salesforce

Salestorce Console Developer
Guide

Version 41.0, Winter ‘18

Y @salesforcedocs
Last updated: December 7, 2017

https://twitter.com/salesforcedocs

© Copyright 2000-2017 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: What Is the Console Developer Guide? 1
Chapter 2: Why Your UL Matterso e 2
Console APl Method Parity 3
Chapter 3: Lightning Console JavaScript API for Lightning Experience 6
Get to Know the Lightning Console e 7
Getto Know the Utility Bar e 7
Lightning Console JavaScript APISyntaxo oot 9
JavaScript Promises 10
Error Handling with Promises e 10
Using Events in Lightning Console APPS . . .« o oo vttt e e e 10
Using Page Context in the Utility Bar APl e n
DEbUGOING .« o oo 12
Chapter 4: Salesforce Console Integration Toolkit for Salesforce Classic........... 13
When to Use the Salesforce Console Integration Toolkit 14
Salesforce Console Integration Toolkit Support Policy 14
Backward Compatibility e 15
End-of-Life . . . 15
Sample Visualforce Page Using the Salesforce Console Integration Toolkit 15
Working with the Salesforce Console Integration Toolkit 17
Connectingtothe Toolkit 18
Asynchronous Calls with the Salesforce Console Integration Toolkit 18
Working with Force.com Canvas oottt 18
Best Practices e 19
Chapter 5: Methods for Salesforce Classic 21
Methods for Primary Tabs and Subtabs 21
closeTabllo 24
disableTabClosel) 26
focusPrimaryTabByldl) e 29
focusPrimaryTabByNamel) 30
focusSidebarComponentl)o 31
focusSubtabByIdl) 32
focusSubtabByNameAndPrimaryTabld() 34
focusSubtabByNameAndPrimaryTabNamel) 35
generateConsoleUrll) e 36
getEnclosingPrimaryTabld() e 37

getEnclosingPrimaryTabObjectld() 38

Contents

getEnclosingTabldl) 39
getFocusedPrimaryTabld() 40
getFocusedPrimaryTabObjectld) |
getFocusedSubtabld() 42
getFocusedSubtabObijectld() 43
getPagelnfol) e 44
getPrimaryTabldsl) 46
gefSubtablds() 47
gefTablink() . . .o 48
ISINCONSOIEl) . . o oo 49
onEnclosingTabRefreshl) e 50
onFocusedSubtabll 51
ONTADSAVE) . . o o e 52
openConsoleUrll) 53
openPrimaryTabl)o 54
openSubtabl) 56
openSubtabByPrimaryTabNamel) 58
refreshPrimaryTabByld() 60
refreshPrimaryTabByNamel) 61
refreshSubtabByld() 63
refreshSubtabByNameAndPrimaryTabld() o o 64
refreshSubtabByNameAndPrimaryTabNamel) o oo 65
reopenlastClosedTabl) 67
resetSessionTimeOUl) 68
sefTabUnsavedChangesl) 68
sefTablconl) .« . . . oo 70
setTabLinkl)o n
sefTabStylel) oo 72
sefTabTextStylel)o 74
sefTabTitlel)o e 75
Methods for Navigation Tabs 76
focusNavigationTabl) 77
getNavigahionTabsl) 78
getSelectedNavigationTabll e 79
refreshNavigationTabl) 80
setSelectedNavigationTabl() 80
Methods for Computer-Telephony Integration (CTI) e 81
fireOnCallBeginl) 82
fireOnCallEnd() 83
fireOnCalllogSavedl) 84
getCallAftachedDatal) 86
gefCallObjectldsl) 87
onCallBeginl) 88

onNCAllENd) o 89

Contents

onCalllogSavedl) 90
onSendCTIMESSagel)ot 9N
SendCTIMESSAGEl - - o o oo 92
sefCallAftachedDatal) 93
sefCallObjectldsl) 94
Methods for Application-Level Custom Console Components 95
addToBrowserTitleQueuel) e 96
blinkCustomConsoleComponentButtonTextl) 97
isCustomConsoleComponentPoppedOut() 98
isCustomConsoleComponentWindowHidden() 99
isCustomConsoleComponentHidden() 101
isinCustomConsoleComponentl) 102
onCustomConsoleComponentButtonClicked() 103
onFocusedPrimaryTabll 104
removeFromBrowserTitleQueuel) 105
runSelectedMacrol) e 106
scrollCustomConsoleComponentButtonText) 107
SelectMaCrol) 108
sefCustomConsoleComponentButfonlconUrl() o o .. 109
sefCustomConsoleComponentButtonStyle() 10
sefCustomConsoleComponentButtonText) m
sefCustomConsoleComponentHeightl) o o o m
sefCustomConsoleComponentVisible() o N2
sefCustomConsoleComponentWidthl) n3
sefCustomConsoleComponentPopoutablel) N4
setCustomConsoleComponentWindowVisible() N6
setSidebarVisiblel) n7z
Methods for Push Notfifications N8
addPushNotificationlistener() n9
removePushNotificationlistener() 120
Methods for Console Events 121
addBventlistenerl) 122
fireEvent) .« . . e 124
removeEventlistener() 126
Methods for Live Agent 127
acceptChatl) . . . oo 129
cancelFileTransferByAgent) 131
declineChatl)o 132
endChatl) 133
getAgentinputl) 134
getAgentStatel) 135
getChatlogl)o 136
gefChatRequestsl) 138

getDetailsByChatKey() 139

Contents

getDetailsByPrimaryTabld() 143
getEngagedChats) 147
getMaxCapacityl) - oo 148
initFileTransfer() 149
onAgentSendl) 150
onAgentStateChanged() 151
onChatCanceledl) 152
onChatCriticalWaitStatel) 152
onChatDeclinedl)o e 153
onChatEndedl) 154
onChatRequested() 155
onChatStarted() 156
onChafTransferredOut) 157
onCurrentCapacityChanged() 158
ONCUSIOMEVENH) .« . . o 158
onfileTransferCompleted() 160
onNewMessagel) 161
onTypingUpdatel] 162
sendCustomEvent) 163
SENAMESSAGEN - - . ot 164
sefAgentinputl) .« . . 165
setAgentStatel) 166
Methods for Live Agent Chat Visitorso oo 167
Methods for Omni-Channel 7
acceptAgentNOrK . . 172
closeAgentWork . .. 173
declineAgentWork 174
getAGENtNOIKS .« . 175
getAgentWorkload 177
getServicePresenceStatusChannels 178
getServicePresenceStatusld 179
OgiN 180
lOgOUt e 181
setServicePresenceStatus 182
Methods for Omni-Channel Console Events 184
Chapter 6: Methods for Lightning Experience, 186
Methods for Workspace Tabsand Subtabs 186
closeTabl)o 187
focusTabl) oo 188
getAllTabInfol) 190
getEnclosingTabldl)o 191
getFocusedTabInfol) 192

gefTabInfol) .« . ..o 194

Contents

gefTabURL]) . o 195
isConsoleNavigation() 196
isSubtabl) . . . 197
openSubtabl) 198
opeNTabl) . . oo e 199
sefTabHighlighted() 201
sefTablcon() .« . . o e 202
sefTablabell) e 204
Methods for the Utility Bar 206
getAllUtilitylnfol) oo 207
getEnclosingUtilityld) oo o 208
getUtilitylnfol)o 209
minimizeUtility()o 210
openUtIlityl) « . o oo n
sefPanelHeaderlconl) n
setPanelHeaderlabell) 212
setPanelHeightl) o e 213
setPanelWidth() 214
setUtilityHighlighted() 215
setUtilitylconl) . . . oo 215
setUtilityLabell)o 216
toggleModalModel) 217
Methods for Omni-Channel (Beta) 218
acceptAgentWorkl)o 219
closeAgentWorkl) e 220
declineAgentWork() 221
getAgentWorks()o 222
getAgentWorkload()o 223
getServicePresenceStatusChannels() 225
getServicePresenceStatusldl) 226
loginl) . .o 227
logoutl) . o o 228
sefServicePresenceStatusl] 229
Chapter 7: Events for Lightning Experience 231
lightning:tabClosed e 231
lightning:tabCreated 232
lightning:tabFocused e 232
lightning:tabRefreshed 233
lightning:tabReplaced 234
lightning:tabUpdated 235
Chapter 8: Ofther ReSOUICESot i e e et e e 236

Console API Typographical Conventionsot 236

Contents

CHAPTER1 What Is the Console Developer Guide?

There are two APIs that interact with Salesforce console apps—the Lightning Console JavaScript APl and the Salesforce Console Integration
Toolkit. This guide provides reference material for both. Although both APIs provide similar functionality, they do not share methods
and are restricted to Lightning Experience and Salesforce Classic, respectively. You cannot use the Salesforce Console Integration Toolkit
with Lightning console apps, and you cannot use the Lightning Console JavaScript APl in the Salesforce Classic console.

To use this guide, it helps if you have a basic familiarity with:
e JavaScript

e Visualforce

e Web services

e Software development

e Salesforce console

e Llightning

e Lightning console apps

SEE ALSO:
Why Your Ul Matters
Lightning Console JavaScript API for Lightning Experience

Salesforce Console Integration Toolkit for Salesforce Classic

CHAPTER 2 Why Your Ul Matters

The Lightning Console JavaScript APl provides much of the same functionality as the Salesforce Console Integration Toolkit, but in
Lightning Experience only. The user interface of your org dictates which development tools you can use with the Salesforce console.

What's the Difference Between the Lightning Console JavaScript API
and the Salesforce Console Integration Toolkit?

Both the Lightning Console JavaScript APl and the Salesforce Console Integration Toolkit are JavaScript APIs that allow you to interact
with the Salesforce console. Methods are implemented differently in each API, however.

You use the methods in different places

When you are using the Lightning Console JavaScript APl in Lightning Experience, you use methods in the JavaScript controller of
a Lightning component. You can't use the Lightning Console JavaScript APl in Visualforce pages or other iframed pages within a
Lightning console app.

When you are using the Salesforce Console Integration Toolkit in Salesforce Classic, you use methods within <script> tagson
a Visualforce page.

The input syntax for methods is different

Methods in the Lightning Console JavaScript APl take a JSON array of arguments:

workspace.openTab ({
url: 'https://salesforce.com',
focus: true,
label: 'Salesforce',

}):
Methods in the Salesforce Console Integration Toolkit don't:

sforce.console.openPrimaryTab (null, 'http://www.salesforce.com', false,
'salesforce', openSuccess, 'salesforceTab');

The two APIs provide different methods

Although some of the methods in the Lightning Console JavaScript API are similar to methods in the Salesforce Console Integration
Toolkit, they have different names and provide different functionality.

The Lightning Console JavaScript APl also provides methods for use with the utility bar, which is available in Lightning Experience
only.

Why Your Ul Matters Console APl Method Parity—What's Different Between
Lightning Experience and Salesforce Classic?

IN THIS SECTION:

Console API Method Parity—What's Different Between Lightning Experience and Salesforce Classic?
The Lightning Console JavaScript API provides methods similar to those methods in the Salesforce Console Integration Toolkit.

SEE ALSO:
Lightning Console JavaScript API for Lightning Experience

Salesforce Console Integration Toolkit for Salesforce Classic

Console APl Method Parity—What's Different Between Lightning
Experience and Salesforce Classic?

The Lightning Console JavaScript APl provides methods similar to those methods in the Salesforce Console Integration Toolkit.

This table shows which Salesforce Console Integration Toolkit (Salesforce Classic) methods map to Lightning Console JavaScript AP
(Lightning Experience) methods and events. Not every Salesforce Console Integration Toolkit has a Lightning analog. Some Salesforce
Console Integration Toolkit methods can be replicated by using Lightning events, combining methods from the Lightning Console
JavaScript APJ, or using iterative and conditional logic with methods and events.

@ Important: Only Salesforce Console Integration Toolkit methods with a Lightning Console JavaScript APl or workaround appear
in this table. Methods without alternatives or workarounds are not listed.

Methods for Primary Tabs and Subtabs

Salesforce Console Integration Toolkit Lightning Console JavaScript APl Method (Lightning Experience)
(Salesforce Classic)

closeTab() closeTab()

focusPrimaryTabByld() focusTab()

focusSubtabByld() focusTab()

getEnclosingPrimaryTabld() Not supported.

Workaround: Call getTabInfo () on thetabin question. If
response.isSubtab istrue, store response.parentTabId. Call
getTabInfo () usingthe parentTabId.

getEnclosingPrimaryTabObjectld() Not supported.

Workaround: Call getTabInfo () on thetabin question. If
response.isSubtab istrue, store response.parentTabId. Call
getTabInfo () usingthe parentTabId.

getEnclosingTabld() Not supported.

Workaround: Call getTabInfo () on thetabin question. If
response.isSubtab istrue, store response.parentTabId.Call
getTabInfo () usingthe parentTabId.

Why Your Ul Matters

Salesforce Console Integration Toolkit

(Salesforce Classic)

getFocusedPrimaryTabld()

getFocusedPrimaryTabObjectld()

getFocusedSubtabld()
getPagelnfo()

getPrimaryTablds()

getSubtablds()

getTabLink()
onEnclosingTabRefresh()
onFocusedSubtab()
onTabSave()
openConsoleUrl()
openPrimaryTab()
openSubtab()
refreshPrimaryTabByld()

setTablcon()

setTabTitle()

Console APl Method Parity—What's Different Between
Lightning Experience and Salesforce Classic?

Lightning Console JavaScript APl Method (Lightning Experience)

getFocusedTablnfo()
getFocusedTablnfo()
getFocuseTablnfo()
getTablnfo()

Not supported.

Workaround: Call getAl1TabInfo (), iterate through the response,
and save tabIds for which isSubtab is false.

Not supported.

Workaround: Call getAl1TabInfo (), iterate through the response,
and save tabIds forwhich isSubtab is true.

getTabURL()
lightning:tabRefreshed
lightning:tabFocused
lightning:tabUpdated
openTab()

openTab()
openSubtab()

Not supported.

Workaround: Call getFocusedTabInfo () to getthe current focused
tab’s tabId. Thenuse force:refreshview tofocus the tab you want
to refresh, and call focusTab () withthe tabId you got.

setTablcon()

setTablabel()

Methods for Navigation Tabs

The force:navigateToObjectHome Lightning eventallows youto complete actions analogous to many navigation tab methods
in Salesforce Classic.

Salesforce Console Integration Toolkit Lightning Console JavaScript APl Method (Lightning Experience)
(Salesforce Classic)

focusNavigationTab() force:navigateToObjectHome

refreshNavigationTab() force:navigateToObjectHome

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/ref_force_navigateToObjectHome.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/ref_force_navigateToObjectHome.htm

Why Your Ul Matters Console APl Method Parity—What's Different Between
Lightning Experience and Salesforce Classic?

Salesforce Console Integration Toolkit Lightning Console JavaScript APl Method (Lightning Experience)
(Salesforce Classic)

setSelectedNavigationTab() force:navigateToObjectHome

Methods for Application-Level Custom Console Components

Salesforce Console Integration Toolkit Lightning Console JavaScript APl Method (Lightning Experience)
(Salesforce Classic)

blinkCustomConsoleComponentButtonText() Not supported.

Workaround: Use setUtilityLabel ().

isCustomConsoleComponentWindowHidden() getUtilitylnfo()
onFocusedPrimaryTab() lightning:tabFocused
setCustomConsoleComponentButtonlconUrl() setPanelHeaderlcon()
setCustomConsoleComponentButtonStyle() setUtilityHighlighted
setCustomConsoleComponentButtonText() setUtilityLabel
setCustomConsoleComponentHeight() setPanelHeight()
setCustomConsoleComponentVisible() minimizeUtility()
setCustomConsoleComponentWidth() setPanelWidth()
setCustomConsoleComponentWindowVisible() openUtility()

https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/ref_force_navigateToObjectHome.htm

CHAPTER 3 Lightning Console JavaScript API for Lightning

Experience

Lightning console apps allow users to quickly find the information they need, and make edits while
viewing multiple records on one screen. The Lightning Console JavaScript API gives you
programmatic access to Lightning console apps, so you can fully integrate Lightning console apps
with the Lightning framework and extend them to meet your business needs.

The Lightning Console JavaScript APl includes two libraries, the utility bar APl and the workspace
API. The utility bar API provides methods that can be used from Lightning components in the utility
bar to open, resize, or minimize a utility. The workspace API provides methods for opening, closing,
and getting information about workspace tabs and subtabs. The utility bar APl can be used in
Lightning apps with standard navigation and Lightning console apps, while the workspace APl can
be used in Lightning console apps only.

For a full list of methods in each API, see the reference section of this guide.

IN THIS SECTION:

Get to Know the Lightning Console
Lightning console apps are similar to the console in Salesforce Classic.

Get to Know the Utility Bar
The utility bar APl includes a set of methods for working with utilities and the utility bar.

Lightning Console JavaScript APl Syntax

EDITIONS

Available in: Lightning
Experience

Available in: Professional,
Enterprise, Performance,

Unlimited, and Developer
Editions

Lightning console apps are
available for an extra cost to
users with Salesforce
Platform user licenses for
certain products. Some
restrictions apply. For pricing
details, contact your
Salesforce account
executive.

Use Lightning Console JavaScript APl methods in the JavaScript controller of a Lightning component.

Using Events in Lightning Console Apps

The Lightning framework uses event-driven programming, which allows you to create handlers to respond to interface events as
they occur. The Lightning Console JavaScript APl provides several events specific to Lightning console apps.

Using Page Context in the Utility Bar API

In both Lightning console apps and standard navigation apps, utilities can respond to the context of the current page. Set
implements="force:hasRecordId" onaLlightning component used in the utility bar to access the record1d of the

record being viewed by the user.

Debugging

Use your browser’s console and JavaScript error messages generated within Salesforce to debug Lightning pages built with the

Lightning Console JavaScript API.

SEE ALSO:
Methods for Lightning Experience

Lightning Console JavaScript API for Lightning Experience Get to Know the Lightning Console

Get to Know the Lightning Console

Lightning console apps are similar to the console in Salesforce Classic.

Use workspace API methods from Lightning pages either in the utility bar or in Lightning console app. Here's how a Lightning console
app works:

Lightning Console App User Interface

Search Salesforce - EN ?

122 Console Nav App Agcounts |] w | Wahcme v %

[3 }
E Recently Viewed . F. Glabal Media [£ Jon Amas % i D0001003 x W Global M Ix

m- ¢

2 items - Updated 7 minutes ago

ACCOUNT
E Global Media + Foliow Mew Contact MewCite |
RECENTLY VIEWED §
Phone
Global Media (505) 5551212 Prospect (905) 5551212

Street,
Toronto, Ontaria L4B 1Y3 Canada

Acme {212} -
Alser RELATED DETAILS NEWS E ACTIVITY CHATTER

Mew Task New Evant Ema Log a Call
o 3

(4 History — We found no potential duplicates of this account.
RECENT TABS ACTION Croate a task n
v [cloba Media & B contacts (2) o
00001000 & E Jon Amas - E Geoff Minor - Fiter Timeline w Expand All | O
. Title: Sabes Manager Title:
D Jan Amos & Ermal eaioee.com Erriail Mext Steps
Phone: {555) 555-1213 Phion
00001003 o : °
[:i Carcle White - Mo et steps. To get things meving, st a task of set up a
E! Adrrin User & Tithe: VP Sales meating,
Emal info@salesforce.com
Global Media - 400 Wi @ Phone: {415) 5551212 Past Activity
> @ acme & View A -
‘ Mo past activity. Past meetings and tasks marked as done
> 0001001 P show up here,

Opportunities (3) Few

Global Media - 400 Widgets A
F— Stage 10, Desision Makers
- Amc $40,000.00

B Notes (D History

ce.com - 5000 Widgets v
Closed Won
S500.000.00

To select objects, use the item menu in the navigation bar (1). Records selected from the table list view or split view open as workspace
tabs (2). When you click related records from the workspace tab, those records open as subtabs (3). To keep you efficient and productive,
split view lets you work with a list view while still working on other records (4). You can close and open split view whenever you
want—click the arrow on the split view pane (5). You can also click anywhere in the vertical divider between split view and record page.
You can view and update a record using the details area (6) and the feed (7). Keep in mind that page layouts can be different for each
type of record. Finally, utilities let you access common processes and tools, like History and Notes (8).

In this example, there are two workspace tabs open—Acme and Global Media. Under the Global Media workspace tab, there are three
subtabs open—the contact record for Jon Amos, a related case, and a related opportunity. In the History utility, you can easily access
your recently opened records.

Get to Know the Utility Bar

The utility bar APl includes a set of methods for working with utilities and the utility bar.

A utility is broadly defined as a single-column Lightning page. Salesforce provides you with several ready-to-use utilities, such as Recent
ltems, History, and Notes. You can also make your own, and customize the utility bar in Setup. From Setup, enter App Manager in
the Quick Find box, then select App Manager. Either click New Lightning App to create an app, or click Edit next to an existing
Lightning app to add a utility bar or edit the existing one.

Lightning Console JavaScript API for Lightning Experience

Get to Know the Utility Bar

The utility bar API' has methods for working with the utility bar. To effectively use these methods, it helps to know your way around the

utility bar.

The following utility bar includes three utilities: My Utility, Recent Items, and Chatter Feed. Recent Items is currently open. My Utility is
a custom utility, and was highlighted using the setUtilityHighlighted () method.

. Q. Search Salesforce

::: Sales Console Select...

~ Fa Global Media

Global Media

+ Follow

Edit New Contact v

ACTIVITY CHATTER

New Task New Event

(® Recent Items % _

ubject E

Recent Items (2)

B Global Media

Type Prospect

»
Phone (905) 555-1212
Website

Account O... Brian Trimboli
Industry Media

150 Chestnut Street,
Billing Addr... Toronto, Ontario L&4B 1Y...

B Universal Containers
Type

Phone

Due Date

MName

E w Search Contacts

2 couldn't find the record you're trying to access. It may have been deleted by another user, or there

W

Email

‘@202 @

x
DETAILS NEWS
Log a Call
* Assigned To
& Search People
Related To

[Global Media

1y have been a system error. Ask your administrator for help.

Gloh
Website Stag
Account O._ rian Trimbaoli Amo
Industry Closg

VT (@ Recentlterns gt Chatter Feed

1.

The utility bar
The Chatter Feed utility

A utility label

A utility icon
The panel header

The panel header label

.

N o un A~ W N

. The panel headericon

SEE ALSO:

Salesforce Help: Customize Your Lightning Console App with Utilities

https://help.salesforce.com/apex/HTViewHelpDoc?id=console_lex_custom_utilities.htm&language=en_US#console_lex_custom_utilities

Lightning Console JavaScript API for Lightning Experience Lightning Console JavaScript API Syntax

Lightning Console JavaScript APl Syntax

Use Lightning Console JavaScript APl methods in the JavaScript controller of a Lightning component.

To use the Lightning Console JavaScript AP, include 1ightning:workspaceAPI, lightning:utilityBarAPT,or both
in your Lightning component.

The 1ightning:workspaceAPI componentgivesyou accesstothe Workspace APl whilethe 1ightning:utilityBarAPI
component gives you access to the Utility Bar API. Give each componentan aura: id so that you can reference it from the component’s
controller.

The follow example shows a simple Lightning component that uses both libraries:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:workspaceAPI aura:id="workspace" />
<lightning:utilityBarAPI aura:id="utilitybar" />

<lightning:button label="Open Utility" onclick="{! c.openUtilityBar }"/>
<lightning:button label="Open Tab" onclick="{! c.openTab }" />
</aura:component>

This componentimplements flexipage:availableForAllPageTypes 50 thatit can be accessed in the Lightning App
Builder.

This is the component’s JavaScript controller:

({

openUtility : function (component, event, helper) ({
var utilityAPI = component.find("utilitybar");
utilityAPI.openUtility () ;

openTab : function (component, event, helper) {

var workspaceAPI = component.find("workspace");

workspace.openTab ({
url: ‘#/sObject/001R0000003HgssIAC/view’,
focus: true

}) .then (function (response) {
workspaceAPI.focusTab ({

tabId: response});

1)
.catch (function (error) {
console.log(error) ;

)i

H)

The controller has two functions, each of which uses an APl method. To use a method in a controller, use component . £ind with
the aura:id yougavetothe 1ightning:workspaceAPI or lightning:utilityBarAPI.

Methods in the Workspace APl and the Utility Bar APl take a JSON array as an argument. The values included in the array depend on the
method. openTab, for example, takes an array that includes the ur1l and focus (whether the new tab has focus). Check the
reference section of this guide before using a method so that you know which arguments to pass to it.

Lightning Console JavaScript API for Lightning Experience JavaScript Promises

IN THIS SECTION:

JavaScript Promises
Methods in the Lightning Console JavaScript APl return results using promises.

Error Handling with Promises
Promises can simplify code that handles the success or failure of asynchronous calls. To use error handling with promises, use the
catch () method on the promise that is returned from calling an APl method.

JavaScript Promises

Methods in the Lightning Console JavaScript API return results using promises.

This example uses the Workspace API'sopenTab () function to get the tab ID of the focused tab. Then the function calls focusTab ()
with the tabId returned by the openTab () method.

({
focusNewTab : function (component, event, helper) {

var workspaceAPI = component.find("workspace");

workspaceAPI.openTab ({
url: '/sObject/001R0000003HgssIAC/view',
label: 'Global Media'

}) .then (function (response) {
workspaceAPI.focusTab ({tabId : response});

})
.catch (function(error) {
console.log(error) ;

)i

Error Handling with Promises

Promises can simplify code that handles the success or failure of asynchronous calls. To use error handling with promises, use the
catch () method on the promise that is returned from calling an API method.

The catch () method returns a promise and accepts a single function parameter that's called if the promise is rejected. This function
has one argument that shows the reason for the rejection. The promise returned by catch () isrejected if the function that is passed
in either throws an error or returns a promise that's rejected. Otherwise, the promise is resolved.

Using Events in Lightning Console Apps

The Lightning framework uses event-driven programming, which allows you to create handlers to respond to interface events as they
occur. The Lightning Console JavaScript APl provides several events specific to Lightning console apps.

Events are fired from JavaScript controller actions. Events can contain attributes that can be set before the event is fired and read when
the event is handled. Each event that works with Lightning console apps returns attributes that can be read once the event is fired. See
the reference section of this guide for a list of attributes returned by each event.

To use console events, set up a handler in your Lightning component. The following handler, for example, listens for the
lightning:tabCreated event andcallsthe onTabCreated functioninthe component’s controller when the event occurs.

<aura:handler event="lightning:tabCreated" action="{! c.onTabCreated }"/>

10

Lightning Console JavaScript API for Lightning Experience Using Page Context in the Utility Bar API

Let’s look at a more fleshed out example. The following component uses the workspace APl and the 1ightning:tabClosed
event.

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabClosed" action="{! c.onTabClosed }"/>
</aura:component>

When a tab is closed, the event handler calls onTabClosed in the component’s controller, which asks the user to confirm that they
want to close the tab.

{(
onTabClosed : function (component, event, helper) ({
confirm("Do you really want to close this tab?");

by
)}

You can use Lightning console events with the Workspace APl and Utility Bar API to customize your users’ experience. You can, for
example, give a tab focus when it's refreshed, or notify the user with a modal dialogue when a tab is replaced.

SEE ALSO:
Events for Lightning Experience
Trailhead: Connect Components with Events

Lightning Components Developer Guide : Communicating with Events

Using Page Context in the Utility Bar API

In both Lightning console apps and standard navigation apps, utilities can respond to the context of the current page. Set
implements="force:hasRecordId" ona Lightning component used in the utility bar to access the recordId of the
record being viewed by the user.

This simple componentimplements force : hasRecordIdand listensforchanges to the record being viewed. When this component
is added to a utility bar, it displays the recordId of the record currently being viewed.

<aura:component implements="force:hasRecordId, flexipage:availableForAllPageTypes"
access="global">

<lightning:workspaceAPI aura:id="workspace"/>

<lightning:utilityBarAPI aura:id="utilityBar"/>

<aura:handler name="onChange" value="{!v.recordId}" action="{!c.onRecordIdChange}"/>

<div>

<p>The current recordId is {!v.recordId}.</p>

</div>

</aura:component>

The component’s controller listens for changes to the record1d, and prints the new recordId to the developer console upon a
change.

({
onRecordChange : function (component, event, helper) {
var newRecordId=cmp.get ("v.recordId");
console.log(v.recordId);

n

https://trailhead.salesforce.com/modules/lex_dev_lc_basics/units/lex_dev_lc_basics_events
https://developer.salesforce.com/docs/atlas.en-us.210.0.lightning.meta/lightning/events_intro.htm

Lightning Console JavaScript API for Lightning Experience Debugging

This is what the component looks like in the utility bar of a Lightning console app.

RELATED DETAILS NEWS ACTIVITY CHATTER

We found no potential duplicates of this contact.

I New Task New Event Email More
Opportunities (0) New
[\ Create a task... “
4 Utility Bar Page Context —
New
The current recordld is 003R0000001dhkkIAA. Activity Timeline Yy ¢ Expand All
v
16 we received are the wron... Next Steps

Mo next steps. To get things moving, add a task orsetup a
v meeting.

A our order. Past Activity

\(Utility Bar Page Context 4 Chatter Feed j

Debugging

Use your browser's console and JavaScript error messages generated within Salesforce to debug Lightning pages built with the Lightning
Console JavaScript API.

Many of the methods in the Salesforce Console Integration Toolkit are asynchronous and return their results using a callback method.
We recommend that you refer to the documentation for each method to understand the information given in each response.

To print messages to your browser's console, use console.log () inyour component controller code.

Salesforce also displays JavaScript errors at runtime, which provide the stack trace when there’s a bug.

12

CHAPTER 4 Salesforce Console Integration Toolkit for Salesforce

Classic

The Salesforce Console Integration Toolkit is a browser-based JavaScript APl that provides you with
programmatic access to the console in Salesforce Classic. The Salesforce Console Integration Toolkit
uses browsers as clients to display pages as tabs in the console. For example, the toolkit lets you
integrate third-party systems with the console, opening up an external application in the same
window, in a tab.

This guide explains how to use the Salesforce Console Integration Toolkit in JavaScript to embed
API calls and processes. The toolkit is available for use with third-party domains, such as

www . yourdomain . com; however, the examples in this guide are in Visualforce. The functionality
it describes is available to your organization if you have:

e Enterprise, Unlimited, Performance, or Developer Edition with the Service Cloud

e Salesforce console

The Salesforce Console Integration Toolkit supports any browser that the Salesforce console supports.

EDITIONS

Available in: Salesforce
Classic

Available in: Professional,
Enterprise, Performance,

Unlimited, and Developer
Editions

@ Nofte: To enable the toolkit for third-party domains, add the domains to the whitelist of the Salesforce console.

IN THIS SECTION:

When to Use the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit helps advanced administrators and developers implement custom functionality for the
Salesforce console. For example, you can use the Salesforce Console Integration Toolkit to display Visualforce pages or third-party
content as tabs in the Salesforce console. The Salesforce Console Integration Toolkit is an APl that uses browsers as clients to display
pages in the console.

Salesforce Console Integration Toolkit Support Policy

The current release of the Salesforce Console Integration Toolkit is the only version that receives enhancements.

Sample Visualforce Page Using the Salesforce Console Integration Toolkit

Each implementation of Salesforce Console Integration Toolkit can look different. This example shows how to change the Salesforce
console user interface using the Salesforce Console Integration Toolkit.

Working with the Salesforce Console Integration Toolkit

You can use Salesforce Console Integration Toolkit to streamline a business process.

SEE ALSO:

Salesforce Help: Whitelist Domains for a Salesforce Console in Salesforce Classic
Salesforce Help: Supported Browsers

Methods for Salesforce Classic

13

https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_whitelist_domains.htm&language=en_US
https://help.salesforce.com/articleView?id=getstart_browser_overview.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic When to Use the Salesforce Console Integration Toolkit

When to Use the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit helps advanced administrators and developers implement custom functionality for the
Salesforce console. For example, you can use the Salesforce Console Integration Toolkit to display Visualforce pages or third-party content
as tabs in the Salesforce console. The Salesforce Console Integration Toolkit is an APl that uses browsers as clients to display pages in

the console.

Your organization may have complex business processes that are unsupported by Salesforce Console Integration Toolkit functionality.
Not to worry. When this is the case, the Force.com platform offers advanced administrators and developers several ways to implement

custom functionality.

The following table lists additional features that developers can use to implement custom functionality for Salesforce organizations.

Feature

SOAP API

Visualforce

Apex

Description

Use standard SOAP API calls if you want to add functionality to a composite application that processes
only one type of record at a time and does not require any transactional control (such as setting a
Savepoint or rolling back changes).

For more information, see the SOAP APl Developer's Guide.

Visualforce consists of a tag-based markup language that gives developers a more powerful way of
building applications and customizing the Salesforce user interface. With Visualforce you can:

e Build wizards and other multistep processes.
e (reate your own custom flow control through an application.
e Define navigation patterns and data-specific rules for optimal, efficient application interaction.

For more information, see the Visualforce Developer's Guide.

Use Apex if you want to:

e (reate Web services.

e (reate email services.

e Perform complex validation over multiple objects.

e (reate complex business processes that are not supported by workflow.

e (reate custom transactional logic (logic that occurs over the entire transaction, not just with a
single record or object).

e Attach custom logic to another operation, such as saving a record, so that it occurs whenever
the operation is executed, regardless of whether it originates in the user interface, a Visualforce
page, or from SOAP API.

For more information, see the Apex Developer Guide.

Salesforce Console Integration Toolkit Support Policy

The current release of the Salesforce Console Integration Toolkit is the only version that receives enhancements.

Previous versions may or may not receive fixes. When a new version is released, the previous version remains available.

14

https://developer.salesforce.com/docs/atlas.en-us.210.0.api.meta/api/
https://developer.salesforce.com/docs/atlas.en-us.210.0.pages.meta/pages/
https://developer.salesforce.com/docs/atlas.en-us.210.0.apexcode.meta/apexcode/

Salesforce Console Integration Toolkit for Salesforce Classic Backward Compatibility

IN THIS SECTION:

Backward Compatibility

Salesforce strives to make backward compatibility easy when using the Salesforce Console Integration Toolkit.

End-of-Life

Salesforce is committed to supporting each Salesforce Console Integration Toolkit version for a minimum of three years from the

date of its first release. To improve the quality and performance of the Salesforce Console Integration Toolkit, versions that are more
than three years old may not be supported.

Backward Compatibility

Salesforce strives to make backward compatibility easy when using the Salesforce Console Integration Toolkit.
Each new Salesforce release consists of two components:

e Anew release of platform software that resides on Salesforce systems

e Anew version of the API

The Salesforce Console Integration Toolkit matches the API version for any given release. For example, if the current version of SOAP API
is 41.0, then there’s also a version 41.0 of Salesforce Console Integration Toolkit.

We maintain support for each Salesforce Console Integration Toolkit version across releases of the platform. The Salesforce Console
Integration Toolkit is backward compatible in that an application created to work with a given Salesforce Console Integration Toolkit
version will continue to work with that same Salesforce Console Integration Toolkit version in future platform releases.

Salesforce doesn't guarantee that an application written against one Salesforce Console Integration Toolkit version will work with future
Salesforce Console Integration Toolkit versions: Changes in method signatures and data representations are often required as we continue
to enhance the Salesforce Console Integration Toolkit. However, we strive to keep the Salesforce Console Integration Toolkit consistent
from version to version with minimal changes required to port applications to newer Salesforce Console Integration Toolkit versions.

Forexample, an application written using Salesforce Console Integration Toolkit version 37.0, which shipped with the Summer '16 release,
will continue to work with Salesforce Console Integration Toolkit version 37.0 on the Winter 17 release and on future releases. However,
that same application may not work with Salesforce Console Integration Toolkit version 38.0 without modifications to the application.

End-of-Life

Salesforce is committed to supporting each Salesforce Console Integration Toolkit version for a minimum of three years from the date
of its first release. To improve the quality and performance of the Salesforce Console Integration Toolkit, versions that are more than
three years old may not be supported.

When a Salesforce Console Integration Toolkit version is scheduled to be unsupported, an advance end-of-life notice will be given at
least one year before support for the version ends. Salesforce will directly notify customers using Salesforce Console Integration Toolkit
versions scheduled for end of life.

Sample Visualforce Page Using the Salesforce Console Integration
Toolkit

Each implementation of Salesforce Console Integration Toolkit can look different. This example shows how to change the Salesforce
console user interface using the Salesforce Console Integration Toolkit.

1. Create a Visualforce page.

2. Cutand paste the following sample code into your Visualforce page.

15

Salesforce Console Integration Toolkit for Salesforce Classic Sample Visualforce Page Using the Salesforce Console

Integration Toolkit

This code demonstrates various functions of the Salesforce Console Integration Toolkit:

<apex:page standardController="Case">

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

primary

function openPrimaryTab () {
sforce.console.openPrimaryTab (undefined,
'http://www.example.com', true, 'example');

//The callback function that openSubtab will call once it has the ID for its
tab
var callOpenSubtab=function callOpenSubtab (result) {
sforce.console.openSubtab (result.id,
'http://www.example.com', true, 'example');

b

function openSubtab () {
sforce.console.getEnclosingPrimaryTabId (callOpenSubtab) ;

//Sets the title of the current tab to "Example"
function setTitle() {
sforce.console.setTabTitle ('Example') ;

//The callback function that closeTab will call once it has the ID for its tab
var callCloseTab= function callCloseTab (result) {
sforce.console.closeTab (result.id);

function closeTab () {
sforce.console.getEnclosingTabId(callCloseTab) ;

}

</script>

Open A Primary Tab
<p/>Open A Subtab
<p/>Set Title to Example
<p/>Close This Tab

</apex:page>

3. Create a custom link for cases that uses your Visualforce page.

4. Edit the page layout for cases and add your custom link.

5. Add any domains to the console’s whitelist.

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Here’s what your sample Visualforce page looks like in the console:

16

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Working with the Salesforce Console Integration Toolkit

salesforce Q, Search Salesforce
[Accounts ¥ | [clobal Media + v
B Details B Jon Amos External Page + v

Open A Primary Tab
Open A Subtab

Set Title to SFDC
Close This Tab

SEE ALSO:
Visualforce Developer Guide
Salesforce Help: Edit Page Layouts for Standard Objects

Salesforce Help: Whitelist Domains for a Salesforce Console in Salesforce Classic

Working with the Salesforce Console Integration Toolkit

You can use Salesforce Console Integration Toolkit to streamline a business process.
With Salesforce Console Integration Toolkit, you can:

e Open a new primary tab or subtab that displays a specified URL

e Set the title of a primary tab or a subtab

e Return the ID of a primary tab or subtab

e (lose a specified primary tab or subtab

Before developing an Salesforce Console Integration Toolkit implementation, learn how to connect to Salesforce Console Integration
Toolkit and review the best practices.

IN THIS SECTION:

Connecting to the Toolkit

The first portion of any JavaScript code that uses the Salesforce Console Integration Toolkit must make the toolkit available to the
JavaScript code. The syntax for this is different depending on whether you are embedding JavaScript in a Visualforce page, or a
third-party domain.

Asynchronous Calls with the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit lets you issue asynchronous calls. Asynchronous calls allow the client-side process to
continue instead of waiting for a callback from the server. To issue an asynchronous call, you must include an additional parameter
with the API call, which is referred to as a callback function. Once the result is ready, the server invokes the callback method with
the result.

Working with Force.com Canvas

To integrate the Salesforce Console with external applications that require authentication methods, such as signed requests or OAuth
2.0 protocols, Salesforce recommends you use Force.com Canvas.

17

https://developer.salesforce.com/docs/atlas.en-us.210.0.pages.meta/pages/
https://help.salesforce.com/apex/HTViewHelpDoc?id=accessing_layout_standard.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_whitelist_domains.htm&language=en_US

Salesforce Console Integration Toolkit for Salesforce Classic Connecting to the Toolkit

Best Practices
Salesforce recommends that you adhere to a few best practices as you use the Salesforce Console Integration Toolkit.

Connecting fo the Toolkit

The first portion of any JavaScript code that uses the Salesforce Console Integration Toolkit must make the toolkit available to the
JavaScript code. The syntax for this is different depending on whether you are embedding JavaScript in a Visualforce page, or a third-party
domain.

e ForVisualforce pages or any source other than a custom onclick JavaScript button, specify a <script> tagthat points to the
toolkit file:

<apex:page>
<script src="/support/console/41.0/integration.js"
type="text/javascript"></script>

</apex:page>
For Visualforce, a relative path is sufficient to include integration. s, and is recommended.

e For a third-party domain:

<script
src="https://c.<yourInstance>.visual.force.com/support/console/41.0/integration.js"
type="text/javascript"></script>

For third-party domains, it's necessary to specify an absolute URLto integration. js to use the toolkit. If you can't determine
the org's instance, you can access the toolkit library at the default instance. Contact Salesforce for the default instance’s URL.

The version of the Salesforce Console Integration Toolkit is in the URL.

Asynchronous Calls with the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit lets you issue asynchronous calls. Asynchronous calls allow the client-side process to continue
instead of waiting for a callback from the server. To issue an asynchronous call, you must include an additional parameter with the API
call, which is referred to as a callback function. Once the result is ready, the server invokes the callback method with the result.

Asynchronous syntax:
method('argl', 'arg2', ..., callback method) ;
For example:

//Open a new primary tab with the Salesforce home page in it
sforce.console.openPrimaryTab (null, 'http://www.salesforce.com',
false, 'Salesforce', callback);

Working with Force.com Canvas

To integrate the Salesforce Console with external applications that require authentication methods, such as signed requests or OAuth
2.0 protocols, Salesforce recommends you use Force.com Canvas.

18

Salesforce Console Integration Toolkit for Salesforce Classic Best Practices

Force.com Canvas and the Salesforce Console Integration Toolkit are similar—they're a set of tools and JavaScript APIs that developers
can use to add third-party systems to Salesforce. However, one of the benefits of Force.com Canvas, is the ability to choose authentication
methods. For more information, see the Force.com Canvas Developer’s Guide.

@ Nofte: Fora canvas app to appear in a console, you must add it to the console as a custom console component.

When developing a canvas app, and you want to include functionality from the Salesforce Console Integration Toolkit, do the following:
1. Include the console integration toolkit APl in index. 7 sp.
2. Ifyour console has a whitelist for domains, add the domain of your canvas app to the whitelist.

3. Call sfdc.canvas.client.signedrequest () to storethe signed request needed by the console integration toolkit
API. For example, if the Force.com Canvas method of authentication is a signed request, do the following:

Sfdc.canvas.client.signedrequest ('<%$=signedRequest%>")

If the Force.com Canvas method of authentication is OAuth, do the following in the callback function used to get the context as
shown in “Getting Context in Your Canvas App” in the Force.com Canvas Developer's Guide:

Sfdc.canvas.client.signedrequest (msqg)

Consider the following when working with the Salesforce Console Integration Toolkit and canvas apps:

e The console integration toolkit API script depends on the signed request and should be added after the call to
Sfdc.canvas.client.signedrequest () hasexecuted. We recommend that you load the scripts dynamically.
e Toretrieve the entity ID of the record that is associated with the canvas sidebar component, do the following:
// Get signedRequest
var signedRequest = Sfdc.canvas.client.signedrequest();
var parsedRequest = JSON.parse (signedRequest) ;

// get the entity Id that is associated with this canvas sidebar component.
var entityId = parsedRequest.context.environment.parameters.entityId;

e Toretrieve the entityId for OAuth, do the following:
var entityId = msg.payload.environment.parameters.entityId;

To see an example on how to retrieve msg . payload, see the Force.com Canvas Developer's Guide.

SEE ALSO:
Salesforce Canvas Developer Guide : Getting Context in Your Canvas App
Salesforce Help: Add Console Components to Apps in Salesforce Classic

Salesforce Help: Whitelist Domains for a Salesforce Console in Salesforce Classic

Best Practices

Salesforce recommends that you adhere to a few best practices as you use the Salesforce Console Integration Toolkit.

e Many of the methods in the Salesforce Console Integration Toolkit are asynchronous and return their results using a callback method.
We recommend that you refer to the documentation for each method to understand the information for each response.

e Errors generated by the Salesforce Console Integration Toolkit are typically emitted in a way that doesn't halt JavaScript processing.
Therefore, we recommend that you use a tool such as Firebug for Firefox to monitor the JavaScript console and to help you debug
your code.

19

https://developer.salesforce.com/docs/atlas.en-us.210.0.platform_connect.meta/platform_connect/canvas_app_getting_context_code_example.htm
https://help.salesforce.com/HTViewHelpDoc?id=console2_components_create_app.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_whitelist_domains.htm&language=en_US
https://addons.mozilla.org/en-US/firefox/addon/firebug/?src=ss

Salesforce Console Integration Toolkit for Salesforce Classic Best Practices

e Todisplay Visualforce pages properly in the Salesforce Console, we recommend you:

— Accept the default setting showHeader="true" andset sidebar="false" onthe apex:page taq.

- Set Behavior on custom buttons and links that include methods from the toolkit to display in an existing window without
a sidebar or header. For more information, see Define Custom Buttons and Links” in the Salesforce online help.

e When using Firefox, we recommend that you don't call closeTab () on atab with an active alert box because the browser may
not load properly.

e Duplicate tabs might open when users initiate methods with invalid URLs. We recommend that you check URLs for validity before
you include them in methods.

e Toprevent External Page from displaying as a tab name, we recommend that you specify the tabLabel argument on
methods such as openPrimaryTab () and openSubtab ().

e Forinformation on how you can customize, extend, or integrate the sidebars of the Salesforce console using Visualforce, see “Customize
a Console with Custom Components in Salesforce Classic” in the Salesforce online help.

e To enable the toolkit for third-party domains, add the domains to the whitelist of the Salesforce console.

e The Salesforce Console Integration Toolkit methods don't work in nested iFrames. For example, when you embed a Visualforce page
into a page layout or use a custom quick action in a feed, the APl method works as expected. However, if Development Mode is
enabled in your org, the APl method doesn't work because an iFrame is automatically added.

20

CHAPTER 5 Methods for Salesforce Classic

If your org is using Salesforce Classic, use Salesforce Console Integration Toolkit methods.

IN THIS SECTION:
Methods for Primary Tabs and Subtabs
Methods for Navigation Tabs
Methods for Computer-Telephony Integration (CTI)
Methods for Application-Level Custom Console Components
Methods for Push Notifications
Methods for Console Events
Methods for Live Agent
Methods for Omni-Channel

Methods for Primary Tabs and Subtabs

A Salesforce console displays Salesforce pages as primary tabs or subtabs. A primary tab displays the main item to work on, such as an
account. A subtab displays related items, such as an account’s contacts or opportunities.

IN THIS SECTION:

closeTab()

Closes a specified primary tab or subtab. Note that closing the first tab in a primary tab closes the primary tab itself. This method is
only available in APl version 20.0 or later.

disableTabClose()

Prevents a user from closing a tab or a subtab. If the ID parameter doesn't specify a tab, the enclosing tab is used. You can also use
this method to re-enable a tab that has been disabled. Available in APl version 41.0 or later.

focusPrimaryTabByld()

Focuses the browser on a primary tab that is already open with the specified ID. This method is only available in APl version 22.0 or
later.

focusPrimaryTabByName()

Focuses the browser on a primary tab that is already open with the specified name. This method is only available in APl version 22.0
or later.

21

Methods for Salesforce Classic Methods for Primary Tabs and Subtabs

focusSidebarComponent()

Focuses the browser on a sidebar component. Use this method to focus on a component with the tab or accordion sidebar style.
For more information, see “Sidebar Styles for Console Components in Salesforce Classic” in the Salesforce Help. This method is only
available in APl version 34.0 or later.

focusSubtabByld()

Focuses the browser on a subtab that is already open with the specified ID. This method is only available in APl version 22.0 or later.

focusSubtabByNameAndPrimaryTabld()

Focuses the browser on a subtab that is already open with the specified name and primary tab ID. This method is only available in
APl version 22.0 or later.

focusSubtabByNameAndPrimaryTabName()

Focuses the browser on a subtab that is already open with the specified name and primary tab name. This method is only available
in APl version 22.0 or later.

generateConsoleUrl()

Generates a URL to a tab, or group of related tabs, in the Salesforce console. If any tabs include external URLs, then add the external
URLs to the console’s whitelist so that they can display correctly. For more information, see “Whitelist Domains for a Salesforce
Console in Salesforce Classic” in the online help. This method is only available in APl version 28.0 or later.
getEnclosingPrimaryTabld()

Returns the ID of the current primary tab. This method works within a primary tab or subtab, not within the navigation tab or custom
console components. This method is only available in API version 20.0 or later.

getEnclosingPrimaryTabObjectld()

Returns the object ID of the current primary tab, which contains a subtab. For example, a case ID or account ID. This method works
within a primary tab or subtab. This method is only available in APl version 24.0 or later.

getEnclosingTabld()

Returns the ID of the tab that contains the current Visualforce page, which may be a primary tab or subtab. This method will work
if the call is made within a component enclosed within a subtab. This method is only available in APl version 20.0 or later.
getFocusedPrimaryTabld()

Returns the ID of the primary tab on which the browser is focused. This method is only available in API version 25.0 or later.

getFocusedPrimaryTabObjectld()
Returns the object ID of the primary tab on which the browser is focused. This method is only available in APl version 25.0 or later.

getFocusedSubtabld()

Returns the ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only available in
APl version 25.0 or later.

getFocusedSubtabObjectld()

Returns the object ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only
available in APl version 24.0 or later.

getPagelnfo()

Returns page information for the specified tab after its content has loaded. If the tab ID is null, it returns page information for the
enclosing primary tab or subtab. Note that to get the page information from a custom console component, a tabId must be
passed as the first parameter to this method.This method is only available in APl version 26.0 or later.

getPrimaryTablds()
Returns all of the IDs of open primary tabs. This method is only available in APl version 26.0 or later.

22

Methods for Salesforce Classic Methods for Primary Tabs and Subtabs

getSubtablds()

Returns all of the IDs of the subtabs on the primary tab specified by a primary tab ID. If the primary tab ID is null, it returns the IDs of
the subtabs on the current primary tab. This method can only be called from a custom console component or a detail page overwritten
by a Visualforce page. This method is only available in APl version 26.0 or later.

getTabLink()

Retrieves the URL to a tab, or group of related tabs, from the Salesforce console. This method is only available in APl version 28.0 or
later.

isinConsole()

Determines if the page is in the Salesforce console. This method is only available in APl version 22.0 or later.

onEnclosingTabRefresh()
Registers a function to call when the enclosing tab refreshes. This method is only available in API version 24.0 or later.

onFocusedSubtab()

Registers a function to call when the focus of the browser changes to a different subtab. This method is only available in API version
24.0 or later.

onTabSave()

Registers and calls a callback method when a user clicks Save in a subtab’s Unsaved Changes dialog box. When using this method,
call setTabUnsavedChanges () inthe callback method. This notifies the console that the custom save operation completed.
Inthe callto setTabUnsavedChanges (), pass thefirst parameteras false toindicate a successful save or true toindicate
an unsuccessful save. This method is only available in APl version 28.0 or later.

openConsoleUrl()

Opens a URL created by the generateConsoleUrl () method (a URL to a tab, or group of related tabs, in the Salesforce
console). This method is only available in APl version 28.0 or later.

openPrimaryTab()

Opens a new primary tab to display the content of the specified URL, which can be relative or absolute. You can also override an
existing tab. This method is only available in APl version 20.0 or later.

openSubtab()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can
also override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's ID. This method is only available
in APl version 20.0 or later.

openSubtabByPrimaryTabName()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can
also override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's name. This method is only available
in APl version 22.0 or later.

refreshPrimaryTabBylId()

Refreshes a primary tab specified by ID, including its subtabs. This method can't refresh subtabs with URLs to external pages or
Visualforce pages. This method is only available in APl version 22.0 or later.

refreshPrimaryTabByName()

Refreshes a primary tab specified by name, including its subtabs. This method can't refresh subtabs with URLs to external pages or
Visualforce pages. This method is only available in APl version 22.0 or later.

refreshSubtabByld()

Refreshes a subtab with the last known URL with a specified ID. This method can't refresh a subtab if the last known URL is an external
page or a Visualforce page. This method is only available in APl version 22.0 or later.

23

Methods for Salesforce Classic closeTab()

refreshSubtabByNameAndPrimaryTabld()

Refreshes a subtab with the last known URL with the specified name and primary tab ID. This method can't refresh a subtab if the
last known URL is an external page or a Visualforce page. This method is only available in APl version 22.0 or later.
refreshSubtabByNameAndPrimaryTabName()

Refreshes a subtab with the last known URL with the specified name and primary tab name. This method can't refresh a subtab if
the last known URL is an external page or a Visualforce page. This method is only available in APl version 22.0 or later.
reopenlastClosedTab()

Reopens the last closed primary tab, and any of its subtabs that were open, the moment it was closed. This method is only available
in APl version 35.0 or later.

resetSessionTimeOut()

Resets a session timeout on a Visualforce page so that users can continue working without being logged out. This method is only
available in APl version 24.0 or later.

setTabUnsavedChanges()

Sets the unsaved changes icon (4) on subtabs to indicate unsaved data. This method is only available in APl version 23.0 or later.
setTablcon()

Sets an icon on the specified tab. If a tab is not specified, the icon is set on the enclosing tab. Use this method to customize a tab’s
icon. This method is only available in APl version 28.0 or later.

setTabLink()

Sets a console tab’s URL attribute to the location of the tab’s content. Use this method to generate secure console URLs when users
navigate to tabs displaying content outside of the Salesforce domain.This method is only available in APl version 28.0 or later.
setTabStyle()

Sets a cascading style sheet (CSS) on the specified tab. If a tab is not specified, the CSS is set on the enclosing tab. Use this method
to customize a tab’s look and feel. This method is only available in APl version 28.0 or later.

setTabTextStyle()

Sets a cascading style sheet (CSS) on a specified tab’s text. If a tab is not specified, the CSS is set on the enclosing tab’s text. Use this
method to customize a tab’s text style. This method is only available in APl version 28.0 or later.

setTabTitle()

Sets the title of a primary tab or subtab. This method is only available in APl version 20.0 or later.

closeTab ()

Closes a specified primary tab or subtab. Note that closing the first tab in a primary tab closes the primary tab itself. This method is only
available in APl version 20.0 or later.

Syntax

sforce.console.closeTab (id:String, (optional) callback:Function)

Arguments
Name Type Description
id string ID of the primary tab or subtab to close.

24

Methods for Salesforce Classic closeTabl)

Name Type Description

callback function For API version 35.0 or later, the JavaScript method that's called upon completion
of the method.

Sample Code API 20.0 or Later-Visualforce

<apex:page standardController="Case">

Click here to close this tab

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testCloseTab () {
//First find the ID of the current tab to close it
sforce.console.getEnclosingTabId (closeSubtab);

var closeSubtab = function closeSubtab (result) {
//Now that we have the tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab (tabId);
}i
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response

None

Sample Code API Version 35.0 or Later-Visualforce

<apex:page standardController="Case">

Click here to close this tab

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var callback = function () {
if (result.error) {
alert ("Error message is " + result.error);
}
}i
function testCloseTab () {

//First find the ID of the current tab to close it
sforce.console.getEnclosingTabId (closeSubtab) ;

25

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic disableTabClosel()

var closeSubtab = function closeSubtab (result) {
//Now that we have the tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab (tabId, callback);
}i
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

success boolean true if the tab was re-opened, false otherwise.

error string Error message if the tab couldn't be closed.

O Tip: When using Firefox, we recommend that youdon't call closeTab () onatabwith an active alert box because the browser
may not load properly.

disableTabClose ()

Prevents a user from closing a tab or a subtab. If the ID parameter doesn't specify a tab, the enclosing tab is used. You can also use this
method to re-enable a tab that has been disabled. Available in API version 41.0 or later.

@ Note:

e Ifyou disable subtabs from closing, the primary tab is also disabled from closing.
e Ifarecordis deleted whose primary tab is disabled, the tab is forcibly closed.

e [farecordis deleted whose subtab is disabled, the subtab is not closed.

Syntax

sforce.console.disableTabClose (disable:boolean, (optional) tabId:String, (optional)
callback: Function)

Arguments
Name Type Description
disable boolean Specifies whether to disable the tab. If true, the user can'tclose thetab.If false,

the user can close the tab.

26

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic disableTabClosel()

Name

tabId

Type Description

string The tabld for the tab to enable or disable. Use false to automatically select the
enclosing tab or subtab without needing to specify a tabld. The enclosing tabld can't
be inferred when this call is made from outside a sidebar component. For example,
if you call this method from a footer widget, specify the tabld. If the tabld is for a
“Details” subtab of a primary tab, the primary tabld is used instead.

callback function JavaScript method that's called upon completion of the method. The callback is

passed a response object. See response information below.

Sample Code-Visualforce

<apex:page >

<html>

<head>
<title>Disable close Tab on Load</title>

<!-- Service Console integration API library -->
<script src="/support/console/41.0/integration.js"></script>

<!-- Callback functions to handle tab events -->

<script type="text/javascript">

function displayResultsCallback(result) {
var resDiv = document.getElementById("eventResults");
resDiv.innerHTML = JSON.stringify (result);
// For use within a tab's sidebar (you don't need tab ID)
function testDisableTabCloseTrueWithoutId() {

sforce.console.disableTabClose (true, false, displayResultsCallback);

function testDisableTabCloseFalseWithoutId() {
sforce.console.disableTabClose (false, false, displayResultsCallback);

// For use anywhere (you need the tab ID)

// Note: Your tab ID might be different than the one used here.

// You can get the tab ID many different ways,
// including sforce.console.getEnclosingTabId() .
// See the documentation for details.

function testDisableTabCloseTrueWithId() {
var tabIld = window.prompt ("Enter the tab ID","scc-pt-0");
sforce.console.disableTabClose (true, tabId, displayResultsCallback);

function testDisableTabCloseFalseWithId() {
var tabId = window.prompt ("Enter the tab ID","scc-pt-0");
sforce.console.disableTabClose (false, tabId, displayResultsCallback);

27

Methods for Salesforce Classic disableTabClosel()

</script>
</head>

<body>
<hl>Disable Tab Close Examples</hl>

<h2>API Callback Result</h2>

<code><div id="eventResults" /></code>

<h2>With No Tab ID</h2>
<p>The tab ID will be auto-detected by context, or the event will fail.</p>

Disable closing for the enclosing tab

Re-enable closing for the enclosing tab

<h2>With Tab ID Provided</h2>
<p>When the event context doesn't have a detectable tab ID, you can
supply it yourself.</p>

Disable closing for a specific tab (via tab ID)

Re-enable closing for a specific tab (via tab ID)

</body>
</html>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

success boolean true if the action completed successfully, false otherwise.

message string If the action completed successfully, message contains the affected tabld. If the

action failed, message contains the error message.

28

Methods for Salesforce Classic focusPrimaryTabByld()

focusPrimaryTabById()

Focuses the browser on a primary tab that is already open with the specified ID. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.focusPrimaryTabById (id:String, (optional)callback:Function)

Arguments
Name Type Description
id string ID of the primary tab to go to.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to go to an open primary tab by id

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testFocusPrimaryTabById() {
//Get the value for 'scc-pt-0' from the openPrimaryTab method
//This value is for example purposes only
var primaryTabId = 'scc-pt-0';
sforce.console.focusPrimaryTabById (primaryTabId, focusSuccess);

var focusSuccess = function focusSuccess (result) {
//Report whether going to the open primary tab was successful
if (result.success == true) {
alert ('Going to the primary tab was successful');
} else {

alert ('Going to the primary tab was not successful');
}i
</script>
</apex:page>

@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

29

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic focusPrimaryTabByName()

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if going to the primary tab was successful; false if going to the primary

tab wasn't successful.

focusPrimaryTabByName ()

Focuses the browser on a primary tab that is already open with the specified name. This method is only available in API version 22.0 or
later.

Syntax

sforce.console.focusPrimaryTabByName (name:String, (optional)callback:Function)

Arguments
Name Type Description
name string Name of the primary tab to go to.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to go to a primary tab by name

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testFocusPrimaryTabByName () {
//Get the value for 'myPrimaryTab' from the openPrimaryTab method
//This value is for example purposes only
var primaryTabName = 'myPrimaryTab';
sforce.console.focusPrimaryTabByName (primaryTabName, focusSuccess)

var focusSuccess = function focusSuccess (result) {
//Report whether going to the primary tab was successful
if (result.success == true) ({
alert ('Going to the primary tab was successful');
} else {
alert ('Going to the Primary tab was not successful');

30

Methods for Salesforce Classic focusSidebarComponent()

}i
</script>
</apex:page>

@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if going to the primary tab was successful; false if going to the primary

tab wasn't successful.

focusSidebarComponent ()

Focuses the browser on a sidebar component. Use this method to focus on a component with the tab or accordion sidebar style. For
more information, see “Sidebar Styles for Console Components in Salesforce Classic” in the Salesforce Help. This method is only available
in APl version 34.0 or later.

Syntax

sforce.console.focusSidebarComponent (componentInfo:string (optional)tabld:string,
callback:Function)

Arguments
Name Type Description
componentInfo string The JSON object that represents the component to focus on. This argument must

include one of the following forms:

Unambiguous types:

¢ {componentType: 'CASE EXPERT WIDGET' }
¢ {componentType: 'FILES WIDGET' }

¢ {componentType: 'HIGHLIGHTS PANEL' }

¢ {componentType: 'KNOWLEDGE ONE'}

¢ {componentType: 'MILESTONE WIDGET' }

® {componentType: 'TOPICS WIDGET' }

® {componentType: 'VISUALFORCE' }

31

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic focusSubtabByld()

Name Type Description

Types that require additional parameters:

® {componentType: 'CANVAS', canvasAppld:
'09Hxx0000000001"}

® {componentType: 'RELATED LIST', listName:
'Solution'}

® {componentType: 'LOOKUP', fieldName: 'Account'}
® {componentType: 'VISUALFORCE', pageName: 'VF1'}

tabId string The ID of the tab on which to focus the browser.

callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {}
if (result.success) {
alert ('Congratulations!');
lelse{
alert ('Something is wrong!');

}i
function focusKnowledgeComponent () {
sforce.console. focusSidebarComponent (JSON.stringify ({componentType:
'KNOWLEDGE_ONE'}),"scc—st—Z", callback) ;
}
</script>
Focus Knowledge Component
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if focusing the sidebar component was successful; false otherwise.
focusSubtabById()

Focuses the browser on a subtab that is already open with the specified ID. This method is only available in APl version 22.0 or later.

32

Methods for Salesforce Classic focusSubtabByld()

Syntax

sforce.console.focusSubtabById(id:String, (optional)callback:Function)

Arguments
Name Type Description
id string ID of the subtab to go to.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case'">

Click here to go to a subtab by id

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testFocusSubtabById() {
//Get the value for 'scc-st-0' from the openSubtab method
//This value is for example purposes only
var subtabId = 'scc-st-0';
sforce.console.focusSubtabById(subtabId, focusSuccess);

var focusSuccess = function focusSuccess (result) {
//Report whether going to the subtab was successful
if (result.success == true) ({
alert ('Going to the subtab was successful');
} else {
alert ('Going to the subtab was not successful');

}i
</script>
</apex:page>

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

33

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic focusSubtabByNameAndPrimaryTabld()

Name Type Description
success boolean true if going to the subtab was successful; false if going to the subtab wasn't
successful.

focusSubtabByNameAndPrimaryTabId ()

Focuses the browser on a subtab that is already open with the specified name and primary tab ID. This method is only available in AP
version 22.0 or later.

Syntax

sforce.console. focusSubtabByNameAndPrimaryTabId (name:String,
primaryTabId:String, (optional)callback:Function)

Arguments
Name Type Description
name string Name of the subtab to go to.
primaryTabId string ID of the primary tab in which the subtab opened.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to go to a subtab by name and primary tab ID

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testFocusSubtabByNameAndPrimaryTabId() {
//Get the values for 'mySubtab' and 'scc-pt-0' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabId = 'scc-pt-0';
sforce.console. focusSubtabByNameAndPrimaryTabId (subtabName, primaryTabId,
focusSuccess) ;
}

var focusSuccess = function focusSuccess (result) {
//Report whether going to the subtab was successful
if (result.success == true) {

alert ('Going to the subtab was successful');
} else {
alert ('Going to the subtab was not successful');

34

Methods for Salesforce Classic focusSubtabByNameAndPrimaryTabName()

}i
</script>
</apex:page>

@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if going to the subtab was successful; false if going to the subtab wasn't

successful.

focusSubtabByNameAndPrimaryTabName ()

Focuses the browser on a subtab that is already open with the specified name and primary tab name. This method is only available in
APl version 22.0 or later.

Syntax

sforce.console.focusSubtabByNameAndPrimaryTabName (name:String,
primaryTabName:String, (optional)callback:Function)

Arguments
Name Type Description
name string Name of the subtab to go to.
primaryTabName string Name of the primary tab in which the subtab opened.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to go to a subtab by name and primary tab name

<apex:includeScript value="/support/console/41.0/integration.js"/>

35

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic generateConsoleUrl()

<script type="text/javascript">

function testFocusSubtabByNameAndPrimaryTabName () {
//Get the value for 'mySubtab' and 'myPrimaryTab' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabName = 'myPrimaryTab';
sforce.console.focusSubtabByNameAndPrimaryTabName (subtabName, primaryTabName,

focusSuccess) ;
}

var focusSuccess = function focusSuccess (result) {
//Report whether going to the subtab was successful
if (result.success == true) {

alert ('Going to the subtab was successful');
} else {
alert ('Going to the subtab was not successful');
bi
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if going to the subtab was successful; false if going to the subtab wasn't

successful.

generateConsoleUrl ()

Generates a URL to a tab, or group of related tabs, in the Salesforce console. If any tabs include external URLs, then add the external URLs
to the console’s whitelist so that they can display correctly. For more information, see “Whitelist Domains for a Salesforce Console in
Salesforce Classic” in the online help. This method is only available in APl version 28.0 or later.

Syntax

sforce.console.generateConsoleUrl (urls:String, (optional)callback:Function)

36

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic getEnclosingPrimaryTabld|)

Arguments
Name Type Description
urls string An array of URLs. The first URL is a primary tab and subsequent URLs are subtabs.
Note that the last URL is the subtab on which the console is focused. These URLs
can be standard Salesforce URLs or relative URLs.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>

Click here to generate a console URL

<script type="text/javascript">
function showConsoleUrl (result)
alert (result.consoleUrl) ;

}

function testGenerateConsoleURL() {
sforce.console.generateConsoleUrl ([/apex/pagename, /entityId,
www.externalUrl.com, Standard Salesforce Url/entityId], showConsoleUrl); }
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

consoleUrl string Console URL that represents the array of URLs passed into Salesforce.

success boolean true if the URL was generated successfully, false if otherwise.

callback function JavaScript method that's called upon completion of the method.

getEnclosingPrimaryTabId()

Returns the ID of the current primary tab. This method works within a primary tab or subtab, not within the navigation tab or custom
console components. This method is only available in API version 20.0 or later.

Syntax

sforce.console.getEnclosingPrimaryTabId((optional)callback: function)

37

Methods for Salesforce Classic getEnclosingPrimaryTabObjectld()

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to close this primary tab

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testCloseTab () {
//First find the ID of the current primary tab to close it
sforce.console.getEnclosingPrimaryTabId (closeSubtab) ;

var closeSubtab = function closeSubtab (result) {
//Now that we have the primary tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab (tabId);
}i
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

id string The ID of the current primary tab that contains this tab.

getEnclosingPrimaryTabObjectId()

Returns the object ID of the current primary tab, which contains a subtab. For example, a case ID or account ID. This method works within
a primary tab or subtab. This method is only available in API version 24.0 or later.

Syntax

sforce.console.getEnclosingPrimaryTabObjectId((optional)callback: Function)

38

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic getEnclosingTabld()

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to get enclosing primary tab object ID

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testGetEnclosingPrimaryTabObjectId() {
sforce.console.getEnclosingPrimaryTabObjectId (showObjectId) ;

var showObjectId = function showObjectId(result) {
// Display the object ID
alert ('Object ID: ' + result.id);
}i
</script>
</apex:page>

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

id string The ID of the current primary tab that contains this subtab.

success boolean true ifreturning the enclosing primary tab was successful; false if returning

the enclosing primary tab wasn't successful.

getEnclosingTabId ()

Returns the ID of the tab that contains the current Visualforce page, which may be a primary tab or subtab. This method will work if the
call is made within a component enclosed within a subtab. This method is only available in APl version 20.0 or later.

Syntax

sforce.console.getEnclosingTabId ()

39

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic getFocusedPrimaryTabld()

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to close this tab

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testCloseTab () {
//First find the ID of the current tab to close it
sforce.console.getEnclosingTabId (closeSubtab) ;

var closeSubtab = function closeSubtab (result) {
//Now that we have the tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab (tabId);
}i
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

id string The ID of the current primary tab or subtab.

getFocusedPrimaryTabId ()

Returns the ID of the primary tab on which the browser is focused. This method is only available in API version 25.0 or later.

Syntax

sforce.console.getFocusedPrimaryTabId ((optional) callback:Function)

40

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic getFocusedPrimaryTabObijectld|)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to get the focused primary tab ID

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testGetFocusedPrimaryTabId() {
sforce.console.getFocusedPrimaryTabld (showTabId) ;
}
var showTabId = function showTabId(result) ({
//Display the tab ID
alert ('Tab ID: ' + result.id);
}i

</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
id string The ID of the primary tab on which the browser is focused. If no primary tab is open,
the IDis null.
success boolean true ifreturning the primary tab ID on which the browser is focused was successful;
false if returning the primary tab ID on which the browser is focused wasn't
successful.

getFocusedPrimaryTabObjectId()

Returns the object ID of the primary tab on which the browser is focused. This method is only available in APl version 25.0 or later.

Syntax

sforce.console.getFocusedPrimaryTabObjectId((optional) callback:Function)

4

Methods for Salesforce Classic getFocusedSubtabld()

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to get the focused primary tab object ID

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testGetFocusedPrimaryTabObjectId () {
sforce.console.getFocusedPrimaryTabObjectId (showObjectId) ;
}
var showObjectId = function showObjectId(result) {
//Display the object ID
alert ('Object ID: ' + result.id);
}i

</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
id string The object ID of the primary tab on which the browser is focused. If there is no
primary tab open, the ID is null.
success boolean true if returning the primary tab object ID on which the browser is focused was
successful; false if returning the primary tab object ID on which the browser is
focused wasn't successful.
getFocusedSubtabId()

Returns the ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only available in AP
version 25.0 or later.

Syntax

sforce.console.getFocusedSubtabId((optional)callback:Function)

42

Methods for Salesforce Classic getFocusedSubtabObijectld|)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get the ID of the focused subtab

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testGetFocusedSubtabId() {
sforce.console.getFocusedSubtabId (showTabId) ;
}
var showTabId = function showTabId(result) {
// Display the tab ID
alert ('Tab ID: ' + result.id);
}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
id string The ID of the subtab on which the browser is focused. If no subtab is open, the ID is
null.
success boolean true ifreturning the ID of the focused subtab was successful; f£alse ifreturning

the ID of the focused subtab wasn't successful.

getFocusedSubtabObjectId()

Returns the object ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only available
in APl version 24.0 or later.

Syntax

sforce.console.getFocusedSubtabObjectId((optional)callback: Function)

43

Methods for Salesforce Classic getPagelnfol)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to get the object ID of the focused subtab

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testGetFocusedSubtabObjectId() {
sforce.console.getFocusedSubtabObjectId (showObjectId) ;

var showObjectId = function showObjectId(result) {
// Display the object ID
alert ('Object ID: ' + result.id);
}i
</script>
</apex:page>

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
id string The object ID of the subtab on which the browser is focused. If no subtab is open,
the IDis null.
success boolean true if returning the object ID of the focused subtab was successful; false if
returning the object ID of the focused subtab wasn't successful.
getPagelInfo ()

Returns page information for the specified tab after its content has loaded. If the tab ID is null, it returns page information for the enclosing
primary tab or subtab. Note that to get the page information from a custom console component, a tabId must be passed as the first
parameter to this method.This method is only available in APl version 26.0 or later.

Syntax

sforce.console.getPagelInfo (tabId:String, (optional)callback:Function)

44

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic getPagelnfo()

Arguments
Name Type Description
tabId string ID of the tab from which page information is returned.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get page information

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testGetPageInfo() {
//Get the page information of 'scc-pt-1'
//This value is for example purposes only
var tabId = 'scc-pt-1';
sforce.console.getPageInfo (tabId , showPageInfo);

var showPageInfo = function showPageInfo (result) {
alert ('Page Info: ' + result.pagelnfo);
}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

pageInfo string Returns the URL of the current page as a JSON string, and includes any applicable object ID, object

name, object type, and for APl version 33.0 or later, the object tab name. For example:

{"url":"https://yourInstance.salesforce.com/001x0000003DGOR",
"dojectId":""001x0000003) ", "dojectName" : "Aare", "doject" : "Account", "displayNane" : "Canpany’

For APlversion 31.0 and later, invoking this APl method on a PersonAccount object returns the following
additional information.

e accountld or contactld, the associated account or contact ID

e personAccount, which is t rue if the object is a PersonAccount and false otherwise

For example:

{"url":"https://yourInstance.salesforce.com/001x0000003DGQR",
"objectId":"001x0000003DGQOR", "objectName":"Acme Person Account",

45

Methods for Salesforce Classic getPrimaryTablds|)

Name Type Description

"object":"Account", "contactId":"003D000000QOMgg",
"personAccount":true}

callback function JavaScript method that's called upon completion of the method.

getPrimaryTablIds ()

Returns all of the IDs of open primary tabs. This method is only available in APl version 26.0 or later.

Syntax

sforce.console.getPrimaryTabIds ((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get the primary tab IDs

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testGetPrimaryTabIds () {
sforce.console.getPrimaryTabIds (showTabId) ;

var showTabId = function showTabId(result) {
//Display the primary tab IDs
alert ('Primary Tab IDs: ' + result.ids);
}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

ids string An array of open primary tab IDs, in order of appearance.

46

Methods for Salesforce Classic getSubtabldsi()

Name Type Description

success boolean true if returning the IDs of open primary tabs was successful; false if returning
the IDs of open primary tabs wasn't successful.

getSubtablIds ()

Returns all of the IDs of the subtabs on the primary tab specified by a primary tab ID. If the primary tab ID is null, it returns the IDs of the
subtabs on the current primary tab. This method can only be called from a custom console component or a detail page overwritten by
a Visualforce page. This method is only available in APl version 26.0 or later.

Syntax

sforce.console.getSubtabIds((optional) primaryTabId:String, (optional) callback:Function)

Arguments
Name Type Description
primaryTabId string ID of the primary tab from which the subtab IDs are returned.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get the subtab IDs

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testGetSubtabIds () {
//Get the subtabs of the primary tab 'scc-pt-0'
//This value is for example purposes only
var primaryTabId = 'scc-pt-0';
sforce.console.getSubtablds (primaryTabId , showTabId);

var showTabId = function showTabId(result) {
//Display the subtab IDs
alert ('Subtab IDs: ' + result.ids);
}i
</script>
</apex:page>

47

Methods for Salesforce Classic gefTabLinki()

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

ids string An array of open subtab IDs.

success boolean true iffiring the event was successful; £alse iffiring the eventwasn't successful.
getTabLink ()

Retrieves the URL to a tab, or group of related tabs, from the Salesforce console. This method is only available in APl version 28.0 or later.

Syntax

sforce.console.getTabLink (level:String, (optional) tabId:String,
(optional)callback: Function)

Arguments

Name Type Description
level string Level that matches one of the Link to Share options in the Salesforce console user
interface. The options are:

e All primary tabs and subtabs —
sforce.console.TabLink.PARENT AND CHILDREN.

e Only the specified tab — sforce.console.TabLink.TAB ONLY

* Astandard Salesforce URL —
sforce.console.TabLink.SALESFORCE URL

For more information, see “Tabs and Navigation in the Salesforce Classic Console”
in the online help.

tabId string Optional tab ID of the tab from which you're retrieving the URL. If you do not pass
atab ID, the URL to the current tab is returned.

callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>

Click here to get tab link

<script type="text/javascript">

48

Methods for Salesforce Classic isinConsolel()

var getEnclosingPrimaryTabId = function getEnclosingPrimaryTabId() {
sforce.console.getEnclosingPrimaryTabId (getTabLink) ;
}
var getTabLink = function getTabLink (result) {
sforce.console.getTabLink (sforce.console.TabLink.PARENT AND CHILDREN, result.id,
showTabLink) ;
}
var showTabLink = function showTabLink (result) {
var link = result.tablLink;
}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
tabLink string The retrieved URL.
success boolean true if the link was retrieved successfully, false if retrieving was unsuccessful.
callback function JavaScript method that’s called upon completion of the method.

isInConsole ()

Determines if the page is in the Salesforce console. This method is only available in API version 22.0 or later.

Syntax

sforce.console.isInConsole ()

Arguments

None

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to check if the page is in the Service Cloud console

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testIsInConsole() {
if (sforce.console.isInConsole()) {
alert ('in console');
} else {

49

Methods for Salesforce Classic onEnclosingTabRefresh()

alert ('not in console');

}
</script>
</apex:page>

@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response

Returns true if the page is in the Salesforce console; £alse if the page is not in the Salesforce console.

onEnclosingTabRefresh ()

Registers a function to call when the enclosing tab refreshes. This method is only available in APl version 24.0 or later.

Syntax

sforce.console.onEnclosingTabRefresh (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the enclosing tab refreshes.

Sample Code-Visualforce
<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>

<script type="text/javascript">
var eventHandler = function eventHandler (result) {
alert ('Enclosing tab has refreshed:' + result.id
+ 'and the object Id is:' + result.objectId);
}i
sforce.console.onEnclosingTabRefresh (eventHandler) ;
</script>
</apex:page>

Event Handler Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

50

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic onFocusedSubtab)

Name Type Description

id string The ID of the refreshed tab.

objectId string The object ID of the refreshed tab or null if no object exists.
onFocusedSubtab ()

Registers a function to call when the focus of the browser changes to a different subtab. This method is only available in APl version 24.0
or later.
Syntax

sforce.console.onFocusedSubtab (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the focus of the browser changes to a different

subtab.

Sample Code-Visualforce
<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>

<script type="text/javascript">

var eventHandler = function (result) {
alert ('Focus changed to a different subtab. The subtab Id is:'

+ result.id + 'and the object Id is:' + result.objectId);
}i
sforce.console.onFocusedSubtab (eventHandler) ;

</script>

</apex:page>

Event Handler Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

fields:
Name Type Description
id string The ID of the subtab on which the browser is focused.
objectId string The object ID of the subtab on which the browser is focused or nullif no object exists.

51

Methods for Salesforce Classic onTabSave()

onTabSave ()

Registers and calls a callback method when a user clicks Save in a subtab’s Unsaved Changes dialog box. When using this method, call
setTabUnsavedChanges () in the callback method. This notifies the console that the custom save operation completed. In the
callto setTabUnsavedChanges (), pass the first parameter as false to indicate a successful save or true to indicate an
unsuccessful save. This method is only available in APl version 28.0 or later.

Registering a callback method affects the user interface. When no save handler is registered, the user is presented with two options
when closing a subtab with unsaved changes: Continue or Cancel. When a save handler is registered, the user is presented with three
options when closing the subtab: Save, Don’t Save, or Cancel. In this scenario, the callback method registered is called when the user
chooses Save.

(:) Important: When using onTabSave () with setTabUnsavedChanges ():

e (alling sforce.console.setTabUnsavedChanges (false, ...) closesthe specified subtab. We recommend
placing the callto sforce.console.setTabUnsavedChanges () atthe end of the callback method, as any
subsequent save logic might not execute.

e onTabSave () worksonly on subtabs or their sidebar components. It doesn't work on primary tabs.

e Notcalling sforce.console.setTabUnsavedChanges () will have a severe effect on the user interface. For
example, closing a primary tab with a subtab for which sforce.console.setTabUnsavedChanges () hasnot
been called preventsa Saving. . . modal dialog box from closing.

* Any callback passed to sforce.console.setTabUnsavedChanges () will not execute if the specified tab saves
successfully and closes.

Nofe: Calling onTabSave () from a custom console component prevents that component from refreshing when saving the

subtab. For more information on custom console components, see “Customize a Console with Custom Components in Salesforce
Classic” in the Salesforce online help.

Syntax

sforce.console.onTabSave (callback: Function)

Arguments
Name Type Description
callback function JavaScript method called to handle the save operation.

Sample Code-Visualforce

<apex:page>

Click here to register save handler

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testOnTabSave () {
sforce.console.onTabSave (handleSave) ;

52

Methods for Salesforce Classic openConsoleUrl()

var handleSave = function handleSave (result) {
alert ('save handler called from tab with id ' + result.id +
' and objectId ' + result.objectId);
//Perform save logic here

//Mark tab as 'clean'
sforce.console.setTabUnsavedChanges (false, undefined, result.id);
}i
</script>
</apex:page>

Response

Name Type Description

id string ID of the subtab being saved.

objectId string Object ID of the subtab being saved, if applicable; null otherwise.

openConsoleUrl ()

Opens a URL created by the generateConsoleUrl () method (a URL to atab, or group of related tabs, in the Salesforce console).
This method is only available in APl version 28.0 or later.

Syntax

sforce.console.openConsoleUrl (id:String, consoleUrl:URL, active:Boolean,
(optional) tabLabels:String, (optional) tabNames:String, (optional)callback:Function)

Arguments

Name Type Description

id string ID of the console tab to override. If the ID corresponds to an existing primary tab,
then the existing primary tab is redirected to the given URL because the console
prevents duplicate tabs. Use null to create a new primary tab.

consoleUrl string Console URL that represents the array of URLs passed into Salesforce.

active boolean If true, the opened primary tab displays immediately. If false, the opened
primary tab displays in the background and the current tab maintains focus.

tabLabels string Optional array of labels of the opened primary tab or subtabs. The order in which
the tabs appear in the console URL should match the order of the labels that appear
in the array. If you do not want to set the labels of tabs, use an empty string (').

tabNames string Optional array of names of the opened primary and subtabs. The order in which the

tabs appear in the console URL should match the order of the names that appear in
the array. If you do not want to set the names of tabs, use an empty string (' ').

53

Methods for Salesforce Classic openPrimaryTabl()

Name Type Description

callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>

Click here to open a console URL

<script type="text/javascript">
var generateConsoleUrl = function testGenerateConsoleURL() {
sforce.console.generateConsoleUrl ([/apex/pagename, /entityIld,
www.externalUrl.com, Standard Salesforce Url/entityId], showConsoleUrl);
}

var openConsoleUrl = function showConsoleUrl (result) {
sforce.console.openConsoleUrl (null, result.consoleUrl, true, ['Apex', '"',
'Salesforce', ''1, ['', '', 'externalUrl', ''])
}
</script>

</apex:page>

@ Nofe: This example shows that if you want to set a label or name, you must set the other values to empty string (* 7).

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the console URL was opened successfully, false otherwise.

openPrimaryTab ()
Opens a new primary tab to display the content of the specified URL, which can be relative or absolute. You can also override an existing
tab. This method is only available in APl version 20.0 or later.

e IfthelD corresponds to an existing primary tab, the existing tab is redirected to the given URL because the Salesforce console prevents
duplicate tabs.

e Ifthe URL s to a Salesforce object, that object displays as specified in the Salesforce console app settings. For example, if cases are
set to open as a subtab of their parent accounts, and openPrimaryTab () is called on a case, the case opens as subtab on its
parent account's primary tab.

If there's an error opening the tab, the error code is reported in the JavaScript console.

54

Methods for Salesforce Classic openPrimaryTabl)

Syntax

sforce.console.openPrimaryTab (id:String, url:URL, active:Boolean,
(optional) tabLabel:String, (optional)callback:Function, (optional)name)

Arguments

Name Type Description

id string ID of the primary tab to override.
Use null tocreate a new primary tab.

If the ID corresponds to an existing primary tab, the existing tab is redirected to the
given URL because the Salesforce console prevents duplicate tabs.

url URL URL of the opened primary tab.

If the URL is to a Salesforce object, that object displays as specified in the Salesforce
console app settings. For example, if cases are set to open as a subtab of their parent
accounts,and openPrimaryTab () iscalled onacase, the case opens as subtab
on its parent account's primary tab.

Users can open an external URL if it's been added to the console’s whitelist. For more
information, see “Whitelist Domains for a Salesforce Console in Salesforce Classic” in
the online help.

@ Note: When using a relative URL, make sure that you include " /" at the
beginning of your URL. When pointing to a Visualforce page, use " /apex /"
atthe beginning of your URL. Otherwise, your URL might not work as expected.

active boolean If true, the opened primary tab displays immediately. If false, the opened
primary tab displays in the background and the current tab maintains focus.

tabLabel string Optional label of the opened primary tab. If a label isn't specified, External
Page displays.

Add labels as text; HTML isn't supported.

callback function JavaScript method called upon completion of the method.

name string Optional name of the opened primary tab.

This argument is only available in APl version 22.0 and later.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to open a new primary tab

<apex:includeScript value="/support/console/41.0/integration.js"/>

55

Methods for Salesforce Classic openSubtabl)

<script type="text/javascript">
function testOpenPrimaryTab () {
//Open a new primary tab with the salesforce.com home page in it
sforce.console.openPrimaryTab (null, 'http://www.salesforce.com', false,
'salesforce', openSuccess, 'salesforceTab');

var openSuccess = function openSuccess (result) {
//Report whether opening the new tab was successful
if (result.success == true) {

alert ('Primary tab successfully opened');
} else {
alert ('Primary tab cannot be opened');
bi
</script>

</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

success boolean true if the tab successfully opened; false if the tab didn't open.

id string ID of the primary tab. IDs are only valid during a user session; IDs become invalid

when a user leaves the Salesforce console.
openSubtab ()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can also
override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's ID. This method is only available in AP
version 20.0 or later.

If there's an error opening the tab, the error code is reported in the JavaScript console.

Syntax

sforce.console.openSubtab (primaryTabId:String, url:URL, active:Boolean, tabLabel:String,
id:String, (optional)callback:Function, (optional)name:String)

56

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic openSubtab)

Arguments
Name Type Description
primaryTabId string ID of the primary tab in which the subtab opened.
url URL URL of the opened subtab.

If the URL is to a Salesforce object, that object displays as specified in the Salesforce

console app settings. For example, if cases are set to open as a primary tab, and

openSubtab () is called on a case, the case opens as a primary tab.

Users can open an external URL if it's been added to the console’s whitelist. For more

information, see “Whitelist Domains for a Salesforce Console in Salesforce Classic” in

the online help.
@ Notfe: When using a relative URL, make sure that you include " /" at the
beginning of your URL. When pointing to a Visualforce page, use " /apex /"
atthe beginning of your URL. Otherwise, your URL might not work as expected.
active boolean If true, the opened subtab displays immediately. If false, the opened subtab
displays in the background and the current tab maintains focus.
tabLabel string Optional label of the opened subtab. If a label isn't specified, External Page
displays.
Add labels as text; HTML isn't supported.
id string ID of the subtab to override.

Use null to create a new subtab.
callback function JavaScript method called upon completion of the method.
name string Optional name of the opened subtab.

This argument is only available in APl version 22.0 and later.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to open a new subtab

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testOpenSubtab () {
//First find the ID of the primary tab to put the new subtab in
sforce.console.getEnclosingPrimaryTabId (openSubtab) ;

var openSubtab = function openSubtab (result) {
//Now that we have the primary tab ID, we can open a new subtab in it

57

Methods for Salesforce Classic openSubtabByPrimaryTabName()

var primaryTabId = result.id;
sforce.console.openSubtab (primaryTabId , 'http://www.salesforce.com', false,

'salesforce', null, openSuccess, 'salesforceSubtab');

var openSuccess = function openSuccess (result) {
//Report whether we succeeded in opening the subtab
if (result.success == true) {

alert ('subtab successfully opened');
} else {
alert ('subtab cannot be opened');

}i
</script>
</apex:page>

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

success boolean true if the subtab successfully opened; false if the subtab didn't open.

id string ID of the subtab. IDs are only valid during a user session; IDs become invalid when

the user leaves the Salesforce console.

openSubtabByPrimaryTabName ()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can also
override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's name. This method is only available in API
version 22.0 or later.

If there's an error opening the tab, the error code is reported in the JavaScript console.

Syntax

sforce.console.openSubtabByPrimaryTabName (primaryTabName:String, url:URL, active:Boolean,
tabLabel:String, id:String, (optional)callback:Function, (optional)name:String)

Arguments
Name Type Description
primaryTabName string Name of the primary tab in which the subtab opened.

58

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic openSubtabByPrimaryTabNamel()

Name Type Description

url URL URL of the opened subtab.

If the URL is to a Salesforce object, that object displays as specified in the Salesforce
console app settings. For example, if cases are set to open as a primary tab, and
openSubtab () is called on a case, the case opens as a primary tab.

Users can open an external URL if it's been added to the console’s whitelist. For more
information, see “Whitelist Domains for a Salesforce Console in Salesforce Classic” in
the online help.

active boolean If true, the opened subtab displays immediately. If £alse, the opened subtab
displays in the background and the current tab maintains focus.

tabLabel string Optional label of the opened subtab. If a label isn't specified, External Page
displays.
Add labels as text; HTML isn't supported.

id string ID of the subtab to override.

Use null to create a new subtab.

callback function JavaScript method called upon completion of the method.

name string Optional name of the opened subtab.

This argument is only available in APl version 22.0 and later.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to open a new subtab by primary tab name

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testOpenSubtabByPrimaryTabName () {
//First open a primary tab by name
sforce.console.openPrimaryTab (null, 'http://www.yahoo.com', true, 'Yahoo',
openSubtab, 'yahoo');
}

var openSubtab = function openSubtab (result) {
//Open the subtab by the name specified in function
testOpenSubtabByPrimaryTabName ()
sforce.console.openSubtabByPrimaryTabName ('yahoo', 'http://www.salesforce.com',
true,
'salesforce', null, openSuccess);

b

var openSuccess = function openSuccess (result) {

59

Methods for Salesforce Classic refreshPrimaryTabByld()

//Report whether we succeeded in opening the subtab
if (result.success == true) {

alert ('subtab successfully opened');
} else {

alert ('subtab cannot be opened');

}i
</script>
</apex:page>

@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

success boolean true if the subtab successfully opened; false if the subtab didn't open.

id string ID of the subtab. IDs are only valid during a user session; IDs become invalid when

the user leaves the Salesforce console.

refreshPrimaryTabById()

Refreshes a primary tab specified by ID, including its subtabs. This method can't refresh subtabs with URLs to external pages or Visualforce
pages. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshPrimaryTabById (id:String, active:Boolean, (optional)callback:Function,
(optional) fullRefresh:Boolean)

Arguments
Name Type Description
id string ID of the primary tab to refresh.
active boolean If true, the refreshed primary tab displays immediately. If £alse, the refreshed
primary tab displays in the background.
callback function JavaScript method that's called upon completion of the method.
fullRefresh boolean Enables a full refresh of the entire case feed.

60

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic refreshPrimaryTabByName()

Sample Code-Visualforce

<apex:page standardController="Case'">

Click here to refresh a primary tab by id

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testRefreshPrimaryTabById() {
//Get the value for 'scc-pt-0' from the openPrimaryTab method
//This value is for example purposes only
var primaryTabId = 'scc-pt-0';
sforce.console.refreshPrimaryTabById (primaryTabId, true, refreshSuccess);

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the primary tab was successful
if (result.success == true) ({

alert ('Primary tab refreshed successfully');
} else {
alert ('Primary did not refresh');
}i
</script>

</apex:page>

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the primary tab refreshed successfully; false if the primary tab didn't

refresh.

refreshPrimaryTabByName ()

Refreshes a primary tab specified by name, including its subtabs. This method can't refresh subtabs with URLs to external pages or
Visualforce pages. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshPrimaryTabByName (name:String, active:Boolean,
(optional) callback:Function), (optional)fullRefresh:Boolean)

61

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic refreshPrimaryTabByNamel()

Arguments
Name Type Description
name string Name of the primary tab to refresh.
active boolean If true, the refreshed primary tab displays immediately. If £alse, the refreshed
primary tab displays in the background.
callback function JavaScript method that's called upon completion of the method.
fullRefresh boolean Enables a full refresh of the entire case feed.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to refresh a primary tab by name

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testRefreshPrimaryTabByName () {
//Set the name of the tab by using the openPrimaryTab method
//This value is for example purposes only
var primaryTabName = 'myPrimaryTab';

sforce.console.refreshPrimaryTabByName (primaryTabName, true, refreshSuccess);

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the primary tab was successful
if (result.success == true) {
alert ('Primary tab refreshed successfully');
} else {
alert ('Primary tab did not refresh');

bi
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

62

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic refreshSubtabByld()
Name Type Description
success boolean true if the primary tab refreshed successfully; false if the primary tab didn't
refresh.
refreshSubtabById ()

Refreshes a subtab with the last known URL with a specified ID. This method can't refresh a subtab if the last known URL is an external
page or a Visualforce page. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshSubtabById(id:String, active:Boolean, (optional)callback:Function,
(optional) fullRefresh:Boolean)

Arguments

Name
id

active

callback

fullRefresh

Type Description
string ID of the subtab to refresh.
boolean If t rue, the refreshed subtab displaysimmediately. If £a1se, the refreshed subtab

displays in the background.
function JavaScript method that's called upon completion of the method.

boolean Enables a full refresh of the entire case feed.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to refresh a subtab by id

<apex:includeScript value="/support/console/41.0/integration.js"/>

<script

type="text/javascript">

function testRefreshSubtabById() {

var

//Set the name of the tab by using the openSubtab method

//This value is for example purposes only

var subtabId = 'scc-st-0';
sforce.console.refreshSubtabById(subtabId, true, refreshSuccess);

refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the subtab was successful
if (result.success == true) {

alert ('Subtab refreshed successfully');
} else {

63

Methods for Salesforce Classic refreshSubtabByNameAndPrimaryTabld|)

alert ('Subtab did not refresh');
bi
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the subtab refreshed successfully; false if the subtab didn't refresh.

refreshSubtabByNameAndPrimaryTabId ()

Refreshes a subtab with the last known URL with the specified name and primary tab ID. This method can't refresh a subtab if the last
known URL is an external page or a Visualforce page. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshSubtabByNameAndPrimaryTablId (name:String, primaryTabId:String,
active:Boolean, (optional)callback:Function, (optional)fullRefresh:Boolean)

Arguments
Name Type Description
name string Name of the subtab to refresh.
primaryTabId string ID of the primary tab in which the subtab opened.
active boolean If t rue, the refreshed subtab displays immediately. If £a1se, the refreshed subtab
displays in the background.
callback function JavaScript method that's called upon completion of the method.
fullRefresh boolean Enables a full refresh of the entire case feed.

Sample Code-Visualforce

<apex:page standardController="Case">

64

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic refreshSubtabByNameAndPrimaryTabName()

Click here to refresh a subtab by name and primary tab ID

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testRefreshSubtabByNameAndPrimaryTabId() {
//Get the value for 'mySubtab' and 'scc-pt-0' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabId = 'scc-pt-0';
sforce.console.refreshSubtabByNameAndPrimaryTabId (subtabName, primaryTablId,
true, refreshSuccess);
}

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the subtab was successful
if (result.success == true) {
alert ('Subtab refreshed successfully');
} else {
alert ('Subtab did not refresh');

}i
</script>
</apex:page>

Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the subtab refreshed successfully; false if the subtab didn't refresh.

refreshSubtabByNameAndPrimaryTabName ()

Refreshes a subtab with the last known URL with the specified name and primary tab name. This method can't refresh a subtab if the
last known URL is an external page or a Visualforce page. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshSubtabByNameAndPrimaryTabName (name:String, primaryTabName:String,
active:Boolean, (optional)callback:Function, (optional)fullRefresh:Boolean)

65

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic refreshSubtabByNameAndPrimaryTabNamel()

Arguments
Name Type Description
name string Name of the subtab to refresh.
primaryTabName string Name of the primary tab in which the subtab opened.
active boolean If t rue, the refreshed subtab displays immediately. If false,the refreshed subtab
displays in the background.
callback function JavaScript method that's called upon completion of the method.
fullRefresh boolean Enables a full refresh of the entire case feed.

Sample Code-Visualforce

<apex:page standardController="Case'">

Click here to refresh a subtab by name and primary tab name

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testRefreshSubtabByNameAndPrimaryTabName () {
//Get the value for 'mySubtab' and 'myPrimaryTab' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabName = 'myPrimaryTab';
sforce.console.refreshSubtabByNameAndPrimaryTabName (subtabName, primaryTabName,
true, refreshSuccess);

}

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the subtab was successful
if (result.success == true) {
alert ('Subtab successfully refreshed');
} else {
alert ('Subtab did not refresh');

}i
</script>
</apex:page>
@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links

in the Salesforce help.

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

66

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic reopenLastClosedTab()

Name Type Description

success boolean true if the subtab refreshed successfully; false if the subtab didn't refresh.

reopenlLastClosedTab ()

Reopens the last closed primary tab, and any of its subtabs that were open, the moment it was closed. This method is only available in
APl version 35.0 or later.

Syntax

sforce.console.reopenLastClosedTab ()

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var = callback = function (result) {
if (result.success) {
alert ('Last tab was re-opened!');
} else {
alert ('No tab was re-opened.');
}
i
function reopenlastClosedTabTest () {

sforce.console.reopenlastClosedTab (callback) ;

</script>
Re-open Last Closed Tab
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
field:

67

Methods for Salesforce Classic resetSessionTimeOut()

Name Type Description

success boolean true if the tab was reopened, false otherwise.

resetSessionTimeOut ()

Resets a session timeout on a Visualforce page so that users can continue working without being logged out. This method is only available
in APl version 24.0 or later.

For more information, see Modify Session Security Settings.

Syntax

sforce.console.resetSessionTimeOut ()

Arguments

None

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to reset session timeout

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testResetSessionTimeOut () {
sforce.console.resetSessionTimeOut () ;
bi
</script>
</apex:page>

Nofe: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response

None

setTabUnsavedChanges ()

Sets the unsaved changes icon (4) on subtabs to indicate unsaved data. This method is only available in APl version 23.0 or later.
Syntax

sforce.console.setTabUnsavedChanges (unsaved:Boolean, callback:Function,

(optional) subtabId:String)

68

https://help.salesforce.com/apex/HTViewHelpDoc?id=admin_sessions.htm&language=en_US#admin_sessions
https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic

Arguments

Name
unsaved
callback

subtabId

Type
boolean

function

string

sefTabUnsavedChangesi)

Description
If true, the tabis marked as having unsaved changes.
JavaScript method that's called upon completion of the method.

The ID of the subtab that is marked as having unsaved changes.

This argument is only available in APl version 25.0 or later.

Sample Code API Version 23.0 or Later-Visualforce

<apex:page standardController="Case">

Click here to indicate this tab has unsaved changes

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testSetTabUnsavedChanges () {
sforce.console.setTabUnsavedChanges (true, displayResult);

b

function displayResult (result) {

if (result.success)

{

alert ('Tab status has been successfully updated');

} else {

alert ('Tab status couldn’t be updated');

</script>
</apex:page>

@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links

in the Salesforce help.

Response

This method returns its response in an object in a callback method. The response object contains the following field:

Name

success

Type

boolean

Description

true if update was successful; false if update wasn't successful.

Sample Code API Version 25.0 or Later-Visualforce

<apex:page standardController="Case">

Click here to indicate this tab has unsaved changes

69

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic setTablcon()

<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">
function testSetTabUnsavedChanges () {
sforce.console.getFocusedSubtablId (setTabDirty) ;
}i
function setTabDirty(result) {
sforce.console.setTabUnsavedChanges (true, displayResult, result.id);
}i
function displayResult (result) {
if (result.success) {
alert ('Tab status has been successfully updated');
} else {
alert ('Tab status couldn’t be updated');

bi
</script>
</apex:page>

@ Nofte: Thisexampleis only set to run if the Visualforce page is inside an application-level custom component. For more information,
see Methods for Application-Level Custom Console Components on page 95.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
success boolean true if returning the focused subtab ID was successful; false ifif returning the
focused subtab ID wasn't successful.
setTablIcon ()

Sets an icon on the specified tab. If a tab is not specified, the icon is set on the enclosing tab. Use this method to customize a tab's icon.
This method is only available in APl version 28.0 or later.

Syntax

sforce.console.setTablIcon (iconUrl:String, tabID:String, (optional)callback:Function)

Arguments
Name Type Description
iconUrl string A URL pointing to an image, which is used as the tab’s icon. If null or undefined, the
tab’s default icon is used.
tabId string The ID of the tab on which to set the icon. If null or undefined, the enclosing tab’s

ID is used.

70

Methods for Salesforce Classic setTabLink()

Name Type Description

callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to change the enclosing tab’s icon

Click here to reset the enclosing tab’s icon

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {
alert('Tab icon set successfully!');
} else {
alert ('Tab icon cannot be set!');

function testSetTabIcon() {
sforce.console.setTabIcon ('http://host/path/to/your/icon.png', null,
checkResult) ;
}
function testResetTablIcon () {
sforce.console.setTabIcon (null, null, checkResult);
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true ifsetting the tab’sicon was successful, false if setting the tab’sicon wasn't

successful.

@ Note: If this method is called without passing in a tab ID, the tab in which the Visualforce page is enclosed is used. If there isn't
an enclosing tab, the error message Cannot get a workspace or view tab from the given ID displays
in the browser’s developer console.

setTabLink ()

Sets a console tab’s URL attribute to the location of the tab’s content. Use this method to generate secure console URLs when users
navigate to tabs displaying content outside of the Salesforce domain.This method is only available in APl version 28.0 or later.

71

Methods for Salesforce Classic sefTabStyle()

Syntax

sforce.console.setTabLink ((optional)callback: Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Account">

<apex: detail />
<apex:includeScript value="/support/console/41.0/integration.js"/>

<script type="text/javascript">
window.onload = function() {
sforce.console.setTabLink () ;
}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
success boolean true if the link was set successfully, false if setting was unsuccessful.
callback function JavaScript method that's called upon completion of the method.
setTabStyle ()

Sets a cascading style sheet (CSS) on the specified tab. If a tab is not specified, the CSS is set on the enclosing tab. Use this method to

customize a tab’s look and feel. This method is only available in APl version 28.0 or later.

Syntax

sforce.console.setTabStyle (style:String, (optional)callback:Function)

tabId:String,

72

Methods for Salesforce Classic sefTabStyle()

Arguments
Name Type Description
style string A CSS specification string used to style the tab. If null or undefined, the tab’s default
style is used.
tabId string The ID of the tab on which to set the style. If null or undefined, the enclosing tab’s
IDis used.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to change the enclosing tab’s background color to red

Click here to reset the enclosing tab’s style

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {
alert ('Tab style set successfully!');
} else {
alert ('Tab style cannot be set!');

function testSetTabStyle() {
sforce.console.setTabStyle ('background:red; "', null, checkResult);

function testResetTabStyle () {
sforce.console.setTabStyle (null, null, checkResult);
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true ifsetting the tab’s style was successful, false if setting the tab’s style wasn't

successful.

73

Methods for Salesforce Classic sefTabTextStylel)

@ Note: If this method is called without passing in a tab ID, the tab in which the Visualforce page is enclosed is used. If there isn't
an enclosing tab, the error message Cannot get a workspace or view tab from the given ID displays
in the browser’s developer console.

setTabTextStyle ()

Sets a cascading style sheet (CSS) on a specified tab's text. If a tab is not specified, the CSS is set on the enclosing tab’s text. Use this
method to customize a tab’s text style. This method is only available in APl version 28.0 or later.

Syntax

sforce.console. setTabTextStyle (style:String, tabID:String, (optional)callback:Function))

Arguments
Name Type Description
style string A CSS specification string used to set a tab's text style. If null or undefined, the tab’s
default text style is used.
tabId string The ID of the tab on which to set the text style. If null or undefined, the enclosing
tab’s ID is used.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to change the enclosing tab’s text style

Click here to reset the enclosing tab’s text style

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {
alert ('Tab text style set successfully!');
} else {
alert ('Tab text style cannot be set!');

function testSetTabTextStyle() {
sforce.console.setTabTextStyle ('color:blue; font-style:italic;"', null,
checkResult) ;

}
function testResetTabTextStyle () {
sforce.console.setTabTextStyle(null, null, checkResult);

74

Methods for Salesforce Classic sefTabTitle()

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the tab’s text style was successful, false if setting the tab’s text

style wasn't successful.

@ Note: If this method is called without passing in a tab ID, the tab in which the Visualforce page is enclosed is used. If there isn't
an enclosing tab, the error message Cannot get a workspace or view tab from the given ID displays
in the browser’s developer console.

setTabTitle ()

Sets the title of a primary tab or subtab. This method is only available in APl version 20.0 or later.

Syntax

sforce.console.setTabTitle (tabTitle:String, (optional)tabID:String)

Arguments
Name Type Description
tabTitle string Title of a primary tab or subtab.
tabId string The ID of the tab in which to set the title.

This argument is only available in APl version 25.0 or later.

Sample Code-Visualforce API Version 20.0 or Later

<apex:page standardController="Case">

Click here to change this tab's title

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testSetTabTitle() {
//Set the current tab's title
sforce.console.setTabTitle ('My New Title');

75

Methods for Salesforce Classic Methods for Navigation Tabs

</script>
</apex:page>

@ Note: To see this example in action, click the custom link on a case. For more information, see Define Custom Buttons and Links
in the Salesforce help.

Response

None

Sample Code-Visualforce API Version 25.0 or Later

<apex:page>

Click here to change the title of the focused primary tab

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testSetTabTitle() {
sforce.console.getFocusedPrimaryTabId (function (result) {
sforce.console.setTabTitle ('My New Title', result.id);

I

</script>
</apex:page>

@ Nofte: Thisexampleis only set to run if the Visualforce page is inside an application-level custom component. For more information,
see Methods for Application-Level Custom Console Components on page 95.

Response

None

Methods for Navigation Tabs

A Salesforce console displays a navigation tab from which users can select objects to view lists or home pages. Administrators choose
the objects that users can access from a navigation tab. For more information, see “Salesforce Console Navigation Tab” and “Set Up a
Salesforce Console App in Salesforce Classic” in the online help.

IN THIS SECTION:

focusNavigationTab()
Focuses the browser on the navigation tab. This method is only available in APl version 31.0 or later.

getNavigationTabs()
Returns all of the objects in the navigation tab. This method is only available in APl version 31.0 or later.

getSelectedNavigationTab()
Returns the selected object in the navigation tab. This method is only available in API version 31.0 or later.

76

https://help.salesforce.com/apex/HTViewHelpDoc?id=defining_custom_links.htm&language=en_US

Methods for Salesforce Classic focusNavigationTabl)

refreshNavigationTab()
Refreshes the selected navigation tab. This method is only available in APl version 31.0 or later.

setSelectedNavigationTab()
Sets the navigation tab with a specific ID or URL. This method is only available in APl version 31.0 or later.

focusNavigationTab ()

Focuses the browser on the navigation tab. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.focusNavigationTab ((optional)callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {}
if (result.success) {
alert ('success');
}
else{
alert ('Something is wrong.');
}
}i
sforce.console.focusNavigationTab (callback) ;
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if returning the object IDs was successful; false otherwise.

77

Methods for Salesforce Classic getNavigationTabsi)

getNavigationTabs ()

Returns all of the objects in the navigation tab. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.getNavigationTabs ((optional)callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
var id;
if (result.success) {
var tempIltem = JSON.parse (result.items);
for (var 1 = 0, len = tempItem.length; i < len; i++) {

alert ('Label:'+tempIltem[i].label+'listViewURLl: "'+tempItem[i].listViewUrl+'navTabid:'
+tempItem[i] .navigationTabId+'Selected ' +templtem[i].selected);
}
} else {
alert ('something is wrong!');
}
i
sforce.console.getNavigationTabs (callback);
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

menultems object The IDs of objects in the navigation tab.

success boolean true if returning the IDs of objects in the navigation tab was successful, false

otherwise.

78

Methods for Salesforce Classic getSelectedNavigationTab)

getSelectedNavigationTab ()

Returns the selected object in the navigation tab. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.getSelectedNavigationTab ((optional)callback: Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {}
if (result.success) {
alert ('the navigation tab id is ' + result.navigationTabId + ' and navigation

url is ' + result.listViewUrl):;
} else {
alert ('something is wrong!');

}i
sforce.console.getSelectedNavigationTab (callback) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
navigationTabId string The object ID of the selected object.
listViewUrl object The list view URL of the selected object.
label object The label of the selected object.
selected boolean true ifreturning the selected field of the object was successful, false otherwise.
success boolean true if returning the object IDs was successful, false otherwise.

79

Methods for Salesforce Classic refreshNavigationTabl()

refreshNavigationTab ()

Refreshes the selected navigation tab. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.refreshNavigationTab ((optional)callback: Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {}
if (result.success) {
alert ('success');
}
else{
alert ('Something is wrong.');
}
}i
sforce.console.refreshNavigationTab (callback) ;
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if refreshing the navigation tab was successful, false otherwise.

setSelectedNavigationTab ()

Sets the navigation tab with a specific ID or URL. This method is only available in APl version 31.0 or later.

80

Methods for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

Syntax

sforce.console.setSelectedNavigationTab ((optional)callback, navigatorTabId: (optional) string,
url: (optional) string)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.
navigatorTabId string The ID of the navigation tab to be selected.
url string The URL of the navigation tab to be selected.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
var callback = function (result) {}
if (result.success) {
alert ('Successful');
} else {
alert ('something is wrong!');

bi
sforce.console.setSelectedNavigationTab (callback, 'nav-tab-4");
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the navigation tab with a specific ID or URL was successful, false

otherwise.

Methods for Computer-Telephony Integration (CTI)

Salesforce Call Center seamlessly integrates Salesforce with Computer-Telephony Integration systems. Developers create a CTl system
with Open CTl and console users access telephony features through a softphone, which is a call-control tool that appears in the footer
of a console. For more information, see “Salesforce Open CTI" and “Salesforce Call Center” in the Salesforce Help.

81

Methods for Salesforce Classic fireOnCallBegin()

IN THIS SECTION:

fireOnCallBegin()

Fires an event that notifies a call has begun. Use to get information or send information between an interaction log and a custom
console component. This method is only available in APl version 31.0 or later.

fireOnCallEnd()

Fires an event that notifies a call has ended. Use to get information or send information between an interaction log and a custom
console component. This method executes when fireOnCallBegin () is called first. This method is only available in API
version 31.0 or later.

fireOnCallLogSaved()

Callsthe eventHandler functionregistered with onCallLogSaved () .Usetogetinformation or send information between
an interaction log and a custom console component.. This method is only available in APl version 31.0 or later.
getCallAttachedData()

Returns the attached data of a call represented by the call object ID or null if there isnt an active call. The data is returned in JSON
format. This method is for computer-telephony integration (CTl); it's only available in APl version 24.0 or later.

getCallObjectlds()

Returns any active call object IDs in the order in which they arrived or null if there aren’t any active calls. This method is for
computer-telephony integration (CTI); it's only available in APl version 24.0 or later.

onCallBegin()

Registers a function that is called when a call begins (comes in). This method is for computer-telephony integration (CTI); it's only
available in APl version 24.0 or later.

onCallEnd()

Registers a function that is called when a call ends. This method is for computer-telephony integration (CTl); it's only available in API
version 24.0 or later.

onCallLogSaved()

Registers a function that is fired when an interaction log saves a call log. Use to get information or send information between an
interaction log and a custom console component. This method is only available in APl version 31.0 or later.

onSendCTIMessage()

Registers a function that s fired when a message is sent with the sendCTIMessage () . Use to getinformation or send information
between an interaction log and a custom console component. This method is only available in APl version 31.0 or later.
sendCTIMessage()

Sends a message to the CTl adapter or Open CTI. This method is for computer-telephony integration (CTI); it's only available in API
version 24.0 or later.

setCallAttachedData()

Sets the call data associated with a call object ID. Use to get information or send information between an interaction log and a
custom console component.This method is only available in API version 31.0 or later.

setCallObjectlds()

Sets call object IDs, in ascending order of arrival. This method is only available in APl version 31.0 or later.

fireOnCallBegin ()

Fires an event that notifies a call has begun. Use to get information or send information between an interaction log and a custom console
component. This method is only available in APl version 31.0 or later.

82

Methods for Salesforce Classic fireOnCallEnd))

Syntax

sforce.console.cti.fireOnCallBegin(callObjectId:String, callType:String, calllabel:String,
(optional)callback:Function)

Arguments

Name Type Description

callObjectId string The object ID of the call.

callType string String that specifies the call type, which must be internal, inbound or
outbound

callLabel string String that specifies a call as it appears in the Attach Call drop-down button. For
exmnpk,Call Label — Inbound Call 12:52:31 PM

callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to start a call

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

function testFireOnCallBegin () {

sforce.console.cti.fireOnCallBegin('call.794937"' , 'outbound' , 'label 1');

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true iffiring the event is successful, false otherwise.
fireOnCallEnd()

Fires an event that notifies a call has ended. Use to get information or send information between aninteraction log and a custom console
component. This method executes when £ireOnCallBegin () is called first. This method is only available in APl version 31.0 or
later.

83

Methods for Salesforce Classic fireOnCallLogSaved|)

Syntax

sforce.console.cti.fireOnCallEnd(callObjectId:String, callDuration:Number,
callDisposition:String, (optional)callback:Function)

Arguments
Name Type Description
callObjectId string The object ID of the call.
callDuration number Number specifying the duration of the call.
callDisposition string String representing the call’s disposition, such as call successful, left voicemail, or
disconnected.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to end a call

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

function testFireOnCallEnd () {
//Here, 'call.l' refers to a call that is in progress.
sforce.console.cti.fireOnCallEnd('call.l', 60, 'Set Appointment');

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true iffiring the event is successful, false otherwise.

fireOnCallLogSaved ()

Calls the eventHandler function registered with onCallLogSaved (). Use to get information or send information between
an interaction log and a custom console component.. This method is only available in APl version 31.0 or later.

84

Methods for Salesforce Classic fireOnCallLogSaved|)

Syntax

sforce.console.cti.fireOnCalllogSaved(id:String, (optional)callback:Function)

Arguments

Name Type Description

id string The object ID of the saved call log.
callback function

JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var MyCallback = function (result) {

alert ('fireOnCallLogSaved was thrown: ' + result.success);

b

function testFireOnCallLogSaved () {
// Simulates that a call log was saved by passing the task object Id as input.

sforce.console.cti.fireOnCalllLogSaved('00Txx000003gf8u', myCallback);
var callback = function (result) {
alert ('Call Log was saved! Object Id saved is : ' + result.id);
bi
sforce.console.cti.onCalllogSaved(callback);

</script>

Test fireOnCallLogSaved API!
</apex:page>

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true iffiring the event is successful, false otherwise.

85

Methods for Salesforce Classic getCallAttachedDatal)

getCallAttachedData()

Returns the attached data of a call represented by the call object ID or null if there isn't an active call. The data is returned in JSON format.
This method is for computer-telephony integration (CTI); it's only available in APl version 24.0 or later.

Syntax

sforce.console.cti.getCallAttachedData(callObjectId, getCallType, (optional)
callback: Function)

Arguments
Name Type Description
callObjectId string The call object ID of the call that retrieves the attached data.
getCallType boolean true ifthe type of callis returned as either INTERNAL, INBOUND, or ‘'OUTBOUND;
false otherwise. This field is only available in APl version 29.0 or later.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

/* Note: Open CTI needs to set call type to before getting it, and call type is
INTERNAL/INBOUND/OUTBOUND.
*/

var callback2 = function (result) {
alert('Call attached data is ' + result.data + '\n Call Type is ' +
result.type);

}i

/* Retrieving call ID of first call that came in and
* calling getCallAttachedData () to retrieve call data.
*/
var callbackl = function (result) {
if (result.ids && result.ids.length > 0) {
sforce.console.cti.getCallAttachedData (result.ids[0], callback2,
{getCallType:true});
}
}i

//Note that we are using the CTI submodule here
function testGetCallAttachedData () {

sforce.console.cti.getCallObjectIds (callbackl);
}i

86

Methods for Salesforce Classic getCallObjectlds|()

</script>
<hl1>CTI</hl>
<button onclick="testGetCallAttachedData () ">getAttachedData</button>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

data string The attached data of a call in JSON format.

success boolean true ifreturning the attached data was successful; false ifreturning the attached

data wasn't successful.
type string The type of call. Possible values are 'INTERNAL', INBOUND', and 'OUTBOUND'.

getCallObjectIds ()

Returns any active call object IDs in the order in which they arrived or null if there aren’t any active calls. This method is for
computer-telephony integration (CTl); it's only available in APl version 24.0 or later.

Syntax

sforce.console.cti.getCallObjectIds((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert ('Active call object ids: ' + result.ids);

b

//Note that we are using the CTI submodule here
sforce.console.cti.getCallObjectIds (callback);

87

Methods for Salesforce Classic onCallBegin()

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

ids string The call object IDs of active calls or null if no call is active.

success boolean true if returning the active call object IDs was successful; false ifreturning the

active call object IDs wasn't successful.
onCallBegin ()

Registers a function that is called when a call begins (comes in). This method is for computer-telephony integration (CTI); it's only available
in APl version 24.0 or later.

Syntax

sforce.console.cti.onCallBegin(eventHandler:Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a call begins.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert ('Call ' + result.id + '"Just came in!"'");

}i

//Note that we are using the CTI submodule here
sforce.console.cti.onCallBegin (callback) ;
</script>
</apex:page>

88

Methods for Salesforce Classic onCallEnd()

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

id string The call object ID of the call which has begun.

onCallEnd()

Registers a function that is called when a call ends. This method is for computer-telephony integration (CTI); it's only available in AP
version 24.0 or later.

Syntax

sforce.console.cti.onCallEnd(eventHandler:Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a call ends.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
var str = 'Call ' + result.id + ' ended! ';
str += 'Call duration is ' + result.duration + '. ';
str += 'Call disposition is ' + result.disposition;

alert (str);

}i

//Note that we are using the CTI submodule here
sforce.console.cti.onCallEnd(callback);
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

89

Methods for Salesforce Classic onCallLogSaved|)

Name Type Description

id string The call object ID of the call which has ended.

duration string The duration of the call.

disposition string The disposition of the call.
onCalllogSaved()

Registers a function that is fired when an interaction log saves a call log. Use to get information or send information between an interaction
log and a custom console component. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.onCalllogSaved(eventHandler:Function)

Arguments
Name Type Description
eventHandler function Forastandardinteractionlog, eventHandler isafunction thatis executed when

acalllogis saved. Fora custominteractionlog, eventHandler isafunction that
is executed when the fireOnCallLogSaved APlis called in your Visualforce

page.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert('Call Log was saved! Object Id saved is : ' + result.id);
b

sforce.console.cti.onCalllogSaved (callback);
</script>

<p>Registered onCallLogSaved listener...</p>
</apex:page>

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

90

Methods for Salesforce Classic onSendCTIMessagel)

Name Type Description

id string Call log object ID that was saved.

onSendCTIMessage ()

Registers a function that is fired when a message is sent with the sendCTIMessage (). Use to get information or send information
between an interaction log and a custom console component. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.onSendCTIMessage (eventHandler:Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a message is sent with the sendCTIMessage ()

method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert ('sendCTIMessage API sent the following message: ' + result.message);

}i
sforce.console.cti.onSendCTIMessage (callback);

function sendCTIMessage () {
sforce.console.cti.sendCTIMessage ('sending a message to CTI');

}
</script>

Send a message to see your listener receiving it!
</apex:page>

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

91

Methods for Salesforce Classic sendCTIMessagel)

Description

Name Type
The message that was sent with the sendCTIMessage () method.

message string

sendCTIMessage ()

Sends a message to the CTladapter or Open CTI. This method is for computer-telephony integration (CTl); it's only available in API version

24.0 or later.
Syntax
sforce.console.cti.sendCTIMessage (msg, (optional) callback:Function)
Arguments
Name Type Description
msg string Message to send to the adapter.
callback function JavaScript method called when the message is sent.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>

<script type="text/javascript">

var callback = function (result) {

if (result.success) {
alert ('CTI message was sent successfully!');

} else {
alert ('CTI message was not sent successfully.');

}i

//Note that we are using the CTI submodule here
sforce.console.cti.sendCTIMessage('/ANSWER?LINE_NUMBER=1', callback);

</script>
</apex:page>

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following

field:

92

Methods for Salesforce Classic setCallAttachedDatal)

Name Type Description

success boolean true ifsending the message was successful; false if sending the message wasn't
successful.

setCallAttachedData ()

Sets the call data associated with a call object ID. Use to get information or send information between an interaction log and a custom
console component.This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.setCallAttachedData(callObjectId:String, callData:JSON string
callType:String, (optional)callback:Functional)

Arguments
Name Type Description
callObjectId string The object ID of the call.
callData string JSON string that specifies the data to attach to the call.
callType string String that specifies the call type, such as internal, inbound, or outbound.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to set call attached data

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

function testSetCallAttachedData () {
//callData must be a JSON string. We assume that your browser has
//access to a JSON library.
var callData = JSON.stringify ({"ANI":"4155551212", "DNIS":"8005551212"});

//Set the call attached data associated to call id 'call.l'
sforce.console.cti.setCallAttachedData('call.l', callData, 'outbound');
}
</script>
</apex:page>

93

Methods for Salesforce Classic setCallObjectlds|)

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the event firing was successful; false otherwise.

setCallObjectIds ()

Sets call object IDs, in ascending order of arrival. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.setCallObjectIds(callObjectIds:Array, callback:Function)

Arguments
Name Type Description
callObjectId array An array of string IDs specifying the calls to set.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to set call object Ids

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

function checkResult (result) {
if (result.success) {
alert('Call object ids set successfully!');
} else {
alert ('Call object ids cannot be set!');

function testSetCallObjectIds () {
sforce.console.cti.setCallObjectIds(['call.l1', 'call.2', 'call.3'],
checkResult) ;

}
</script>
</apex:page>

94

Methods for Salesforce Classic Methods for Application-Level Custom Console Components

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the call IDs was successful; false otherwise.

Methods for Application-Level Custom Console Components

Custom console components let you customize, extend, or integrate the footer, sidebars, highlights panels, and interaction logs of a
Salesforce console using Visualforce, canvas apps, lookup fields, or related lists. Administrators can add components to either:
e Page layouts to display content on specific pages

e Salesforce console apps to display content across all pages and tabs

For more information, see “Customize a Console with Custom Components in Salesforce Classic” in the Salesforce Help.

IN THIS SECTION:

addToBrowserTitleQueue()
Adds a browser tab title to a list of titles, which rotates every three seconds. This method is only available in APl version 28.0 or later.

blinkCustomConsoleComponentButtonText()

Blinks a button’s text on an application-level custom console component that's on a page. This method is only available in APl version
25.0 or later.

isCustomConsoleComponentPoppedOut()

Determines if a custom console component is popped out from a browser. To use this method, multi-monitor components must
be turned on. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce Classic” in the
online help. This method is only available in APl version 30.0 or later.

isCustomConsoleComponentWindowHidden()

Determines if the application-level custom console component window is hidden. This method is available in APl versions 25.0
through 31.0.

isCustomConsoleComponentHidden()

Determines if the application-level custom console component window is hidden. This method is available in APl version 32.0 and
later. In APl version 31.0 and earlier, this method was called i sCustomConsoleComponentWindowHidden ().
isinCustomConsoleComponent()

Determines if the page is in an application-level custom console component. This method is only available in APl version 25.0 or
later.

onCustomConsoleComponentButtonClicked()

Registers a function to call when a button is clicked on an application-level custom console component. This method is only available
in APl version 25.0 or later.

onFocusedPrimaryTab()

Registers a function to call when the focus of the browser changes to a different primary tab. This method is only available in API
version 25.0 or later.

95

Methods for Salesforce Classic addToBrowserTitleQueue()

removeFromBrowserTitleQueue()
Removes a browser tab title from the list of titles, which rotates every three seconds. This method is only available in APl version
28.0 or later.

runSelectedMacro()
Executes the selected macro in the macro widget. This method is only available in APl version 36.0 or later.

scrollCustomConsoleComponentButtonText()
Scrolls a button’s text on an application-level custom console component that's on a page. This method is only available in AP
version 25.0 or later.

selectMacro()
Selects and displays a specific macro in the macro widget. This method is only available in API version 36.0 or later.

setCustomConsoleComponentButtonlconUrl()

Sets the button icon URL of an application-level custom console component that's on a page. This method is only available in API
version 25.0 or later.

setCustomConsoleComponentButtonStyle()

Sets the style of a button used to launch an application-level custom console component that's on a page. This method is only
available in APl version 25.0 or later.

setCustomConsoleComponentButtonText()
Sets the text on a button used to launch an application-level custom console component that’s on a page. This method is only
available in APl version 25.0 or later.

setCustomConsoleComponentHeight()

Sets the window height of an application-level custom console component that's on a page. This method is available in APl version
32.0 or later.

setCustomConsoleComponentVisible()

Sets the window visibility of an application-level custom console component that's on a page. This method is available in APl version
32.0and later.In APlversion 31.0 and earlier, this method was called setCustomConsoleComponentWindowVisible ().
setCustomConsoleComponentWidth()

Sets the window width of an application-level custom console component that's on a page. This method is available in APl version
32.0 or later.

setCustomConsoleComponentPopoutable()

Sets a custom console component to be popped out or popped into a browser. To use this method, multi-monitor components
must be turned on. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce Classic” in
the online help. This method is only available in APl version 30.0 or later.

setCustomConsoleComponentWindowVisible()
Sets the window visibility of an application-level custom console component that's on a page. This method is available in APl versions
25.0 through 31.0.

setSidebarVisible()
Shows or hides a console sidebar based on tabId and region. This method is available in APl version 33.0 or later.

addToBrowserTitleQueue ()

Adds a browser tab title to a list of titles, which rotates every three seconds. This method is only available in API version 28.0 or later.

96

Methods for Salesforce Classic blinkCustomConsoleComponentButtonText()

Syntax

sforce.console.addToBrowserTitleQueue (title:String, callback:Function)

Arguments
Name Type Description
title string Browser tab title that is displayed.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page >

Click here to enqueue a browser title

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testAddToBrowserTitleQueue () {
var title = 'TestTitle';
sforce.console.addToBrowserTitleQueue (title) ;
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
success boolean If true, the title was successfully added to the browser title queue. If false,the
title wasn't added to the browser title queue.
callback function JavaScript method that's called upon completion of the method.

blinkCustomConsoleComponentButtonText ()

Blinks a button’s text on an application-level custom console component that's on a page. This method is only available in APl version
25.0 or later.

Syntax

sforce.console.blinkCustomConsoleComponentButtonText (alternateText:String, interval:number,
(optional)callback: Function)

97

Methods for Salesforce Classic

Arguments

Name
alternateText
interval

callback

Type
string
number

function

Sample Code-Visualforce

<apex:page>

isCustomConsoleComponentPoppedOut()

Description
The alternate text to display when the button text blinks.
Controls how often the text blinks in milliseconds.

JavaScript method that's called upon completion of the method.

Click here to blink the button text on a custom console component

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testBlinkCustomConsoleComponentButtonText () {
//Blink the custom console component button text
sforce.console.blinkCustomConsoleComponentButtonText ('Hello World', 10,

function (result) {
if

(result.success)

{

alert ('The text blinking starts!');
} else {
alert ('Could not initiate the text blinking!');

}
b
}
</script>
</apex:page>

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following

field:

Name

success

Type

boolean

Description

true if blinking, the button text was successful; false if blinking the button text
wasn't successful.

isCustomConsoleComponentPoppedOut ()

Determines if a custom console component is popped out from a browser. To use this method, multi-monitor components must be
turned on. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce Classic” in the online
help. This method is only available in APl version 30.0 or later.

98

Methods for Salesforce Classic isCustomConsoleComponentWindowHidden|)

Syntax

sforce.console.isCustomConsoleComponentPoppedOut (callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Is this component popped out?

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {
alert ('Is this component popped out: ' + result.poppedOut);
} else {
alert ('Error invoking this method. Check the browser developer console for
more information.');
}

}
function checkPoppedOut () {
sforce.console.isCustomConsoleComponentPoppedOut (checkResult) ;

}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
success boolean true if returning the component’s pop out status was successful; false otherwise.
poppedOut boolean true if the component is popped out; false otherwise.

isCustomConsoleComponentWindowHidden ()

Determines if the application-level custom console component window is hidden. This method is available in APl versions 25.0 through
31.0.

99

Methods for Salesforce Classic isCustomConsoleComponentWindowHidden()

@ Note: If this method is called from a popped out component in a Salesforce console where multi-montior components is turned
on, nothing will happen. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce
Classic” in the online help. Starting in API version 32.0, this method is no longer available and has been replaced by
isCustomConsoleComponentHidden ().Formoreinformation,see”isCustomConsoleComponentHidden ().

Syntax

sforce.console.isCustomConsoleComponentWindowHidden ((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to check if the custom console component window is hidden

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testIsCustomConsoleComponentWindowHidden () {
sforce.console.isCustomConsoleComponentWindowHidden (checkWindowVisibility);

var checkWindowVisibility = function checkWindowVisibility(result) ({
//Display the window visibility
if (result.success) {

alert ('Is window hidden: ' + result.hidden);
} else {
alert ('Error!');

}

</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

hidden boolean true if the custom console component window is hidden; false if the custom

console component window is visible.

100

Methods for Salesforce Classic isCustomConsoleComponentHidden|)

Name Type Description

success boolean true ifreturning the custom console component window visibility was successful;
false if returning the custom console component window visibility wasn't
successful.

isCustomConsoleComponentHidden ()

Determines if the application-level custom console component window is hidden. This method is available in APl version 32.0 and later.
In APl version 31.0 and earlier, this method was called isCustomConsoleComponentWindowHidden ().

Syntax

sforce.console.isCustomConsoleComponentHidden ((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to check if the custom console component window is hidden

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testIsCustomConsoleComponentHidden () {
sforce.console.isCustomConsoleComponentHidden (checkWindowVisibility) ;

var checkWindowVisibility = function checkWindowVisibility (result) {
//Display the window visibility
if (result.success) {

alert ('Is window hidden: ' + result.hidden);
} else {
alert ('Error!');

}
</script>

</apex:page>

101

Methods for Salesforce Classic isinCustomConsoleComponent()

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
hidden boolean true if the custom console component window is hidden; false if the custom
console component window is visible.
success boolean true ifthe isCustomConsoleComponentHidden () call wassuccessful;
false ifthe isCustomConsoleComponentHidden () call wasn't
successful.

isInCustomConsoleComponent ()

Determines if the page is in an application-level custom console component. This method is only available in APl version 25.0 or later.

Syntax

sforce.console.isInCustomConsoleComponent ((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to check if the page is in an app-level custom console component

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testIsInCustomConsoleComponent () {
sforce.console.isInCustomConsoleComponent (checkInComponent) ;

var checkInComponent = function checkInComponent (result) {
//Check if in component
alert('Is in custom console component: ' + result.inCustomConsoleComponent) ;

i

</script>

102

Methods for Salesforce Classic onCustomConsoleComponentButtonClicked()

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
inCustamConsoleComponent boolean true if the page isin a custom console component; false ifthe pageisn'tina
custom console component.
success boolean true if returning the page status was successful; false if returning the page

status wasn't successful.

onCustomConsoleComponentButtonClicked ()

Registers a function to call when a button is clicked on an application-level custom console component. This method is only available
in APl version 25.0 or later.

Syntax

sforce.console.onCustomConsoleComponentButtonClicked (eventHandler: Function)

Arguments
Name Type Description
callback function JavaScript method called when a button is clicked on a custom console component.

Sample Code-Visualforce
<apex:page>

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('The Custom Console Component button is clicked. The component ID
is: ' + result.id +
' and the component window is: ' + (result.windowHidden ? 'hidden'
'visible'));

b

sforce.console.onCustomConsoleComponentButtonClicked (eventHandler) ;
</script>

</apex:page>

103

Methods for Salesforce Classic onFocusedPrimaryTab)

Event Handler Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following

field:
Name Type Description
id string The ID of the custom console component which includes the page.
windowHidden boolean true if the custom console component window is hidden after the button is clicked;
false if the custom console component window is visible after the button is
clicked.

onFocusedPrimaryTab ()

Registers a function to call when the focus of the browser changes to a different primary tab. This method is only available in APl version
25.0 or later.

Syntax

sforce.console.onFocusedPrimaryTab (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the focus of the browser changes to a different

primary tab.

Sample Code-Visualforce
<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>

<script type="text/javascript">

var eventHandler = function (result) {
alert ('Focus changed to a different primary tab. The primary tab ID is:'

+ result.id + 'and the object Id is:' + result.objectId);
}i
sforce.console.onFocusedPrimaryTab (eventHandler) ;

</script>

</apex:page>

Event Handler Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

104

Methods for Salesforce Classic removeFromBrowserTitleQueue|()

Name Type Description

id string The ID of the primary tab on which the browser is focused.

objectId string The object ID of the primary tab on which the browser is focused or null if no object
exists.

removeFromBrowserTitleQueue ()

Removes a browser tab title from the list of titles, which rotates every three seconds. This method is only available in APl version 28.0 or
later.

Syntax

sforce.console.removeFromBrowserTitleQueue (title:String, callback:Function)

Arguments
Name Type Description
title string Browser tab title to remove.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

 {
Click here to enqueue a browser title

Click here to remove browser title

var title = 'TestTitle';
function testAddToBrowserTitleQueue () {
sforce.console.addToBrowserTitleQueue (title) ;
}
function testRemoveFromBrowserTitleQueue () {
sforce.console.removeFromBrowserTitleQueue (title) ;
}
</script>
</apex:page>

105

Methods for Salesforce Classic runSelectedMacro|)

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
success boolean If true, the title was successfully removed from the browser title queue. If false,
the title wasn't removed from the browser title queue.
callback function JavaScript method that's called upon completion of the method.

runSelectedMacro ()

Executes the selected macro in the macro widget. This method is only available in APl version 36.0 or later.

Syntax
sforce.console.runSelectedMacro ((optional)callback:Function)
Arguments
Name Type Description
callback function JavaScript method that is called when the method is completed

Sample Code-Visualforce

<apex:page>
Click here to run a macro
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function executeInWidget () {
sforce.console.runSelectedMacro () ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

cause string Explanation of function failure, if applicable

success boolean true if running the macro was successful; false otherwise

106

Methods for Salesforce Classic scrollCustomConsoleComponentButtonText()

scrollCustomConsoleComponentButtonText ()

Scrolls a button’s text on an application-level custom console component that's on a page. This method is only available in APl version
25.0 or later.

Syntax

sforce.console.scrollCustomConsoleComponentButtonText (interval :number, pixelsToScroll:number,
isLeftScrolling:boolean, (optional)callback:Function)

Arguments
Name Type Description
interval number Controls how often the button text is scrolled in milliseconds.
pixelsToScroll number Controls how many pixels the button text scrolls.
isLeftScrolling boolean If true, the text scrolls left. If false, the text scrolls right.
callback function JavaScript method that's called upon completion of the method.

O Tip: Try to give buttons short names. Scrolling is limited to the width of the button. If a button name is too long, scrolling can
restart before the name finishes displaying.

Sample Code-Visualforce
<apex:page>

Click here to scroll the button text on a custom console component

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testScrollCustomConsoleComponentButtonText () {
//Scroll the custom console component button text from right to left
sforce.console.scrollCustomConsoleComponentButtonText (500, 10, true,
function (result) {
if (result.success) {

alert ('The text scrolling starts!');
} else {
alert ('Could not initiate the text scrolling!');

}
1)
}
</script>
</apex:page>

107

Methods for Salesforce Classic selectMacro)

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if scrolling the button text was successful; false if scrolling the button text

wasn't successful.

selectMacro ()

Selects and displays a specific macro in the macro widget. This method is only available in API version 36.0 or later.

Syntax

sforce.console.selectMacro (macroId:String, (optional)callback:Function)

Arguments
Name Type Description
callback function JavaScript method that is called when the method is completed
macrolD string ID of the macro that's selected

Sample Code-Visualforce

<apex:page>
Click here to select
a macro
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function openInWidget (id) {
sforce.console.selectMacro (id) ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

cause string Explanation of function failure, if applicable

success boolean true if selecting the macro was successful; false otherwise

108

Methods for Salesforce Classic setCustomConsoleComponentButtonlconUrl()

setCustomConsoleComponentButtonIconUrl ()

Sets the button icon URL of an application-level custom console component that's on a page. This method is only available in APl version
25.0 or later.

Syntax

sforce.console.setCustomConsoleComponentButtonIconUrl (iconURL: String,

(optional)callback: Function)

Arguments
Name Type Description
iconUrl string A URL that points to an image that's used as a button to launch a custom console
component.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to set the custom console component button icon

<apex:includeScript value="/support/console/41.0/integration.js"/>

<script type="text/javascript">
function testSetCustomConsoleComponentButtonIconUrl () {

sforce.console.setCustomConsoleComponentButtonIconUrl ('http://imageserver/img.png') ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the button icon URL was successful; false if setting the button

icon URL wasn't successful.

109

Methods for Salesforce Classic setCustomConsoleComponentButtonStyle()

setCustomConsoleComponentButtonStyle ()

Sets the style of a button used to launch an application-level custom console component that's on a page. This method is only available
in APl version 25.0 or later.

Syntax
sforce.console.setCustomConsoleComponentButtonStyle (style:String, (optional)callback:
Function)
Arguments
Name Type Description
style string The style of a button used to launch a custom console component. The styles
supported include font, font color, and background color. Font and font color isn't
available for Internet Explorer” 7.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to set the style of a button used to launch a custom console

component

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testSetCustomConsoleComponentButtonStyle () {
sforce.console.setCustomConsoleComponentButtonStyle ('background:red; ") ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the button style was successful; £alse if setting the button style

wasn't successful.

110

Methods for Salesforce Classic setCustomConsoleComponentButtonText()

setCustomConsoleComponentButtonText ()

Sets the text on a button used to launch an application-level custom console component that's on a page. This method is only available
in APl version 25.0 or later.

Syntax

sforce.console.setCustomConsoleComponentButtonText (text:String, (optional)callback:Function)

Arguments
Name Type Description
text string Text that's displayed on a button used to launch a custom console component.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to set the text on a button used to launch a custom console component

<apex:includeScript value="/support/console/41.0/integration.js"/>

<script type="text/javascript">
function testSetCustomConsoleComponentButtonText () {
//Change the custom console component button text to 'Hello World'

sforce.console.setCustomConsoleComponentButtonText ('Hello World');

}

</script>

</apex:page>

Response
Name Type Description
success boolean true if setting the button text was successful; false if setting the button text

wasn't successful.

setCustomConsoleComponentHeight ()

Sets the window height of an application-level custom console component that's on a page. This method is available in APl version 32.0
or later.

m

Methods for Salesforce Classic setCustomConsoleComponentVisible()

@ Note: If this method is called from a popped out component in a Salesforce console where multi-monitor components is turned
on, nothing will happen. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce
Classic” in the Salesforce Help.

Syntax

sforce.console.setCustomConsoleComponentHeight (height:number, (optional)callback:Function)

Arguments
Name Type Description
height number The new height in pixels.
callback function Javascript method called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to set the custom console component height to 100px

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testSetCustomConsoleComponentHeight () {
// Set the custom console component height
sforce.console.setCustomConsoleComponentHeight (100) ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the method call was successful; false otherwise.

setCustomConsoleComponentVisible ()

Sets the window visibility of an application-level custom console component that's on a page. This method is available in API version
32.0 and later. In APl version 31.0 and earlier, this method was called setCustomConsoleComponentWindowVisible ().

N2

Methods for Salesforce Classic setCustomConsoleComponentWidth()

Syntax

sforce.console.setCustomConsoleComponentVisible (visible:Boolean,
(optional)callback: Function)

Arguments
Name Type Description
visible boolean true to make the custom console component window visible, false to hide
the custom console component window.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to make the custom console component window visible

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testSetCustomConsoleComponentVisible () {
// Make the custom console component window visible
sforce.console.setCustomConsoleComponentVisible (true) ;
}
</script>
</apex:page>

Response
Name Type Description
success boolean true if setting the button window visibility was successful; false if setting the

button window visibility wasn't successful.

setCustomConsoleComponentWidth ()

Sets the window width of an application-level custom console component that's on a page. This method is available in APl version 32.0
or later.

@ Note: If this method is called from a popped out component in a Salesforce console where multi-monitor components is turned
on, nothing will happen. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce

Classic” in the Salesforce Help.

13

Methods for Salesforce Classic setCustomConsoleComponentPopoutablel)

Syntax

sforce.console.setCustomConsoleComponentWidth (width:number, callback:Function)

Arguments
Name Type Description
width number The new width in pixels.
callback function Javascript method called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to set the custom console component width to 100px

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function testSetCustomConsoleComponentWidth () {
// Set the custom console component width
sforce.console.setCustomConsoleComponentWidth (100) ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the method call was successful; false otherwise.

setCustomConsoleComponentPopoutable ()

Sets a custom console component to be popped out or popped into a browser. To use this method, multi-monitor components must
be turned on. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce Classic” in the online
help. This method is only available in API version 30.0 or later.

Syntax

sforce.console.setCustomConsoleComponentPopoutable (popoutable:Boolean,
(optional)callback: Function)

114

Methods for Salesforce Classic setCustomConsoleComponentPopoutablel()

Arguments
Name Type Description
popoutable boolean If true, the component can be popped out or popped into a browser. If false,
the component cannot be popped out or popped into a browser.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to enable pop out or pop in functionality

Click here to disable pop out or pop in functionality

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {

alert ('The method was successfully invoked.');
} else {
alert ('Error while invoking this method. Check the browser developer console
for more information.');
}
}
function enablePopout () {

sforce.console.setCustomConsoleComponentPopoutable (true, checkResult);

function disablePopout () {
sforce.console.setCustomConsoleComponentPopoutable (false, checkResult);
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true ifenabling pop out or pop in functionality for the component was successful;

false otherwise.

15

Methods for Salesforce Classic setCustomConsoleComponentWindowVisible()

setCustomConsoleComponentWindowVisible ()

Sets the window visibility of an application-level custom console component that's on a page. This method is available in APl versions
25.0 through 31.0.

@ Nofte: If this method is called from a popped out component in a Salesforce console where multi-montior components is turned
on, nothing will happen. For more information, see “Turn On Multi-Monitor Components for a Salesforce Console in Salesforce
Classic” in the Salesforce Help. Starting in APl version 32.0, this method is no longer available and has been replaced by
setCustomConsoleComponentVisible ().For more information, see
setCustomConsoleComponentVisible ().

Syntax

sforce.console.setCustomConsoleComponentWindowVisible (visible:Boolean,
(optional)callback: Function)

Arguments
Name Type Description
visible boolean true to make the custom console component window visible, false to hide
the custom console component window.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>

Click here to make the custom console component window visible

<apex:includeScript value="/support/console/41.0/integration.js"/>

<script type="text/javascript">
function testSetCustomConsoleComponentWindowVisible () {
//Make the custom console component window visible

sforce.console.setCustomConsoleComponentWindowVisible (true) ;

}

</script>

</apex:page>

Response
Name Type Description
success boolean true if setting the button window visibility was successful; false if setting the

button window visibility wasn't successful.

116

Methods for Salesforce Classic setSidebarVisible()

setSidebarVisible ()

Shows or hides a console sidebar based on tabId and region. This method is available in APl version 33.0 or later.

Syntax

sforce.console.setSidebarVisible (visible:Boolean, (optional)tabld:String,
(optional) region:String, (optional)callback:Function)

Arguments
Name Type Description
visible boolean true to show the sidebar or false to hide the sidebar.
tabId string The ID of the tab on which to show or hide the sidebar.
region string The region on the console where the sidebar is located, such as left or right, top or
bottom. Regions are represented as:
® sforce.console.Region.LEFT
® sforce.console.Region.RIGHT
® sforce.console.Region.TOP
® sforce.console.Region.BOTTOM
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
if (result.success) {
alert ('Congratulations!"'");
lelse {
alert ('something is wrong!');
}
}i
function setSidebarVisible () {

sforce.console.setSidebarVisible (true, 'scc-st-1"',sforce.console.Region.LEFT, callback) ;

}

</script>
SetSidebarToExpand
</apex:page>

n7

Methods for Salesforce Classic Methods for Push Notifications

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the method call was successful; false otherwise.

Methods for Push Notifications

Push notifications are visual indicators on lists and detail pages in a console that show when a record or field has changed during a user's
session. For example, if two support agents are working on the same case, and one agent changes the Priority, a push notification
appears to the other agent so he or she spots the change and doesn’t duplicate the effort.

When administrators set up a Salesforce console, they choose when push notifications display, and which objects and fields trigger push
notifications. Developers can use push notification methods to customize push notifications beyond the default visual indicators supplied
by Salesforce. For example, developers can use the methods below to create personalized notifications about objects accessible to
specific console users, thereby eliminating the need for email notifications. For more information, see “Configure Push Notifications for
a Salesforce Console in Salesforce Classic” in the Salesforce Help.

Consider the following when using push notification methods:

e Push notification listener response is only available for the objects and fields selected to trigger push notifications for a console.

e When a Visualforce page includes a listener added by the addPushNotificationListener () method, the page receives
notifications. The listener receives notifications when there is an update by any user to the objects selected for triggering console
push notifications and the current user has access to the modified record. This functionality is slightly different from push notifications
set up in the Salesforce user interface in that:

- Listeners receive update notifications for changes made by all users.

— Listeners receive notifications when an object’s fields are updated or created, even if those fields aren't selected to trigger push
notifications; and the notifications don't include details about what changed. For example, if Status on the Case object is set
to trigger a push notification, but Priority onthe Case object changes, a listener receives a notification that the case changed
without specifying details.

- Listeners don't obey the Choose How Lists Refresh and Choose How Detail Pages Refresh push
notifications settings in a Salesforce console.

- The only way to stop receiving notifications is to remove listeners using the removePushNotificationListener ()
method.

e Push notifications aren't available in the console in Professional Edition.

IN THIS SECTION:

addPushNotificationListener()
Adds a listener for a push notification. A user can only register a listener once until he or she removes the listener, or the listener is
removed by another user. This method is only available in APl version 26.0 or later.

removePushNotificationListener()
Removes a listener that gets added for a push notification. This method is only available in APl version 26.0 or later.

18

Methods for Salesforce Classic addPushNotificationListener()

addPushNotificationListener ()

Adds a listener for a push notification. A user can only register a listener once until he or she removes the listener, or the listener is
removed by another user. This method is only available in APl version 26.0 or later.

For more information on push notifications, see Methods for Push Notifications on page 118.

Syntax

sforce.console.addPushNotificationListener (objects: array, eventHandler:Function)

Arguments
Name Type Description
objects array Objects set to receive notifications.
eventHandler function JavaScript method called when there is a push notification.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert ('There is a push notification of object: ' + result.Id);
}i
//Add a push notification listener for Case and Account
sforce.console.addPushNotificationListener (['Case', 'Account'], eventHandler):;
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method.

Name Type Description
id string The object ID of the push notification.
entityType string The type of object included in the push notification. For example, Account or Contact.

Objects available for push notifications are determined by the administrator who
set up a Salesforce console. For more information, see “Configure Push Notifications
for a Salesforce Console in Salesforce Classic” in the Salesforce online help.

19

Methods for Salesforce Classic removePushNofificationListener()

Name Type Description

Type string The field of the objectincluded in the push notification. Forexample, the Account
Name field on Account. Notifications occur when the field is either updated or
created.

Fields on objects available for push notifications are determined by the administrator
who set up a Salesforce console. For more information, see “Configure Push
Notifications for a Salesforce Console in Salesforce Classic” in the Salesforce online
help.

LastModifiedById string The user ID of the user who last modified the object in the push notification.

removePushNotificationListener ()

Removes a listener that gets added for a push notification. This method is only available in APl version 26.0 or later.

For more information on push notifications, see Methods for Push Notifications on page 118.

Syntax

sforce.console.removePushNotificationListener ((optional) callback:Function)

Arguments
Name Type Description
callback function A function called when the removal of the push notification listener completes.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to remove push notification

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

function testRemovePushNotification() {
sforce.console.removePushNotificationListener (removeSuccess) ;
}
var removeSuccess = function removeSuccess (result) {
//Report whether removing the push notification listener is successful
if (result.success == true) {
alert ('Removing push notification was successful');
} else {
alert ('Removing push notification wasn't successful');

120

Methods for Salesforce Classic Methods for Console Events

}i
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method.

Name Type Description

success boolean true if removing the push notification listener was successful; false ifremoving
the push notification listener wasn't successful.

Methods for Console Events

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. The following standard
events are supported:

Event Description Payload

sforce.amsole.CansoleBvent.OFEN TB Fired when a primary tab or subtab is opened.

e id —TheID of the opened tab.
Available in APl version 30.0 or later.

® objectId — TheobjectID of the
opened tab, if available.

sforce.amsole. ConsoleBvent .CIOSE TRB- Fired when a primary tab or subtab with a
specified IDinthe additionalParams
argument is closed. Or, fired when a primary
tab or subtab with no specified ID is closed.
Available in APl version 30.0 or later. Note: For some objects (such as Email and

Case Comment), the tab is opened and
closed immediately and no object ID is
generated for the tab. In those cases, this
field's value is equal to the parent’s object
ID.

e id —ThelD of the closed tab.

objectID — The object ID of the
closed tab, if available.

® tabObjectId — TheobjectID of the
closed tab, if available.

Note: tabObjectId isgenerally the
same as objectID. However, for tabs
that close upon submission, no
tabObjectId isgenerated. In those
cases, the value of this field is either empty
or null. For an Email, the value is empty.
For a Case Comment, the value is null.

121

Methods for Salesforce Classic addEventListener()

Event Description Payload

sforce. asole. GrsaleBert. QBIE IGET Delays the execution of logging out of a
console when a user clicks Logout. When
Logout is clicked:

None

1. Anoverlay appears, which tells a user that
logout is in progress.

2. Callbacks are executed that have been
registered by using
sfarce.arsale.Grsolefvatt.CNBIE I03T

3. Console logout logic is executed.

If the callback contains synchronous blocking
code, the console logout code isn't executed
until the blocking code is executed. As a best
practice, avoid synchronous blocking code or
long code execution during logout.

Available in APl version 31.0 or later.

IN THIS SECTION:

addEventListener()

Adds a listener for a custom event type or a standard event type when the event is fired. This method adds a listener for custom
event types in APl version 25.0 or later; it adds a listener for standard event types in APl version 30.0 or later.

fireEvent()
Fires a custom event. This method is only available in APl version 25.0 or later.

removeEventListener()

Removes a listener for a custom event type or a standard event type. This method removes a listener for custom event types in API
version 25.0 or later; it removes a listener for standard event types in APl version 30.0 or later.

addEventListener ()

Adds a listener for a custom event type or a standard event type when the event is fired. This method adds a listener for custom event
types in APl version 25.0 or later; it adds a listener for standard event types in APl version 30.0 or later.

For the list of standard events, see Methods for Console Events on page 121.

Syntax

sforce.console.addEventListener (eventType: String, eventlListener:Function,
(optional)additionalParams:Object)

122

Methods for Salesforce Classic addEventListener()

Arguments
Name Type Description
eventType string Custom event type for which eventListener listens.
eventListener function JavaScript method called when an eventType is fired.
additionalParams object Optional parameters accepted by this method. The supported properties on this

objectare tabId: The ID of the tab to listen for the specified event.

This argument is only available in API version 30.0 or later.

Sample Code API Version 25.0 or Later-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var listener = function (result) {
alert ('Message received from event: ' + result.message);
b
//Add a listener for the 'SampleEvent' event type
sforce.console.addEventListener ('SampleEvent', listener);
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

message string The message which is sent with the fired event.

If the response is from a custom keyboard shortcut, the message includes the
following information on which the browser is focused, in this order:

1. Object ID of the primary tab
2. IDof the primary tab

3. Object ID of the subtab

4. D of the subtab

For more information, see “Customize Keyboard Shortcuts for a Salesforce Console
in Salesforce Classic” in the online help.

123

Methods for Salesforce Classic fireEvent()

Sample Code API Version 30.0 or Later-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var onEnclosingPrimaryTabClose = function (result) {
alert ('The enclosing primary tab is about to be closed. Tab ID: ' + result.id
+ ', Object ID: ' + (result.objectId ? result.objectId : 'not available'));

b

//Add a listener to handle the closing of the enclosing primary tab
sforce.console.getEnclosingPrimaryTabId (function (result) {
if (result.id) {
sforce.console.addEventListener (sforce.console.ConsoleEvent.CLOSE TAB,
onEnclosingPrimaryTabClose, { tabId : result.id });
} else {
alert ('Could not find an enclosing primary TAB!'");

1)
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

message string The message which is sent with the fired event.

If the response is from a console event, the message includes payload details as
described in Methods for Console Events on page 121.

If the response is from a custom keyboard shortcut, the message includes the
following information on which the browser is focused, in this order:

1. Object ID of the primary tab
2. ID of the primary tab

3. ObjectID of the subtab

4. D of the subtab

For more information, see “Customize Keyboard Shortcuts for a Salesforce Console
in Salesforce Classic” in the online help.

fireEvent ()

Fires a custom event. This method is only available in APl version 25.0 or later.

124

Methods for Salesforce Classic

Syntax

fireEvent()

sforce.console.fireEvent (eventType:String, message:String, (optional)callback:Function

)

Arguments

Name Type Description

eventType string The type of custom event to fire.

message string The message which is sent with the fired event.
callback function JavaScript method called when the custom event is fired.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

Click here to fire an event of type 'SampleEvent'

var callback = function (result) {
if (result.success) {
alert ('The custom event is fired!');
} else {

alert ('The custom event could not be fired!'):;
}i

function testFireEvent () {
//Fire an event of type 'SampleEvent'

sforce.console.fireEvent ('SampleEvent', 'EventMessage',6 callback);

}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true iffiring the event is successful, false iffiring the event wasn't successful.

125

Methods for Salesforce Classic removeEventListener()

removeEventListener ()

Removes a listener for a custom event type or a standard event type. This method removes a listener for custom event types in API
version 25.0 or later; it removes a listener for standard event types in APl version 30.0 or later.

For the list of standard events, see Methods for Console Events on page 121.

Syntax

sforce.console.removeEventListener (eventType: String, eventlListener:Function,
(optional)additionalParams:0Object)

Arguments
Name Type Description
eventType string Event type for which eventListener is removed.
eventListener function Event listener to remove.
additionalParams object Optional parameters accepted by this method. The supported properties on this

object are tabId: The ID of the tab to remove the listener for the specified event.

This argument is only available in APl version 30.0 or later.

Sample Code API Version 25.0 or Later-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>

Click here to remove an event listener for the 'SampleEvent' event type

<script type="text/javascript">
var listener = function (result) {
alert ('Message received from event: ' + result.message);
}i
//Add a listener for the 'SampleEvent' event type
sforce.console.addEventListener ('SampleEvent', listener);

function testRemoveEventListener () {
sforce.console.removeEventListener ('SampleEvent', listener);

}
</script>
</apex:page>

Response

None

126

Methods for Salesforce Classic Methods for Live Agent

Sample Code API Version 30.0 or Later-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>

Click here to remove an event listener for the console 'CLOSE TAB' event
type

<script type="text/javascript">

var tabId;
var onEnclosingPrimaryTabClose = function (result) {
alert ('The enclosing primary tab is about to be closed. Tab ID: ' + result.id

Object ID: ' + (result.objectId ? result.objectId : 'not available'));
b

//Add a listener to handle the closing of the enclosing primary tab
sforce.console.getEnclosingPrimaryTabId (function (result) {
if (result.id) {
tabId = result.id;
sforce.console.addEventListener (sforce.console.ConsoleEvent.CLOSE TAB,
onEnclosingPrimaryTabClose, { tabId : tabId });
} else {
alert ('Could not find an enclosing primary TAB!'");

)i

function testRemoveEventListener () {
sforce.console.removeEventListener (sforce.console.ConsoleEvent.CLOSE TAB,
onEnclosingPrimaryTabClose, { tabId : tabId });
}
</script>
</apex:page>

Response

None

Methods for Live Agent

Live Agent lets you connect with customers or website visitors in real time through Web-based chat. For more information, see “Add
Live Agent to the Salesforce Console in Salesforce Classic” in the Salesforce Help.

Nofte: These methods don't work for chats routed with Omni-Channel. Chats with Omni-Channel routing use the Methods for
Omni-Channel. If you're using Lightning Experience, use the Methods for Omni-Channel in Lightning Experience (Beta).

127

https://developer.salesforce.com/docs/atlas.en-us.210.0.api_console.meta/api_console/sforce_api_console_omnichannel_methods.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.api_console.meta/api_console/sforce_api_console_omnichannel_methods.htm
https://developer.salesforce.com/docs/atlas.en-us.210.0.api_console.meta/api_console/sforce_api_console_lightning_omnichannel_methods.htm

Methods for Salesforce Classic Methods for Live Agent

IN THIS SECTION:

acceptChat()

Accepts a chat request. Available in APl version 29.0 or later. This method isn't supported with Omni-Channel in APl version 37.0 or
later.

cancelFileTransferByAgent()

Indicates that a file transfer request has been canceled by an agent. Available in APl version 31.0 or later.

declineChat()

Declines a chat request. Available in APl version 29.0 or later. This method isn't supported with Omni-Channel in API version 37.0 or
later.

endChat()

Ends a chat in which an agent is currently engaged. Available in API version 29.0 or later.

getAgentinput()

Returns the string of text which is currently in the agent’s text input area in the chat log of a chat with a specific chat key. Available
in APl version 29.0 or later.

getAgentState()

Returns the agent's current Live Agent status, such as Online, Away, or Offline. Available in API version 29.0 or later.

getChatlLog()

Returns the chat log of a chat associated with a specific chat key. Available in API version 29.0 or later.

getChatRequests()

Returns the chat keys of the chat requests that have been assigned to an agent. Available in APl version 29.0 or later.
getDetailsByChatKey()

Returns the details of the chat associated with a specific chat key. Available in APl version 29.0 or later.

getDetailsByPrimaryTabld()

Returns the details of the chat associated with a specific primary tab ID. Available in APl version 29.0 or later.

getEngagedChats()

Returns the chat keys of the chats in which the agent is currently engaged. Available in APl version 29.0 or later.

getMaxCapacity()

Returns the maximum chat capacity for the current agent, as specified in the agent's assigned agent configuration. Available in API
version 29.0 or later.

initFileTransfer()

Initiates the process of transferring a file from a customer to an agent. Available in API version 31.0 or later.

onAgentSend()

Registers a function to call when an agent sends a chat message through the Salesforce console. This method intercepts the message
and occurs before it is sent to the chat visitor. Available in APl version 29.0 or later.

onAgentStateChanged()

Registers a function to call when agents change their Live Agent status, such as from Online to Away. Available in APl version 29.0
or later.

onChatCanceled()

Registers a function to call when a chat visitor cancels a chat request. Available in APl version 29.0 or later.
onChatCriticalWaitState()

Registers a function to call when a chat becomes critical to answer or a waiting chat is answered. Available in APl version 29.0 or
later.

128

Methods for Salesforce Classic acceptChat()

onChatDeclined()

Registers a function to call when an agent declines a chat request. Available in APl version 29.0 or later.

onChatEnded()

Registers a function to call when an engaged chat ends. Available in APl version 29.0 or later.

onChatRequested()

Registers a function to call when an agent receives a chat request. Available in APl version 29.0 or later.

onChatStarted()

Registers a function to call when an agent starts a new chat with a customer. Available in APl version 29.0 or later.
onChatTransferredOut()

Registers a function to call when an engaged chat is transferred out to another agent. Available in APl version 29.0 or later.
onCurrentCapacityChanged()

Registers a function to call when an agent's capacity for accepting chats changes—for example, if an agent accepts a new chat,
ends a currently engaged chat, or otherwise changes the number of chats to which they are assigned, or if a chat request is pushed
to their chat queue. Available in APl version 29.0 or later.

onCustomEvent()

Registers a function to call when a custom event takes place during a chat. Available in API version 29.0 or later.
onFileTransferCompleted()

Registers a function to call when a file is transferred from a customer to an agent. Available in API version 31.0 or later.
onNewMessage()

Registers a function to call when a new message is sent from a customer, agent, or supervisor. Available in APl version 29.0 or later.
onTypingUpdate()

Registers a function to call when the customer’s text in the chat window changes. If Sneak Peek is enabled, this function is called
whenever the customer edits the text in the chat window. If Sneak Peek is not enabled, this function is called whenever a customer
starts or stops typing in the chat window. Available in APl version 29.0 or later.

sendCustomEvent()

Sends a custom event to the client-side chat window for a chat with a specific chat key. Available in API version 29.0 or later.
sendMessage()

Sends a new chat message from the agent to a chat with a specific chat key. Available in APl version 29.0 or later.

setAgentinput()

Sets the string of text in the agent’s text input area in the chat log of a chat with a specific chat key.Available in APl version 29.0 or
later.

setAgentState()

Sets an agent's Live Agent status, such as Online, Away, or Offline. Available in APl version 29.0 or later.

Methods for Live Agent Chat Visitors

There are a few methods available that you can use to customize the chat visitor experience for Live Agent in a custom Visualforce
chat window. These methods apply to Salesforce Classic only.

acceptChat()

Accepts a chat request. Available in APl version 29.0 or later. This method isn't supported with Omni-Channel in APl version 37.0 or later.

129

Methods for Salesforce Classic acceptChat()

Syntax

sforce.console.chat.acceptChat (chatKey:String, (optional)callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the chat request you wish to accept.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Accept Chat

<script type="text/javascript">
function testAcceptChat () {
//Get the value for 'myChatKey'from the getChatRequests () or onChatRequested()
methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.acceptChat (chatKey, acceptSuccess);

function acceptSuccess (result) {
//Report whether accepting the chat was succesful
if (result.success == true) {
alert ('Accepting the chat was successful');
} else {
alert ('Accepting the chat was not successful');

bi
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true ifaccepting the chat was successful; false if accepting the chat wasn't

successful.

130

Methods for Salesforce Classic cancelFileTransferByAgent()

cancelFileTransferByAgent ()

Indicates that a file transfer request has been canceled by an agent. Available in APl version 31.0 or later.

Syntax

sforce.console.chat.cancelFileTransferByAgent (chatKey:String, (optional)callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the chat for which the agent canceled the file transfer request.
callback function JavaScript method that is called when the method is completed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Cancel file transfer

<script type="text/javascript">
function testCancelFileTransfer () {
//Gets the value for 'myChatKey'from the getChatRequests () or onChatRequested/()

methods.
//These values are for example purposes only.
var chatKey = 'myChatKey';

sforce.console.chat.cancelFileTransferByAgent (chatKey, fileSuccess);

function fileSuccess (result) {
//Report whether canceling was successful

if (result.success == true) {
alert ('Canceling file transfer was successful.');
} else {
alert ('Canceling file transfer was not successful.');
}
bi
</script>

</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

131

Methods for Salesforce Classic declineChat()

Name Type Description

success Boolean true if canceling the file transfer request was successful; false if canceling the
file transfer request wasn't successful.

declineChat ()

Declines a chat request. Available in APl version 29.0 or later. This method isn't supported with Omni-Channel in APl version 37.0 or later.

Syntax

sforce.console.chat.declineChat (chatKey:String, (optional)callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the request you wish to decline.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Decline Chat

<script type="text/javascript">
function testDeclineChat () {
//Get the value for 'myChatKey'from the getChatRequests () or onChatRequested/()
methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.declineChat (chatKey, declineSuccess);

function declineSuccess (result) {
//Report whether declining the chat was succesful
if (result.success == true) {
alert ('Declining the chat was successful');
} else {
alert ('Declining the chat was not successful');

b

</script>
</apex:page>

132

Methods for Salesforce Classic endChat()

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if declining the event was successful; false if declining the event wasn't
successful.
endChat ()

Ends a chat in which an agent is currently engaged. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.endChat (chatKey:String, (optional)callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the engaged chat you wish to end.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
End Chat

<script type="text/javascript">
function testEndChat () {
//Get the value for 'myChatKey'from the getEngagedChats () or onChatStarted()
methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.endChat (chatKey, endSuccess);

function endSuccess (result) {
//Report whether ending the chat was succesful

if (result.success == true) ({
alert ('Ending the chat was successful');
} else {

alert ('Ending the chat was not successful');

133

Methods for Salesforce Classic getAgentinput()

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true ifending the chat was successful; false ifendingthe chat wasn't successful.
getAgentInput ()

Returns the string of text which is currently in the agent’s text input area in the chat log of a chat with a specific chat key. Available in
APl version 29.0 or later.

Syntax

sforce.console.chat.getAgentInput (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to retrieve the agent’s input text.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
Get Agent Input

<script type="text/javascript">

function testGetAgentInput () {
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.getAgentInput (chatKey, getAgentInputSuccess);

function getAgentInputSuccess (result) {
//Report whether getting the agent's input was successful
if (result.success == true) {

134

Methods for Salesforce Classic getAgentState()

agentInput = result.text;

alert ('The text in the agent input is: ' + agentInput);
} else {

alert ('Getting the agent input was not successful');

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

text String The text that is currently in an agent’s text input area.

success Boolean true if getting the agent’s input was successful; false if getting the agent’s

input wasn't successful.
getAgentState ()

Returns the agent's current Live Agent status, such as Online, Away, or Offline. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.getAgentState (callback: Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Get Agent State

<script type="text/javascript">
function testGetAgentState() {
sforce.console.chat.getAgentState (function (result) {
if (result.success) {
alert ('"Agent State:' + result.state);

135

Methods for Salesforce Classic getChatlog()

} else {
alert ('getAgentState has failed');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

state String String representing the current agent state—for example, Online, Away, or Offline.
success Boolean true if getting the agent's Live Agent status was successful; £alse if getting the

agent's Live Agent status wasn't successful.
getChatLog ()

Returns the chat log of a chat associated with a specific chat key. Available in API version 29.0 or later.

Syntax

sforce.console.chat.getChatLog (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to retrieve the chat log.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
Get Chat Log

<script type="text/javascript">
function testGetChatLog() {
//Get the value for 'myChatKey'from the

sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only

136

Methods for Salesforce Classic getChatlogl)

var chatKey = 'myChatKey';
sforce.console.chat.getChatlLog(chatKey, getChatLogSuccess);

function getChatLogSuccess (result) {
//Report whether getting the chat log was succesful

if (result.success == true) {

chatLogMessage = result.messages|[0].content;

alert ('The first message in this chatLog is: ' + chatLogMessage) ;
} else {

alert ('Getting the chat log was not successful');

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
customEvents Array of An array of custom event objects representing the custom events that occurred
customEvent duringa chat.
objects
messages Array of An array of chat message objects containing all of the chat messages from the chat
message log.
objects
success Boolean true if getting the chat log was successful; false if getting the chat log wasn't
successful.
customEvent

The customEvent object contains a single event from the chat log and the following properties:

Property Type Description

source String The person who initiated the custom event, either the chat visitor or the agent.
type String The type of custom event that occurred.

data String The data of the custom event that was sent to the chat; corresponds to the data

argument of the 1iveagent.chasitor.sendCustomEvent () method
used to send this event from the chat window.

timestamp Date/Time The date and time a custom event was received.

137

Methods for Salesforce Classic getChatRequests|)

message

The message object contains a single chat message from the chat log and the following properties:

Property Type Description
content String The text content of a message in the chat log.
name String The name of the user who sent the message in the chat log. This appears exactly as

itis displayed in the chat log.
type String The type of message that was received, such as Agent or Visitor.

timestamp Date/Time The date and time the chat message was received.

getChatRequests ()

Returns the chat keys of the chat requests that have been assigned to an agent. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.getChatRequests (callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Get Chat Requests

<script type="text/javascript">
function testGetChatRequests () {
sforce.console.chat.getChatRequests (function (result) {
if (result.success) {
alert ('Number of Chat Requests ' + result.chatKey.length);
} else {
alert ('getChatRequests has failed');

1)
}
</script>
</apex:page>

138

Methods for Salesforce Classic getDetailsByChatKey()

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey Array Array of chatKey values, one for each of the current chat requests.

success Boolean true ifgetting chat requests was successful; £alse if getting chat requests wasn't

successful.

getDetailsByChatKey ()

Returns the details of the chat associated with a specific chat key. Available in API version 29.0 or later.

Syntax

sforce.console.chat.getDetailsByChatKey (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to retrieve details.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
Get Chat Details

<script type="text/javascript">

function testGetDetailsByChatKey () {
//Get the value for 'myChatKey' from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.getDetailsByChatKey (chatKey, getDetailsSuccess);

function getDetailsSuccess (result) {
//Report whether accepting the chat was succesful

if (result.success == true) {

ipAddress = result.details.ipAddress;

alert ('The Visitor IP Address for this chat is: ' + ipAddress);
} else {

139

Methods for Salesforce Classic

</script>
</apex:page>

Response

getDetailsByChatKeyl)

alert ('Getting the details was not successful');

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

properties:

Name
primaryTabId

details

success

details

Type Description

String The ID of the primary tab associated with the chat.

Object An object that contains all the details for a chat associated with a particular primary
tab.

Boolean true ifretrieving the details was successful; £alse ifretrieving the details wasn't

successful.

The details object contains the following properties:

Property
acceptTime

breadcrumbs

chatKey

customDetails

geoLocation

ipAddress
isEnded
isEngaged

isPushRequest

Type
Date/Time

Array of
breadcrumb
objects

String

Array of
customDetail
objects

Object

String
Boolean
Boolean

Boolean

Description
The date and time an agent accepted the chat request.

An array of breadcrumb objects representing a list of Web pages visited by
the visitor before and during the chat.

The chat key associated with the chat.

An array of customDetail objects that represent custom details that have
been passed in to this chat via the Deployment APl or Pre-Chat Form API.

An object representing the details of a chat visitor's location, derived from a
geolP lookup on the chat visitor's IP address.

The IP address of the chat visitor in dot-decimal format.
Specifies whether a chat has ended (true) or not (false).
Specifies whether a chat is currently engaged (t rue) or not (false).

Specifies whether a chat was routed to an agent through a push-based routing
method such as Least Active or Most Available (true) or not (false).

140

Methods for Salesforce Classic getDetailsByChatKey()

Property Type Description

isTransferringOut Boolean Specifies whether a chat is currently in the process of being transferred to another
agent (true) ornot (false).

liveChatButtonId String The 15-digit record ID for the chat button from which the chat request originated.

liveChatDeploymentId String The 15-digit record ID for the deployment from which the chat request originated.

name String The name of the chat visitor.

requestTime Date/Time The date and time the chat was requested.

visitorInfo Object An object containing information about the visitor's web browser.
breadcrumb

A breadcrumb represents a Web page viewed by a chat visitor. The breadcrumb object contains the following properties:

Property Type Description

location String The URL of a Web page viewed by a chat visitor.

time Date/Time The date and time a chat visitor visited a specific breadcrumb URL.
customDetail

Custom details are details have been passed into the chat through the Deployment APl or Pre-Chat Form API. The custombDetail
object contains the following properties:

Property Type Description
label String The name of the custom detail as specified in the Deployment APl or Pre-Chat Form
API.
value String The value of the custom detail as specified in the Deployment APl or Pre-Chat Form
API.
transcriptFields Array of Strings The names of fields where the customer’s details on the chat transcript are saved.
entityMaps Array of An array of pre-created records used for mapping custom detail information.
entityMap
objects
entityMap

Entities are records that are created when a customer starts a chat with an agent. You can use the API to auto-populate these records
with customer details. The entityMap object contains the following properties:

Property Type Description

entityName String The record to search for or create.

141

Methods for Salesforce Classic getDetailsByChatKey()

Property Type Description
fieldName String The name of the field associated with the details.
isFastFillable Boolean Specifies whether the value can be used to populate the field when an agent creates

or edits a record (t rue) or not (false) (Live Agent console only).

isAutoQueryable Boolean If you're using the Live Agent console, specifies whether to perform a a SOSL query
(in the Live Agent console) (t rue) or not (false) to find records with a
fieldName containing the value.

If you're using the Salesforce console, specifies whether to perform a SOQL query
(in the Salesforce console) (t rue) or not (false) to find records with a
fieldName containing the value.

isExactMatchable Boolean Specifies whether to only search for records that have fields exactly matching the
field fieldName (true)ornot(false).

geoLlocation

The geoLocation object represents the details of a chat visitor's location. It contains the following properties:

Property Type Description

city String The name of the chat visitor's city.

countryCode String The two-digit ISO-3166 country code for the chat visitor's country.

countryName String The name of chat visitor's country.

latitude String The chat visitor's approximate latitude.

longitude String The chat visitor's approximate longitude.

organization String The organization name of the chat visitor's internet service provider.

region String The chat visitor's region, such as state or province.
visitorInfo

The visitorInfo object represents information about the visitor's web browser. It contains the following properties:

Property Type Description

browserName String The name and version of the chat visitor's web browser.

language String The language of the chat visitor's web browser.

originalReferrer String The original URL of the Web page from which the chat visitor requested a chat.

screenResolution String The screen resolution of the chat visitor's computer, as passed by the chat visitor’s
browser.

142

Methods for Salesforce Classic getDetailsByPrimaryTabld|)

Property Type Description

sessionKey String the sessionKey of the visitor which will ultimately be stored on the LiveChatVisitor
record as a unique reference to this live chat visitor

getDetailsByPrimaryTabId()

Returns the details of the chat associated with a specific primary tab ID. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.getDetailsByPrimaryTabId (primaryTabId:String, callback:Function)

Arguments
Name Type Description
primaryTabId String The ID of the primary tab associated with the chat for which to retrieve details.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
Get Chat Details

<script type="text/javascript">

function testGetDetailsByPrimaryTabId() {
//Get the value for 'myPrimaryTabId'from the getPrimaryTabIds () or
getEnclosingPrimaryTabId () methods.
//These values are for example purposes only
var primaryTabId = 'myPrimaryTabId';
sforce.console.chat.getDetailsByPrimaryTabId (primaryTabId, getDetailsSuccess) ;

function getDetailsSuccess (result) {
//Report whether accepting the chat was succesful
if (result.success == true) {
console.log(result);
chatKey = result.details.chatKey;
alert ('The chatKey for this chat is: ' + chatKey);
} else {
alert ('Getting the details was not Succesful');

143

Methods for Salesforce Classic getDetailsByPrimaryTabld|)

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
primaryTabId String The ID of the primary tab associated with the chat.
details Object An object that contains all the details for a chat associated with a particular primary
tab.
success Boolean true if retrieving the details was successful; £alse ifretrieving the details wasn't
successful.
details

The details object contains the following properties:

Property
acceptTime

breadcrumbs

chatKey

customDetails

geoLocation

ipAddress
isEnded
isEngaged

isPushRequest

isTransferringOut

liveChatButtonId

Type
Date/Time

Array of
breadcrumb
objects

String

Array of
customDetail
objects

Object

String
Boolean
Boolean

Boolean

Boolean

String

liveChatDeploymentId String

Description
The date and time an agent accepted the chat request.

An array of breadcrumb objects representing a list of Web pages visited by
the visitor before and during the chat.

The chat key associated with the chat.

Anarray of custombDetail objects that represent custom details that have
been passed in to this chat via the Deployment API or Pre-Chat Form API.

An object representing the details of a chat visitor's location, derived from a
geolP lookup on the chat visitor's IP address.

The IP address of the chat visitor in dot-decimal format.
Specifies whether a chat has ended (true) or not (false).
Specifies whether a chat is currently engaged (t rue) or not (false).

Specifies whether a chat was routed to an agent through a push-based routing
method such as Least Active or Most Available (true) or not (false).

Specifies whether a chat is currently in the process of being transferred to another
agent (true) ornot (false).

The 15-digit record ID for the chat button from which the chat request originated.

The 15-digit record ID for the deployment from which the chat request originated.

144

Methods for Salesforce Classic

Property
name
requestTime

visitorInfo

breadcrumb

Type
String
Date/Time

Object

getDetailsByPrimaryTabld)

Description
The name of the chat visitor.
The date and time the chat was requested.

An object containing information about the visitor's web browser.

A breadcrumb represents a Web page viewed by a chat visitor. The breadcrumb object contains the following properties:

Property
location

time

customDetail

Type
String

Date/Time

Description
The URL of a Web page viewed by a chat visitor.

The date and time a chat visitor visited a specific breadcrumb URL.

Custom details are details that have been passed into the chat through the Deployment APl or Pre-Chat Form APl. The customDetail
object contains the following properties:

Property
label

value

transcriptFields

entityMaps

entityMap

Type
String

String

Array of Strings

Array of
entityMap
objects

Description

The name of the custom detail as specified in the Deployment APl or Pre-Chat Form
API.

The value of the custom detail as specified in the Deployment APl or Pre-Chat Form
API.

The names of fields where the customer’s details on the chat transcript are saved.

An array of pre-created records used for mapping the custom detail information.

Entities are records that are created when a customer starts a chat with an agent. You can use the API to auto-populate these records
with customer details. The entityMap object contains the following properties:

Property
entityName
fieldName

isFastFillable

Type
String
String

Boolean

Description
The record to search for or create.
The name of the field associated the details.

Specifies whether the value can be used to populate the field when an agent creates
or edits a record (t rue) or not (false) (Live Agent console only).

145

Methods for Salesforce Classic

Property

isAutoQueryable

isExactMatchable

geoLocation

Type

Boolean

Boolean

getDetailsByPrimaryTabld|)

Description

If you're using the Live Agent console, specifies whether to perform a a SOSL query
(in the Live Agent console) (true) or not (false) to find records with a
fieldName containing the value.

If you're using the Salesforce console, specifies whether to perform a SOQL query
(in the Salesforce console) (true) or not (false) to find records with a
fieldName containing the value.

Specifies whether to only search for records that have fields exactly matching the
field fieldName (true)ornot(false).

The geoLocation object represents the details of a chat visitor's location. It contains the following properties:

Property

city
countryCode
countryName
latitude
longitude
organization

region

visitorInfo

Type
String
String
String
String
String
String
String

Description

The name of the chat visitor's city.

The two-digit ISO-3166 country code for the chat visitor's country.
The name of chat visitor's country.

The chat visitor's approximate latitude.

The chat visitor's approximate longitude.

The organization name of the chat visitor's internet service provider.

The chat visitor's region, such as state or province.

The visitorInfo object represents information about the visitor's web browser. It contains the following properties:

Property
browserName
language
originalReferrer

screenResolution

sessionKey

Type
String
String
String

String

String

Description

The name and version of the chat visitor's web browser.

The language of the chat visitor's web browser.

The original URL of the Web page from which the chat visitor requested a chat.

The screen resolution of the chat visitor's computer, as passed by the chat visitor’s
browser.

the sessionKey of the visitor which will ultimately be stored on the LiveChatVisitor
record as a unigue reference to this live chat visitor

146

Methods for Salesforce Classic getEngagedChats|)

getEngagedChats ()

Returns the chat keys of the chats in which the agent is currently engaged. Available in API version 29.0 or later.

Syntax

sforce.console.chat.getEngagedChats (callback: Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Get Engaged Chats

<script type="text/javascript">
function testGetEngagedChats () {
sforce.console.chat.getEngagedChats (function (result) {
if (result.success) {
alert ('"Number Engaged Chats: ' + result.chatKey.length);
} else {
alert ('getEngagedChats has failed');

}) i
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
chatKey array Array of chatKey values, one for each of the currently engaged chats.
success boolean true if getting engaged chats was successful; false if getting engaged chats

wasn't successful.

147

Methods for Salesforce Classic getMaxCapacity()

getMaxCapacity ()

Returns the maximum chat capacity for the current agent, as specified in the agent's assigned agent configuration. Available in API
version 29.0 or later.

Syntax

sforce.console.chat.getMaxCapacity (callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Get Max Capacity

<script type="text/javascript">
function testGetMaxCapacity () {
sforce.console.chat.getMaxCapacity (function (result) {
if (result.success) {
alert ('max capacity '+result.count);
} else {
alert ('getMaxCapacity failed, agent my not be online');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

count integer Agent's current, maximum chat capacity.

success boolean true if getting the agent’s capacity was successful; false if getting the agent’s

capacity wasn't successful.

148

Methods for Salesforce Classic initFileTransfer()

initFileTransfer ()

Initiates the process of transferring a file from a customer to an agent. Available in APl version 31.0 or later.

Syntax

sforce.console.chat.initFileTransfer (chatKey:String, entityId:String,
(optional)callback: Function)

Arguments
Name Type Description
chatKey String The chat key for the chat the file is transferred from.
entityId String The ID of the transcript object to attach the transferred file to.
callback function JavaScript method that is called when the method is completed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Init file transfer

<script type="text/javascript">
function testInitFileTransfer () {
//Gets the value for 'myChatKey'from the getChatRequests () or onChatRequested ()
methods.
//These values are for example purposes only.
var chatKey = 'myChatKey'; var entityId = 'myEntityId';
sforce.console.chat.initFileTransfer (chatKey, entityId, fileSuccess);

function fileSuccess (result) {
//Reports whether initiating the file transfer was successful.

if (result.success == true) ({
alert('Initiating file transfer was successful.');
} else {
alert('Initiating file transfer was not successful.');
}
}i
</script>

</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

149

Methods for Salesforce Classic

Name

success

onAgentSend ()

onAgentSend|)

Type Description
Boolean true if the request to transfer a file was sent successfully; false if the request

wasn't sent successfully.

Nofte: Avalue of true doesn't necessarily mean that the file was successfully
transferred to an agent. Rather, it indicates that the request to begin a file
transfer was sent successfully.

Registers a function to call when an agent sends a chat message through the Salesforce console. This method intercepts the message
and occurs before it is sent to the chat visitor. Available in APl version 29.0 or later.

@ Note: This method is only called when an agent sends a message through the chat window interface. This method doesn't apply
when a sendMessage () method is called in the API.

Syntax

sforce.console.chat.onAgentSend (chatKey:String, callback:Function)

Arguments

Name

chatKey

callback

Type Description

String The chatKey associated with the chat for which to call afunction when the agent
sends a message.

function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >

<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
var theMessage = result.content;
alert ('The agent is attempting to send the following message: ' +

result.content) ;

sforce.console.chat.sendMessage (chatKey, theMessage)
alert ('The following message has been sent: ' + theMessage);

}

//Get the value for 'myChatKey' from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only

var chatKey =

'myChatKey';

sforce.console.chat.onAgentSend (chatKey, eventHandler);

</script>
</apex:page>

150

Methods for Salesforce Classic onAgentStateChanged|)

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

content String The text of the agent’s message.

name String The name of the agent who is attempting to send the message as it appears in the

chat log.

type String The type of message that was received—for example, agent.

timestamp Date/Time The date and time the agent attempted to send the chat message.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
onAgentStateChanged()

Registers a function to call when agents change their Live Agent status, such as from Online to Away. Available in APl version 29.0 or
later.

Syntax

sforce.console.chat.onAgentStateChanged (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the agent's Live Agent status has changed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ("Agent's State has Changed to: " + result.state);
b
sforce.console.chat.onAgentStateChanged (eventHandler) ;
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

151

Methods for Salesforce Classic onChatCanceled)

Name Type Description

state String String that represents the agent’s current Live Agent status—for example, Online,
Away, or Offline. When an agent switches from Offline to Away, you may see two
returned values (Online then Away) instead of one (Away).

success Boolean true iffiring event was successful; false if firing event wasn't successful.

onChatCanceled()

Registers a function to call when a chat visitor cancels a chat request. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onChatCanceled(callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('The chat request has been canceled for this chatKey: ' + result.chatKey);

}
sforce.console.chat.onChatCanceled (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey string The chat key for the chat request that has been canceled.

onChatCriticalWaitState ()

Registers a function to call when a chat becomes critical to answer or a waiting chat is answered. Available in APl version 29.0 or later.

152

Methods for Salesforce Classic onChatDeclined)

Syntax

sforce.console.chat.onChatCanceled (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which the critical wait state has changed.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('This chat has reached a critical wait');
}
//Get the value for 'myChatKey' from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only

var chatKey = 'myChatKey';
sforce.console.chat.onChatCriticalWaitState (chatKey, eventHandler);
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

state Boolean Indicates whether the chat is in critical wait state (true) or not (false).
onChatDeclined ()

Registers a function to call when an agent declines a chat request. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onChatDeclined (eventHandler: Function)

153

Methods for Salesforce Classic onChatEnded))

Arguments
Name Type Description
eventHandler function JavaScript method called when a chat request is declined.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('A chat request with this chatKey has been declined: ' + result.chatKey);

}

sforce.console.chat.onChatDeclined (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the chat request that has been declined.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
onChatEnded ()

Registers a function to call when an engaged chat ends. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onChatEnded (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when an engaged chat ends.

154

Methods for Salesforce Classic onChatRequested|)

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('A chat with this chatKey has ended: ' + result.chatKey):;
}
sforce.console.chat.onChatEnded (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the engaged chat that has ended.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
onChatRequested()

Registers a function to call when an agent receives a chat request. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onChatRequested (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a chat request is assigned to an agent.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('There is a new incoming chat request with this chatKey: ' +
result.chatKey);
}

sforce.console.chat.onChatRequested (eventHandler) ;

155

Methods for Salesforce Classic onChatStarted|)

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the incoming chat request.

success Boolean true iffiring event was successful; false iffiring event wasn't successful.
onChatStarted()

Registers a function to call when an agent starts a new chat with a customer. Available in APl version 29.0 or later.
Usage

Syntax

sforce.console.chat.onChatStarted (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a chatrequestis accepted and becomes an engaged

chat.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('A new engaged chat has started for this chatKey: ' + result.chatKey);
}
sforce.console.chat.onChatStarted(eventHandler) ;
</script>
</apex:page>

156

Methods for Salesforce Classic onChatTransferredOut()

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the chat request that has become an engaged chat.

success Boolean true iffiring event was successful; false iffiring event wasn't successful.

onChatTransferredOut ()

Registers a function to call when an engaged chat is transferred out to another agent. Available in API version 29.0 or later.

Syntax

sforce.console.chat.onChatTransferredOut (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a chat has been successfully transferred out to another

agent.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('A chat with this chatKey has been transferred out: ' + result.chatKey);

}

sforce.console.chat.onChatTransferredOut (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the chat that has been transferred.

success Boolean true iffiring event was successful; false if firing event wasn't successful.

157

Methods for Salesforce Classic onCurrentCapacityChanged|)

onCurrentCapacityChanged ()

Registers a function to call when an agent's capacity for accepting chats changes—for example, if an agent accepts a new chat, ends a
currently engaged chat, or otherwise changes the number of chats to which they are assigned, or if a chat request is pushed to their
chat queue. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onCurrentCapacityChanged (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the agent's capacity for accepting chats has changed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('Capacity Changed. Current Requests + Engaged Chats is now: ' +
result.count);
}
sforce.console.chat.onCurrentCapacityChanged (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

count integer The number of chats in which the agent is currently engaged plus the number of

chat requests currently assigned to the agent.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
onCustomEvent ()

Registers a function to call when a custom event takes place during a chat. Available in APl version 29.0 or later.

158

Methods for Salesforce Classic onCustomEvent()

Syntax

sforce.console.chat.onCustomEvent (chatKey:String, type:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to call a function when a custom
event takes place.
type String The name of the custom event you want to listen for. This should match the name
of the custom event sent from the chat window.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert ('A new custom event has been received of type ' + result.type + ' and
with data: ' + result.data);

}
//Get the value for 'myChatKey' from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
var type = 'myCustomEventType';
sforce.console.chat.onCustomEvent (chatKey, type, eventHandler);
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
type String The type of the custom event that was sent to this chat; corresponds to the type
argument of the 1iveagent.chasitor.sendCustomEvent () method
used to send this event from the chat window.
data String The data of the custom event that was sent to this chat; corresponds to the data
argument of the 1iveagent.chasitor.sendCustomEvent () method
used to send this event from the chat window.
source String The source of the custom event that was sent to this chat; corresponds to either the

agent or the chat visitor, depending on who triggered the custom event.

159

Methods for Salesforce Classic onFileTransferCompleted|)

Name Type Description
timestamp Date/Time The time and date the event was received.
success Boolean true iffiring event was successful; false if firing event wasn't successful.

onFileTransferCompleted ()

Registers a function to call when a file is transferred from a customer to an agent. Available in APl version 31.0 or later.

Syntax

sforce.console.chat.onFileTransferCompleted (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the chat the file was transferred from.
callback function JavaScript method that is called when the method is complete.

Sample Code-Visualforce

<apex:page>

<apex:includeScript value="/support/console/41.0/integration.js"/>

test on file transfer
complete

<script type="text/javascript">
function testOnFileComplete () {
//Gets the value for 'myChatKey'from the getChatRequests () or onChatRequested ()
methods.
//These values are for example purposes only.
var chatKey = 'myChatKey';
sforce.console.chat.onFileTransferCompleted (chatKey, fileSuccess);

function fileSuccess (result) {
//Reports status of the file transfer.

if (result.success == true) {
alert ('File transfer was successful.');
} else {
alert ('File transfer was not successful.');
}
}i
</script>

</apex:page>

160

Methods for Salesforce Classic onNewMessagel()

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

attachmentId String The ID of the object created for the transferred file.

success Boolean true iffiring event was successful; false if firing event was unsuccessful.

onNewMessage ()

Registers a function to call when a new message is sent from a customer, agent, or supervisor. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onNewMessage (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey string The chatKey associated with the chat for which to call a function when a new
customer message is received.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('There is a new message in this chat: ' + result.content);
}
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.onNewMessage (chatKey, eventHandler);
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

161

Methods for Salesforce Classic onTypingUpdate()

Name Type Description
content String The text of a message in the chat log.
name String The name of the user who sent the message. This appears exactly as it is displayed

in the chat log.

type String The type of message that was received, such as an Agent or Visitor message.

timestamp Date/Time The date and time the message was received.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
onTypingUpdate ()

Registers a function to call when the customer’s text in the chat window changes. If Sneak Peek is enabled, this function is called whenever
the customer edits the text in the chat window. If Sneak Peek is not enabled, this function is called whenever a customer starts or stops
typing in the chat window. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onTypingUpdate (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to call a function when a customer
begins typing a new message to the agent.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('There is a new typing update in this chat');
}
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.onTypingUpdate (chatKey, eventHandler);
</script>
</apex:page>

162

Methods for Salesforce Classic sendCustomEvent()

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

isTyping Boolean Indicates whether a chat visitor is typing (t rue) or not (false).

sneakPeek String The text the chat visitor is currently typing into their input box in the chat window.

This is visible only if Sneak Peek is enabled for the agent.

success Boolean true iffiring event was successful; false if firing event wasn't successful.

sendCustomEvent ()

Sends a custom event to the client-side chat window for a chat with a specific chat key. Available in API version 29.0 or later.

Syntax

sforce.console.chat.sendCustomEvent (chatKey:String, type:String, data:String,
callback: Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat to which to send a custom event.
type String The name of the custom event you want to send to the chat window.
data String Additional data you want to send to the chat window along with the custom event.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
Send Custom Event

<script type="text/javascript">

function testSendCustomEvent () {
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only

var chatKey = 'myChatKey';
var type = 'myCustomEventType'
var data = 'myCustomEventData'

163

Methods for Salesforce Classic sendMessagel)

sforce.console.chat.sendCustomEvent (chatKey, type, data, sendCustomEventSuccess);

function sendCustomEventSuccess (result) {
//Report whether sending the custom event was successful

if (result.success == true) {
alert ('The customEvent has been sent');
} else {

alert ('Sending the customEvent was not successful');

b

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if sending the custom event was successful; false if sending the custom

event wasn't successful.

sendMessage ()

Sends a new chat message from the agent to a chat with a specific chat key. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.sendMessage (chatKey:String, message:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey of the chat where the agent’s message is sent.
message String The message you would like to send from the agent to the customer in a chat.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>

164

Methods for Salesforce Classic setAgentinput()

Send Message
<script type="text/javascript">

function testSendMessage () {
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
var text ='This is sample text to send as a message';
sforce.console.chat.sendMessage (chatKey, text, sendMessageSuccess)

function sendMessageSuccess (result) {
//Report whether getting the chat log was successful
if (result.success == true) ({
alert ('Message Sent');
} else {
alert ('Sending the message was not successful');

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true ifsending the message was successful; £alse if sending the message wasn't
successful.
setAgentInput ()

Sets the string of text in the agent’s text input area in the chat log of a chat with a specific chat key.Available in APl version 29.0 or later.

Syntax

sforce.console.chat.setAgentInput (chatKey:String, text:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to set the agent’s input text.

165

Methods for Salesforce Classic setAgentState()

Name Type Description
text String The string of text which you want to set into an agent's input.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
Set Agent Input

<script type="text/javascript">

function testSetAgentInput () {
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
var text = 'This is example text to set the agent input'
sforce.console.chat.setAgentInput (chatKey, text, setAgentInputSuccess);

function setAgentInputSuccess (result) {
//Report whether setting the agent's input was succesful
if (result.success == true) ({
alert ('The text in the agent input has been updated');
} else {
alert ('Setting the agent input was not Succesful');

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true ifsetting the agent’sinput was successful; false if setting the agent’sinput
wasn't successful.
setAgentState ()

Sets an agent's Live Agent status, such as Online, Away, or Offline. Available in API version 29.0 or later.

166

Methods for Salesforce Classic Methods for Live Agent Chat Visitors

Syntax

sforce.console.chat.setAgentState (state:String, (optional)callback:Function)

Arguments
Name Type Description
state String Live Agent status you want to set the agent to—for example, Online, Away, or Offline.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Set Agent Status to
Online
<script type="text/javascript">
function testSetAgentState (state) |
sforce.console.chat.setAgentState (state, function (result) {
if (result.success) {
alert ('Agent State Set to Online');
} else {
alert ('setAgentState has failed');

b
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if setting the agent’s Live Agent status was successful; false if setting the

agent’s Live Agent status wasn't successful.

Methods for Live Agent Chat Visitors

There are a few methods available that you can use to customize the chat visitor experience for Live Agent in a custom Visualforce chat
window. These methods apply to Salesforce Classic only.

167

Methods for Salesforce Classic Methods for Live Agent Chat Visitors

IN THIS SECTION:

chasitor.addCustomEventListener()
Registers a function to call when a custom event is received in the chat window. Available in API version 29.0 or later.

chasitor.getCustomEvents()

Retrieves a list of custom events that have been received in this chat window during this chat session. Available in APl version 29.0
or later.

chasitor.sendCustomEvent()

Sends a custom event to the agent console of the agent who is currently chatting with a customer. Available in API version 29.0 or
later.

chasitor.addCustomEventListener ()

Registers a function to call when a custom event is received in the chat window. Available in API version 29.0 or later.

Syntax

liveagent.chasitor.addCustomEventListener (type:String, callback:Function)

Arguments
Name Type Description
type string The type of custom event you want to listen for.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<script type="text/javascript">
function testAddCustomEventListener () {
//These values are for example purposes only
var type = 'myCustomEventType'
liveagent.chasitor.addCustomEventListener (type, customEventReceived)

function customEventReceived (result) {
eventType = result.getType();

eventData = result.getData();
alert ('A custom event of type: ' + eventType + ' has been received with the
following data: ' + eventData);

b

testAddCustomEventListener () ;
</script>

168

Methods for Salesforce Classic Methods for Live Agent Chat Visitors

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
methods:
Name Type Description
getType method Accesses the type of the custom event that was sent to this chat window. Returns
the type argument of the
sforce.console.chat.sendCustomEvent () method used to send
this event.
getData method Accesses the data of the custom event that was sent to this chat window. Returns
the data argument of the
sforce.console.chat.sendCustomEvent () method used to send
this event.
getSource method Accesses the source of the custom event that was sent to this chat window—for
example, agent or chat visitor.
getDate method Accesses the date of the custom event that was sent to this chat window. Returns

the date and time the event was received.

chasitor.getCustomEvents ()

Retrieves a list of custom events that have been received in this chat window during this chat session. Available in APl version 29.0 or
later.

Syntax

liveagent.chasitor.getCustomEvents ()

Sample Code-Visualforce

Get Custom Events

<script type="text/javascript">
function testGetCustomEvents () {
events = liveagent.chasitor.getCustomEvents () ;
eventsCount = events.length;
alert ('The following number of custom events have occurred: ' + eventsCount);

b

</script>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
methods and properties:

169

Methods for Salesforce Classic Methods for Live Agent Chat Visitors

Name Type Description

events Array of Anarray of event objects. Each object represents a custom event that has occurred
event objects inthis chat. Data on each message object can be accessed by the following methods:
¢ getType ()
® getData()
® getSource ()

® getDate()

getType method Accesses the type of the custom event that was sent to this chat window. Returns
the type argument of the
sforce.console.chat.sendCustomEvent () method used to send
this event.

getData method Accesses the data of the custom event that was sent to this chat window. Returns
the data argument of the
sforce.console.chat.sendCustomEvent () method used to send
this event.

getSource method Accesses the source of the custom event that was sent to this chat window—for
example, agent or chat visitor.

getDate method Accesses the date of the custom event that was sent to this chat window. Returns
the date and time the event was received.

chasitor.sendCustomEvent ()

Sends a custom event to the agent console of the agent who is currently chatting with a customer. Available in APl version 29.0 or later.

Syntax

liveagent.chasitor.sendCustomEvent (type:String, data:String)

Arguments
Name Type Description
type string The name of the custom event to send to the agent console.
data string Additional data you want to send to the agent console along with the custom event.

Sample Code-Visualforce

Send Custom Event
<script type="text/javascript">

function testSendCustomEvent () {
type = 'myCustomEventType';

170

Methods for Salesforce Classic Methods for Omni-Channel

data = 'myCustomEventData';
liveagent.chasitor.sendCustomEvent (type, data);
alert ('The custom event has been sent');
}i
</script>

Response

This method returns no responses.

Methods for Omni-Channel

Omni-Channelis a comprehensive customer service solution that lets your call center route any type of incoming work item—including
cases, chats, phone calls, or leads—to the most qualified, available agents in your organization. Omni-Channel provides a customizable
customer service solution that integrates seamlessly into the Salesforce console and benefits your customers and support agents.

For more information on Omni-Channel, see Set Up Omni-Channel.

IN THIS SECTION:

acceptAgentWork
Accepts a work item that's assigned to an agent. Available in APl versions 32.0 and later.

closeAgentWork

Changes the status of a work item to “Closed” and removes it from the list of work items in the Omni-Channel widget. Available in
APl versions 32.0 and later.

declineAgentWork

Declines a work item that's assigned to an agent. Available in APl versions 32.0 and later.

getAgentWorks

Returns a list of work items that are currently assigned to an agent and open in the agent's workspace. Available in APl versions 32.0
and later.

getAgentWorkload

In APl version 35.0 and later, we can retrieve an agent's currently assigned workload. Use this method for rerouting work to available
agents.

getServicePresenceStatusChannels

Retrieves the service channels that are associated with an Omni-Channel user’s current presence status. Available in APl versions
32.0and later.

getServicePresenceStatusld

Retrieves an agent’s current presence status. Available in APl versions 32.0 and later.

login

Logs an agent into Omni-Channel with a specific presence status. Available in APl versions 32.0 and later.

logout

Logs an agent out of Omni-Channel. Available in APl versions 32.0 and later.

setServicePresenceStatus

Sets an agent's presence status to a status with a particular ID. In APl version 35.0 and later, we log the user into presence if that user
is not already logged in. This will remove the need for you to make additional calls.

171

Methods for Salesforce Classic acceptAgentWork

Methods for Omni-Channel Console Events

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. In addition to the
standard methods for console events, there are a few events that are specific to Omni-Channel. These events apply to Salesforce
Classic only.

acceptAgentWork

Accepts a work item that's assigned to an agent. Available in APl versions 32.0 and later.

Syntax

sforce.console.presence.acceptAgentWork(workId:String, (optional) callback:function)

Arguments
Name Type Description
workId String The ID of the work item the agent accepts.
callback function JavaScript method to call when an agent accepts the work item associated with the

workId.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Accept Assigned Work Item

<script type="text/javascript">
function testAcceptWork() {
//First get the ID of the assigned work item to accept it
sforce.console.presence.getAgentWorks (function (result) {
if (result.success) {
var works = JSON.parse (result.works);
var work = works[O0];
if (!work.isEngaged) {
//Now that we have the assigned work item ID, we can accept it
sforce.console.presence.acceptAgentWork (work.workId,
function (result) {
if (result.success) {
alert ('Accepted work successfully');
} else {
alert ('Accept work failed');

1) ;
} else {
alert ('The work item has already been accepted');

172

Methods for Salesforce Classic closeAgentWork

}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if accepting the work item was successful; false if accepting the work
item wasn't successful.
closeAgentWork

Changes the status of a work item to “Closed” and removes it from the list of work items in the Omni-Channel widget. Available in API
versions 32.0 and later.

Syntax

sforce.console.presence.closeAgentWork (workId:String, (optional) callback:function)

Arguments
Name Type Description
workId String The ID of the work item that's closed.
callback function JavaScript method to call when the work item associated with the workId is

closed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Close Engaged Work Item
<script type="text/javascript">
function testCloseWork() {
//First get the ID of the engaged work item to close it
sforce.console.presence.getAgentWorks (function (result) {
if (result.success) {
var works = JSON.parse (result.works);
var work = works[O0];
if (work.isEngaged) {
//Now that we have the engaged work item ID, we can close it
sforce.console.presence.closeAgentWork (work.workId, function (result)

173

Methods for Salesforce Classic declineAgentWork

if (result.success) {

alert ('Closed work successfully');
} else {

alert ('Close work failed');

});
} else {
alert ('The work item should be accepted first');

P
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if closing the work item was successful; £alse if closing the work item
wasn't successful.
declineAgentWork

Declines a work item that's assigned to an agent. Available in APl versions 32.0 and later.

Syntax

sforce.console.presence.declineAgentWork (workId:String, (optional) declineReason:String,
(optional) callback:function)

Arguments
Name Type Description
workId String The ID of the work item that the agent declines.
declineReason String The provided reason for why the agent declined the work request.
callback function JavaScript method to call when an agent declines the work item associated with the

workId.

174

Methods for Salesforce Classic getAgentWorks

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/41.0/integration.js"/>
Decline Assigned Work Item

<script type="text/javascript">
function testDeclineWork () {
//First, get the ID of the assigned work item to accept it
sforce.console.presence.getAgentWorks (function (result) {
if (result.success) {
var works = JSON.parse (result.works);
var work = works[0];
sforce.console.presence.declineAgentWork (work.workId, function (result)

if (result.success) {

alert ('Declined work successfully');
} else {

alert ('Decline work failed');

}
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

properties:

Name Type Description

success Boolean true ifdeclining the work item was successful; false if declining the work item
wasn't successful.

getAgentWorks

Returns a list of work items that are currently assigned to an agent and open in the agent’s workspace. Available in APl versions 32.0 and

later.

Syntax

sforce.console.presence.getAgentWorks (callback: function)

175

Methods for Salesforce Classic getAgentWorks

Arguments
Name Type Description
callback function JavaScript method to call when the list of an agent’s work items is retrieved.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Get Agent’s Current Work Items

<script type="text/javascript">
function testGetWorks () {
//These values are for example purposes only.
sforce.console.presence.getAgentWorks (function (result) {
if (result.success) {
alert ('Get work items successful');

var works = JSON.parse (result.works);
alert ('First Agent Work ID is: ' + works[0].workId);
alert ('Assigned Entity Id of the first Agent Work is: ' +
works[0] .workItemId) ;
alert('Is first Agent Work Engaged: ' + works[0].isEngaged);
} else {

alert ('Get work items failed');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true ifretrieving the agent’s work items was successful; false if retrieving the
agent’s work items wasn't successful.
works JSON string of A JSON string of work objects that represents the work items assigned to the agent
work objects that are open in the agent’s workspace.
work

The work object contains the following properties:

176

Methods for Salesforce Classic getAgentWorkload

Name Type Description

workItemId String The ID of the object that's routed through Omni-Channel. This object becomes a
work assignment with a workId when it's assigned to an agent.

workId String The ID of a work assignment that's routed to an agent.

isEngaged Boolean Indicates whether an agent is working on a work item that's been assigned to them
(true)ornot(false).

getAgentWorkload

In APl version 35.0 and later, we can retrieve an agent’s currently assigned workload. Use this method for rerouting work to available
agents.

Syntax

sforce.console.presence.getAgentWorkload (callback: function)

Arguments
Name Type Description
callback function JavaScript method to call when the agent’s configured capacity and work retrieved.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>

Get Agent’s configured capacity and current workload

<script type="text/javascript">
function testGetAgentWorkload() {
sforce.console.presence.getAgentWorkload (function (result) {
if (result.success) {
alert ('Retrieved Agent Configured Capacity and Current Workload
successfully');
alert ('Agent\'s configured capacity is: ' + result.configuredCapacity);

alert ('Agent\'s currently assigned workload is: ' +
result.currentWorkload) ;
} else {
alert ('Get Agent Workload failed');

177

Methods for Salesforce Classic

</script>
</apex:page>

getServicePresenceStatusChannels

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

Response

properties:

Name Type
success Boolean

configuredCapacity Number

currentWorkload Number

work

Description

true if retrieving the agent's work items was successful; false if retrieving the
agent's work items wasn't successful.

Indicates the agent’s configured capacity (work that's assigned to the current user)
through Presence Configuration.

Indicates the agent’s currently assigned workload.

The work object contains the following properties:

Name Type
workItemId String
workId String
isEngaged Boolean

Description

The ID of the object that's routed through Omni-Channel. This object becomes a
work assignment with a workId when it's assigned to an agent.

The ID of a work assignment that's routed to an agent.

Indicates whether an agent is working on a work item that's been assigned to them
(true)ornot(false).

getServicePresenceStatusChannels

Retrieves the service channels that are associated with an Omni-Channel user's current presence status. Available in APl versions 32.0

and later.

Syntax

sforce.console.presence.getServicePresenceStatusChannels (callback: function)

Arguments
Name Type
callback function

Description

JavaScript method to call when the channels associated with a presence status are

retrieved.

178

Methods for Salesforce Classic getServicePresenceStatusld

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>

Get Channels Associated with a Presence Status

<script type="text/javascript">
function testGetChannels () {
//These values are for example purposes only.
sforce.console.presence.getServicePresenceStatusChannels (function (result) {
if (result.success) {
alert ('Retrieved Service Presence Status Channels successfully');
var channels = JSON.parse (result.channels);
//For example purposes, just retrieve the first channel
alert ('First channel ID is: ' + channels[0].channelId);
alert ('First channel developer name is: ' + channels[0].developerName) ;

} else {
alert ('Get Service Presence Status Channels failed');

}) i
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if retrieving the current presence status channels was successful; false if
the retrieving the current presence status channels wasn't successful.
channels JSON string of ~ Returns the IDs and API names of the channels associated with the presence status.
channel
objects

getServicePresenceStatusId

Retrieves an agent’s current presence status. Available in APl versions 32.0 and later.

Syntax

sforce.console.presence.getServicePresenceStatusId(callback: function)

179

Methods for Salesforce Classic login

Arguments
Name Type Description
callback function JavaScript method to call when the agent’s presence status is retrieved.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Get Omni-Channel Status ID

<script type="text/javascript">
function testGetStatusId() {
sforce.console.presence.getServicePresenceStatusId (function (result) {

if (result.success) {
alert ('Get Status Id successful');
alert ('Status Id is: ' + result.statusId);

} else {
alert ('Get Status Id failed'):;

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if retrieving the presence status ID was successful; false if the retrieving

the presence status ID wasn't successful.

statusName String The name of the agent’s current presence status.

statusApiName String The API name of the agent’s current presence status.

statusId String The ID of the agent's current presence status.

login

Logs an agent into Omni-Channel with a specific presence status. Available in APl versions 32.0 and later.

Syntax

sforce.console.presence.login(statusId:String, (optional) callback:function)

180

Methods for Salesforce Classic logout

Arguments
Name Type Description
statusId String The ID of the presence status. Agents must be given access to this presence status
through their associated profile or permission set.
callback function JavaScript method to call when the agent is logged in with the presence status

associated with statusId.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Log In to
Omni-Channel

<script type="text/javascript">
function testLogin(statusId) ({
//Gets the Salesforce ID of the presence status entity which the current user
has been assigned through their permission set or profile.
//These values are for example purposes only.
sforce.console.presence.login (statusId, function(result) ({
if (result.success) {
alert ('Login successful');
} else {
alert ('Login failed');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if the login was successful; £alse if the login wasn't successful.
logout

Logs an agent out of Omni-Channel. Available in API versions 32.0 and later.

Syntax

sforce.console.presence.logout ((optional) callback:function)

181

Methods for Salesforce Classic setServicePresenceStatus

Arguments
Name Type Description
callback function JavaScript method to call when the agent is logged out of Omni-Channel.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/41.0/integration.js"/>
Log out of Omni-Channel

<script type="text/javascript">
function testLogout () {
sforce.console.presence.logout (function (result) {
if (result.success) {
alert ('Logout successfully');
} else {
alert ('Logout failed'):;

1) i

}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if the logout was successful; false if the logout wasn't successful.

setServicePresenceStatus

Sets an agent's presence status to a status with a particular ID. In APl version 35.0 and later, we log the user into presence if that user is
not already logged in. This will remove the need for you to make additional calls.

Syntax

sforce.console.presence.setServicePresenceStatus (statusId: String,
(optional) callback:function)

182

Methods for Salesforce Classic setServicePresenceStatus

Arguments
Name Type Description
statusId String The ID of the presence status you want to set the agent to. Agents must be given
access to this presence status through their associated profile or permission set.
callback function JavaScript method to call when the agent’s status is changed to the presence status

associated with statusId.

Sample Code-Visualforce

<apex:page>

<apex:includeScript value="/support/console/41.0/integration.js"/>

Set Presence
Status

<script type="text/javascript">
function testSetStatus (statusId) {

//Sets the user’s presence status to statusID. Assumes that the user was
assigned this presence status through Setup.

//These values are for example purposes only

sforce.console.presence.setServicePresenceStatus (statusId, function(result) {

if (result.success) {
alert ('Set status successful');
alert ('Current statusId is: ' + result.statusId);
alert ('Channel list attached to this status is: ' + result.channels);
//printout in console for lists
} else {
alert ('Set status failed');

P
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if setting the agent’s status was successful; false if setting the agent’s

status wasn't successful.
statusName String The name of the agent’s current presence status.
statusApiName String The API name of the agent’s current presence status.

183

Methods for Salesforce Classic Methods for Omni-Channel Console Events

Name Type Description

statusId String The ID of the agent's current presence status.

channels JSON string of ~ Returns the IDs and APl names of the channels associated with the presence status.
channel
objects

Methods for Omni-Channel Console Events

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. In addition to the standard
methods for console events, there are a few events that are specific to Omni-Channel. These events apply to Salesforce Classic only.

Omni-Channel Console Events

Event Description Payload

sforce.console.ConsoleEvent. Fired whenan

PRESENCE.LOGIN SUCCESS Omni-Channel user logs
into Omni-Channel
successfully.

* statusId—thelDoftheagent’scurrent presence status.

Available in APl version
32.0or later.

sforce.console.ConsoleEvent. Firedwhenauserchanges

PRESENCE.STATUS CHANGED his or her presence status.))
- e channels—channelJSON string of channel objects.

® statusId—thelDoftheagent’scurrent presence status.

Available in APl version

statusName—the name of the agent's current presence
32.0or later.

status.

® statusApiName—the APl name of the agent’s current
presence status.

sforce.console.ConsoleEvent. Firedwhenauserlogsout None
PRESENCE . LOGOUT of Salesforce.

Available in APl version
32.0or later.

sforce.console.ConsoleEvent. Fired whena useris e workItemTd—thelDoftheobjectthat's routed through

PRESENCE.WORK_ASSIGNED assigned anew work item. Omni-Channel. This object becomes a work assignment with
Available in APl version a workIdwhenit's assigned to an agent.
320 or later. e workId—the D of aworkassignment that's routed to an

agent.

sforce.console.ConsoleEvent. Fired when a useraccepts

PRESENCE.WORK ACCEPTED a work assignment, or
when a work assignment
is automatically accepted.

* workItemId—thelDoftheobjectthat’sroutedthrough
Omni-Channel. This object becomes a work assignment with
a workIdwhen it'sassigned to an agent.

184

Methods for Salesforce Classic

Event

sforce.console.ConsoleEvent.
PRESENCE.WORK DECLINED

sforce.console.ConsoleEvent.
PRESENCE.WORK CLOSED

sforce.console.ConsoleEvent.
PRESENCE . WORKLOAD CHANGED

channel

Description

Available in APl version °
32.0or later.

Fired when a user declines
a work assignment.

Available in APl version
32.0 or later. °

Fired whena userclosesa
tab in the console that's
associated with a work

item. When the tab for

that work item is closed,

the status of the

AgentWork object
associated with it
automatically changes to
“Closed.”

Available in APl version
32.0or later.

Fired when an agent’s
workload changes. This
includes receiving new
work items, declining work
items, and closing items in
the console. It's also fired ~ ©
when there’s a change to

an agent’s capacity or
Presence Configuration or
when the agent goes

offline in the

Omni-Channel widget.

The channel object contains the following functions:

Name Type
channelId String
developerName String

Description

Methods for Omni-Channel Console Events

Payload

workId—the ID of a work assignment that's routed to an
agent.

workItemId—thelDoftheobjectthat’sroutedthrough
Omni-Channel. This object becomes a work assignment with
a workIdwhenit'sassigned to an agent.

workId—the ID of a work assignment that's routed to an
agent.

workItemId—thelD oftheobjectthat’sroutedthrough
Omni-Channel. This object becomes a work assignment with
a workId when it's assigned to an agent.

workId—theID of a work assignment that's routed to an
agent.

ConfiguredCapacity—the configured capacity for
the agent.

PreviousWorkload—theagent's workload before the
change.

NewWorkload—the agent’s new workload after the
change.

Retrieves the ID of a service channel that's associated with a presence status.

Retrieves the developer name of the the service channel that's associated with the

channelId

185

CHAPTER 6 Methods for Lightning Experience

If your org is using Lightning Experience, use Lightning Console JavaScript APl methods.

IN THIS SECTION:

Methods for Workspace Tabs and Subtabs in Lightning Experience

A Lightning console app displays Salesforce pages as workspace tabs or subtabs. A workspace tab displays the main work item or
record, such as an account. A subtab displays related records, such as an account’s contacts or opportunities.

Methods for the Utility Bar in Lightning Experience

The utility bar houses Lightning components, and gives your users quick access to tools they use often. The utility bar is available in
Lightning Experience only.

Methods for Omni-Channel in Lightning Experience (Beta)

Omni-Channel lets your call center route any type of incoming work item to the most qualified, available agents.

Methods for Workspace Tabs and Subtabs in Lightning Experience

A Lightning console app displays Salesforce pages as workspace tabs or subtabs. A workspace tab displays the main work item or record,
such as an account. A subtab displays related records, such as an account’s contacts or opportunities.

These methods work with workspace tabs and subtabs in Lightning console apps.

IN THIS SECTION:

closeTab() for Lightning Experience
Closes a workspace tab or subtab. This method works only in Lightning console apps.

focusTab() for Lightning Experience
Focuses a workspace tab or subtab. This method works only in Lightning console apps.

getAllTabInfo() for Lightning Experience
Returns information about all open tabs. This method works only in Lightning console apps.

getEnclosingTabld() for Lightning Experience
Returns the ID of the enclosing tab. This method works only in Lightning console apps.

getFocusedTablnfo() for Lightning Experience
Returns information about the focused workspace tab or subtab. This method works only in Lightning console apps.

getTablnfo() for Lightning Experience
Returns information about the specified tab. This method works only in Lightning console apps.

getTabURL() for Lightning Experience
Returns the URL of the specified tab. This method works only in Lightning console apps.

186

Methods for Lightning Experience closeTab) for Lightning Experience

isConsoleNavigation() for Lightning Experience
Determines whether the app it's used within uses console navigation.

isSubtab() for Lightning Experience
Checks whether a tab is a subtab. This method works only in Lightning console apps.

openSubtab() for Lightning Experience
Opens a subtab within a workspace tab. The new subtab displays the content of the specified URL. If a tab with that URL already
exists and focus issetto true,itis focused. This method works only in Lightning console apps.

openTab() for Lightning Experience
Opens a new workspace tab that displays the content of a specified URL, which can be relative or absolute. If the tab is already open,
it is focused. This method works only in Lightning console apps.

setTabHighlighted() for Lightning Experience

Highlights the specified tab with a different background color and a badge. When you close and reopen a Lightning console app it
remembers your open workspace tabs and subtabs, but it does not remember whether a tab was highlighted. This method works
only in Lightning console apps.

setTablcon() for Lightning Experience

Sets the icon and alternative text of the specified tab. This method works only in Lightning console apps.

setTablabel() for Lightning Experience

Sets the label of the specified tab. This method works only in Lightning console apps.

closeTab () for Lightning Experience

Closes a workspace tab or subtab. This method works only in Lightning console apps.

Arguments

Name Type Description

tabId string ID of the workspace tab or subtab to close.
Sample Code

This component has a button that, when pressed, closes the currently focused tab.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global">
<lightning:workspaceAPI aura:id="workspace"/>
<lightning:button label="Close Focused Tab" onclick="{!c.closeFocusedTab}"/>
</aura:component>

Controller code:

({
closeFocusedTab : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo () .then (function (response) {
var focusedTabId = response.tabId;

187

Methods for Lightning Experience

workspaceAPI.closeTab ({tabId:
})
.catch (function (error) {
console.log(error) ;
})

Response

focusedTablId}) ;

focusTab() for Lightning Experience

This method returns a promise that, upon success, resolves to a tabInfo object representing the closed tab. A tabInfo objectis
aJSON array of information about a workspace tab, with nested arrays of information on each subtab. Thisis the structure ofa tabInfo

object.

{ tabId: string,

active: boolean

pinned: boolean,

closeable: boolean,

title: string,

icon: string (SLDS iconKey),

iconAlt: string,

recordId: string,

url: string (URL),

subtabs: [

{

tabId: string,
active": boolean,
pinned": boolean,
closeable": boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
recordId: string,
url: string (URL),
isSubtab: boolean,
parentTabId: string,
customTitle: string,
customIcon: string (URL),
customIconAlt: string

1y

isSubtab: boolean,
parentTabId: string,
customTitle: string,
customIcon: string (URL),
customIconAlt: string

focusTab () for Lightning Experience

Focuses a workspace tab or subtab. This method works only in Lightning console apps.

188

Methods for Lightning Experience focusTab) for Lightning Experience

Arguments

Name Type Description

tabId string ID of the workspace tab or subtab on which
to focus.

Sample Code

This component has a button that, when pressed, opens a new tab and focuses it.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Focus New Tab" onclick="{! c.focusNewTab }" />
</aura:component>

Controller code:

({
focusNewTab : function (component, event, helper) {

var workspaceAPI = component.find("workspace");

workspaceAPI.openTab ({
url: '/sObject/001R0000003HgssIAC/view"',
label: 'Global Media'

}) .then (function (response) {
workspaceAPI.focusTab ({tabId : response});

})

.catch (function(error) {
console.log(error);

1)
})

@ Nofte: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from
your org.

Response

This method returns a promise that, upon success, resolves to a tabInfo object representing the focused tab. A tabInfo object
isa JSON array of information about a workspace tab, with nested arrays of information on each subtab. Thisis the structure of a tabInfo
object.

{ tabId: string,
active: boolean
pinned: boolean,
closeable: boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
recordId: string,
url: string (URL),

189

Methods for Lightning Experience

subtabs: [
{

tabId: string,
active": boolean,
pinned": boolean,
closeable": boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
recordId: string,
url: string (URL),
isSubtab: boolean,
parentTabId: string,
customTitle: string,
customIcon: string (URL),
customIconAlt: string

1,

isSubtab: boolean,
parentTabId: string,
customTitle: string,
customIcon: string (URL),
customIconAlt: string

getAllTabInfo () for Lightning Experience

Returns information about all open tabs. This method works only in Lightning console apps.

Arguments

None.

Sample Code
This component has a button that, when pressed, gets the info of all open tabs and prints the resulting tabInfo object.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Get All Tab Info" onclick="{! c.getAllTabInfo }" />
</aura:component>

Controller code:

({
getAllTabInfo : function (component, event, helper) ({
var workspaceAPI = component.find("workspace");
workspaceAPI.getAllTabInfo () .then (function (response) {
console.log(response) ;

})

190

getAllTablnfo() for Lightning Experience

Methods for Lightning Experience

.catch (function(error) {
console.log(error);

1)

Response

This method returns a promise that, upon success, resolves to an array of tabInfo objects. A tabInfo objectisa JSON array of
information about a workspace tab, with nested arrays of information on each subtab. This is the structure of a tabInfo object.

{ tabId: string,

getEnclosingTablId () for Lightning Experience

Returns the ID of the enclosing tab. This method works only in Lightning console apps.

active: boolean

pinned: boolean,

closeable: boolean,

title: string,

icon: string (SLDS iconKey),

iconAlt: string,

recordId: string,

url: string (URL),

subtabs: [

{

tabId: string,
active": boolean,
pinned": boolean,
closeable": boolean,
title: string,

icon: string (SLDS iconKey),

iconAlt: string,
recordId: string,

url: string (URL),
isSubtab: boolean,
parentTabId: string,
customTitle: string,
customIcon: string (URL),
customIconAlt: string

Iy

isSubtab: boolean,
parentTabId: string,
customTitle: string,
customIcon: string (URL),
customIconAlt: string

191

getEnclosingTabld() for Lightning Experience

Methods for Lightning Experience getFocusedTablnfo() for Lightning Experience

Arguments

None.

Sample Code
This component has a button that, when pressed, retrieves the enclosing tab ID.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Get Enclosing Tab Id" onclick="{! c.getEnclosingTabId }" />
</aura:component>

Controller code:

({
getEnclosingTabId : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.getEnclosingTabId () .then (function (tabId) {
console.log(tabId);
})

.catch (function (error) {
console.log(error);

)

Response

This method returns a promise that, upon success, resolves to the tabId of the enclosing tab, if within a tab, or false if not within
a tab.

getFocusedTabInfo () for Lightning Experience

Returns information about the focused workspace tab or subtab. This method works only in Lightning console apps.

Arguments

None.

Sample Code
This component has a button that, when pressed, closes the currently focused tab.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Close Focused Tab" onclick="{! c.closeFocusedTab }" />
</aura:component>

192

Methods for Lightning Experience

Controller code:

({

closeFocusedTab

var workspaceAPI

function (component, event, helper)

component.find ("workspace") ;

getFocusedTablnfo() for Lightning Experience

workspaceAPI.getFocusedTabInfo () .then (function (response) {
var focusedTabId = response.tabId;

workspaceAPI.closeTab ({tabId:

b

.catch (function (error) {
console.log(error);

)

Response

focusedTabId}) ;

This method returns a promise that, upon success, resolves to a tabInfo object representing the focused tab. A tabInfo object
isa JSON array of information about a workspace tab, with nested arrays of information on each subtab. Thisis the structure of a tabInfo

object.

{ tabId: string,

active: boolean
pinned: boolean,
closeable: boolean,

title: string,

icon: string (SLDS iconKey),

iconAlt: string,
recordId: string,
url: string (URL),

subtabs: [

{
tabId:

active":
pinned":
closeable":

title:
icon:

iconAlt:
recordId:
url: string

boolean,
boolean,
boolean,

(SLDS iconKey),
string,

string,

(URL) ,

isSubtab: boolean,

parentTabId:
customTitle:
customIcon:

i

isSubtab: boolean,
parentTabId: string,
customTitle: string,
customIcon: string

string,
string,
string (URL),
customIconAlt:

string

(URL),

193

Methods for Lightning Experience getTablnfo() for Lightning Experience

customIconAlt: string

getTabInfo () for Lightning Experience

Returns information about the specified tab. This method works only in Lightning console apps.

Arguments

Name Type Description

tabId string ID of the tab for which to retrieve the
information.

Sample Code

This component has a button that, when pressed, opens a tab and usesthe getTabInfo () methodto printthe newtab’s tabInfo
to the developer console.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Get Opened Tab Info" onclick="{! c.getOpenedTabInfo }" />
</aura:component>

Controller code:

({
getOpenedTabInfo : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspaceAPI.openTab ({
url: '#/sObject/001R0000003HgssIAC/view',
focus: true
}) .then (function (response) {
workspaceAPI.getTabInfo ({
tabId: response
}) .then (function (response) {
console.log(response) ;
})
1)
.catch (function(error) {
console.log(error) ;

)i
})

@ Nofte: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from
your org.

194

Methods for Lightning Experience

Response

This method returns a promise that, upon success, resolves toa tabInfo object representing the specified tab. A tabInfo object
isa JSON array of information about a workspace tab, with nested arrays of information on each subtab. This is the structure ofa tabInfo

object.

{ tab

getTabURL () for Lightning Experience

Returns the URL of the specified tab. This method works only in Lightning console apps.

Id: string,

active: boolean

pinned: boolean,

closeable: boolean,

title: string,

icon: string (SLDS iconKey),

iconAlt: string,

recordId: string,

url: string (URL),

subtabs: [

{

tabId: string,
active": boolean,
pinned": boolean,
closeable": boolean,
title: string,

icon: string (SLDS iconKey),

iconAlt: string,
recordId: string,

url: string (URL),
isSubtab: boolean,
parentTabId: string,
customTitle: string,
customIcon: string (URL),
customIconAlt: string

]I

isSubtab: boolean,
parentTabId: string,
customTitle: string,
customIcon: string (URL),
customIconAlt: string

Arguments
Name Type
tabId string

195

getTabURL() for Lightning Experience

Description

ID of the tab for which to retrieve the URL.

Methods for Lightning Experience isConsoleNavigation() for Lightning Experience

Sample Code

This component has a button that, when pressed, opens a tab and uses the get TabURL () method to print the new tab’s URL to the
developer console.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Get Opened Tab URL" onclick="{! c.getOpenedTabURL }" />
</aura:component>

Controller code:

({
getOpenedTabURL : function (component, event, helper) ({
var workspaceAPI = component.find("workspace");
workspaceAPI.openTab ({
url: '#/sObject/001R0000003HgssIAC/view',
focus: true
}) .then (function (response) {
workspaceAPI.getTabURL ({
tabId: response
}) .then (function (response) {
console.log(response) ;
1)
})
.catch (function(error) {
console.log(error) ;
1)

)
@ Note: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from

your org.

Response

This method returns a promise that, upon success, resolves to the URL of the specified tab.

isConsoleNavigation () for Lightning Experience

Determines whether the app it's used within uses console navigation.

Arguments

None.

Sample Code

This component has a button that, when pressed, prints whether the current app is using console navigation.

196

Methods for Lightning Experience isSubtab) for Lightning Experience

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Is Console Navigation?" onclick="{! c.isConsoleNavigation }"
/>

</aura:component>
Controller code:

({

isConsoleNavigation : function (component, event, helper) ({
var workspaceAPI = component.find("workspace");
workspaceAPI.isConsoleNavigation () .then (function (response) {
console.log(response) ;

1)
.catch (function (error) {
console.log(error) ;

)i

Response

This method returns a promise that, upon success, resolves to true if the current app uses console navigation, and false otherwise.

isSubtab () for Lightning Experience

Checks whether a tab is a subtab. This method works only in Lightning console apps.

Arguments

Name Type Description
tabId string ID of the tab.
Sample Code

This component has a button that checks whether the foucsed tab is a subtab and opens a modal with the answer.
Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Is the Focused Tab a Subtab?" onclick="{! c.isFocusedTabSubtab
}" />

</aura:component>
Controller code:

({
isFocusedTabSubtab : function (component, event, helper) {
var workspaceAPI = component.find("workspace");

197

Methods for Lightning Experience

workspaceAPI.getFocusedTabInfo () .then (function (response)
workspaceAPI.isSubtab ({
tabId: response.tabId
}) .then (function (response) {
if (response) {

confirm("This tab is a subtab.");
}
else {
confirm("This tab is not a subtab.");

1)

})

.catch (function (error) {
console.log(error);

1)

Response

{

openSubtabl) for Lightning Experience

This method returns a promise that, upon success, resolves to true if the tab is a subtab, and false otherwise.

openSubtab () for Lightning Experience

Opens a subtab within a workspace tab. The new subtab displays the content of the specified URL. If a tab with that URL already exists

and focus issetto true, itisfocused. This method works only in Lightning console apps.

Arguments

Name Type Description

parentTabId string The ID of the workspace tab within which
the new subtab should open.

url string The URL representing the content of the
new subtab. URLs can be either relative or
absolute.

focus boolean Specifies whether the new subtab has focus.

Sample Code

This component has a button that, when pressed, opens a subtab within a workspace tab.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >

<lightning:workspaceAPI aura:id="workspace" />

<lightning:button label="Open Tab with Subtab" onclick="{! c.openTabWithSubtab }" />

</aura:component>

198

Methods for Lightning Experience

Controller code:

({
openTabWithSubtab :
var workspaceAPI =
workspaceAPI.openTab ({
"#/s0bject/001R0000003HgssIAC/view',
focus:
}) .then (function (response) {
workspaceAPI.openSubtab ({

function (component, event, helper)

component.find ("workspace") ;

url:
true

parentTabId: response,
url: '#/sObject/005R0000000INjPIAW/view',
focus: true

)i

)

.catch (function(error) {
console.log(error) ;

)i

H

{

openTab() for Lightning Experience

@ Nofte: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from

your org.

Response

This method returns a promise that, upon success, resolves to the ID of the new subtab.

openTab () for Lightning Experience

Opens a new workspace tab that displays the content of a specified URL, which can be relative or absolute. If the tab is already open, it

is focused. This method works only in Lightning console apps.

Arguments

Name Type
recordlId ID
url URL

199

Description

Specifies the record to open. If you specify
arecord D, the value for url isn'trequired
and is ignored.

The URL representing the content of the
new workspace tab. The URL can be either
relative or absolute.

If you specify a URL, a record ID isn't
required. Ifarecord IDis specified, the url
value is ignored.

@ Nofte: Visualforce URLs aren’t
supported.

Methods for Lightning Experience
Name

focus

overrideNavRules

Sample Code

This component has a button that when pressed, opens a tab.

Component code:

Type
boolean

boolean

openTab() for Lightning Experience

Description
Specifies whether the new tab has focus.

Optional. Specifies whether the open tab
respects existing navigation rules. This
argument has no effect on records that have
no navigation rules configured and URLs
that do not point to a record.

<aura:component implements="flexipage:availableForAllPageTypes" access="global">

<lightning:workspaceAPI aura:id="workspace"/>

<lightning:button label="Open Tab" onclick="{!c.openTab}"/>

</aura:component>
Controller code (recordld):

({

openTab : function (component,

workspaceAPI.openTab ({

recordId: "001xx000003DIkeAAG",

focus: true
}) .then (function (response)

event, helper)
var workspaceAPI = component.find("workspace");

{

workspaceAPI.focusTab ({

tabId: response
1)
})

.catch (function (error)

{

console.log(error);

)i

Controller code (url):

({

openTab : function (component,
var workspaceAPI = component.find("workspace");

workspaceAPI.openTab ({

url: "#/s0bject/500R0000000myfGIAQ/view",

focus: true

}) .then (function (response) {
workspaceAPI.focusTab ({

tabId: response

)i

}) .catch (function (error) {

event,

Methods for Lightning Experience sefTabHighlighted|) for Lightning Experience

console.log(error) ;

)

@ Nofte: The relative URL used in this example is a placeholder. To try this example yourself, use a relative URL with a record ID from
your org.

Response

This method returns a promise that, upon success, resolves to the tabId of the new tab.

setTabHighlighted () for Lightning Experience

Highlights the specified tab with a different background color and a badge. When you close and reopen a Lightning console app it
remembers your open workspace tabs and subtabs, but it does not remember whether a tab was highlighted. This method works only
in Lightning console apps.

Arguments

Name Type Description

tabId string The ID of the tab to be highlighted.

highlighted boolean Whether the tab is highlighted. Makes a
utility more prominent by giving it a
different background color.

Sample Code

This component has a button that, when pressed, sets the focused tab as highlighted.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<force:workspaceAPI aura:id="workspace" />
<lightning:button label="Set Focused Tab Highlighted" onclick="{!
c.setFocusedTabHighlighted }" />
</aura:component>

Controller code:

({
setFocusedTabHighlighted : function (component, event, helper) {
var workspaceAPI = component.find("workspace");
workspace.getFocusedTabInfo () .then (function (response) {
var focusedTabId = response.tabId;
workspaceAPI.setTabHighlighted ({
tabId: focusedTablId,

201

Methods for Lightning Experience

highlighted: true
}) i
})
.catch (function (error) {
console.log(error) ;

)

Response

setTablcon() for Lightning Experience

This method returns a promise that, upon success, returns a tabInfo object representing the modified tab. A tabInfo objectis
aJSON array of information about a workspace tab, with nested arrays of information on each subtab. Thisis the structure ofa tabInfo

object.

{ tabId: string,

active: boolean

pinned: boolean,

closeable: boolean,

title: string,

icon: string (SLDS iconKey),

iconAlt: string,

recordId: string,

url: string (URL),

subtabs: [

{

tabId: string,
active": boolean,
pinned": boolean,
closeable": boolean,
title: string,

icon: string (SLDS iconKey),

iconAlt: string,
recordId: string,
url: string (URL),
isSubtab: boolean,
parentTabId: string,
customTitle: string,

customIcon: string (URL),
customIconAlt: string

1,

isSubtab: boolean,
parentTabId: string,
customTitle: string,
customIcon: string (URL),
customIconAlt: string

setTablIcon () for Lightning Experience

Sets the icon and alternative text of the specified tab. This method works only in Lightning console apps.

202

Methods for Lightning Experience

Arguments

Name Type
tabId string
icon string
iconAlt string
Sample Code

setTablcon() for Lightning Experience

Description
The ID of the tab for which to set the icon.

An SLDS icon key. See a full list of icon keys
on the SLDS reference site.

Optional. Alternative text for the icon.

This component has a button that, when pressed, sets the icon of the focused tab to the SLDS “like” icon.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >

<lightning:workspaceAPI aura:id="workspace" />

<lightning:button label="Set Focused Tab Icon" onclick="{! c.setFocusedTabIcon }" />

</aura:component>
Controller code:

({

setFocusedTabIcon : function (component, event,
var workspaceAPI = component.find("workspace");

workspaceAPI.getFocusedTabInfo () .then (function (response) {

var focusedTabId = response.tabId;

console.log("Set focused tab icon.");

console.log(focusedTabId) ;
workspaceAPI.setTabIcon ({
tabId: focusedTablId,
icon: "like",
iconAlt: "like"
});
})
.catch (function (error) {
console.log(error);

)

Response

This method returns a promise that, upon success, resolves to a tabInfo object representing the modified tab. A tabInfo object
isa JSON array of information about a workspace tab, with nested arrays of information on each subtab. Thisis the structure of a tabInfo

object.

{ tabId: string,
active: boolean
pinned: boolean,
closeable: boolean,
title: string,

203

https://www.lightningdesignsystem.com/icons/

Methods for Lightning Experience setTabLabel() for Lightning Experience

icon: string (SLDS iconKey),

iconAlt: string,

recordId: string,

url: string (URL),

subtabs: [

{

tabId: string,
active": boolean,
pinned": boolean,
closeable": boolean,
title: string,
icon: string (SLDS iconKey),
iconAlt: string,
recordId: string,
url: string (URL),
isSubtab: boolean,
parentTabId: string,
customTitle: string,
customIcon: string (URL),
customIconAlt: string

1,

isSubtab: boolean,
parentTabId: string,
customTitle: string,
customIcon: string (URL),
customIconAlt: string

setTabLabel () for Lightning Experience

Sets the label of the specified tab. This method works only in Lightning console apps.

Arguments

Name Type Description

tabId string The ID of the tab for which to set the label.
label string The label of the workspace tab or subtab.
Sample Code

This component has a button that, when pressed, sets the label of the focused tab to “Focused Tab”".

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<lightning:button label="Set Focused Tab with Label" onclick="{! c.setFocusedTabLabel

204

Methods for Lightning Experience

}n

/>

</aura:component>

Controller code:

({

setFocusedTabLabel

function (component, event, helper) {

var workspaceAPI = component.find("workspace");
workspaceAPI.getFocusedTabInfo () .then (function (response)
var focusedTabId = response.tabId;
workspaceAPI.setTabLabel ({
tabId: focusedTablId,
label: "Focused Tab"
})
})
.catch (function (error) {
console.log(error) ;

)i

Response

{

setTabLabel() for Lightning Experience

This method returns a promise that, upon success, resolves to a tabInfo object representing the modified tab. A tabInfo object
isa JSON array of information about a workspace tab, with nested arrays of information on each subtab. Thisis the structure of a tabInfo

object.

{ tabId: string,
active: boolean

pinned: boolean,

closeable:
title:
icon:
iconAlt:
recordId:
url:

boolean,

string,

(SLDS iconKey),
string,

string

string,

string (URL),

subtabs: [

{
tabId: string,
active": boolean,

pinned": boolean,

closeable™:
title:
icon: string
iconAlt:
recordId:

boolean,

string,

(SLDS iconKey),
string,

string,

(URL) ,

isSubtab: boolean,
parentTabId:

url: string
string,
customTitle: string,
customIcon: string (URL),
customIconAlt: string

205

Methods for Lightning Experience Methods for the Utility Bar in Lightning Experience

1,

isSubtab: boolean,
parentTabId: string,
customTitle: string,
customIcon: string (URL),
customIconAlt: string

Methods for the Utility Bar in Lightning Experience

The utility bar houses Lightning components, and gives your users quick access to tools they use often. The utility bar is available in
Lightning Experience only.

These methods work in the utility bar.

IN THIS SECTION:
getAllUtilitylnfo() for Lightning Experience

Returns the state of all utilities as an array of utilityInfo objects.
getEnclosingUtilityld() for Lightning Experience

Returns the ID of the enclosing utility, or false if not within a utility.
getUtilitylnfo() for Lightning Experience

Returns the state of the current utilityasa utilityInfo object.
minimizeUtility() for Lightning Experience

Minimizes a utility.

openUtility() for Lightning Experience

Opens a utility. If the utility is already open, this method has no effect. Only one utility can be open at a time. If another utility is
already open, it is minimized.

setPanelHeaderlcon() for Lightning Experience

Sets the icon of a utility’s panel. This icon is displayed in the utility panel header.
setPanelHeaderlabel() for Lightning Experience

Sets the label of a utility’s panel. This label is displayed in the utility panel header.
setPanelHeight() for Lightning Experience

Sets a utility panel’s height.

setPanelWidth() for Lightning Experience

Sets a utility panel’s width.

setUtilityHighlighted() for Lightning Experience

Sets a utility as highlighted, giving it a badge and a more prominent background color.
setUtilitylcon() for Lightning Experience

Sets the icon of a utility. This icon is displayed in the utility bar.

setUtilityLabel() for Lightning Experience

Sets the label of a utility. This text is displayed in the utility bar.

206

Methods for Lightning Experience getAllUtilitylnfo() for Lightning Experience

toggleModalMode() for Lightning Experience
Toggles modal mode for a utility. While in modal mode, an overlay blocks users from using the console while the utility panel is
visible.

getAllUtilityInfo () for Lightning Experience

Returns the state of all utilities as an array of utilityInfo objects.

Arguments

None.

Sample Code
This component has a button that, when pressed, retrieves all utilityInfo objects and opens the first utility, ordered by ID.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Get All Utility Info" onclick="{! c.getAllUtilityInfo }" />
</aura:component>

Controller code:

({
getAllUtilityInfo : function (component, event, helper) {

var utilityAPI = component.find("utilitybar");

utilityAPI.getAllUtilityInfo () .then (function (response) {
var myUtilityInfo = response([0];
utilityAPI.openUtility ({

utilityId: myUtilityInfo.id

1)

})

.catch (function (error) {

console.log(error);

)i

Response

This method returns a promise that, upon success, resolves to an array of utilityInfo objects, containing the following fields.

Name Type Description

id string The ID of the utility.

isLoaded boolean Whether the utility is loaded.
utilityLabel string The label of the utility.
utilityIcon string The SLDS icon ID of the utility's icon.

207

Methods for Lightning Experience getEnclosingUtilityld() for Lightning Experience

Name Type Description
utilityHighlighted boolean Whether the utility is highlighted.
utilityVisible boolean Whether the utility is visible.
panelHeaderLabel string The label of the utility panel.
panelHeaderIcon string The SLDS icon ID of the utility panel's icon.
panelHeight integer The height of the utility panel in pixels.
panelWidth integer The width of the utility panel in pixels

getEnclosingUtilityId() for Lightning Experience

Returns the ID of the enclosing utility, or false if not within a utility.

Arguments

None.

Sample Code

This component has a button that, when pressed, retrieves the enclosing utility's ID.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Get Enclosing Utility ID" onclick="{! c.getEnclosingUtilityId
/>
</aura:component>

Controller code:

({
getEnclosingTabId : function (component, event, helper) {

var utilityAPI = component.find("utilitybar");

utilityAPI.getEnclosingUtilityId() .then (function(utilityId) {
console.log(utilityId);

})

.catch (function(error) {
console.log(error) ;

)

Response

This method returns a promise that, upon success, resolves to the uti11tyId of the enclosing utility or false if not within a utility.

208

Methods for Lightning Experience getUtilitylnfo() for Lightning Experience

getUtilityInfo () for Lightning Experience

Returns the state of the current utilityasa utilityInfo object.

Arguments

Name Type Description

utilityIld string The ID of the utility for which to retrieve the
state. Optional when called within a utility.

Sample Code

This component has a button that, when pressed, retrieves the enclosing utility's info and opens it if it's not currently visible, and closes
it otherwise.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Get Utility Info" onclick="{! c.getUtilityInfo }" />
</aura:component>

Controller code:

(1
getUtilityInfo : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.getUtilityInfo().then(function (response) {
if (response.utilityVisible) {
utilityAPI.minimizeUtility ()
}
else {
utilityAPI.openUtility ()

)
.catch (function(error) {
console.log(error);

)i

Response

This method returns a promise that, upon success, resolves toa utilityInfo object representing the enclosing utility, containing
the following fields.

Name Type Description
id string The ID of the utility.
isLoaded boolean Whether the utility is loaded.

209

Methods for Lightning Experience minimizeUtility() for Lightning Experience

Name Type Description

utilityLabel string The label of the utility.

utilityIcon string The SLDS icon ID of the utility's icon.
utilityHighlighted boolean Whether the utility is highlighted.
utilityVisible boolean Whether the utility is visible.
panelHeaderLabel string The label of the utility panel.
panelHeaderIcon string The SLDS icon ID of the utility panel’s icon.
panelHeight integer The height of the utility panel in pixels.
panelWidth integer The width of the utility panel in pixels

minimizeUtility () for Lightning Experience

Minimizes a utility.

Arguments

Name Type Description

utilityId string The ID of the utility to minimize. Optional
when called within a utility.

Sample Code

This component minimizes the utility when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Minimize Utility" onclick="{! c.minimizeUtility }" />
</aura:component>

Controller code:

({
minimizeUtility : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.minimizeUtility();

Response

This method returns a promise that, upon success, resolves to true.

210

Methods for Lightning Experience openUtility() for Lightning Experience

openUtility () for Lightning Experience

Opens a utility. If the utility is already open, this method has no effect. Only one utility can be open at a time. If another utility is already
open, it is minimized.

Arguments

Name Type Description

utilityId string The ID of the utility to open. Optional when
called within a utility.

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, opens the utility when the button is pressed.
Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Open Utility" onclick="{! c.openUtility }" />
</aura:component>

Controller code:

({
openUtility : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.openUtility () ;

Response

This method returns a promise that, upon success, resolves to true.

setPanelHeaderIcon () for Lightning Experience

Sets the icon of a utility’s panel. This icon is displayed in the utility panel header.

Arguments
Name Type Description
utilityId string The ID of the utility to set the panel header
icon on. Optional when called within a
utility.

n

Methods for Lightning Experience setPanelHeaderLabell) for Lightning Experience

Name Type Description

icon string An SLDS utility icon key. This is displayed in
the utility bar. See a full list of utility icon
keys on the SLDS reference site.

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the icon of the utility panel to the SLDS “frozen”
icon when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Panel Header Icon" onclick="{! c.setPanelHeaderIcon }"
/>

</aura:component>
Controller code:

({
setPanelHeaderIcon : function (component, event, helper) ({
var utilityAPI = component.find("utilitybar");
utilityAPI.setPanelHeaderIcon ({
icon: “frozen”

)

Response

This method returns a promise that, upon success, resolves to true.

setPanelHeaderLabel () for Lightning Experience

Sets the label of a utility’s panel. This label is displayed in the utility panel header.

Arguments
Name Type Description
utilityId string The ID of the utility to set the panel header
label on. Optional when called within a
utility.
label string The label of the utility displayed in the panel
header.

212

https://www.lightningdesignsystem.com/icons/

Methods for Lightning Experience setPanelHeight() for Lightning Experience

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the label of the utility panel to “My Utility”
when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Panel Header Label" onclick="{! c.setPanelHeaderLabel }"
/>

</aura:component>
Controller code:

({
setPanelHeaderLabel : function (component, event, helper) ({
var utilityAPI = component.find("utilitybar");
utilityAPI.setPanelHeaderLabel ({
label: “My Utility”
1)

Response

This method returns a promise that, upon success, resolves to true.

setPanelHeight () for Lightning Experience

Sets a utility panel’s height.

Arguments

Name Type Description

utilityId string The ID of the utility of which to set the
height. Optional when called within a utility.

heightPX integer The height of the utility panel in pixels.

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the height of the utility to 500 pixels when
the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Panel Height" onclick="{! c.setPanelHeight }" />
</aura:component>

213

Methods for Lightning Experience

Controller code:

({

setPanelHeight function (component, event, helper)
var utilityAPI = component.find("utilitybar");
utilityAPI.setPanelHeight ({

heightPX: 500

)

Response

This method returns a promise that, upon success, resolves to true.

setPanelWidth () for Lightning Experience

Sets a utility panel’s width.

Arguments

Name Type
utilityId string
widthPX integer
Sample Code

{

setPanelWidth() for Lightning Experience

Description

The ID of the utility of which to set the
width. Optional when called within a utility.

The width of the utility panel in pixels.

This component, when added to a single-column Lightning page used in a utility bar, sets the width of the utility panel to 800 pixels

when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >

<lightning:utilityBarAPI aura:id="utilitybar" />

<lightning:button label="Set Panel Width" onclick="{!

</aura:component>
Controller code:

({

setPanelWidth event, helper)
var utilityAPI = component.find("utilitybar");
utilityAPI.setPanelWidth ({

widthPX: 800

)

function (component,

214

c.setPanelWidth }" />

Methods for Lightning Experience setUtilityHighlighted() for Lightning Experience

Response

This method returns a promise that, upon success, resolves to true.

setUtilityHighlighted () for Lightning Experience

Sets a utility as highlighted, giving it a badge and a more prominent background color.

Arguments
Name Type Description
utilityId string The ID of the utility to highlight. Optional
when called within a utility.
highlighted boolean Whether the utility is highlighted. Makes a
utility more prominent by giving it a
different background color.
Sample Code
This component, when added to a single-column Lightning page used in a utility bar, sets a utility as highlighted when the button is
pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Utility Highlighted" onclick="{! c.setUtilityHighlighted}"
/>

</aura:component>
Controller code:

({
setUtilityHighlighted : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.setUtilityHighlighted ({
highlighted: true
}):

Response

This method returns a promise that, upon success, resolves to true.

setUtilityIcon () for Lightning Experience

Sets the icon of a utility. This icon is displayed in the utility bar.

25

Methods for Lightning Experience

Arguments

Name Type Description

utilityId string The ID of the utility on which to set the icon.
Optional when called within a utility.

icon string An SLDS utility icon key. This is displayed in
the utility bar. See a full list of utility icon
keys on the SLDS reference site.

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the icon of the utility to the SLDS
“insert_tag_field” icon when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Utility Icon" onclick="{! c.setUtilityIcon }" />
</aura:component>

Controller code:

({
setUtilityIcon : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.setUtilityIcon ({
icon: “insert tag field”
})

Response

This method returns a promise that, upon success, resolves to true.

setUtilityLabel () for Lightning Experience

Sets the label of a utility. This text is displayed in the utility bar.

Arguments
Name Type Description
utilityId string The ID of the utility of which to set the label.
Optional when called within a utility.
label string The label of the utility displayed in the panel

header.

216

setUtilityLabell) for Lightning Experience

https://www.lightningdesignsystem.com/icons/

Methods for Lightning Experience toggleModalMode() for Lightning Experience

Sample Code

This component, when added to a single-column Lightning page used in a utility bar, sets the label of the utility to “My Favorite Utility”
when the button is pressed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Set Utility Label" onclick="{! c.setUtilityLabel }" />
</aura:component>

Controller code:

({
setUtilityLabel : function(component, event, helper) ({
var utilityAPI = component.find("utilitybar");
utilityAPI.setUtilityLabel ({
label: “My Favorite Utility”
1)

Response

This method returns a promise that, upon success, resolves to true.

toggleModalMode () for Lightning Experience

Toggles modal mode for a utility. While in modal mode, an overlay blocks users from using the console while the utility panel is visible.

Arguments
Name Type Description
utilityId string The ID of the utlity to open. Optional when
called within a utility.
enableModalMode boolean Whether to enable modal mode.
Sample Code
This component, when added to a single-column Lightning page used in a utility bar, has a button that, when pressed, toggles modal
mode.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:utilityBarAPI aura:id="utilitybar" />
<lightning:button label="Toggle Modal Mode" onclick="{! c.toggleModalMode }" />
</aura:component>

217

Methods for Lightning Experience Methods for Omni-Channel in Lightning Experience (Beta)

Controller code:

({
toggleModalMode : function (component, event, helper) {
var utilityAPI = component.find("utilitybar");
utilityAPI.toggleModalMode ({
enableModalMode: true
});

Response

This method returns a promise that, upon success, resolves to true.

Methods for Omni-Channel in Lightning Experience (Beta)

Omni-Channel lets your call center route any type of incoming work item to the most qualified, available agents.

Nofe: This release contains a beta version of Omni-Channel Methods for the Lightning Console JavaScript API, which means it's
a high-quality feature with known limitations. The methods aren‘t generally available unless or until Salesforce announces its
general availability in documentation or in press releases or public statements. We can't guarantee general availability within any
particular time frame or at all. Make your purchase decisions only on the basis of generally available products and features.

For more information about Omni-Channel, see Omni-Channel for Administrators in Salesforce Help.

IN THIS SECTION:

acceptAgentWork for Lightning Experience
Accepts a work item that's assigned to an agent.

closeAgentWork for Lightning Experience
Changes the status of a work item to “Closed” and removes it from the list of work items in the Omni-Channel utility.

declineAgentWork for Lightning Experience
Declines a work item that's assigned to an agent.

getAgentWorks for Lightning Experience
Returns a list of work items that are currently assigned to an agent and open in the agent’s workspace.

getAgentWorkload for Lightning Experience
Retrieves an agent’s currently assigned workload. Use this method for rerouting work to available agents.

getServicePresenceStatusChannels for Lightning Experience
Retrieves the service channels that are associated with an Omni-Channel user’s current presence status.

getServicePresenceStatusld for Lightning Experience
Retrieves an agent’s current presence status.

login for Lightning Experience
Logs an agent into Omni-Channel with a specific presence status.

logout for Lightning Experience
Logs an agent out of Omni-Channel.

218

Methods for Lightning Experience acceptAgentWork for Lightning Experience

setServicePresenceStatus for Lightning Experience

Sets an agent's presence status to a status with a particular ID. If the specified agent is not already logged in, we log the agent into
presence. This removes the need for you to make additional calls.

acceptAgentWork for Lightning Experience

Accepts a work item that's assigned to an agent.

Arguments
Name Type Description
workId string The ID of the work item the agent accepts.
callback function JavaScript method to call when an agent accepts the work item associated with the
workId.
Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Accept" onClick="{! c.acceptWork }" />
</aura:component>

Controller code:

({
acceptWork: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks ({
callback: function(result) {
var works = JSON.parse (result.works);
var work = works[0];
omniAPI.acceptAgentWork ({
workId: work.workId,
callback: function(result2) {
if (result2.success) {
console.log ("Accepted work successfully");
} else {
console.log ("Accept work failed");

219

Methods for Lightning Experience closeAgentWork for Lightning Experience

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success boolean true if accepting the work item was successful; false if accepting the work

item wasn't successful.

closeAgentWork for Lightning Experience

Changes the status of a work item to “Closed” and removes it from the list of work items in the Omni-Channel utility.

Arguments
Name Type Description
workId string The ID of the work item that's closed.
callback function JavaScript method to call when the work item associated with the workId is
closed.
Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Close" onClick="{! c.closeWork }" />
</aura:component>

Controller code:

({
closeWork: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks ({
callback: function (result) {
var works = JSON.parse (result.works);
var work = works([O0];
omniAPI.closeAgentWork ({
workId: work.workId,
callback: function (result2) {
if (result2.success) {
console.log("Closed work successfully");
} else {
console.log("Close work failed");

220

Methods for Lightning Experience declineAgentWork for Lightning Experience

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success boolean true if closing the work item was successful; false if closing the work item

wasn't successful.

declineAgentWork for Lightning Experience

Declines a work item that's assigned to an agent.

Arguments

Name Type Description

workId string The ID of the work item that the agent declines.

declineReason string The provided reason for why the agent declined the work request.

callback function JavaScript method to call when an agent declines the work item associated with the
workId.

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Decline" onClick="{! c.declineWork }" />
</aura:component>

Controller code:

({
declineWork: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks ({
callback: function(result) {
var works = JSON.parse (result.works);
var work = works[0];
omniAPI.declineAgentWork ({
workId: work.workId,
callback: function(result2) {

221

Methods for Lightning Experience getAgentWorks for Lightning Experience

if (result2.success) {

console.log("Declined work successfully");
} else {

console.log("Decline work failed");

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success boolean true if declining the work item was successful; false otherwise.

getAgentWorks for Lightning Experience

Returns a list of work items that are currently assigned to an agent and open in the agent’s workspace.

Arguments

Name Type Description

callback function JavaScript method to call when the list of an agent’s work items is retrieved.
Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Get Agent works" onClick="{! c.getAgentWorks }" />
</aura:component>

Controller code:

({
getAgentWorks: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorks ({
callback: function(result) {
if (result.success) {

console.log('Get work items successful');
var works = JSON.parse (result.works);

222

Methods for Lightning Experience getAgentWorkload for Lightning Experience

console.log('First Agent Work ID is: ' + works[0].workId);
console.log('Assigned Entity Id of the first Agent Work is: ' +
works[0] .workItemId) ;
console.log('Is first Agent Work Engaged: ' + works[0].isEngaged);
} else {

console.log('Get work items failed');

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success boolean true if retrieving the agent’s work items was successful; false if retrieving the
agent’s work items wasn't successful.
works JSON string of A JSON string of work objects that represents the work items assigned to the agent
work objects that are open in the agent’s workspace.
work

The work object contains the following properties:

Name Type Description

workItemId String The ID of the object that's routed through Omni-Channel. This object becomes a
work assignment with a workId when it's assigned to an agent.

workId String The ID of a work assignment that's routed to an agent.

isEngaged Boolean Indicates whether an agent is working on a work item that's been assigned to them
(true)ornot(false).

getAgentWorkload for Lightning Experience

Retrieves an agent’s currently assigned workload. Use this method for rerouting work to available agents.

Arguments
Name Type Description
callback function JavaScript method to call when the agent’s configured capacity and work is retrieved.

223

Methods for Lightning Experience getAgentWorkload for Lightning Experience

Sample Code

Component code:

_n

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Get workload" onClick="{! c.getAgentWorkload }" />

</aura:component>
Controller code:

({
getAgentWorkload: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.getAgentWorkload ({
callback: function(result) {
if (result.success) {
console.log('Retrieved Agent Configured Capacity and Current Workload
successfully');
console.log('Agent\'s configured capacity is: ' +
result.configuredCapacity) ;
console.log('Agent\'s currently assigned workload is: ' +
result.currentWorkload) ;
} else {
console.log('Get Agent Workload failed');

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success boolean true if retrieving the agent’s work items was successful; false otherwise,
configuredCapacity number The agent’s configured capacity (work that's assigned to the current user) through
Presence Configuration.
currentWorkload number The agent’s currently assigned workload.
work

The work object contains the following fields:

Name Type Description

workItemId string The ID of the object that's routed through Omni-Channel. This object becomes a
work assignment with a workId when it's assigned to an agent.

224

Methods for Lightning Experience getServicePresenceStatusChannels for Lightning Experience

Name Type Description
workId string The ID of a work assignment that's routed to an agent.
isEngaged boolean Indicates whether an agent is working on a work item that's been assigned to them

(true)ornot(false).

getServicePresenceStatusChannels for Lightning Experience

Retrieves the service channels that are associated with an Omni-Channel user’s current presence status.

Arguments

Name Type Description

callback function JavaScript method to call when the channels associated with a presence status are
retrieved.

Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Get Status Channels" onClick="{! c.getStatusChannels }" />
</aura:component>

Controller code:

({
getStatusChannels: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.getServicePresenceStatusChannels ({
callback: function (result) {
if (result.success) {
console.log('Retrieved Service Presence Status Channels successfully');

var channels = JSON.parse (result.channels);
//For example purposes, just retrieve the first channel

console.log('First channel ID is: ' + channels[0].channelId);
console.log('First channel developer name is: ' +
channels[0] .developerName) ;
} else {

console.log('Get Service Presence Status Channels failed');

225

Methods for Lightning Experience getServicePresenceStatusld for Lightning Experience

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success boolean true if retrieving the current presence status channels was successful;, false
otherwise.
channels JSON string of ~ Returns the IDs and API names of the channels associated with the presence status.
channel
objects

getServicePresenceStatusId for Lightning Experience

Retrieves an agent's current presence status.

Arguments

Name Type Description

callback function JavaScript method to call when the agent’s presence status is retrieved.
Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Get Status" onClick="{! c.getStatus }" />
</aura:component>

Controller code:

({
getStatus: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.getServicePresenceStatusId ({
callback: function(result) {
if (result.success) {
console.log('Get Status Id successful');
console.log('Status Id is: ' + result.statusId);
} else {
console.log('Get Status Id failed');

226

Methods for Lightning Experience login for Lightning Experience

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success boolean true if retrieving the presence status ID was successful; false otherwise.
statusName string The name of the agent's current presence status.
statusApiName string The API name of the agent’s current presence status.
statusId string The ID of the agent’s current presence status.

login for Lightning Experience

Logs an agent into Omni-Channel with a specific presence status.

Arguments
Name Type Description
statusId string The ID of the presence status. Agents must be given access to this presence status
through their associated profile or permission set.
callback function JavaScript method to call when the agent is logged in with the presence status
associated with statusId.
Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Login" onClick="{! c.login }" />

</aura:component>

Controller code:

({
login: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.login ({
statusId: "ON5xx0000000001",
callback: function(result) {
if (result.success) {
console.log ("Login successful");
} else {
console.log("Login failed");

227

Methods for Lightning Experience logout for Lightning Experience

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success boolean true if the login was successful; £alse otherwise.

logout for Lightning Experience

Logs an agent out of Omni-Channel.

Arguments

Name Type Description

callback function JavaScript method to call when the agent is logged out of Omni-Channel.
Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Logout" onClick="{! c.logout }" />

</aura:component>

Controller code:

({
logout: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPTI.logout ({
callback: function(result) {
if (result.success) {
console.log("Logout successful");
} else {
console.log ("Logout failed");

228

Methods for Lightning Experience setServicePresenceStatus for Lightning Experience

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success boolean true if the logout was successful; false otherwise.

setServicePresenceStatus for Lightning Experience

Sets an agent's presence status to a status with a particular ID. If the specified agent is not already logged in, we log the agent into
presence. This removes the need for you to make additional calls.

Arguments
Name Type Description
statusId string The ID of the presence status to which you want to set the agent. Agents must be
given access to this presence status through their associated profile or permission
set.
callback function JavaScript method to call when the agent’s status is changed to the presence status
associated with statusId.
Sample Code

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:omniToolkitAPI aura:id="omniToolkit" />
<lightning:button label="Set Status" onClick="{! c.setStatus }" />
</aura:component>

Controller code:

({
setStatus: function(cmp, evt, hlp) {
var omniAPI = cmp.find("omniToolkit");
omniAPI.setServicePresenceStatus ({
statusId: "ON5xx0000000006",
callback: function(result) {
if (result.success) {
console.log('Set status successful');
console.log('Current statusId is: ' + result.statusId);
console.log('Channel list attached to this status is: ' +
result.channels);
} else {
console.log('Set status failed');

229

Methods for Lightning Experience setServicePresenceStatus for Lightning Experience

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success boolean true if setting the agent’s status was successful; false otherwise.
statusName string The name of the agent's current presence status.
statusApiName string The API name of the agent’s current presence status.
statusId string The ID of the agent’s current presence status.
channels JSON string of ~ Returns the IDs and API names of the channels associated with the presence status.
channel
objects

230

CHAPTER 7 Events for Lightning Experience

Use events and handlers in your Lightning components and controllers to respond to events like workspace tabs opening, closing, or
gaining focus.

IN THIS SECTION:

lightning:tabClosed
Indicates that a tab has been closed successfully.

lightning:tabCreated
Indicates that a tab has been created successfully.

lightning:tabFocused
Indicates that a tab has been focused successfully.

lightning:tabRefreshed
Indicates that a tab has been refreshed successfully.

lightning:tabReplaced
Indicates that a tab has been replaced successfully.
lightning:tabUpdated
Indicates that a tab has been updated successfully.

lightning:tabClosed

Indicates that a tab has been closed successfully.

Response
Name Type Description
tabId string The ID of the closed tab.

Example: This example prints a line to the browser's developer console when a tab is closed.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabClosed" action="{! c.onTabClosed }"/>
</aura:component>

231

Events for Lightning Experience lightning:tabCreated

Controller code:

({
onTabClosed : function (component, event, helper) ({
console.log("Tab closed.");
by
})

lightning:tabCreated

Indicates that a tab has been created successfully.

Response
Name Type Description
tabId string The ID of the new tab.

Example: This example prints a line to the browser's developer console when a tab is created, and sets the label of the tab to
"New Tab" using the setTabLabel () method.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabCreated" action="{! c.onTabCreated }"/>
</aura:component>

Controller code:

({

onTabCreated : function (component, event, helper) {
console.log("Tab created.");
var newTabId = event.getParam('tabId');
var workspace = component.find("workspace");
workspace.setTabLabel ({
tabId: newTabld,
label: 'New Tab',
}) i

lightning:tabFocused

Indicates that a tab has been focused successfully.

232

Events for Lightning Experience

Response

Name Type Description
previousTabId string

currentTabId string

lightning:tabRefreshed

The ID of the previously focused tab.

The ID of the currently focused tab.

Example: This example prints a line to the browser's developer console when a tab is focused, and then returns that tab’s

tabInfo objectusingthe getTabInfo () method.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >

<lightning:workspaceAPI aura:id="workspace" />

<aura:handler event="lightning:tabFocused" action="{! c.onTabFocused }"/>

</aura:component>
Controller code:

({

onTabFocused : function (component, event, helper) {
console.log("Tab Focused"):;
var focusedTabId = event.getParam('currentTabId');
var workspaceAPI = component.find("workspace");
workspaceAPI.getTabInfo ({
tabId : focusedTablId,
callback : function(error, response) {
console.log(response) ;

lightning:tabRefreshed

Indicates that a tab has been refreshed successfully.

Response
Name Type Description
tabId string

233

The ID of the refreshed tab.

Events for Lightning Experience lightning:tabReplaced

Example: This example prints a line to the browser's developer console when a tab is refreshed, and then returns that tab's
tabInfo objectusingthe getTabInfo () method.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabRefreshed" action="{! c.onTabRefreshed }"/>

</aura:component>
Controller code:

({

onTabRefreshed : function (component, event, helper) {
console.log ("Tab Refreshed");
var refreshedTabId = event.getParam("tabId");
var workspaceAPI = component.find("workspace");
workspaceAPI.getTabInfo ({
tabId : refreshedTabId,
callback : function(error, response) {
console.log(response);

lightning:tabReplaced

Indicates that a tab has been replaced successfully.

Response
Name Type Description
tabld string The ID of the replaced tab.

Example: This example prints a line to the browser's developer console when a tab is replaced, and then returns that tab’s URL
using the getTabURL () method.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabReplaced" action="{! c.onTabReplaced }"/>
</aura:component>

Controller code:

({

onTabReplaced : function (component, event, helper) {
console.log ("Tab Replaced");
var replacedTabId = event.getParam("tabId");

234

Events for Lightning Experience lightning:tabUpdated

var workspaceAPI = component.find("workspace");
workspaceAPI.getTabURL ({
tabId : replacedTabId;
callback : function(error, response) {
console.log(response);

lightning:tabUpdated

Indicates that a tab has been updated successfully.

Response
Name Type Description
tabId string The ID of the updated tab.

Example: Thisexample prints a line to the browser’s developer console when a tab is updated, and then prints that tab’s tabId.

Component code:

<aura:component implements="flexipage:availableForAllPageTypes" access="global" >
<lightning:workspaceAPI aura:id="workspace" />
<aura:handler event="lightning:tabUpdated" action="{! c.onTabUpdated }"/>
</aura:component>

Controller code:

({
onTabUpdated : function (component, event, helper) {
console.log ("Tab Updated"):;
var updatedTabId = event.getParam("tabId");
console.log (updatedTabId) ;
b

235

CHAPTER 8 Other Resources

In addition to this guide, there are other resources available for you as you learn how to use the console APIs.

IN THIS SECTION:

Console API Typographical Conventions

Typographical conventions are used in our code examples. Learn what Courier font, italics, and brackets mean.

SEE ALSO:

Salesforce Help: Salesforce Console

Salesforce Help: Glossary

Salesforce Developers: Getting Started with Salesforce Platform

Salesforce University: Training
Firebug Extension for Firefox

Force.com IDE Eclipse Plug-in

Console API Typographical Conventions

Typographical conventions are used in our code examples. Learn what Courier font, italics, and brackets mean.

Convention

Courier font

Italics

Bold Courier font

Description

In descriptions of syntax, monospace font indicates items that you should type as shown,
except for brackets. For example:

Public class HelloWorld

In descriptions of syntax, italics represent variables. You supply the actual value. In the following
example, three values need to be supplied: datatype variable name [= value];

If the syntax is bold and italic, the text represents a code element that needs a value supplied
by you, such as a class name or variable value:

public static class YourClassHere { ... }

In code samples and syntax descriptions, bold courier font emphasizes a portion of the code
or syntax.

236

https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_about.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=glossary.htm&language=en_US
https://developer.salesforce.com/gettingstarted
http://www.salesforce.com/training
https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://developer.salesforce.com/page/Tools

Other Resources Console API Typographical Conventions

Convention Description
<> In descriptions of syntax, less-than and greater-than symbols (< >) are typed exactly as shown.

<apex:pageBlockTable value="{'!account.Contacts}" var="contact">

<apex:column value="{!contact.Name}"/>

<apex:column value="{!contact.MailingCity}"/>

<apex:column value="{!contact.Phone}"/>
</apex:pageBlockTable>

{1 In descriptions of syntax, braces ({}) are typed exactly as shown.

<apex:page>
Hello {!S$User.FirstName}!
</apex:page>

[In descriptions of syntax, anything included in brackets is optional. In the following example,
specifying value is optional:

data type variable name [= value];

In descriptions of syntax, the pipe sign means “or”. You can do one of the following (not all).
In the following example, you can create a new unpopulated set in one of two ways, or you
can populate the set:

Set<data type> set name
[= new Set<data_type>();] |
[= new Set<data_type{value [, value2. . .] };] |

’

237

INDEX

A

acceptAgentWork() 172, 219
acceptChat() 129
addCustomEventListener() 168
addEventListener() 122
addPushNotificationListener() 119
addToBrowserTitleQueue() 96
Asynchronous calls 18
Authentication 18

B

Backward compatibility 15
Best practices 19
blinkCustomConsoleComponentButtonText() 97

C

cancelFileTransferByAgent() 131
closeAgentWork() 173, 220
closeTab() 24

Connecting to the Toolkit 18
Console API'1

Custom console components 19, 95

D

declineAgentWork() 174, 221
declineChat() 132
disableTabClose 26

E

End-of-life 15

endChat() 133

Error handling 10

events 121

Events
lightning:tabClosed 231
lightning:tabCreated 232
lightning:tabFocused 232
lightning:tabRefreshed 233
lightning:tabReplaced 234
lightning:tabUpdated 235

F

fireEvent() 124
fireOnCallBegin() 82
fireOnCallEnd() 83

fireOnCallLogSaved() 84

focusNavigationTab() 77
focusPrimaryTabByld() 29
focusPrimaryTabByName() 30
focusSidebarComponent() 31
focusSubtabByld() 32
focusSubtabByNameAndPrimaryTablID() 34
focusSubtabByNameAndPrimaryTabName() 35
Force.com canvas 18

G

generateConsoleUrl() 36
getAgentinput() 134
getAgentState() 135
getAgentWorks() 175, 177, 222-223
getCallAttachedData() 86
getCallObjectlds() 87

getChatLog() 136

getChatRequests() 138
getCustomEvents() 169
getDetailsByChatKey() 139
getDetailsByPrimaryTabld() 143
getEnclosingPrimaryTabld() 37
getEnclosingPrimaryTabObjectld() 38
getEnclosingTabld() 39
getEngagedChats() 147
getFocusedPrimaryTabld() 40
getFocusedPrimaryTabObjectld() 41
getFocusedSubtabld() 42
getFocusedSubtabObjectld() 43
getMaxCapacity() 148
getNavigationTabs() 78
getPagelnfo() 44

getPrimaryTablds() 46
getSelectedNavigationTab() 79
getServicePresenceStatusChannels() 178, 225
getServicePresenceStatusld() 179, 226
getSubtablds() 47

getTabLink() 48

initFileTransfer() 149

integration.js 18
isCustomConsoleComponentHidden() 101
isCustomConsoleComponentPoppedOut() 98
isCustomConsoleComponentWindowHidden() 99

238

Index

isinConsole() 49
isinCustomConsoleComponent() 102

J

JavaScript API9-11

L

Lightning Console JavaScript API 1,6
Lightning Experience 2-3
lightning:tabClosed 231
lightning:tabCreated 232
lightning:tabFocused 232
lightning:tabRefreshed 233
lightning:tabReplaced 234
lightning:tabUpdated 235
Live Agent 127,167

login() 180, 227

logout() 181, 228

M

Methods
acceptAgentWork() 172, 219
acceptChat() 129
addCustomEventListener() 168
addEventListener() 122
addPushNotificationListener() 119
addToBrowserTitleQueue() 96
app-level custom console components 95

blinkCustomConsoleComponentButtonText() 97

call center 81
cancelFileTransferByAgent() 131
closeAgentWork() 173, 220
closeTab() 24, 187
computer-telephony integration (CTI) 81
console events 121

custom console components 95
declineAgentWork() 174, 221
declineChat() 132
disableTabClose 26

endChat() 133

events 10, 121, 184

fireEvent() 124
fireOnCallBegin() 82
fireOnCallEnd() 83
fireOnCallLogSaved() 84
focusNavigationTab() 77
focusPrimaryTabByld() 29
focusPrimaryTabByName() 30
focusSidebarComponent() 31

Methods (continued)

239

focusSubtabByld() 32
focusSubtabByNameAndPrimaryTabld() 34
focusSubtabByNameAndPrimaryTabName() 35
focusTab() 188, 191

generateConsoleUrl() 36

getAgentinput() 134

getAgentState() 135

getAgentWorks() 175, 177, 222-223
getAllTabInfo() 190

getCallAttachedData() 86
getCallObjectlds() 87

getChatLog() 136

getChatRequests() 138

getCustomEvents() 169
getDetailsByChatKey() 139
getDetailsByPrimaryTabld() 143
getEnclosingPrimaryTabld() 37
getEnclosingPrimaryTabObjectld() 38
getEnclosingTabld() 39
getEngagedChats() 147
getFocusedPrimaryTabld() 40
getFocusedPrimaryTabObjectld() 41
getFocusedSubtabld() 42
getFocusedSubtabObjectld() 43
getFocusedTablnfo() 192
getMaxCapacity() 148

getNavigationTabs() 78

getPagelnfo() 44

getPrimaryTablds() 46
getSelectedNavigationTab() 79
getServicePresenceStatusChannels() 178, 225
getServicePresenceStatusld() 179, 226
getState() 207-209, 217

getSubtablds() 47

getTablInfo() 194

getTabLink() 48

getTabURL() 195

initFileTransfer() 149
isCustomConsoleComponentHidden() 101
isCustomConsoleComponentPoppedOut() 98

isCustomConsoleComponentWindowHidden() 99

isinConsole() 49
islnCustomConsoleComponent() 102
isSubtab() 196-197

javascript AP 10

Live Agent 127, 167

login() 180, 227

logout() 181,228

Methods (continued)

minimizeltem() 210

navigation tabs 76

Omni-Channel 171,218
Omni-Channel console events 184
onAgentSend() 150
onAgentStateChanged() 151
onCallBegin() 88

onCallEnd() 89

onCallLogSaved() 90
onChatCanceled() 152
onChatCriticalWaitState() 152
onChatDeclined() 153
onChatEnded() 154
onChatRequested() 155-156
onChatTransferredOut() 157
onCurrentCapacityChanged() 158
onCustomConsoleComponentButtonClicked() 103
onCustomEvent() 158
onEnclosingTabRefresh() 50
onFileTransferCompleted() 160
onFocusedPrimaryTab() 104
onFocusedSubtab() 51
onNewMessage() 161
onSendCTIMessage() 91

onTabSave() 52

onTypingUpdate() 162
openConsoleUrl() 53

openltem() 211

openPrimaryTab() 54

openSubtab() 56, 198
openSubtabByPrimaryTabName() 58
openTab() 199

primary tabs 12, 21,186

push notifications 118
refreshNavigationTab() 80
refreshPrimaryTabByld() 60
refreshPrimaryTabByName() 61
refreshSubtabByld() 63
refreshSubtabByNameAndPrimaryTabld() 64
refreshSubtabByNameAndPrimaryTabName() 65
removeEventListener() 126
removeFromBrowserTitleQueue() 105
removePushNotificationListener() 120
reopenlastClosedTab() 67
resetSessionTimeOut() 68
runSelectedMacro() 106
scrollCustomConsoleComponentButtonText() 107
selectMacro() 108

Methods (continued)
sendCTIMessage() 92
sendCustomEvent() 163, 170
sendMessage() 164
setAgentinput() 165
setAgentState() 166
setCallAttachedData() 93
setCallObjectlds() 94
setCustomConsoleComponentButtonlconUrl() 109
setCustomConsoleComponentButtonStyle() 110
setCustomConsoleComponentButtonText() 111
setCustomConsoleComponentHeight() 111
setCustomConsoleComponentPopoutable() 114
setCustomConsoleComponentVisible() 112
setCustomConsoleComponentWidth() 113
setCustomConsoleComponentWindowVisible() 116
setHeight() 213
setltemlcon() 215
setltemLabel() 216
setPanellcon() 211
setPanellabel() 212
setSelectedNavigationTab() 80
setServicePresenceStatus() 182, 229
setSidebarVisible() 117
setTabHighlighted() 201
setTablcon() 70, 202
setTablabel() 204
setTabLink() 71
setTabStyle() 72
setTabTextStyle() 74
setTabTitle() 75
setTabUnsavedChanges() 68
setWidth() 214-215
subtabs 12,21, 186
utility bar 7, 206
utility bar API 206
workspace tabs 186

O

OAuth 18

Omni-Channel 171, 218
Omni-Channel events 184
onAgentSend() 150
onAgentStateChanged() 151
onCallBegin() 88

onCallEnd() 89
onCallLogSaved() 90
onChatCanceled() 152
onChatCriticalWaitState() 152

240

Index

onChatDeclined() 153
onChatEnded() 154
onChatRequested() 155-156
onChatTransferredOut() 157
onCurrentCapacityChanged() 158
onCustomConsoleComponentButtonClicked() 103
onCustomEvent() 158
onEnclosingTabRefresh() 50
onFileTransferCompleted() 160
onFocusedPrimaryTab() 104
onFocusedSubtab() 51
onNewMessage() 161
onSendCTIMessage() 91
onTabSave() 52

onTypingUpdate() 162
openConsoleUrl() 53
openPrimaryTab() 54

openSubtab() 56
openSubtabByPrimaryTabName() 58
Other resources 236

P

promises 10
Promises 10
Push notifications 118

R

refreshNavigationTab() 80
refreshPrimaryTabByld() 60
refreshPrimaryTabByName() 61
refreshSubtabByld() 63
refreshSubtabByNameAndPrimaryTabld() 64
refreshSubtabByNameAndPrimaryTabName() 65
removeEventListener() 126
removeFromBrowserTitleQueue() 105
removePushNotificationListener() 120
reopenlastClosedTab() 67
resetSessionTimeOut() 68

Resources for developers 236
runSelectedMacro() 106

S

Salesforce Classic 2-3

24

Salesforce Console Integration Toolkit

Using 17
Sample page 15
scrollCustomConsoleComponentButtonText() 107
selectMacro() 108
sendCTIMessage() 92
sendCustomEvent() 163, 170
sendMessage() 164
setAgentlnput() 165
setAgentState() 166
setCallAttachedData() 93
setCallObjectlds() 94
setCustomConsoleComponentButtonlconUrl() 109
setCustomConsoleComponentButtonStyle() 110
setCustomConsoleComponentButtonText() 111
setCustomConsoleComponentHeight() 111
setCustomConsoleComponentPopoutable() 114
setCustomConsoleComponentVisible() 112
setCustomConsoleComponentWidth() 113
setCustomConsoleComponentWindowVisible() 116
setSelectedNavigationTab() 80
setServicePresenceStatus() 182, 229
setSidebarVisible() 117
setTablcon() 70
setTabLink() 71
setTabStyle() 72
setTabTextStyle() 74
setTabTitle() 75
setTabUnsavedChanges() 68
Support policy 14
syntax 9, 11

T

Typographical conventions 236

U

ul2-3

W

When to use the Salesforce Console Integration Toolkit 14
Working with the Salesforce Console Integration Toolkit 17

	What Is the Console Developer Guide?
	Why Your UI Matters
	Console API Method Parity

	Lightning Console JavaScript API for Lightning Experience
	Get to Know the Lightning Console
	Get to Know the Utility Bar
	Lightning Console JavaScript API Syntax
	JavaScript Promises
	Error Handling with Promises

	Using Events in Lightning Console Apps
	Using Page Context in the Utility Bar API
	Debugging

	Salesforce Console Integration Toolkit for Salesforce Classic
	When to Use the Salesforce Console Integration Toolkit
	Salesforce Console Integration Toolkit Support Policy
	Backward Compatibility
	End-of-Life

	Sample Visualforce Page Using the Salesforce Console Integration Toolkit
	Working with the Salesforce Console Integration Toolkit
	Connecting to the Toolkit
	Asynchronous Calls with the Salesforce Console Integration Toolkit
	Working with Force.com Canvas
	Best Practices

	Methods for Salesforce Classic
	Methods for Primary Tabs and Subtabs
	closeTab()
	disableTabClose()
	focusPrimaryTabById()
	focusPrimaryTabByName()
	focusSidebarComponent()
	focusSubtabById()
	focusSubtabByNameAndPrimaryTabId()
	focusSubtabByNameAndPrimaryTabName()
	generateConsoleUrl()
	getEnclosingPrimaryTabId()
	getEnclosingPrimaryTabObjectId()
	getEnclosingTabId()
	getFocusedPrimaryTabId()
	getFocusedPrimaryTabObjectId()
	getFocusedSubtabId()
	getFocusedSubtabObjectId()
	getPageInfo()
	getPrimaryTabIds()
	getSubtabIds()
	getTabLink()
	isInConsole()
	onEnclosingTabRefresh()
	onFocusedSubtab()
	onTabSave()
	openConsoleUrl()
	openPrimaryTab()
	openSubtab()
	openSubtabByPrimaryTabName()
	refreshPrimaryTabById()
	refreshPrimaryTabByName()
	refreshSubtabById()
	refreshSubtabByNameAndPrimaryTabId()
	refreshSubtabByNameAndPrimaryTabName()
	reopenLastClosedTab()
	resetSessionTimeOut()
	setTabUnsavedChanges()
	setTabIcon()
	setTabLink()
	setTabStyle()
	setTabTextStyle()
	setTabTitle()

	Methods for Navigation Tabs
	focusNavigationTab()
	getNavigationTabs()
	getSelectedNavigationTab()
	refreshNavigationTab()
	setSelectedNavigationTab()

	Methods for Computer-Telephony Integration (CTI)
	fireOnCallBegin()
	fireOnCallEnd()
	fireOnCallLogSaved()
	getCallAttachedData()
	getCallObjectIds()
	onCallBegin()
	onCallEnd()
	onCallLogSaved()
	onSendCTIMessage()
	sendCTIMessage()
	setCallAttachedData()
	setCallObjectIds()

	Methods for Application-Level Custom Console Components
	addToBrowserTitleQueue()
	blinkCustomConsoleComponentButtonText()
	isCustomConsoleComponentPoppedOut()
	isCustomConsoleComponentWindowHidden()
	isCustomConsoleComponentHidden()
	isInCustomConsoleComponent()
	onCustomConsoleComponentButtonClicked()
	onFocusedPrimaryTab()
	removeFromBrowserTitleQueue()
	runSelectedMacro()
	scrollCustomConsoleComponentButtonText()
	selectMacro()
	setCustomConsoleComponentButtonIconUrl()
	setCustomConsoleComponentButtonStyle()
	setCustomConsoleComponentButtonText()
	setCustomConsoleComponentHeight()
	setCustomConsoleComponentVisible()
	setCustomConsoleComponentWidth()
	setCustomConsoleComponentPopoutable()
	setCustomConsoleComponentWindowVisible()
	setSidebarVisible()

	Methods for Push Notifications
	addPushNotificationListener()
	removePushNotificationListener()

	Methods for Console Events
	addEventListener()
	fireEvent()
	removeEventListener()

	Methods for Live Agent
	acceptChat()
	cancelFileTransferByAgent()
	declineChat()
	endChat()
	getAgentInput()
	getAgentState()
	getChatLog()
	getChatRequests()
	getDetailsByChatKey()
	getDetailsByPrimaryTabId()
	getEngagedChats()
	getMaxCapacity()
	initFileTransfer()
	onAgentSend()
	onAgentStateChanged()
	onChatCanceled()
	onChatCriticalWaitState()
	onChatDeclined()
	onChatEnded()
	onChatRequested()
	onChatStarted()
	onChatTransferredOut()
	onCurrentCapacityChanged()
	onCustomEvent()
	onFileTransferCompleted()
	onNewMessage()
	onTypingUpdate()
	sendCustomEvent()
	sendMessage()
	setAgentInput()
	setAgentState()
	Methods for Live Agent Chat Visitors
	chasitor.addCustomEventListener()
	chasitor.getCustomEvents()
	chasitor.sendCustomEvent()

	Methods for Omni-Channel
	acceptAgentWork
	closeAgentWork
	declineAgentWork
	getAgentWorks
	getAgentWorkload
	getServicePresenceStatusChannels
	getServicePresenceStatusId
	login
	logout
	setServicePresenceStatus
	Methods for Omni-Channel Console Events

	Methods for Lightning Experience
	Methods for Workspace Tabs and Subtabs
	closeTab()
	focusTab()
	getAllTabInfo()
	getEnclosingTabId()
	getFocusedTabInfo()
	getTabInfo()
	getTabURL()
	isConsoleNavigation()
	isSubtab()
	openSubtab()
	openTab()
	setTabHighlighted()
	setTabIcon()
	setTabLabel()

	Methods for the Utility Bar
	getAllUtilityInfo()
	getEnclosingUtilityId()
	getUtilityInfo()
	minimizeUtility()
	openUtility()
	setPanelHeaderIcon()
	setPanelHeaderLabel()
	setPanelHeight()
	setPanelWidth()
	setUtilityHighlighted()
	setUtilityIcon()
	setUtilityLabel()
	toggleModalMode()

	Methods for Omni-Channel (Beta)
	acceptAgentWork()
	closeAgentWork()
	declineAgentWork()
	getAgentWorks()
	getAgentWorkload()
	getServicePresenceStatusChannels()
	getServicePresenceStatusId()
	login()
	logout()
	setServicePresenceStatus()

	Events for Lightning Experience
	lightning:tabClosed
	lightning:tabCreated
	lightning:tabFocused
	lightning:tabRefreshed
	lightning:tabReplaced
	lightning:tabUpdated

	Other Resources
	Console API Typographical Conventions

	Index

