small, x-small, small, medium, or
large. This value defaults to medium.

Stringsize

Displays tooltip text when the mouse moves over the element.Stringtitle

The variant changes the appearance of a utility icon. Accepted variants
include inverse, warning and error. Use the inverse variant to implement
a white fill in utility icons on dark backgrounds.

Stringvariant

467

lightning:iconReference

lightning:input (Beta)
Represents interactive controls that accept user input depending on the type attribute.

A lightning:input component creates an HTML input element. This component supports HTML5 input types, including
checkbox, date and datetime-local, email, file, password, search, tel, url, number, radio, toggle.
The default is text.

You can define a client-side controller action for input events like onblur, onfocus, and onchange. For example, to handle a
change event on the component when the value of the component is changed, use the onchange attribute.

This component inherits styling from input in the Lightning Design System.

Checkbox

Checkboxes let you select one or more options. lightning:input type="checkbox" is useful for creating single checkboxes.
If you are working with a group of checkboxes, use lightning:checkboxGroup instead.

<lightning:input type="checkbox" label="Red" name="red" checked="true"/>
<lightning:input type="checkbox" label="Blue" name="blue" />

Checkbox-button

Checkbox buttons let you select one or more options with an alternative visual design.

<lightning:input type="checkbox" label="Add pepperoni" name="addPepperoni" checked="true"
value="pepperoni" />
<lightning:input type="checkbox-button" label="Add salami" name="addSalami" value="salami"
/>

Color

A color picker enables you to specify a color using a color picker or by entering the color into a text field. The native color picker is used.

<lightning:input type="color" label="Color" name="color" value="#EEEEEE"/>

Date

An input field for entering a date. Date pickers don't currently support the Lightning Design System styling. The date format is automatically
validated during the onblur event.

<lightning:input type="date" label="Birthday" name="date" />

Datetime-local

An input field for entering a date and time. Date pickers don't currently support the Lightning Design System styling. The date and time
format is automatically validated during the onblur event.

<lightning:input type="datetime-local" label="Birthday" name="datetime" />

Email

An input field for entering an email address. The email pattern is automatically validated during the onblur event.

<lightning:input type="email" label="Email" name="email" value="abc@domain.com" />

File

468

lightning:input (Beta)Reference

https://www.lightningdesignsystem.com/components/input/

An input field for uploading files using a Upload Files button or a drag-and-drop zone. To retrieve the list of selected files, use
event.getSource().get("v.files");.

<lightning:input type="file" label="Attachment" name="file" multiple="true"
accept="image/png, .zip" onchange="{! c.handleFilesChange }"/>

Month

An input field for entering a month and year. Date pickers don't currently inherit the Lightning Design System styling. The month and
year format is automatically validated during the onblur event.

<lightning:input type="month" label="Birthday" name="month" />

Number

An input field for entering a number. When working with numerical input, you can use attributes like max, min, and step.

<lightning:input type="number" name="number" label="Number" value="12345"/>

To format numerical input as a percentage or currency, set formatter to percent or currency respectively.

<lightning:input type="number" name="ItemPrice"
label="Price" value="12345" formatter="currency"/>

Fields for percentage and currency input must specify a step increment of 0.01 as required by the native implementation.

<lightning:input type="number" name="percentVal" label="Enter a percentage value"
formatter="percent" step="0.01" />
<lightning:input type="number" name="currencyVal" label="Enter a dollar amount"
formatter="currency" step="0.01" />

Password

An input field for entering a password. Characters you enter are masked.

<lightning:input type="password" label="Password" name="password" />

Radio

Radio buttons let you select only one of a given number of options. lightning:input type="radio" is useful for creating
single radio buttons. If you are working with a set of radio buttons, use lightning:radioGroup instead.

<lightning:input type="radio" label="Red" name="red" value="red" checked="true" />
<lightning:input type="radio" label="Blue" name="blue" value="blue" />

Range

A slider control for entering a number. When working with numerical input, you can use attributes like max, min, and step.

<lightning:input type="range" label="Number" name="number" min="0" max="10" />

Search

An input field for entering a search string. This field displays the Lightning Design System search utility icon.

<lightning:input type="search" label="Search" name="search" />

Tel

An input field for entering a telephone number. Use the pattern attribute to define a pattern for field validation.

<lightning:input type="tel" label="Telephone" name="tel" value="343-343-3434"
pattern="[0-9]{3}-[0-9]{3}-[0-9]{4}"/>

469

lightning:input (Beta)Reference

Text

An input field for entering text. This is the default input type.

<lightning:input label="Name" name="myname" />

Time

An input field for entering time. The time format is automatically validated during the onblur event.

<lightning:input type="time" label="Time" name="time" />

Toggle

A checkbox toggle for selecting one of two given values.

<lightning:input type="toggle" label="Toggle value" name="togglevalue" checked="true" />

URL

An input field for entering a URL. This URL pattern is automatically validated during the onblur event.

<lightning:input type="url" label="Website" name="website" />

Week

An input field for entering a week and year. Date pickers don't currently inherit the Lightning Design System styling. The week and year
format is automatically validated during the onblur event.

<lightning:input type="week" label="Week" name="week" />

Input Validation

Client-side input validation is available for this component. For example, an error message is displayed when a URL or email address is
expected for an input type of url or email.

You can define additional field requirements. For example, to set a maximum length, use the maxlength attribute.

<lightning:input name="quantity" value="1234567890" label="Quantity" maxlength="10" />

To check the validity states of an input, use the validity attribute, which is based on the ValidityState Web API. To determine
if a field is valid, you can access the validity states in your client-side controller. Let's say you have the following input field.

<lightning:input name="input" aura:id="myinput" label="Enter some text" onblur="{!
c.handleBlur }" />

The valid property returns true because all constraint validations are met, and in this case there are none.

handleBlur: function (cmp, event) {
var validity = cmp.find("myinput").get("v.validity");
console.log(validity.valid); //returns true
}

For example, you have the following form with several fields and a button. To display error messages on invalid fields, use the
showHelpMessageIfInvalid() method.

<aura:component>
<lightning:input aura:id="field" label="First name" placeholder="First name"

required="true" />
<lightning:input aura:id="field" label="Last name" placeholder="Last name"

required="true" />
<lightning:button aura:id="submit" type="submit" label="Submit" onclick="{! c.onClick

470

lightning:input (Beta)Reference

}" />
</aura:component>

Validate the fields in the client-side controller.

({
onClick: function (cmp, evt, helper) {

var allValid = cmp.find('field').reduce(function (validSoFar, inputCmp) {
inputCmp.showHelpMessageIfInvalid();
return validSoFar && inputCmp.get('v.validity').valid;

}, true);
if (allValid) {

alert('All form entries look valid. Ready to submit!');
} else {

alert('Please update the invalid form entries and try again.');
}

}
})

This validity attribute returns an object with the following boolean properties.

• badInput: Indicates that the value is invalid

• patternMismatch: Indicates that the value doesn't match the specified pattern

• rangeOverflow: Indicates that the value is greater than the specified max attribute

• rangeUnderflow: Indicates that the value is less than the specified min attribute

• stepMismatch: Indicates that the value doesn't match the specified step attribute

• tooLong: Indicates that the value exceeds the specified maxlength attribute

• typeMismatch: Indicates that the value doesn't match the required syntax for an email or url input type

• valid: Indicates that the value is valid

• valueMissing: Indicates that an empty value is provided when required attribute is set to true

Error Messages

When an input validation fails, the following messages are displayed by default.

• badInput: Enter a valid value.

• patternMismatch: Your entry does not match the allowed pattern.

• rangeOverflow: The number is too high.

• rangeUnderflow: The number is too low.

• stepMismatch: Your entry isn't a valid increment.

• tooLong: Your entry is too long.

• typeMismatch: You have entered an invalid format.

• valueMissing: Complete this field.

You can override the default messages by providing your own values for these attributes: messageWhenBadInput,
messageWhenPatternMismatch, messageWhenTypeMismatch, messageWhenValueMissing,
messageWhenRangeOverflow, messageWhenRangeUnderflow, messageWhenStepMismatch,
messageWhenTooLong.

471

lightning:input (Beta)Reference

For example, you want to display a custom error message when the input is less than five characters.

<lightning:input name="firstname" label="First Name" minlength="5"
messageWhenBadInput="Your entry must be at least 5 characters." />

Usage Considerations

maxlength limits the number of characters you can enter. The messageWhenTooLong error message isn't triggered because
you can't type more than the number of characters allowed. However, you can use the messageWhenPatternMismatch and
pattern to achieve the same behavior.

<lightning:input type="text" messageWhenPatternMismatch="Too many characters!"
pattern=".{0,5}" name="input-name" label="Enter up to 5 characters" />

The following input types are not supported.

• button

• hidden

• image

• reset

• submit

Use lightning:button instead for input types button, reset, and submit.

Additionally, when working with checkboxes, radio buttons, and toggle switches, use aura:id to group and traverse the array of
components. You can use get("v.checked") to determine which elements are checked or unchecked without reaching into the
DOM. You can also use the name and value attributes to identify each component during the iteration. The following example
groups three checkboxes together using aura:id.

<aura:component>
<fieldset>

<legend>Select your favorite color:</legend>
<lightning:input type="checkbox" label="Red"

name="color1" value="1" aura:id="colors"/>
<lightning:input type="checkbox" label="Blue"

name="color2" value="2" aura:id="colors"/>
<lightning:input type="checkbox" label="Green"

name="color3" value="3" aura:id="colors"/>
</fieldset>

<lightning:button label="Submit" onclick="{!c.submitForm}"/>
</aura:component>

Accessibility

You must provide a text label for accessibility to make the information available to assistive technology. The label attribute creates
an HTML label element for your input component. To hide a label from view and make it available to assistive technology, use the
label-hidden variant.

Methods

This component supports the following methods.

focus(): Sets focus on the element.

showHelpMessageIfInvalid(): Shows the help message if the form control is in an invalid state.

472

lightning:input (Beta)Reference

Attributes

Required?DescriptionAttribute TypeAttribute Name

Specifies the types of files that the server accepts. This attribute can be
used only when type='file'.

Stringaccept

Specifies a shortcut key to activate or focus an element.Stringaccesskey

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

Specifies whether the checkbox is checked. This value defaults to false.Booleanchecked

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Specifies that an input element should be disabled. This value defaults
to false.

Booleandisabled

A FileList that contains selected files. This attribute can be used only when
type='file'.

Objectfiles

String value with the formatter to be used.Stringformatter

Specifies whether the spinner is displayed to indicate that data is loading.
This value defaults to false.

BooleanisLoading

YesText label for the input.Stringlabel

Expected higher bound for the value in Floating-Point numberDecimalmax

The maximum number of characters allowed in the field.Integermaxlength

Text shown for the active state of a toggle. The default is "Active".StringmessageToggleActive

Text shown for then inactive state of a toggle. The default is "Inactive".StringmessageToggleInactive

Error message to be displayed when a bad input is detected.StringmessageWhenBadInput

Error message to be displayed when a pattern mismatch is detected.StringmessageWhenPatternMismatch

Error message to be displayed when a range overflow is detected.StringmessageWhenRangeOverflow

Error message to be displayed when a range underflow is detected.StringmessageWhenRangeUnderflow

Error message to be displayed when a step mismatch is detected.StringmessageWhenStepMismatch

Error message to be displayed when the value is too long.StringmessageWhenTooLong

Error message to be displayed when a type mismatch is detected.StringmessageWhenTypeMismatch

Error message to be displayed when the value is missing.StringmessageWhenValueMissing

Expected lower bound for the value in Floating-Point numberDecimalmin

The minimum number of characters allowed in the field.Integerminlength

473

lightning:input (Beta)Reference

Required?DescriptionAttribute TypeAttribute Name

Specifies that a user can enter more than one value. This attribute can
be used only when type='file' or type='email'.

Booleanmultiple

YesSpecifies the name of an input element.Stringname

The action triggered when the element releases focus.Actiononblur

The action triggered when a value attribute changes.Actiononchange

The action triggered when the element receives focus.Actiononfocus

Specifies the regular expression that the input's value is checked against.
This attributed is supported for text, date, search, url, tel, email, and
password types.

Stringpattern

Text that is displayed when the field is empty, to prompt the user for a
valid entry.

Stringplaceholder

Specifies that an input field is read-only. This value defaults to false.Booleanreadonly

Specifies that an input field must be filled out before submitting the form.
This value defaults to false.

Booleanrequired

Granularity of the value in Positive Floating Point. Use 'any' when
granularity is not a concern.

Objectstep

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

Displays tooltip text when the mouse moves over the element.Stringtitle

The type of the input. This value defaults to text.Stringtype

Represents the validity states that an element can be in, with respect to
constraint validation.

Objectvalidity

Specifies the value of an input element.Objectvalue

The variant changes the appearance of an input field. Accepted variants
include standard and label-hidden. This value defaults to standard.

Stringvariant

lightning:inputLocation
Represents a geolocation compound field that accepts a latitude and longitude value. This component requires API version 41.0 and
later.

A lightning:inputLocation component represents a geolocation compound field that accepts user input for a latitude and
longitude value. Latitude and longitude are geographic coordinates specified in decimal degrees. The geolocation compound field
allows you to identify locations by their latitude and longitude. The latitude field accepts values within -90 and 90, and the longitude
field accepts values within -180 and 180. An error message is displayed when you enter a value outside of the accepted range.

Here are a few examples of latitudes: -30, 45, 37.12345678, -10.0. Values such as 90.5 or -90.5 are not valid latitudes. Here are a few
examples of longitudes: -100, -120.9762, 115.84. Values such as 180.5 or -180.5 are not valid longitudes.

474

lightning:inputLocationReference

This example displays a geolocation compound field with a latitude of 37.7938460 and a longitude of -122.3948370.

<aura:component>
<lightning:inputLocation label="My Coordinates" latitude="37.7938460"

longitude="-122.3948370"/>
</aura:component>

Methods

This component supports the following methods.

focus(): Sets focus on the element.

blur(): Removes focus from the element.

checkValidity(): Returns the valid property value (Boolean) on the ValidityState object to indicate whether the combobox has
any validity errors.

showHelpMessageIfInvalid(): Shows the help message if the compound field is in an invalid state.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

The latitude value. Latitude values must be within -90 and 90.Stringlatitude

The longitude value. Longitude values must be within -180 and 180.Stringlongitude

Specifies whether the compound field must be filled out. An error
message is displayed if a user interacts with the field and does not provide
a value. This value defaults to false.

Booleanrequired

Specifies whether the compound field should be disabled. Disabled fields
are grayed out and not clickable. This value defaults to false.

Booleandisabled

Specifies whether the compound field is read-only. This value defaults
to false.

Booleanreadonly

The variant changes the appearance of the compound field. Accepted
variants include standard and label-hidden. This value defaults to
standard.

Stringvariant

Text label for the compound field.Stringlabel

The action triggered when the input releases focus.Actiononblur

The action triggered when the value changes.Actiononchange

The action triggered when the input receives focus.Actiononfocus

475

lightning:inputLocationReference

lightning:inputRichText (Beta)
A WYSIWYG editor with a customizable toolbar for entering rich text.

A lightning:inputRichText component creates a rich text editor based on the Quill JS library, enabling you to add, edit,
format, and delete rich text. You can create multiple rich text editors with different toolbar configurations. Pasting rich content into the
editor is supported if the feature is available in the toolbar. For example, you can paste bold text if the bold button is available in the
toolbar. An overflow menu is provided if more toolbar buttons are available than can fit the width of the toolbar.

This component inherits styling from rich text editor in the Lightning Design System.

This example creates a rich text editor and sets its content during initialization.

<aura:component>
<aura:attribute name="myVal" type="String" />
<aura:handler name="init" value="{! this }" action="{! c.init }"/>
<lightning:inputRichText value="{!v.myVal}" />

</aura:component>

Initialize the rich text content in the client-side controller.

({
init: function(cmp) {

cmp.set('v.myVal', 'Hello!');
}

})

Customizing the Toolbar

By default, the toolbar displays the font family and size menu, the format text block with Bold, Italic, Underline, and Strikethrough
buttons. It also displays the format body block with Bulleted List, Numbered List, Indent, and Outdent buttons, followed by the align
text block with Left Align Text, Center Align Text, and Right Align Text buttons. The Remove Formatting button is also available,
and it always stands alone at the end of the toolbar.

You can disable buttons by category using the disabledCategories attribute. The categories are:

1. FORMAT_FONT: Format font family and size menus

2. FORMAT_TEXT: Format text buttons

3. FORMAT_BODY: Format body buttons

4. ALIGN_TEXT: Align text buttons

5. REMOVE_FORMATTING: Remove formatting buttons

The font menu provides the following font selection: Arial, Courier, Garamond, Salesforce Sans, Tahoma, Times New Roman, and Verdana.
The font selection defaults to Salesforce Sans with a size of 12px. Supported font sizes are: 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28,
36, 48, and 72. When you copy and paste text in the editor, the font is preserved only if the font is available in the font menu.

Input Validation

lightning:inputRichText doesn't provide built-in validation but you can wire up your own validation logic. Set the valid
attribute to false to change the border color of the rich text editor to red. This example checks whether the rich text content is empty
or undefined.

<aura:component>
<aura:attribute name="myVal" type="String" />
<aura:attribute name="errorMessage" type="String" default="You haven't composed anything

yet."/>
<aura:attribute name="validity" type="Boolean" default="true"/>

476

lightning:inputRichText (Beta)Reference

https://www.lightningdesignsystem.com/components/rich-text-editor

<lightning:inputRichText value="{!v.myVal}" placeholder="Type something interesting"
messageWhenBadInput="{!v.errorMessage}" valid="{!v.validity}"/>

<lightning:button name="validate" label="Validate" onclick="{!c.validate}"/>
</aura:component>

The client-side controller toggles the validity of the rich text editor, and displays the error message when it's invalid.

({
validate: function(cmp) {

if(!cmp.get("v.myVal")){
cmp.set("v.validity", false);

}
else{

cmp.set("v.validity", true);
}

}
})

Supported HTML Tags

The rich text editor provides a WYSIWYG interface only. You can't edit HTML tags using the editor, but you can set the HTML tags via the
value attribute. When you copy content from a web page or another source and paste it into the editor, unsupported tags are removed.
Only formatting that corresponds to an enabled toolbar button or menu is preserved. For example, if you disable the FORMAT_TEXT
category, the Bold, Italic, Underline, and Strikethrough buttons are not available. Furthermore, pasting bold, italic, underlined, or
strikethrough text in the editor are not supported when you disable the FORMAT_TEXT category. Text that was enclosed in unsupported
tags is preserved as plain text. However, tables, images, and links can be pasted into the editor and set via the value attribute, even
though there are no corresponding toolbar buttons or menus for them.

The component sanitizes HTML tags passed to the value attribute to prevent XSS vulnerabilities. Only HTML tags that correspond to
features available on the toolbar are supported. If you set unsupported tags via a client-side controller, those tags are removed and the
text content is preserved. The supported HTML tags are: a, b, col, colgroup, em (converted to i), h1, h2, h3, h4, h5, h6, i,
img, li, ol, p, q, s, strike (converted to s), strong, table, tbody, td, tfoot, th, thead, tr, u, ul, strike.

Pasting text enclosed in div and span tags convert those tags to p tags. Let’s say you paste or set some text in the editor that looks
like this.

The sky is blue.
<div style="color:#0000FF;font-weight:bold">This is some text in a div element.</div>

The editor returns the following markup.

<p>The sky is blue.</p>
<p>This is some text in a div element.</p>

Notice that the font-weight:bold formatting is preserved and converted to a b tag since it corresponds to the Bold toolbar
button. Color formatting in the markup is removed.

Usage Considerations

Although the toolbar buttons for creating tables and inserting images and links are not available, creating them programmatically or
copy and pasting these elements preserves the formatting in the editor. However, resizing of images is not supported.

Methods

This component supports the following method.

focus(): Sets focus on the element.

477

lightning:inputRichText (Beta)Reference

Attributes

Required?DescriptionAttribute TypeAttribute Name

Specifies a shortcut key to activate or focus an element.Stringaccesskey

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

Specifies whether the editor is disabled. This value defaults to false.Booleandisabled

A comma-separated list of button categories to remove from the toolbar.ListdisabledCategories

Error message that's displayed when valid is false.StringmessageWhenBadInput

The action triggered when the element releases focus.Actiononblur

The action triggered when the element receives focus.Actiononfocus

Text that is displayed when the field is empty.Stringplaceholder

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

Specifies whether the editor content is valid. If invalid, the slds-has-error
class is added. This value defaults to true.

Booleanvalid

The HTML content in the rich text editor.Stringvalue

The variant changes the appearance of the toolbar. Accepted variants
include bottom-toolbar.

Stringvariant

lightning:layout
Represents a responsive grid system for arranging containers on a page.

A lightning:layout is a flexible grid system for arranging containers within a page or inside another container. The default layout
is mobile-first and can be easily configured to work on different devices.

The layout can be customized by setting the following attribute values.

horizontalAlign

Spread layout items out horizontally based on the following values.

• center: Appends the slds-grid_align-center class to the grid. This attribute orders the layout items into a horizontal line
without any spacing, and places the group into the center of the container.

• space: Appends the slds-grid_align-space class to the grid. The layout items are spaced horizontally across the container,
starting and ending with a space.

• spread: Appends the slds-grid_align-spread class to the grid. The layout items are spaced horizontally across the container,
starting and ending with a layout item.

478

lightning:layoutReference

• end: Appends the slds-grid_align-end class to the grid. The layout items are grouped together and aligned horizontally
on the right side of the container.

verticalAlign

Spread layout items out vertically based on the following values.

• start: Appends the slds-grid_vertical-align-start class to the grid. The layout items are aligned at the top of the
container.

• center: Appends the slds-grid_vertical-align-center class to the grid. The layout items are aligned in the center
of the container.

• end: Appends the slds-grid_vertical-align-end class to the grid. The layout items are aligned at the bottom of the
container.

• stretch: Appends the slds-grid_vertical-stretch class to the grid. The layout items extend vertically to fill the container.

pullToBoundary

Pull layout items to the layout boundaries based on the following values. If padding is used on layout items, this attribute pulls the
elements on either side of the container to the boundary. Choose the size that corresponds to the padding on your layoutItems. For
instance, if lightning:layoutItem="horizontalSmall", choose pullToBoundary="small".

• small: Appends the slds-grid_pull-padded class to the grid.

• medium: Appends the slds-grid_pull-padded-medium class to the grid.

• large: Appends the slds-grid_pull-padded-large class to the grid.

Use the class or multipleRows attributes to customize the styling in other ways.

A simple layout can be achieved by enclosing layout items within lightning:layout. Here is an example.

<aura:component>
<div class="c-container">

<lightning:layout horizontalAlign="space">
<lightning:layoutItem flexibility="auto" padding="around-small">

1
</lightning:layoutItem>
<lightning:layoutItem flexibility="auto" padding="around-small">

2
</lightning:layoutItem>
<lightning:layoutItem flexibility="auto" padding="around-small">

3
</lightning:layoutItem>
<lightning:layoutItem flexibility="auto" padding="around-small">

4
</lightning:layoutItem>

</lightning:layout>
</div>

</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

Body of the layout component.Component[]body

479

lightning:layoutReference

Required?DescriptionAttribute TypeAttribute Name

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

Determines how to spread the layout items horizontally. The alignment
options are center, space, spread, and end.

StringhorizontalAlign

Determines whether to wrap the child items when they exceed the layout
width. If true, the items wrap to the following line. This value defaults to
false.

BooleanmultipleRows

Pulls layout items to the layout boundaries and corresponds to the
padding size on the layout item. Possible values are small, medium, or
large.

StringpullToBoundary

Determines how to spread the layout items vertically. The alignment
options are start, center, end, and stretch.

StringverticalAlign

lightning:layoutItem
The basic element of lightning:layout.

A lightning:layoutItem is the basic element within lightning:layout. You can arrange one or more layout items
inside lightning:layout. The attributes of lightning:layoutItem enable you to configure the size of the layout item,
and change how the layout is configured on different device sizes.

The layout system is mobile-first. If the size and smallDeviceSize attributes are both specified, the size attribute is applied
to small mobile phones, and the smallDeviceSize is applied to smart phones. The sizing attributes are additive and apply to
devices that size and larger. For example, if mediumDeviceSize=10 and largeDeviceSize isn’t set, then
mediumDeviceSize will apply to tablets, as well as desktop and larger devices.

If the smallDeviceSize, mediumDeviceSize, or largeDeviceSize attributes are specified, the size attribute is
required.

Here is an example.

<aura:component>
<div>

<lightning:layout>
<lightning:layoutItem padding="around-small">

<div>1</div>
</lightning:layoutItem>
<lightning:layoutItem padding="around-small">

<div>2</div>
</lightning:layoutItem>
<lightning:layoutItem padding="around-small">

<div>3</div>
</lightning:layoutItem>
<lightning:layoutItem padding="around-small">

<div>4</div>
</lightning:layoutItem>

</lightning:layout>

480

lightning:layoutItemReference

</div>
</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

Make the item fluid so that it absorbs any extra space in its container or
shrinks when there is less space. Allowed values are: auto (columns grow

Objectflexibility

or shrink equally as space allows), shrink (columns shrink equally as space
decreases), no-shrink (columns don't shrink as space reduces), grow
(columns grow equally as space increases), no-grow (columns don't grow
as space increases), no-flex (columns don't grow or shrink as space
changes). Use a comma-separated value for multiple options, such as
'auto, no-shrink'.

If the viewport is divided into 12 parts, this attribute indicates the relative
space the container occupies on device-types larger than desktop. It is
expressed as an integer from 1 through 12.

IntegerlargeDeviceSize

If the viewport is divided into 12 parts, this attribute indicates the relative
space the container occupies on device-types larger than tablet. It is
expressed as an integer from 1 through 12.

IntegermediumDeviceSize

Sets padding to either the right and left sides of a container, or all sides
of a container. Allowed values are horizontal-small, horizontal-medium,
horizontal-large, around-small, around-medium, around-large.

Stringpadding

If the viewport is divided into 12 parts, size indicates the relative space
the container occupies. Size is expressed as an integer from 1 through
12. This applies for all device-types.

Integersize

If the viewport is divided into 12 parts, this attribute indicates the relative
space the container occupies on device-types larger than mobile. It is
expressed as an integer from 1 through 12.

IntegersmallDeviceSize

lightning:menuItem
Represents a list item in a menu.

A lightning:menuItem is a menu item within the lightning:buttonMenu dropdown component. It can hold state such
as checked or unchecked, and can contain icons.

Use the class attribute to customize the styling.

481

lightning:menuItemReference

This component inherits styling from menus in the Lightning Design System.

Here is an example.

<aura:component>
<lightning:buttonMenu alternativeText="Toggle menu">

<lightning:menuItem label="Menu Item 1" value="menuitem1" iconName="utility:table"
/>

</lightning:buttonMenu>
</aura:component>

To implement a multi-select menu, use the checked attribute. The following client-side controller example handles selection via the
onselect event on the lightning:buttonMenu component. Selecting a menu item applies the selected state to that item.

({
handleSelect : function (cmp, event) {

var menuItem = event.getSource();
// Toggle check mark on the menu item
menuItem.set("v.checked", !menuItem.get("v.checked"));

}
})

Methods

This component supports the following method.

focus(): Sets the focus on the element.

Attributes

Required?DescriptionAttribute TypeAttribute Name

Specifies a shortcut key to activate or focus an element.Stringaccesskey

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

If not specified, the menu item is not checkable. If true, the a check mark
is shown to the left of the menu item. If false, a check mark is not shown
but there is space to accommodate one.

Booleanchecked

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

If true the menu item is not actionable and is shown as disabled.Booleandisabled

If provided an icon with the provided name is shown to the right of the
menu item.

StringiconName

Text of the menu item.Stringlabel

The action triggered when the element releases focus.Actiononblur

The action triggered when the element receives focus.Actiononfocus

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

482

lightning:menuItemReference

https://www.lightningdesignsystem.com/components/menus/

Required?DescriptionAttribute TypeAttribute Name

Tooltip text.Stringtitle

A value associated with the menu item.Stringvalue

DEPRECATED. The action triggered when this menu item becomes active.Actiononactive

lightning:omniToolkitAPI (Beta)
This component provides access to the API for the Omni-channel toolkit.

The lightning:omniToolkitAPI component (beta) enables a component in the utility bar for Omni-Channel to use methods like returning
a list of open work items for an agent. Omni-Channel routes work to agents in the console.

This example includes a button to accept a work item that’s assigned to an agent in the Omni-Channel utility.

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Accept" onClick="{! c.acceptWork }" />

</aura:component>

The button in the component calls the following client-side controller.

({
acceptWork: function(cmp, evt, hlp) {

var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks({

callback: function(result) {
var works = JSON.parse(result.works);
var work = works[0];
omniAPI.acceptAgentWork({

workId: work.workId,
callback: function(result2) {

if (result2.success) {
console.log("Accepted work successfully");

} else {
console.log("Accept work failed");

}
}

});
}

});
}

})

Usage Considerations

All the methods are asynchronous, so they return the response in an object in a callback method.

Methods

This component supports the following methods.

acceptAgentWork({workId, callback}): Accepts a work item that’s assigned to an agent.

483

lightning:omniToolkitAPI (Beta)Reference

• workId (string): The ID of the work item the agent accepts.

• callback (function): Optional. Function called when an agent accepts the work item associated with the workId.

closeAgentWork({workId, callback}): Changes the status of a work item to Closed and removes it from the list of work
items.

• workId (string): The ID of the work item that’s closed.

• callback (function): Optional. Function called when the work item associated with the workId is closed.

declineAgentWork({workId, declineReason, callback}): Declines a work item that’s assigned to an agent.

• workId (string): The ID of the work item that the agent declines.

• declineReason (string): Optional. The provided reason for why the agent declined the work request.

• callback (function): Optional. Function called when an agent declines the work item associated with the workId.

getAgentWorks({callback}): Returns a list of work items that are currently assigned to an agent and open in the agent’s
workspace.

• callback (function): Optional. Function called when the list of an agent’s work items is retrieved.

getAgentWorkload({callback}): Retrieves an agent’s currently-assigned workload. Use this method for rerouting work to
available agents.

• callback (function): Optional. Function called when the agent’s configured capacity and work retrieved.

getServicePresenceStatusChannels({callback}): Retrieves the service channels that are associated with an
Omni-Channel user’s current presence status.

• callback (function): Optional. Function called when the channels associated with a presence status are retrieved.

getServivePresenceStatusId({callback}): Retrieves an agent’s current presence status.

• callback (function): Optional. Function called when the agent’s presence status is retrieved.

login({statusId, callback}): Logs an agent into Omni-Channel with a specific presence status.

• statusId (string): The ID of the presence status.

• callback (function): Optional. Function called when the agent is logged in with the presence status associated with statusId.

logout({callback}): Logs an agent out of Omni-Channel.

• callback (function): Optional. Function called when the agent is logged out of Omni-Channel.

setServicePresenceStatus({statusId, callback}): Sets an agent’s presence status to a status with a particular ID.
We log the user into presence if that user isn’t already logged in. This removes the need for you to make additional calls.

• statusId (string): The ID of the presence status you want to set the agent to.

• callback (function): Optional. Function called when the agent’s status is changed to the presence status associated with statusId.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

484

lightning:omniToolkitAPI (Beta)Reference

lightning:outputField
Represents a read-only display of a label, help text, and value for a field on a Salesforce object. This component requires API version 41.0
and later.

A lightning:outputField component displays the field value in the correct format based on the field type. You must provide
the record ID in the wrapper lightning:recordFormView component, and specify the field name on
lightning:outputField. For example, if fieldName references a date and time value, then the default output value contains
the date and time in the user's locale. If fieldName references an email address, phone number, or URL, then a clickable link is
displayed.

This component inherits styling from input (readonly state) in the Lightning Design System.

To create a record detail layout, wrap the fields with lightning:recordViewForm and provide the record ID. You don't need
additional Apex controllers or Lightning Data Service as data refresh happens automatically.

<aura:component>
<!-- Replace the record ID with your own -->
<lightning:recordViewForm recordId="001XXXXXXXXXXXXXXX" objectApiName="Contact">

<div class="slds-box slds-theme_default">
<lightning:outputField fieldName="Name" />
<lightning:outputField fieldName="Phone"/>
<lightning:outputField fieldName="Email" />
<lightning:outputField fieldName="Birthdate" />
<lightning:outputField fieldName="LeadSource" />

</div>
</lightning:recordViewForm>

</aura:component>

The user's locale settings determine the display formats for numbers, percentages, and date and time. Locales are currently not supported
for currency. Compound fields, such as addresses, contact names, and user names, are not supported. However, you can specify these
fields individually, FirstName and LastName for example, instead of the compound field Name on a contact record. Besides field
values, lightning:outputField displays the localized labels and help text for the fields based on their metadata, which are
defined by your Salesforce admin. Additionally, no output label or value is rendered if you reference an invalid field.

The following fields are supported.

• Auto Number: Displays a string that represents the unique number of the record.

• Checkbox: Displays a disabled checkbox that's either selected or not.

• Currency: Displays the formatted currency based on the user's locale. Locales are currently not supported for currency.

• Date: Displays the formatted date based on the user's locale.

• Date/Time: Displays the formatted date and time based on the user's locale.

• Email: Displays the email address prepended with the mailto: URL scheme.

• Formula: Displays the result of the formula based on its data type.

• Geolocation: Displays latitude and longitude in decimal degrees format: 90.0000, 180.0000.

• Number: Displays the integer or double.

• Percent: Displays the percentage number.

• Phone: Displays the phone number prepended with the tel: URL scheme.

• Picklist and multi-select picklist: Displays picklist values separated by a semi-colon.

• Text: Displays text up to 255 characters.

• Text (Encrypted): Displays the encrypted text.

485

lightning:outputFieldReference

https://www.lightningdesignsystem.com/components/input/

• Text Area: Displays multi-line text up to 255 characters.

• Text Area (Long): Displays multi-line text up to 131,072 characters.

• Text Area (Rich): Displays rich text such as bold or underline text, lists, and images. Unsupported tags and attributes are removed
and only their text content is displayed. For more information on supported tags, see Rich Text Editor in Salesforce Help.

• URL: Displays a link that opens in the same browser window when it's clicked.

For supported objects, see the User Interface API Developer Guide.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

The API name of the field to be displayed.StringfieldName

Changes the appearance of the output. Accepted variants include
standard and label-hidden. This value defaults to standard.

Stringvariant

lightning:path (Beta)
Displays a path driven by a picklist field and Path Setup metadata. This component requires API 41.0 and later.

A lightning:path component displays the progress of a process, which is based on the picklist field that's specified by Path
Settings in Setup. The path is rendered as a horizontal bar with a chevron for each picklist item. The key fields and guidance for success
are displayed below the path.

This example changes the path variant depending on which stage is clicked.

<aura:component
implements="flexipage:availableForAllPageTypes,flexipage:availableForRecordHome,force:hasRecordId"
>

<aura:attribute name="variant" type="String" default="non-linear"/>
<aura:attribute name="hideUpdateButton" type="Boolean" default="false"/>
<lightning:path aura:id="path" recordId="{!v.recordId}"

variant="{!v.variant}"
hideUpdateButton="{!v.hideUpdateButton}"
onselect="{!c.handleSelect}"

/>
</aura:component>

The client-side controller displays a toast with the step name that's clicked.

({
handleSelect : function (component, event, helper) {
var stepName = event.getParam("detail").value;
var toastEvent = $A.get("e.force:showToast");
toastEvent.setParams({
"title": "Success!",
"message": "Toast from " + stepName
});
toastEvent.fire();

486

lightning:path (Beta)Reference

https://developer.salesforce.com/docs/atlas.en-us.210.0.uiapi.meta/uiapi/ui_api_get_started_supported_objects.htm

}
})

Usage Considerations

If an invalid attribute value is used, an error is displayed in place of the component.

Implementing the force:hasRecordId interfaces provides the record Id of the record that's currently viewed to the component.
To make your component available in Lightning App Builder, implement the flexipage:availableForAllPageTypes
interface, which enables admins to drag-and-drop the component onto a Lightning page easily.

To use a path component in the Salesforce app, display it in a custom tab.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

The record's IDStringrecordId

Changes the appearance of the path. Choose between linear and
non-linear formats. In linear paths, completed steps show a checkmark.

Stringvariant

In non-linear paths, completed steps show the step name. We show
linear paths by default.

Specified whether the Mark Complete button is displayed next to the
path. If true, the button is not displayed. The Mark Complete button is
displayed by default.

BooleanhideUpdateButton

The action triggered when a step on the path is clicked.Actiononselect

lightning:picklistPath (Beta)
Displays a path based on a specified picklist field. This component requires API 41.0 and later.

A lightning:picklistPath component displays the progress of a process, which is based on the picklist field specified by the
picklistFieldApiName attribute. The path is rendered as a horizontal bar with one chevron for each picklist item. Paths created
by this component do not have key fields or guidance and do not display the Mark Complete button.

This example creates a path for contact records that's based on the record ID and the LeadSource picklist field.

<aura:component
implements="flexipage:availableForAllPageTypes,flexipage:availableForRecordHome,force:hasRecordId"
>

<lightning:picklistPath aura:id="picklistPath" recordId="{!v.recordId}"
variant="non-linear"
picklistFieldApiName="LeadSource"
onselect="{!c.handleSelect}">

</lightning:picklistPath>
</aura:component>

487

lightning:picklistPath (Beta)Reference

Clicking a step in the path displays a toast with the step name that's clicked.

({
handleSelect : function (component, event, helper) {
var stepName = event.getParam("detail").value;
var toastEvent = $A.get("e.force:showToast");
toastEvent.setParams({
"title": "Success!",
"message": "Toast from " + stepName
});
toastEvent.fire();

}
})

Usage Considerations

To create a path based on forecast categories, use the ForecastCategoryName field.

If an invalid attribute value is used, an error is displayed in place of the component.

Implementing the force:hasRecordId interfaces provides the record Id of the record that's currently viewed to the component.
To make your component available in Lightning App Builder, implement the flexipage:availableForAllPageTypes
interface, which enables admins to drag-and-drop the component onto a Lightning page easily.

To use a path component in Salesforce for Android, iOS, and mobile web, display it in a custom tab.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

The action triggered when a step on the path is clicked.Actiononselect

The API name of the field from which the path is derived. For example,
StageName for Opportunity.

StringpicklistFieldApiName

The record's IDStringrecordId

Changes the appearance of the path. Valid variants are linear and
non-linear. In linear paths, steps prior to the current step are displayed

Stringvariant

with a checkmark to indicate completion. In non-linear paths, step names
are displayed instead. By default, the path displays as a linear path.

lightning:pill
A pill represents an existing item in a database, as opposed to user-generated freeform text.

A lightning:pill component represents an item, such as an account name or case number, and the text label is wrapped by a
rounded border. By default, pills are rendered with a remove button. They are useful for displaying read-only text that can be added and
removed on demand, for example, a list of email addresses or a list of keywords.

This component inherits styling from pills in the Lightning Design System.

Use the class attribute to apply additional styling.

488

lightning:pillReference

https://www.lightningdesignsystem.com/components/pills

This example creates a basic pill.

<aura:component>
<lightning:pill label="Pill Label" href="/path/to/some/where" onremove="{! c.handleRemove

}"/>
</aura:component>

Pills have two clickable elements: the text label and the remove button. Both elements trigger the onclick handler. If you provide
an href value, clicking the text label triggers the onclick handler and then takes you to the provided path. Clicking the remove
button on the pill triggers the onremove handler and then the onclick handler. These event handlers are optional.

To prevent the onclick handler from running, call event.preventDefault() in the onremove handler.

<aura:component>
<lightning:pill label="hello pill" onremove="{! c.handleRemoveOnly }" onclick="{!

c.handleClick }"/>
</aura:component>

({
handleRemoveOnly: function (cmp, event) {

event.preventDefault();
alert('Remove button was clicked!');

},
handleClick: function (cmp, event) {

// this won't run when you click the remove button
alert('The pill was clicked!');

}
})

Inserting an Image

A pill can contain an image, such as an icon or avatar, which represents the type of object. To insert an image in the pill, use the media
attribute.

<aura:component>
<lightning:pill label="Pill Label" href="/path/to/some/where">

<aura:set attribute="media">
<lightning:icon iconName="standard:account" alternativeText="Account"/>

</aura:set>
</lightning:pill>

</aura:component>

Usage Considerations

A pill can display an error state when the containing text doesn't match a pre-defined collection of items, such as when an email address
is invalid or a case number doesn't exist. Use the hasError attribute to denote a pill that contains an error. Setting hasError to
true inserts a warning icon in the pill and change the border to red. Providing your own image in this context has no effect on the pill.

Accessibility

Use the alternativeText attribute to describe the avatar, such as a user's initials or name. This description provides the value for
the alt attribute in the img HTML tag.

489

lightning:pillReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Specifies whether the pill has errors. The default is false.BooleanhasError

The URL of the page that the link goes to.Stringhref

YesThe text label that displays in the pill.Stringlabel

The icon or figure that's displayed next to the textual information.Component[]media

The name for the pill. This value is optional and can be used to identify
the pill in a callback.

Stringname

The action triggered when the button is clicked.Actiononclick

The action triggered when the pill is removed.Actiononremove

Displays tooltip text when the mouse moves over the element.Stringtitle

lightning:progressBar
Displays a horizontal progress bar from left to right to indicate the progress of an operation. This component requires API version 41.0
and later.

A lightning:progressBar component displays the progress of an operation from left to right, such as for a file download or
upload.

This component inherits styling from progress bars in the Lightning Design System.

This example loads the progress bar on rendering and rerendering of the component.

<aura:component>
<aura:handler name="render" value="{!this}" action="{!c.onRender}"/>
<aura:attribute name="progress" type="Integer" default="0"/>
<lightning:progressBar value="{!v.progress}"/>

</aura:component>

Here’s the client-side controller that changes the value of the progress bar. Specifying progress === 100 ?
clearInterval(interval) : progress + 10 increases the progress value by 10% and stops the animation when the
progress reaches 100%. The progress bar is updated every 200 milliseconds.

({
onRender: function (cmp) {

var interval = setInterval($A.getCallback(function () {
var progress = cmp.get('v.progress');
cmp.set('v.progress', progress === 100 ? clearInterval(interval) : progress +

10);
}), 200);

490

lightning:progressBarReference

https://www.lightningdesignsystem.com/components/progress-bar/

}
})

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

The variant of the progress bar. Valid values are base and circular.Stringvariant

The percentage value of the progress bar.Integervalue

The size of the progress bar. Valid values are x-small, small, medium, and
large. The default value is medium.

Stringsize

lightning:progressIndicator
Provides a visual indication on the progress of a particular process. This component is available in version 41.0 and later.

A lightning:progressIndicator component displays a horizontal list of steps in a process, indicating the number of steps
in a given process, the current step, as well as prior steps completed. For example, Sales Path uses a progress indicator to guide sales
reps through the stages of the sales process.

You can create progress indicators with different visual styling by specifying the type attribute. Set type="base" to create a
component that inherits styling from progress indicators in the Lightning Design System. Set type="path" to create a component
that inherits styling from path in the Lightning Design System.

If the type is not specified, the default type (base) is used. To create steps, use one or more lightning:progressStep component
along with label and value attributes. To specify the current step, the currentStep attribute must match one of the value
attributes on a lightning:progressStep component.

<aura:component>
<lightning:progressIndicator currentStep="step2">

<lightning:progressStep label="Step One" value="step1"/>
<lightning:progressStep label="Step Two" value="step2"/>
<lightning:progressStep label="Step Three" value="step3"/>

</lightning:progressIndicator>
</aura:component>

In the previous example, the label is displayed in a tooltip when you hover over the step. If the progress indicator type is path, the
label is displayed on hover if the step is completed or on the step itself if it's a current or incomplete step.

This example creates a path showing the current step at "Step Two". "Step One" is marked completed and "Step Three" is not yet
completed.

<aura:component>
<lightning:progressIndicator type="path" currentStep="step2">

491

lightning:progressIndicatorReference

https://www.lightningdesignsystem.com/components/progress-indicator/
https://www.lightningdesignsystem.com/components/path/

<lightning:progressStep label="Step One" value="step1"/>
<lightning:progressStep label="Step Two" value="step2"/>
<lightning:progressStep label="Step Three" value="step3"/>

</lightning:progressIndicator>
</aura:component>

Accessibility

Each progress step is decorated with assistive text, which is also the label of that step. For the base type, you can use the Tab key to
navigate from one step to the next. Press Shift+Tab to go to the previous step. For the path type, press Tab to activate the current step
and use the Up and Down Arrow key or the Left and Right arrow key to navigate from one step to another.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

The current step, which must match the value attribute of one of
progressStep components. If a step is not provided, the value of the first
progressStep component is used.

StringcurrentStep

Indicates whether the current step is in error state and displays a warning
icon on the step indicator. Applies to the base type only. This value
defaults to false.

BooleanhasError

Changes the visual pattern of the indicator. Valid values are base and
path. This value defaults to base.

Stringtype

Changes the appearance of the progress indicator for the base type only.
Valid values are base or shaded. The shaded variant adds a light gray
border to the step indicators. This value defaults to base.

Stringvariant

lightning:radioGroup
A radio button group that can have a single option selected. This component requires API version 41.0 and later.

A lightning:radioGroup component represents a radio button group that can have a single option selected.

If the required attribute is true, at least one radio button must be selected. When a user interacts with the radio group and doesn't make
a selection, an error message is displayed.

If the disabled attribute is true, radio button selections can't be changed.

This component inherits styling from Radio Button in the Lightning Design System. Set type="button" to create a component
that inherits styling from Radio Button Group in the Lightning Design System.

492

lightning:radioGroupReference

https://www.lightningdesignsystem.com/components/radio-group/
https://www.lightningdesignsystem.com/components/radio-button-group/

This example creates a radio group with two options and option1 is selected by default. One radio button must be selected as the
required attribute is true.

<aura:component>
<aura:attribute name="options" type="List" default="[
{'label': 'apples', 'value': 'option1'},
{'label': 'oranges', 'value': 'option2'}
]"/>
<aura:attribute name="value" type="String" default="option1"/>
<lightning:radioGroup

aura:id="mygroup"
name="radioButtonGroup"
label="Radio Button Group"
options="{! v.options }"
value="{! v.value }"
onchange="{! c.handleChange }"
required="true" />

</aura:component>

You can check which values are selected by using cmp.find("mygroup").get("v.value"). To retrieve the values when
the selection is changed, use the onchange event handler and call event.getParam("value").

({
handleChange: function (cmp, event) {

var changeValue = event.getParam("value");
alert(changeValue);

}
});

Accessibility

The radio group is nested in a fieldset element that contains a legend element. The legend contains the label value. The
fieldset element enables grouping of related radio buttons to facilitate tabbing navigation and speech navigation for accessibility
purposes. Similarly, the legend element improves accessibility by enabling a caption to be assigned to the fieldset.

Methods

This component supports the following method.

checkValidity(): Returns the valid property value (Boolean) on the ValidityState object to indicate whether the radio group has
any validity errors.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

YesSpecifies the name of an input element.Stringname

Specifies the value of an input element.Objectvalue

493

lightning:radioGroupReference

Required?DescriptionAttribute typeAttribute Name

The variant changes the appearance of an input field. Accepted variants
include standard and label-hidden. This value defaults to standard.

Stringvariant

Specifies that an input element should be disabled. This value defaults
to false.

Booleandisabled

Specifies that an input field is read-only. This value defaults to false.Booleanreadonly

Specifies that an input field must be filled out before submitting the form.
This value defaults to false.

Booleanrequired

Represents the validity states that an element can be in, with respect to
constraint validation.

Objectvalidity

The action triggered when a value attribute changes.Actiononchange

Specifies a shortcut key to activate or focus an element.Stringaccesskey

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

The action triggered when the element receives focus.Actiononfocus

The action triggered when the element releases focus.Actiononblur

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesText label for the radio group.Stringlabel

YesArray of label-value pairs for each radio button.Listoptions

The style of the radio group. Options are radio or button. The default is
radio.

Stringtype

Optional message displayed when no radio button is selected and the
required attribute is set to true.

StringmessageWhenValueMissing

lightning:relativeDateTime
Displays the relative time difference between the source date-time and the provided date-time.

When you provide a timestamp or JavaScript Date object, lightning:relativeDateTime displays a string that describes the
relative time between the current time and the provided time.

The unit of time that's used corresponds to how much time has passed since the provided time, for example, "a few seconds ago" or "5
minutes ago". A given time in the future returns the relative time, for example, "in 7 months" or "in 5 years".

This example returns the relative time between the current time and a given time in the past and future. The time differences are set by
the init handler.

<aura:component>
<aura:handler name="init" value="{! this }" action="{! c.init }" />

494

lightning:relativeDateTimeReference

<aura:attribute name="past" type="Object"/>
<aura:attribute name="future" type="Object"/>
<p><lightning:relativeDateTime value="{! v.past }"/></p>
<p><lightning:relativeDateTime value="{! v.future }"/></p>

</aura:component>

The client-side controller is called during component initialization. The past and future attributes return:

• 2 hours ago

• in 2 days

({
init: function (cmp) {

cmp.set('v.past', Date.now()-(2*60*60*1000));
cmp.set('v.future', Date.now()+(2*24*60*60*1000));

}
})

Other sample output includes:

• Relative past: a few seconds ago, a minute ago, 2 minutes ago, an hour ago, 2 hours ago, 2 days ago, 2 months ago, 2 years ago

• Relative future: in a few seconds, in a minute, in 2 minutes, in an hour, in 2 hours, in 2 days, in 2 months, in 2 years in 2 days, in 2
months

The units of time are localized using the user's locale, which returns a language code such as en-US. Supported units of time include:

• seconds

• minutes

• hours

• days

• months

• years

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesThe timestamp or JavaScript Date object to be formatted.Objectvalue

lightning:recordViewForm
Represents a record view that displays the fields based on their field types, provided by lightning:outputField. This component requires
API version 41.0 and later.

495

lightning:recordViewFormReference

A lightning:recordViewForm component is a wrapper component that accepts a record ID and is used to display one or
more fields and labels associated with that record using lightning:outputField. lightning:recordViewForm requires
a record ID to display the fields on the record. It doesn't require additional Apex controllers or Lightning Data Service to display record
data. This component also takes care of field-level security and sharing for you, so users see only the data they have access to.

To display the fields on a record, specify the fields using lightning:outputField.

<aura:component>
<lightning:recordViewForm recordId="001XXXXXXXXXXXXXXX" objectApiName="My_Contact__c">

<div class="slds-box">
<lightning:outputField fieldName="Name" />
<lightning:outputField fieldName="Email__c" />

</div>
</lightning:recordViewForm>

</aura:component>

For more information, see the lightning:outputField documentation.

Working with the View Layout

To create a multi-column layout for your record view, use the Grid utility classes in Lightning Design System. This example creates a
two-column layout.

<aura:component>
<lightning:recordViewForm recordId="001XXXXXXXXXXXXXXX" objectApiName="My_Contact__c">

<div class="slds-grid">
<div class="slds-col slds-size_1-of-2">

<!-- Your lightning:outputField components here -->
</div>
<div class="slds-col slds-size_1-of-2">

<!-- More lightning:outputField components here -->
</div>

</div>
</lightning:recordViewForm>
</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

YesThe ID of the record to be displayed.StringrecordId

YesThe API name of the object.StringobjectApiName

lightning:select
Represents a select input.

496

lightning:selectReference

A lightning:select component creates an HTML select element. This component uses HTML option elements to create
options in the dropdown list, enabling you to select a single option from the list. Multiple selection is currently not supported.

This component inherits styling from select in the Lightning Design System.

You can define a client-side controller action to handle various input events on the dropdown list. For example, to handle a change
event on the component, use the onchange attribute. Retrieve the selected value using
cmp.find("selectItem").get("v.value").

<aura:component>
<lightning:select name="selectItem" label="Select an item" onchange="{!c.doSomething}">

<option value="">choose one...</option>
<option value="1">one</option>
<option value="2">two</option>

</lightning:select>
</aura:component>

Generating Options with aura:iteration

You can use aura:iteration to iterate over a list of items to generate options. This example iterates over a list of items.

<aura:component>
<aura:attribute name="colors" type="String[]" default="Red,Green,Blue"/>
<lightning:select name="select" label="Select a Color" required="true"

messageWhenValueMissing="Did you forget to select a color?">
<option value="">-- None --</option>
<aura:iteration items="{!v.colors}" var="color">

<option value="{!color}" text="{!color}"></option>
</aura:iteration>

</lightning:select>
</aura:component>

Generating Options On Initialization

Use an attribute to store and set the array of option value on the component. The following component calls the client-side controller
to create options during component initialization.

<aura:component>
<aura:attribute name="options" type="List" />
<aura:attribute name="selectedValue" type="String" default="Red"/>
<aura:handler name="init" value="{!this}" action="{!c.loadOptions}" />
<lightning:select name="mySelect" label="Select a color:" aura:id="mySelect"

value="{!v.selectedValue}">
<aura:iteration items="{!v.options}" var="item">

<option text="{!item.label}" value="{!item.value}" selected="{!item.selected}"/>

</aura:iteration>
</lightning:select>
</aura:component>

In your client-side controller, define an array of options and assign this array to the items attribute.

({
loadOptions: function (component, event, helper) {

var opts = [
{ value: "Red", label: "Red" },
{ value: "Green", label: "Green" },

497

lightning:selectReference

https://www.lightningdesignsystem.com/components/select/

{ value: "Blue", label: "Blue" }
];
component.set("v.options", opts);

}
})

In cases where you're providing a new array of options on the component, you might encounter a race condition in which the value on
the component does not reflect the new selected value. For example, the component returns a previously selected value when you run
component.find("mySelect").get("v.value") even after you select a new option because you are getting the value
before the options finish rendering. You can avoid this race condition by binding the value and selected attributes in the
lightning:select component as illustrated in the previous example. Also, bind the selected attribute in the new option
value and explicitly set the selected value on the component as shown in the next example, which ensures that the value on the
component corresponds to the new selected option.

updateSelect: function(component, event, helper){
var opts = [

{ value: "Cyan", label: "Cyan" },
{ value: "Yellow", label: "Yellow" },
{ value: "Magenta", label: "Magenta", selected: true }];

component.set('v.options', opts);
//set the new selected value on the component
component.set('v.selectedValue', 'Magenta');
//return the selected value
component.find("mySelect").get("v.value");

}

Input Validation

Client-side input validation is available for this component. You can make the dropdown menu a required field by setting
required="true". An error message is automatically displayed when an item is not selected and required="true".

To check the validity states of an input, use the validity attribute, which is based on the ValidityState object. You can access
the validity states in your client-side controller. This validity attribute returns an object with boolean properties. See
lightning:input for more information.

You can override the default message by providing your own value for messageWhenValueMissing.

Usage Considerations

The onchange event is triggered only when a user selects a value on the dropdown list with a mouse click, which is expected behavior
of the HTML select element. Programmatic changes to the value attribute don't trigger this event, even though that change
propagates to the select element. To handle this event, provide a change handler for value.

<aura:handler name="change" value="{!v.value}" action="{!c.handleChange}"/>

This example creates a dropdown list and a button that when clicked changes the selected option.

<aura:component>
<aura:attribute name="status" type="String" default="open"/>
<aura:handler name="change" value="{!v.status}" action="{!c.handleChange}"/>
<lightning:select aura:id="select" name="select" label="Opportunity Status"

value="{!v.status}">
<option value="">choose one...</option>
<option value="open">Open</option>
<option value="closed">Closed</option>
<option value="closedwon">Closed Won</option>

</lightning:select>

498

lightning:selectReference

<lightning:button name="selectChange" label="Change" onclick="{!c.changeSelect}"/>
</aura:component>

The client-side controller updates the selected option by changing the v.status value, which triggers the change handler.

({
changeSelect: function (cmp, event, helper) {

//Press button to change the selected option
cmp.find("select").set("v.value", "closed");

},
handleChange: function (cmp, event, helper) {

//Do something with the change handler
alert(event.getParam('value'));

}
})

Accessibility

You must provide a text label for accessibility to make the information available to assistive technology. The label attribute creates an
HTML label element for your input component. To hide a label from view and make it available to assistive technology, use the
label-hidden variant.

Methods

This component supports the following methods.

focus(): Sets focus on the element.

showHelpMessageIfInvalid(): Shows the help message if the form control is in an invalid state.

Attributes

Required?DescriptionAttribute TypeAttribute Name

Specifies a shortcut key to activate or focus an element.Stringaccesskey

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Specifies that an input element should be disabled. This value defaults
to false.

Booleandisabled

YesText that describes the desired select input.Stringlabel

Error message to be displayed when the value is missing.StringmessageWhenValueMissing

YesSpecifies the name of an input element.Stringname

The action triggered when the element releases focus.Actiononblur

The action triggered when a value attribute changes.Actiononchange

The action triggered when the element receives focus.Actiononfocus

Specifies that an input field is read-only. This value defaults to false.Booleanreadonly

499

lightning:selectReference

Required?DescriptionAttribute TypeAttribute Name

Specifies that an input field must be filled out before submitting the form.
This value defaults to false.

Booleanrequired

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

Displays tooltip text when the mouse moves over the element.Stringtitle

Represents the validity states that an element can be in, with respect to
constraint validation.

Objectvalidity

The value of the select, also used as the default value to select the right
option during init. If no value is provided, the first option will be selected.

Stringvalue

The variant changes the appearance of an input field. Accepted variants
include standard and label-hidden. This value defaults to standard.

Stringvariant

lightning:slider
An input range slider for specifying a value between two specified numbers. This component requires API version 41.0 and later.

A lightning:slider component is a horizontal or vertical slider for specifying a value between two specified numbers. For
example, this slider can be used to capture user input about order quantity or when you want to use an input field of type="range".
To orient the slider vertically, set type="vertical". Older browsers that don't support the slider fall back and treat it as
type="text".

This component inherits styling from slider in the Lightning Design System.

Here's an example of a slider with a step increment of 10.

<aura:component>
<aura:attribute name="myval" default="10" type="Integer"/>
<lightning:slider step="10" value="{!v.myval}" onchange="{! c.handleRangeChange }"/>

</aura:component>

The client-side controller handles the value change and updates it with the latest value.

({
handleRangeChange: function (cmp, event) {

var detail = cmp.set("v.value", event.getParam("value"));
}

})

Input Validation

To check the validity states of an input, use the checkValidity() method, which returns true if the valid property value
on the ValidityState object is true. You can also use setCustomValidity() to provide a custom error message, for
example, setCustomValidity(this.messageWhenRangeUnderflow).

The underlying input element of type="range" sanitizes the input value in the following conditions. The slider is disabled when
any of the conditions are met and an error message prompts you to provide the correct value for the value attribute.

• If you set value to be less than the min value, the slider sets the input value to the min value.

• If you set value to be more than the max value, the slider sets the input value to the max value.

500

lightning:sliderReference

https://lightningdesignsystem.com/components/slider

• If value is not a multiple of the step value, the slider sets the input value to nearest multiple. For example, if you set value
to 18, step to 5, min to 10, and max to 50, the slider sets the input value to 20.

• If you invert the min and max values in error, the slider doesn't correct the values, but it sets the input value to the min value.
For example, if you set value to 18, min to 50, and max to 10, the slider sets the input value to 50.

Usage Considerations

By default, the min and max values are 0 and 100, but you can specify your own values. Additionally, if you specify your own step
increment value, you can drag the slider based on the step increment only. If you set the value lower than the min value, then the
value is set to the min value. Similarly, setting the value higher than the max value results in the value being set to the max value.
For precise numerical values, we recommend using the lightning:input component of type="number" instead.

Methods

This component supports the following methods.

blur(): Removes keyboard focus on the input element.

checkValidity(): Returns the valid property value (Boolean) on the ValidityState object to indicate whether the input field value
has any validity errors.

focus(): Sets focus on the input element.

setCustomValidity(message): Sets a custom error message to be displayed when a condition is met.

• message (String): The string that describes the error. If message is an empty string, the error message is reset.

showHelpMessageIfInvalid(): Displays error messages on the slider. The slider value is invalid if it fails at least one constraint
validation and returns false when checkValidity() is called.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

The numerical value of the input range. This value defaults to 0.Integervalue

The action triggered when the slider value changes. You must pass any
newly selected value back to the slider component to bind the new value
to the slider.

Stringonchange

The min value of the input range. This value defaults to 0.Integermin

The max value of the input range. This value defaults to 100.Integermax

The step increment value of the input range. Example steps include 0.1,
1, or 10. This value defaults to 1.

Stringstep

The size value of the input range. This value default to empty, which is
the base. Supports x-small, small, medium, and large.

Stringsize

The type of the input range position. This value defaults to horizontal.Stringtype

501

lightning:sliderReference

Required?DescriptionAttribute typeAttribute Name

The text label for the input range. Provide your own label to describe the
slider. Otherwise, no label is displayed.

Stringlabel

The disabled value of the input range. This value default to false.Booleandisabled

The variant changes the appearance of the slider. Accepted variants
include standard and label-hidden. This value defaults to standard.

Stringvariant

Error message to be displayed when a bad input is detected. Use with
setCustomValidity.

StringmessageWhenBadInput

Error message to be displayed when a pattern mismatch is detected. Use
with setCustomValidity.

StringmessageWhenPatternMismatch

Error message to be displayed when a type mismatch is detected. Use
with setCustomValidity.

StringmessageWhenTypeMismatch

Error message to be displayed when the value is missing. Use with
setCustomValidity.

StringmessageWhenValueMissing

Error message to be displayed when a range overflow is detected. Use
with setCustomValidity.

StringmessageWhenRangeOverflow

Error message to be displayed when a range underflow is detected. Use
with setCustomValidity.

StringmessageWhenRangeUnderflow

Error message to be displayed when a step mismatch is detected. Use
with setCustomValidity.

StringmessageWhenStepMismatch

Error message to be displayed when the value is too long. Use with
setCustomValidity.

StringmessageWhenTooLong

The action triggered when the slider releases focus.Actiononblur

The action triggered when the slider receives focus.Actiononfocus

lightning:spinner
Displays an animated spinner.

A lightning:spinner displays an animated spinner image to indicate that a feature is loading. This component can be used
when retrieving data or anytime an operation doesn't immediately complete.

The variant attribute changes the appearance of the spinner. If you set variant="brand", the spinner matches the Lightning
Design System brand color. Setting variant="inverse" displays a white spinner. The default spinner color is dark blue.

This component inherits styling from spinners in the Lightning Design System.

Here is an example.

<aura:component>
<lightning:spinner variant="brand" size="large"/>

</aura:component>

502

lightning:spinnerReference

https://www.lightningdesignsystem.com/components/spinners/

lightning:spinner is intended to be used conditionally. You can use aura:if or the Lightning Design System utility classes
to show or hide the spinner.

<aura:component>
<lightning:button label="Toggle" variant="brand" onclick="{!c.toggle}"/>
<div class="exampleHolder">

<lightning:spinner aura:id="mySpinner" />
</div>

</aura:component>

This client-side controller toggles the slds-hide class on the spinner.

({
toggle: function (cmp, event) {

var spinner = cmp.find("mySpinner");
$A.util.toggleClass(spinner, "slds-hide");

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The alternative text used to describe the reason for the wait and need
for a spinner.

StringalternativeText

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

The size of the spinner. Accepted sizes are small, medium, and large. This
value defaults to medium.

Stringsize

Displays tooltip text when the mouse moves over the element.Stringtitle

The variant changes the appearance of the spinner. Accepted variants
are brand and inverse.

Stringvariant

lightning:tab (Beta)
A single tab that is nested in a lightning:tabset component.

A lightning:tab keeps related content in a single container. The tab content displays when a user clicks the tab. lightning:tab
is intended to be used with lightning:tabset.

This component inherits styling from tabs in the Lightning Design System.

The label attribute can contain text or more complex markup. In the following example, aura:set is used to specify a label that
includes a lightning:icon.

<aura:component>
<lightning:tabset>

<lightning:tab>

503

lightning:tab (Beta)Reference

https://www.lightningdesignsystem.com/components/tabs/

<aura:set attribute="label">
Item One
<lightning:icon iconName="utility:connected_apps" />

</aura:set>
</lightning:tab>

</lightning:tabset>
</aura:component>

Usage Considerations

This component creates its body during runtime. You won’t be able to reference the component during initialization. You can set your
content using value binding with component attributes instead. See lightning:tabset for more information.

Methods

This component supports the following method.

focus(): Sets the focus on the element.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the tab.ComponentDefRef[]body

Specifies a shortcut key to activate or focus an element.Stringaccesskey

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

The title displays when you hover over the tab. The title should describe
the content of the tab for screen readers.

Stringtitle

The optional ID is used during tabset's onSelect event to determine which
tab was clicked.

Stringid

The text that appears in the tab.Component[]label

The action triggered when the element releases focus.Actiononblur

The action triggered when the element receives focus.Actiononfocus

The action triggered when this tab becomes active.Actiononactive

lightning:tabset (Beta)
Represents a list of tabs.

A lightning:tabset displays a tabbed container with multiple content areas, only one of which is visible at a time. Tabs are
displayed horizontally inline with content shown below it. A tabset can hold multiple lightning:tab components as part of its body. The
first tab is activated by default, but you can change the default tab by setting the selectedTabId attribute on the target tab.

504

lightning:tabset (Beta)Reference

Use the variant attribute to change the appearance of a tabset. The variant attribute can be set to default, scoped, or vertical.
The default variant underlines the active tab. The scoped tabset styling displays a closed container with a defined border around the
active tab. The vertical tabset displays a scoped tabset with the tabs displayed vertically instead of horizontally.

This component inherits styling from tabs in the Lightning Design System.

Here is an example.

<aura:component>
<lightning:tabset>

<lightning:tab label="Item One">
Sample Content One

</lightning:tab>
<lightning:tab label="Item Two">

Sample Content Two
</lightning:tab>

</lightning:tabset>
</aura:component>

You can lazy load content in a tab by using the onactive attribute to inject the tab body programmatically. Here's an example with
two tabs, which loads content when they're active.

<lightning:tabset variant="scoped">
<lightning:tab onactive="{! c.handleActive }" label="Accounts" id="accounts" />
<lightning:tab onactive="{! c.handleActive }" label="Cases" id="cases" />

</lightning:tabset>

In your client-side controller, pass in the component and event to the helper.

({
handleActive: function (cmp, event, helper) {

helper.lazyLoadTabs(cmp, event);
}

})

Your client-side helper identifies the tab that's selected and adds your content using $A.createComponent().

({
lazyLoadTabs: function (cmp, event) {

var tab = event.getSource();
switch (tab.get('v.id')) {

case 'accounts' :
this.injectComponent('c:myAccountComponent', tab);
break;

case 'cases' :
this.injectComponent('c:myCaseComponent', tab);
break;

}
},
injectComponent: function (name, target) {

$A.createComponent(name, {
}, function (contentComponent, status, error) {

if (status === "SUCCESS") {
target.set('v.body', contentComponent);

} else {
throw new Error(error);

505

lightning:tabset (Beta)Reference

https://www.lightningdesignsystem.com/components/tabs/

}
});

}
})

Dynamically Creating Tabs

To create tabs dynamically, use $A.createComponent(). This example creates a new tab when a button is clicked, and uses the
moretabs facet to hold your new tab.

<aura:component>
<aura:attribute name="moretabs" type="Aura.Component[]"/>

<lightning:tabset variant="scoped">
<lightning:tab label="Item One">

Some content here
</lightning:tab>
{!v.moretabs}

</lightning:tabset>
<!-- Click button to create a new tab -->
<lightning:button label="Add tab" onclick="{!c.addTab}"/>

The client-side controller adds the onactive event handler and creates the tab content when the new tab is clicked.

({
addTab: function(component, event) {

$A.createComponent("lightning:tab", {
"label": "New Tab",
"id": "new",
"onactive": component.getReference("c.addContent")

}, function (newTab, status, error) {
if (status === "SUCCESS") {

var body = component.get("v.moretabs");
component.set("v.moretabs", newTab);

} else {
throw new Error(error);

}
});

},
addContent : function(component, event) {

var tab = event.getSource();
switch (tab.get('v.id')){

case 'new':
// Display a badge in the tab content.
// You can replace lightning:badge with a custom component.
$A.createComponent("lightning:badge", {

"label": "NEW"
}, function (newContent, status, error) {

if (status === "SUCCESS") {
tab.set('v.body', newContent);

} else {
throw new Error(error);

}
});
break;

}

506

lightning:tabset (Beta)Reference

}
})

Usage Considerations

When you load more tabs than can fit the width of the view port, the tabset provides navigation buttons for the overflow tabs.

This component creates its body during runtime. You won’t be able to reference the component during initialization. You can set your
content using value binding with component attributes instead.

For example, you can't create a lightning:select component in a tabset by loading the list of options dynamically during
initialization using the init handler. However, you can create the list of options by binding the component attribute to the values. By
default, the option's value attribute is given the same value as the option passed to it unless you explicitly assign a value to it.

<aura:component>
<aura:attribute name="opts" type="List" default="['red', 'blue', 'green']" />
<lightning:tabset>

<lightning:tab label="View Options">
<lightning:select name="colors" label="Select a color:">

<aura:iteration items="{!v.opts}" var="option">
<option>{! option }</option>

</iteration>
</lightning:select>

</lightning:tab>
</lightning:tabset>

</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. This could be one or more lightning:tab
components.

ComponentDefRef[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

The variant changes the appearance of the tabset. Accepted variants are
default, scoped, and vertical.

Stringvariant

Allows you to set a specific tab to open by default. If this attribute is not
used, the first tab opens by default.

StringselectedTabId

The action that will run when the tab is clicked.Actiononselect

lightning:textarea
Represents a multiline text input.

A lightning:textarea component creates an HTML textarea element for entering multi-line text input. A text area holds
an unlimited number of characters.

This component inherits styling from textarea in the Lightning Design System.

507

lightning:textareaReference

https://www.lightningdesignsystem.com/components/textarea/

The rows and cols HTML attributes are not supported. To apply a custom height and width for the text area, use the class
attribute. To set the input for the text area, set its value using the value attribute. Setting this value overwrites any initial value that's
provided.

The following example creates a text area with a maximum length of 300 characters.

<lightning:textarea name="myTextArea" value="initial value"
label="What are you thinking about?" maxlength="300" />

You can define a client-side controller action to handle input events like onblur, onfocus, and onchange. For example, to handle
a change event on the component, use the onchange attribute.

<lightning:textarea name="myTextArea" value="initial value"
label="What are you thinking about?" onchange="{!c.countLength}" />

Input Validation

Client-side input validation is available for this component. Set a maximum length using the maxlength attribute or a minimum
length using the minlength attribute. You can make the text area a required field by setting required="true". An error
message is automatically displayed in the following cases:

• A required field is empty when required is set to true.

• The input value contains fewer characters than that specified by the minlength attribute.

• The input value contains more characters than that specified by the maxlength attribute.

To check the validity states of an input, use the validity attribute, which is based on the ValidityState object. You can access
the validity states in your client-side controller. This validity attribute returns an object with boolean properties. See
lightning:input for more information.

You can override the default message by providing your own values for messageWhenValueMissing, messageWhenBadInput,
or messageWhenTooLong.

For example,

<lightning:textarea name="myText" required="true" label="Your Name"
messageWhenValueMissing="This field is required."/>

Accessibility

You must provide a text label for accessibility to make the information available to assistive technology. The label attribute creates an
HTML label element for your input component. To hide a label from view and make it available to assistive technology, use the
label-hidden variant.

Methods

This component supports the following methods.

focus(): Sets the focus on the element.

showHelpMessageIfInvalid(): Shows the help message if the form control is in an invalid state.

Attributes

Required?DescriptionAttribute TypeAttribute Name

Specifies a shortcut key to activate or focus an element.Stringaccesskey

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

508

lightning:textareaReference

Required?DescriptionAttribute TypeAttribute Name

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Specifies that an input element should be disabled. This value defaults
to false.

Booleandisabled

YesText that describes the desired textarea input.Stringlabel

The maximum number of characters allowed in the textarea.Integermaxlength

Error message to be displayed when a bad input is detected.StringmessageWhenBadInput

Error message to be displayed when the value is too long.StringmessageWhenTooLong

Error message to be displayed when the value is missing.StringmessageWhenValueMissing

The minimum number of characters allowed in the textarea.Integerminlength

YesSpecifies the name of an input element.Stringname

The action triggered when the element releases focus.Actiononblur

The action triggered when a value attribute changes.Actiononchange

The action triggered when the element receives focus.Actiononfocus

Text that is displayed when the field is empty, to prompt the user for a
valid entry.

Stringplaceholder

Specifies that an input field is read-only. This value defaults to false.Booleanreadonly

Specifies that an input field must be filled out before submitting the form.
This value defaults to false.

Booleanrequired

Specifies the tab order of an element (when the tab button is used for
navigating).

Integertabindex

Displays tooltip text when the mouse moves over the element.Stringtitle

Represents the validity states that an element can be in, with respect to
constraint validation.

Objectvalidity

The value of the textarea, also used as the default value during init.Stringvalue

The variant changes the appearance of an input field. Accepted variants
include standard and label-hidden. This value defaults to standard.

Stringvariant

lightning:tile
A grouping of related information associated with a record.

A lightning:tile component groups related information associated with a record. The information can be actionable and paired
with a figure, such as a lightning:icon or lightning:avatar component.

Use the class attributes to customize the styling. For example, providing the slds-tile_board class creates the board
variant. To style the tile body, use the Lightning Design System helper classes.

509

lightning:tileReference

This component inherits styling from tiles in the Lightning Design System.

Here is an example.

<aura:component>
<lightning:tile label="Lightning component team" href="/path/to/somewhere">

<p class="slds-truncate" title="7 Members">7 Members</p>
</lightning:tile>

</aura:component>

To insert an icon or avatar, pass it into the media attribute. You can create a tile with an icon using definition lists. This example aligns
an icon and some text using helper classes like slds-dl_horizontal.

<aura:component>
<lightning:tile label="Salesforce UX" href="/path/to/somewhere">

<aura:set attribute="media">
<lightning:icon iconName="standard:groups"/>

</aura:set>
<dl class="slds-dl_horizontal">

<dt class="slds-dl_horizontal__label">
<p class="slds-truncate" title="Company">Company:</p>

</dt>
<dd class="slds-dl_horizontal__detail slds-tile__meta">

<p class="slds-truncate" title="Salesforce">Salesforce</p>
</dd>
<dt class="slds-dl_horizontal__label">

<p class="slds-truncate" title="Email">Email:</p>
</dt>
<dd class="slds-dl_horizontal__detail slds-tile__meta">

<p class="slds-truncate"
title="salesforce-ux@salesforce.com">salesforce-ux@salesforce.com</p>

</dd>
</dl>

</lightning:tile>
</aura:component>

You can also create a list of tiles with avatars using an unordered list, as shown in this example.

<aura:component>
<ul class="slds-has-dividers_bottom-space">

<li class="slds-item">
<lightning:tile label="Astro" href="/path/to/somewhere">

<aura:set attribute="media">
<lightning:avatar src="/path/to/img" alternativeText="Astro"/>

</aura:set>
<ul class="slds-list_horizontal slds-has-dividers_right">

<li class="slds-item">Trailblazer, Salesforce
<li class="slds-item">Trailhead Explorer

</lightning:tile>

<!-- More list items here -->

</aura:component>

510

lightning:tileReference

https://www.lightningdesignsystem.com/components/tiles/

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component’s base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

The URL of the page that the link goes to.Stringhref

YesThe text label that displays in the tile and hover text.Stringlabel

The icon or figure that's displayed next to the textual information.Component[]media

lightning:tree
Displays a nested tree. This component requires API version 41.0 and later.

A lightning:tree component displays visualization of a structural hierarchy, such as a sitemap for a website or a role hierarchy
in an organization. Items are displayed as hyperlinks and items in the hierarchy can be nested. Items with nested items are also known
as branches.

This component inherits styling from trees in the Lightning Design System.

To create a tree, pass in an array of key-value pairs to the items attribute. The keys are:

• disabled (Boolean): Specifies whether a branch is disabled. A disabled branch can't be expanded. The default is false.

• expanded (Boolean): Specifies whether a branch is expanded. An expanded branch displays its nested items visually. The default is
false.

• href (String): The URL of the link.

• name (String): The unique name for the item for the onselect event handler to return the tree item that was clicked.

• items (Object): Nested items as an array of key-value pairs.

• label (String): Required. The title and label for the hyperlink.

Here's an example of a tree with more than one level of nesting.

<aura:component>
<aura:handler name="init" value="{!this}" action="{!c.doInit}" />
<aura:attribute name="items" type="Object"/>
<lightning:tree items="{! v.items }" header="Roles"/>

</aura:component>

The tree is created during component initialization.

({
doInit: function (cmp, event, helper) {
var items = [{

"label": "Western Sales Director",
"name": "1",
"expanded": true,
"items": [{

511

lightning:treeReference

https://www.lightningdesignsystem.com/components/trees/

"label": "Western Sales Manager",
"name": "2",
"expanded": true,
"items" :[{

"label": "CA Sales Rep",
"name": "3",
"expanded": true,
"items" : []

},{
"label": "OR Sales Rep",
"name": "4",
"expanded": true,
"items" : []

}]
}]

}, {
"label": "Eastern Sales Director",
"name": "5",
"expanded": false,
"items": [{

"label": "Easter Sales Manager",
"name": "6",
"expanded": true,
"items" :[{

"label": "NY Sales Rep",
"name": "7",
"expanded": true,
"items" : []

}, {
"label": "MA Sales Rep",
"name": "8",
"expanded": true,
"items" : []

}]
}]

}];
cmp.set('v.items', items);

}
})

To retrieve the selected item Id, use the onselect attribute and bind it to your event handler, which is shown by handleSelect()
in the next example. The select event is also fired when you select an item with an href value.

({
handleSelect: function (cmp, event, helper) {

//return name of selected tree item
var myName = event.getParam('name');
alert("You selected: " + myName);

}
})

You can add or remove items in a tree. Let's say you have a tree that looks like this.

var items = [{
label: "Go to Record 1",

512

lightning:treeReference

href: "#record1",
items: []

},{
label: "Go to Record 2",
href: "#record2",
items: []

}, {
label: "Go to Record 3",
href: "#record3",
items: []

}];

This example adds a nested item at the end of the tree.

({
addItem: function (cmp, event, helper) {

var items = cmp.get('v.items');
var branch = items.length - 1;
var label = 'New item added at ' + branch;
var newItem = {

label: label,
expanded: true,
disabled: false,
items: []

};
items[branch].items.push(newItem);
cmp.set('v.items', items);
alert("Added new item at branch: " + branch);

}
})

When providing an href value to an item, the onselect event handler is triggered before navigating to the hyperlink.

Accessibility

You can use the keyboard to navigate the tree. Tab into the tree and use the Up and Down Arrow key to focus on tree items. To collapse
an expanded branch, press the Left Arrow key. To expand a branch, press the Right Arrow key. Pressing the Enter key or Space Bar is
similar to an onclick event, and performs the default action on the item.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

An array of key-value pairs that describe the tree. Keys include label,
name, disabled, expanded, and items.

Objectitems

The text that's displayed as the tree heading.Stringheader

513

lightning:treeReference

Required?DescriptionAttribute typeAttribute Name

The action triggered when a tree item is selected.Actiononselect

lightning:utilityBarAPI
The public API for the Utility Bar.

This component allows you to access methods for programmatically controlling a utility within the utility bar of a Lightning app. The
utility bar is a footer that gives users quick access to frequently used tools and components. Each utility is a single-column Lightning
page that includes a standard or custom Lightning component.

To access the methods, create an instance of the lightning:utilityBarAPI component inside of your utility and assign an
aura:id attribute to it.

<lightning:utilityBarAPI aura:id="utilitybar"/>

This example sets the icon of a utility to the SLDS “insert tag field” icon when the button is clicked.

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Utility Icon" onclick="{! c.setUtilityIcon }" />

</aura:component>

The button in the component calls the following client-side controller.

({
setUtilityIcon : function(component, event, helper) {

var utilityAPI = component.find("utilitybar");
utilityAPI.setUtilityIcon({icon: 'insert_tag_field'});

}
})

Methods

This component supports the following methods. Most methods take only one argument, a JSON array of parameters. The utilityId
parameter is only optional if within a utility itself. For more information on these methods, see the Console Developer Guide.

getEnclosingUtilityId()

Returns a Promise. Success resolves to the enclosing utilityId or false if not within a utility. The Promise will be rejected on error.

getUtilityInfo({utilityId})

• utilityId (string): Optional. The ID of the utility for which to get info.

Returns a Promise. Success resolves to a utilityInfo object. The Promise will be rejected on error.

getAllUtilityInfo()

Returns a Promise. Success resolves to an array of utilityInfo objects. The Promise will be rejected on error.

minimizeUtility({utilityId})

• utilityId (string): Optional. The ID of the utility for which to minimize.

Returns a Promise. Success resolves to true. The Promise will be rejected on error.

openUtility({utilityId})

• utilityId (string): Optional. The ID of the utility for which to open.

514

lightning:utilityBarAPIReference

Returns a Promise. Success resolves to true. The Promise will be rejected on error.

setPanelHeaderIcon({icon, utilityId})

• icon (string): An SLDS utility icon key. This is displayed in the utility panel. See a full list of utility icon keys on the SLDS reference
site.

• utilityId (string): Optional. The ID of the utility for which to set the panel header icon on.

Returns a Promise. Success resolves to true. The Promise will be rejected on error.

setPanelHeaderLabel({label, utilityId})

• label (string): The label of the utility displayed in the panel header.

• utilityId (string): Optional. The ID of the utility for which to set the panel header label on.

Returns a Promise. Success resolves to true. The Promise will be rejected on error.

setPanelHeight({heightPX, utilityId})

• heightPX (integer): The height of the utility panel in pixels.

• utilityId (string): Optional. The ID of the utility for which to set the panel height on.

Returns a Promise. Success resolves to true. The Promise will be rejected on error.

setPanelWidth({widthPX, utilityId})

• widthPX (integer): The width of the utility panel in pixels.

• utilityId (string): Optional. The ID of the utility for which to set the panel width on.

Returns a Promise. Success resolves to true. The Promise will be rejected on error.

setUtilityHighlighted({highlighted, utilityId})

• highlighted (boolean): Whether the utility is highlighted. Makes a utility more prominent by giving it a different background
color.

• utilityId (string): Optional. The ID of the utility for which to set highlighted.

Returns a Promise. Success resolves to true. The Promise will be rejected on error.

setUtilityIcon({icon, utilityId})

• icon (string): An SLDS utility icon key. This is displayed in the utility bar. See a full list of utility icon keys on the SLDS reference site.

• utilityId (string): Optional. The ID of the utility for which to set the icon on.

Returns a Promise. Success resolves to true. The Promise will be rejected on error.

setUtilityLabel({label, utilityId})

• label (string): The label of the utility. This is displayed in the utility bar.

• utilityId (string): Optional. The ID of the utility for which to set the label on.

Returns a Promise. Success resolves to true. The Promise will be rejected on error.

toggleModalMode({enableModalMode, utilityId})

• enableModalMode (boolean): Whether to enable the utility's modal mode. While in modal mode, an overlay is shown over the
whole app that blocks usage while the utility panel is still visible.

• utilityId (string): Optional. The ID of the utility for which to toggle modal mode.

Returns a Promise. Success resolves to true. The Promise will be rejected on error.

515

lightning:utilityBarAPIReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

lightning:verticalNavigation
Represents a vertical list of links that either take the user to another page or parts of the page the user is in. This component requires
API version 41.0 and later.

A lightning:verticalNavigation component represents a list of links that's only one level deep, with support for overflow
sections that collapse and expand. The overflow section must be created using lightning:verticalNavigationOverflow
and does not adjust automatically based on the view port.

This component inherits styling from vertical navigation in the Lightning Design System.

lightning:verticalNavigation is used together with these sub-components.

• lightning:verticalNavigationSection

• lightning:verticalNavigationItem

• lightning:verticalNavigationOverflow

• lightning:verticalNavigationItemBadge

• lightning:verticalNavigationItemIcon

This example creates a basic vertical navigation menu.

<aura:component>
<lightning:verticalNavigation>

<lightning:verticalNavigationSection label="Reports">
<lightning:verticalNavigationItem label="Recent" name="recent" />
<lightning:verticalNavigationItem label="Created by Me" name="created" />

<lightning:verticalNavigationItem label="Private Reports" name="private"
/>

<lightning:verticalNavigationItem label="Public Reports" name="public" />

<lightning:verticalNavigationItem label="All Reports" name="all" />
</lightning:verticalNavigationSection>

</lightning:verticalNavigation>
</aura:component>

To define an active navigation item, use selectedItem="itemName" on lightning:verticalNavigation, where
itemName matches the name of the lightning:verticalNavigationItem component to be highlighted.

This example creates a navigation menu with a highlighted item and an overflow section.

<aura:component>
<lightning:verticalNavigation selectedItem="recent">

<lightning:verticalNavigationSection label="Reports">
<lightning:verticalNavigationItem label="Recent" name="recent" />
<lightning:verticalNavigationItem label="All Reports" name="all" />

</lightning:verticalNavigationSection>

516

lightning:verticalNavigationReference

https://www.lightningdesignsystem.com/components/vertical-navigation/

<lightning:verticalNavigationOverflow>
<lightning:verticalNavigationItem label="Regional Sales East" name="east" />
<lightning:verticalNavigationItem label="Regional Sales West" name="west" />

</lightning:verticalNavigationOverflow>
</lightning:verticalNavigation>

</aura:component>

Dynamically Creating a Navigation Menu

To create a navigation menu via JavaScript, pass in a map of key-value pairs that define the sub-components. Here's an example that
creates a navigation menu during component initialization.

<aura:component>
<aura:attribute name="navigationData" type="Object" description="The list of sections

and their items." />
<aura:handler name="init" value="{! this }" action="{! c.init }" />
<lightning:verticalNavigation>

<aura:iteration items="{! v.navigationData }" var="section">
<lightning:verticalNavigationSection label="{! section.label }">

<aura:iteration items="{! section.items }" var="item">
<aura:if isTrue="{! !empty(item.icon) }">

<lightning:verticalNavigationItemIcon
label="{! item.label }"
name="{! item.name }"
iconName="{! item.icon }" />

<aura:set attribute="else">
<lightning:verticalNavigationItem

label="{! item.label }"
name="{! item.name }" />

</aura:set>
</aura:if>

</aura:iteration>
</lightning:verticalNavigationSection>

</aura:iteration>
</lightning:verticalNavigation>

</aura:component>

The client-side controller creates two sections with two navigation items each.

({
init: function (component) {

var sections = [
{
label: "Reports",
items: [
{
label: "Created by Me",
name: "default_created"

},
{
label: "Public Reports",
name: "default_public"

}
]

},
{

517

lightning:verticalNavigationReference

label: "Dashboards",
items: [
{
label: "Favorites",
name: "default_favorites",
icon: "utility:favorite"

},
{
label: "Most Popular",
name: "custom_mostpopular"

}
]

}
];
component.set('v.navigationData', sections);

}
})

Usage Considerations

If you want a navigation menu that's more than one level deep, consider using lightning:tree instead.

The navigation menu takes up the full width of the screen. You can specify a width using CSS.

.THIS {
width: 320px;

}

Accessibility

Use the Tab and Shift+Tab keys to navigate up and down the menu. To expand or collapse an overflow section, press the Enter key or
Space Bar.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Specify true to reduce spacing between navigation items. This value
defaults to false.

Booleancompact

Action fired before an item is selected. The event params include the
`name` of the selected item. To prevent the onselect handler from
running, call event.preventDefault() in the onbeforeselect handler.

Actiononbeforeselect

Action fired when an item is selected. The event params include the
`name` of the selected item.

Actiononselect

Name of the nagivation item to make active.StringselectedItem

518

lightning:verticalNavigationReference

Required?DescriptionAttribute TypeAttribute Name

Specify true when the vertical navigation is sitting on top of a shaded
background. This value defaults to false.

Booleanshaded

Displays tooltip text when the mouse moves over the element.Stringtitle

lightning:verticalNavigationItem
A text-only link within lightning:verticalNavigationSection or lightning:verticalNavigationOverflow. This component requires API version
41.0 and later.

A lightning:verticalNavigationItem component is a navigation item within lightning:verticalNavigation.

For more information, see lightning:verticalNavigation.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesThe text displayed for the navigation item.Stringlabel

YesA unique identifier for the navigation item.Stringname

The URL of the page that the navigation item goes to.Stringhref

lightning:verticalNavigationItemBadge
A link and badge within a lightning:verticalNavigationSection or lightning:verticalNavigationOverflow. This component requires API
version 41.0 and later.

A lightning:verticalNavigationItemBadge component is a navigation item that displays a numerical badge to the
right of the item label.

Here's an example that creates a navigation menu with an item containing a badge.

<aura:component>
<lightning:verticalNavigation selectedItem="recent">

<lightning:verticalNavigationSection label="Reports">
<lightning:verticalNavigationItemBadge label="Recent" name="recent"

badgeCount="3" />
<lightning:verticalNavigationItem label="Created by Me" name="usercreated" />

<lightning:verticalNavigationItem label="Private Reports" name="private" />
<lightning:verticalNavigationItem label="Public Reports" name="public" />

519

lightning:verticalNavigationItemReference

<lightning:verticalNavigationItem label="All Reports" name="all" />
</lightning:verticalNavigationSection>

</lightning:verticalNavigation>
</aura:component>

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesThe text displayed for this navigation item.Stringlabel

YesA unique identifier for this navigation item.Stringname

The URL of the page that the navigation item goes to.Stringhref

The number to show inside the badge. If this value is zero the badge will
be hidden.

IntegerbadgeCount

Assistive text describing the number in the badge. This is used to enhance
accessibility and is not displayed to the user.

StringassistiveText

lightning:verticalNavigationItemIcon
A link and icon within a lightning:verticalNavigationSection or lightning:verticalNavigationOverflow. This component requires API version
41.0 and later.

A lightning:verticalNavigationItemIcon component is a navigation item that displays an icon to the left of the item
label.

Here's an example that creates a navigation menu with icons on the navigation items.

<aura:component>
<lightning:verticalNavigation>

<lightning:verticalNavigationSection label="Reports">
<lightning:verticalNavigationItemIcon

label="Recent"
name="recent"
iconName="utility:clock" />

<lightning:verticalNavigationItemIcon
label="Created by Me"
name="created"
iconName="utility:user" />

<lightning:verticalNavigationItem
label="All Reports"
name="all"
iconName="utility:open_folder" />

520

lightning:verticalNavigationItemIconReference

</lightning:verticalNavigationSection>
</lightning:verticalNavigation>

</aura:component>

Icons from the Lightning Design System are supported. Visit https://lightningdesignsystem.com/icons to view available icons.

Attributes

Required?DescriptionAttribute typeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class for the outer element, in addition to the component's base
classes.

Stringclass

Displays tooltip text when the mouse moves over the element.Stringtitle

YesThe text displayed for this navigation item.Stringlabel

YesA unique identifier for this navigation item.Stringname

The URL of the page that the navigation item goes to.Stringhref

The Lightning Design System name of the icon. Names are written in the
format '\utility:down\' where 'utility' is the category, and 'down' is the
specific icon to be displayed.

StringiconName

lightning:verticalNavigationOverflow
Represents an overflow of items from a preceding lightning:verticalNavigationSection, with the ability to toggle visibility. This component
requires API 41.0 and later.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

lightning:verticalNavigationSection
Represents a section within a lightning:verticalNavigation. This component requires API version 41.0 and later.

521

lightning:verticalNavigationOverflowReference

https://lightningdesignsystem.com/icons

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

YesThe heading text for this section.Stringlabel

lightning:workspaceAPI
This is the Public API for accessing/manipulating workspaces (Tabs and Subtabs)

This component allows you to access methods for programmatically controlling workspace tabs and subtabs in a Lightning console
app. In Lightning console apps, records open as workspace tabs and their related records open as subtabs.

To access the methods, create an instance of the lightning:workspaceAPI component and assign an aura:id attribute to
it.

<lightning:workspaceAPI aura:id="workspace"/>

This example opens a new tab displaying the record with the given relative URL in the url attribute when the button is clicked.

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Open Tab" onclick="{! c.openTab }" />

</aura:component>

The button in the component calls the following client-side controller.

{(
openTab : function(component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.openTab({

url: '#/sObject/001R0000003HgssIAC/view',
focus: true

});
},

)}

Methods

This component supports the following methods. Most methods take only one argument, a JSON array of parameters. For more information
on these methods, see the Console Developer Guide.

closeTab({tabId})

• tabId (string): ID of the workspace tab or subtab to close.

Returns a Promise. Success resolves to true. The Promise will be rejected on error.

focusTab({tabId})

• tabId (string): The ID of the workspace tab or subtab on which to focus.

Returns a Promise. Success resolves to true. The Promise will be rejected on error.

getAllTabInfo()

Returns a Promise. Success resolves to an array of tabInfo objects. The Promise will be rejected on error.

522

lightning:workspaceAPIReference

getFocusedTabInfo()

Returns a Promise. Success resolves to a tabInfo object. The Promise will be rejected on error.

getTabInfo({tabId})

• tabId (string): ID of the tab for which to retrieve the information.

Returns a Promise. Success resolves to a tabInfo object. The Promise will be rejected on error.

getTabURL({tabId})

• tabId (string): ID of the tab for which to retrieve the URL.

Returns a Promise. Success resolves to the tab URL. The Promise will be rejected on error.

isSubtab({tabId})

• tabId (string): ID of the tab.

Returns a Promise. Success resolves to true if the tab is a subtab, false otherwise. The Promise will be rejected on error.

isConsoleNavigation()

Returns a Promise. Success resolves to true if console navigation is present, false otherwise. The Promise will be rejected on error.

getEnclosingTabId()

Returns a Promise. Success resolves to the enclosing tabId or false if not within a tab. The Promise will be rejected on error.

openSubtab({parentTabId, url, recordId, focus})

• parentTabId (string): ID of the workspace tab within which the new subtab should open.

• url (string): Optional. The URL representing the content of the new subtab. URLs can be either relative or absolute.

• recordId (string): Optional. A record ID representing the content of the new subtab.

• focus (boolean): Optional. Specifies whether the new subtab has focus.

Returns a Promise. Success resolves to the tabId of the subtab. The Promise will be rejected on error.

openTab({url, recordId, focus})

• url (string): Optional. The URL representing the content of the new tab. URLs can be either relative or absolute.

• recordId (string): Optional. A record ID representing the content of the new tab.

• focus (boolean): Optional. Specifies whether the new tab has focus.

• overrideNavRules (boolean): Optional. Specifies whether to override nav rules when opening the new tab.

Returns a Promise. Success resolves to the tabId of the workspace. The Promise will be rejected on error.

setTabIcon({tabId, icon, iconAlt})

• tabId (string): The ID of the tab for which to set the icon.

• icon (string): An SLDS icon key. See a full list of icon keys on the SLDS reference site.

• iconAlt (string): Optional. Alternative text for the icon.

Returns a Promise. Success resolves to a tabInfo object of the modified tab. The Promise will be rejected on error.

setTabLabel({tabId, label})

• tabId (string): The ID of the tab for which to set the label.

• label (string): The label of the workspace tab or subtab.

Returns a Promise. Success resolves to a tabInfo object of the modified tab. The Promise will be rejected on error.

setTabHighlighted({tabId, highlighted})

523

lightning:workspaceAPIReference

• tabId (string): The ID of the tab for which to highlight.

• highlighted (boolean): Specifies whether the new tab should be highlighted.

Returns a Promise. Success resolves to a tabInfo object of the modified tab. The Promise will be rejected on error.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

ltng:require
Loads scripts and stylesheets while maintaining dependency order. The styles are loaded in the order that they are listed. The styles only
load once if they are specified in multiple <ltng:require> tags in the same component or across different components.

ltng:require enables you to load external CSS and JavaScript libraries after you upload them as static resources.

<aura:component>

<ltng:require

styles="{!$Resource.SLDSv1 + '/assets/styles/lightning-design-system-ltng.css'}"

scripts="{!$Resource.jsLibraries + '/jsLibOne.js'}"

afterScriptsLoaded="{!c.scriptsLoaded}" />

</aura:component>

Due to a quirk in the way $Resource is parsed in expressions, use the join operator to include multiple $Resource references in a single
attribute. For example, if you have more than one JavaScript library to include into a component the scripts attribute should be something
like the following.

scripts="{!join(',',

$Resource.jsLibraries + '/jsLibOne.js',

$Resource.jsLibraries + '/jsLibTwo.js')}"

The comma-separated lists of resources are loaded in the order that they are entered in the scripts and styles attributes. The
afterScriptsLoaded action in the client-side controller is called after the scripts are loaded. To ensure encapsulation and
reusability, add the <ltng:require> tag to every .cmp or .app resource that uses the CSS or JavaScript library.

The resources only load once if they are specified in multiple <ltng:require> tags in the same component or across different
components.

524

ltng:requireReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

The set of scripts in dependency order that will be loaded.String[]scripts

The set of style sheets in dependency order that will be loaded.String[]styles

Events

DescriptionEvent TypeEvent Name

Fired when ltng:require has loaded all scripts listed in ltng:require.scriptsCOMPONENTafterScriptsLoaded

Fired before ltng:require starts loading resourcesCOMPONENTbeforeLoadingResources

ui:actionMenuItem
A menu item that triggers an action. This component is nested in a ui:menu component.

A ui:actionMenuItem component represents a menu list item that triggers an action when clicked. Use aura:iteration
to iterate over a list of values and display the menu items. A ui:menuTriggerLink component displays and hides your menu
items.

<aura:attribute name="status" type="String[]" default="Open, Closed, Closed Won, Any"/>
<ui:menu>

<ui:menuTriggerLink aura:id="trigger" label="Opportunity Status"/>
<ui:menuList class="actionMenu" aura:id="actionMenu">

<aura:iteration items="{!v.status}" var="s">
<ui:actionMenuItem label="{!s}" click="{!c.doSomething}"/>

</aura:iteration>
</ui:menuList>

</ui:menu>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

Set to true to hide menu after the menu item is selected.BooleanhideMenuAfterSelected

525

ui:actionMenuItemReference

Required?DescriptionAttribute TypeAttribute Name

The text displayed on the component.Stringlabel

The status of the menu item. True means this menu item is selected;
False is not selected.

Booleanselected

The concrete type of the menu item. Accepted values are 'action',
'checkbox', 'radio', 'separator' or any namespaced component descriptor,
e.g. ns:xxxxmenuItem.

Stringtype

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

ui:button
Represents a button element.

A ui:button component represents a button element that executes an action defined by a controller. Clicking the button triggers
the client-side controller method set for the press event. The button can be created in several ways.

A text-only button has only the label attribute set on it.

<ui:button label="Find"/>

526

ui:buttonReference

An image-only button uses both the label and labelClass attributes with CSS.

<!-- Component markup -->
<ui:button label="Find" labelClass="assistiveText" class="img" />

/** CSS **/
THIS.uiButton.img {
background: url(/path/to/img) no-repeat;
width:50px;
height:25px;
}

The assistiveText class hides the label from view but makes it available to assistive technologies. To create a button with both
image and text, use the label attribute and add styles for the button.

<!-- Component markup -->
<ui:button label="Find" />

/** CSS **/
THIS.uiButton {
background: url(/path/to/img) no-repeat;
}

The previous markup for a button with text and image results in the following HTML.

<button class="button uiButton--default uiButton" accesskey type="button">
Find
</button>

This example shows a button that displays the input value you enter.

<aura:component access="global">
<ui:inputText aura:id="name" label="Enter Name:" placeholder="Your Name" />
<ui:button aura:id="button" buttonTitle="Click to see what you put into the field"
class="button" label="Click me" press="{!c.getInput}"/>
<ui:outputText aura:id="outName" value="" class="text"/>
</aura:component>

({
getInput : function(cmp, evt) {

var myName = cmp.find("name").get("v.value");
var myText = cmp.find("outName");
var greet = "Hi, " + myName;
myText.set("v.value", greet);

}
})

527

ui:buttonReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The keyboard access key that puts the button in focus. When the button
is in focus, pressing Enter clicks the button.

Stringaccesskey

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

The text displayed in a tooltip when the mouse pointer hovers over the
button.

StringbuttonTitle

Specifies the type of button. Possible values: reset, submit, or button.
This value defaults to button.

StringbuttonType

A CSS style to be attached to the button. This style is added in addition
to base styles output by the component.

Stringclass

Specifies whether this button should be displayed in a disabled state.
Disabled buttons can't be clicked. Default value is "false".

Booleandisabled

The text displayed on the button. Corresponds to the value attribute of
the rendered HTML input element.

Stringlabel

A CSS style to be attached to the label. This style is added in addition to
base styles output by the component.

StringlabelClass

Events

DescriptionEvent TypeEvent Name

The event fired when the button is clicked.COMPONENTpress

ui:checkboxMenuItem
A menu item with a checkbox that supports multiple selection and can be used to invoke an action. This component is nested in a
ui:menu component.

A ui:checkboxMenuItem component represents a menu list item that enables multiple selection. Use aura:iteration to
iterate over a list of values and display the menu items. A ui:menuTriggerLink component displays and hides your menu items.

<aura:attribute name="status" type="String[]" default="Open, Closed, Closed Won, Any"/>
<ui:menu>
<ui:menuTriggerLink aura:id="checkboxMenuLabel" label="Multiple selection"/>

<ui:menuList aura:id="checkboxMenu" class="checkboxMenu">
<aura:iteration items="{!v.status}" var="s">

<ui:checkboxMenuItem label="{!s}"/>
</aura:iteration>

</ui:menuList>
</ui:menu>

528

ui:checkboxMenuItemReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

Set to true to hide menu after the menu item is selected.BooleanhideMenuAfterSelected

The text displayed on the component.Stringlabel

The status of the menu item. True means this menu item is selected;
False is not selected.

Booleanselected

The concrete type of the menu item. Accepted values are 'action',
'checkbox', 'radio', 'separator' or any namespaced component descriptor,
e.g. ns:xxxxmenuItem.

Stringtype

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

529

ui:checkboxMenuItemReference

ui:inputCheckbox
Represents a checkbox. Its behavior can be configured using events such as click and change.

A ui:inputCheckbox component represents a checkbox whose state is controlled by the value and disabled attributes.
It's rendered as an HTML input tag of type checkbox. To render the output from a ui:inputCheckbox component, use the
ui:outputCheckbox component.

This is a basic set up of a checkbox.

<ui:inputCheckbox label="Reimbursed?"/>

This example results in the following HTML.

<div class="uiInput uiInputCheckbox uiInput--default uiInput--checkbox">
<label class="uiLabel-left form-element__label uiLabel">
Reimbursed?

</label>
<input type="checkbox">

</div>

The value attribute controls the state of a checkbox, and events such as click and change determine its behavior. This example
updates the checkbox CSS class on a click event.

<!-- Component Markup -->
<ui:inputCheckbox label="Color me" click="{!c.update}"/>

/** Client-Side Controller **/
update : function (cmp, event) {
$A.util.toggleClass(event.getSource(), "red");

}

This example retrieves the value of a ui:inputCheckbox component.

<aura:component>
<aura:attribute name="myBool" type="Boolean" default="true"/>
<ui:inputCheckbox aura:id="checkbox" label="Select?" change="{!c.onCheck}"/>
<p>Selected:</p>
<p><ui:outputText class="result" aura:id="checkResult" value="false" /></p>
<p>The following checkbox uses a component attribute to bind its value.</p>
<ui:outputCheckbox aura:id="output" value="{!v.myBool}"/>
</aura:component>

({
onCheck: function(cmp, evt) {
var checkCmp = cmp.find("checkbox");
resultCmp = cmp.find("checkResult");
resultCmp.set("v.value", ""+checkCmp.get("v.value"));

}
})

530

ui:inputCheckboxReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The list of errors to be displayed.Listerrors

The text displayed on the component.Stringlabel

The CSS class of the label componentStringlabelClass

The name of the component.Stringname

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

The input value attribute.Stringtext

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change,click".

StringupdateOn

Indicates whether the status of the option is selected. Default value is
“false”.

Booleanvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

531

ui:inputCheckboxReference

DescriptionEvent TypeEvent Name

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

The event fired when the user pastes content from the clipboard.COMPONENTpaste

ui:inputCurrency
An input field for entering a currency.

A ui:inputCurrency component represents an input field for a number as a currency, which is rendered as an HTML input
element of type text. It uses JavaScript’s Number type to determine the supported number of digits. The browser's locale is used by
default. To render the output from a ui:inputCurrency component, use the ui:outputCurrency component.

This is a basic set up of a ui:inputCurrency component, which renders an input field with the value $50.00 when the browser's
currency locale is $.

<ui:inputCurrency aura:id="amount" label="Amount" class="field" value="50"/>

This example results in the following HTML.

<div class="uiInput uiInput--default uiInput--input">
<label class="uiLabel-left form-element__label uiLabel">

Amount
</label>
<input class="field input" max="99999999999999" step="1" type="text"

min="-99999999999999">
</div>

To override the browser's locale, set the new format on the v.format attribute of the ui:inputCurrency component. This
example renders an input field with the value £50.00.

var curr = component.find("amount");
curr.set("v.format", '£#,###.00');

This example binds the value of a ui:inputCurrency component to ui:outputCurrency.

<aura:component>
<aura:attribute name="myCurrency" type="integer" default="50"/>
<ui:inputCurrency aura:id="amount" label="Amount" class="field" value="{!v.myCurrency}"

updateOn="keyup"/>

532

ui:inputCurrencyReference

You entered: <ui:outputCurrency value="{!v.myCurrency}"/>
</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The list of errors to be displayed.Listerrors

The format of the number. For example, format=“.00” displays the number
followed by two decimal places. If not specified, the Locale default format
will be used.

Stringformat

The text of the label componentStringlabel

The CSS class of the label componentStringlabelClass

The maximum number of characters that can be typed into the input
field. Corresponds to the maxlength attribute of the rendered HTML input
element.

Integermaxlength

Text that is displayed when the field is empty, to prompt the user for a
valid entry.

Stringplaceholder

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

The width of the input field, in characters. Corresponds to the size
attribute of the rendered HTML input element.

Integersize

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change".

StringupdateOn

The input value of the number.Decimalvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

533

ui:inputCurrencyReference

DescriptionEvent TypeEvent Name

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

The event fired when the user pastes content from the clipboard.COMPONENTpaste

ui:inputDate
An input field for entering a date.

A ui:inputDate component represents a date input field, which is rendered as an HTML input tag of type text on desktop.
Web apps running on mobiles and tablets use an input field of type date for all browsers except Internet Explorer. The value is displayed
based on the locale of the browser, for example, MMM d, yyyy, which is returned by $Locale.dateFormat.

This is a basic set up of a date field with a date picker icon, which displays the field value Jan 30, 2014 based on the locale format.
On desktop, the input tag is wrapped in a form tag.

<ui:inputDate aura:id="dateField" label="Birthday" value="2014-01-30"
displayDatePicker="true"/>

Selecting A Date on Mobile Devices

When viewed on a mobile or tablet, the ui:inputDate component uses the native date picker, and the format attribute is not
supported in this case. We recommend using the value change handler to retrieve date value change on the input field. On iOS devices,

534

ui:inputDateReference

selecting a date on the date picker triggers the change handler on the component but the value is bound only on the blur event. This
example binds the date value to a value change handler.

<aura:component>
<aura:attribute name="myDate" type="Date" />
<!-- Value change handler -->
<aura:handler name="change" value="{!v.myDate}" action="{!c.handleValueChange}"/>

<ui:inputDate aura:id="mySelectedDate"
label="Select a date" displayDatePicker="true"
value="{!v.myDate}"/>

</aura:component>

This example sets today's date on a ui:inputDate component, retrieves its value, and displays it using ui:outputDate. The
init handler initializes and sets the date on the component.

<aura:component>
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>
<aura:attribute name="today" type="Date" default=""/>

<ui:inputDate aura:id="expdate" label="Today's Date" class="field" value="{!v.today}"
displayDatePicker="true" />

<ui:button class="btn" label="Submit" press="{!c.setOutput}"/>

<div aura:id="msg" class="hide">
You entered: <ui:outputDate aura:id="oDate" value="" />
</div>
</aura:component>

({
doInit : function(component, event, helper) {

var today = new Date();
component.set('v.today', today.getFullYear() + "-" + (today.getMonth() + 1) + "-"

+ today.getDate());
},

setOutput : function(component, event, helper) {
var cmpMsg = component.find("msg");
$A.util.removeClass(cmpMsg, 'hide');

var expdate = component.find("expdate").get("v.value");

var oDate = component.find("oDate");
oDate.set("v.value", expdate);

535

ui:inputDateReference

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

Indicates if an icon that triggers the date picker is displayed in the field.
The default is false.

BooleandisplayDatePicker

The list of errors to be displayed.Listerrors

The java.text.SimpleDateFormat style format string.Stringformat

The text of the label componentStringlabel

The CSS class of the label componentStringlabelClass

Deprecated. The language locale used to format date time. It only allows
to use the value which is provided by Locale Value Provider, otherwise,

StringlangLocale

it falls back to the value of $Locale.langLocale. It will be removed in an
upcoming release.

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change".

StringupdateOn

The input value of the date/time as an ISO string.Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

536

ui:inputDateReference

DescriptionEvent TypeEvent Name

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

The event fired when the user pastes content from the clipboard.COMPONENTpaste

ui:inputDateTime
An input field for entering a date and time.

A ui:inputDateTime component represents a date and time input field, which is rendered as an HTML input tag of type text
on desktop. Web apps running on mobiles and tablets use an input field of type datetime-local for all browsers except Internet
Explorer. The value is displayed based on the locale of the browser, for example, MMM d, yyyy and h:mm:ss a, which is returned
by $Locale.dateFormat and $Locale.timeFormat.

This is a basic set up of a pair of date and time field with a date picker icon. The client-side controller sets the current date and time in
the fields. On desktop, the input tag is wrapped in a form tag; the date and time fields display as two separate fields. The time picker
displays a list of time in 30-minute increments.

<!-- Component markup -->
<aura:attribute name="today" type="DateTime" />
<ui:inputDateTime aura:id="expdate" label="Expense Date" class="form-control"

value="{!v.today}" displayDatePicker="true" />

/** Client-Side Controller **/
var today = new Date();
// Convert the date to an ISO string
component.set("v.today", today.toISOString());

Selecting A Date and Time on Mobile Devices

537

ui:inputDateTimeReference

When viewed on a mobile or tablet, the ui:inputDateTime component uses the native date and time picker, and the format
attribute is not supported in this case. We recommend using the value change handler to retrieve date and time value change on the
input field. On iOS devices, selecting a date and time on the date picker triggers the change handler on the component but the value
is bound only on the blur event. This example binds the date value to a value change handler.

<aura:component>
<aura:attribute name="myDateTime" type="DateTime" />
<!-- Value change handler -->
<aura:handler name="change" value="{!v.myDateTime}" action="{!c.handleValueChange}"/>

<ui:inputDateTime aura:id="mySelectedDateTime"
label="Select a date and time"
value="{!v.myDateTime}"/>

</aura:component>

This example retrieves the value of a ui:inputDateTime component and displays it using ui:outputDateTime.

<aura:component>
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>
<aura:attribute name="today" type="Date" default=""/>

<ui:inputDateTime aura:id="today" label="Time" class="field" value=""
displayDatePicker="true" />

<ui:button class="btn" label="Submit" press="{!c.setOutput}"/>

<div aura:id="msg" class="hide">
You entered: <ui:outputDateTime aura:id="oDateTime" value="" />
</div>
</aura:component>

({
doInit : function(component, event, helper) {

var today = new Date();
component.set('v.today', today.getFullYear() + "-" + (today.getMonth() + 1) + "-"

+ today.getDate());
},

setOutput : function(component, event, helper) {
var cmpMsg = component.find("msg");
$A.util.removeClass(cmpMsg, 'hide');

var todayVal = component.find("today").get("v.value");
var oDateTime = component.find("oDateTime");
oDateTime.set("v.value", todayVal);

538

ui:inputDateTimeReference

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

Indicates if an icon that triggers the date picker is displayed in the field.
The default is false.

BooleandisplayDatePicker

The list of errors to be displayed.Listerrors

The java.text.SimpleDateFormat style format string.Stringformat

The text of the label componentStringlabel

The CSS class of the label componentStringlabelClass

Deprecated. The language locale used to format date time. It only allows
to use the value which is provided by Locale Value Provider, otherwise,

StringlangLocale

it falls back to the value of $Locale.langLocale. It will be removed in an
upcoming release.

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change".

StringupdateOn

The input value of the date/time as an ISO string.Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

539

ui:inputDateTimeReference

DescriptionEvent TypeEvent Name

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

The event fired when the user pastes content from the clipboard.COMPONENTpaste

ui:inputDefaultError
The default implementation of field-level errors, which iterates over the value and displays the message.

ui:inputDefaultError is the default error handling for your input components. This component displays as a list of errors below
the field. Field-level error messages can be added using set("v.errors"). You can use the error atribute to show the error message.
For example, this component validates if the input is a number.

<aura:component>
Enter a number: <ui:inputNumber aura:id="inputCmp" label="number"/>
<ui:button label="Submit" press="{!c.doAction}"/>

</aura:component>

This client-side controller displays an error if the input is not a number.

doAction : function(component, event) {
var inputCmp = cmp.find("inputCmp");
var value = inputCmp.get("v.value");
if (isNaN(value)) {

inputCmp.set("v.errors", [{message:"Input not a number: " + value}]);
} else {

//clear error
inputCmp.set("v.errors", null);

540

ui:inputDefaultErrorReference

}
}

Alternatively, you can provide your own ui:inputDefaultError component. This example returns an error message if the
warnings attribute contains any messages.

<aura:component>
<aura:attribute name="warnings" type="String[]" description="Warnings for input

text"/>
Enter a number: <ui:inputNumber aura:id="inputCmp" label="number"/>
<ui:button label="Submit" press="{!c.doAction}"/>
<ui:inputDefaultError aura:id="number" value="{!v.warnings}" />

</aura:component>

This client-side controller diplays an error by adding a string to the warnings attribute.

doAction : function(component, event) {
var inputCmp = component.find("inputCmp");
var value = inputCmp.get("v.value");

// is input numeric?
if (isNaN(value)) {

component.set("v.warnings", "Input is not a number");
} else {

// clear error
component.set("v.warnings", null);

}
}

This example shows a ui:inputText component with the default error handling, and a corresponding ui:outputText
component for text rendering.

<aura:component>
<ui:inputText aura:id="color" label="Enter some text: " placeholder="Blue" />
<ui:button label="Validate" press="{!c.checkInput}" />
<ui:outputText aura:id="outColor" value="" class="text"/>
</aura:component>

({
checkInput : function(cmp) {
var colorCmp = cmp.find("color");

var myColor = colorCmp.get("v.value");

var myOutput = cmp.find("outColor");
var greet = "You entered: " + myColor;
myOutput.set("v.value", greet);

if (!myColor) {
colorCmp.set("v.errors", [{message:"Enter some text"}]);

}
else {

colorCmp.set("v.errors", null);
}

541

ui:inputDefaultErrorReference

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

The list of errors strings to be displayed.String[]value

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:inputEmail
Represents an input field for entering an email address.

A ui:inputEmail component represents an email input field, which is rendered as an HTML input tag of type email. To
render the output from a ui:inputEmail component, use the ui:outputEmail component.

This is a basic set up of an email field.

<ui:inputEmail aura:id="email" label="Email" placeholder="abc@email.com"/>

This example results in the following HTML.

<ui:inputEmail aura:id="email" label="Email" placeholder="abc@email.com"/>

This example results in the following HTML.

<div class="uiInput uiInputEmail uiInput--default uiInput--input">
<label class="uiLabel-left form-element__label uiLabel">
Email

542

ui:inputEmailReference

</label>
<input placeholder="abc@email.com" type="email" class="field input">

</div>

This example retrieves the value of a ui:inputEmail component and displays it using ui:outputEmail.

<aura:component>
<ui:inputEmail aura:id="email" label="Email" class="field" value="manager@email.com"/>

<ui:button class="btn" label="Submit" press="{!c.setOutput}"/>

<div aura:id="msg" class="hide">
You entered: <ui:outputEmail aura:id="oEmail" value="Email" />

</div>

</aura:component>

({
setOutput : function(component, event, helper) {
var cmpMsg = component.find("msg");
$A.util.removeClass(cmpMsg, 'hide');

var email = component.find("email").get("v.value");
var oEmail = component.find("oEmail");
oEmail.set("v.value", email);

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The list of errors to be displayed.Listerrors

The text of the label componentStringlabel

The CSS class of the label componentStringlabelClass

The maximum number of characters that can be typed into the input
field. Corresponds to the maxlength attribute of the rendered HTML input
element.

Integermaxlength

543

ui:inputEmailReference

Required?DescriptionAttribute TypeAttribute Name

Text that is displayed when the field is empty, to prompt the user for a
valid entry.

Stringplaceholder

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

The width of the input field, in characters. Corresponds to the size
attribute of the rendered HTML input element.

Integersize

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change".

StringupdateOn

The value currently in the input field.Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

544

ui:inputEmailReference

DescriptionEvent TypeEvent Name

The event fired when the user pastes content from the clipboard.COMPONENTpaste

ui:inputNumber
An input field for entering a number, taking advantage of client input assistance and validation when available.

A ui:inputNumber component represents a number input field, which is rendered as an HTML input element of type text.
It uses JavaScript’s Number type to determine the supported number of digits.

This example shows a number field, which displays a value of 10.

<aura:attribute name="num" type="integer" default="10"/>
<ui:inputNumber aura:id="num" label="Age" value="{!v.num}"/>

The previous example results in the following HTML.

<div class="uiInput uiInputNumber uiInput--default uiInput--input">
<label class="uiLabel-left form-element__label uiLabel">

Age
</label>
<input max="99999999999999" step="1" type="text"

min="-99999999999999" class="input">
</div>

To render the output from a ui:inputNumber component, use the ui:outputNumber component. When providing a number
value with commas, use type="integer". This example returns 100,000.

<aura:attribute name="number" type="integer" default="100,000"/>
<ui:inputNumber label="Number" value="{!v.number}"/>

For type="string", provide the number without commas for the output to be formatted accordingly. This example also returns
100,000.

<aura:attribute name="number" type="string" default="100000"/>
<ui:inputNumber label="Number" value="{!v.number}"/>

Specifying format="#,##0,000.00#" returns a formatted number value like 10,000.00.

<ui:inputNumber label="Cost" aura:id="costField" format="#,##0,000.00#" value="10000"/>

This example binds the value of a ui:inputNumber component to ui:outputNumber.

<aura:component>
<aura:attribute name="myNumber" type="integer" default="10"/>

<ui:inputNumber label="Enter a number: " value="{!v.myNumber}" updateOn="keyup"/>

<ui:outputNumber value="{!v.myNumber}"/>

</aura:component>

545

ui:inputNumberReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The list of errors to be displayed.Listerrors

The format of the number. For example, format=“.00” displays the number
followed by two decimal places. If not specified, the Locale default format
will be used.

Stringformat

The text of the label componentStringlabel

The CSS class of the label componentStringlabelClass

The maximum number of characters that can be typed into the input
field. Corresponds to the maxlength attribute of the rendered HTML input
element.

Integermaxlength

Text that is displayed when the field is empty, to prompt the user for a
valid entry.

Stringplaceholder

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

The width of the input field, in characters. Corresponds to the size
attribute of the rendered HTML input element.

Integersize

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change".

StringupdateOn

The input value of the number.Decimalvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

546

ui:inputNumberReference

DescriptionEvent TypeEvent Name

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

The event fired when the user pastes content from the clipboard.COMPONENTpaste

ui:inputPhone
Represents an input field for entering a telephone number.

A ui:inputPhone component represents an input field for entering a phone number, which is rendered as an HTML input tag
of type tel. To render the output from a ui:inputPhone component, use the ui:outputPhone component.

This example shows a phone field, which displays the specified phone number.

<ui:inputPhone label="Phone" value="415-123-4567" />

The previous example results in the following HTML.

<ui:inputPhone label="Phone" value="415-123-4567" />

The previous example results in the following HTML.

<div class="uiInput uiInputPhone uiInput--default uiInput--input">
<label class="uiLabel-left form-element__label uiLabel">

Phone
</label>
<input class="input" type="tel">

</div>

547

ui:inputPhoneReference

This example retrieves the value of a ui:inputPhone component and displays it using ui:outputPhone.

<aura:component>
<ui:inputPhone aura:id="phone" label="Phone Number" class="field" value="415-123-4567"

/>
<ui:button class="btn" label="Submit" press="{!c.setOutput}"/>

<div aura:id="msg" class="hide">
You entered: <ui:outputPhone aura:id="oPhone" value="" />
</div>
</aura:component>

({

setOutput : function(component, event, helper) {
var cmpMsg = component.find("msg");
$A.util.removeClass(cmpMsg, 'hide');

var phone = component.find("phone").get("v.value");
var oPhone = component.find("oPhone");
oPhone.set("v.value", phone);

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The list of errors to be displayed.Listerrors

The text of the label componentStringlabel

The CSS class of the label componentStringlabelClass

The maximum number of characters that can be typed into the input
field. Corresponds to the maxlength attribute of the rendered HTML input
element.

Integermaxlength

Text that is displayed when the field is empty, to prompt the user for a
valid entry.

Stringplaceholder

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

548

ui:inputPhoneReference

Required?DescriptionAttribute TypeAttribute Name

The width of the input field, in characters. Corresponds to the size
attribute of the rendered HTML input element.

Integersize

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change".

StringupdateOn

The value currently in the input field.Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

The event fired when the user pastes content from the clipboard.COMPONENTpaste

549

ui:inputPhoneReference

ui:inputRadio
The radio button used in the input.

A ui:inputRadio component represents a radio button whose state is controlled by the value and disabled attributes. It's
rendered as an HTML input tag of type radio. To group your radio buttons together, specify the name attribute with a unique
name.

This is a basic set up of a radio button.

<ui:inputRadio label="Yes"/>

This example results in the following HTML.

<div class="uiInput uiInputRadio uiInput--default uiInput--radio">
<label class="uiLabel-left form-element__label uiLabel">

Yes
</label>
<input type="radio">

</div>

This example retrieves the value of a selected ui:inputRadio component.

<aura:component>
<aura:attribute name="stages" type="String[]" default="Any,Open,Closed,Closed Won"/>
<aura:iteration items="{!v.stages}" var="stage">
<ui:inputRadio label="{!stage}" change="{!c.onRadio}" />
</aura:iteration>

Selected Item:
<p><ui:outputText class="result" aura:id="radioResult" value="" /></p>

Radio Buttons - Group
<ui:inputRadio aura:id="r0" name="others" label="Prospecting" change="{!c.onGroup}"/>
<ui:inputRadio aura:id="r1" name="others" label="Qualification" change="{!c.onGroup}"

value="true"/>
<ui:inputRadio aura:id="r2" name="others" label="Needs Analysis" change="{!c.onGroup}"/>

<ui:inputRadio aura:id="r3" name="others" label="Closed Lost" change="{!c.onGroup}"/>
Selected Items:
<p><ui:outputText class="result" aura:id="radioGroupResult" value="" /></p>

</aura:component>

({
onRadio: function(cmp, evt) {
var selected = evt.getSource().get("v.label");
resultCmp = cmp.find("radioResult");
resultCmp.set("v.value", selected);
},

onGroup: function(cmp, evt) {
var selected = evt.getSource().get("v.label");
resultCmp = cmp.find("radioGroupResult");

550

ui:inputRadioReference

resultCmp.set("v.value", selected);
}

})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether this radio button should be displayed in a disabled
state. Disabled radio buttons can't be clicked. Default value is "false".

Booleandisabled

The list of errors to be displayed.Listerrors

The text displayed on the component.Stringlabel

The CSS class of the label componentStringlabelClass

The name of the component.Stringname

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

The input value attribute.Stringtext

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change".

StringupdateOn

Indicates whether the status of the option is selected. Default value is
“false”.

Booleanvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

551

ui:inputRadioReference

DescriptionEvent TypeEvent Name

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

The event fired when the user pastes content from the clipboard.COMPONENTpaste

ui:inputRichText
An input field for entering rich text. This component is not supported by LockerService.

Note: We recommend that you use lightning:inputRichText instead of ui:inputRichText.
ui:inputRichText is no longer supported when LockerService is activated.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

The width of the text area, which is defined by the number of characters
to display in a single row at a time. Default value is “20”.

Integercols

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The list of errors to be displayed.Listerrors

The height of the editing area (that includes the editor content). This can
be an integer, for pixel sizes, or any CSS-defined length unit.

Stringheight

The text of the label componentStringlabel

552

ui:inputRichTextReference

Required?DescriptionAttribute TypeAttribute Name

The CSS class of the label componentStringlabelClass

The maximum number of characters that can be typed into the input
field. Corresponds to the maxlength attribute of the rendered HTML
textarea element.

Integermaxlength

The text that is displayed by default.Stringplaceholder

Specifies whether the text area should be rendered as read-only. Default
value is “false”.

Booleanreadonly

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

Specifies whether or not the textarea should be resizable. Defaults to
true.

Booleanresizable

The height of the text area, which is defined by the number of rows to
display at a time. Default value is “2”.

Integerrows

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change".

StringupdateOn

The value currently in the input field.Stringvalue

The editor UI outer width. This can be an integer, for pixel sizes, or any
CSS-defined unit. If isRichText is set to false, use the cols attribute instead.

Stringwidth

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

553

ui:inputRichTextReference

DescriptionEvent TypeEvent Name

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

The event fired when the user pastes content from the clipboard.COMPONENTpaste

ui:inputSecret
An input field for entering secret text with type password.

A ui:inputSecret component represents a password field, which is rendered as an HTML input tag of type password.

This is a basic set up of a password field.

<ui:inputSecret aura:id="secret" label="Pin" class="field" value="123456"/>

This example results in the following HTML.

<div class="uiInput uiInputSecret uiInput--default uiInput--input">
<label class="uiLabel-left form-element__label uiLabel">

Pin
</label>
<input class="field input" type="password">

</div>

This example displays a ui:inputSecret component with a default value.

<aura:component>
<ui:inputSecret aura:id="secret" label="Pin" class="field" value="123456"/>

</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

554

ui:inputSecretReference

Required?DescriptionAttribute TypeAttribute Name

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The list of errors to be displayed.Listerrors

The text of the label componentStringlabel

The CSS class of the label componentStringlabelClass

The maximum number of characters that can be typed into the input
field. Corresponds to the maxlength attribute of the rendered HTML input
element.

Integermaxlength

Text that is displayed when the field is empty, to prompt the user for a
valid entry.

Stringplaceholder

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

The width of the input field, in characters. Corresponds to the size
attribute of the rendered HTML input element.

Integersize

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change".

StringupdateOn

The value currently in the input field.Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

555

ui:inputSecretReference

DescriptionEvent TypeEvent Name

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

The event fired when the user pastes content from the clipboard.COMPONENTpaste

ui:inputSelect
Represents a drop-down list with options.

A ui:inputSelect component is rendered as an HTML select element. It contains options, represented by the
ui:inputSelectOption components. To enable multiple selections, set multiple="true". To wire up any client-side logic
when an input value is selected, use the change event.

<ui:inputSelect multiple="true">
<ui:inputSelectOption text="All Primary" label="All Contacts" value="true"/>
<ui:inputSelectOption text="All Primary" label="All Primary"/>
<ui:inputSelectOption text="All Secondary" label="All Secondary"/>

</ui:inputSelect>

v.value represents the option's HTML selected attribute, and v.text represents the option's HTML value attribute.

Generating Options with aura:iteration

You can use aura:iteration to iterate over a list of items to generate options. This example iterates over a list of items and handles
the change event.

<aura:attribute name="contactLevel" type="String[]" default="Primary Contact, Secondary
Contact, Other"/>

<ui:inputSelect aura:id="levels" label="Contact Levels" change="{!c.onSelectChange}">

<aura:iteration items="{!v.contactLevel}" var="level">
<ui:inputSelectOption text="{!level}" label="{!level}"/>

</aura:iteration>
</ui:inputSelect>

When the selected option changes, this client-side controller retrieves the new text value.

onSelectChange : function(component, event, helper) {
var selected = component.find("levels").get("v.value");
//do something else

}

Generating Options Dynamically

556

ui:inputSelectReference

Generate the options dynamically on component initialization using a controller-side action.

<aura:component>
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>
<ui:inputSelect label="Select me:" class="dynamic" aura:id="InputSelectDynamic"/>

</aura:component>

The following client-side controller generates options using the options attribute on the ui:inputSelect component. v.options
takes in the list of objects and converts them into list options. The opts object constructs InputOption objects to create the
ui:inputSelectOptions components within ui:inputSelect. Although the sample code generates the options during
initialization, the list of options can be modified anytime when you manipulate the list in v.options. The component automatically
updates itself and rerenders with the new options.

({
doInit : function(cmp) {

var opts = [
{ class: "optionClass", label: "Option1", value: "opt1", selected: "true" },
{ class: "optionClass", label: "Option2", value: "opt2" },
{ class: "optionClass", label: "Option3", value: "opt3" }

];
cmp.find("InputSelectDynamic").set("v.options", opts);

}
})

class is a reserved keyword that might not work with older versions of Internet Explorer. We recommend using "class" with
double quotes. If you’re reusing the same set of options on multiple drop-down lists, use different attributes for each set of options.
Otherwise, selecting a different option in one list also updates other list options bound to the same attribute.

<aura:attribute name="options1" type="String" />
<aura:attribute name="options2" type="String" />
<ui:inputSelect aura:id="Select1" label="Select1" options="{!v.options1}" />
<ui:inputSelect aura:id="Select2" label="Select2" options="{!v.options2}" />

This example displays a drop-down list with single and multiple selection enabled, and another with dynamically generated list options.
It retrieves the selected value of a ui:inputSelect component.

<aura:component>
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

<div class="row">
<p class="title">Single Selection</p>
<ui:inputSelect class="single" aura:id="InputSelectSingle"
change="{!c.onSingleSelectChange}">

<ui:inputSelectOption text="Any"/>
<ui:inputSelectOption text="Open" value="true"/>
<ui:inputSelectOption text="Closed"/>
<ui:inputSelectOption text="Closed Won"/>

<ui:inputSelectOption text="Prospecting"/>
<ui:inputSelectOption text="Qualification"/>
<ui:inputSelectOption text="Needs Analysis"/>

557

ui:inputSelectReference

<ui:inputSelectOption text="Closed Lost"/>
</ui:inputSelect>
<p>Selected Item:</p>
<p><ui:outputText class="result" aura:id="singleResult" value="" /></p>

</div>

<div class="row">
<p class="title">Multiple Selection</p>
<ui:inputSelect multiple="true" class="multiple" aura:id="InputSelectMultiple"

change="{!c.onMultiSelectChange}">

<ui:inputSelectOption text="Any"/>
<ui:inputSelectOption text="Open"/>
<ui:inputSelectOption text="Closed"/>
<ui:inputSelectOption text="Closed Won"/>
<ui:inputSelectOption text="Prospecting"/>
<ui:inputSelectOption text="Qualification"/>
<ui:inputSelectOption text="Needs Analysis"/>
<ui:inputSelectOption text="Closed Lost"/>

</ui:inputSelect>
<p>Selected Items:</p>
<p><ui:outputText class="result" aura:id="multiResult" value="" /></p>

</div>

<div class="row">
<p class="title">Dynamic Option Generation</p>
<ui:inputSelect label="Select me: " class="dynamic" aura:id="InputSelectDynamic"

change="{!c.onChange}" />
<p>Selected Items:</p>
<p><ui:outputText class="result" aura:id="dynamicResult" value="" /></p>

</div>

</aura:component>

({
doInit : function(cmp) {
// Initialize input select options

var opts = [
{ "class": "optionClass", label: "Option1", value: "opt1", selected: "true"

},
{ "class": "optionClass", label: "Option2", value: "opt2" },
{ "class": "optionClass", label: "Option3", value: "opt3" }

];
cmp.find("InputSelectDynamic").set("v.options", opts);

},

onSingleSelectChange: function(cmp) {
var selectCmp = cmp.find("InputSelectSingle");
var resultCmp = cmp.find("singleResult");
resultCmp.set("v.value", selectCmp.get("v.value"));

558

ui:inputSelectReference

},

onMultiSelectChange: function(cmp) {
var selectCmp = cmp.find("InputSelectMultiple");
var resultCmp = cmp.find("multiResult");
resultCmp.set("v.value", selectCmp.get("v.value"));

},

onChange: function(cmp) {
var dynamicCmp = cmp.find("InputSelectDynamic");
var resultCmp = cmp.find("dynamicResult");
resultCmp.set("v.value", dynamicCmp.get("v.value"));
}

})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The list of errors to be displayed.Listerrors

The text of the label componentStringlabel

The CSS class of the label componentStringlabelClass

Specifies whether the input is a multiple select. Default value is “false”.Booleanmultiple

A list of options to use for the select. Note: setting this attribute will make
the component ignore v.body

Listoptions

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change".

StringupdateOn

The value currently in the input field.Stringvalue

559

ui:inputSelectReference

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

The event fired when the user pastes content from the clipboard.COMPONENTpaste

ui:inputSelectOption
An HTML option element that is nested in a ui:inputSelect component. Denotes the available options in the list.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

560

ui:inputSelectOptionReference

Required?DescriptionAttribute TypeAttribute Name

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The text displayed on the component.Stringlabel

The name of the component.Stringname

The input value attribute.Stringtext

Indicates whether the status of the option is selected. Default value is
“false”.

Booleanvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:inputText
Represents an input field suitable for entering a single line of free-form text.

A ui:inputText component represents a text input field, which is rendered as an HTML input tag of type text. To render the
output from a ui:inputText component, use the ui:outputText component.

561

ui:inputTextReference

This is a basic set up of a text field.

<ui:inputText label="Expense Name" value="My Expense" required="true"/>

This example results in the following HTML.

<div class="uiInput uiInputTextuiInput--default uiInput--input">
<label class="uiLabel-left form-element__label uiLabel">
Expense Name
*

</label>
<input required="required" class="input" type="text">

</div>

This example binds the value of a ui:inputText component to ui:outputText.

<aura:component>
<aura:attribute name="myText" type="string" default="Hello there!"/>

<ui:inputText label="Enter some text" class="field" value="{!v.myText}" updateOn="click"/>

You entered: <ui:outputText value="{!v.myText}"/>
</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The list of errors to be displayed.Listerrors

The text of the label componentStringlabel

The CSS class of the label componentStringlabelClass

The maximum number of characters that can be typed into the input
field. Corresponds to the maxlength attribute of the rendered HTML input
element.

Integermaxlength

Text that is displayed when the field is empty, to prompt the user for a
valid entry.

Stringplaceholder

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

The width of the input field, in characters. Corresponds to the size
attribute of the rendered HTML input element.

Integersize

562

ui:inputTextReference

Required?DescriptionAttribute TypeAttribute Name

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change".

StringupdateOn

The value currently in the input field.Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

The event fired when the user pastes content from the clipboard.COMPONENTpaste

ui:inputTextArea
An HTML textarea element that can be editable or read-only. Scroll bars may not appear on Chrome browsers in Android devices, but
you can select focus in the textarea to activate scrolling.

563

ui:inputTextAreaReference

A ui:inputTextArea component represents a multi-line text input control, which is rendered as an HTML textarea tag. To
render the output from a ui:inputTextArea component, use the ui:outputTextArea component.

This is a basic set up of a ui:inputTextArea component.

<ui:inputTextArea aura:id="comments" label="Comments" value="My comments" rows="5"/>

This example results in the following HTML.

<div class="uiInput uiInputTextArea uiInput--default uiInput--textarea">
<label class="uiLabel-left form-element__label uiLabel">

Comments
</label>
<textarea class="textarea" cols="20" rows="5">
</textarea>

</div>

This example retrieves the value of a ui:inputTextArea component and displays it using ui:outputTextArea.

<aura:component>
<ui:inputTextArea aura:id="comments" label="Comments" value="My comments" rows="5"/>

<ui:button class="btn" label="Submit" press="{!c.setOutput}"/>

<div aura:id="msg" class="hide">
You entered: <ui:outputTextArea aura:id="oTextarea" value=""/>
</div>
</aura:component>

({
setOutput : function(component, event, helper) {
var cmpMsg = component.find("msg");
$A.util.removeClass(cmpMsg, 'hide');

var comments = component.find("comments").get("v.value");
var oTextarea = component.find("oTextarea");
oTextarea.set("v.value", comments);

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

The width of the text area, which is defined by the number of characters
to display in a single row at a time. Default value is “20”.

Integercols

564

ui:inputTextAreaReference

Required?DescriptionAttribute TypeAttribute Name

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The list of errors to be displayed.Listerrors

The text of the label componentStringlabel

The CSS class of the label componentStringlabelClass

The maximum number of characters that can be typed into the input
field. Corresponds to the maxlength attribute of the rendered HTML
textarea element.

Integermaxlength

The text that is displayed by default.Stringplaceholder

Specifies whether the text area should be rendered as read-only. Default
value is “false”.

Booleanreadonly

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

Specifies whether or not the textarea should be resizable. Defaults to
true.

Booleanresizable

The height of the text area, which is defined by the number of rows to
display at a time. Default value is “2”.

Integerrows

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change".

StringupdateOn

The value currently in the input field.Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

565

ui:inputTextAreaReference

DescriptionEvent TypeEvent Name

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

The event fired when the user pastes content from the clipboard.COMPONENTpaste

ui:inputURL
An input field for entering a URL.

A ui:inputURL component represents an input field for a URL, which is rendered as an HTML input tag of type url. To render
the output from a ui:inputURL component, use the ui:outputURL component.

This is a basic set up of a ui:inputURL component.

<ui:inputURL aura:id="url" label="Venue URL" class="field" value="http://www.myURL.com"/>

This example results in the following HTML.

<div class="uiInput uiInputText uiInputURL uiInput--default uiInput--input">
<label class="uiLabel-left form-element__label uiLabel">

Venue URL
</label>
<input class="field input" type="url">

</div>

This example retrieves the value of a ui:inputURL component and displays it using ui:outputURL.

<aura:component>
<ui:inputURL aura:id="url" label="Venue URL" class="field" value="http://www.myURL.com"/>

<ui:button class="btn" label="Submit" press="{!c.setOutput}"/>
<div aura:id="msg" class="hide">
You entered: <ui:outputURL aura:id="oURL" value=""/>
</div>
</aura:component>

({

566

ui:inputURLReference

setOutput : function(component, event, helper) {
var cmpMsg = component.find("msg");
$A.util.removeClass(cmpMsg, 'hide');

var url = component.find("url").get("v.value");
var oURL = component.find("oURL");
oURL.set("v.value", url);
oURL.set("v.label", url);

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The list of errors to be displayed.Listerrors

The text of the label componentStringlabel

The CSS class of the label componentStringlabelClass

The maximum number of characters that can be typed into the input
field. Corresponds to the maxlength attribute of the rendered HTML input
element.

Integermaxlength

Text that is displayed when the field is empty, to prompt the user for a
valid entry.

Stringplaceholder

Specifies whether the input is required. Default value is "false".Booleanrequired

The CSS class of the required indicator componentStringrequiredIndicatorClass

The width of the input field, in characters. Corresponds to the size
attribute of the rendered HTML input element.

Integersize

Updates the component's value binding if the updateOn attribute is set
to the handled event. Default value is "change".

StringupdateOn

The value currently in the input field.Stringvalue

567

ui:inputURLReference

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event fired when the user cuts content to the clipboard.COMPONENTcut

The event fired when there are any validation errors on the component.COMPONENTonError

The event fired when any validation errors should be cleared.COMPONENTonClearErrors

The event fired when the user changes the content of the input.COMPONENTchange

The event fired when the user copies content to the clipboard.COMPONENTcopy

The event fired when the user pastes content from the clipboard.COMPONENTpaste

ui:menu
A dropdown menu list with a trigger that controls its visibility. To create a clickable link and menu items, use ui:menuTriggerLink and
and ui:menuList component.

A ui:menu component contains a trigger and list items. You can wire up list items to actions in a client-side controller so that selection
of the item triggers an action. This example shows a menu with list items, which when pressed updates the label on the trigger.

<ui:menu>
<ui:menuTriggerLink aura:id="trigger" label="Opportunity Status"/>

<ui:menuList class="actionMenu" aura:id="actionMenu">
<ui:actionMenuItem aura:id="item1" label="Any"

click="{!c.updateTriggerLabel}"/>

568

ui:menuReference

<ui:actionMenuItem aura:id="item2" label="Open" click="{!c.updateTriggerLabel}"
disabled="true"/>

<ui:actionMenuItem aura:id="item3" label="Closed"
click="{!c.updateTriggerLabel}"/>

<ui:actionMenuItem aura:id="item4" label="Closed Won"
click="{!c.updateTriggerLabel}"/>

</ui:menuList>
</ui:menu>

This client-side controller updates the trigger label when a menu item is clicked.

({
updateTriggerLabel: function(cmp, event) {

var triggerCmp = cmp.find("trigger");
if (triggerCmp) {

var source = event.getSource();
var label = source.get("v.label");
triggerCmp.set("v.label", label);

}
}

})

The dropdown menu and its menu items are hidden by default. You can change this by setting the visible attribute on the
ui:menuList component to true. The menu items are shown only when you click the ui:menuTriggerLink component.

To use a trigger, which opens the menu, nest the ui:menuTriggerLink component in ui:menu. For list items, use the
ui:menuList component, and include any of these list item components that can trigger a client-side controller action:

• ui:actionMenuItem - A menu item

• ui:checkboxMenuItem - A checkbox that supports multiple selections

• ui:radioMenuItem - A radio item that supports single selection

To include a separator for these menu items, use ui:menuItemSeparator.

This example shows several ways to create a menu.

<aura:component access="global">
<aura:attribute name="status" type="String[]" default="Open, Closed, Closed Won, Any"/>

<ui:menu>
<ui:menuTriggerLink aura:id="trigger" label="Single selection with actionable

menu item"/>
<ui:menuList class="actionMenu" aura:id="actionMenu">

<aura:iteration items="{!v.status}" var="s">
<ui:actionMenuItem label="{!s}" click="{!c.updateTriggerLabel}"/>

</aura:iteration>
</ui:menuList>

</ui:menu>
<hr/>
<ui:menu>
<ui:menuTriggerLink class="checkboxMenuLabel" aura:id="checkboxMenuLabel"

label="Multiple selection"/>
<ui:menuList aura:id="checkboxMenu" class="checkboxMenu">
<aura:iteration aura:id="checkbox" items="{!v.status}" var="s">

<ui:checkboxMenuItem label="{!s}"/>

569

ui:menuReference

</aura:iteration>
</ui:menuList>

</ui:menu>
<p><ui:button class="checkboxButton" aura:id="checkboxButton"

press="{!c.getMenuSelected}" label="Check the selected menu items"/></p>
<p><ui:outputText class="result" aura:id="result" value="Which items get

selected"/></p>
<hr/>

<ui:menu>
<ui:menuTriggerLink class="radioMenuLabel" aura:id="radioMenuLabel"

label="Select a status"/>
<ui:menuList class="radioMenu" aura:id="radioMenu">

<aura:iteration aura:id="radio" items="{!v.status}" var="s">
<ui:radioMenuItem label="{!s}"/>
</aura:iteration>

</ui:menuList>
</ui:menu>
<p><ui:button class="radioButton" aura:id="radioButton"

press="{!c.getRadioMenuSelected}" label="Check the selected menu items"/></p>
<p><ui:outputText class="radioResult" aura:id="radioResult" value="Which items

get selected"/> </p>
<hr/>
<div style="margin:20px;">

<div style="display:inline-block;width:50%;vertical-align:top;">
Combination menu items
<ui:menu>

<ui:menuTriggerLink aura:id="mytrigger" label="Select Menu Items"/>
<ui:menuList>

<ui:actionMenuItem label="Red" click="{!c.updateLabel}" disabled="true"/>

<ui:actionMenuItem label="Green" click="{!c.updateLabel}"/>
<ui:actionMenuItem label="Blue" click="{!c.updateLabel}"/>
<ui:actionMenuItem label="Yellow United" click="{!c.updateLabel}"/>
<ui:menuItemSeparator/>
<ui:checkboxMenuItem label="A"/>
<ui:checkboxMenuItem label="B"/>
<ui:checkboxMenuItem label="C"/>
<ui:checkboxMenuItem label="All"/>
<ui:menuItemSeparator/>
<ui:radioMenuItem label="A only"/>
<ui:radioMenuItem label="B only"/>
<ui:radioMenuItem label="C only"/>
<ui:radioMenuItem label="None"/>

</ui:menuList>
</ui:menu>

</div>
</div>
</aura:component>

({
updateTriggerLabel: function(cmp, event) {

var triggerCmp = cmp.find("trigger");
if (triggerCmp) {

570

ui:menuReference

var source = event.getSource();
var label = source.get("v.label");
triggerCmp.set("v.label", label);

}
},
updateLabel: function(cmp, event) {

var triggerCmp = cmp.find("mytrigger");
if (triggerCmp) {

var source = event.getSource();
var label = source.get("v.label");
triggerCmp.set("v.label", label);

}
},
getMenuSelected: function(cmp) {

var menuItems = cmp.find("checkbox");
var values = [];
for (var i = 0; i < menuItems.length; i++) {

var c = menuItems[i];
if (c.get("v.selected") === true) {

values.push(c.get("v.label"));
}

}
var resultCmp = cmp.find("result");
resultCmp.set("v.value", values.join(","));

},
getRadioMenuSelected: function(cmp) {

var menuItems = cmp.find("radio");
var values = [];
for (var i = 0; i < menuItems.length; i++) {

var c = menuItems[i];
if (c.get("v.selected") === true) {

values.push(c.get("v.label"));
}

}
var resultCmp = cmp.find("radioResult");
resultCmp.set("v.value", values.join(","));

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

571

ui:menuReference

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:menuItem
A UI menu item in a ui:menuList component.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

Set to true to hide menu after the menu item is selected.BooleanhideMenuAfterSelected

The text displayed on the component.Stringlabel

The status of the menu item. True means this menu item is selected;
False is not selected.

Booleanselected

The concrete type of the menu item. Accepted values are 'action',
'checkbox', 'radio', 'separator' or any namespaced component descriptor,
e.g. ns:xxxxmenuItem.

Stringtype

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

572

ui:menuItemReference

DescriptionEvent TypeEvent Name

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

ui:menuItemSeparator
A menu separator to divide menu items, such as ui:radioMenuItem, and used in a ui:menuList component.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

573

ui:menuItemSeparatorReference

DescriptionEvent TypeEvent Name

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:menuList
A menu component that contains menu items.

This component is nested in a ui:menu component and can be used together with a ui:menuTriggerLink component.
Clicking the menu trigger displays the container with menu items.

<ui:menu>
<ui:menuTriggerLink aura:id="trigger" label="Click me to display menu items"/>
<ui:menuList class="actionMenu" aura:id="actionMenu">

<ui:actionMenuItem aura:id="item1" label="Item 1" click="{!c.doSomething}"/>
<ui:actionMenuItem aura:id="item2" label="Item 2" click="{!c.doSomething}"/>
<ui:actionMenuItem aura:id="item3" label="Item 3" click="{!c.doSomething}"/>
<ui:actionMenuItem aura:id="item4" label="Item 4" click="{!c.doSomething}"/>

</ui:menuList>
</ui:menu>

ui:menuList can contain these components, which runs a client-side controller when clicked:

• ui:actionMenuItem

• ui:checkboxMenuItem

• ui:radioMenuItem

• ui:menuItemSeparator

See ui:menu for more information.

Attributes

Required?DescriptionAttribute TypeAttribute Name

Move the popup target up when there is not enough space at the bottom
to display. Note: even if autoPosition is set to false, popup will still position

BooleanautoPosition

the menu relative to the trigger. To override default positioning, use
manualPosition attribute.

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Close target when user clicks or taps outside of the targetBooleancloseOnClickOutside

Indicates whether to close the target list on tab key or not.BooleancloseOnTabKey

574

ui:menuListReference

Required?DescriptionAttribute TypeAttribute Name

Whether or not to apply an overlay under the target.Booleancurtain

A list of menu items set explicitly using instances of the Java class: aura.
components.ui.MenuItem.

ListmenuItems

Controls the visibility of the menu. The default is false, which hides the
menu.

Booleanvisible

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the menu list displays.COMPONENTmenuExpand

The event fired when the user select a menu item.COMPONENTmenuSelect

The event fired when the menu list collapses.COMPONENTmenuCollapse

The event fired when the menu list focus changed from one menuItem to another
menuItem.

COMPONENTmenuFocusChange

ui:menuTrigger
A clickable link that expands and collapses a menu. To create a link for ui:menu, use ui:menuTriggerLink instead.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

575

ui:menuTriggerReference

Required?DescriptionAttribute TypeAttribute Name

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The text displayed on the component.Stringlabel

The text to display as a tooltip when the mouse pointer hovers over this
component.

Stringtitle

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event that is fired when the trigger is clicked.COMPONENTmenuTriggerPress

ui:menuTriggerLink
A link that triggers a dropdown menu used in ui:menu

576

ui:menuTriggerLinkReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The text displayed on the component.Stringlabel

The text to display as a tooltip when the mouse pointer hovers over this
component.

Stringtitle

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the trigger.COMPONENTblur

The event fired when the user focuses on the trigger.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

The event that is fired when the trigger is clicked.COMPONENTmenuTriggerPress

ui:message
Represents a message of varying severity levels

577

ui:messageReference

The severity attribute indicates a message's severity level and determines the style to use when displaying the message. If the
closable attribute is set to true, the message can be dismissed by pressing the × symbol.

This example shows a confirmation message that can be dismissed.

<ui:message title="Confirmation" severity="confirm" closable="true">
This is a confirmation message.

</ui:message>

This example shows messages in varying severity levels.

<aura:component access="global">
<ui:message title="Confirmation" severity="confirm" closable="true">
This is a confirmation message.

</ui:message>
<ui:message title="Information" severity="info" closable="true">
This is a message.

</ui:message>
<ui:message title="Warning" severity="warning" closable="true">
This is a warning.

</ui:message>
<ui:message title="Error" severity="error" closable="true">
This is an error message.

</ui:message>

</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether to display an 'x' that will close the alert when clicked.
Default value is 'false'.

Booleanclosable

The severity of the message. Possible values: message (default), confirm,
info, warning, error

Stringseverity

The title text for the message.Stringtitle

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

578

ui:messageReference

DescriptionEvent TypeEvent Name

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:outputCheckbox
Displays a checkbox in a checked or unchecked state.

A ui:outputCheckbox component represents a checkbox that is rendered as an HTML img tag. This component can be used
with ui:inputCheckbox, which enables users to select or deselect the checkbox. To select or deselect the checkbox, set the
value attribute to true or false. To display a checkbox, you can use an attribute value and bind it to the ui:outputCheckbox
component.

<aura:attribute name="myBool" type="Boolean" default="true"/>
<ui:outputCheckbox value="{!v.myBool}"/>

The previous example renders the following HTML.

This example shows how you can use the ui:inputCheckbox component.

<aura:component>
<aura:attribute name="myBool" type="Boolean" default="true"/>
<ui:inputCheckbox aura:id="checkbox" label="Select?" change="{!c.onCheck}"/>
<p>Selected:</p>
<p><ui:outputText class="result" aura:id="checkResult" value="false" /></p>
<p>The following checkbox uses a component attribute to bind its value.</p>
<ui:outputCheckbox aura:id="output" value="{!v.myBool}"/>
</aura:component>

({
onCheck: function(cmp, evt) {
var checkCmp = cmp.find("checkbox");
resultCmp = cmp.find("checkResult");
resultCmp.set("v.value", ""+checkCmp.get("v.value"));

}
})

579

ui:outputCheckboxReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The alternate text description when the checkbox is checked. Default
value is “True”.

StringaltChecked

The alternate text description when the checkbox is unchecked. Default
value is “False”.

StringaltUnchecked

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

YesSpecifies whether the checkbox is checked.Booleanvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:outputCurrency
Displays the currency in the default or specified format, such as with specific currency code or decimal places.

A ui:outputCurrency component represents a number as a currency that is wrapped in an HTML span tag. This component
can be used with ui:inputCurrency, which takes in a number as a currency. To display a currency, you can use an attribute value
and bind it to the ui:outputCurrency component.

<aura:attribute name="myCurr" type="Decimal" default="50000"/>
<ui:outputCurrency aura:id="curr" value="{!v.myCurr}"/>

The previous example renders the following HTML.

$50,000.00

580

ui:outputCurrencyReference

To override the browser's locale, use the currencySymbol attribute.

<aura:attribute name="myCurr" type="Decimal" default="50" currencySymbol="£"/>

You can also override it by specifying the format.

var curr = cmp.find("curr");
curr.set("v.format", '£#,###.00');

This example shows how you can bind data from a ui:inputCurrency component.

<aura:component>
<aura:attribute name="myCurrency" type="integer" default="50"/>
<ui:inputCurrency aura:id="amount" label="Amount" class="field" value="{!v.myCurrency}"

updateOn="keyup"/>
You entered: <ui:outputCurrency value="{!v.myCurrency}"/>
</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

The ISO 4217 currency code specified as a String, e.g. “USD”.StringcurrencyCode

The currency symbol specified as a String.StringcurrencySymbol

The format of the number. For example, format=“.00” displays the number
followed by two decimal places. If not specified, the default format based
on the browser's locale will be used.

Stringformat

YesThe output value of the currency, which is defined as type Decimal.Decimalvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

581

ui:outputCurrencyReference

DescriptionEvent TypeEvent Name

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:outputDate
Displays a date in the default or specified format based on the user's locale.

A ui:outputDate component represents a date output in the YYYY-MM-DD format and is wrapped in an HTML span tag. This
component can be used with ui:inputDate, which takes in a date input. ui:outputDate retrieves the browser's locale
information and displays the date accordingly. To display a date, you can use an attribute value and bind it to the ui:outputDate
component.

<aura:attribute name="myDate" type="Date" default="2014-09-29"/>
<ui:outputDate value="{!v.myDate}"/>

The previous example renders the following HTML.

Sep 29, 2014

This example shows how you can bind data from the ui:inputDate component.

<aura:component>
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>
<aura:attribute name="today" type="Date" default=""/>

<ui:inputDate aura:id="expdate" label="Today's Date" class="field" value="{!v.today}"
displayDatePicker="true" />

<ui:button class="btn" label="Submit" press="{!c.setOutput}"/>

<div aura:id="msg" class="hide">
You entered: <ui:outputDate aura:id="oDate" value="" />
</div>
</aura:component>

({
doInit : function(component, event, helper) {

var today = new Date();
component.set('v.today', today.getFullYear() + "-" + (today.getMonth() + 1) + "-"

+ today.getDate());
},

setOutput : function(component, event, helper) {
var cmpMsg = component.find("msg");
$A.util.removeClass(cmpMsg, 'hide');

var expdate = component.find("expdate").get("v.value");

var oDate = component.find("oDate");
oDate.set("v.value", expdate);

}
})

582

ui:outputDateReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

A string (pattern letters are defined in java.text.SimpleDateFormat) used
to format the date and time of the value attribute.

Stringformat

Deprecated. The language locale used to format date value. It only allows
to use the value which is provided by Locale Value Provider, otherwise,

StringlangLocale

it falls back to the value of $Locale.langLocale. It will be removed in an
upcoming release.

YesThe output value of the date. It should be a date string in ISO-8601 format
(YYYY-MM-DD).

Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:outputDateTime
Displays a date, time in a specified or default format based on the user's locale.

A ui:outputDateTime component represents a date and time output that is wrapped in an HTML span tag. This component
can be used with ui:inputDateTime, which takes in a date input. ui:outputDateTime retrieves the browser's locale
information and displays the date accordingly. To display a date and time, you can use an attribute value and bind it to the
ui:outputDateTime component.

<aura:attribute name="myDateTime" type="Date" default="2014-09-29T00:17:08z"/>
<ui:outputDateTime value="{!v.myDateTime}"/>

583

ui:outputDateTimeReference

The previous example renders the following HTML.

Sep 29, 2014 12:17:08 AM

This example shows how you can bind data from a ui:inputDateTime component.

<aura:component>
<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>
<aura:attribute name="today" type="Date" default=""/>

<ui:inputDateTime aura:id="today" label="Time" class="field" value=""
displayDatePicker="true" />

<ui:button class="btn" label="Submit" press="{!c.setOutput}"/>

<div aura:id="msg" class="hide">
You entered: <ui:outputDateTime aura:id="oDateTime" value="" />
</div>
</aura:component>

({
doInit : function(component, event, helper) {

var today = new Date();
component.set('v.today', today.getFullYear() + "-" + (today.getMonth() + 1) + "-"

+ today.getDate());
},

setOutput : function(component, event, helper) {
var cmpMsg = component.find("msg");
$A.util.removeClass(cmpMsg, 'hide');

var todayVal = component.find("today").get("v.value");
var oDateTime = component.find("oDateTime");
oDateTime.set("v.value", todayVal);

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

A string (pattern letters are defined in java.text.SimpleDateFormat) used
to format the date and time of the value attribute.

Stringformat

Deprecated. The language locale used to format date value. It only allows
to use the value which is provided by Locale Value Provider, otherwise,

StringlangLocale

584

ui:outputDateTimeReference

Required?DescriptionAttribute TypeAttribute Name

it falls back to the value of $Locale.langLocale. It will be removed in an
upcoming release.

The timezone ID, for example, America/Los_Angeles.Stringtimezone

YesAn ISO8601-formatted string representing a date time.Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:outputEmail
Displays an email address in an HTML anchor (<a>) element. The leading and trailing space are trimmed.

A ui:outputEmail component represents an email output that is wrapped in an HTML span tag. This component can be used
with ui:inputEmail, which takes in an email input. The email output is wrapped in an HTML anchor element and mailto is
automatically appended to it. This is a simple set up of a ui:outputEmail component.

<ui:outputEmail value="abc@email.com"/>

The previous example renders the following HTML.

abc@email.com

This example shows how you can bind data from a ui:inputEmail component.

<aura:component>
<ui:inputEmail aura:id="email" label="Email" class="field" value="manager@email.com"/>

<ui:button class="btn" label="Submit" press="{!c.setOutput}"/>

<div aura:id="msg" class="hide">
You entered: <ui:outputEmail aura:id="oEmail" value="Email" />

</div>

585

ui:outputEmailReference

</aura:component>

({
setOutput : function(component, event, helper) {
var cmpMsg = component.find("msg");
$A.util.removeClass(cmpMsg, 'hide');

var email = component.find("email").get("v.value");
var oEmail = component.find("oEmail");
oEmail.set("v.value", email);

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

YesThe output value of the emailStringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:outputNumber
Displays the number in the default or specified format. Supports up to 18 digits before the decimal place.

586

ui:outputNumberReference

A ui:outputNumber component represents a number output that is rendered as an HTML span tag. This component can be
used with ui:inputNumber, which takes in a number input. ui:outputNumber retrieves the locale information and displays
the number in the given decimal format. To display a number, you can use an attribute value and bind it to the ui:outputNumber
component.

<aura:attribute name="myNum" type="Decimal" default="10.10"/>
<ui:outputNumber value="{!v.myNum}" format=".00"/>

The previous example renders the following HTML.

10.10

This example retrieves the value of a ui:intputNumber component, validates the input, and displays it using ui:outputNumber.

<aura:component>
<aura:attribute name="myNumber" type="integer" default="10"/>

<ui:inputNumber label="Enter a number: " value="{!v.myNumber}" updateOn="keyup"/>

<ui:outputNumber value="{!v.myNumber}"/>

</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

The format of the number. For example, format=“.00” displays the number
followed by two decimal places. If not specified, the Locale default format
will be used.

Stringformat

YesThe number displayed when this component is rendered.Decimalvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

587

ui:outputNumberReference

DescriptionEvent TypeEvent Name

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:outputPhone
Displays the phone number in a URL link format.

A ui:outputPhone component represents a phone number output that is wrapped in an HTML span tag. This component can
be used with ui:inputPhone, which takes in a phone number input. The following example is a simple set up of a
ui:outputPhone component.

<ui:outputPhone value="415-123-4567"/>

The previous example renders the following HTML.

415-123-4567

When viewed on a mobile device, the example renders as an actionable link.

415-123-4567

This example shows how you can bind data from a ui:inputPhone component.

<aura:component>
<ui:inputPhone aura:id="phone" label="Phone Number" class="field" value="415-123-4567"

/>
<ui:button class="btn" label="Submit" press="{!c.setOutput}"/>

<div aura:id="msg" class="hide">
You entered: <ui:outputPhone aura:id="oPhone" value="" />
</div>
</aura:component>

({

setOutput : function(component, event, helper) {
var cmpMsg = component.find("msg");
$A.util.removeClass(cmpMsg, 'hide');

var phone = component.find("phone").get("v.value");
var oPhone = component.find("oPhone");
oPhone.set("v.value", phone);

}
})

588

ui:outputPhoneReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

YesThe phone number displayed when this component is rendered.Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:outputRichText
Displays formatted text including tags such as paragraph, image, and hyperlink, as specified in the value attribute.

A ui:outputRichText component represents formatted text and can be used to display input from a
lightning:inputRichText or ui:inputRichText component. Using lightning:inputRichText is recommended
since ui:inputRichText is no longer supported when LockerService is enabled. ui:outputRichText renders formatted
text. For example, URLs and email addresses enclosed by anchor tags are displayed as hyperlinks.

This example sets bold text and binds the value to a lightning:inputRichText and ui:outputRichText component.
The slds-text-longform class adds default spacing and list styling in your output.

<aura:component>
<aura:attribute name="myVal" type="String" />
<aura:handler name="init" value="{! this }" action="{! c.init }"/>

<lightning:inputRichText value="{!v.myVal}"/>
<ui:outputRichText class="slds-text-longform" value="{!v.myVal}"/>

</aura:component>

589

ui:outputRichTextReference

During initialization, the value is set on both the lightning:inputRichText and ui:outputRichText component.

({
init: function(cmp) {

cmp.set('v.myVal', 'Hello!');
}

})

ui:outputRichText supports the following HTML tags: a, b, br, big, blockquote, caption, cite, code, col,
colgroup, del, div, em, h1, h2, h3, hr, i, img, ins, kbd, li, ol, p, param, pre, q, s, samp, small, span, strong,
sub, sup, table, tbody, td, tfoot, th, thead, tr, tt, u, ul, var, strike.

Supported HTML attributes include: accept, action, align, alt, autocomplete, background, bgcolor, border,
cellpadding, cellspacing, checked, cite, class, clear, color, cols, colspan, coords, datetime,
default, dir, disabled, download, enctype, face, for, headers, height, hidden, high, href, hreflang,
id, ismap, label, lang, list, loop, low, max, maxlength, media, method, min, multiple, name, noshade,
novalidate, nowrap, open, optimum, pattern, placeholder, poster, preload, pubdate, radiogroup,
readonly, rel, required, rev, reversed, rows, rowspan, spellcheck, scope, selected, shape, size,
span, srclang, start, src, step, style, summary, tabindex, target, title, type, usemap, valign, value,
width, xmlns.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Indicates if the URLs in the text are set to render as hyperlinks.Booleanlinkify

The formatted text used for output.Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

590

ui:outputRichTextReference

ui:outputText
Displays text as specified by the value attribute.

A ui:outputText component represents text output that is wrapped in an HTML span tag. This component can be used with
ui:inputText, which takes in a text input. To display text, you can use an attribute value and bind it to the ui:outputText
component.

<aura:attribute name="myText" type="String" default="some string"/>
<ui:outputText value="{!v.myText}" />

The previous example renders the following HTML.

some string

This example shows how you can bind data from an ui:inputText component.

<aura:component>
<aura:attribute name="myText" type="string" default="Hello there!"/>

<ui:inputText label="Enter some text" class="field" value="{!v.myText}" updateOn="click"/>

You entered: <ui:outputText value="{!v.myText}"/>
</aura:component>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Displays extra information as hover text.Stringtitle

YesThe text displayed when this component is rendered.Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

591

ui:outputTextReference

DescriptionEvent TypeEvent Name

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:outputTextArea
Displays the text area as specified by the value attribute.

A ui:outputTextArea component represents text output that is wrapped in an HTML span tag. This component can be used
with ui:inputTextArea, which takes in a multiline text input. To display text, you can use an attribute value and bind it to the
ui:outputTextArea component. A ui:outputTextArea component displays URLs and email addresses as hyperlinks.

<aura:attribute name="myTextArea" type="String" default="some string"/>
<ui:outputTextArea value="{!v.myTextArea}"/>

The previous example renders the following HTML.

some string

This example shows how you can bind data from the ui:inputTextArea component.

<aura:component>
<ui:inputTextArea aura:id="comments" label="Comments" value="My comments" rows="5"/>

<ui:button class="btn" label="Submit" press="{!c.setOutput}"/>

<div aura:id="msg" class="hide">
You entered: <ui:outputTextArea aura:id="oTextarea" value=""/>
</div>
</aura:component>

({
setOutput : function(component, event, helper) {
var cmpMsg = component.find("msg");
$A.util.removeClass(cmpMsg, 'hide');

var comments = component.find("comments").get("v.value");
var oTextarea = component.find("oTextarea");
oTextarea.set("v.value", comments);

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

592

ui:outputTextAreaReference

Required?DescriptionAttribute TypeAttribute Name

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Indicates if the URLs in the text are set to render as hyperlinks.Booleanlinkify

YesThe text to display.Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:outputURL
Displays a link to a URL as specified by the value attribute, rendered on a given text (label attribute) and image, if any.

A ui:outputURL component represents a URL that is wrapped in an HTML a tag. This component can be used with ui:inputURL,
which takes in a URL input. To display a URL, you can use an attribute value and bind it to the ui:outputURL component.

<aura:attribute name="myURL" type="String" default="http://www.google.com"/>
<ui:outputURL value="{!v.myURL}" label="Search"/>

The previous example renders the following HTML.

Search

This example shows how you can bind data from a ui:inputURL component.

<aura:component>
<ui:inputURL aura:id="url" label="Venue URL" class="field" value="http://www.myURL.com"/>

<ui:button class="btn" label="Submit" press="{!c.setOutput}"/>
<div aura:id="msg" class="hide">
You entered: <ui:outputURL aura:id="oURL" value=""/>

593

ui:outputURLReference

</div>
</aura:component>

({
setOutput : function(component, event, helper) {
var cmpMsg = component.find("msg");
$A.util.removeClass(cmpMsg, 'hide');

var url = component.find("url").get("v.value");
var oURL = component.find("oURL");
oURL.set("v.value", url);
oURL.set("v.label", url);

}
})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The alternate text description for image (used when there is no label)Stringalt

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

The CSS style used to display the icon or image.StringiconClass

The text displayed on the component.Stringlabel

The target destination where this rendered component is displayed.
Possible values: _blank, _parent, _self, _top

Stringtarget

The text to display as a tooltip when the mouse pointer hovers over this
component.

Stringtitle

YesThe URL of the page that the link goes to.Stringvalue

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

594

ui:outputURLReference

DescriptionEvent TypeEvent Name

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

ui:radioMenuItem
A menu item with a radio button that indicates a mutually exclusive selection and can be used to invoke an action. This component is
nested in a ui:menu component.

A ui:radioMenuItem component represents a menu list item for single selection. Use aura:iteration to iterate over a list
of values and display the menu items. A ui:menuTriggerLink component displays and hides your menu items.

<aura:attribute name="status" type="String[]" default="Open, Closed, Closed Won, Any"/>
<ui:menu>

<ui:menuTriggerLink class="radioMenuLabel" aura:id="radioMenuLabel" label="Select
a status"/>

<ui:menuList class="radioMenu" aura:id="radioMenu">
<aura:iteration items="{!v.status}" var="s">

<ui:radioMenuItem label="{!s}"/>
</aura:iteration>

</ui:menuList>
</ui:menu>

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether the component should be displayed in a disabled state.
Default value is "false".

Booleandisabled

Set to true to hide menu after the menu item is selected.BooleanhideMenuAfterSelected

The text displayed on the component.Stringlabel

The status of the menu item. True means this menu item is selected;
False is not selected.

Booleanselected

The concrete type of the menu item. Accepted values are 'action',
'checkbox', 'radio', 'separator' or any namespaced component descriptor,
e.g. ns:xxxxmenuItem.

Stringtype

595

ui:radioMenuItemReference

Events

DescriptionEvent TypeEvent Name

The event fired when the user double-clicks the component.COMPONENTdblclick

The event fired when the user moves the mouse pointer over the component.COMPONENTmouseover

The event fired when the user moves the mouse pointer away from the
component.

COMPONENTmouseout

The event fired when the user releases the mouse button over the component.COMPONENTmouseup

The event fired when the user moves the mouse pointer over the component.COMPONENTmousemove

The event fired when the user clicks on the component.COMPONENTclick

The event fired when the user clicks a mouse button over the component.COMPONENTmousedown

The event fired when the user selects some text.COMPONENTselect

The event fired when the user moves off from the component.COMPONENTblur

The event fired when the user focuses on the component.COMPONENTfocus

The event fired when the user presses or holds down a keyboard key on the
component.

COMPONENTkeypress

The event fired when the user releases a keyboard key on the component.COMPONENTkeyup

The event fired when the user presses a keyboard key on the component.COMPONENTkeydown

ui:scrollerWrapper
Creates a container that enables native scrolling in the Salesforce app.

A ui:scrollerWrapper creates a container that enables native scrolling in Salesforce for Android, iOS, and mobile web. This
component enables you to nest more than one scroller inside the container. Use the class attribute to define the height and width
of the container. To enable scrolling, specify a height that's smaller than its content.

This example creates a scrollable area with a height of 300px.

<aura:component>
<ui:scrollerWrapper class="scrollerSize">

<!--Scrollable content here -->
</ui:scrollerWrapper>

</aura:component>

/** CSS **/
.THIS.scrollerSize {

height: 300px;
}

The Lightning Design System scrollable class isn't compatible with native scrolling on mobile devices. Use
ui:scrollerWrapper if you want to enable scrolling in Salesforce for Android, iOS, and mobile web.

596

ui:scrollerWrapperReference

Usage Considerations

In Google Chrome on mobile devices, nested ui:scrollerWrapper components are not scrollable when border-radius
CSS property is set to a non-zero value. To enable scrolling in this case, set border-radius to a non-zero value on the outer
ui:scrollerWrapper component.

Here is an example.

<aura:component>
<ui:scrollerWrapper class="outerScroller">

<!-- Scrollable content here -->
<ui:scrollerWrapper class="innerScroller">

<!-- Scrollable content here -->
</ui:scrollerWrapper>
<!-- Scrollable content here -->

</ui:scrollerWrapper>
</aura:component>

/** CSS **/
.THIS.outerScroller {

/* fix innerScroller not scrollable */
border-radius: 1px;

}
.THIS.innerScroller {

/* make innerScroller rounded */
border-radius: 10px;

}

Methods

This component supports the following method.

scrollTo(destination, xcoord, ycoord): Scrolls the content to a specified location.

• destination (String): The target location. Valid values: custom, top, bottom, left, and right. For custom destination, xcoord and
ycoord are used to determine the target location.

• xcoord (Integer): X coordinate for custom destination. The default is 0.

• ycoord (Integer): Y coordinate for custom destination. The default is 0.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS class applied to the outer element. This style is in addition to base
classes output by the component.

Stringclass

ui:spinner
A loading spinner to be used while the real component body is being loaded

To toggle the spinner, use get("e.toggle"), set the isVisible parameter to true or false, and then fire the event.

597

ui:spinnerReference

This example shows a spinner that can be toggled.

<aura:component access="global">
<ui:spinner aura:id="spinner"/>
<ui:button press="{!c.toggleSpinner}" label="Toggle Spinner" />
</aura:component>

({
toggleSpinner: function(cmp) {

var spinner = cmp.find('spinner');
var evt = spinner.get("e.toggle");

if(!$A.util.hasClass(spinner, 'hideEl')){
evt.setParams({ isVisible : false });

}
else {

evt.setParams({ isVisible : true });
}

evt.fire();
}

})

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

A CSS style to be attached to the component. This style is added in
addition to base styles output by the component.

Stringclass

Specifies whether or not this spinner should be visible. Defaults to true.BooleanisVisible

Events

DescriptionEvent TypeEvent Name

The event fired when the spinner is toggled.COMPONENTtoggle

wave:waveDashboard
Use this component to add a Salesforce Analytics dashboard to a Lightning Experience page.

598

wave:waveDashboardReference

Attributes

Required?DescriptionAttribute TypeAttribute Name

A valid access token obtained by logging into Salesforce. Useful when
the component is used by Lightning Out in a non salesforce domain.

StringaccessToken

The body of the component. In markup, this is everything in the body of
the tag.

Component[]body

The unique ID of the dashboard. You can get a dashboard’s ID, an
18-character code beginning with 0FK, from the dashboard's URL, or you

StringdashboardId

can request it through the API. This attribute can be used instead of the
developer name, but it can't be included if the name has been set. One
of the two is required.

The unique developer name of the dashboard. You can request the
developer name through the API. This attribute can be used instead of

StringdeveloperName

the dashboard ID, but it can't be included if the ID has been set. One of
the two is required.

Adds selections or filters to the embedded dashboard at runtime. The
filter attribute is configured using JSON. For filtering by dimension, use

Stringfilter

this syntax: {'datasets' : {'dataset1': [{'fields': ['field1'], 'selection': ['$value1',
'$value2']}, {'fields': ['field2'], 'filter': { 'operator': 'operator1', 'values':
['$value3', '$value4']}}]}}. For filtering on measures, use this syntax:
{'datasets' : {'dataset1': [{'fields': ['field1'], 'selection': ['$value1', '$value2']},
{'fields': ['field2'], 'filter': { 'operator': 'operator1', 'values': [[$value3]]}}]}}.
With the selection option, the dashboard is shown with all its data, and
the specified dimension values are highlighted. With the filter option,
the dashboard is shown with only filtered data. For more information,
see https://help.salesforce.com/articleView?id=bi_embed_lightning.htm.

Specifies the height of the dashboard, in pixels.Integerheight

Controls whether or not users see a dashboard that has an error. When
this attribute is set to true, if the dashboard has an error, it won’t appear

BooleanhideOnError

on the page. When set to false, the dashboard appears but doesn’t show
any data. An error can occur when a user doesn't have access to the
dashboard or it has been deleted.

If false, links to other dashboards will be opened in the same window.BooleanopenLinksInNewWindow

Id of the current entity in the context of which the component is being
displayed.

StringrecordId

If true, the dashboard is displayed with a header bar that includes
dashboard information and controls. If false, the dashboard appears

BooleanshowHeader

without a header bar. Note that the header bar automatically appears
when either showSharing or showTitle is true.

If true, and the dashboard is shareable, then the dashboard shows the
Share icon. If false, the dashboard doesn't show the Share icon. To show

BooleanshowSharing

599

wave:waveDashboardReference

Required?DescriptionAttribute TypeAttribute Name

the Share icon in the dashboard, the smallest supported frame size is 800
x 612 pixels.

If true, the dashboard’s title is included above the dashboard. If false, the
dashboard appears without a title.

BooleanshowTitle

Messaging Component Reference

Messaging components include notifications and overlays that communicate relevant information to users. They are supported in
Lightning Experience, Salesforce app, and Lightning communities.

lightning:notificationsLibrary
lightning:notificationsLibrary provides an easy way to display messages in the app. This component requires API
version 41.0 and later. This component is supported in Lightning Experience, Salesforce app, and Lightning communities only.

Messages can be displayed in notices and toasts. Notices alert users to system-related issues and updates. Toasts enable you to provide
feedback and serve as a confirmation mechanism after the user takes an action. Include one
<lightning:notificationsLibrary aura:id="notifLib"/> tag in the component that triggers the notifications,
where aura:id is a unique local ID. Only one tag is needed for multiple notifications.

Notices
Notices interrupt the user's workflow and block everything else on the page. Notices must be acknowledged before a user regains control
over the app again. As such, use notices sparingly. They are not suitable for confirming a user’s action, such as before deleting a record.
To dismiss the notice, only the OK button is currently supported.

Here’s an example that contains a button. When clicked, the button displays a notice with the error variant.

<aura:component>
<lightning:notificationsLibrary aura:id="notifLib"/>
<lightning:button name="notice" label="Show Notice" onclick="{!c.handleShowNotice}"/>

</aura:component>

Your client-side controller displays the notice.

({
handleShowNotice : function(component, event, helper) {

component.find('notifLib').showNotice({
"variant": "error",

600

Messaging Component ReferenceReference

"header": "Something has gone wrong!",
"message": "Unfortunately, there was a problem updating the record.",
closeCallback: function() {

alert('You closed the alert!');
}

});
}

})

To create and display a notice, pass in the notice attributes using component.find('notifLib').showNotice(), where
notifLib matches the aura:id on the lightning:notificationsLibrary instance.

Notices inherit styling from prompts in the Lightning Design System.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The heading that’s displayed at the top of the notice.Stringheader

The title of the notice, displayed in bold.Stringtitle

The message within the notice body. New lines are replaced by

and text links by anchors.

Stringmessage

Changes the appearance of the notice. Accepted variants are info,
warning, and error. This value defaults to info.

Stringvariant

A callback that’s called when the notice is closed.FunctioncloseCallback

Toasts
Toasts are less intrusive than notices and are suitable for providing feedback to a user following an action, such as after a record is created.
A toast can be dismissed or can remain visible until a predefined duration has elapsed.

Here’s an example that contains a button. When clicked, the button displays a toast with the info variant and remains visible until
you press the close button, denoted by the X in the top right corner.

<aura:component>
<lightning:notificationsLibrary aura:id="notifLib"/>
<lightning:button name="toast" label="Show Toast" onclick="{!c.handleShowToast}"/>

</aura:component>

Your client-side controller displays the toast.

({
handleShowToast : function(component, event, helper) {

component.find('notifLib').showToast({
"title": "Notif library Success!",
"message": "The record has been updated successfully."

});

601

lightning:notificationsLibraryReference

https://www.lightningdesignsystem.com/components/prompt

}
})

To create and display a toast, pass in the toast attributes using component.find('notifLib').showToast(), where
notifLib matches the aura:id on the lightning:notificationsLibrary instance.

Toasts inherit styling from toasts in the Lightning Design System.

Attributes

Required?DescriptionAttribute TypeAttribute Name

The title of the toast, displayed as a heading.Stringtitle

A string representing the message. It can contain placeholders in the
form of {0} ... {N}. This placeholders will be replaced with the action
links on the message data.

Stringmessage

Array of inlined action links to replace within the toast message template.ObjectmessageData

Changes the appearance of the toast. Accepted variants are info,
success, warning, and error. This value defaults to info.

Stringvariant

Determines how persistent the toast is. The default is dismissable.
Valid modes are:

Stringmode

• dismissable: Remains visible until you press the close button
or 3 seconds has elapsed, whichever comes first.

• pester: Remains visible until the close button is clicked.

• sticky: Remains visible for 3 seconds.

lightning:overlayLibrary
lightning:overlayLibrary provides an easy way to display relevant information and feedback. This component requires API
version 41.0 and later. This component is supported in Lightning Experience, Salesforce app, and Lightning communities only.

Messages can be displayed in modals and popovers. Modals display a dialog in the foreground of the app, interrupting a user’s workflow
and drawing attention to the message. Popovers display relevant information when you hover over a reference element. Include one
<lightning:overlayLibrary aura:id="overlayLib"/> tag in the component that triggers the messages, where
aura:id is a unique local ID. Only one tag is needed for multiple messages.

Modals
A modal blocks everything else on the page until it’s dismissed. A modal must be acknowledged before a user regains control over the
app again. A modal is triggered by user interaction, which can be a click of a button or link. The modal header, body, and footer are
customizable. Pressing the Escape key or clicking the close button closes the modal.

602

lightning:overlayLibraryReference

https://www.lightningdesignsystem.com/components/toast

Here’s an example that contains a button. When clicked, the button displays a modal with a custom body.

<aura:component>
<lightning:overlayLibrary aura:id="overlayLib"/>
<lightning:button name="modal" label="Show Modal" onclick="{!c.handleShowModal}"/>

</aura:component>

Your client-side controller displays the modal. To create and display a modal, pass in the modal attributes using
component.find('overlayLib').showCustomModal(), where overlayLib matches the aura:id on the
lightning:overlayLibrary instance.

({
handleShowModal: function(component, evt, helper) {

var modalBody;
$A.createComponent("c:modalContent", {},

function(content, status) {
if (status === "SUCCESS") {

modalBody = content;
component.find('overlayLib').showCustomModal({

header: "Application Confirmation",
body: modalBody,
showCloseButton: true,
cssClass: "mymodal",
closeCallback: function() {

alert('You closed the alert!');
}

})

}

});
}

})

c:modalContent is a custom component that displays an icon and message.

<aura:component>
<lightning:icon size="medium" iconName="action:approval" alternativeText="Approved"

/>
Your application has been approved.

</aura:component>

You can pass in your own footer via the footer attribute. This example creates a custom body and footer using
$A.createComponents().

handleShowModalFooter : function (component, event, helper) {
var modalBody;

603

lightning:overlayLibraryReference

var modalFooter;
$A.createComponents([

["c:modalContent",{}],
["c:modalFooter",{}]

],
function(components, status){

if (status === "SUCCESS") {
modalBody = components[0];
modalFooter = components[1];
component.find('overlayLib').showCustomModal({

header: "Application Confirmation",
body: modalBody,
footer: modalFooter,
showCloseButton: true,
cssClass: "my-modal,my-custom-class,my-other-class",
closeCallback: function() {

alert('You closed the alert!');
}

})
}

}
);

}

c:modalFooter is a custom component that displays two buttons.

<aura:component>
<lightning:overlayLibrary aura:id="overlayLib"/>
<lightning:button name="cancel" label="Cancel" onclick="{!c.handleCancel}"/>
<lightning:button name="ok" label="OK" variant="brand" onclick="{!c.handleOK}"/>

</aura:component>

Define what happens when you click the buttons in your client-side controller.

({
handleCancel : function(component, event, helper) {

//closes the modal or popover from the component
component.find("overlayLib").notifyClose();

},
handleOK : function(component, event, helper) {

//do something
}

})

showCustomModal() and showCustomPopover() return a promise, which is useful if you want to get a reference to the
modal when it’s displayed.

component.find('overlayLib').showCustomModal({
//modal attributes

}).then(function (overlay) {
//closes the modal immediately
overlay.close();

});

Modals inherit styling from modals in the Lightning Design System.

Attributes

604

lightning:overlayLibraryReference

https://www.lightningdesignsystem.com/components/modals

Required?DescriptionAttribute TypeAttribute Name

The heading that’s displayed at the top of the modal.Objectheader

The body of the modal.Objectbody

The modal footer.Objectfooter

Specifies whether to display the close button on the modal. The default
is true.

BooleanshowCloseButton

A comma-separated list of CSS classes for the modal. Applies to visible
markup only.

StringcssClass

A callback that’s called when the modal is closed.FunctioncloseCallback

Methods

You can use the following methods on the modal instance returned by the promise.

close(): Dismisses and destroys the modal.

hide(): Hides the modal from view.

show(): Displays the modal.

Popovers
Popovers display contextual information on a reference element and don’t interrupt like modals. A popover can be displayed when you
hover over or click the reference element. Pressing the Escape key closes the popover. The default positioning of the popover is on the
right of the reference element.

Here’s an example that contains a button and a reference div element. When clicked, the button displays a popover. The popover also
displays when you hover over the div element.

<aura:component>
<lightning:overlayLibrary aura:id="overlayLib"/>
<lightning:button name="popover" label="Show Popover" onclick="{!c.handleShowPopover}"/>

<div class="mypopover" onmouseover="{!c.handleShowPopover}">Popover should display if
you hover over here.</div>
</aura:component>

Your client-side controller displays the popover. Although this example passes in a string to the popover body, you can also pass in a
custom component like in the previous modal example. Any custom CSS class you add must be accompanied by the cMyCmp class,
where c is your namespace and MyCmp is the name of the component that creates the popover. Adding this class ensures that the
custom styling is properly scoped.

({
handleShowPopover : function(component, event, helper) {

component.find('overlayLib').showCustomPopover({
body: "Popovers are positioned relative to a reference element",

605

lightning:overlayLibraryReference

referenceSelector: ".mypopover",
cssClass: "popoverclass, cMyCmp"

}).then(function (overlay) {
setTimeout(function(){

//close the popover after 3 seconds
overlay.close();

}, 3000);
});

}
})

To create and display a popover, pass in the popover attributes using
component.find('overlayLib').showCustomPopover(), where overlayLib matches the aura:id on the
lightning:overlayLibrary instance.

The CSS class sets the minimum height on the popover.

.THIS.popoverclass {
min-height: 100px;

}

Popovers inherit styling from popovers in the Lightning Design System.

To append popover modifier classes, include them in cssClass. The following example adds the slds-popover_walkthrough
class for a dark theme. The pointer is hidden and replaced by the slds-nubbin_left class. To hide the pointer, add the following
CSS rule.

.THIS.no-pointer .pointer{
visibility: hidden;

}

Update the cssClass attribute. The cMyCmp class corresponds to your namespace and component name, and is case-sensitive.

cssClass: "slds-nubbin_left,slds-popover_walkthrough,no-pointer,cMyCmp"

Attributes

Required?DescriptionAttribute TypeAttribute Name

The body of the popover.Objectbody

The reference element to which the popover is appended. The popover
is appended to the right of the reference element.

ObjectreferenceSelector

A comma-separated list of CSS classes for the popover. Applies to visible
markup only.

StringcssClass

Methods

You can use the following methods on the modal instance returned by the promise.

close(): Dismisses and destroys the modal.

hide(): Hides the modal from view.

show(): Displays the modal.

606

lightning:overlayLibraryReference

https://www.lightningdesignsystem.com/components/popovers

Interface Reference

Implement these platform interfaces to allow a component to be used in different contexts, or to enable your component to receive
extra context data. A component can implement multiple interfaces. Some interfaces are intended to be implemented together, while
others are mutually exclusive. Some interfaces have an effect only in Lightning Experience and the Salesforce app.

clients:availableForMailAppAppPage
To appear in the Lightning App Builder or a Lightning Page in Lightning for Outlook or Lightning for Gmail, a component must
implement the clients:availableForMailAppAppPage interface. For more information, see Create Components for
Lightning for Outlook and Lightning for Gmail.

clients:hasEventContext
Enables a component to be assigned to an event’s date or location attributes in Lightning for Outlook and Lightning for Gmail. For
more information, see Create Components for Lightning for Outlook and Lightning for Gmail.

clients:hasItemContext
Enables a component to be assigned to an email’s or a calendar event’s item attributes in Lightning for Outlook and Lightning for
Gmail. For more information, see Create Components for Lightning for Outlook and Lightning for Gmail.

flexipage:availableForAllPageTypes
A global interface that makes a component available in the Lightning App Builder, and for any type of Lightning page. For more
information, see Configure Components for Lightning Pages and the Lightning App Builder.

To appear in the utility bar, a component must implement the flexipage:availableForAllPageTypes interface. For
more information, see Add a Utility Bar to Lightning Appsin Salesforce Help.

flexipage:availableForRecordHome
If your component is designed only for record pages, implement the flexipage:availableForRecordHome interface
instead of flexipage:availableForAllPageTypes. For more information, see Configure Components for Lightning
Experience Record Pages.

forceCommunity:availableForAllPageTypes
To appear in Community Builder, a component must implement the forceCommunity:availableForAllPageTypes
interface. For more information, see Configure Components for Communities.

force:appHostable
Allows a component to be used as a custom tab in Lightning Experience or the Salesforce app. For more information, see Add
Lightning Components as Custom Tabs in Lightning Experience.

force:lightningQuickAction
Allows a component to display in a panel with standard action controls, such as a Cancel button. These components can also display
and implement their own controls, but should handle events from the standard controls. If you implement
force:lightningQuickAction, you can’t implement force:lightningQuickActionWithoutHeader within
the same component. For more information, see Configure Components for Custom Actions.

force:lightningQuickActionWithoutHeader
Allows a component to display in a panel without additional controls. The component should provide a complete user interface for
the action. If you implement force:lightningQuickActionWithoutHeader, you can’t implement
force:lightningQuickAction within the same component. For more information, see Configure Components for Custom
Actions.

ltng:allowGuestAccess
Add the ltng:allowGuestAccess interface to your Lightning Out dependency app to make it available to users without
requiring them to authenticate with Salesforce. This interface lets you build your app with Lightning components, and deploy it
anywhere and to anyone. For more information, see Share Lightning Out Apps with Non-Authenticated Users.

607

Interface ReferenceReference

IN THIS SECTION:

force:hasRecordId

Add the force:hasRecordId interface to a Lightning component to enable the component to be assigned the ID of the
current record. The current record ID is useful if the component is used on a Lightning record page, as an object-specific custom
action or action override in Lightning Experience or the Salesforce app, and so on. This interface has no effect except when used
within Lightning Experience, Salesforce app, and template-based communities.

force:hasSObjectName

Add the force:hasSObjectName interface to a Lightning component to enable the component to be assigned the API name
of current record’s sObject type. The sObject name is useful if the component can be used with records of different sObject types,
and needs to adapt to the specific type of the current record. This interface has no effect except when used within Lightning
Experience, Salesforce app, and template-based communities.

lightning:actionOverride

Add the lightning:actionOverride interface to a Lightning component to enable the component to be used to override
a standard action on an object. You can override the View, New, Edit, and Tab standard actions on most standard and all custom
components. This interface has no effect except when used within Lightning Experience and the Salesforce app.

lightning:appHomeTemplate

Implement the lightning:appHomeTemplate interface to enable your component to be used as a custom Lightning page
template for pages of type App Page. This interface has no effect except when used within Lightning Experience and the Salesforce
app.

lightning:availableForChatterExtensionComposer

Use the lightning:availableForChatterExtensionComposer interface to integrate your custom apps into the
Chatter publisher and place the custom app’s payload in the feed. This interface is available in Lightning communities.

lightning:availableForChatterExtensionRenderer

Use the lightning:availableForChatterExtensionRenderer interface to integrate your custom apps into the
Chatter publisher and place the custom app’s payload in the feed. This interface is available in Lightning communities.

lightning:homeTemplate

Implement the lightning:homeTemplate interface to enable your component to be used as a custom Lightning page
template for the Lightning Experience Home page. This interface has no effect except when used within Lightning Experience.

lightning:recordHomeTemplate

Implement the lightning:recordHomeTemplate interface to enable your component to be used as a custom Lightning
page template for object record pages. This interface has no effect except when used within Lightning Experience.

force:hasRecordId
Add the force:hasRecordId interface to a Lightning component to enable the component to be assigned the ID of the current
record. The current record ID is useful if the component is used on a Lightning record page, as an object-specific custom action or action
override in Lightning Experience or the Salesforce app, and so on. This interface has no effect except when used within Lightning
Experience, Salesforce app, and template-based communities.

This interface is a marker interface. A marker interface is a signal to the component’s container to add the interface’s behavior to the
component. You don’t need to implement any specific methods or attributes in your component, you simply add the interface name
to the component’s implements attribute.

The force:hasRecordId interface does two things to a component that implements it.

608

force:hasRecordIdReference

• It adds an attribute named recordId to your component. This attribute is of type String, and its value is an 18-character Salesforce
record ID, for example: 001xx000003DGSWAA4. If you added it yourself, the attribute definition would look like the following markup:

<aura:attribute name="recordId" type="String" />

Note: If your component implements force:hasRecordId, you don’t need to add a recordId attribute to the
component yourself. If you do add it, don’t change the access level or type of the attribute or the component will cause a
runtime error.

• When your component is invoked in a record context in Lightning Experience or the Salesforce app, the recordId is set to the
ID of the record being viewed.

Important: The recordId attribute is set only when you place or invoke the component in an explicit record context. For
example, when you place the component directly on a record page layout, or invoke it as an object-specific action from a record
page or object home. In all other cases, such as when you invoke the component as a global action, or create the component
programmatically inside another component, recordId isn’t set, and your component shouldn’t depend on it.

These unsupported contexts include a few contexts that might seem like they should have access to the current record. Examples
of these other contexts include the following:

• Invoking the component from a global action (even when you’re on a record page)

• Invoking the component from header or footer navigation in a community (even if the page shows a record)

force:hasRecordId and force:hasSObjectName are unsupported in these contexts. While the marker interfaces
still add the relevant attribute to the component, accessing either attribute generally returns null or undefined.

Example: This example shows the markup required to add the force:hasRecordId interface to a Lightning component.

<aura:component implements="force:lightningQuickAction,force:hasRecordId">

<!-- ... -->

</aura:component>

The component’s controller can access the ID of the current record from the recordId attribute, using
component.get("v.recordId"). The recordId attribute is automatically added to the component by the
force:hasRecordId interface.

force:hasSObjectName
Add the force:hasSObjectName interface to a Lightning component to enable the component to be assigned the API name of
current record’s sObject type. The sObject name is useful if the component can be used with records of different sObject types, and
needs to adapt to the specific type of the current record. This interface has no effect except when used within Lightning Experience,
Salesforce app, and template-based communities.

This interface is a marker interface. A marker interface is a signal to the component’s container to add the interface’s behavior to the
component. You don’t need to implement any specific methods or attributes in your component, you simply add the interface name
to the component’s implements attribute.

This interface adds an attribute named sObjectName to your component. This attribute is of type String, and its value is the API
name of an object, such as Account or myNamespace__myObject__c. For example:

<aura:attribute name="sObjectName" type="String" />

609

force:hasSObjectNameReference

Note: If your component implements force:hasSObjectName, you don’t need to add an sObjectName attribute to
the component yourself. If you do add it, don’t change the access level or type of the attribute or the component will cause a
runtime error.

Important: The sObjectName attribute is set only when you place or invoke the component in an explicit record context.
For example, when you place the component directly on a record page layout, or invoke it as an object-specific action from a
record page or object home. In all other cases, such as when you invoke the component as a global action, or create the component
programmatically inside another component, sObjectName isn’t set, and your component shouldn’t depend on it.

These unsupported contexts include a few contexts that might seem like they should have access to the current record. Examples
of these other contexts include the following:

• Invoking the component from a global action (even when you’re on a record page)

• Invoking the component from header or footer navigation in a community (even if the page shows a record)

force:hasRecordId and force:hasSObjectName are unsupported in these contexts. While the marker interfaces
still add the relevant attribute to the component, accessing either attribute generally returns null or undefined.

Example: This example shows the markup required to add the force:hasSObjectName interface to a Lightning component.

<aura:component implements="force:lightningQuickAction,force:hasSObjectName">

<!-- ... -->

</aura:component>

The component’s controller can access the ID of the current record from the recordId attribute, using
component.get("v.sObjectName"). The recordId attribute is automatically added to the component by the
force:hasSObjectName interface.

lightning:actionOverride
Add the lightning:actionOverride interface to a Lightning component to enable the component to be used to override a
standard action on an object. You can override the View, New, Edit, and Tab standard actions on most standard and all custom components.
This interface has no effect except when used within Lightning Experience and the Salesforce app.

This interface is a marker interface. A marker interface is a signal to the component’s container to add the interface’s behavior to the
component. You don’t need to implement any specific methods or attributes in your component, you simply add the interface name
to the component’s implements attribute.

The lightning:actionOverride doesn’t add or require any attributes on components that implement it. Components that
implement this interface don’t automatically override any action. You need to manually override relevant actions in Setup.

Only components that implement this interface appear in the Lightning Component Bundle menu of an object action Override
Properties panel.

Example: This example shows the markup required to add the lightning:actionOverride interface to a Lightning
component.

<aura:component
implements="lightning:actionOverride,force:hasRecordId,force:hasSObjectName">

<article class="slds-card">
<div class="slds-card__header slds-grid">
<header class="slds-media slds-media_center slds-has-flexi-truncate">

610

lightning:actionOverrideReference

<div class="slds-media__body">
<h2>Expense Details</h2>

</div>
</header>
<div class="slds-no-flex">

<lightning:button label="Edit" onclick="{!c.handleEdit}"/>
</div>

</div>
<div class="slds-card__body">(expense details go here)</div>

</article>
</aura:component>

In Lightning Experience, the standard Tab and View actions display as a page, while the standard New and Edit actions display in
an overlaid panel. When used as action overrides, Lightning components that implement the lightning:actionOverride
interface replace the standard behavior completely. However, overridden actions always display as a page, not as a panel. Your
component displays without controls, except for the main Lightning Experience navigation bar. Your component is expected to
provide a complete user interface for the action, including navigation or actions beyond the navigation bar.

lightning:appHomeTemplate
Implement the lightning:appHomeTemplate interface to enable your component to be used as a custom Lightning page
template for pages of type App Page. This interface has no effect except when used within Lightning Experience and the Salesforce app.

Components that implement this interface appear in the Custom Templates section of the Lightning App Builder new page wizard for
app pages.

Important: Each template component should implement only one template interface. Template components shouldn’t implement
any other type of interface, such as flexipage:availableForAllPageTypes or force:hasRecordId. A template
component can’t multi-task as a regular Lightning component. It’s either a template, or it’s not.

lightning:availableForChatterExtensionComposer
Use the lightning:availableForChatterExtensionComposer interface to integrate your custom apps into the Chatter
publisher and place the custom app’s payload in the feed. This interface is available in Lightning communities.

The lightning:availableForChatterExtensionComposer interface works with the
lightning:availableForChatterExtensionRenderer interface and the
lightning:sendChatterExtensionPayload event to integrate your custom apps into the Chatter publisher and to render
the app’s payload in the feed.

Note: For the full integration picture, see Integrate Your Custom Apps into the Chatter Publisher.

611

lightning:appHomeTemplateReference

lightning:availableForChatterExtensionRenderer
Use the lightning:availableForChatterExtensionRenderer interface to integrate your custom apps into the Chatter
publisher and place the custom app’s payload in the feed. This interface is available in Lightning communities.

The lightning:availableForChatterExtensionRenderer interface works with the
lightning:availableForChatterExtensionComposer interface and the
lightning:sendChatterExtensionPayload event to integrate your custom apps into the Chatter publisher and to render
the app’s payload in the feed.

Note: For the full integration picture, see Integrate Your Custom Apps into the Chatter Publisher.

Fields

Required?DescriptionTypeAttribute Name

NoPayload data that was saved with the feed item is provided to the component
that is implementing this interface

Objectpayload

NoAn enum that can take one of two values: PREVIEW or RENDER. The selected
value is provided to the component that is implementing this interface.

Stringvariant

PREVIEW specifies that the attachment is used as a preview in the publisher.
RENDER specifies that the attachment is rendered with the feed item

lightning:homeTemplate
Implement the lightning:homeTemplate interface to enable your component to be used as a custom Lightning page template
for the Lightning Experience Home page. This interface has no effect except when used within Lightning Experience.

Components that implement this interface appear in the Custom Templates section of the Lightning App Builder new page wizard for
Home pages.

Important: Each template component should implement only one template interface. Template components shouldn’t implement
any other type of interface, such as flexipage:availableForAllPageTypes or force:hasRecordId. A template
component can’t multi-task as a regular Lightning component. It’s either a template, or it’s not.

lightning:recordHomeTemplate
Implement the lightning:recordHomeTemplate interface to enable your component to be used as a custom Lightning page
template for object record pages. This interface has no effect except when used within Lightning Experience.

Components that implement this interface appear in the Custom Templates section of the Lightning App Builder new page wizard for
record pages.

Important: Each template component should implement only one template interface. Template components shouldn’t implement
any other type of interface, such as flexipage:availableForAllPageTypes or force:hasRecordId. A template
component can’t multi-task as a regular Lightning component. It’s either a template, or it’s not.

612

lightning:availableForChatterExtensionRendererReference

Event Reference

Use out-of-the-box events to enable component interaction within Lightning Experience or the Salesforce app, or within your Lightning
components. For example, these events enable your components to open a record create or edit page, or navigate to a record.

Events belong to different namespaces, including:

force
Provides events that are handled by Lightning Experience and the Salesforce app.

forceCommunity
Provides events that are handled by Communities.

lightning
Provides events that are handled by Lightning Experience, the Salesforce app, and Communities.

ltng
Provides events that send the record ID or generic message to another component.

ui
Provides events that are handled by the legacy ui components.

wave
Provides events that are handled by Wave Analytics.

If you fire one of these force or lightning events in your Lightning apps or components outside of the Salesforce app or Lightning
Experience:

• You must handle the event by using the <aura:handler> tag in the handling component.

• Use the <aura:registerEvent> or <aura:dependency> tags to ensure that the event is sent to the client, when
needed.

SEE ALSO:

aura:dependency

Events Handled in the Salesforce mobile app and Lightning Experience

Fire Component Events

Fire Application Events

force:closeQuickAction
Closes a quick action panel. Only one quick action panel can be open in the app at a time.

To close a quick action panel, usually in response to completing or canceling the action, run
$A.get("e.force:closeQuickAction").fire();.

This example closes the quick action panel after processing the input from the panel’s user interface and displaying a “toast” message
with the processing results. While the processing and the toast are unrelated to closing the quick action, the sequence is important.
Firing force:closeQuickAction should be the last thing your quick action handler does.

/*quickAddController.js*/
({

clickAdd: function(component, event, helper) {

// Get the values from the form
var n1 = component.find("num1").get("v.value");

613

Event ReferenceReference

var n2 = component.find("num2").get("v.value");

// Display the total in a "toast" status message
var resultsToast = $A.get("e.force:showToast");
resultsToast.setParams({

"title": "Quick Add: " + n1 + " + " + n2,
"message": "The total is: " + (n1 + n2) + "."

});
resultsToast.fire();

// Close the action panel
var dismissActionPanel = $A.get("e.force:closeQuickAction");
dismissActionPanel.fire();

}

})

Note: This event is handled by the one.app container. It’s supported in Lightning Experience and the Salesforce app only.

force:createRecord
Opens a page to create a record for the specified entityApiName, for example, “Account” or “myNamespace__MyObject__c”.

To display the record create page for an object, set the object name on the entityApiName attribute and fire the event.
recordTypeId is optional and, if provided, specifies the record type for the created object. defaultFieldValues is optional
and, if provided, specifies values to use to prepopulate the create record form.

This example displays the record create panel for contacts.

createRecord : function (component, event, helper) {
var createRecordEvent = $A.get("e.force:createRecord");
createRecordEvent.setParams({

"entityApiName": "Contact"
});
createRecordEvent.fire();

}

Note: This event is handled by the one.app container. It’s supported in Lightning Experience, the Salesforce app, and Lightning
communities. This event presents a standard page to create a record. That is, it doesn’t respect overrides on the object’s create
action.

Prepopulating Field Values
The defaultFieldValues attribute lets you prepopulate the create record form with default or calculated field values. Prepopulated
values can accelerate data entry, improve data consistency, and otherwise make the process of creating a record easier. Specify default
field values as name-value pairs in a JavaScript object.

This example displays the record create panel for a contact with two fields prepopulated.

var createAcountContactEvent = $A.get("e.force:createRecord");
createAcountContactEvent.setParams({

"entityApiName": "Contact",
"defaultFieldValues": {

'Phone' : '415-240-6590',

614

force:createRecordReference

'AccountId' : '001xxxxxxxxxxxxxxx'
}

});
createAcountContactEvent.fire();

You can specify values for fields even if they’re not available in the create record form.

• If the field is hidden because it’s not on the page layout, the value specified in defaultFieldValues is saved with the new
record.

• If the current user doesn’t have create access to the field, due to field-level security, attempts to save the new record result in an
error.

Important: Error messages can’t reference fields the current user doesn’t have access to. This constraint means the user won’t
know why the error occurred or how to resolve the issue.

Firing the force:createRecord event tells the app to use the standard create record page. You can’t catch errors that
occur there, or alter the create page interface or behavior, for example, to show an improved error message. For this reason, it’s
essential to perform access checks in your own code, before firing the event.

You can’t prepopulate system-maintained fields, such as Id or record modification time stamps. Default values for these fields are
silently ignored.

Prepopulating rich text fields is unsupported. It might work for simple values, but the internal format of rich text fields is undocumented,
so setting complex values that include formatting is problematic. Use at your own risk.

Date and time field values must use the ISO 8601 format. For example:

• Date: 2017-07-18

• Datetime: 2017-07-18T03:00:00Z

Note: While the create record panel presents datetime values in the user’s local time, you must convert datetime values to UTC
to prepopulate the field.

Required?DescriptionTypeAttribute Name

YesThe API name of the custom or standard object, such as “Account”, “Case”,
“Contact”, “Lead”, “Opportunity”, or “namespace__objectName__c”.

StringentityApiName

Prepopulates fields on a record create panel, including fields not displayed
on the panel. ID fields and rich text fields can’t be prepopulated. Users must

StringdefaultFieldValues

have create access to fields with prepopulated values. Errors during saving
that are caused by field access limitations don’t display error messages.

The ID of the record type, if record types are available for the object.StringrecordTypeId

force:editRecord
Opens the page to edit the record specified by recordId.

To display the record edit page for an object, set the object name on the recordId attribute and fire the event. This example displays
the record edit page for a contact that’s specified by recordId.

editRecord : function(component, event, helper) {
var editRecordEvent = $A.get("e.force:editRecord");
editRecordEvent.setParams({

615

force:editRecordReference

"recordId": component.get("v.contact.Id")
});
editRecordEvent.fire();

}

Note: This event is handled by the one.app container. It’s supported in Lightning Experience, the Salesforce app, and Lightning
communities.

Required?DescriptionTypeAttribute Name

YesThe record ID associated with the record to be edited.StringrecordId

force:navigateToComponent (Beta)
Navigates from one Lightning component to another.

Note: This release contains a beta version of force:navigateToComponent with known limitations.

To navigate from a Lightning component to another, specify the component name using componentDef. This example navigates
to a component c:myComponent and sets a value on the contactName attribute.

navigateToMyComponent : function(component, event, helper) {
var evt = $A.get("e.force:navigateToComponent");
evt.setParams({

componentDef : "c:myComponent",
componentAttributes: {

contactName : component.get("v.contact.Name")
}

});
evt.fire();

}

When fired from a component embedded in Lightning Experience or Salesforce app, the app creates and renders the target component
in the app content area, replacing the current content. If you create a Lightning component tab and associate it directly with the
component, this event lets you navigate to the tab associated with the target component. To create a Lightning component tab and
associate it with the component, from Setup, enter Tabs in the Quick Find box, and then select Tabs.

This event doesn’t support target components that are embedded in another tab or in multiple tabs.

You can navigate only to a component that’s marked access="global" or a component within the current namespace.

Don’t depend on the URL generated by this event. It appears in the browser location bar and can be bookmarked, but the URL isn’t
permanent.

Note: This event is handled by the one.app container. It’s supported in Lightning Experience and Salesforce app only.

Required?DescriptionTypeAttribute Name

The component to navigate to, for example, c:myComponentStringcomponentDef

The attributes for the componentObjectcomponentAttributes

Specifies whether the navigation is a redirect. If true, the browser replaces
the current URL with the new one in the navigation history. This value
defaults to false.

Booleanisredirect

616

force:navigateToComponent (Beta)Reference

force:navigateToList
Navigates to the list view specified by listViewId.

To navigate to a list view, set the list view ID on the listViewId attribute and fire the event. This example displays the list views for
contacts.

gotoList : function (component, event, helper) {
var action = component.get("c.getListViews");
action.setCallback(this, function(response){

var state = response.getState();
if (state === "SUCCESS") {

var listviews = response.getReturnValue();
var navEvent = $A.get("e.force:navigateToList");
navEvent.setParams({

"listViewId": listviews.Id,
"listViewName": null,
"scope": "Contact"

});
navEvent.fire();

}
});
$A.enqueueAction(action);

}

This Apex controller returns all list views for the contact object.

@AuraEnabled
public static List<ListView> getListViews() {

List<ListView> listviews =
[SELECT Id, Name FROM ListView WHERE SobjectType = 'Contact'];

// Perform isAccessible() check here
return listviews;

}

You can also provide a single list view ID by providing the list view name you want to navigate to in the SOQL query.

SELECT Id, Name FROM ListView WHERE SobjectType = 'Contact' and Name='All Contacts'

Note: This event is handled by the one.app container. It’s supported in Lightning Experience, Salesforce app, and Lightning
communities.

Required?DescriptionTypeAttribute Name

YesThe ID of the list view to be displayed.StringlistViewId

Specifies the name for the list view and doesn’t need to match the actual
name. To use the actual name that’s saved for the list view, set
listViewName to null.

StringlistViewName

617

force:navigateToListReference

Required?DescriptionTypeAttribute Name

The name of the sObject in the view, for example, “Account” or
“namespace__MyObject__c”.

Stringscope

SEE ALSO:

CRUD and Field-Level Security (FLS)

force:navigateToObjectHome
Navigates to the object home specified by the scope attribute.

To navigate to an object home, set the object name on the scope attribute and fire the event. This example displays the home page
for a custom object.

navHome : function (component, event, helper) {
var homeEvent = $A.get("e.force:navigateToObjectHome");
homeEvent.setParams({

"scope": "myNamespace__myObject__c"
});
homeEvent.fire();

}

Note: This event is handled by the one.app container. It’s supported in Lightning Experience, the Salesforce app, and Lightning
communities.

Required?DescriptionTypeAttribute Name

YesThe API name of the custom or standard object, such as “Contact”, or
“namespace__objectName__c”.

Stringscope

Resets history if set to true. Defaults to false, which provides a Back button
in the Salesforce app.

BooleanresetHistory

force:navigateToRelatedList
Navigates to the related list specified by parentRecordId.

To navigate to a related list, set the parent record ID on the parentRecordId attribute and fire the event. This example displays
the related cases on a record and assumes that your component implements the force:hasRecordId and
flexipage:availableForRecordHome interfaces. It uses the recordId attribute provided by the force:hasRecordId
interface. Implementing these interfaces means that you can drag-and-drop the component to the record pages you want via the
Lightning App Builder, such that it can navigate to related cases on an account record or contact record page, or any other record pages
that support the case related list.

gotoRelatedList : function (component, event, helper) {
var relatedListEvent = $A.get("e.force:navigateToRelatedList");
relatedListEvent.setParams({

"relatedListId": "Cases",
"parentRecordId": component.get("v.recordId")

});

618

force:navigateToObjectHomeReference

relatedListEvent.fire();
}

Each object supports a subset of related lists. The page layout editor shows the related lists supported for each object. For example,
account records support these related lists: assets (Assets), cases (Cases), contacts (Contacts), opportunities (Opportunities),
among many others.

However, not all related lists are automatically available in your org. For example, the Contacts to Multiple Accounts feature must be
enabled for the “Related Contacts” (AccountContactRelations) related list to be available. To identify the relatedListId
value of a related list, navigate to the related list and observe the URL token /rlName/<relatedListId>/view that’s appended
to the Salesforce URL. However, don’t hard code the URL token in your component markup or JavaScript code as it might change in
future releases.

Note: This event is handled by the one.app container. It’s supported in Lightning Experience, Salesforce app, and Lightning
communities.

Required?DescriptionTypeAttribute Name

YesThe ID of the parent record.StringparentRecordId

YesThe API name of the related list to display, such as “Contacts” or
“Opportunities”.

StringrelatedListId

force:navigateToSObject
Navigates to an sObject record specified by recordId.

To display the record view, set the record ID on the recordId attribute and fire the event.

The record view contains slides that display the Chatter feed, the record details, and related information. This example displays the related
information slide of a record view for the specified record ID.

Note: You can set a specific slide in the Salesforce app, but not in Lightning Experience.

createRecord : function (component, event, helper) {
var navEvt = $A.get("e.force:navigateToSObject");
navEvt.setParams({
"recordId": "00QB0000000ybNX",
"slideDevName": "related"

});
navEvt.fire();

}

Note: This event is handled by the one.app container. It’s supported in Lightning Experience, Salesforce app, and Lightning
communities.

Required?DescriptionTypeAttribute Name

Indicates that the new URL should replace the current one in the navigation
history. The default is false.

Booleanisredirect

619

force:navigateToSObjectReference

Required?DescriptionTypeAttribute Name

YesThe record ID.StringrecordId

Note: Record IDs corresponding to ContentNote SObjects aren’t
supported.

Specifies the slide within the record view to display initially. Valid options
are:

StringslideDevName

• detail: The record detail slide. This is the default value.

• chatter: The Chatter slide

• related: The related information slide

This attribute has no effect in Lightning Experience.

force:navigateToURL
Navigates to the specified URL.

Relative and absolute URLs are supported. Relative URLs are relative to the Salesforce mobile web domain, and retain navigation history.
External URLs open in a separate browser window.

Use relative URLs to navigate to different screens within your app. Use external URLs to allow the user to access a different site or app,
where they can take actions that don’t need to be preserved in your app. To return to your app, the separate window that’s opened by
an external URL must be closed when the user is finished with the other app. The new window has a separate history from your app,
and this history is discarded when the window is closed. This also means that the user can’t click a Back button to go back to your app;
the user must close the new window.

mailto:, tel:, geo:, and other URL schemes are supported for launching external apps and attempt to “do the right thing.”
However, support varies by mobile platform and device. mailto: and tel: are reliable, but we recommend that you test any other
URLs on a range of expected devices.

When using mailto: and tel: URL schemes, you can also consider using ui:outputEmail and ui:outputURL components.

This example navigates a user to the opportunity page, /006/o, using a relative URL.

gotoURL : function (component, event, helper) {
var urlEvent = $A.get("e.force:navigateToURL");
urlEvent.setParams({
"url": "/006/o"

});
urlEvent.fire();

}

This example opens an external website when the link is clicked.

navigate : function(component, event, helper) {

//Find the text value of the component with aura:id set to "address"
var address = component.find("address").get("v.value");

var urlEvent = $A.get("e.force:navigateToURL");
urlEvent.setParams({
"url": 'https://www.google.com/maps/place/' + address

});

620

force:navigateToURLReference

urlEvent.fire();
}

Note: This event is handled by the one.app container. It’s supported in Lightning Experience, Salesforce app, and Lightning
communities.

Required?DescriptionTypeAttribute Name

Indicates that the new URL should replace the current one in the navigation
history. Defaults to false.

Booleanisredirect

YesThe URL of the target.Stringurl

Note: URLs corresponding to ContentNote SObjects aren’t
supported.

force:recordSave
Saves a record.

force:recordSave is handled by the force:recordEdit component. This examples shows a force:recordEdit
component, which takes in user input to update a record specified by the recordId attribute. The button fires the
force:recordSave event.

<force:recordEdit aura:id="edit" recordId="a02D0000006V8Ni"/>
<ui:button label="Save" press="{!c.save}"/>

This client-side controller fires the event to save the record.

save : function(component, event, helper) {
component.find("edit").get("e.recordSave").fire();
// Update the component
helper.getRecords(component);

}

Note: This event is handled by the one.app container. It’s supported in Lightning Experience and the Salesforce app only.

force:recordSaveSuccess
Indicates that the record has been successfully saved.

force:recordSaveSuccess is used with the force:recordEdit component. This examples shows a
force:recordEdit component, which takes in user input to update a record specified by the recordId attribute. The button
fires the force:recordSave event.

<aura:attribute name="recordId" type="String" default="a02D0000006V8Ni"/>
<aura:attribute name="saveState" type="String" default="UNSAVED" />
<aura:handler name="onSaveSuccess" event="force:recordSaveSuccess"
action="{!c.handleSaveSuccess}"/>

<force:recordEdit aura:id="edit" recordId="{!v.recordId}" />
<ui:button label="Save" press="{!c.save}"/>
Record save status: {!v.saveState}

621

force:recordSaveReference

This client-side controller fires the event to save the record and handle it accordingly.

({
save : function(cmp, event) {

// Save the record
cmp.find("edit").get("e.recordSave").fire();

},

handleSaveSuccess : function(cmp, event) {
// Display the save status
cmp.set("v.saveState", "SAVED");

}
})

Note: This event is handled by the one.app container. It’s supported in Lightning Experience and the Salesforce app only.

force:refreshView
Reloads the view.

To refresh a view, run $A.get("e.force:refreshView").fire();, which reloads all data for the view.

This example refreshes the view after an action is successfully completed.

refresh : function(component, event, helper) {
var action = cmp.get('c.myController');
action.setCallback(cmp,

function(response) {
var state = response.getState();
if (state === 'SUCCESS'){

$A.get('e.force:refreshView').fire();
} else {

//do something
}

}
);
$A.enqueueAction(action);

}

Note: This event is handled by the one.app container. It’s supported in Lightning Experience, Salesforce app, and Lightning
communities.

force:showToast
Displays a toast notification with a message.

A toast displays a message below the header at the top of a view. The message is specified by the message attribute.

Note: force:showToast is not available on login pages.

This example displays a toast message “Success! The record has been updated successfully.”.

showToast : function(component, event, helper) {
var toastEvent = $A.get("e.force:showToast");
toastEvent.setParams({

622

force:refreshViewReference

"title": "Success!",
"message": "The record has been updated successfully."

});
toastEvent.fire();

}

Note: This event is handled by the one.app container. It’s supported in Lightning Experience, Salesforce app, and Lightning
communities.

The background color and icon used by a toast is controlled by the type attribute. For example, setting it to success displays the
toast notification with a green background and checkmark icon. This toast displays for 5000ms, with a close button in the top right
corner when the mode attribute is dismissible.

While message supports a text-only string, messageTemplate supports a string containing links. You can provide a string with
placeholders, which are replaced by labels provided in messageTemplateData. The parameters are numbered and zero-based.
For example, if you have three parameters, {0}, {1}, and {2}, the labels are substituted in the order they're specified. The label is also
used for the title attribute on the anchor tag.

This example displays a toast with a message that contains a link.

showMyToast : function(component, event, helper) {
var toastEvent = $A.get("e.force:showToast");
toastEvent.setParams({

mode: 'sticky',
message: 'This is a required message',
messageTemplate: 'Record {0} created! See it {1}!',
messageTemplateData: ['Salesforce', {

url: 'http://www.salesforce.com/',
label: 'here',
}

]
});
toastEvent.fire();

}

Required?DescriptionTypeAttribute Name

Specifies the toast title in bold.Stringtitle

YesSpecifies the message to display.Stringmessage

Overwrites message string with the specified message. Requires
messageTemplateData.

StringmessageTemplate

An array of text and actions to be used in messageTemplate.ObjectmessageTemplateData

Specifies an icon when the toast type is other. Icon keys are available at
the Lightning Design System Resources page.

Stringkey

Toast duration in milliseconds. The default is 5000ms.Integerduration

The toast type, which can be error, warning, success, or info.
The default is other, which is styled like an info toast and doesn’t display
an icon, unless specified by the key attribute.

Stringtype

623

force:showToastReference

https://www.lightningdesignsystem.com/resources/icons#utility

Required?DescriptionTypeAttribute Name

The toast mode, which controls how users can dismiss the toast. The default
is dismissible, which displays the close button.

Valid values:

Stringmode

• dismissible: Remains visible until you press the close button or
duration has elapsed, whichever comes first.

• pester: Remains visible until duration has elapsed. No close
button is displayed.

• sticky: Remains visible until you press the close buttons.

forceCommunity:analyticsInteraction
Tracks events triggered by custom components in Communities and sends the data to Google Analytics.

For example, you could create a custom button and include the forceCommunity:analyticsInteraction event in the
button's client-side controller. Clicking the button sends event data to Google Analytics.

onClick : function(cmp, event, helper) {
var analyticsInteraction = $A.get("e.forceCommunity:analyticsInteraction");
analyticsInteraction.setParams({

hitType : 'event',
eventCategory : 'Button',
eventAction : 'click',
eventLabel : 'Winter Campaign Button',
eventValue: 200

});
analyticsInteraction.fire();

}

Note:

• This event is supported in Lightning communities only. To enable event tracking, add your Google Analytics tracking ID in
Settings > Advanced in Community Builder and publish the community.

• Google Analytics isn’t supported in sandbox environments.

DescriptionTypeAttribute Name

Required. The type of hit. 'event' is the only permitted value.StringhitType

Required. The type or category of item that was interacted with, such as a button or video.StringeventCategory

Required. The type of action. For example, for a video player, actions could include play,
pause, or share.

StringeventAction

Can be used to provide additional information about the event.StringeventLabel

A positive numeric value associated with the event.IntegereventValue

624

forceCommunity:analyticsInteractionReference

forceCommunity:routeChange
The system fires the forceCommunity:routeChange event when a page’s URL changes. Custom Lightning components can
listen to this system event and handle it as required—for example, for analytics or SEO purposes.

Note: This event is supported in Lightning communities only.

This sample component listens to the system event.

<aura:component implements="forceCommunity:availableForAllPageTypes">
<aura:attribute name="routeChangeCounter" default="0" type="Integer" required="false"/>

<aura:handler event="forceCommunity:routeChange" action="{!c.handleRouteChange}"/>
<h1>Route was changed: {!v.routeChangeCounter} times</h1>

</aura:component>

This client-side controller example handles the system event.

({handleRouteChange : function(component, event, helper) {
component.set('v.routeChangeCounter', component.get('v.routeChangeCounter') + 1);
}

})

lightning:openFiles
Opens one or more file records from the ContentDocument and ContentHubItem objects.

On desktops, the event opens the SVG file preview player, which lets you preview images, documents, and other files in the browser.
The file preview player supports full-screen presentation mode and provides quick access to file actions, such as upload, delete, download,
and share.

On mobile devices, the file is downloaded. If the device supports file preview, the device’s preview app is opened.

This example opens a single file.

openSingleFile: function(cmp, event, helper) {
$A.get('e.lightning:openFiles').fire({

recordIds: [component.get("v.currentContentDocumentId")]
});

}

This example opens multiple files.

openMultipleFiles: function(cmp, event, helper) {
$A.get('e.lightning:openFiles').fire({

recordIds: component.get("v.allContentDocumentIds"),
selectedRecordId: component.get("v.currentContentDocumentId")

});
}

Note: This event is supported in Lightning Experience, the Salesforce mobile web, and Lightning communities. It isn’t supported
in the deprecated Koa and Kokua community templates.

DescriptionTypeAttribute Name

Required. IDs of the records to open.String[]recordIds

625

forceCommunity:routeChangeReference

DescriptionTypeAttribute Name

ID of the first record to open from the list specified in recordIds. If a value isn’t
provided or is incorrect, the first item in the list is used.

StringselectedRecordId

lightning:sendChatterExtensionPayload
Updates the payload and metadata that are saved during extension composition.

This event is used with the lightning:availableForChatterExtensionComposer and
lightning:availableForChatterExtensionRenderer interfaces.

Fields

Required?DescriptionTypeAttribute Name

YesPayload data to save with the feed itemObjectpayload

YesApp title to save with the feed itemStringextensionTitle

YesApp description to save with the feed itemStringextensionDescription

NoURL of the app thumbnail to save with the feed itemStringextensionThumbnailUrl

SEE ALSO:

lightning:availableForChatterExtensionComposer

lightning:availableForChatterExtensionRenderer

Integrate Your Custom Apps into the Chatter Publisher

ltng:selectSObject
Sends the recordId of an object when it’s selected in the UI.

To select an object, set the record ID on the recordId attribute. Optionally, specify a channel for this event so that your components
can select if they want to listen to particular event messages.

selectedObj: function(component, event) {
var selectedObjEvent = $A.get("e.ltng:selectSObject");
selectedObjEvent.setParams({

"recordId": "0061a000004x8e1",
"channel": "AccountsChannel"

});
selectedObj.fire();
}

DescriptionTypeAttribute Name

Required. The record ID associated with the record to select.StringrecordId

626

lightning:sendChatterExtensionPayloadReference

DescriptionTypeAttribute Name

Specify this field if you want particular components to process some event messages
while ignoring others.

Stringchannel

ltng:sendMessage
Passes a message between two components.

To send a message, specify a string of text that you want to pass between components. Optionally, specify a channel for this event so
that your components can select if they want to listen to particular event messages

sendMsg: function(component, event) {
var sendMsgEvent = $A.get("e.ltng:sendMessage");
sendMsgEvent.setParams({

"message": "Hello World",
"channel": "AccountsChannel"

});
sendMsgEvent.fire();
}

DescriptionTypeAttribute Name

Required. The text that you want to pass between components.Stringmessage

Specify this field if you want particular components to process some event messages
while ignoring others.

Stringchannel

ui:clearErrors
Indicates that any validation errors should be cleared.

To set a handler for the ui:clearErrors event, use the onClearErrors system attribute on a component that extends
ui:input, such as ui:inputNumber.

The following ui:inputNumber component handles an error when the ui:button component is pressed. You can fire and
handle these events in a client-side controller.

<aura:component>
Enter a number:
<!-- onError calls your client-side controller to handle a validation error -->
<!-- onClearErrors calls your client-side controller to handle clearing of errors -->

<ui:inputNumber aura:id="inputCmp" onError="{!c.handleError}"
onClearErrors="{!c.handleClearError}"/>

<!-- press calls your client-side controller to trigger validation errors -->
<ui:button label="Submit" press="{!c.doAction}"/>

</aura:component>

For more information, see Validating Fields on page 265.

627

ltng:sendMessageReference

ui:collapse
Indicates that a menu component collapses.

For example, the ui:menuList component registers this event and handles it when it’s fired.

<aura:registerEvent name="menuCollapse" type="ui:collapse"
description="The event fired when the menu list collapses." />

You can handle this event in a ui:menuList component instance. This example shows a menu component with two list items. It
handles the ui:collapse and ui:expand events.

<ui:menu>
<ui:menuTriggerLink aura:id="trigger" label="Contacts"/>

<ui:menuList class="actionMenu" aura:id="actionMenu"
menuCollapse="{!c.addMyClass}" menuExpand="{!c.removeMyClass}">

<ui:actionMenuItem aura:id="item1" label="All Contacts"
click="{!c.doSomething}"/>

<ui:actionMenuItem aura:id="item2" label="All Primary" click="{!c.doSomething}"/>

</ui:menuList>
</ui:menu>

This client-side controller adds a CSS class to the trigger when the menu is collapsed and removes it when the menu is expanded.

({
addMyClass : function(component, event, helper) {

var trigger = component.find("trigger");
$A.util.addClass(trigger, "myClass");

},
removeMyClass : function(component, event, helper) {

var trigger = component.find("trigger");
$A.util.removeClass(trigger, "myClass");

}
})

ui:expand
Indicates that a menu component expands.

For example, the ui:menuList component registers this event and handles it when it’s fired.

<aura:registerEvent name="menuExpand" type="ui:expand"
description="The event fired when the menu list displays." />

You can handle this event in a ui:menuList component instance. This example shows a menu component with two list items. It
handles the ui:collapse and ui:expand events.

<ui:menu>
<ui:menuTriggerLink aura:id="trigger" label="Contacts"/>

<ui:menuList class="actionMenu" aura:id="actionMenu"
menuCollapse="{!c.addMyClass}" menuExpand="{!c.removeMyClass}">

<ui:actionMenuItem aura:id="item1" label="All Contacts"
click="{!c.doSomething}"/>

<ui:actionMenuItem aura:id="item2" label="All Primary" click="{!c.doSomething}"/>

628

ui:collapseReference

</ui:menuList>
</ui:menu>

This client-side controller adds a CSS class to the trigger when the menu is collapsed and removes it when the menu is expanded.

({
addMyClass : function(component, event, helper) {

var trigger = component.find("trigger");
$A.util.addClass(trigger, "myClass");

},
removeMyClass : function(component, event, helper) {

var trigger = component.find("trigger");
$A.util.removeClass(trigger, "myClass");

}
})

ui:menuFocusChange
Indicates that the user changed menu item focus in a menu component.

For example, this event is fired when the user scrolls up and down the menu list, which triggers a focus change in menu items. The
ui:menuList component registers this event and handles it when it’s fired.

<aura:registerEvent name="menuFocusChange" type="ui:menuFocusChange"
description="The event fired when the menu list focus changes from one

menu item to another." />

You can handle this event in a ui:menuList component instance. This example shows a menu component with two list items.

<ui:menu>
<ui:menuTriggerLink aura:id="trigger" label="Contacts"/>

<ui:menuList class="actionMenu" aura:id="actionMenu"
menuFocusChange="{!c.handleChange}">

<ui:actionMenuItem aura:id="item1" label="All Contacts" />
<ui:actionMenuItem aura:id="item2" label="All Primary" />

</ui:menuList>
</ui:menu>

ui:menuSelect
Indicates that a menu item has been selected in the menu component.

For example, the ui:menuList component registers this event so it can be fired by the component.

<aura:registerEvent name="menuSelect" type="ui:menuSelect"
description="The event fired when a menu item is selected." />

You can handle this event in a ui:menuList component instance. This example shows a menu component with two list items. It
handles the ui:menuSelect event and click events.

<ui:menu>
<ui:menuTriggerLink aura:id="trigger" label="Contacts"/>

<ui:menuList class="actionMenu" aura:id="actionMenu" menuSelect="{!c.selected}">
<ui:actionMenuItem aura:id="item1" label="All Contacts"

click="{!c.doSomething}"/>

629

ui:menuFocusChangeReference

<ui:actionMenuItem aura:id="item2" label="All Primary"
click="{!c.doSomething}"/>

</ui:menuList>
</ui:menu>

When a menu item is clicked, the click event is handled before the ui:menuSelect event, which corresponds to doSomething
and selected client-side controllers in the following example.

({
selected : function(component, event, helper) {

var selected = event.getParam("selectedItem");

// returns label of selected item
var selectedLabel = selected.get("v.label");

},

doSomething : function(component, event, helper) {
console.log("do something");

}
})

DescriptionTypeAttribute Name

The menu item which is selectedComponent[]selectedItem

Hides menu if set to trueBooleanhideMenu

Deselects the siblings of the currently selected menu itemBooleandeselectSiblings

Sets focus to the ui:menuTrigger componentBooleanfocusTrigger

ui:menuTriggerPress
Indicates that a menu trigger is clicked.

For example, the ui:menuTrigger component registers this event so it can be fired by the component.

<aura:registerEvent name="menuTriggerPress" type="ui:menuTriggerPress"
description="The event fired when the trigger is clicked." />

You can handle this event in a component that extends ui:menuTrigger, such as in a ui:menuTriggerLink component
instance.

<ui:menu>
<ui:menuTriggerLink aura:id="trigger" label="Contacts"

menuTriggerPress="{!c.triggered}"/>
<ui:menuList class="actionMenu" aura:id="actionMenu">

<ui:actionMenuItem aura:id="item1" label="All Contacts"
click="{!c.doSomething}"/>

<ui:actionMenuItem aura:id="item2" label="All Primary" click="{!c.doSomething}"/>

</ui:menuList>
</ui:menu>

630

ui:menuTriggerPressReference

This client-side controller retrieves the label of the trigger when it’s clicked.

({
triggered : function(component, event, helper) {

var trigger = component.find("trigger");

// Get the label on the trigger
var triggerLabel = trigger.get("v.label");

}
})

ui:validationError
Indicates that the component has validation errors.

To set a handler for the ui:validationError event, use the onError system attribute on a component that extends ui:input,
such as ui:inputNumber.

The following ui:inputNumber component handles an error when the ui:button component is pressed. You can fire and
handle these events in a client-side controller.

<aura:component>
Enter a number:
<!-- onError calls your client-side controller to handle a validation error -->
<!-- onClearErrors calls your client-side controller to handle clearing of errors -->

<ui:inputNumber aura:id="inputCmp" onError="{!c.handleError}"
onClearErrors="{!c.handleClearError}"/>

<!-- press calls your client-side controller to trigger validation errors -->
<ui:button label="Submit" press="{!c.doAction}"/>

</aura:component>

For more information, see Validating Fields on page 265.

DescriptionTypeAttribute Name

An array of error messagesObject[]errors

wave:discoverDashboard
This event sends a global request to listening Analytics dashboard assets to respond with their identifying information. You can optionally
include your own parameter that will be included in the response.

The wave:discoverDashboard and wave:discoverResponse events work hand-in-hand, and are particularly useful for
discovering when a dashboard is being added dynamically to the page, or whether there are multiple dashboards on the page.

This event has one attribute; an optional identifier that will be included in the response data.

In this example, the Lightning component has already been defined, handlers have been set, and the wave:discoverDashboard
and wave:discoverResponse events have been registered in the custom component markup. The controller code below shows

631

ui:validationErrorReference

how to fire the wave:discoverDashboard event, and how to use the result when the wave:discoverResponse event
is fired. The code also shows how to create dashboard components.

({
addDashboard: function(component, event, helper) {

var selectCmp = component.find("idTextBox");
component.set("v.dashboardId", selectCmp.get("v.value"));
var config = {

"dashboardId": selectCmp.get("v.value"),
"showHeader": false,
"height": 400

};
$A.createComponent("wave:waveDashboard", config,

function(dashboard, status, err) {
if (status === "SUCCESS") {

dashboard.set("v.rendered", true);
dashboard.set("v.showHeader", false);
component.set("v.body", dashboard);

} else if (status === "INCOMPLETE") {
console.log("No response from server or client is offline.")

} else if (status === "ERROR") {
console.log("Error: " + err);

}
}

);
},
discoverDashboard: function(component, event, helper) {

$A.get("e.wave:discover").fire();
},
handleDiscoverResponse: function(cmp, event, helper) {

var myText = cmp.find("outName");
myText.set("v.value", event.getParam("id"));

},
})

Note: Requires the Analytics platform license Insights Builder PSL.

DescriptionTypeAttribute Name

Optional identifier that will be included in the response data.StringUID

For more information about using the Analytics SDK with Lightning, see the Analytics SDK Developer Guide.

wave:discoverResponse
This event provides the response following a request for Analytics dashboards to identify their assets.

This event payload has five attributes; the unique ID of the dashboard, the component type, the dashboard title, the dashboard load
status, and an optional parameter if it was sent the the request.

The wave:discoverDashboard and wave:discoverResponse events work hand-in-hand, and are particularly useful for
discovering when a dashboard is being added dynamically to the page, or whether there are multiple dashboards on the page.

632

wave:discoverResponseReference

https://developer.salesforce.com/docs/atlas.en-us.210.0.bi_dev_guide_sdk.meta/bi_dev_guide_sdk/bi_sdk_overview.htm

Refer to the wave:discoverDashboard event for details and an example using wave:discoverResponse.

Note: Requires the Analytics platform license Insights Builder PSL.

DescriptionTypeAttribute Name

The unique identifier of the dashboard in the form of a standard 18-character ID.Stringid

The type of component, usually dashboard.Stringtype

The title of the dashboard.Stringtitle

Whether the dashboard is loaded, or is still loading.BooleanisLoaded

Optional parameter that was sent with the request, if present.StringUID

For more information about using the Analytics SDK with Lightning, see the Analytics SDK Developer Guide.

wave:selectionChanged
Event fired by a Wave dashboard. It provides selection information including the name of the step involved, and an array of objects
representing the current selection.

In this example, the Lightning component has already been defined and everything has been registered, so this controller code shows
how to receive and iterate through the payload. The payload is an array of objects representing the current selection.

({
handleselectionChanged: function(component, event, helper) {
var params = event.getParams();
var payload = params.payload;
if (payload) {
var step = payload.step;
var data = payload.data;
data.forEach(function(obj) {
for (var k in obj) {
if (k === 'Id') {
component.set("v.recordId", obj[k]);

}
}

});
}

}
})

Note: Requires the Analytics platform license Insights Builder PSL.

DescriptionTypeAttribute Name

The unique identifier of the Wave asset for which a selection change event occurred.StringId

The type of the Wave asset for which a selection event occurred. Currently, only
dashboard is supported.

Stringnoun

633

wave:selectionChangedReference

https://developer.salesforce.com/docs/atlas.en-us.210.0.bi_dev_guide_sdk.meta/bi_dev_guide_sdk/bi_sdk_overview.htm

DescriptionTypeAttribute Name

Contains the selection information from the asset that fired the event.

payload.step (String). The name of the step in which the selection occurred.

Stringpayload

payload.data (Object array). An array of objects representing the current selection.
Each object in the array contains one or more attributes based on the selection.

The action that occurred on the Wave asset. Currently, only selection is supported.Stringverb

For more information about using the Analytics SDK with Lightning, see the Analytics SDK Developer Guide.

wave:update
This event is used to set the filter on a Wave Analytics dashboard, or to interact with that dashboard by dynamically changing the
selection.

This event has three attributes; the unique ID of the Wave asset on which to apply the filter, the payload, and the asset type (currently
only dashboard). The payload is a JSON string that identifies the datasets, and any dimensions and field values.

In this example, the Lightning component has already been defined, handlers have been set, and the update event has been registered
in the custom component markup. The controller code below shows how to construct the payload for the update event—in this case,
setting StageName to Close Won in the oppty_test dashboard.

({
doInit: function(component, event, helper) {
component.set('v.filter', '{"oppty_test": {"StageName": ["Closed Won"]}}');

},

handleSendFilter: function(component, event, helper) {
var filter = component.get('v.filter');
var dashboardId = component.get('v.dashboardId');
var evt = $A.get('e.wave:update);
evt.setParams({
id: dashboardId,
value: filter,
Type: "dashboard"

}); evt.fire();
}

})

Note: Requires the Analytics platform license Insights Builder PSL.

DescriptionTypeAttribute Name

The unique identifier of the Wave asset, in the form of a standard 18-character ID.Stringid

The JSON representing the filter or selection to be applied to the asset.Stringvalue

The type of the Wave asset. Currently, only dashboard is supported.Stringtype

For more information about using the Analytics SDK with Lightning, see the Analytics SDK Developer Guide.

634

wave:updateReference

https://developer.salesforce.com/docs/atlas.en-us.210.0.bi_dev_guide_sdk.meta/bi_dev_guide_sdk/bi_sdk_overview.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.bi_dev_guide_sdk.meta/bi_dev_guide_sdk/bi_sdk_overview.htm

System Event Reference

System events are fired by the framework during its lifecycle. You can handle these events in your Lightning apps or components, and
within the Salesforce mobile app. For example, these events enable you to handle attribute value changes, URL changes, or when the
app or component is waiting for a server response.

aura:doneRendering
Indicates that the initial rendering of the root application has completed.

Note: We don't recommend using the legacy aura:doneRendering event except as a last resort. Unless your component
is running in complete isolation in a standalone app and not included in complex apps, such as Lightning Experience or the
Salesforce app, you probably don’t want to handle this application event. The container app may trigger your event handler
multiple times.

This event is automatically fired if no more components need to be rendered or rerendered due to any attribute value changes. The
aura:doneRendering event is handled by a client-side controller. A component can have only one <aura:handler> tag
to handle this event.

<aura:handler event="aura:doneRendering" action="{!c.doneRendering}"/>

For example, you want to customize the behavior of your app after it’s finished rendering the first time but not after subsequent
rerenderings. Create an attribute to determine if it’s the first rendering.

<aura:component>
<aura:handler event="aura:doneRendering" action="{!c.doneRendering}"/>
<aura:attribute name="isDoneRendering" type="Boolean" default="false"/>
<!-- Other component markup here -->
<p>My component</p>

</aura:component>

This client-side controller checks that the aura:doneRendering event has been fired only once.

({
doneRendering: function(cmp, event, helper) {
if(!cmp.get("v.isDoneRendering")){
cmp.set("v.isDoneRendering", true);
//do something after component is first rendered

}
}

})

Note: When aura:doneRendering is fired, component.isRendered() returns true. To check if your element is
visible in the DOM, use utilities such as component.getElement(), component.hasClass(), or
element.style.display.

The aura:doneRendering handler contains these required attributes.

DescriptionTypeAttribute Name

The name of the event, which must be set to aura:doneRendering.Stringevent

The client-side controller action that handles the event.Objectaction

635

System Event ReferenceReference

aura:doneWaiting
Indicates that the app is done waiting for a response to a server request. This event is preceded by an aura:waiting event. This
event is fired after aura:waiting.

Note: We don't recommend using the legacy aura:doneWaiting event except as a last resort. The aura:doneWaiting
application event is fired for every server response, even for responses from other components in your app. Unless your component
is running in complete isolation in a standalone app and not included in Lightning Experience or the Salesforce app, you probably
don’t want to handle this application event. The container app may fire server-side actions and trigger your event handler multiple
times.

This event is automatically fired if no more response from the server is expected. The aura:doneWaiting event is handled by a
client-side controller. A component can have only one <aura:handler> tag to handle this event.

<aura:handler event="aura:doneWaiting" action="{!c.hideSpinner}"/>

This example hides a spinner when aura:doneWaiting is fired.

<aura:component>
<aura:handler event="aura:doneWaiting" action="{!c.hideSpinner}"/>
<!-- Other component markup here -->
<center><ui:spinner aura:id="spinner"/></center>

</aura:component>

This client-side controller fires an event that hides the spinner.

({
hideSpinner : function (component, event, helper) {

var spinner = component.find('spinner');
var evt = spinner.get("e.toggle");
evt.setParams({ isVisible : false });
evt.fire();

}
})

The aura:doneWaiting handler contains these required attributes.

DescriptionTypeAttribute Name

The name of the event, which must be set to aura:doneWaiting.Stringevent

The client-side controller action that handles the event.Objectaction

aura:locationChange
Indicates that the hash part of the URL has changed.

This event is automatically fired when the hash part of the URL has changed, such as when a new location token is appended to the
hash. The aura:locationChange event is handled by a client-side controller. A component can have only one <aura:handler
event="aura:locationChange"> tag to handle this event.

<aura:handler event="aura:locationChange" action="{!c.update}"/>

636

aura:doneWaitingReference

This client-side controller handles the aura:locationChange event.

({
update : function (component, event, helper) {

// Get the new location token from the event
var loc = event.getParam("token");
// Do something else

}
})

The aura:locationChange handler contains these required attributes.

DescriptionTypeAttribute Name

The name of the event, which must be set to aura:locationChange.Stringevent

The client-side controller action that handles the event.Objectaction

The aura:locationChange event contains these attributes.

DescriptionTypeAttribute Name

The hash part of the URL.Stringtoken

The query string portion of the hash.Objectquerystring

aura:systemError
Indicates that an error has occurred.

This event is automatically fired when an error is encountered during the execution of a server-side action. The aura:systemError
event is handled by a client-side controller. A component can have only one <aura:handler event="aura:systemError">
tag in markup to handle this event.

<aura:handler event="aura:systemError" action="{!c.handleError}"/>

This example shows a button that triggers an error and a handler for the aura:systemError event .

<aura:component controller="namespace.myController">
<aura:handler event="aura:systemError" action="{!c.showSystemError}"/>
<aura:attribute name="response" type="Aura.Action"/>
<!-- Other component markup here -->
<ui:button aura:id="trigger" label="Trigger error" press="{!c.trigger}"/>

</aura:component>

This client-side controller triggers the firing of an error and handles that error.

({
trigger: function(cmp, event) {

// Call an Apex controller that throws an error
var action = cmp.get("c.throwError");
action.setCallback(cmp, function(response){

cmp.set("v.response", response);
});

637

aura:systemErrorReference

$A.enqueueAction(action);
},

showSystemError: function(cmp, event) {
// Handle system error
console.log(cmp);
console.log(event);

}
})

The aura:handler tag for the aura:systemError event contains these required attributes.

DescriptionTypeAttribute Name

The name of the event, which must be set to aura:systemError.Stringevent

The client-side controller action that handles the event.Objectaction

The aura:systemError event contains these attributes. You can retrieve the attribute values using
event.getParam("attributeName").

DescriptionTypeAttribute Name

The error message.Stringmessage

The error object.Stringerror

SEE ALSO:

Throwing and Handling Errors

aura:valueChange
Indicates that an attribute value has changed.

This event is automatically fired when an attribute value changes. The aura:valueChange event is handled by a client-side
controller. A component can have multiple <aura:handler name="change"> tags to detect changes to different attributes.

<aura:handler name="change" value="{!v.items}" action="{!c.itemsChange}"/>

This example updates a Boolean value, which automatically fires the aura:valueChange event.

<aura:component>
<aura:attribute name="myBool" type="Boolean" default="true"/>

<!-- Handles the aura:valueChange event -->
<aura:handler name="change" value="{!v.myBool}" action="{!c.handleValueChange}"/>
<ui:button label="change value" press="{!c.changeValue}"/>

</aura:component>

These client-side controller actions trigger the value change and handle it.

({
changeValue : function (component, event, helper) {

638

aura:valueChangeReference

component.set("v.myBool", false);
},

handleValueChange : function (component, event, helper) {
// handle value change
console.log("old value: " + event.getParam("oldValue"));
console.log("current value: " + event.getParam("value"));

}
})

The valueChange event gives you access to the previous value (oldValue) and the current value (value) in the handler action.
In this example, oldValue returns true and value returns false.

The change handler contains these required attributes.

DescriptionTypeAttribute Name

The name of the handler, which must be set to change.Stringname

The attribute for which you want to detect changes.Objectvalue

The client-side controller action that handles the value change.Objectaction

SEE ALSO:

Detecting Data Changes with Change Handlers

aura:valueDestroy
Indicates that a component has been destroyed. Handle this event if you need to do custom cleanup when a component is destroyed.

This event is automatically fired when a component is being destroyed. The aura:valueDestroy event is handled by a client-side
controller.

A component can have only one <aura:handler name="destroy"> tag to handle this event.

<aura:handler name="destroy" value="{!this}" action="{!c.handleDestroy}"/>

This client-side controller handles the aura:valueDestroy event.

({
handleDestroy : function (component, event, helper) {
var val = event.getParam("value");
// Do something else here

}
})

Let’s say that you are viewing a component in the Salesforce app. The aura:valueDestroy event is triggered when you tap on
a different menu item on the Salesforce mobile navigation menu, and your component is destroyed. In this example, the value
parameter in the event returns the component that’s being destroyed.

The <aura:handler> tag for the aura:valueDestroy event contains these required attributes.

DescriptionTypeAttribute Name

The name of the handler, which must be set to destroy.Stringname

639

aura:valueDestroyReference

DescriptionTypeAttribute Name

The value for which you want to detect the event for. The value that is being destroyed.
Always set value="{!this}".

Objectvalue

The client-side controller action that handles the destroy event.Objectaction

The aura:valueDestroy event contains these attributes.

DescriptionTypeAttribute Name

The component being destroyed, which is retrieved via
event.getParam("value").

Stringvalue

aura:valueInit
Indicates that an app or component has been initialized.

This event is automatically fired when an app or component is initialized, prior to rendering. The aura:valueInit event is handled
by a client-side controller. A component can have only one <aura:handler name="init"> tag to handle this event.

<aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

For an example, see Invoking Actions on Component Initialization on page 247.

Note: Setting value="{!this}" marks this as a value event. You should always use this setting for an init event.

The init handler contains these required attributes.

DescriptionTypeAttribute Name

The name of the handler, which must be set to init.Stringname

The value that is initialized, which must be set to {!this}.Objectvalue

The client-side controller action that handles the value change.Objectaction

SEE ALSO:

Invoking Actions on Component Initialization

aura:valueRender

aura:valueRender
Indicates that an app or component has been rendered or rerendered.

This event is automatically fired when an app or component is rendered or rerendered. The aura:valueRender event is handled
by a client-side controller. A component can have only one <aura:handler name="render"> tag to handle this event.

<aura:handler name="render" value="{!this}" action="{!c.onRender}"/>

640

aura:valueInitReference

In this example, the onRender action in your client-side controller handles initial rendering and rerendering of the component. You
can choose any name for the action attribute.

Note: Setting value="{!this}" marks this as a value event. You should always use this setting for a render event.

The render event is fired after the init event, which is fired after component construction but before rendering.

The aura:valueRender event contains one attribute.

DescriptionAttribute TypeAttribute Name

The component that rendered or rerendered.Objectvalue

SEE ALSO:

aura:valueInit

Events Fired During the Rendering Lifecycle

aura:waiting
Indicates that the app is waiting for a response to a server request. This event is fired before aura:doneWaiting.

Note: We don't recommend using the legacy aura:waiting event except as a last resort. The aura:waiting application
event is fired for every server request, even for requests from other components in your app. Unless your component is running
in complete isolation in a standalone app and not included in Lightning Experience or the Salesforce app, you probably don’t want
to handle this application event. The container app may fire server-side actions and trigger your event handler multiple times.

This event is automatically fired when a server-side action is added using $A.enqueueAction() and subsequently run, or when
it’s expecting a response from an Apex controller. The aura:waiting event is handled by a client-side controller. A component can
have only one <aura:handler> tag to handle this event.

<aura:handler event="aura:waiting" action="{!c.showSpinner}"/>

This example shows a spinner when aura:waiting is fired.

<aura:component>
<aura:handler event="aura:waiting" action="{!c.showSpinner}"/>
<!-- Other component markup here -->
<center><ui:spinner aura:id="spinner"/></center>

</aura:component>

This client-side controller fires an event that displays the spinner.

({
showSpinner : function (component, event, helper) {

var spinner = component.find('spinner');
var evt = spinner.get("e.toggle");
evt.setParams({ isVisible : true });
evt.fire();

}
})

The aura:waiting handler contains these required attributes.

641

aura:waitingReference

DescriptionTypeAttribute Name

The name of the event, which must be set to aura:waiting.Stringevent

The client-side controller action that handles the event.Objectaction

Supported HTML Tags

The framework supports most HTML tags, including the majority of HTML5 tags.

An HTML tag is treated as a first-class component by the framework. Each HTML tag is translated into an <aura:html> component,
allowing it to enjoy the same rights and privileges as any other component.

For example, the framework automatically converts a standard HTML <div> tag to this component:

<aura:html tag="div" />

We recommend that you use components in preference to HTML tags. For example, use lightning:button instead of <button>.

Components are designed with accessibility in mind so users with disabilities or those who use assistive technologies can also use your
app. When you start building more complex components, the reusable out-of-the-box components can simplify your job by handling
some of the plumbing that you would otherwise have to create yourself. Also, these components are secure and optimized for performance.

Note that you must use strict XHTML. For example, use
 instead of
.

Some HTML tags are unsafe or unnecessary. The framework doesn’t support these tags.

The HtmlTag enum in this open-source Aura file lists the supported HTML tags. Any tag followed by (false) is not supported.
For example, applet(false) means the applet tag isn't supported.

Note: The linked file is in the master branch of the open-source Aura project. The master branch is our current development
branch and is ahead of the current release of the Lightning Component framework. However, this file changes infrequently and
is the best place to see if a tag is supported now or in the near future.

SEE ALSO:

Supporting Accessibility

Anchor Tag: <a>
Don’t hard code or dynamically generate Salesforce URLs in the href attribute of an <a> tag. Use events, such as
force:navigateToSObject or force:navigateToURL, instead.

Avoid the href Attribute
Using the href attribute of an <a> tag leads to inconsistent behavior in different apps and shouldn’t be relied on. For example, don’t
use this markup to link to a record:

Salesforce record ID (DON'T DO THIS)

If you use # in the href attribute, a secondary issue occurs. The hash mark (#) is a URL fragment identifier and is often used in Web
development for navigation within a page. Avoid # in the href attribute of anchor tags in Lightning components as it can cause
unexpected navigation changes, especially in the Salesforce app. That’s another reason not to use href.

642

Supported HTML TagsReference

http://www.w3.org/TR/xhtml1/
https://github.com/forcedotcom/aura/blob/master/aura/src/main/java/org/auraframework/def/HtmlTag.java

Use Navigation Events
Use one of the navigation events for consistent behavior across Lightning Experience, Salesforce app, and Lightning communities.

force:navigateToList
Navigates to a list view.

force:navigateToObjectHome
Navigates to an object home.

force:navigateToRelatedList
Navigates to a related list.

force:navigateToSObject
Navigates to a record.

force:navigateToURL
Navigates to a URL.

As well as consistent behavior, using navigation events instead of <a> tags reduces the number of full app reloads, leading to better
performance.

Example Using Navigation Event
This example uses an <a> tag that’s wired to a controller action, which fires the force:navigateToSObject event to navigate
to a record. The one.app container handles the event. This event is supported in Lightning Experience, Salesforce app, and Lightning
communities.

<!--c:navToRecord-->
<aura:component>

<aura:attribute name="recordId" type="String" />

<p>link to record</p>
</aura:component>

Here is the controller that fires the event.

/* navToRecordController.js */
({

handleClick: function (component, event, helper) {
var navEvt = $A.get("e.force:navigateToSObject");
navEvt.setParams({

"recordId": component.get("v.recordId")
});
navEvt.fire();

}
})

The record ID is passed into c:navToRecord by setting its recordId attribute. When c:navToRecord is used in Lightning
Experience, Salesforce app, or Lightning communities, the link navigates to the specified record.

643

Anchor Tag: <a>Reference

INDEX

$Browser 48, 50
$Label 48, 62
$Locale 48, 51
$Resource 52

A
Access control

application 351
attribute 352
component 351
event 352
interface 351
JavaScript 264

Accessibility
audio messages 106
buttons 105
events 107
menus 107

Action states
calling server-side 297

Actions
background 298
calling server-side 295
custom actions 112
lightning component actions 112
queueing 297
storable 299–301

anchor tag 642
Anti-patterns

events 194
Apex

API calls 311
AuraEnabled annotation 294
controllers 291–294
custom objects 303
deleting records 308
Lightning components 312
records 303
returning data 292
saving records 307
standard objects 303

API 277
API calls 276, 311
Application

attributes 387
aura:application 387

Application (continued)
building and running 8
creating 200
layout and UI 201
styling 226

Application cache
browser support 357
overview 357

Application events
bubble 179
capture 179
create 180
fire 181
handling 182
phases 179
propagation 179

Application templates
external CSS 202
JavaScript libraries 202

application, creating 9
Applications

CSS 228, 231–233, 235–236, 243
overview 201
styling 228, 231–233, 235–236, 243
token 231–233, 235–236, 243
token overrides 236

Apps
overview 201

Attribute types
Aura.Action 385–386
Aura.Component 385
basic 381
collection 383
custom Apex class 385
custom object 383
Function 382
Object 383
standard object 383

Attribute value, setting 393
Attributes

component reference, setting on 394
interface, setting on 395
JavaScript 253
super component, setting on 393

aura:application 387
aura:attribute 380

644

aura:component 388
aura:dependency 389
aura:doneRendering 635
aura:doneWaiting 636
aura:event 390
aura:expression 396
aura:html 396
aura:if 38, 43, 396
aura:interface 391
aura:iteration 397
aura:locationChange 636
aura:method

result asynchronous code 272
result synchronous code 270

aura:renderIf 398
aura:set 393–394
aura:systemError 637
aura:template 202, 398
aura:text 399
aura:unescapedHtml 399
aura:valueChange 638
aura:valueDestroy 639
aura:valueInit 640
aura:valueRender 640
aura:waiting 641
Aura.Action 386
AuraLocalizationService 288
auraStorage:init 399
authentication

guest access 160

B
Benefits 2
Best practices

events 193
Body

JavaScript 254
Browsers

Lightning components 4
limited support 4
recommendations 4
requirements 4
supported versions 4

Bubbling 172, 183
Buttons

lightning:button 287
local ID 287
pressed 287
ui:button 287

C
Capture 172, 183
Change handlers 281, 638
change handling 323
Chrome extension 359
CLI

custom rules 216
Client-side controllers 165
Communities 160
Communities Lightning components

overview 141
Community Builder

configuring custom components 142
content layouts 146
forceCommunity:analyticsInteraction 624
forceCommunity:routeChange 625
lighting:openFiles 625
Lightning components overview 141
profile menu 145
search 145
theme layouts 142

Component
abstract 355
attributes 33
aura:component 388
aura:interface 391
body, setting and accessing 36
documentation 68
nest 34
rendering 640
rendering lifecycle 194
themes, vendor prefixes 231

Component attributes
inheritance 353

Component body
JavaScript 254

Component bundles
configuring design resources for Lightning App Builder 126
configuring design resources for Lightning Experience Record

Home pages 126
configuring design resources for Lightning pages 126
configuring design resources for Lightning Pages 134
configuring for Community Builder 142
configuring for Lightning App Builder 124, 128, 140, 230
configuring for Lightning Experience Record Home pages

140
configuring for Lightning Experience record pages 128
configuring for Lightning pages 124, 128, 140, 230

645

Index

Component bundles (continued)
create dynamic picklists for components on Lightning Pages

134
tips for configuring for Lightning App Builder 140

Component definitions
dependency 389

Component events
bubble 168
capture 168
create 169
fire 169
handling 170–171
handling dynamically 176
phases 168
propagation 168

Component facets 37
Component initialization 640
Components

access control 264
action override 119–123
actions 109, 112, 114
API version 210
calling methods 269–270, 272
conditional markup 38
create 21–22
creating 279
CSS 228, 231–233, 235–236, 243
custom app integration 148
edit 21–22
flow variables, get 102
flow, finish behavior 103
flow, output variables 102
flow, resume 104
HTML markup, using 31
ID, local and global 30
interface 22
isValid() 262
markup 19, 23, 122
methods 391
modifying 264
namespace 24–26
overview 19
packaging 123
styling 228, 231–233, 235–236, 243
styling with CSS 31
support level 19
tabs 109
token 231–233, 235–236, 243
token overrides 236

Components (continued)
unescaping HTML 31
using 98–99, 108–109, 112, 114, 119
validity 262

Conditional expressions 43
configuring custom components for Lightning App Builder 129,

131
configuring custom components for Lightning Experience Email

Application Pane 129, 131
configuring custom components for Lightning for Outlook 129,

131
configuring custom components for Lightning pages 129, 131
Content security policy 211–212, 277
Controllers

calling server-side actions 295, 297
client-side 165
creating server-side 291–292
results 292
returning data 292
server-side 292–294

Cookbook
JavaScript 278

CRUD access 306
CSP

stricter 212
CSS

external 228
tokens 231–233, 235–236, 243
tokens overrides 236

Custom Actions
components 112, 114

custom content layouts
creating for Community Builder 146

Custom labels 62
Custom Lightning page template component

best practices 138
custom profile menu

creating for Community Builder 145
custom search

creating for Community Builder 145
Custom Tabs

components 109
custom theme layouts

creating for Community Builder 142

D
data access 312, 324–325, 327, 331, 406
Data binding

expressions 44

646

Index

Data changes
detecting 281

Dates
JavaScript 288

Debug
JavaScript 359

Debugging
Chrome extension 359
Salesforce Lightning Inspector 359

deleteRecord 321
dependency 156, 160
Detect data changes 638
Detecting

data changes 281
Developer Console

configuration 22
Lightning bundle 22
Lightning components 21

Developer Edition organization, sign up 9
DOM

external libraries 259, 262
DOM access 204
DOM containment

proxy 205
Dynamic output 43

E
error handling 324
errors 324, 336, 340, 343
Errors

handling 267
throwing 267

ESLint 213–215, 218, 220–221, 225–226
Event bubbling 172, 183
Event capture 172, 183
Event definitions

dependency 389
Event handlers 282
Event handling

base components 77
Lightning components 77

Events
anti-patterns 194
application 178, 180–181, 184
aura events 613, 635
aura:doneRendering 635
aura:doneWaiting 636
aura:event 390
aura:locationChange 636

Events (continued)
aura:systemError 637
aura:valueChange 638
aura:valueDestroy 639
aura:valueInit 640
aura:valueRender 640
aura:waiting 641
best practices 193
bubbling 172, 183
capture 172, 183
component 167, 169, 176
demo 188
example 176, 184
fire() 255
firing from non-Lightning code 192
flow 168, 179
force events 613
force:closeQuickAction 613
force:createRecord 614
force:editRecord 615
force:navigateToList 617
force:navigateToObjectHome 618
force:navigateToRelatedList 618
force:navigateToSObject 616, 619–620
force:recordSave 621
force:recordSaveSuccess 621
force:refreshView 622
force:sendMessage 627
forceCommunity:analyticsInteraction 624
forceCommunity:routeChange 625
getName() 255
getParam() 255
getParams() 255
getPhase() 255
getSource() 255
handling 186
lighting:openFiles 625
lightning:sendChatterExtensionPayload 626
lntg:selectSObject 626
pause() 255
preventDefault() 255
propagation 168, 179
resume() 255
Salesforce 196
Salesforce app 613
Salesforce mobile and Lightning Experience demo 10
Salesforce mobile demo 13, 17
setParam() 255
setParams() 255

647

Index

Events (continued)
stopPropagation() 255
system 198
system events 635
ui:clearErrors 627
ui:collapse 628
ui:expand 628
ui:menuFocusChange 629
ui:menuSelect 629
ui:menuTriggerPress 630
ui:validationError 631
wave:discoverDashboard 631
wave:discoverResponse 632
wave:selectionChanged 633
wave:update 634

Events and actions 164
example 327
Expressions

bound expressions 44
conditional 43
data binding 44
dynamic output 43
format() 63
functions 58
operators 54
unbound expressions 44

F
Field-level security 306
force:canvasApp 401
force:closeQuickAction 613
force:createRecord 614
force:editRecord 615
force:hasRecordId 608
force:hasSObjectName 609
force:inputField 402
force:lightning:lint 216
force:navigateToList 617
force:navigateToObjectHome 618
force:navigateToRelatedList 618
force:navigateToSObject 616, 619–620
force:outputField 403
force:recordData 405
force:recordEdit 406
force:recordSave 621
force:recordSaveSuccess 621
force:recordView 408
force:refreshView 622
force:sendMessage 627

forceChatter:feed 408
forceChatter:fullFeed 410
forceChatter:publisher 411
forceCommunity:analyticsInteraction 624
forceCommunity:appLauncher 411
forceCommunity:navigationMenuBase 413
forceCommunity:notifications 415
forceCommunity:routeChange 625
forceCommunity:routeLink 416
forceCommunity:waveDashboard 417
format() 63

G
getNewRecord 318
globalID 48
guest access 160

H
Handling Input Field Errors 265
Helpers 248
HTML, supported tags

<a> 642
HTML, unescaping 31

I
Inheritance 353, 356
Input Field Validation 265
Inspector

Actions tab 367
Component Tree tab 361
drop the action 371
error response 370
Event Log tab 366
install 359
modify action response 369
override actions 368
Performance tab 363
Storage tab 372
Transactions tab 365
use 360

Interfaces
force interfaces 607
force:hasRecordId 608
force:hasSObjectName 609
lightning:actionOverride 610
lightning:appHomeTemplate 611
lightning:availableForChatterExtensionsComposer 611
lightning:availableForChatterExtensionsRenderer 612
lightning:homeTemplate 612

648

Index

Interfaces (continued)
lightning:recordHomeTemplate 612
marker 356

Introduction 1–2
isValid() 262

J
JavaScript

access control 264
API calls 276
attribute values 253
calling component methods 269–270, 272
component 254
dates 288
ES6 promises 274
events 255
get() and set() methods 253
global variable 250
libraries 252
promises 274
secure wrappers 206, 208
sharing code 250
sharing code in bundle 248
strict mode 202–203
window object 250

JavaScript API 208–209
JavaScript console 373
JavaScript cookbook 278

L
Label

setting via parent attribute 66
Label parameters 63
Labels

Apex 65
dynamically creating 63
JavaScript 63

Lifecycle 264
Lightning 2
Lightning App Builder

configuring custom components 124, 128, 140, 230
configuring design resources 126, 134
create dynamic picklists for components 134
creating a custom page template 135, 138
creating a width-aware component 139
CSS tips 230

Lightning CLI 216, 219, 226
Lightning components

action override 119–123

Lightning components (continued)
base 70
custom app integration 148
interfaces 122
Lightning Design System 79
Lightning Design System variants 81
Lightning Experience 109–110, 112, 114, 119–122
markup 122
overview 123
packaging 123
Salesforce 109, 112, 114, 119–122
Salesforce app 111
Styling base components 79
variants 81

Lightning Components for Visualforce 156, 160
Lightning components interfaces

force:hasRecordId 122
force:hasSObjectName 122
lightning:actionOverride 122

Lightning Container
javascript 333
messaging 334, 338, 342

Lightning Data Service
create record 318
delete record 321
handling record changes 323
load record 313
saveRecord 315

Lightning Experience
add Lightning components 110

Lightning Out
beta 161
Connected App 156
considerations 161
CORS 156
events 161
limitations 161
OAuth 156
requirements 156
SLDS 161
styling 161

lightning:accordion 418
lightning:accordionSection 419
lightning:actionOverride 610
lightning:appHomeTemplate 611
lightning:availableForChatterExtensionsComposer 611
lightning:availableForChatterExtensionsRenderer 612
lightning:avatar 421
lightning:badge 422

649

Index

lightning:breadcrumb 422
lightning:breadcrumbs 424
lightning:button 425
lightning:buttonGroup 426
lightning:buttonIcon 427
lightning:buttonIconStateful 429
lightning:buttonMenu 430
lightning:buttonStateful 433
lightning:card 435
lightning:checkboxGroup 436
lightning:clickToDial 438
lightning:combobox 439
lightning:container 441
lightning:datatable 443
lightning:dualListbox 449
lightning:dynamicIcon 452
lightning:fileCard 453
lightning:fileUpload 453
lightning:flexipageRegionInfo 139, 455
lightning:flow 455
lightning:formattedDateTime 457
lightning:formattedEmail 458
lightning:formattedLocation 459
lightning:formattedNumber 460
lightning:formattedPhone 461
lightning:formattedRichText 462
lightning:formattedText 464
lightning:formattedUrl 464
lightning:helptext 466
lightning:homeTemplate 612
lightning:icon 466
lightning:input 468
lightning:inputLocation 474
lightning:inputRichText 476
lightning:layout 478
lightning:layoutItem 480
lightning:menuItem 481
lightning:omniToolkitAPI 483
lightning:openFiles 625
lightning:outputField 485
lightning:path 486
lightning:picklistPath 487
lightning:pill 488
lightning:progressBar 490
lightning:progressIndicator 491
lightning:radioGroup 492
lightning:recordHomeTemplate 612
lightning:recordViewForm 495
lightning:relativeDateTime 494

lightning:select 496
lightning:sendChatterExtensionPayload 626
lightning:slider 500
lightning:spinner 502
lightning:tab 503
lightning:tabset 504
lightning:textarea 507
lightning:tile 509
lightning:tree 511
lightning:utilityBarAPI 514
lightning:verticalNavigation 516
lightning:verticalNavigationItem 519
lightning:verticalNavigationItemBadge 519
lightning:verticalNavigationItemIcon 520
lightning:verticalNavigationOverflow 521
lightning:verticalNavigationSection 521
lightning:workspaceAPI 522
lint 213–215, 218, 220–226
Linting 215
lntg:selectSObject 626
Localization 67
LockerService

API version 210
disable for component 209
effect 209
global references 206, 208
JavaScript API 209
secure wrappers 208
strict mode 203
unsupported browsers 211
where 209

Log messages 373
ltng:require 524

M
Markup 285
Messaging

notifications 600
overlays 600

minimum version 41
Modal 602

N
Namespace

creating 26
default 25
examples 26
explicit 25
implicit 25

650

Index

Namespace (continued)
organization 25
prefix 25

Node.js 155
Notices 600
Notifications 600

O
OAuth 159
Object-oriented development

inheritance 353
Online version 6
Open source 4
Overlay 602

P
Package 24–26
Packaging

action override 123
Performance warnings

<aura:if> 375
<aura:iteration> 376

Popover 602
Prerequisites 9
Promises 274
Proxy object 205

Q
Queueing

queueing server-side actions 297

R
Reference

Components 395
doc app 380
overview 379

Renderers 259
Rendering 640
Rendering lifecycle 194
Rerendering 264, 640
Rich Publisher Apps 148
rules 220–226

S
Salesforce app

add Lightning components 111
Salesforce DX 215, 218, 226
Salesforce Lightning Design System 227

Salesforce Lightning Inspector
Actions tab 367
Component Tree tab 361
drop the action 371
error response 370
Event Log tab 366
install 359
modify action response 369
override actions 368
Performance tab 363
Storage tab 372
Transactions tab 365
use 360

SaveRecordResult 331
Secure wrappers

JavaScript API 208
Security 202
Server-Side Controllers

action queueing 297
calling actions 295, 297
creating 292
errors 293
overview 291
results 292
returning data 292

sfdx 215–216, 218, 221–226
SharePoint 155
SLDS 227
Standard Actions

Lightning components 119–123
override 119–123
packaging 123

standard controller 312, 324–325, 327, 331, 406
States 297
Static resource 52, 250
Storable actions

enable 301
lifecycle 300

Storage service
adapters 302
Memory adapter 302
SmartStore 302
WebSQL 302

Strict mode 203
Styles 285
Styling

join 229
markup 229
readable 229

651

Index

supported objects 325

T
Tags

<a> 642
anchor 642
aura:expression 396
aura:html 396
aura:if 396
aura:iteration 397
aura:renderIf 398
aura:template 398
aura:text 399
aura:unescapedHtml 399
auraStorage:init 399
force:canvasApp 401
force:closeQuickAction 613
force:hasRecordId 608
force:hasSObjectName 609
force:inputField 402
force:outputField 403
force:recordData 405
force:recordEdit 406
force:recordView 408
forceChatter:feed 408
forceChatter:fullFeed 410
forceChatter:publisher 411
forceCommunity:appLauncher 411
forceCommunity:navigationMenuBase 413
forceCommunity:notifications 415
forceCommunity:routeLink 416
forceCommunity:waveDashboard 417
lightning:accordion 418
lightning:accordionSection 419
lightning:actionOverride 610
lightning:appHomeTemplate 611
lightning:avatar 421
lightning:badge 422
lightning:breadcrumb 422
lightning:breadcrumbs 424
lightning:button 425
lightning:buttonGroup 426
lightning:buttonIcon 427
lightning:buttonMenu 430
lightning:buttonStateful 433
lightning:card 435
lightning:container 441
lightning:fileCard 453
lightning:flexipageRegionInfo 455

Tags (continued)
lightning:flow 455
lightning:formattedDateTime 457
lightning:formattedNumber 460
lightning:homeTemplate 612
lightning:icon 466
lightning:input 468
lightning:inputRichText 476
lightning:layout 478
lightning:layoutItem 480
lightning:menuItem 481
lightning:notificationsLibrary 600
lightning:omniToolkitAPI 483
lightning:overlayLibrary 602
lightning:picklistPath 487
lightning:pill 488
lightning:progressIndicator 491
lightning:recordHomeTemplate 612
lightning:relativeDateTime 494
lightning:select 496
lightning:spinner 502
lightning:tab 503
lightning:textarea 507
lightning:tile 509
lightning:utilityBarAPI 514
lightning:verticalNavigation 516
lightning:verticalNavigationOverflow 521
lightning:verticalNavigationSection 521
lightning:workspaceAPI 522
ltng:require 524
ui:actionMenuItem 525
ui:button 526
ui:checkboxMenuItem 528
ui:inputCheckbox 530
ui:inputCurrency 532
ui:inputDate 534
ui:inputDateTime 537
ui:inputDefaultError 540
ui:inputEmail 542
ui:inputNumber 545
ui:inputPhone 547
ui:inputRadio 550
ui:inputRichText 552
ui:inputSecret 554
ui:inputSelect 556
ui:inputSelectOption 560
ui:inputText 561
ui:inputTextArea 563
ui:inputURL 566

652

Index

Tags (continued)
ui:menu 568
ui:menuItem 572
ui:menuItemSeparator 573
ui:menuList 574
ui:menuTrigger 575
ui:menuTriggerLink 576
ui:message 577
ui:outputCheckbox 579
ui:outputCurrency 580
ui:outputDate 582
ui:outputDateTime 583
ui:outputEmail 585
ui:outputNumber 586
ui:outputPhone 588
ui:outputRichText 589
ui:outputText 591
ui:outputTextArea 592
ui:outputURL 593
ui:radioMenuItem 595
ui:scrollerWrapper 596
ui:spinner 597
wave:discoverDashboard 631
wave:discoverResponse 632
wave:selectionChanged 633
wave:update 634
wave:waveDashboard 598

Ternary operator 43
Themes

vendor prefixes 231
Toasts 600
Tokens

Communities 243
design 231–233, 235–236, 243
force:base 236
overriding 236

troubleshooting 336, 340, 343

U
ui components

aura:component inheritance 94
ui components overview 97
ui events 96
ui:actionMenuItem 525
ui:button 526
ui:checkboxMenuItem 528
ui:clearErrors 627
ui:collapse 628
ui:expand 628

ui:inputCheckbox 530
ui:inputCurrency 532
ui:inputDate 534
ui:inputDateTime 537
ui:inputDefaultError 540
ui:inputEmail 542
ui:inputNumber 545
ui:inputPhone 547
ui:inputRadio 550
ui:inputRichText 552
ui:inputSecret 554
ui:inputSelect 556
ui:inputSelectOption 560
ui:inputText 561
ui:inputTextArea 563
ui:inputURL 566
ui:menu 568
ui:menuFocusChange 629
ui:menuItem 572
ui:menuItemSeparator 573
ui:menuList 574
ui:menuSelect 629
ui:menuTrigger 575
ui:menuTriggerLink 576
ui:menuTriggerPress 630
ui:message 577
ui:outputCheckbox 579
ui:outputCurrency 580
ui:outputDate 582
ui:outputDateTime 583
ui:outputEmail 585
ui:outputNumber 586
ui:outputPhone 588
ui:outputRichText 589
ui:outputText 591
ui:outputTextArea 592
ui:outputURL 593
ui:radioMenuItem 595
ui:scrollerWrapper 596
ui:spinner 597
ui:validationError 631

V
validation 213–215, 218, 220–226
Value providers

$Browser 50
$Label 62
$Resource 52

version dependency 41

653

Index

versioning 39, 41
Visualforce 153

W
wave:discoverDashboard 631

wave:discoverResponse 632
wave:selectionChanged 633
wave:update 634
wave:waveDashboard 598
Width-aware Lightning component 139
window object 250

654

Index

	What is the Lightning Component Framework?
	What is Salesforce Lightning?
	Why Use the Lightning Component Framework?
	Components
	Events
	Open Source Aura Framework
	Browser Support Considerations for Lightning Components
	Using the Developer Console
	Online Content

	Quick Start
	Before You Begin
	Trailhead: Explore Lightning Components Resources
	Create a Component for Lightning Experience and the Salesforce Mobile App
	Load the Contacts
	Fire the Events

	Creating Components
	Create Lightning Components in the Developer Console
	Lightning Bundle Configurations Available in the Developer Console

	Component Markup
	Component Namespace
	Using the Default Namespace in Organizations with No Namespace Set
	Using Your Organization’s Namespace
	Using a Namespace in or from a Managed Package
	Creating a Namespace in Your Organization
	Namespace Usage Examples and Reference

	Component Bundles
	Component IDs
	HTML in Components
	CSS in Components
	Component Attributes
	Component Composition
	Component Body
	Component Facets
	Best Practices for Conditional Markup
	Component Versioning
	Components with Minimum API Version Requirements
	Using Expressions
	Dynamic Output in Expressions
	Conditional Expressions
	Data Binding Between Components
	Value Providers
	$Browser
	$Locale
	$Resource

	Expression Evaluation
	Expression Operators Reference
	Expression Functions Reference

	Using Labels
	Using Custom Labels
	Input Component Labels
	Dynamically Populating Label Parameters
	Getting Labels in JavaScript
	Getting Labels in Apex
	Setting Label Values via a Parent Attribute

	Localization
	Providing Component Documentation
	Working with Base Lightning Components
	Base Lightning Components Considerations
	Event Handling in Base Lightning Components
	Lightning Design System Considerations
	Working with Lightning Design System Variants

	Working with UI Components
	Event Handling in UI Components
	Using the UI Components

	Working with the Flow Lightning Component
	Set Flow Variable Values from a Lightning Component
	Get Flow Variable Values to a Lightning Component
	Control a Flow’s Finish Behavior in a Lightning Component
	Resume a Flow Interview from a Lightning Component

	Supporting Accessibility
	Button Labels
	Audio Messages
	Forms, Fields, and Labels
	Events
	Menus

	Using Components
	Use Lightning Components in Lightning Experience and the Salesforce Mobile App
	Configure Components for Custom Tabs
	Add Lightning Components as Custom Tabs in Lightning Experience
	Add Lightning Components as Custom Tabs in the Salesforce App
	Lightning Component Actions
	Configure Components for Custom Actions
	Configure Components for Record-Specific Actions

	Override Standard Actions with Lightning Components
	Standard Actions and Overrides Basics
	Override a Standard Action with a Lightning Component
	Creating a Lightning Component for Use as an Action Override
	Packaging Action Overrides

	Get Your Lightning Components Ready to Use on Lightning Pages
	Configure Components for Lightning Pages and the Lightning App Builder
	Lightning Component Bundle Design Resources
	Configure Components for Lightning Experience Record Pages
	Create Components for Lightning for Outlook and Lightning for Gmail
	Sample Custom Components for Lightning for Outlook and Lightning for Gmail

	Create Dynamic Picklists for Your Custom Components
	Create a Custom Lightning Page Template Component
	Lightning Page Template Component Best Practices
	Make Your Lightning Page Components Width-Aware with lightning:flexipageRegionInfo
	Tips and Considerations for Configuring Components for Lightning Pages and the Lightning App Builder

	Use Lightning Components in Community Builder
	Configure Components for Communities
	Create Custom Theme Layout Components for Communities
	Create Custom Search and Profile Menu Components for Communities
	Create Custom Content Layout Components for Communities

	Add Components to Apps
	Integrate Your Custom Apps into the Chatter Publisher
	Use Lightning Components in Visualforce Pages
	Add Lightning Components to Any App with Lightning Out (Beta)
	Lightning Out Requirements
	Lightning Out Dependencies
	Lightning Out Markup
	Authentication from Lightning Out
	Share Lightning Out Apps with Non-Authenticated Users
	Lightning Out Considerations and Limitations

	Communicating with Events
	Actions and Events
	Handling Events with Client-Side Controllers
	Component Events
	Component Event Propagation
	Create Custom Component Events
	Fire Component Events
	Handling Component Events
	Component Handling Its Own Event
	Handle Component Event of Instantiated Component
	Handling Bubbled or Captured Component Events
	Handling Component Events Dynamically

	Component Event Example

	Application Events
	Application Event Propagation
	Create Custom Application Events
	Fire Application Events
	Handling Application Events
	Handling Bubbled or Captured Application Events

	Application Event Example

	Event Handling Lifecycle
	Advanced Events Example
	Firing Lightning Events from Non-Lightning Code
	Events Best Practices
	Events Anti-Patterns

	Events Fired During the Rendering Lifecycle
	Events Handled in the Salesforce mobile app and Lightning Experience
	System Events

	Creating Apps
	App Overview
	Designing App UI
	Creating App Templates
	Developing Secure Code
	What is LockerService?
	JavaScript ES5 Strict Mode Enforcement
	DOM Access Containment
	How LockerService Uses the Proxy Object

	Secure Wrappers for Global References
	JavaScript API for Secure Wrappers

	Access to Supported JavaScript API Framework Methods Only
	What Does LockerService Affect?
	Disabling LockerService for a Component
	Don’t Mix Component API Versions
	LockerService Disabled for Unsupported Browsers

	Content Security Policy Overview
	Critical Update for Stricter CSP Restrictions

	Validations for Lightning Component Code
	Validation When You Save Code Changes
	Validation During Development Using the Salesforce CLI
	Use force:lightning:lint
	force:lightning:lint Options
	Custom “House Style” Rules

	Review and Resolve Validation Errors and Warnings
	Lightning Component Validation Rules
	Validation Rules Used at Save Time
	Validate JavaScript Intrinsic APIs (ecma-intrinsics)
	Validate Aura API (aura-api)
	Validate Lightning Component Public API (secure-component)
	Validate Secure Document Public API (secure-document)
	Validate Secure Window Public API (secure-window)
	Disallow Use of caller and callee (no-caller)
	Disallow Use of eval() (no-eval)
	Disallow Implied Use of eval() (no-implied-eval)
	Disallow Script URLs (no-script-url)
	Disallow Extending Native Objects (no-extend-native)
	Disallow Use of Function Constructor (no-new-func)
	Disallow Calling Global Object Properties as Functions (no-obj-calls)
	Disallow Use of __iterator__ Property (no-iterator)
	Disallow Use of __proto__ (no-proto)
	Disallow with Statements (no-with)

	Salesforce Lightning CLI (Deprecated)

	Styling Apps
	Using the Salesforce Lightning Design System in Apps
	Using External CSS
	More Readable Styling Markup with the join Expression
	Tips for CSS in Components
	Vendor Prefixes
	Styling with Design Tokens
	Tokens Bundles
	Create a Tokens Bundle
	Defining and Using Tokens
	Using Expressions in Tokens
	Extending Tokens Bundles
	Using Standard Design Tokens
	Overriding Standard Tokens (Developer Preview)
	Standard Design Tokens—force:base
	Standard Design Tokens for Communities

	Using JavaScript
	Invoking Actions on Component Initialization
	Sharing JavaScript Code in a Component Bundle
	Sharing JavaScript Code Across Components
	Using External JavaScript Libraries
	Working with Attribute Values in JavaScript
	Working with a Component Body in JavaScript
	Working with Events in JavaScript
	Modifying the DOM
	Modifying DOM Elements Managed by the Lightning Component Framework
	Handle the render Event
	Create a Custom Renderer

	Modifying DOM Elements Managed by External Libraries

	Checking Component Validity
	Modifying Components Outside the Framework Lifecycle
	Validating Fields
	Throwing and Handling Errors
	Calling Component Methods
	Return Result for Synchronous Code
	Return Result for Asynchronous Code

	Using JavaScript Promises
	Making API Calls from Components
	Create CSP Trusted Sites to Access Third-Party APIs

	JavaScript Cookbook
	Dynamically Creating Components
	Detecting Data Changes with Change Handlers
	Finding Components by ID
	Dynamically Adding Event Handlers To a Component
	Dynamically Showing or Hiding Markup
	Adding and Removing Styles
	Which Button Was Pressed?
	Formatting Dates in JavaScript

	Using Apex
	Creating Server-Side Logic with Controllers
	Apex Server-Side Controller Overview
	Creating an Apex Server-Side Controller
	Returning Data from an Apex Server-Side Controller
	Returning Errors from an Apex Server-Side Controller
	AuraEnabled Annotation
	Calling a Server-Side Action
	Action States

	Queueing of Server-Side Actions
	Foreground and Background Actions
	Storable Actions
	Lifecycle of Storable Actions
	Enable Storable Actions in an Application
	Storage Service Adapters

	Abortable Actions

	Working with Salesforce Records
	CRUD and Field-Level Security (FLS)
	Saving Records
	Deleting Records

	Testing Your Apex Code
	Making API Calls from Apex
	Creating Components in Apex

	Lightning Data Service
	Loading a Record
	Saving a Record
	Creating a Record
	Deleting a Record
	Record Changes
	Errors
	Considerations
	Lightning Data Service Example
	SaveRecordResult

	Lightning Container
	Using a Third-Party Framework
	Sending Messages from the Lightning Container Component
	Sending Messages to the Lightning Container Component
	Handling Errors in Your Container
	Using Apex Services from Your Container

	Lightning Container Component Limits
	The Lightning Realty App
	Install the Example Lightning Realty App

	lightning-container NPM Module Reference
	addMessageErrorHandler()
	addMessageHandler()
	callApex()
	getRESTAPISessionKey()
	removeMessageErrorHandler()
	removeMessageHandler()
	sendMessage()

	Controlling Access
	Application Access Control
	Interface Access Control
	Component Access Control
	Attribute Access Control
	Event Access Control

	Using Object-Oriented Development
	What is Inherited?
	Inherited Component Attributes
	Abstract Components
	Interfaces
	Marker Interfaces

	Inheritance Rules

	Using the AppCache
	Distributing Applications and Components

	Debugging
	Enable Debug Mode for Lightning Components
	Salesforce Lightning Inspector Chrome Extension
	Install Salesforce Lightning Inspector
	Salesforce Lightning Inspector
	Component Tree Tab
	Performance Tab
	Transactions Tab
	Event Log Tab
	Actions Tab
	Manually Override Server Responses
	Modify an Action Response
	Set an Error Response
	Drop an Action Response

	Storage Tab

	Log Messages

	Fixing Performance Warnings
	<aura:if>—Clean Unrendered Body
	<aura:iteration>—Multiple Items Set

	Reference
	Reference Doc App
	Supported aura:attribute Types
	Basic Types
	Function Type
	Object Types
	Standard and Custom Object Types
	Collection Types
	Custom Apex Class Types
	Framework-Specific Types
	Using the Aura.Action Attribute Type

	aura:application
	aura:component
	aura:dependency
	aura:event
	aura:interface
	aura:method
	aura:set
	Setting Attributes Inherited from a Super Component
	Setting Attributes on a Component Reference
	Setting Attributes Inherited from an Interface

	Component Reference
	aura:expression
	aura:html
	aura:if
	aura:iteration
	aura:renderIf
	aura:template
	aura:text
	aura:unescapedHtml
	auraStorage:init
	force:canvasApp
	force:inputField
	force:outputField
	force:recordData
	force:recordEdit
	force:recordPreview
	force:recordView
	forceChatter:feed
	forceChatter:fullFeed
	forceChatter:publisher
	forceCommunity:appLauncher
	forceCommunity:navigationMenuBase
	forceCommunity:notifications
	forceCommunity:routeLink
	forceCommunity:waveDashboard
	lightning:accordion
	lightning:accordionSection
	lightning:avatar
	lightning:badge
	lightning:breadcrumb
	lightning:breadcrumbs
	lightning:button
	lightning:buttonGroup
	lightning:buttonIcon
	lightning:buttonIconStateful
	lightning:buttonMenu
	lightning:buttonStateful
	lightning:card
	lightning:checkboxGroup
	lightning:clickToDial
	lightning:combobox
	lightning:container
	lightning:datatable
	lightning:dualListbox
	lightning:dynamicIcon
	lightning:fileCard
	lightning:fileUpload (Beta)
	lightning:flexipageRegionInfo
	lightning:flow
	lightning:formattedDateTime (Beta)
	lightning:formattedEmail
	lightning:formattedLocation
	lightning:formattedNumber (Beta)
	lightning:formattedPhone
	lightning:formattedRichText
	lightning:formattedText
	lightning:formattedUrl
	lightning:helptext
	lightning:icon
	lightning:input (Beta)
	lightning:inputLocation
	lightning:inputRichText (Beta)
	lightning:layout
	lightning:layoutItem
	lightning:menuItem
	lightning:omniToolkitAPI (Beta)
	lightning:outputField
	lightning:path (Beta)
	lightning:picklistPath (Beta)
	lightning:pill
	lightning:progressBar
	lightning:progressIndicator
	lightning:radioGroup
	lightning:relativeDateTime
	lightning:recordViewForm
	lightning:select
	lightning:slider
	lightning:spinner
	lightning:tab (Beta)
	lightning:tabset (Beta)
	lightning:textarea
	lightning:tile
	lightning:tree
	lightning:utilityBarAPI
	lightning:verticalNavigation
	lightning:verticalNavigationItem
	lightning:verticalNavigationItemBadge
	lightning:verticalNavigationItemIcon
	lightning:verticalNavigationOverflow
	lightning:verticalNavigationSection
	lightning:workspaceAPI
	ltng:require
	ui:actionMenuItem
	ui:button
	ui:checkboxMenuItem
	ui:inputCheckbox
	ui:inputCurrency
	ui:inputDate
	ui:inputDateTime
	ui:inputDefaultError
	ui:inputEmail
	ui:inputNumber
	ui:inputPhone
	ui:inputRadio
	ui:inputRichText
	ui:inputSecret
	ui:inputSelect
	ui:inputSelectOption
	ui:inputText
	ui:inputTextArea
	ui:inputURL
	ui:menu
	ui:menuItem
	ui:menuItemSeparator
	ui:menuList
	ui:menuTrigger
	ui:menuTriggerLink
	ui:message
	ui:outputCheckbox
	ui:outputCurrency
	ui:outputDate
	ui:outputDateTime
	ui:outputEmail
	ui:outputNumber
	ui:outputPhone
	ui:outputRichText
	ui:outputText
	ui:outputTextArea
	ui:outputURL
	ui:radioMenuItem
	ui:scrollerWrapper
	ui:spinner
	wave:waveDashboard

	Messaging Component Reference
	lightning:notificationsLibrary
	lightning:overlayLibrary

	Interface Reference
	force:hasRecordId
	force:hasSObjectName
	lightning:actionOverride
	lightning:appHomeTemplate
	lightning:availableForChatterExtensionComposer
	lightning:availableForChatterExtensionRenderer
	lightning:homeTemplate
	lightning:recordHomeTemplate

	Event Reference
	force:closeQuickAction
	force:createRecord
	force:editRecord
	force:navigateToComponent (Beta)
	force:navigateToList
	force:navigateToObjectHome
	force:navigateToRelatedList
	force:navigateToSObject
	force:navigateToURL
	force:recordSave
	force:recordSaveSuccess
	force:refreshView
	force:showToast
	forceCommunity:analyticsInteraction
	forceCommunity:routeChange
	lightning:openFiles
	lightning:sendChatterExtensionPayload
	ltng:selectSObject
	ltng:sendMessage
	ui:clearErrors
	ui:collapse
	ui:expand
	ui:menuFocusChange
	ui:menuSelect
	ui:menuTriggerPress
	ui:validationError
	wave:discoverDashboard
	wave:discoverResponse
	wave:selectionChanged
	wave:update

	System Event Reference
	aura:doneRendering
	aura:doneWaiting
	aura:locationChange
	aura:systemError
	aura:valueChange
	aura:valueDestroy
	aura:valueInit
	aura:valueRender
	aura:waiting

	Supported HTML Tags
	Anchor Tag: <a>

	Index

