
Lightning Communities
Developer Guide

Version 41.0, Winter ’18

 @salesforcedocs
Last updated: December 8, 2017

https://twitter.com/salesforcedocs

© Copyright 2000–2017 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Get Up to Speed with Lightning Communities . 1

Before You Begin . 2
What Is Salesforce Lightning? . 3
What Is the Lightning Component Framework? . 3
Which Lightning Template Do I Use? . 5

Chapter 2: Develop Lightning Communities: The Basics . 6

Using the Developer Console . 7
Configure Drag-and-Drop Components for Community Builder . 7
Exposing Component Attributes in Community Builder . 10
Tips and Considerations for Configuring Components for Community Builder 11
Supported Lightning Components, Interfaces, and Events for Communities 12

Chapter 3: Customize the Look and Feel of a Lightning Template 14

Update a Template with the Branding Panel . 15
Override Template Elements with Custom CSS . 15

Migrate CSS Overrides . 18
Use Custom Fonts in Your Community . 21
Customize the Theme Layout of Your Template . 23

How Do Custom Theme Layouts Work? . 23
Configure a Custom Theme Layout Component . 25

Create Custom Content Layout Components for Communities . 28
Configure Swappable Search and Profile Menu Components . 29
Standard Design Tokens for Communities . 31

Chapter 4: Example: Build a Condensed Theme Layout Component 34

Step 1: Create the Basic Theme Layout Structure . 35
Step 2: Define a Tokens Bundle . 37
Step 3: Add a Logo Component . 37
Step 4: Build a Vertical Navigation Menu . 38
Step 5: Build a Custom Search Component . 39
Step 6: Add Configuration Properties to the Theme Layout . 43

Chapter 5: Develop Secure Code: LockerService and Stricter CSP 45

LockerService in Communities . 46
Critical Update for Stricter CSP Restrictions in Communities . 46

Chapter 6: Analyze and Improve Community Performance . 49

Chapter 7: Connect Your Community to Your Content Management System 54

Before Using CMS Connect . 55
Create a CMS Connection . 56

Build a CMS Connect Root Path and Component Paths . 58
Set Up Language Mapping in Your CMS Connection . 58
Set Up JSON in Your CMS Connection (Beta) . 59

Edit a CMS Connection . 62
Manage CMS Connections . 62
Add CMS Content to Your Community Pages . 63

Add CMS Header and Footer Components to Your Community 63
Add CMS Connect (HTML) Components to Your Community Pages 64
Add CMS Connect (JSON) Components to Your Community Pages (Beta) 64

Personalize Your CMS Content . 67
CMS Connector Page Code . 70

CMS Connect Recommendations for Optimal Usage . 75
CMS Connect Examples . 76

Example: Connect JSON Content to Your Community . 76

Chapter 8: Community Migration, Packaging, and Distribution 79

Migrate Your Community with Change Sets . 80
Considerations for Migrating Communities with Change Sets . 81

Lightning Bolt Solutions: Build Once, Then Distribute and Reuse . 82
Export and Packaging Considerations for Lightning Bolt Solutions 84
Requirements for Distributing Lightning Bolt Solutions . 86
Export a Customized Lightning Bolt Solution . 87
Export a Customized Lightning Bolt Page . 89
Package and Distribute Lightning Bolt Solutions or Pages . 90

INDEX . 91

Contents

CHAPTER 1 Get Up to Speed with Lightning Communities

Lightning community templates let you create branded spaces where your employees, customers, and
partners can connect. Built on the Lightning Component framework, Lightning templates include many
ready-to-use features and Lightning components. But the real power of the Lightning Component
framework is that you can develop custom Lightning components and features to meet your unique
business needs and completely transform the look and feel of your community.

In this chapter ...

• Before You Begin

• What Is Salesforce
Lightning?

Whether you’re a developer, partner, or ISV, this guide helps you create custom Lightning communities,
components, theme layouts, and Bolt solutions. You’ll also learn how to package solutions and
components and distribute them on AppExchange.

• What Is the Lightning
Component
Framework?

• Which Lightning
Template Do I Use?

1

Before You Begin

Before you begin developing custom Lightning communities, ensure that you’re familiar with developing in Lightning.

You can create Lightning communities and Lightning components using the UI in Enterprise, Performance, Unlimited, and Developer
Editions or a sandbox.

To use this guide successfully, it helps to have:

• An org with Communities enabled

• A new or existing community that’s based on the Customer Service (Napili) template or a Lightning Bolt solution

• Experience using Community Builder and the Customer Service (Napili) template

• Experience developing Lightning components and using CSS

Resources for Lightning Development
Unfamiliar with Lightning development? Then check out these resources.

Lightning Component Developer Guide
Think of the Lightning Component Developer Guide as your best friend. It’s the go-to guide for all things Lightning, and the foundational
concepts and approaches it documents form the bedrock of this guide. Think of the Lightning Communities Developer Guide as Part
2 in the Lightning development series; it’s no use to you until you’ve familiarized yourself with Part 1.

Lightning Components Basics (Module)
Use Lightning components to build modern web apps with reusable UI components. Learn core Lightning components concepts
and build a simple expense tracker app that can be run in a standalone app, the Salesforce app, or Lightning Experience.

Lightning Design System (Module)
Build pixel-perfect enterprise apps using our design guidelines and CSS framework.

Quick Start: Lightning Components (Project)
Create your first component that renders a list of contacts from your org.

Build an Account Geolocation App (Project)
Build an app that maps your accounts using Lightning components.

Build a Lightning App with the Lightning Design System (Project)
Design a Lightning component that displays an account list.

Lightning Components Performance Best Practices (Blog Post)
Learn about Lightning characteristics that impact component performance, and get best practices to optimize your components.

Resources for Communities
Unfamiliar with Communities? Then check out these resources.

Set Up and Manage Salesforce Communities (Guide)
Customize and create communities to meet your business needs.

Using Templates to Build Communities (Guide)
Create branded communities using Lightning templates to interact directly with your customers and partners online.

Expand Your Reach with Communities (Trail)
Learn the tools you need to get started with Salesforce Community Cloud.

2

Before You BeginGet Up to Speed with Lightning Communities

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/intro_framework.htm
https://trailhead.salesforce.com/modules/lex_dev_lc_basics
https://trailhead.salesforce.com/trails/lex_dev/modules/lightning_design_system
https://trailhead.salesforce.com/projects/quickstart-lightning-components
https://trailhead.salesforce.com/projects/account-geolocation-app
https://trailhead.salesforce.com/projects/slds-lightning-components-workshop
https://developer.salesforce.com/blogs/developer-relations/2017/04/lightning-components-performance-best-practices.html
https://resources.docs.salesforce.com/208/latest/en-us/sfdc/pdf/communities.pdf
https://developer.salesforce.com/docs/atlas.en-us.210.0.community_templates.meta/community_templates/networks_planning_ahead.htm
https://trailhead.salesforce.com/trails/communities

CMS Connect Developer Guide (Beta)
Use CMS Connect to embed content from a third-party Content Management System, such as Adobe Experience Manager (AEM),
in your Salesforce community. Connect CMS components, HTML, CSS, and JavaScript to customize your community and keep its
branding consistent with your website.

Set Up SEO for Your Community (Help)
Have search engines, such as Google™ or Bing®, index your community so that customers, partners, and guest users can easily discover
community pages via online searches.

Salesforce Communities Resources (Help)
Stay up to date on other Communities resources.

What Is Salesforce Lightning?

Salesforce Lightning makes it easier to build responsive applications for any device, and encompasses the Lightning Component
framework and helpful tools for developers.

Lightning includes these technologies.

• Lightning components accelerate development and app performance. The client-server framework is ideal for use with Communities,
in addition to the Salesforce mobile app and Salesforce Lightning Experience.

• Lightning App Builder empowers you to build Lightning pages visually, without code, using off-the-shelf and custom-built Lightning
components. You can make your Lightning components available in the Lightning App Builder so administrators can build custom
user interfaces without code.

• Community Builder is used to design and build communities using Lightning templates and components. Just like the Lightning
App Builder, you can use standard or custom components so that administrators can create community pages with point-and-click
customizations.

Some Salesforce products built with underlying Salesforce Lightning technology include:

• The Customer Service (Napili) and Partner Central community templates

• Lightning Bolt solutions because they’re based on the Customer Service (Napili) template

• Lightning Experience

• Salesforce app

Note: You don’t need to enable Lightning Experience to use Lightning community templates or develop Lightning components.
Lightning communities use the same underlying technology as Lightning Experience, but they’re independent of each other.

SEE ALSO:

Salesforce Help: How Communities Use Lightning

Lightning Component Developer Guide: Browser Support Considerations for Lightning Components

What Is the Lightning Component Framework?

The Lightning Component framework is a UI framework for developing dynamic web apps for mobile and desktop devices. You can
build single-page applications engineered for growth.

The framework supports partitioned, multi-tier component development that bridges the client and server. It uses JavaScript on the
client side and Apex on the server side.

3

What Is Salesforce Lightning?Get Up to Speed with Lightning Communities

https://org62.my.salesforce.com/sfc/p/#000000000062/a/0M000000QUzA/kBS1waTYKcHtaAAxzkDna8aNlQd9GH8bcbGF.Nst6l0
https://help.salesforce.com/articleView?id=networks_seo.htm&language=en_US
https://help.salesforce.com/articleView?id=networks_resources.htm&language=en_US
https://help.salesforce.com/articleView?id=networks_lightning_in_communities.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/intro_browsers.htm

The benefits include an out-of-the-box set of components and interfaces, event-driven architecture, and a framework optimized for
performance.

Components
Components are the self-contained and reusable units of an app, which represent a reusable section of the UI. They can range in
granularity from a single line of text to an entire app.

The framework includes a set of prebuilt components. For example, components that come with the Lightning Design System styling
are available in the lightning namespace and are known as the base Lightning components. You can assemble and configure the
components to form new components in an app. Components are rendered to produce HTML DOM elements within the browser.

A component can contain other components, along with HTML, CSS, JavaScript, Apex controllers, or any other web-enabled code, which
enables you to build apps with sophisticated UIs.

The details of a component’s implementation are encapsulated. Encapsulation allows the consumer of a component to focus on building
an app, while the component author can continue to innovate and make changes without breaking consumers’ apps. You configure
components by setting the named attributes that they expose in their definition. Components interact with their environment by
listening to or publishing events.

Events
Many languages and frameworks use event-driven programming, such as JavaScript and Java Swing. Handlers that you write respond
to interface events as they occur.

A component registers that it might fire an event in its markup. Events are fired from JavaScript controller actions that are typically
triggered by a user interacting with the user interface.

The framework has two types of events.

• Component events are handled by the component itself or a component that instantiates or contains the component.

• Application events are handled by all components that are listening to the event. These events are essentially a traditional
publish-subscribe model.

Interfaces
Object-oriented languages, such as Java, support the concept of an interface that defines a set of method signatures. A class that
implements the interface provides the method implementations. An interface in Java can’t be instantiated directly, but a class that
implements the interface can. Similarly, the Lightning Component framework supports the concept of interfaces that define a component’s
shape by defining its attributes.

Open Source Aura Framework
The Lightning Component framework is built on the open source Aura framework. The Aura framework enables you to build apps
independent of your data in Salesforce.

4

What Is the Lightning Component Framework?Get Up to Speed with Lightning Communities

The Aura framework is available at https://github.com/forcedotcom/aura. The open source Aura framework has features
and components that aren’t yet available in the Lightning Component framework. We’re working to surface more of these features and
components for Salesforce developers.

SEE ALSO:

Supported Lightning Components, Interfaces, and Events for Communities

Lightning Component Developer Guide: What is the Lightning Component Framework?

Lightning Component Developer Guide: Why Use the Lightning Component Framework?

Which Lightning Template Do I Use?

All Lightning templates for communities support custom Lightning components, but to completely reconfigure your community, we
recommend using the Customer Service (Napili) template.

Customer Service (Napili)
The Customer Service (Napili) template is the most flexible and full-featured template. Users can post questions to the community,
search for and view articles, collaborate, and contact support agents by creating cases. This template is also the only one that supports
the creation of Lightning Bolt solutions and custom theme layout components, which let you completely transform the look and
feel of your community. Because all Lightning Bolt solutions are based on the Customer Service (Napili) template, the customizations
described in this guide also apply to Bolt solutions.

Partner Central
The Partner Central template is a responsive template designed for channel or third-party sales. You can recruit, build, and grow
your partner network to drive channel sales and marketing together in a branded online space. You can configure lead distribution,
deal registration, and marketing campaigns, or share training materials and sales collateral in a central space, and use reports to track
your pipeline. This template doesn’t support custom theme layout components or the creation of Lightning Bolt solutions.

Koa and Kokua
The Koa and Kokua templates are starting a phased retirement so from Summer ’17, you can no longer use these templates to create
communities. Salesforce still supports existing communities that were built using Koa and Kokua, but we recommend that you work
with Salesforce Support to migrate your existing Koa and Kokua communities.

SEE ALSO:

Salesforce Help: Which Community Template Should I Use?

5

Which Lightning Template Do I Use?Get Up to Speed with Lightning Communities

https://github.com/forcedotcom/aura
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/intro_framework.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/intro_benefits.htm
https://help.salesforce.com/articleView?id=siteforce_commtemp_intro.htm&language=en_US

CHAPTER 2 Develop Lightning Communities: The Basics

Learn about the Developer Console development tool, how to create a basic drag-and-drop Lightning
component, and tips to consider along the way.

In this chapter ...

• Using the Developer
Console

• Configure
Drag-and-Drop
Components for
Community Builder

• Exposing Component
Attributes in
Community Builder

• Tips and
Considerations for
Configuring
Components for
Community Builder

• Supported Lightning
Components,
Interfaces, and
Events for
Communities

6

Using the Developer Console

The Developer Console provides tools for developing your components and applications.

The Developer Console enables you to perform these functions.

• Use the menu bar (1) to create or open these Lightning resources.

– Application

– Component

– Interface

– Event

– Tokens

• Use the workspace (2) to work on your Lightning resources.

• Use the sidebar (3) to create or open client-side resources that are part of a specific component bundle.

– Controller

– Helper

– Style

– Documentation

– Renderer

– Design

– SVG

For more information on the Developer Console, see The Developer Console User Interface.

SEE ALSO:

Salesforce Help: Open the Developer Console

Lightning Component Developer Guide: Create Lightning Components in the Developer Console

Lightning Component Developer Guide: Component Bundles

Configure Drag-and-Drop Components for Community Builder

Before you can use a custom Lightning component in Community Builder, there a few configuration steps to take.

7

Using the Developer ConsoleDevelop Lightning Communities: The Basics

https://help.salesforce.com/apex/HTViewHelpDoc?id=code_dev_console_navigating.htm&language=en_US#code_dev_console_navigating
https://help.salesforce.com/HTViewHelpDoc?id=code_dev_console_opening.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/components_create_devconsole.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/components_bundle.htm

1. Add an Interface to Your Component
To appear as a drag-and-drop component in Community Builder, a component must implement the
forceCommunity:availableForAllPageTypes interface.

After you create the Lightning component, it appears in the Components panel of all Lightning communities in your org.

Here’s the sample code for a simple “Hello World” component. A component must be named componentName.cmp.

Note: To make a resource, such as a component, usable outside of your own org, mark it with access="global". For
example, use access="global" if you want a component to be usable in an installed package or by a Community Builder
user in another org.

<aura:component implements="forceCommunity:availableForAllPageTypes" access="global">
<aura:attribute name="greeting" type="String" default="Hello" access="global" />
<aura:attribute name="subject" type="String" default="World" access="global" />

<div>{!v.greeting}, {!v.subject}!</div>
</aura:component>

Warning: When you add custom components to your community, they can bypass the object- and field-level security (FLS) you
set for the guest user profile. Lightning components don’t automatically enforce CRUD and FLS when referencing objects or
retrieving the objects from an Apex controller. This means that the framework continues to display records and fields for which
users don’t have CRUD permissions and FLS visibility. You must manually enforce CRUD and FLS in your Apex controllers.

2. Add a Design Resource to Your Component Bundle
A design resource controls which component attributes are exposed in Community Builder. The design resource lives in the same folder
as your .cmp resource, and describes the design-time behavior of the Lightning component—information that visual tools need to
display the component in a page or app.

For example, to set a default value for an attribute, or make a Lightning component attribute available for administrators to edit in
Community Builder, your component bundle needs a design resource.

Here’s the design resource that goes in the bundle with the “Hello World” component. A design resource must be named
componentName.design.

<design:component label="Hello World">
<design:attribute name="greeting" label="Greeting" />

8

Configure Drag-and-Drop Components for Community
Builder

Develop Lightning Communities: The Basics

https://developer.salesforce.com/page/Enforcing_CRUD_and_FLS

<design:attribute name="subject" label="Subject" description="Name of the person you
want to greet" />
</design:component>

Optional. Add an SVG Resource to Your Component Bundle
To define a custom icon for your component, add an SVG resource to the component bundle. The icon appears next to the component
in the Community Builder Components panel.

If you don’t include an SVG resource, the system uses a default icon ().

Here’s a simple red circle SVG resource to go with the “Hello World” component. An SVG resource must be named
componentName.svg.

<?xml version="1.0"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns="http://www.w3.org/2000/svg"
width="400" height="400">

<circle cx="100" cy="100" r="50" stroke="black"
stroke-width="5" fill="red" />

</svg>

Optional. Add a CSS Resource to Your Component Bundle
To style your custom component, add a CSS resource to the component bundle.

Here’s the CSS for a simple class to go with the “Hello World” component. A CSS resource must be named componentName.css.

.THIS .greeting {
color: #ffe4e1;
font-size: 20px;

}

After you create the class, apply it to your component.

<aura:component implements="forceCommunity:availableForAllPageTypes" access="global">
<aura:attribute name="greeting" type="String" default="Hello" access="global" />
<aura:attribute name="subject" type="String" default="World" access="global" />

<div class="greeting">{!v.greeting}, {!v.subject}!</div>
</aura:component>

SEE ALSO:

Lightning Component Developer Guide: Browser Support Considerations for Lightning Components

9

Configure Drag-and-Drop Components for Community
Builder

Develop Lightning Communities: The Basics

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/intro_browsers.htm

Exposing Component Attributes in Community Builder

You use a design resource to control which attributes are exposed in Community Builder. A design resource lives in the same folder as
your component. It describes the design-time behavior of the Lightning component—information that visual tools need to display the
component in a page or app.

To make a Lightning component attribute available for administrators to edit in Community Builder, add a design:attribute
node for the attribute in the design resource. When you mark an attribute as required, it automatically appears in Community Builder,
unless it has a default value assigned to it.

You must specify required attributes with default values and attributes not marked as required in the component definition in the design
resource to make them appear for users. A design resource supports attributes only of type int, string, or boolean.

For drag-and-drop components, exposed attributes appear in the component’s properties panel.

For theme layout components, exposed attributes appear when the theme layout is selected in the Settings > Theme area.

10

Exposing Component Attributes in Community BuilderDevelop Lightning Communities: The Basics

SEE ALSO:

Lightning Component Developer Guide: Lightning Component Bundle Design Resources

Tips and Considerations for Configuring Components for Community
Builder

Keep these guidelines in mind when creating components and component bundles for Community Builder.

Components
• Give the component a friendly name using the label attribute in the design file element, such as <design:component

label="foo">.

• Design your components to fill 100% of the width, including margins, of the region that they display in.

• Make sure that the component provides an appropriate placeholder behavior in declarative tools if it requires interaction.

• Never let a component display a blank box. Think of how other sites work. For example, Facebook displays an outline of the feed
before the feed items come back from the server, which improves the user’s perception of UI responsiveness.

• If the component depends on a fired event, give it a default state that displays before the event fires.

• Style components using standard design tokens to make them consistent with the Salesforce Design System.

• Keep in mind that LockerService is enforced for all Lightning components created in Summer ’17 (API version 40.0) and later.

Attributes
• Use the design file to control which attributes are exposed to Community Builder.

• Make your attributes easy to use and understandable to an administrator. Don’t expose SOQL queries, JSON objects, or Apex class
names.

• Give required attributes default values to avoid a poor user experience. When a component that has required attributes with no
default values is added to Community Builder, it appears invalid.

• Use basic supported types (string, integer, boolean) for exposed attributes.

• Specify a min and max for integer attributes in the <design:attribute> element to control the range of accepted values.

• Be aware that string attributes can provide a data source with a set of predefined values, allowing the attribute to expose its
configuration as a picklist.

• Give attributes a label with a friendly display name.

• Include a description to explain the expected data and provide guidelines, such as the data format or expected range of values.
Description text appears as a tooltip in the property panel.

11

Tips and Considerations for Configuring Components for
Community Builder

Develop Lightning Communities: The Basics

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/components_config_for_app_builder_design_files.htm

• To delete a design attribute for a component that implements the forceCommunity:availableForAllPageTypes
interface, first remove the interface from the component before deleting the design attribute. Then reimplement the interface. If
the component is referenced in a Lightning page, you must remove the component from the page before you can change it.

SEE ALSO:

Lightning Component Developer Guide: Using the Salesforce Lightning Design System in Apps

Lightning Component Developer Guide: Styling with Design Tokens

Supported Lightning Components, Interfaces, and Events for
Communities

Not all Lightning components, interfaces, and events are supported for Communities. Some are available only for the Salesforce app or
Lightning Experience. Check out what’s available before customizing your community.

Interfaces
• forceCommunity:availableForAllPageTypes

• forceCommunity:layout

• forceCommunity:profileMenuInterface

• forceCommunity:searchInterface

• forceCommunity:themeLayout

• forceHasRecordId

Components
• forceChatter:publisher

• forceCommunity:appLauncher

• forceCommunity:navigationMenuBase

• forceCommunity:notifications

• forceCommunity:routeLink

• forceCommunity:waveDashboard

Events
• forceCommunity:analyticsInteraction

12

Supported Lightning Components, Interfaces, and Events for
Communities

Develop Lightning Communities: The Basics

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/apps_slds.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/tokens_intro.htm

• force:createRecord

• force:editRecord

• force:navigateToSObject

• force:navigateToList

• force:navigateToRelatedList

• force:navigateToURL

• force:navigateToObjectHome

• lightning:openFiles

• force:refreshView

• forceCommunity:routeChange

• forceCommunity:setActiveLanguage

• force:showToast (not available on login pages)

SEE ALSO:

Lightning Component Developer Guide: Component Reference

Lightning Component Developer Guide: Interface Reference

Lightning Component Developer Guide: Event Reference

13

Supported Lightning Components, Interfaces, and Events for
Communities

Develop Lightning Communities: The Basics

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/aura_compref.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/ref_interfaces.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/ref_events.htm

CHAPTER 3 Customize the Look and Feel of a Lightning Template

You can control the appearance of a Lightning template in several ways, each of varying complexity and
granularity.

In this chapter ...

• Update a Template
with the Branding
Panel

Within Community Builder, you can modify styles that are specific to the template and therefore can’t
be shared between communities. The options in Community Builder are the simplest to use and don’t
require coding.

• Override Template
Elements with
Custom CSS

• The Branding panel updates the template with simple, point-and-click branding properties. This
option is ideal for admins to use.

• The CSS Editor lets you create custom CSS that overrides the basic styles of template elements. This
option is suitable if you’re familiar with CSS and want to make only minor modifications to some
out-of-the-box components or template elements.

• Use Custom Fonts in
Your Community

• Customize the
Theme Layout of
Your Template

However, to completely customize the appearance of a template, you need to build your own
components.

• Create Custom
Content Layout

• Custom Lightning components encapsulate a CSS resource as part of the component bundle, making
the components reusable across communities.Components for

Communities • Content layout components define the content regions of your page and contain components.

• Theme layout components let you customize the structural layout of the template, such as the
header and footer, and override its default styles.

• Configure
Swappable Search
and Profile Menu
Components

• Standard Design
Tokens for
Communities

14

Update a Template with the Branding Panel

Within Community Builder, the simplest way to change the look of a template is with the Branding panel. Administrators can quickly
style an entire community using branding properties to apply colors, specify fonts, and add a logo.

The properties set in the Branding panel apply to the pages in a template and most off-the-shelf components. However, a few components
don’t respond to branding property changes, which is a limitation of solely using the Branding panel.

The Branding panel’s properties also apply to custom Lightning components that use standard design tokens to control their appearance.

Note: To unify the branding properties of the login pages with the rest of the pages of your community, update your template
in Settings > Update. Otherwise, you have to brand the login pages separately.

SEE ALSO:

Salesforce Help: Update Your Community’s Template

Salesforce Help: Brand Your Community with Community Builder

Override Template Elements with Custom CSS

Use the CSS Editor in Community Builder to add custom CSS that overrides the default template and Branding panel styles. You can also
use it make minor changes to the appearance of out-of-the-box components, such as padding adjustments. However, use custom CSS
sparingly because future releases of template components might not support your CSS customizations.

Note: For large customizations, use the CSS resource in custom Lightning components and custom theme layout components
instead of custom CSS. If you use global overrides, always test your community in sandbox when it’s updated each release.

To make minor CSS modifications to a template item, use Chrome DevTools to inspect the page and discover the item’s fully qualified
name and CSS class. Then use the information to override the item’s standard CSS with your custom CSS. To learn more about inspecting
and editing pages and styles, refer to the Google Chrome's DevTools website.

The easiest way to inspect a component is to view the page in Preview mode. This example inspects the Headline component to locate
the component’s fully qualified name—forceCommunityHeadline.

15

Update a Template with the Branding PanelCustomize the Look and Feel of a Lightning Template

https://help.salesforce.com/articleView?id=communities_update_template.htm&language=en_US
https://help.salesforce.com/articleView?id=community_designer_brand.htm&language=en_US
https://developers.google.com/web/tools/chrome-devtools/inspect-styles/

Note: If a top-level CSS class isn’t defined for a component, this option doesn’t appear, which means that you can’t reliably target
the component.

Then find the element that you want to style—for example, headlineTitleText. If the element doesn’t have a class name, you
must write a specific selector targeting the element.

With that information, you can create a custom style to override the default title color.

.forceCommunityHeadline .headlineTitleText
{

color: red;
}

And then add it to the CSS Editor.

16

Override Template Elements with Custom CSSCustomize the Look and Feel of a Lightning Template

Similarly, you could use custom CSS to hide the component entirely.

.forceCommunityHeadline
{

display: none;
}

Tip: You can link to a CSS style sheet as either a static or external resource in the head markup in Settings > Advanced. However,
because global value providers aren’t supported in the head markup or in CSS overrides, you can’t use $resource to reference
static resources. Instead, use a relative URL using the syntax /sfsites/c/resource/resource_name.

For example, if you upload an image as a static resource called Headline, reference it in the CSS Editor as follows:

.forceCommunityHeadline
{

background-image: url('/sfsites/c/resource/headline')
}

Head markup is also useful for adding favicon icons, SEO meta tags, and other items. However, be aware of future stricter CSP
restrictions that could affect your code.

Migrate CSS Overrides

Many CSS selectors changed with the Customer Service (Napili) update. If your communities use custom CSS overrides to the default
template and Branding panel styles, you must update them to use the new selectors. Two new branding properties, Navigation
Background Color and Navigation Text Color, reduce the need for these overrides. If you plan to continue using custom CSS overrides,
migrate them forward after you update the template.

SEE ALSO:

Salesforce Help: Static Resources

Salesforce Help: Add Markup to the Page <head> to Customize Your Community

17

Override Template Elements with Custom CSSCustomize the Look and Feel of a Lightning Template

https://help.salesforce.com/articleView?id=pages_static_resources.htm&language=en_US
https://help.salesforce.com/articleView?id=community_builder_page_head.htm&language=en_US

Migrate CSS Overrides
Many CSS selectors changed with the Customer Service (Napili) update. If your communities use custom CSS overrides to the default
template and Branding panel styles, you must update them to use the new selectors. Two new branding properties, Navigation Background
Color and Navigation Text Color, reduce the need for these overrides. If you plan to continue using custom CSS overrides, migrate them
forward after you update the template.

This topic identifies selector changes.

Note:

• Use custom CSS sparingly because template updates might not support your customizations.

• Custom CSS is now shared across all your community pages. If you used custom CSS for Login pages, copy it and close the
CSS editor. Then navigate to a non-Login page, reopen the editor, and add the custom CSS.

Full Navigation Menu

New SelectorPrevious Selector

.comm-navigation

.forceCommunityNavigationMenu

.forceCommunityNavigationMenu
#navigationMenu

.forceCommunityNavigationMenu

.navigationMenu

.forceCommunityNavigationMenu

.navigationMenuWrapper

Mobile Menu Curtain

New SelectorPrevious Selector

.comm-navigation nav.slds-is-fixed.forceCommunityNavigationMenu
.navigationMenuWrapperCurtain

Home Menu Item

New SelectorPrevious Selector

.comm-navigation .slds-list__item
a[data-type="home"]

.forceCommunityNavigationMenu .homeLink

.forceCommunityNavigationMenu .homeButton

18

Migrate CSS OverridesCustomize the Look and Feel of a Lightning Template

Mobile Menu Toggle Button

New SelectorPrevious Selector

.siteforceServiceBody .cHeaderPanel

.cAltToggleNav
.forceCommunityNavigationMenu .toggleNav

Top-Level Menu Items
Includes submenu triggers.

New SelectorPrevious Selector

.comm-navigation .comm-navigation__list >

.slds-list__item

.forceCommunityNavigationMenu .menuItem

.forceCommunityGlobalNavigation

.navigationMenuNode

Current Top-Level Menu Item

New SelectorPrevious Selector

.comm-navigation .comm-navigation__list >

.slds-list__item > .slds-is-active

.forceCommunityNavigationMenu .current

.forceCommunityGlobalNavigation

.menuItem.current

Top-Level Menu Item Links

New SelectorPrevious Selector

.comm-navigation .comm-navigation__list >

.slds-list__item > a

.forceCommunityNavigationMenu .menuItemLink

.forceCommunityNavigationMenu
a.menuItemLink

.comm-navigation .comm-navigation__list >

.slds-list__item > button

.forceCommunityNavigationMenu .menuItem

.menuItemLink

.forceCommunityNavigationMenu .menuItem a

.forceCommunityNavigationMenu .menuItem
a.menuItemLink

19

Migrate CSS OverridesCustomize the Look and Feel of a Lightning Template

Submenu Items

New SelectorPrevious Selector

.comm-navigation

.slds-list_vertical.slds-is-nested

.slds-list__item

.forceCommunityNavigationMenu .subMenuItem

Current/Active Submenu Item

New SelectorPrevious Selector

.comm-navigation

.slds-list_vertical.slds-is-nested

.slds-list__item .slds-is-active

.forceCommunityNavigationMenu

.subMenuItem.current

Submenu Trigger Link

New SelectorPrevious Selector

.comm-navigation .slds-list__item
button:enabled

.forceCommunityNavigationMenu .triggerLink

.forceCommunityNavigationMenu .triggerLabel

Submenu Trigger Link Icon

New SelectorPrevious Selector

.comm-navigation .slds-list__item
button:enabled .slds-icon_container

.forceCommunityNavigationMenu .triggerLink

.forceIcon

Menu Items
Includes top-level and submenu items.

New SelectorPrevious Selector

.comm-navigation .slds-list__item.forceCommunityNavigationMenu
.navigationMenu li

Menu Item Links
Includes top-level and submenu items.

20

Migrate CSS OverridesCustomize the Look and Feel of a Lightning Template

New SelectorPrevious Selector

.comm-navigation .slds-list__item a.forceCommunityNavigationMenu a

.comm-navigation .slds-list__item button.forceCommunityNavigationMenu
a.menuItemLink

Submenus

New SelectorPrevious Selector

.comm-navigation

.slds-list_vertical.slds-is-nested
.forceCommunityNavigationMenu .subMenu

Submenu Items

New SelectorPrevious Selector

.comm-navigation

.slds-list_vertical.slds-is-nested

.slds-list__item

.forceCommunityNavigationMenu .subMenuItem

Submenu Item Links

New SelectorPrevious Selector

.comm-navigation

.slds-list_vertical.slds-is-nested

.slds-list__item a

.forceCommunityNavigationMenu .subMenuItem
a

.forceCommunityNavigationMenu .subMenu a

SEE ALSO:

Override Template Elements with Custom CSS

Use Custom Fonts in Your Community

Upload custom fonts as static resources and use them for primary and header fonts throughout your community. If you have more than
one font file to upload, use a .zip file.

1. In Setup, enter Static Resources in the Quick Find box and click Static Resources.

2. Click New, upload the file, and give the resource a name. Keep a note of the static resource name.

3. In the CSS Editor in Community Builder, use the @font-face CSS rule to reference the uploaded font.

21

Use Custom Fonts in Your CommunityCustomize the Look and Feel of a Lightning Template

To reference a single font file, use the syntax /sfsites/c/resource/resource_name. For example, if you upload a file
called myFirstFont.woff and name the resource MyFonts, the URL is /sfsites/c/resource/MyFonts.

To reference a file in a .zip file, include the folder structure but omit the .zip file name. Use the syntax
/sfsites/c/resource/resource_name/font_folder/font_file. So if you upload fonts.zip, which
contains bold/myFirstFont.woff, and you name the resource MyFonts, the URL is
/sfsites/c/resource/MyFonts/bold/myFirstFont.woff.

For example:

/* example font */
@font-face {

font-family: 'myFirstFont';
src: url('/sfsites/c/resource/MyFonts/bold/myFirstFont.woff') format('woff');

}

4. In the Branding panel, under Fonts, click Use Custom Font and add the font family name.

22

Use Custom Fonts in Your CommunityCustomize the Look and Feel of a Lightning Template

Customize the Theme Layout of Your Template

To put your own stamp on a template and transform its appearance, build a custom theme layout component. You can customize the
template’s structural layout, such as the header and footer, and override its default styles.

A theme layout is the top-level layout for the template pages (1) in your community. It includes the common header and footer (2), and
often includes navigation, search, and the user profile menu. In contrast, the content layout (3) defines the content regions of your pages,
such as a two-column layout.

SEE ALSO:

Example: Build a Condensed Theme Layout Component

How Do Custom Theme Layouts Work?
To understand how a theme layout works, let’s look at things from the Community Builder perspective. In Community Builder, a theme
layout combines with theme layout types to give you granular control of the appearance and structure of each page in your community.
You can customize the layout’s header and footer to match your company’s style, configure theme properties, or use a custom search
bar and user profile menu. You then use theme layout types to apply a theme layout to individual pages and quickly change layouts
from one central location.

A theme layout type categorizes the pages in your community that share the same theme layout. You can assign a theme layout to an
existing type or create custom types. Then you apply the theme layout type—and thereby the theme layout—in the page’s properties.

Customer Service (Napili) includes the following theme layouts and types.

23

Customize the Theme Layout of Your TemplateCustomize the Look and Feel of a Lightning Template

• Inner applies the Customer Service theme layout to all pages, except the login pages.

• Login applies the Login Body Layout theme layout to the login pages.

• Home isn’t applied to any pages. However, the Home layout type is ideal for applying a separate theme layout when you want your
home page to look different from the inner pages in your community.

Example: Let’s say you create three pages for your upcoming Spring campaign. Using the forceCommunity:themeLayout
interface, you create a custom Large Header theme layout in the Developer Console. In the Settings > Theme area, you add a
custom theme layout type called Spring to categorize the campaign pages and you assign the Large Header layout to it.

Next, you apply the Spring theme layout type in each page’s properties, which instantly applies the Large Header layout to each
page.

24

How Do Custom Theme Layouts Work?Customize the Look and Feel of a Lightning Template

Everything looks rosy until the VP of marketing decides that the header takes up too much room. That’s an easy fix, because you
don’t have to update the properties of each page to change the theme layout. Instead, with one click in the Theme area, you can
switch Spring to the Small Header layout and instantly update all three pages.

Example: Now let’s say you have two custom properties—Blue Background and Small Logo—in the Small Header layout, which
you’ve enabled and applied to all your campaign pages. However, for one page, you want to apply only the Small Logo property.

In this case, you can create a theme layout type called Spring B, assign the Small Header layout to it, and enable Small Logo. Then
apply the Spring B layout type to the page.

Theme layout types make it easy to reuse the same theme layout in different ways while maintaining as much granular control as
you need.

SEE ALSO:

Example: Build a Condensed Theme Layout Component

Configure a Custom Theme Layout Component
Let’s look at how to create a custom theme layout in the Developer Console to transform the appearance and overall structure of the
pages in the Customer Service (Napili) template.

1. Add an Interface to Your Theme Layout Component
A theme layout component must implement the forceCommunity:themeLayout interface to appear in Community Builder
in the Settings > Theme area.

Explicitly declare {!v.body} in your code to ensure that your theme layout includes the content layout. Add {!v.body} wherever
you want the page’s contents to appear within the theme layout.

Add attributes declared as Aura.Component[] to include regions in the theme layout, which contain the page’s components. You
can add components to the regions in your markup or leave regions open for users to drag-and-drop components into. Attributes
declared as Aura.Component[] and included in your markup are rendered as open regions in the theme layout that users can
add components to. For example:

<aura:component implements="forceCommunity:themeLayout">
<aura:attribute name="myRegion" type="Aura.Component[]"/>

25

Configure a Custom Theme Layout ComponentCustomize the Look and Feel of a Lightning Template

{!v.body}

</aura:component>

In Customer Service (Napili), the Template Header consists of these locked regions:

• search, which contains the Search Publisher component

• profileMenu, which contains the Profile Header component

• navBar, which contains the Navigation Menu component

To create a custom theme layout that reuses the existing components in the Template Header region, declare search, profileMenu,
or navBar as the attribute name value, as appropriate. For example:

<aura:attribute name="navBar" type="Aura.Component[]" required="false" />

Tip: If you create a swappable custom profile menu or a search component, declaring the search or profileMenu attribute
name value also lets users select the custom component when using your theme layout in Community Builder.

Add the regions to your markup to define where to display them in the theme layout’s body.

Here’s the sample code for a simple theme layout.

<aura:component implements="forceCommunity:themeLayout" access="global" description="Sample
Custom Theme Layout">

<aura:attribute name="search" type="Aura.Component[]" required="false"/>
<aura:attribute name="profileMenu" type="Aura.Component[]" required="false"/>
<aura:attribute name="navBar" type="Aura.Component[]" required="false"/>
<aura:attribute name="newHeader" type="Aura.Component[]" required="false"/>
<div>

<div class="searchRegion">
{!v.search}

</div>
<div class="profileMenuRegion">

{!v.profileMenu}
</div>
<div class="navigation">

{!v.navBar}
</div>
<div class="newHeader">

{!v.newHeader}
</div>
<div class="mainContentArea">

26

Configure a Custom Theme Layout ComponentCustomize the Look and Feel of a Lightning Template

{!v.body}
</div>

</div>
</aura:component>

2. Add a Design Resource to Include Theme Properties
You can expose theme layout properties in Community Builder by adding a design resource to your bundle.

First, implement the properties in the component.

<aura:component implements="forceCommunity:themeLayout" access="global" description="Small
Header">

<aura:attribute name="blueBackground" type="Boolean" default="false"/>
<aura:attribute name="smallLogo" type="Boolean" default="false" />
...

Define the theme properties in the design resource to expose the properties in the UI. This example adds a label for the Small Header
theme layout along with two checkboxes.

<design:component label="Small Header">
<design:attribute name="blueBackground" label="Blue Background"/>
<design:attribute name="smallLogo" label="Small Logo"/>

</design:component>

3. Add a CSS Resource to Avoid Overlapping Issues
Add a CSS resource to your bundle to style the theme layout as needed, ideally using standard design tokens.

To avoid overlapping issues with positioned elements, such as dialog boxes or hovers:

• Apply CSS styles.

.THIS {
position: relative;
z-index: 1;

}

• Wrap the elements in your custom theme layout in a div tag.

<div class="mainContentArea">
{!v.body}

</div>

27

Configure a Custom Theme Layout ComponentCustomize the Look and Feel of a Lightning Template

Note: The theme layout controls the styling of anything within it, so it can add styles such as drop-shadows to regions or
components. For custom theme layouts, SLDS is loaded by default.

SEE ALSO:

Example: Build a Condensed Theme Layout Component

Create Custom Content Layout Components for Communities

Community Builder includes several ready-to-use layouts that define the content regions of your page, such as a two-column layout
with a 2:1 ratio. However, if you need a layout that’s customized for your community, create a custom content layout component to use
when building new pages in Community Builder. You can also update the content layout of the default pages that come with your
community template.

When you create a custom content layout component in the Developer Console, it appears in Community Builder in the New Page and
the Change Layout dialog boxes.

1. Add a New Interface to Your Content Layout Component
To appear in the New Page and the Change Layout dialog boxes in Community Builder, a content layout component must implement
the forceCommunity:layout interface.

Here’s the sample code for a simple two-column content layout.

<aura:component implements="forceCommunity:layout" description=”Custom Content Layout”
access="global">

<aura:attribute name="column1" type="Aura.Component[]" required="false"></aura:attribute>

<aura:attribute name="column2" type="Aura.Component[]" required="false"></aura:attribute>

<div class="container">
<div class="contentPanel">

<div class="left">
{!v.column1}

</div>
<div class="right">

{!v.column2}
</div>

</div>
</div>

</aura:component>

Note: Mark your resources, such as a component, with access="global" to make the resource usable outside of your own
org. For example, if you want a component to be usable in an installed package or by a Lightning App Builder user or a Community
Builder user in another org.

2. Add a CSS Resource to Your Component Bundle
Next, add a CSS resource to style the content layout as needed.

28

Create Custom Content Layout Components for CommunitiesCustomize the Look and Feel of a Lightning Template

Here’s the sample CSS for our simple two-column content layout.

.THIS .contentPanel:before,

.THIS .contentPanel:after {
content: " ";
display: table;

}
.THIS .contentPanel:after {

clear: both;
}
.THIS .left {

float: left;
width: 50%;

}
.THIS .right {

float: right;
width: 50%;

}

CSS resources must be named componentName.css.

3. Optional: Add an SVG Resource to Your Component Bundle
You can include an SVG resource in your component bundle to define a custom icon for the content layout component when it appears
in the Community Builder.

The recommended image size for a content layout component in Community Builder is 170px by 170px. However, if the image has
different dimensions, Community Builder scales the image to fit.

SVG resources must be named componentName.svg.

Configure Swappable Search and Profile Menu Components

Create custom components to replace the Customer Service (Napili) template’s standard Profile Header and Search & Post Publisher
components in Community Builder.

In Customer Service (Napili), the Template Header consists of these locked regions:

• search, which contains the Search Publisher component

• profileMenu, which contains the Profile Header component

• navBar, which contains the Navigation Menu component

29

Configure Swappable Search and Profile Menu ComponentsCustomize the Look and Feel of a Lightning Template

These designated region names let you easily:

• Swap search and profile components in the default Customer Service theme layout or a custom theme layout.

• Swap theme layout components while persisting existing customizations, such as the selected search component.

When a component implements the correct interface—forceCommunity:searchInterface or
forceCommunity:profileMenuInterface, in this case—it’s identified as a candidate for these regions. They therefore
appear as swappable components in a theme layout, such as the default Customer Service theme layout, which declares search or
profileMenu as an attribute name value.

<aura:attribute name="search" type="Aura.Component[]" required="false" />

forceCommunity:profileMenuInterface
Add the forceCommunity:profileMenuInterface interface to a Lightning component to allow it to be used as a custom
profile menu component for the Customer Service (Napili) community template. After you create a custom profile menu component,
admins can select it in Community Builder in Settings > Theme to replace the template’s standard Profile Header component.

This code is for a simple profile menu component.

<aura:component implements="forceCommunity:profileMenuInterface" access="global">
<aura:attribute name="options" type="String[]" default="Option 1, Option 2"/>
<ui:menu >

<ui:menuTriggerLink aura:id="trigger" label="Profile Menu"/>
<ui:menuList class="actionMenu" aura:id="actionMenu">

<aura:iteration items="{!v.options}" var="itemLabel">
<ui:actionMenuItem label="{!itemLabel}" click="{!c.handleClick}"/>

</aura:iteration>
</ui:menuList>

</ui:menu>
</aura:component>

forceCommunity:searchInterface
Add the forceCommunity:searchInterface interface to a Lightning component to allow it to be used as a custom search
component for the Customer Service (Napili) community template. After you create a custom search component, admins can select it
in Community Builder in Settings > Theme to replace the template’s standard Search & Post Publisher component.

30

Configure Swappable Search and Profile Menu ComponentsCustomize the Look and Feel of a Lightning Template

This code is for a simple search component.

<aura:component implements="forceCommunity:searchInterface" access="global">
<div class="search">

<div class="search-wrapper">
<form class="search-form">

<div class="search-input-wrapper">
<input class="search-input" type="text" placeholder="My Search"/>

</div>
<input type="hidden" name="language" value="en" />

</form>
</div>

</div>
</aura:component>

SEE ALSO:

Step 5: Build a Custom Search Component

Lightning Component Developer Guide: forceCommunity:navigationMenuBase

Standard Design Tokens for Communities

Salesforce exposes a set of base tokens that you can access in your component style resources. You can use these standard tokens to
mimic the look-and-feel of the Salesforce Lightning Design System (SLDS) in your own custom components. As the SLDS evolves,
components that are styled using the standard design tokens evolve along with it. Use a subset of the standard design tokens to make
your components compatible with the Branding panel in Community Builder.

With the Branding panel, administrators can quickly style an entire community using branding properties. Each property in the Branding
panel maps to one or more standard design tokens. When an administrator updates a property in the Branding panel, the system updates
the Lightning components that use the tokens associated with that branding property.

31

Standard Design Tokens for CommunitiesCustomize the Look and Feel of a Lightning Template

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/aura_compref_forceCommunity_navigationMenuBase.htm

Available Tokens for Communities
For Communities using the Customer Service (Napili) template, the following standard tokens are available when extending from
force:base.

Important: The standard token values evolve along with SLDS. Available tokens and their values can change without notice.

...map to these standard design tokensThese Branding panel properties...

colorTextDefaultText Color

Detail Text Color • colorTextLabel

• colorTextPlaceholder

• colorTextWeak

Action Color • colorBackgroundButtonBrand

• colorBackgroundHighlight

• colorBorderBrand

• colorBorderButtonBrand

• colorBrand

• colorTextBrand

32

Standard Design Tokens for CommunitiesCustomize the Look and Feel of a Lightning Template

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/tokens_standard_force_base.htm

...map to these standard design tokensThese Branding panel properties...

colorTextLinkLink Color

Overlay Text Color • colorTextButtonBrand

• colorTextButtonBrandHover

• colorTextInverse

Border Color • colorBorder

• colorBorderButtonDefault

• colorBorderInput

• colorBorderSeparatorAlt

fontFamilyPrimary Font

textTransformText Case

In addition, the following standard tokens are available for derived branding properties in the Customer Service (Napili) template. You
can indirectly access derived branding properties when you update the properties in the Branding panel. For example, if you change
the Action Color property in the Branding panel, the system recalculates the Action Color Darker value based on the new value.

...map to these standard design tokensThese derived branding properties...

Action Color Darker

(Derived from Action Color)
• colorBackgroundButtonBrandActive

• colorBackgroundButtonBrandHover

Hover Color

(Derived from Action Color)
• colorBackgroundButtonDefaultHover

• colorBackgroundRowHover

• colorBackgroundRowSelected

• colorBackgroundShade

Link Color Darker

(Derived from Link Color)
• colorTextLinkActive

• colorTextLinkHover

For a complete list of the design tokens available in the SLDS, see Design Tokens on the Lightning Design System site.

Note: Several out-of-the-box components don’t use standard design tokens. Therefore, if you use tokens when styling your theme
layout, some components might not inherit the styles you define.

SEE ALSO:

Lightning Component Developer Guide: Styling with Design Tokens

Lightning Component Developer Guide: Using the Salesforce Lightning Design System in Apps

33

Standard Design Tokens for CommunitiesCustomize the Look and Feel of a Lightning Template

http://www.lightningdesignsystem.com/resources/tokens/
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/tokens_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/apps_slds.htm

CHAPTER 4 Example: Build a Condensed Theme Layout
Component

Let’s look at how to create a sample theme layout component for a home page, which uses a side
navigation bar and a custom search component, and removes the header entirely.

In this chapter ...

• Step 1: Create the
Basic Theme Layout
Structure

Using the code samples in this section, you can create the skeleton for a custom theme layout.

• Step 2: Define a
Tokens Bundle

• Step 3: Add a Logo
Component

• Step 4: Build a
Vertical Navigation
Menu

• Step 5: Build a
Custom Search
Component

• Step 6: Add
Configuration
Properties to the
Theme Layout

34

Step 1: Create the Basic Theme Layout Structure

To create the basic structure of the theme layout, add attributes to define two regions—search and sidebar. Then add the
attributes to the markup to define where the regions appear.

<aura:component implements="forceCommunity:themeLayout">
<aura:attribute name="search" type="Aura.Component[]"/>
<aura:attribute name="sidebarFooter" type="Aura.Component[]"/>

{!v.search}
{!v.sidebarFooter}
{!v.body}

</aura:component>

Right now, all the regions flow vertically, so add some semantic structure using the SLDS grid system.

<aura:component implements="forceCommunity:themeLayout">
<aura:attribute name="search" type="Aura.Component[]"/>
<aura:attribute name="sidebarFooter" type="Aura.Component[]"/>
<div class="slds-grid slds-grid--align-center">

<div class="slds-col">
<div class="slds-grid slds-grid--vertical">

<div class="slds-col">
<!-- placeholder for logo -->
</div>
<div class="slds-col">

{!v.search}
</div>
<div class="slds-col">
<!-- placeholder for navigation -->
</div>
<div class="slds-col">

{!v.sidebarFooter}
</div>

</div>
</div>
<div class="slds-col content">

{!v.body}
</div>

</div>
</aura:component>

Add a design resource to the bundle to give the component a UI label.

<design:component label="Condensed Theme Layout">

</design:component>

In Community Builder, you can see the theme layout’s semantic hierarchy by selecting it for the Home theme layout type.

35

Step 1: Create the Basic Theme Layout StructureExample: Build a Condensed Theme Layout Component

https://www.lightningdesignsystem.com/utilities/grid/

Open the Page Properties for the Home page. Select Home in the Theme Layout Type dropdown.

The page refreshes, and now you can see the new theme layout type in action. Let's inspect the layout of the page. You no longer have
a header, which used to contain the navigation, search, profile menu, and logo. Some of those elements are being moved into the two
left sidebar regions—search and sidebarFooter. However, until you create a swappable search component for the designated
search region, the standard search component still appears.

36

Step 1: Create the Basic Theme Layout StructureExample: Build a Condensed Theme Layout Component

SEE ALSO:

Configure a Custom Theme Layout Component

How Do Custom Theme Layouts Work?

Step 2: Define a Tokens Bundle

To enable your Lightning components to access branding tokens, define a tokens bundle in the same namespace. In the Developer
Console, create a new tokens bundle with the name defaultTokens.

<aura:tokens extends="force:base">

</aura:tokens>

The tokens bundle extends force:base. By including extends="force:base" in your markup, you now have access to all
the tokens exposed by SLDS and the branding values defined in the Branding panel in Community Builder.

SEE ALSO:

Standard Design Tokens for Communities

Lightning Component Developer Guide: Standard Design Tokens—force:base

Step 3: Add a Logo Component

Return to the theme layout component to add a company logo to it.

You can add a logo to the page in several ways. You can use:

37

Step 2: Define a Tokens BundleExample: Build a Condensed Theme Layout Component

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/tokens_standard_force_base.htm

• A custom component that displays a static resource—for example, {!$Resource.MyJavascriptFile}

• A custom component and fetch the path to the asset from the server

• An out-of-the-box component, such as the Rich Content Editor

For this example, let’s use a custom component and reference a static resource called cirruslogo. In the theme layout component, add
the following code to the first slds-col container with the logo placeholder comments.

<div class="logoContainer">

</div>

SEE ALSO:

Lightning Component Developer Guide: $Resource

Salesforce Help: Static Resources

Step 4: Build a Vertical Navigation Menu

To add a vertical navigation menu to the sidebar, create a new component named verticalNav that extends the abstract
forceCommunity:navigationMenuBase component.

<aura:component extends="forceCommunity:navigationMenuBase">

</aura:component>

The component automatically has access to the navigation menu items defined in the community’s Navigation Menu component. To
see it working, create a quick unordered list of the navigation menu items.

<aura:component extends="forceCommunity:navigationMenuBase">

<aura:iteration items="{!v.menuItems}" var="item">
{!item.label}

</aura:iteration>

</aura:component>

This simple unordered list iterates through an array of menuItems, which is defined in the extended abstract component, and outputs
 for each entry in the array.

To test the component, in the markup for condensedThemeLayout, add the component to the third column that has the placeholder
comment for the navigation.

<c:verticalNav></c:verticalNav>

When you refresh Community Builder, you see the vertical navigation menu with bullet points for each menu item. It uses the same
dataset that drives the default navigation menu in a community. For this example, you don’t want the vertical navigation menu to handle
topic navigation. To remove the item, click the Navigation Menu button in the Settings > Theme area, and remove Topics from the
navigation.

Now go back to the verticalNav menu and make it pretty. Here’s the code for the completed component.

<aura:component extends="forceCommunity:navigationMenuBase">
<div class="slds-grid slds-grid--vertical slds-navigation-list--vertical">

<ul onclick="{!c.onClick}">

38

Step 4: Build a Vertical Navigation MenuExample: Build a Condensed Theme Layout Component

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/expr_resource_value_provider.htm
https://help.salesforce.com/apex/HTViewHelpDoc?id=pages_static_resources.htm&language=en_US

<aura:iteration items="{!v.menuItems}" var="item">
<li class="{!item.active ? 'slds-is-active' : ''}">

<a href="javascript:void(0);" data-menu-item-id="{!item.id}"
class="slds-navigation-list--vertical__action slds-text-link--reset">

{!item.label}

</aura:iteration>

</div>

</aura:component>

The example takes advantage of aura expression syntax to do some nifty things. You can conditionally add the slds-is-active
class to the list item depending on whether the item is active. You also set the data-menu-item-id to be the item’s unique ID,
which you can use later to navigate to the corresponding item. In this way, you need only one click listener for the entire list, instead of
adding one for each list item.

Add the click handler to the component’s controller method. Note the JavaScript syntax for accessing data attributes on HTML elements,
which allows you to get that item’s ID.

({
onClick : function(component, event, helper) {

var id = event.target.dataset.menuItemId;
if (id) {

component.getSuper().navigate(id);
}

}
})

Add the following CSS rules to the theme layout component to remove unwanted margins and set the main content width.

.THIS .slds-col .ui-widget {
margin: 16px 0;

}

.THIS .slds-col.content {
width: 1140px;

}

SEE ALSO:

Lightning Component Developer Guide: forceCommunity:navigationMenuBase

Step 5: Build a Custom Search Component

Create a custom search component called customSearch, which implements the forceCommunity:searchInterface.
This example queries several objects and returns record IDs that match our search term. Then you redirect to a custom page that contains
the record names and links to the full record details.

39

Step 5: Build a Custom Search ComponentExample: Build a Condensed Theme Layout Component

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/aura_compref_forceCommunity_navigationMenuBase.htm

1. Implement the forceCommunity:searchInterface Interface
Use a <lightning:buttonIcon> component and include a click handler.

<aura:component implements="forceCommunity:searchInterface">
<div class="slds-form-element slds-lookup" data-select="single">

<div class="slds-form-element__control">
<div class="slds-input-has-icon slds-input-has-icon--right">

<lightning:buttonIcon iconName="utility:search" variant="bare" onclick="{!
c.handleClick }" alternativeText="Search" class="slds-input__icon" />

<input type="search" class="slds-lookup__search-input slds-input"
placeholder="Search" />

</div>
</div>

</div>
</aura:component>

Add an attribute called searchText to contain the search text. Use a <ui:inputText> component instead of a plain <input>
to bind the values.

<aura:attribute name="searchText" type="String" default=""/>
...
<ui:inputText value="{!v.searchText}" class="slds-lookup__search-input slds-input"
placeholder="Search" />

2. Create an Apex Controller
You need to create an Apex class for the component—let’s call it CustomSearchController. Implement the method
searchForIds, which takes a String searchText and returns a list of strings representing found IDs. For now, just return
the search string itself.

public class CustomSearchController {
@AuraEnabled
public static List<String> searchForIds(String searchText) {
return new List<String>{searchText};

}
}

Specify this class as the controller for your component by adding it as the value for the controller attribute. Here’s an example of the
completed search component.

<aura:component implements="forceCommunity:searchInterface"
controller="CustomSearchController">

<aura:attribute name="searchText" type="String" default=""/>
<div class="slds-form-element slds-lookup" data-select="single">
<div class="slds-form-element__control">
<div class="slds-input-has-icon slds-input-has-icon--right">
<lightning:buttonIcon iconName="utility:search" variant="bare" onclick="{!

c.handleClick }" alternativeText="Search" class="slds-input__icon" />
<ui:inputText value="{!v.searchText}" class="slds-lookup__search-input slds-input"

placeholder="Search" />
</div>

</div>

40

Step 5: Build a Custom Search ComponentExample: Build a Condensed Theme Layout Component

</div>
</aura:component>

Now that you’ve hooked up the search component to an Apex controller, tell the component to execute that controller’s action when
the search button is clicked. Create a click handler for this component, and add a handleClick method. This example reads the
value of the input text, sends it to the server-side Apex controller, and waits for a response. When you test the example, you see an array
logged to the browser console.

({
handleClick : function(component, event, helper) {
var searchText = component.get('v.searchText');
var action = component.get('c.searchForIds');
action.setParams({searchText: searchText});
action.setCallback(this, function(response) {
var state = response.getState();
if (state === 'SUCCESS') {
var ids = response.getReturnValue();
console.log(ids);

}
});

$A.enqueueAction(action);
}

})

3. Implement a Basic Search Query with SOQL
Now make the server controller do something more interesting. Salesforce supports the SOQL search language, which you can use in
your Apex classes. For this query, take the input search text and try to find objects where that text appears in any field. Update the Apex
class’s method to return a list of record IDs for the accounts, campaigns, contacts, or leads that match the search term.

public static List<String> searchForIds(String searchText) {
List<List<SObject>> results = [FIND :searchText IN ALL FIELDS RETURNING Account(Id),

Campaign(Id), Contact(Id), Lead(Id)];
List<String> ids = new List<String>();
for (List<SObject> sobjs : results) {
for (SObject sobj : sobjs) {
ids.add(sobj.Id);

}
}
return ids;

}

4. Return the Search Results to a Custom Page
Instead of just returning the record IDs, you can return the objects themselves or the IDs with extra information. You can even extend
the search component to start searching after every key press and display partial results. For now, keep things simple and redirect to a
new page that uses the IDs to display the record names and links to the full record details. You need two new components and a new
custom page.

41

Step 5: Build a Custom Search ComponentExample: Build a Condensed Theme Layout Component

Create a component to show a single record. Based on the example for the Lightning data service, you can use this code.

<aura:component implements="force:hasRecordId" access="global">
<aura:attribute name="record" type="Object"/>
<aura:attribute name="simpleRecord" type="Object"/>
<aura:attribute name="recordError" type="String"/>
<force:recordData aura:id="recordLoader"
recordId="{!v.recordId}"
layoutType="COMPACT"
targetRecord="{!v.record}"
targetFields="{!v.simpleRecord}"
targetError="{!v.recordError}"
recordUpdated="{!c.handleRecordUpdated}" />

<!-- Display a header with details about the record -->
<div class="slds-page-header" role="banner">
<p class="slds-text-heading--label">{!v.simpleRecord.Name}</p>
<h1 class="slds-page-header__title slds-m-right--small slds-truncate

slds-align-left">Go to
details</h1>

</div>

<!-- Display Lightning Data Service errors, if any -->
<aura:if isTrue="{!not(empty(v.recordError))}">
<div class="recordError">
<ui:message title="Error" severity="error" closable="true">
{!v.recordError}

</ui:message>
</div>

</aura:if>
</aura:component>

Create a drag-and-drop component called customSearchResults.

<aura:component implements="forceCommunity:availableForAllPageTypes" access="global">
<aura:attribute type="list" name="recordIds" />
<aura:handler name="init" value="{!this}" action="{!c.init}"/>
<h1>Search Results</h1>
<aura:iteration items="{!v.recordIds}" var="id">
<c:customSearchResultItem recordId="{!id}"/>

</aura:iteration>
</aura:component>

Create a controller. Here, you’re relying on the record ID list to be passed to the component from the browser’s session storage. This
method allows data to be passed from page to page without affecting any URLs.

({
init: function(component, event, helper) {
var idsJson = sessionStorage.getItem('customSearch--recordIds');
if (!$A.util.isUndefinedOrNull(idsJson)) {
var ids = JSON.parse(idsJson);
component.set('v.recordIds', ids);
sessionStorage.removeItem('customSearch--recordIds');

}
}

})

42

Step 5: Build a Custom Search ComponentExample: Build a Condensed Theme Layout Component

In Community Builder, create a standard page called Custom Search Results, which produces a page URL of
custom-search-results. Drag the customSearchResults component onto the page, along with whichever other customizations
you want. You can even use the same custom theme layout that you created earlier in Step 1: Create the Basic Theme Layout Structure,
which the Home page is using.

Update the console log line in the original customSearchController JavaScript with code that sets the session storage value
and fires a navigation event to the new page.

sessionStorage.setItem('customSearch--recordIds', JSON.stringify(ids));
var navEvt = $A.get('e.force:navigateToURL');
navEvt.setParams({url: '/custom-search-results'});
navEvt.fire();

In the CSS for the component, add the following CSS rules.

.THIS .slds-input__icon{
margin-top: -.8rem;

}

.THIS {
padding: 0 10px;

}

Add a label for the component in the bundle’s design resource.

<design:component label="Custom Search">

</design:component>

In Community Builder, return to Settings > Theme and click the edit icon () to switch to the new Custom Search component.

If all went well, you can test out your new search component by entering a text string, clicking Search, and seeing which results show
up!

SEE ALSO:

Configure Swappable Search and Profile Menu Components

Salesforce Help: Create Custom Pages with Community Builder

Step 6: Add Configuration Properties to the Theme Layout

Add an option that lets admins to hide the new search component completely in Community Builder.

43

Step 6: Add Configuration Properties to the Theme LayoutExample: Build a Condensed Theme Layout Component

https://help.salesforce.com/articleView?id=community_builder_create_page.htm&language=en_US

In the theme layout component, add the following attribute.

<aura:attribute name="showSearch" type="Boolean" default="true" />

In the markup, wrap the entire search column with an aura:if expression. This expression is reactive, so when the attribute gets
updated, the component rerenders.

<aura:if isTrue="{!v.showSearch}">
<div class="slds-col">

{!v.search}
</div>

</aura:if>

Add the design attribute.

<design:component label="Condensed Theme Layout">
<design:attribute name="showSearch" label="Show Search Box" />

</design:component>

In Community Builder, when you edit the Condensed Theme Layout, you now have an option to show or hide the search component.
Deselecting the checkbox causes the page to rerender and hide the search component.

44

Step 6: Add Configuration Properties to the Theme LayoutExample: Build a Condensed Theme Layout Component

CHAPTER 5 Develop Secure Code: LockerService and Stricter CSP

When you develop custom Lightning components or add head markup to your community, you need
to be aware of LockerService and the stricter Content Security Policy (CSP) critical update. The
LockerService architectural layer enhances security by isolating individual Lightning components in their
own containers and enforcing coding best practices. The framework uses CSP to control the source of
content that can be loaded on a page.

In this chapter ...

• LockerService in
Communities

• Critical Update for
Stricter CSP

LockerService and CSP are documented in “Developing Secure Code” in the Lightning Component
Developer Guide. Use that guide as your main point of reference for developing secure code.

Restrictions in
Communities

LockerService is enforced the same way across all orgs. However, stricter CSP uses a separate critical
update for Communities, which is documented more thoroughly here.

45

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/security_intro.htm

LockerService in Communities

LockerService is a powerful security architecture for Lightning components that enhances security by isolating Lightning components
in their own namespace. LockerService promotes best practices to improve the supportability of your code by allowing access only to
supported APIs and eliminating access to non-published framework internals.

LockerService is enabled for all Lightning components set to API version 40.0 and later. API version 40.0 corresponds to Summer ’17,
when LockerService was enabled for all orgs. LockerService isn’t enabled for components with API version 39.0 and earlier.

You can disable LockerService for a component by setting the component’s API version 39.0 or earlier. However, for consistency and
ease of debugging, we recommend that you set the same API version for all components in your app, when possible.

For information about working with LockerService when developing Lightning components, see “What is LockerService?” in the Lightning
Component Developer Guide.

For information on preparing your Lightning components code for LockerService enablement, see “Salesforce Lightning CLI (Deprecated).”

SEE ALSO:

Lightning Component Developer Guide: Browser Support Considerations for Lightning Components

Critical Update for Stricter CSP Restrictions in Communities

The Lightning Component framework uses Content Security Policy (CSP), which is a W3C standard, to control the source of content that
can be loaded on a page. The “Enable Stricter Content Security Policy for Lightning Components in Communities” critical update tightens
CSP to mitigate the risk of cross-site scripting attacks.

Stricter CSP tightens CSP to mitigate the risk of cross-site scripting attacks by disallowing the unsafe-inline and unsafe-eval
keywords for inline scripts (script-src). Ensure that your code and the third-party libraries that you use adhere to these rules by
removing all calls using eval() or inline JavaScript code execution. You might have to update your third-party libraries to modern
versions that don’t depend on unsafe-inline or unsafe-eval.

In addition to affecting custom Lightning components, stricter CSP also affects the markup used in the <head> of your community’s
pages, when enabled. Inline scripts aren’t permitted, and a warning appears when you enter unsupported markup tags in Settings >
Advanced in Community Builder.

Note: Stricter CSP was originally part of the LockerService critical update, which was automatically activated for all orgs in Summer
’17. Stricter CSP was decoupled from LockerService in Summer ’17 to give you more time to update your code.

Critical Update Timeline
The stricter CSP changes are available in two critical updates that affect only sandbox and Developer Edition orgs. The two critical
updates—one for Communities and one for other contexts—are called:

• Enable Stricter Content Security Policy for Lightning Components in Communities

• Enable Stricter Content Security Policy for Lightning Components

Stricter CSP will gradually be available in more orgs. To understand the nuances between the two different critical updates, let’s look at
them together. Here’s the planned timeline, but the schedule might change for future releases.

46

LockerService in CommunitiesDevelop Secure Code: LockerService and Stricter CSP

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/security_code.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/cli_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/intro_browsers.htm

Winter ’19
(Oct 2018)

Summer ’18Spring ’18
(Feb 2018)

Winter ’18Summer ’17Critical Update

Activated for
all orgs

OFF by default unless LockerService was activated in Spring ’17
Enable Stricter CSP for Lightning
ComponentsSandbox and DE

orgs
OFF by default

Enable Stricter CSP for Lightning
Components in Communities

ON by defaultN/A
Enable Stricter CSP for Lightning
Components

Production orgs

OFF by defaultN/A
Enable Stricter CSP for Lightning
Components in Communities

Summer ’17
The critical updates are available only in sandbox and Developer Edition orgs. Stricter CSP is not enforced in production orgs for this
release.

Spring ’18 (future plans)
The critical updates will be extended to all orgs, including production orgs.

• “Enable Stricter Content Security Policy for Lightning Components” will be enabled by default.

• “Enable Stricter Content Security Policy for Lightning Components in Communities” will be disabled by default.

You can activate and deactivate both critical updates as often as needed for testing purposes.

Winter ’19 (future plans)
Both critical updates will be automatically activated for all orgs when the critical updates expire.

Activate “Enable Stricter Content Security Policy for Lightning Components
in Communities”
In Communities, stricter CSP is disabled by default for sandboxes and Developer Edition orgs.

1. From Setup, enter Critical Updates in the Quick Find box, and then select Critical Updates.

2. For “Enable Stricter Content Security Policy for Lightning Components in Communities”, click Activate.

3. Refresh your browser page.

What Does This Critical Update Affect?
This critical update enables stricter CSP in sandboxes and Developer Edition orgs for Communities only.

The critical update doesn’t affect:

• Salesforce Classic

• Any apps for Salesforce Classic, such as Salesforce Console in Salesforce Classic

• Lightning Out, which allows you to run Lightning components in a container outside of Lightning apps, such as Lightning components
in Visualforce and Visualforce-based Communities. The container defines the CSP rules.

47

Critical Update for Stricter CSP Restrictions in CommunitiesDevelop Secure Code: LockerService and Stricter CSP

Tip: To enable stricter CSP for Lightning Experience, the Salesforce app, and standalone apps, use the “Enable Stricter Content
Security Policy for Lightning Components” critical update.

SEE ALSO:

Lightning Component Developer Guide: Content Security Policy Overview

Lightning Component Developer Guide: Critical Update for Stricter CSP Restrictions

48

Critical Update for Stricter CSP Restrictions in CommunitiesDevelop Secure Code: LockerService and Stricter CSP

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/intro_browsers.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/security_csp_stricter.htm

CHAPTER 6 Analyze and Improve Community Performance

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create, customize, or
publish a community:
• Create and Set Up

Communities AND View
Setup and Configuration

The Salesforce Community Page Optimizer analyzes your
community and identifies issues that impact performance. Use the
information to refine your design and improve community
performance for your members. The Page Optimizer is a free plug-in
available from the Chrome Web Store. Download and install the
plug-in as you would any Chrome extension.

To download the Community Page Optimizer, in Community

Builder, click on the left sidebar and click Advanced.

After installation, the Community Page Optimizer is located with your other Chrome extensions.

49

Insights

To analyze your community, navigate to your published community, load the page, and then launch
the Community Page Optimizer.

The Insights tab (1) evaluates your page based on best practices for web applications developed using
the Lightning framework. This tab displays an overall performance score (3) along with individual scores
(5) for various analysis rules. To view details and suggested actions, click each rule. Click Popout (2) for
more room to work.

The Insights tab is conservative in providing recommendations. For further insights, consider reviewing
the raw data presented on the Waterfall, Timeline, Charts, Cost, and Actions tabs.

Click Clear (4) to remove collected metrics. Perform some user actions on the page to collect new metrics
and then reopen the Community Page Optimizer. For example, to gather performance metrics for liking
a feed item, clear performance metrics, click Like, and reopen the Community Page Optimizer.

Waterfall

The Waterfall tab displays all network requests and performance instrumentation data. Click a row to
view contextual information in the sidebar. Click the arrow to the left of each row to expand the
information for each row.

50

Analyze and Improve Community Performance

Timeline

The Timeline tab provides a profile of each component’s rendering life cycle. The timeline view is optimized
for displaying Lightning framework metrics, so it’s easier to interpret than Chrome DevTools.

Charts

The Charts tab displays trending information about memory and components as customers use your
page.

51

Analyze and Improve Community Performance

Components

The Components tab displays the life cycle counts for each component on the page. This view helps
you identify potential component leaks and unexpected rendering behavior. Use the Component tab
along with the Cost tab for an overall view of component performance.

Cost

The Cost tab displays the amount of time each component was busy processing its logic. The lower the
time, the better the performance.

52

Analyze and Improve Community Performance

Actions

The Actions tab displays a list of all actions performed on the page, along with their timing information.

Export

Export your analysis to a file to share with your development and support teams.

Submit Feedback

We want to hear from you. Share your comments, questions, requests, and any issues that you find.
Submit Feedback.

SEE ALSO:

Salesforce Developer Blog: Lightning Components Performance Best Practices

53

Analyze and Improve Community Performance

https://docs.google.com/a/salesforce.com/forms/d/e/1FAIpQLSdoOEXgX36lLXpJxlTiQTaw6aIAuvcYjwXnDSHIct4N62ANrQ/viewform
https://developer.salesforce.com/blogs/developer-relations/2017/04/lightning-components-performance-best-practices.html

CHAPTER 7 Connect Your Community to Your Content
Management System

CMS Connect is a tool for embedding content from a third-party content management system (CMS)
in your Salesforce community. You can connect HTML, JSON (Beta), CSS, and JavaScript to customize
your community and keep its branding and other content consistent with your website.

In this chapter ...

• Before Using CMS
Connect

Note: This release contains beta versions of some features in CMS Connect, which means it’s a
high-quality feature with known limitations. CMS Connect isn’t generally available unless or until

• Create a CMS
Connection

Salesforce announces its general availability in documentation or in press releases or public• Edit a CMS
Connection statements. We can’t guarantee general availability within any particular time frame or at all. Make

your purchase decisions only on the basis of generally available products and features. You can
• Manage CMS

Connections
provide feedback and suggestions for CMS Connect in the Community Cloud group in the Trailblazer
Community.

• Add CMS Content to
Your Community
Pages

After you do some initial configuration work, CMS Connect makes maintenance a breeze, because your
content renders dynamically on your community pages. If you have website content in AEM, Drupal,
SDL, Sitecore, or WordPress, CMS Connect is the smart way to display headers, footers, banners, blogs,

• Personalize Your
CMS Content articles, and other reused content in your community. We give you many configuration options including

language mapping between your CMS and Salesforce, determining the load order of multiple connections,
and specifying CSS scope.• CMS Connect

Recommendations
for Optimal Usage CMS Connect is available in communities that are based on Customer Service (Napili), Partner Central,

and Lightning Bolt solutions.• CMS Connect
Examples CMS Connect supports the following content management systems:

• Adobe Experience Manager (AEM)

• Drupal

• SDL

• Sitecore

• WordPress

54

Before Using CMS Connect

Ready to get your CMS and your community connected? Before diving in, review these pointers and prerequisites so everything goes
smoothly.

Your HTTP server must serve HTML fragments
CMS Connect requires an HTTP server that can serve HTML fragments, either static or rendered on demand. Fragments can include
headers, footers, components, CSS, or JavaScript.

URLs in CSS and JavaScript must be absolute
URLs in CSS and JavaScript must be absolute. Relative URLs in HTML are okay and are converted for you. CMS Connect appends host
names and converts relative URLs to absolute URLs in the following HTML tags and attributes:

• tag src attribute

• <audio> tag src attribute

• <input> tag

• <button> tag formaction attribute

• <video> tag src and poster attributes

• <a> and <area> tags href attribute

• <form> tag action attribute

• , <ins>, <blockquote>, and <q> tags cite attribute

• <script> tag src attribute

Community Host must be a trusted host in the Cross-Origin Resource
Sharing (CORS) header
CMS Connect uses Cross-Origin Resource Sharing (CORS) to access external content. Make sure to add Community Host to the list of
trusted hosts in the CORS header in your CMS system.

CORS is a web standard for accessing web resources on different domains. CORS is a required technology to connect your CMS to
Salesforce. It’s a technique for relaxing the same-origin policy, allowing JavaScript on a web page to consume a REST API served from a
different origin. CORS allows JavaScript to pass data to the servers at Salesforce using CMS Connect.

To enable CORS in development environments, we recommend using a Chrome plugin. For production environments, please visit your
CMS documentation on enabling CORS.

For more information about CORS, see https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS.

Some tags and scripts aren’t allowed
CMS Connect filters out the same HTML tags that Locker Service and Lightning Components do. Get familiar with these now to avoid
surprises later. See “Add Markup to the Page <head> to Customize Your Community” in the Salesforce online help for a list of supported
tags.

55

Before Using CMS ConnectConnect Your Community to Your Content Management
System

https://chrome.google.com/webstore/detail/allow-control-allow-origi/nlfbmbojpeacfghkpbjhddihlkkiljbi?hl=en
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

All CMS servers must be accessible via unauthenticated HTTPS (HTTP over
SSL)
All CMS servers you connect must be accessible via unauthenticated HTTPS (HTTP over SSL) to retrieve HTML and JavaScript. When you
set up a CMS connection, the server URL you enter must start with HTTPS. This is to ensure all web communications that are required
remain private. An SSL certificate is required for unauthenticated HTTPS for all traffic between your servers and Salesforce.

All JavaScript and CSS must be from the same source as HTML
All JavaScript and CSS files referenced by your HTML must point to your CMS source.

Community Workspaces must be enabled
To use CMS Connect, you must have Community Workspaces enabled in your Community Settings. From Setup, go to Community
Settings. Make sure the Enable Community Workspaces checkbox is selected.

CMS Connect org perm must be left on
CMS Connect is controlled by an org permission that is turned on by default. If you’re not seeing CMS Connect in your Community
Workspaces, it’s possible that the permission is turned off. You can ask Salesforce Customer Support to turn it back on for you.

Create a CMS Connection

Create a connection between your content management system and your community so you can render headers, footers, banners,
blogs, and other content on your community pages.

Read Before Using CMS Connect to make sure you’re ready to connect to your CMS.

1. Go to Community Workspaces.

2. Click CMS Connect.

3. Click New CMS Connection (if no connections have been created yet in your community) or New.

4. For Name, enter a friendly name for the connection. The name shows up in your CMS workspace and other internal areas. (An API
name is created for the connection behind the scenes, based on the name you enter.)

5. Select your CMS source: AEM, Drupal, SDL, Sitecore, Wordpress, or Other.

Note: The “Other” option isn’t fully supported. However, if your CMS server isn’t listed, CMS Connect works if you set it up
properly. CMS Connect works with the HTML, CSS, and HTTP standards and isn’t provider-specific.

6. For your server URL, enter the full path to your CMS server, such as: https://www.example.com.

7. For Root Path, enter the path to the directory that your CMS content is in. You can include placeholders for language and component.
For example, a root path to content in AEM might look like this:

content/mywebsite/{language}/{component}

Note: The {language} placeholder isn’t required, but if you include it in your root path, enable language mapping and
add at least one language. See Build a CMS Connect Root Path and Component Paths for details on root paths and how they
work with component paths.

56

Create a CMS ConnectionConnect Your Community to Your Content Management
System

8. If your CMS source is AEM and your HTML content is set up with personalization, you can use that personalized content in your
community. To do that, enable Use Personalization. See Personalize Your CMS Content for details on setting up personalization.

Note: To use personalization, enable it for the components you want to personalize. Do that in Builder Settings for header
and footer, and in Community Builder for banners or other components.

9. To include CSS, click Add CSS to add one or more URLs to your CSS files. If your CSS is scoped, you can specify it in the Scope field.
Stylesheets load in the order listed. Use the up and down arrows to change the order.

10. To include JavaScript, click Add Script to add one or more URLs to your JavaScript files. Scripts load in the order listed. Use the up
and down arrows to change the order.

11. To connect JSON content such as blogs, click Add JSON and enter a name, type, and path for each JSON component you want to
add. See Set Up JSON in Your CMS Connection (Beta) for details.

12. If your content has multiple languages, select Enable language mapping. See Set Up Language Mapping in Your CMS Connection
for more information on setting up language mapping.

In the Salesforce Language dropdown, English is selected by default. To map English, for CMS Language, enter the directory name
of your English language folder from AEM. For example, enter en.

To add more languages, click Add Language. For each language that you add from your CMS, make sure it’s enabled in your Builder
Settings.

If you want to map languages from your community that you don’t have in your CMS, you can define what language the CMS
content should display in. For example, if your community has French and French Canadian enabled, you can set it up like this, so
the French Canadian community displays French content:

13. Click Save.

Build a CMS Connect Root Path and Component Paths

Entering a root path when configuring a CMS connection saves time when adding CMS Connect components to your pages in
Community Builder. A root path uses placeholders for the common parts of content URLs. Root paths from Adobe Experience
Manager, for example, start with /content. Instead of entering the full path for each component, you only need to enter the
component-specific part of the path.

Set Up Language Mapping in Your CMS Connection

Language Mapping allows you to have copies of your entire site in other languages. It doesn’t matter how your languages are named
in your CMS. Use language mapping to configure a mapping to Salesforce languages.

Set Up JSON in Your CMS Connection (Beta)

Does your website have JSON content such as blogs or articles? Do you store it in a CMS such as WordPress or Drupal? Sweet! You
can render this content in your community using CMS Connect.

57

Create a CMS ConnectionConnect Your Community to Your Content Management
System

Build a CMS Connect Root Path and Component Paths
Entering a root path when configuring a CMS connection saves time when adding CMS Connect components to your pages in Community
Builder. A root path uses placeholders for the common parts of content URLs. Root paths from Adobe Experience Manager, for example,
start with /content. Instead of entering the full path for each component, you only need to enter the component-specific part of
the path.

Example: The full path to a banner component is:

content/capricorn/{language}/banner.html

Enter content/capricorn/{language} for the root path, and /banner.html for the component path in the Builder.

You don’t have to enter a root path when setting up a connection. If you leave it blank, you’ll just need to enter full paths for your header,
footer, and components (content fragments).

You can include placeholders for language and component in your root path. If you don’t include them, we add them in invisibly.

Example: This root path:

content/capricorn

is read as

content/capricorn/{language}/{component}

If you include the {language} placeholder explicitly, you’ll be required to enable language mapping and enter at least one
language in order to save your connection. If you don’t include the placeholder, you can still enable language mapping and add
languages.

Root paths can point only to HTML. They can’t point to JPG files.

Set Up Language Mapping in Your CMS Connection
Language Mapping allows you to have copies of your entire site in other languages. It doesn’t matter how your languages are named
in your CMS. Use language mapping to configure a mapping to Salesforce languages.

In AEM, language names are in the directory /content/projectname/{language}.

Example: The directory for French is:

/content/projectname/{language}/fr

So fr is the CMS Language, which you can map to the Salesforce language French.

Make sure all mapped languages are enabled in your community
Let’s say you’ve mapped all the languages from your CMS to Salesforce languages. Great! But that doesn’t necessarily mean all those
languages are enabled in your community. Check your Builder Settings to be sure. If any are missing, just add them. Do this on Site.com.

Map languages enabled in your community but not in your CMS
Your community might have some languages enabled that don’t exist in your CMS. You can map these too, to define which language
the CMS content displays in.

58

Build a CMS Connect Root Path and Component PathsConnect Your Community to Your Content Management
System

Set Up JSON in Your CMS Connection (Beta)
Does your website have JSON content such as blogs or articles? Do you store it in a CMS such as WordPress or Drupal? Sweet! You can
render this content in your community using CMS Connect.

CMS Connect supports two basic types of JSON content. What they’re called in your CMS might be different than what another CMS
calls them. In CMS Connect, to keep things simple, we call them Content Item and Content List.

An example of a content item is a single blog post. When it displays on a page, it’s the full blog post, not just a blurb about it. A content
list, on the other hand, is a grouping of items such as blog posts. Most often, each item in a content list contains a link to those items.
When setting up paths to your JSON content in a CMS connection, specify the type for each one: content item or content list.

1. When creating or editing a CMS connection, in the JSON section, click Add JSON.

2. Enter a name for your content. It can be anything you want. For example, Home Improvement.

3. Select the type of content: Content List or Content Item. Is it a single article or blog post, such as “DIY Dryer Vent Cleaning”? Then
it’s a content item. Or is it a grouping of items, such as “Home Improvement”, that has links to individual blog posts? Then it’s a
content list.

4. Enter the path to the JSON component in your CMS.

5. Want to add more JSON? Repeat the above steps for each content item or content list to add.

6. Click Save when finished to save the connection.

For instructions on adding JSON content to your community pages, see Add CMS Connect (JSON) Components to Your Community
Pages (Beta)

Example: Here’s an example of a JSON content item in a CMS connection that uses Drupal. The path to the content item is
structured as follows:{baseUrl}/jsonApi/node/{contentType}/{id}

Here’s what the JSON payload structure for the content item looks like:

{
"data": {
"type": "node--page",
"id": "c53cf56c-f70d-456e-838b-47788742b074",
"attributes": {
"nid": 5,
"uuid": "c53cf56c-f70d-456e-838b-47788742 b074",
"vid ": 5,
"langcode": "en",
"title": "This is an Example.",
"created": 1502133909,
"changed": 1502133933,
"body": {
"value": "This is the body.",
"summary ": ""
}
},
"relationships": {
"type ": {
"data ": {
"type": "node_type--node_type",
"id": "5b80bc9e-dc78-4612-add8-e46b2e2ff616"
}
}
}

59

Set Up JSON in Your CMS Connection (Beta)Connect Your Community to Your Content Management
System

}
}

This example is taken from a Drupal CMS where @data is the parent node, and all attribute nodes to @data can be included
in JSON expressions.

Note: All JSON data sources must have 1 parent node. Multiple parent nodes in the JSON structure causes an error. For
more information on constructing a data source that meets these criteria, see your JSON API options in your CMS.

An example JSON expression for retrieving the title of the content is:

@data/attributes/title

An example JSON expression for retrieving the body of the content is:

@data/attributes/body/value

Your JSON expressions can be retrieved from multiple data sources and included in your community by creating JSON endpoints
in your CMS Connect workspace. Your JSON expressions can handle any node depth.

Example: Here’s an example of a JSON content list in a CMS connection that uses Drupal. The path to the content list is structured
as follows:{baseUrl}/jsonApi/node/page

Here’s what the JSON payload structure for the content list looks like:

{
"data": {
"type": "node--page",
"id": "c53cf56c-f70d-456e-838b-47788742b074",
"attributes": {
"nid": 5,
"uuid": "c53cf56c-f70d-456e-838b-47788742b074",
"vid": 5,
"langcode": "en",
"status": true,
"title": "Test",
"created": 1502133909,
"changed": 1502133933,
"promote": false,
"sticky": false,
"revision_timestamp": 1502133933,
"revision_log": null,
"revision_translation_affected": true,
"default_langcode": true,
"path": null,
"body": {
"value": "<p>Here is the header<\/p>\r\n",
"format": "basic_html",
"summary": ""

}
},
"relationships": {
"type": {
"data": {
"type": "node_type--node_type",
"id": "5b80bc9e-dc78-4612-add8-e46b2e2ff616"

60

Set Up JSON in Your CMS Connection (Beta)Connect Your Community to Your Content Management
System

},
"links": {
"self":

"https:\/\/www.sandbox7.net\/jsonapi\/node\/page\/c53cf56c-f70d-456e-838b-47788742b074\/relationships\/type",

"related":
"https:\/\/www.sandbox7.net\/jsonapi\/node\/page\/c53cf56c-f70d-456e-838b-47788742b074\/type"

}
},
"uid": {
"data": {
"type": "user--user",
"id": "d5808807-9f3d-4f10-a031-c3340172b88e"

},
"links": {
"self":

"https:\/\/www.sandbox7.net\/jsonapi\/node\/page\/c53cf56c-f70d-456e-838b-47788742b074\/relationships\/uid",

"related":
"https:\/\/www.sandbox7.net\/jsonapi\/node\/page\/c53cf56c-f70d-456e-838b-47788742b074\/uid"

}
},
"revision_uid": {
"data": {
"type": "user--user",
"id": "d5808807-9f3d-4f10-a031-c3340172b88e"

},
"links": {
"self":

"https:\/\/www.sandbox7.net\/jsonapi\/node\/page\/c53cf56c-f70d-456e-838b-47788742b074\/relationships\/revision_uid",

"related":
"https:\/\/www.sandbox7.net\/jsonapi\/node\/page\/c53cf56c-f70d-456e-838b-47788742b074\/revision_uid"

}
}

},
"links": {
"self":

"https:\/\/www.sandbox7.net\/jsonapi\/node\/page\/c53cf56c-f70d-456e-838b-47788742b074"

}
},
"links": {
"self":

"https:\/\/www.sandbox7.net\/jsonapi\/node\/page\/c53cf56c-f70d-456e-838b-47788742b074"

}
}

61

Set Up JSON in Your CMS Connection (Beta)Connect Your Community to Your Content Management
System

Edit a CMS Connection

You can edit a CMS connection that’s already been set up in your community. For example, change the language mapping, or add CSS
and JavaScript files.

1. Open Community Workspaces.

2. Click CMS Connect.

3.

Click for the connection you want to edit. Choose Edit.

4. Make changes as needed. See Create a CMS Connection for details.

5. Click Save.

Manage CMS Connections

In your CMS Connect workspace, you can enable and disable connections and change their load order.

Change the load order of CMS connections
If your community has multiple CMS connections, you can decide the order in which they’re loaded. The order mostly affects any CSS
and JavaScript in your connections. Consider their dependencies on each other, and set the load order accordingly.

For example, suppose one of your connections has the JavaScript library jquery, and another connection relies on jquery. Set the
connection with jquery to load first so that the other one can load.

Header and footer always render first regardless of the load order of your connections.

Disable and enable CMS connections
You can’t delete a CMS connection once it’s been created, but you can disable it. Disabling a connection means:

• Its content isn’t rendered

• Its load order is ignored when connections are loaded

If you try to add content to a page for a connection that’s disabled, you’ll get an error message.

62

Edit a CMS ConnectionConnect Your Community to Your Content Management
System

https://help.salesforce.com/apex/HTViewHelpDoc?id=networks_community_workspaces_access.htm&language=en_US#networks_community_workspaces_access

1. Open Community Workspaces.

2. Click CMS Connect.

3.
Click for the connection you want, and choose Enable or Disable.

Add CMS Content to Your Community Pages

Come one, come all! Your headers, footers, banners, blogs, HTML, JSON, and other content from your CMS are welcome on your community
pages.

Add CMS Header and Footer Components to Your Community

Once you've set up your CMS connection and added a header and footer, you're ready to add components to your pages.

Add CMS Connect (HTML) Components to Your Community Pages

Once you've set up your CMS connection and added a header and footer, you're ready to add components to your pages.

Add CMS Connect (JSON) Components to Your Community Pages (Beta)

Use CMS Connect to render your JSON content, such as articles and blogs. Use the property editor in the Community Builder to
customize layouts to display your content just the way you want.

Add CMS Header and Footer Components to Your Community
Once you've set up your CMS connection and added a header and footer, you're ready to add components to your pages.

Before you can add CMS headers and footers, set up your CMS connection on page 56.

1. From Community Builder, go to Settings.

2. Click CMS Connect.

3. Select a header source and enter a header path.

4. Select a footer source and enter a footer path.

63

Add CMS Content to Your Community PagesConnect Your Community to Your Content Management
System

https://help.salesforce.com/apex/HTViewHelpDoc?id=networks_community_workspaces_access.htm&language=en_US#networks_community_workspaces_access

Add CMS Connect (HTML) Components to Your Community Pages
Once you've set up your CMS connection and added a header and footer, you're ready to add components to your pages.

Before you can add HTML components to your community pages, set up your CMS connection on page 56.

1. Open Community Workspaces.

2. Click CMS Connect.

3.
Click for the connection that has the components you want to add.

4. Choose Use in Builder.

5. Navigate to the page you want.

6. Drag a CMS Connect (HTML) component to the place on the page where you want to display it.

7. Select the component. In the property editor, configure its properties.

Add CMS Connect (JSON) Components to Your Community Pages (Beta)
Use CMS Connect to render your JSON content, such as articles and blogs. Use the property editor in the Community Builder to customize
layouts to display your content just the way you want.

Before you can add JSON to your community pages, set up JSON in your CMS connection on page 59.

1. Open Community Workspaces.

2. Click CMS Connect.

3.
Click for the connection that has the components you want to add.

4. Choose Use in Builder.

5. Navigate to the page you want.

6. Drag a CMS Connect (JSON) component to the place on the page where you want to display it.

7. Select the component. In the property editor, configure its properties.

Example: Let’s say you want to display a list of blogs on your page.

64

Add CMS Connect (HTML) Components to Your Community
Pages

Connect Your Community to Your Content Management
System

https://help.salesforce.com/apex/HTViewHelpDoc?id=networks_community_workspaces_access.htm&language=en_US#networks_community_workspaces_access
https://help.salesforce.com/apex/HTViewHelpDoc?id=networks_community_workspaces_access.htm&language=en_US#networks_community_workspaces_access
https://help.salesforce.com/articleView?id=rss_cms_connect_json.htm&language=en_US

The property editor will look something like:

65

Add CMS Connect (JSON) Components to Your Community
Pages (Beta)

Connect Your Community to Your Content Management
System

After you save the JSON settings in the property editor, a preview of the content list displays in the page area:

66

Add CMS Connect (JSON) Components to Your Community
Pages (Beta)

Connect Your Community to Your Content Management
System

Note: This release contains a beta version of the JSON connector, which means it’s a high-quality feature with known limitations.
The JSON connector isn’t generally available unless or until Salesforce announces its general availability in documentation or in
press releases or public statements. We can’t guarantee general availability within any particular time frame or at all. Make your
purchase decisions only on the basis of generally available products and features. You can provide feedback and suggestions for
CMS Connect in the Community Cloud group in the Trailblazer Community.

Personalize Your CMS Content

CMS Connect supports content from Adobe Experience Manager (AEM) that is personalized using Client Context. If you have content
in AEM that is personalized using Client Context, you can enable personalization in your community so you decide who sees what.
Personalization in CMS Connect lets you keep the branding and other personalized content consistent between your community and
your website. Render content according to different segments of users, based on criteria such as geolocation or language.

Some upfront effort is required to get personalization working in your community. You need to create and install a connector JSP page
and expose it through an HTML page in AEM. The connector page contains the JSP with your website's personalization mapping logic.
We provide the code for it in CMS Connector Page Code. You might need to add some code, depending on how you want to run scripts.
Then provide the path to this connector page in AEM when you’re setting up the CMS connection in your community. In your CMS
connection, you can also add a path to your JavaScript file if you want to run scripts dynamically inside the JSP file.

Ready to get started? Let’s dig in. (Take a power nap first, if you need to.)

Set Up Personalization and the Connector Page in AEM
1. If you haven’t done so already, set up personalization using Client Context in AEM.

• Create personalization rules based on your segments and what you want them each to see. Create an experience for each
segment.

67

Personalize Your CMS ContentConnect Your Community to Your Content Management
System

• Determine which personalized content you want to host in your community. Each component in AEM has a default URL. Make
a list of these URLs, along with the components they’re for. You’ll need these when you set up your CMS connection.

2. Use the CMS connector page code on page 70 to create a connector JSP page and expose it through an HTML page in AEM.

Enable Personalization in Your CMS Connection
1. Create a CMS connection on page 56 (or edit an existing one on page 62) where you want to host your personalized content.

2. Enable Use Personalization.

3. In Connector Page Path, enter the path to the connector JSP page you installed in AEM.

4. If you want your personalized content to run scripts dynamically, enter the path to your JavaScript file in Script Path.

5. Click Save.

Enable Personalization in Your Page Components
1. Navigate to Community Builder.

68

Personalize Your CMS ContentConnect Your Community to Your Content Management
System

2.
To personalize a header or footer, click and select Settings. Select CMS Connect. (Skip this and the next step if you don’t
want to use a personalized header or footer.)

3. In Header Source and Footer Source, choose the name of the connection that contains the personalized content. In Header Path
and Footer Path, enter the Default Experience URL from AEM for the header and footer components. Append .html to default
URLs copied from AEM. Enable Use Personalization for the header and footer.

4. To personalize content on a community page, drag a CMS Connect (HTML) component to your page (or edit an existing one). In the
component’s property editor, choose the connection name in CMS Source. In Component Path, paste the Default Experience URL
for the component from AEM. Append .html to the component path since it’s not included in the path in AEM.

69

Personalize Your CMS ContentConnect Your Community to Your Content Management
System

5. Voilà! Repeat these steps for any additional components you want to personalize.

CMS Connector Page Code

If you use CMS Connect to render personalized content in your community, your setup process requires the following connector
JSP page code.

CMS Connector Page Code
If you use CMS Connect to render personalized content in your community, your setup process requires the following connector JSP
page code.

To get your personalized content from Adobe Experience Manager working in your community, create a JSP connector page that contains
the following code. You can add to this code as needed. See Personalize Your CMS Content for full instructions on setting up personalization
in your community.

The connector JSP page logic includes the following sections:

• Request parameter. The request parameter (payload) contains the data that a community passes to the connector page. It contains
componentUrls (an array of component path URLs for which personalization must be run), asset (a JavaScript asset specified
in the Asset Path field in the CMS connection that is injected when the JSP page loads), clientContext (IP address,
language, country, state, city, latitude, and longitude), requestId (a token that is returned as part of the postMessage to
validate the authenticity of the response), and domain (the domain of the community requesting personalized content).

• Personalization JSP logic. We provide you with the basic logic, below. You can add logic as needed.

• JavaScript. In your JSP, include Salesforce-provided JavaScript that sends a postMessage to your community. Construct the
script src in this way:
<your_community_domain/_sfdc/cms-connect/aem_personalization/salesforceConnector.js>.
Any asset specified in the Asset Path field in the CMS connection is included in your JSP.

• Response. The final section constructs the response object and does the postMessage. The JavaScript that you include in the
previous section does this.

70

CMS Connector Page CodeConnect Your Community to Your Content Management
System

Note: To ensure the connector page code gets personalization working in your community, follow these guidelines:

• Don’t change any request parameter values.

• Don’t take out any try/catch blocks. We need them to handle the case where something goes wrong in the connector page
code.

• Don’t change the structure of the response object in the postMessage.

<!-- Salesforce connector to run AEM personalization-->
<%@include file="/libs/foundation/global.jsp"%><%
%><%@page import="

java.io.StringWriter,
java.net.URL,
com.day.cq.wcm.api.WCMMode,
com.day.cq.wcm.core.stats.PageViewStatistics,
com.day.text.Text,
java.util.ResourceBundle,
com.day.cq.i18n.I18n,
com.day.cq.personalization.TargetedContentManager,
com.day.cq.personalization.ClientContextUtil,
org.apache.sling.commons.json.JSONObject,
org.apache.sling.commons.json.JSONArray,
com.day.cq.commons.JS,
org.apache.sling.engine.*,
org.apache.sling.api.SlingHttpServletRequest,
org.apache.sling.api.resource.ResourceResolver,
java.util.*,
com.day.cq.*" %><%

%><cq:includeClientLib categories="personalization.kernel"/><%
if(request.getParameter("payload") != null) {

// For every component URL, get the Teasers object and strategy.
JSONObject payload = new JSONObject(request.getParameter("payload"));
JSONArray compUrls = payload.getJSONArray("componentUrls");
String asset = payload.getString("asset");
HashMap<String, JSONArray> teaserMap = new HashMap<>();
HashMap<String, String> strategyMap = new HashMap<>();
ResourceBundle resourceBundle = slingRequest.getResourceBundle(null);
I18n i18n = new I18n(resourceBundle);
final TargetedContentManager targetedContentManager =

sling.getService(TargetedContentManager.class);
SlingRequestProcessor requestProcessor =

sling.getService(SlingRequestProcessor.class);
ResourceResolver resolver = slingRequest.getResourceResolver();
for(int j=0; j<compUrls.length(); j++) {

JSONArray allTeasers = new JSONArray();
String strategy = "";

try {
String requestPath = new

URL(compUrls.getString(j)).getPath().replaceAll(".html", "");

Resource resourceObject = resolver.getResource(requestPath);

71

CMS Connector Page CodeConnect Your Community to Your Content Management
System

Node rootNode = resourceObject.adaptTo(Node.class);
ValueMap prop = resourceObject.adaptTo(ValueMap.class);

// Get the strategy path
String strategyPath = prop.get("strategyPath", (String) null);
if (strategyPath != null) {

strategy = Text.getName(strategyPath);
strategy = strategy.replaceAll(".js", "");

}

// Get the campaign path
String campaignPath = prop.get("campaignpath", (String) null);
String campaignClass = "";
if (campaignPath != null) {

Page campaignPage = pageManager.getPage(campaignPath);
if (campaignPage != null) {

campaignClass = "campaign-" + campaignPage.getName();
}

}

JSONObject teaserInfo =
targetedContentManager.getTeaserInfo(resourceResolver, campaignPath, requestPath);

allTeasers = teaserInfo.getJSONArray("allTeasers");

// Add selectors from the current page for the mobile case, e.g. "smart",
"feature" etc.

String selectors = slingRequest.getRequestPathInfo().getSelectorString();

selectors = selectors != null ? "." + selectors : "";

for (int i = 0; i < allTeasers.length(); i++) {
JSONObject t = (JSONObject) allTeasers.get(i);

t.put("url", t.get("path") + "/_jcr_content/par" + selectors + ".html");

}

// Use "default" child node as default teaser and add at the end of the
teaser list

JSONObject defaultTeaser = new JSONObject();
defaultTeaser.put("path", resourceObject.getPath() + "/default");
defaultTeaser.put("url", resourceObject.getPath()+ ".default" + selectors

+ ".html");
defaultTeaser.put("name", "default");
defaultTeaser.put("title", i18n.get("Default"));
defaultTeaser.put("campainName", "");
defaultTeaser.put("thumbnail", resourceObject.getPath() + ".thumb.png");
allTeasers.put(defaultTeaser);

} catch (Exception e) {
// If an exception occurs for any of the component URLs, we will put default

values in teaserMap and strategyMap
}

teaserMap.put(compUrls.getString(j), allTeasers);
strategyMap.put(compUrls.getString(j), strategy);

72

CMS Connector Page CodeConnect Your Community to Your Content Management
System

}

String requestId = payload.getString("requestId");
String domain = payload.getString("domain");
JSONObject teaserJson = new JSONObject(teaserMap);
JSONObject strategyJson = new JSONObject(strategyMap);

%>

<html>
<head>

<script type="text/javascript"
src="/etc/clientlibs/granite/jquery.js"></script>

<script type="text/javascript"
src="/etc/clientlibs/granite/utils.js"></script>

<script type="text/javascript"
src="/etc/clientlibs/granite/jquery/granite.js"></script>

<script type="text/javascript"
src="/etc/clientlibs/foundation/jquery.js"></script>

<script type="text/javascript"
src="/etc/clientlibs/foundation/shared.js"></script>

<script type="text/javascript"
src="/etc/clientlibs/granite/lodash/modern.js"></script>

<script type="text/javascript"
src="/etc/clientlibs/foundation/personalization/kernel.js"></script>

<!--TODO: Include the script that will send a postMessage to your community.
The path of the JS is <your community
domain/_sfdc/cms-connect/aem_personalization/salesforceConnector.js> -->

<!--The below line injects a script that is passed in the request -->
<script type="text/javascript" src="<%= asset %>"></script>

</head>

<body>
<script>

var teaserMap = <%= teaserJson %>;
var strategyMap = <%= strategyJson %>;
var requestId = "<%= requestId %>";
var domain = "<%= domain %>";
setClientContext();
var resolvedTeasers = getResolvedTeasers(teaserMap, strategyMap);

CMS_CONNECT_PERSONALIZATION_AEM.responsePersonalization(resolvedTeasers,
requestId, domain);

// This is a sample client-context that can be used.
// Salesforce provides the client-context object which can be used to

build the json
/**
* @typedef {object} payload.clientContext
* @property {String} ipAddress User's ipAddress
* @property {String} language User language
* @property {String} country User's country
* @property {String} state User's state

73

CMS Connector Page CodeConnect Your Community to Your Content Management
System

* @property {String} city User's city
* @property {String} latitude User's latitude
* @property {String} longitude User's longitude
*/
function setClientContext() {

var payload = <%= payload %>;
var clientContext = payload.clientContext;
// Set client-context
var clientContextJson = {};
clientContextJson.surferinfo = {

'IP': clientContext.ipAddress
};
clientContextJson.profile = {

'language': clientContext.language,
'country': clientContext.country,
'state': clientContext.state,
'city': clientContext.city

};
clientContextJson.geolocation = {

'latitude': clientContext.latitude,
'longitude': clientContext.longitude

};
CQ_Analytics.ClientContextMgr.clientcontext = clientContextJson;

}

/**
* Runs personalization logic for all the component URLs requested
* @param {teaserMap} Map of componentUrl as key and teasers object

for the component
* @param {strategyMap} Map of componentUrl as key and strategy for

the component
*/
function getResolvedTeasers(teaserMap, strategyMap) {

var resolvedTeasers = {};
for (var key in teaserMap) {

try {
if (teaserMap.hasOwnProperty(key)) {

var resolvedTeaser =
CQ_Analytics.Engine.resolveTeaser(teaserMap[key], strategyMap[key], null);

resolvedTeasers[key] = resolvedTeaser.url.substring(1);

}
} catch (err) {

// If any error occurs in calculating resolved teaser for
a component url, we save it as error

resolvedTeasers[key] = "error";
}

}

return resolvedTeasers;
}

</script>
</body>

</html>

74

CMS Connector Page CodeConnect Your Community to Your Content Management
System

<%
}
%>

CMS Connect Recommendations for Optimal Usage

Read these tips and gotchas to get the most out of CMS Connect.

Scope Your CSS
Your Salesforce community pages can have CSS. Your CMS connections can have CSS. To avoid rule collision on your community’s pages,
we recommend scoping your CSS.

Scoping involves adding a DIV class in the code to “tag the tags,” which prevents rule collision by marking the CSS from your CMS with
a prefix so that it’s given a higher priority.

For example, your community page specifies 10 point font, while your CSS has 14 point font. Use a scope prefix on your CSS to determine
which rule gets priority.

Minify and reminify your CSS
The downside of scoping your CSS is that it increases your code’s file size by 10 to 20%, which translates to longer download time for
your viewers. But you can more than make up for this performance hit by minifying and reminifying your code. Plan to include this work
as part of your build time for your CMS website. It’s worth doing so you can reap the benefits of scoping without degrading performance.

CSS should use REM at 100%
If the content on your pages looks too big, it’s possible that your CSS is using REM with the old technique of 62.5%. The root page of
Salesforce uses REM at 100%. Recode your CSS at 100%.

Include only relevant CSS and JavaScript
Parsing CSS and JavaScript files takes time. For optimal performance on your community pages, link only to CSS and script files that have
been tailored for the pages you plan to display them on. Your efforts to plan ahead will be rewarded in faster load times for your audience
viewing the content.

Serve JavaScript libraries with initialization
You can use JavaScript for content such as a carousel or a menu system on your community pages. But make sure that this JavaScript
runs after the HTML loads on a page and not before.

Typically, you define the libraries (like jQuery and jQuery plugins such as a carousel) as part of the CMS Connect configuration to
make sure that they load early, that they are always present on the page, and that they are ready to be used by multiple fragments.
Include the initialization code specific to each HTML fragment (the JavaScript that created the instance of a carousel, for example) in a
script tag at the bottom of that fragment.

Don’t include fragment-specific initialization code in the JavaScript files of your CMS Connect configuration because those files are
executed as early as possible to emulate head scripts, and the page body won’t be ready. Instead, make the initialization code part of

75

CMS Connect Recommendations for Optimal UsageConnect Your Community to Your Content Management
System

your HTML, much like local JavaScript is part of the Lightning component. You might need to adjust your existing code because sometimes
the initialization code of all widgets on a page is grouped together or placed in a different location on the page.

CMS Connect Examples

Here are some examples of how to set up CMS Connect in your community.

Example: Connect JSON Content to Your Community

Here’s an example of how to set up JSON content in your community using CMS Connect. This example connects your community
to a WordPress blog with JSON content.

Example: Connect JSON Content to Your Community
Here’s an example of how to set up JSON content in your community using CMS Connect. This example connects your community to
a WordPress blog with JSON content.

Example: You have a Wordpress blog called Capricorn Cafe. You’d like to connect it to your Salesforce community using CMS
Connect. Here are example endpoints for a Content List and Content Item:

• Content List:
https://public-api.wordpress.com/rest/v1.1/sites/capricorncafeblog.wordpress.com/posts?number=6&page=1

• Content Item:
https://public-api.wordpress.com/rest/v1.1/sites/capricorncafeblog.wordpress.com/posts/38

Set up JSON in your CMS connection:

1. Follow the steps to create a CMS connection on page 56.

2. For the server URL, enter https://public-api.wordpress.com/.

3. You don’t need to enter a root path.

4. In the JSON section, click Add JSON.

5. Enter the following to add a list of blog posts:

• Name: Blog List

• Type: Content List

• Path:
rest/v1.1/sites/capricorncafeblog.wordpress.com/posts?number={itemsPerPage}&page={pageNumber}

Note: The path has 2 variables used for pagination. {itemsPerPage} is the number of items to be displayed
on a page, with the value to be computed dynamically during rendering of the CMS Connect (JSON) component.
{pageNumber} is the current page number, whose value is to be computed dynamically during rendering of
the CMS Connect (JSON) component.

6. Click Add JSON.

7. Enter the following to add a single blog post:

• Name: Blog Item

• Type: Content Item

• Path: rest/v1.1/sites/capricorncafeblog.wordpress.com/posts/{component}

76

CMS Connect ExamplesConnect Your Community to Your Content Management
System

Note: The {component} variable adds the component path dynamically, based on what’s entered for Component
Path in the property editor for the CMS Connect (JSON) component in the Builder.

8. Click Save.

Add the blog post to a page

1. Create a new standard community page, using the “New Page” option.

2. In the Builder, drag a CMS Connect (JSON) component on a page.

3. In the property editor, select the CMS source that contains your JSON content.

4. Select the name of your JSON content item (blog post), in this case Blog Item.

5. For the component path, enter {!id}.

6. For the content item layout, select Detail.

7. Enter the following expressions in the Title, Author, Published On, Body, and Image Source fields:

• @title

• @author/name

• @date

• @content

• @featured_image

8. Click Save in the property editor.

Add the list of blogs to a page

1. In the Builder, drag a CMS Connect (JSON) component on a page.

2. In the property editor, select the CMS source that contains your JSON content.

3. Select the name of your JSON content list, in this case Blog List.

4. For the content list node path, enter @posts.

5. For content list layout, select Grid.

6. For items per page, enter 5.

7. For columns, enter 2.

8. For content list item layout, select Card.

9. Enter the following expressions in the Title, Author, Published On, Body, and Image Source fields:

• @title

• @author/name

• @date

• @content

• @featured_image

10. In the Navigation Link section, enter Read More for the link text.

11. For the type, select My Pages.

12. For the page, select the name of the page that contains the content item (blog post).

77

Example: Connect JSON Content to Your CommunityConnect Your Community to Your Content Management
System

13. In the URL Parameter Mapping section, enter id for the name, and @ID for the value. (If you don’t see the Name and Value
fields, click Add Parameter.)

14. Click Save in the property editor.

78

Example: Connect JSON Content to Your CommunityConnect Your Community to Your Content Management
System

CHAPTER 8 Community Migration, Packaging, and Distribution

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

You can migrate your community between related orgs, such as
your sandbox and production org, using change sets. And with
managed packages, you can distribute customized Lightning Bolt
solutions or pages to other Salesforce users and orgs, including
people outside your company.

In this chapter ...

• Migrate Your
Community with
Change Sets

• Lightning Bolt
Solutions: Build Once,
Then Distribute and
Reuse

79

Migrate Your Community with Change Sets

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To customize or publish a
community:
• Create and Set Up

Communities

To edit deployment
connections and use
inbound change sets:
• Deploy Change Sets

AND Modify All Data

To use outbound change
sets:
• Create and Upload

Change Sets, Create
AppExchange Packages,
AND Upload
AppExchange Packages

Use change sets to move your community between related orgs that have a deployment connection,
such as your sandbox and production orgs. Create, customize, and test your community in your
test environment and then migrate the community to production when testing is complete.

You can use change sets to move Lightning communities and Salesforce Tabs + Visualforce
communities.

1. Create and test your community in your preferred test org, such as sandbox.

2. From Setup in your test org, enter Outbound Change Sets in the Quick Find box, and
then select Outbound Change Sets.

3. Create a change set, and click Add in the Change Set Components section.

4. Select the Network component type, choose your community, and then click Add to Change
Set.

5. To add dependent items, click View/Add Dependencies. We recommend selecting all the
dependencies listed.

Tip:

• For navigation menus that link to standard objects, custom list views aren’t included
as dependencies. Manually add the custom list view to your change list.

• Manually add new or modified profiles or permission sets referenced in
Administration > Members.

• The list of dependencies has two Site.com items—MyCommunityName and
MyCommunityName1. MyCommunityName holds the various Visualforce pages
that you can set in Administration (in Community Workspaces or Community
Management). MyCommunityName1 includes the pages from Community Builder.

6. Click Upload and select your target org, such as production.

Make sure that the target org allows inbound connections. The inbound and outbound orgs
must have a deployment connection.

7. In your target org, create a community (if one doesn’t exist) with the same name and template version as the community in your
source org.

For Communities, you can make updates only with change sets, which means that you can’t create a community directly from an
inbound change set.

8. From Setup, select Inbound Change Sets and find the change set that you uploaded from your source org.

9. Validate and deploy the change set to make it available in the target org.

Warning: When you deploy an inbound change set, it overwrites the community in the target org.

10. Manually reconfigure any unsupported items in the target org community.

80

Migrate Your Community with Change SetsCommunity Migration, Packaging, and Distribution

11. Add data for your community, and test it to make sure that everything works as expected. Then publish your changes to go live.

SEE ALSO:

Considerations for Migrating Communities with Change Sets

Change Sets Best Practices

Upload Outbound Change Sets

Deploy Inbound Change Sets

Considerations for Migrating Communities with Change Sets

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Keep the following considerations and limitations in mind when migrating your Lightning or
Salesforce Tabs + Visualforce community with change sets.

General
• For Communities, you can make updates only with change sets, which means that you can’t

create a community directly from an inbound change set. Instead, in the target org, create a
community with the same name and template version, and then deploy the inbound change
set.

• When you deploy an inbound change set, it overwrites the community in the target org. So
although you can’t use a change set to delete a component, such as a community, you can delete the pages within a Lightning
community. For example, let’s say you delete pages from a Lightning community in sandbox and then create an updated outbound
change set. When you redeploy the change set in a target org, such as production, the pages are also deleted there.

• If you update the community template in the source org to unify its Community Builder branding properties, ensure that the template
is also updated in the target org before deploying the change set.

Administration
Administration settings are in Community Workspaces or Community Management.

• Remember to add any new or modified profiles or permission sets referenced in Administration > Members to your outbound
change set. They’re not automatically included as dependencies.

• For communities created in a sandbox org before the Summer ’17 release, you must resave administration settings prior to migration
to transfer them successfully.

• Until you publish your community in the target org, settings for the change password, forgot password, home, self-registration, and
login pages appear to return to their default values.

• To update settings in the Members area and the Login & Registration area, you must deploy the changes in separate change sets.
First update and deploy the Members area setting, and then update and deploy the Login & Registration settings.

Navigation Menu
The Navigation Menu component is available in Community Builder for Lightning communities.

• For menu items that link to objects, list views are reset to the default list view. Also, custom list views for standard objects aren’t
included as dependencies.

• Until you publish you community in the target org, menu items that point to community pages appear to be broken.

81

Considerations for Migrating Communities with Change SetsCommunity Migration, Packaging, and Distribution

https://help.salesforce.com/apex/HTViewHelpDoc?id=changesets_best_practices.htm&language=en_US#changesets_best_practices
https://help.salesforce.com/apex/HTViewHelpDoc?id=changesets_about_outbound.htm&language=en_US#changesets_about_outbound
https://help.salesforce.com/apex/HTViewHelpDoc?id=changesets_about_inbound.htm&language=en_US#changesets_about_inbound
https://help.salesforce.com/apex/HTViewHelpDoc?id=communities_update_template.htm&language=en_US#communities_update_template

Recommendations
• Updates to recommendation names aren’t supported. If you change the name of a recommendation in the source org having

previously migrated it, the target org treats it as a new recommendation.

• Recommendation images aren’t supported.

• When you deploy an inbound change set, it overwrites the target org’s scheduled recommendations with those from the source
org.

Unsupported Settings and Features
The following items aren’t supported. Manually add them after you deploy the inbound change set.

• Navigational and featured topics

• Audience targeting

• Branding sets

• Languages

• Dashboards and engagement

• CMS Connect

• Recommendation images

• Branding panel images in Community Builder

• The following Administration settings in Community Workspaces or Community Management:

– The Account field in the Registration section of the Login and Registration area

– The Settings area

– The Rich Publisher Apps area

SEE ALSO:

Change Sets Best Practices

Change Sets Implementation Tips

Migrate Your Community with Change Sets

Lightning Bolt Solutions: Build Once, Then Distribute and Reuse

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

With Lightning Bolt, you can create and export industry-specific solutions to jump-start new
communities or package and distribute them for others to use. Save time by building once and
then reusing. Whether it’s for your own org or you’re a consulting partner or ISV, you can reduce
the time required to build communities and cut development costs.

82

Lightning Bolt Solutions: Build Once, Then Distribute and
Reuse

Community Migration, Packaging, and Distribution

https://help.salesforce.com/apex/HTViewHelpDoc?id=changesets_best_practices.htm&language=en_US#changesets_best_practices
https://help.salesforce.com/apex/HTViewHelpDoc?id=changesets_implementation_notes.htm&language=en_US#changesets_implementation_notes

A Lightning Bolt solution comprises a customized Lightning template that’s made up of a theme layout and CSS, along with pages,
content layouts, and Lightning components. In addition, Lightning Bolt solutions seamlessly integrate with Salesforce and incorporate
business logic, custom objects and apps, industry best practices, and more.

Use any Lightning template as a base to build your custom solution with standard pages and components, or create custom pages,
layouts, and components of your own. After you finish customizing the template, export the template or one of its pages from Settings >
Developer to make it ready to use or distribute.

You can take advantage of Lightning Bolt in several ways to save time and money. Here are just a few examples.

Example: You’ve customized the Partner Central template to create a community with features that meet your particular business
needs. You want to create several similar partner communities, but you don’t want to build each one from scratch. By exporting
your customized solution, you can reuse it to build as many communities as you need.

Example: You’re a consulting partner who specializes in building communities for the real estate industry. With Lightning Bolt,
you can build and export a real-estate-focused solution that’s easy to distribute to your customers. After the template is installed
on a customer’s org, you can further customize it to suit their unique needs. By building the bulk of the solution in your org and
then distributing it to your customers’ orgs, you can launch their communities in no time.

Example: You’re an ISV who builds a custom page and several custom Lightning components to create an e-commerce feature
for use in Community Builder. Now you can bundle the page and its components into a single package and distribute it to your
customers.

Reuse Your Own Solution
When you export a template, it appears in the Community Creation wizard in your org, where you can use it to build new communities.

Similarly, you can export a single page, which includes the page’s content layout and components. After you export a page, it appears
in the New Page dialog box in all communities in your org.

83

Lightning Bolt Solutions: Build Once, Then Distribute and
Reuse

Community Migration, Packaging, and Distribution

Package and Distribute Solutions
You can package solutions for distribution to your customers’ orgs. After you create and upload a managed package, share the link
privately with your clients, customers, or partners. Alternatively, publish your custom Lightning Bolt solution as a managed package to
AppExchange. Market your solution with an AppExchange listing in the same way you list any other app, component, or consulting
service. Describe your solution, pricing, support, and other details so that customers can determine whether your offering is right for
them.

When a template is installed from another org, it appears in the org’s Community Creation wizard. Installed pages appear in the New
Page dialog box.

SEE ALSO:

Salesforce Partner Community: Lightning Bolt for Partners

Lightning Component Developer Guide: Create Custom Theme Layout Components for Communities

ISVforce Guide: Creating and Uploading a Managed Package

Package and Distribute Your Apps

Export and Packaging Considerations for Lightning Bolt Solutions

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Before you export a customized template or page as a Lightning Bolt solution, keep the following
considerations and limitations in mind.

Tip: We recommend using managed packages to avoid naming conflicts with other packages
in your customer’s org or your own.

Template Export and Packaging
• You can export any customized Lightning template as a Lightning Bolt solution, other than Koa

and Kokua, which are being retired.

• The exported template name must be unique.

• When you export a template, the system removes non-alphanumeric characters from the template and page names. For example,
My Template #2 becomes My_Template_2.

• In the Community Creation wizard, the template author (for example, by Salesforce) for exported and imported templates differs.
When you export a template, your org name is shown within your own org. When you import a template, the publisher name of
the package is shown.

84

Export and Packaging Considerations for Lightning Bolt
Solutions

Community Migration, Packaging, and Distribution

https://partners.salesforce.com/s/education/general/Lightning_Bolt
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/components_config_for_builder_theme_layout.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.packagingGuide.meta/packagingGuide/packaging_uploading.htm
https://help.salesforce.com/apex/HTViewHelpDoc?id=package_distribute_apps_overview.htm&language=en_US#package_distribute_apps_overview

• For navigation menu items that link to objects, list views are reset to the default list view. Also, custom list views for standard objects
aren’t included as dependencies, although custom list views for custom objects are.

• Only the following Administration settings (in Workspaces or Community Management) are included.

– Change password page

– Forgot password page

– Home page

– Login page

– Allow internal users to log in directly to the community option

• The following items are not included when you export a template. After you import the template and use it create a community in
the destination org, you must manually reconfigure these items.

– Most Administration settings (except for the settings already listed).

– Community Builder settings, including head markup and the Google Tracking ID.

– Custom theme layouts that aren’t in use. Only theme layouts that are selected in Settings > Theme are included.

– Custom styles in the CSS editor.

– Localized content for multilingual communities.

– Non-default page variations; only default page variations are included. If a page doesn’t have a default variation—for example,
a page with two variations that are both set to audience-based visibility—the page is excluded entirely.

• If you upgrade a managed template package, existing communities that are based on the upgraded template aren’t updated.

Single Page Export and Packaging
• The exported page name must be unique.

• When you export a page, the system generates a developer name (devName) for it by prepending the community name and
removing non-alphanumeric characters. For example, My #awesome page in the Acme community becomes
Acme_My_awesome_page. Developer names longer than 80 characters are truncated.

• Exported page variations use the naming convention [Community Name]_[Page Name]_[Variation Name].

Exported Page Developer NameExported Page NameOriginal Page Name

Acme_Coffee_FansCoffee FansCoffee Fans

Acme_Coffee_Fans_West_CoastCoffee Fans - West CoastWest Coast (page variation)

Acme_Coffee_Fans_East_CoastCoffee Fans - East CoastEast Coast (page variation)

• For images in the Rich Content Editor, we export the version used in the editor, which is not necessarily the latest version of the asset
file.

• Audience-based visibility criteria aren’t included in the export process. Manually reenter this information after importing the page
to the community in the destination org.

• When you export a page, its page variations aren’t included in the package. You must export them separately.

85

Export and Packaging Considerations for Lightning Bolt
Solutions

Community Migration, Packaging, and Distribution

• You can’t export individual login pages.

SEE ALSO:

Export a Customized Lightning Bolt Solution

Export a Customized Lightning Bolt Page

Package and Distribute Your Apps

ISVforce Guide: Creating and Uploading a Managed Package

Requirements for Distributing Lightning Bolt Solutions

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Whether you’re a partner, ISV, or developer, before Salesforce can recognize a customized template
as a Lightning Bolt solution that’s ready for distribution on AppExchange, your solution must meet
certain requirements.

Use this checklist to ensure that you have:

 Developed a custom solution using a Lightning template (apart from Koa and Kokua)

 Included at least one custom Lightning component (API version 40.0 or later)

 Included at least one custom Theme Layout component with a unique visual design

 Tested with the “Stricter Content Security Policy for Lightning Components in Communities”
critical update enabled in sandbox

 Used the Salesforce Lightning CLI plug-in to test custom Lightning components

 Tested all community functionality and appearance across desktop, tablet, and mobile devices

 Ensured that your customizations have no regressions (each release)

 Verified that all third-party technology you use is approved by Salesforce

 Ensured proper code coverage, and executed basic performance testing

 Adhered to all Salesforce Lightning developer guidelines (such as attribute enforcements)

 Provided installation and configuration documentation

 Provided appropriate customer support for custom functionality

86

Requirements for Distributing Lightning Bolt SolutionsCommunity Migration, Packaging, and Distribution

https://help.salesforce.com/apex/HTViewHelpDoc?id=package_distribute_apps_overview.htm&language=en_US#package_distribute_apps_overview
https://developer.salesforce.com/docs/atlas.en-us.210.0.packagingGuide.meta/packagingGuide/packaging_uploading.htm

Export a Customized Lightning Bolt Solution

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create, customize, or
publish a community:
• Create and Set Up

Communities AND View
Setup and Configuration

With Lightning Bolt, you can customize and export the Customer Service (Napili) template to use
as a base for your new communities, or package and distribute the solution for others to use.

Note: You can’t export a Lightning Bolt solution until you update the template to unify its
branding properties.

1. In Community Builder, select Settings > Developer.
The information that you add on this page appears in the Community Creation wizard and
helps users understand the purpose and benefits of your solution.

2. Add a unique name for the solution, and select a category.

3. Add at least one image to use as the thumbnail image. The recommended image dimensions are 1260 x 820px.
You can add two more images that appear in the detailed description of the solution.

4. Enter a summary that describes the purpose of the solution.

5. Enter at least one key feature.
The feature titles appear under the thumbnail in the Community Creation wizard. The feature descriptions appear in the solution’s
detailed description.

6. Click Export.
After you export the solution, it appears in the Community Creation wizard in your org. You can then use it as a base for building
new communities. If you package the solution and install it in another org, it appears in that org’s Community Creation wizard.

87

Export a Customized Lightning Bolt SolutionCommunity Migration, Packaging, and Distribution

https://help.salesforce.com/apex/HTViewHelpDoc?id=communities_update_template.htm&language=en_US#communities_update_template

7. To distribute the Lightning Bolt solution for others to use, create a managed package.

Note: To delete an exported or imported solution, from Setup, enter Lightning Bolt Solutions in the Quick Find
box, and then click Lightning Bolt Solutions.

Deleting a solution from your org doesn’t affect communities that are already based on it.

SEE ALSO:

Export and Packaging Considerations for Lightning Bolt Solutions

Package and Distribute Your Apps

ISVforce Guide: Creating and Uploading a Managed Package

88

Export a Customized Lightning Bolt SolutionCommunity Migration, Packaging, and Distribution

https://help.salesforce.com/apex/HTViewHelpDoc?id=package_distribute_apps_overview.htm&language=en_US#package_distribute_apps_overview
https://developer.salesforce.com/docs/atlas.en-us.210.0.packagingGuide.meta/packagingGuide/packaging_uploading.htm

Export a Customized Lightning Bolt Page

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create, customize, or
publish a community:
• Create and Set Up

Communities AND View
Setup and Configuration

Export pages that you’ve customized in a Lightning template to use as a base for new pages, or
package and distribute them for others to use.

1. In Community Builder, select Settings > Developer and click Export a Page.

2. Select the page to export.

3. Click Export.
After you export a page, it appears in the New Page dialog box in all the communities in your org. If you package the page and install
it in another org, it appears in the New Page dialog box of that org. Newly installed pages are highlighted as New for 30 days.

4. To distribute your customized page for others to use, create a managed package.

89

Export a Customized Lightning Bolt PageCommunity Migration, Packaging, and Distribution

Note: To delete an imported or exported page, from Setup, enter Lightning Bolt Pages in the Quick Find box, and
then click Lightning Bolt Pages.

Existing pages in Community Builder that are based on the deleted page are unaffected. However, deleted pages no longer appear
in the New Page dialog.

SEE ALSO:

Export and Packaging Considerations for Lightning Bolt Solutions

Package and Distribute Your Apps

ISVforce Guide: Creating and Uploading a Managed Package

Package and Distribute Lightning Bolt Solutions or Pages

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create, customize, or
publish a community:
• Create and Set Up

Communities AND View
Setup and Configuration

To create and upload
packages:
• Create AppExchange

Packages AND Upload
AppExchange Packages

After you export a Lightning Bolt solution or a page, you can create a managed package to distribute
it to other users or orgs, including those outside your company. You can also upload solutions for
distribution on AppExchange.

A package is a container for something as small as an individual component or as large as a set of
related apps. Packages come in two forms—unmanaged and managed—but we recommend
using only managed packages to avoid naming conflicts with other packages in your customer’s
org or your own. To create a managed package, use a Developer Edition org.

1. From Setup, enter Package in the Quick Find box, and then click Packages.

2. To package an exported Lightning Bolt solution, select Lightning Bolt Solution as the
component type and add your solution to the package. To package an exported page, select
Lightning Page as the component type.
All supported dependencies are included.

3. Upload the package. Then distribute it on AppExchange, or share the link privately with your clients, customers, or partners.

SEE ALSO:

ISVforce Guide: Overview of Packages

ISVforce Guide: Creating and Uploading a Managed Package

ISVforce Guide: Publish Your Offering on the AppExchange

90

Package and Distribute Lightning Bolt Solutions or PagesCommunity Migration, Packaging, and Distribution

https://help.salesforce.com/apex/HTViewHelpDoc?id=package_distribute_apps_overview.htm&language=en_US#package_distribute_apps_overview
https://developer.salesforce.com/docs/atlas.en-us.210.0.packagingGuide.meta/packagingGuide/packaging_uploading.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.packagingGuide.meta/packagingGuide/packaging_about_packages.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.packagingGuide.meta/packagingGuide/packaging_uploading.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.packagingGuide.meta/packagingGuide/packaging_distributing.htm

INDEX

A
Adobe Experience Manager 54, 56, 62
AEM Personalization 67

B
Branding panel 14–15

C
Client Context 67
CMS 54, 56, 58–59, 62
CMS components 63
CMS Connect 54–56, 58, 62, 75
CMS Connect (HTML) 63
CMS Connect (JSON) 63
CMS Connect examples 76
CMS Connect optimal usage 75
CMS Connect personalization 70
CMS Connect prerequisites 55
Communities

AppExchange 79
change sets 80–81
distribute 90
distribution 79
Lightning Bolt solution 79, 90
migrate 81
migration 79
package 90
packaging 79

Community Builder
configure components 7
content layouts 28
distribution requirements 86
export a page 89
export a template 87
Lightning Bolt solution 82, 84, 86–87, 89
packaging 82, 87, 89
packaging considerations for Lightning Bolt solutions 84
page export 82, 84, 89
template export 82, 84, 87

component
theme layout 25

component bundles
configuration tips 11
design resources 10

component paths 58

components
profile menu 29
search 29

configure components 7
configure theme layout component 25
connection load order 62
connector page 70
content layout component 14
Content Security Policy (CSP) 45–46
critical update 46
CSS Editor 14–15, 21
custom content layouts

creating for Community Builder 28
custom CSS 15
custom font 21
Customer Service (Napili) 5

D
design resources 10
Developer Console 7
disable CMS connection 62
Drupal 54, 56, 62

E
enable CMS connection 62
events 12
example

basic structure 35
logo 37
navigation menu 38
properties 43
search 39
theme layout component 34
token bundle 37

F
font 21
footer 63

H
header 63
HTML 64

I
interfaces 12
introduction 1–3

91

J
JSON 59
JSON content 64, 76
JSP 70

L
language mapping 58
Lightning Bolt solution 79, 82, 84, 86–87, 89–90
Lightning Component framework 3
Lightning templates 5
LockerService 45–46
logo 37

N
navigation menu 38

P
Partner Central 5
Personalization 67
profile menu 29

R
resources 2

root path 58

S
Salesforce Lightning 3
Salesforce Lightning Design System 31
SDL 54, 56, 62
search 29, 39
security 45–46
Sitecore 54, 56, 62
SLDS 31
standard design tokens 31
stricter CSP 45–46

T
theme layout component 14, 23, 25, 34–35, 37–39, 43
theme layout type 23
token bundle 37

W
WordPress 54, 56, 62
Wordpress blog 76

92

Index

	Get Up to Speed with Lightning Communities
	Before You Begin
	What Is Salesforce Lightning?
	What Is the Lightning Component Framework?
	Which Lightning Template Do I Use?

	Develop Lightning Communities: The Basics
	Using the Developer Console
	Configure Drag-and-Drop Components for Community Builder
	Exposing Component Attributes in Community Builder
	Tips and Considerations for Configuring Components for Community Builder
	Supported Lightning Components, Interfaces, and Events for Communities

	Customize the Look and Feel of a Lightning Template
	Update a Template with the Branding Panel
	Override Template Elements with Custom CSS
	Migrate CSS Overrides

	Use Custom Fonts in Your Community
	Customize the Theme Layout of Your Template
	How Do Custom Theme Layouts Work?
	Configure a Custom Theme Layout Component

	Create Custom Content Layout Components for Communities
	Configure Swappable Search and Profile Menu Components
	Standard Design Tokens for Communities

	Example: Build a Condensed Theme Layout Component
	Step 1: Create the Basic Theme Layout Structure
	Step 2: Define a Tokens Bundle
	Step 3: Add a Logo Component
	Step 4: Build a Vertical Navigation Menu
	Step 5: Build a Custom Search Component
	Step 6: Add Configuration Properties to the Theme Layout

	Develop Secure Code: LockerService and Stricter CSP
	LockerService in Communities
	Critical Update for Stricter CSP Restrictions in Communities

	Analyze and Improve Community Performance
	Connect Your Community to Your Content Management System
	Before Using CMS Connect
	Create a CMS Connection
	Build a CMS Connect Root Path and Component Paths
	Set Up Language Mapping in Your CMS Connection
	Set Up JSON in Your CMS Connection (Beta)

	Edit a CMS Connection
	Manage CMS Connections
	Add CMS Content to Your Community Pages
	Add CMS Header and Footer Components to Your Community
	Add CMS Connect (HTML) Components to Your Community Pages
	Add CMS Connect (JSON) Components to Your Community Pages (Beta)

	Personalize Your CMS Content
	CMS Connector Page Code

	CMS Connect Recommendations for Optimal Usage
	CMS Connect Examples
	Example: Connect JSON Content to Your Community

	Community Migration, Packaging, and Distribution
	Migrate Your Community with Change Sets
	Considerations for Migrating Communities with Change Sets

	Lightning Bolt Solutions: Build Once, Then Distribute and Reuse
	Export and Packaging Considerations for Lightning Bolt Solutions
	Requirements for Distributing Lightning Bolt Solutions
	Export a Customized Lightning Bolt Solution
	Export a Customized Lightning Bolt Page
	Package and Distribute Lightning Bolt Solutions or Pages

	Index

