salesforce

Analytics Data Integration
Guide

Salesforce, Summer ‘17

Y @salesforcedocs
Last updated: August 24, 2017

https://twitter.com/salesforcedocs

© Copyright 2000-2017 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

DATA INTEGRATION i 1
DAOSELS .« . o o 2
Dataflow JSON . . oo 5
Dataset BUilder 6
Wave Connector for Excel Data 6
Upload External Data fromthe User Interface oo 6
External Data APl . . . o e 7
CREATE DATASETS WITH ADATAFLOW 8
Designthe Dataflow oo 8
Configure the Dataflow Through the Definition File 9
Startand Stop aDataflow e 12
Monitor a Dataflow Jobo 14
Schedule a Dataflowo 15
DATAFLOW TRANSFORMATION REFERENCE 19
Transformations for Analytics Dataflows 19
Overriding Metadata Generated by a Transformation 77
CREATE A DATASET WITH THE DATASETBUILDER 81
CREATE A DATASET WITH EXTERNALDATA 87
Create a Dataset with External Data e 87
Monitor an External Data Upload N
EDIT A DATASET 94
DELETE A DATASET 98
ROW-LEVEL SECURITY FOR DATASETS 99
Security Predicates for Datasets 100
Row-Level Security Example based on Record Ownershipo oo 100
Row-Level Security Example based on Opportunity Teams oo oo i i e 105
Row-Level Security Example based on Role Hierarchy and Record Ownership 13
Row-Level Security Example Based on Territory Managementot 123
Salesforce Sharing Inheritance for Datasets 129
SECURITY PREDICATEREFERENCE 133

Predicate Expression Syntax for Datasets 133

Contents

Sample Predicate Expressions for Datasets

DATA INTEGRATION

You can integrate Salesforce data and external data into Analytics to enable users to explore and visualize the data with explorer and
designer. External data is data that resides outside of Salesforce, such as data from outside applications and spreadsheets.

When you load data into Analytics, you load it into datasets. A dataset is a collection of related data that is stored in a denormalized, yet
highly compressed form.

You can use the following methods to create datasets in Analytics.

Dataflow JSON Dataset Builder Upload User External Data APl Wave Connector

Interface
Data source Salesforce objects; Salesforce objects External data External data Microsoft Excel
existing datasets
Can join external Yes No No No No
and Salesforce
data?
Graphical user No (JSON) Yes Yes No (programmatic ~ Yes
interface? access)
Can create Yes No No No No
multiple datasets
atonce?
Supports Yes No No Yes No
incremental
extraction?
Data refresh Automatic Automatic Manual Manual Manual
method
Can filter records? Yes No No No No
Can generate new Yes (delta and No No No No
columns when dimension columns)
creating datasets?
Can override Yes No Yes Yes No
metadata?
IN THIS SECTION:
Datasets

A dataset is a collection of related data that is stored in a denormalized, yet highly compressed form. For each platform license, your
organization can have a maximum of 250 million rows of data stored for all registered datasets combined.

Data Integration Datasets

Dataflow JSON

You can use the dataflow to create one or more datasets based on data from Salesforce objects or existing datasets. A dataflow is a
set of instructions that specifies what data to extract from Salesforce objects or datasets, how to transform the datasets, and which
datasets to make available for querying. With a dataflow, you can manipulate the extracted data and override the metadata before
you load it into a dataset. The dataflow runs on a daily schedule to continually refresh the data.

Dataset Builder

Use the dataset builder to create a single dataset based on data from one or more related Salesforce objects. With the dataset builder
you simply point and click to identify and select related Salesforce objects.

Wave Connector for Excel Data

The Salesforce Wave Connector makes it easy to import data from Microsoft Excel 2013 to Analytics.

Upload External Data from the User Interface

You can use the upload user interface to create a single dataset based on external data. You can upload an external data file in a
.csv, .gz, or zip format. To refresh the data, you can overwrite the data in the dataset by uploading a new external data file.
External Data API

You can use the External Data APl to create a single dataset based on external data in the .csv format. You can also use the APl to
edit the dataset by uploading a new .csv file. When you edit the dataset, you can choose to overwrite all records, append records,
update records, or delete records.

Datasets

A dataset is a collection of related data that is stored in a denormalized, yet highly compressed form. For each platform license, your
organization can have a maximum of 250 million rows of data stored for all registered datasets combined.

Analytics applies one of the following types to each dataset field:

Date
A date can be represented as a day, month, year, and, optionally, time. You can group, filter, and perform math on dates.

Dimension
A dimension is a qualitative value, like region, product name, and model number. Dimensions are handy for grouping and filtering
your data. Unlike measures, you can't perform math on dimensions. To increase query performance, Analytics indexes all dimension
fields in datasets.

Measure
A measureis a quantitative value, like revenue and exchange rate. You can do math on measures, such as calculating the total revenue
and minimum exchange rate.

For each dataset that you create, you can apply row-level security to restrict access to records in the dataset.
Attention: Before you create a dataset, verify that the source data contains at least one value in each column. Columns with all

null values won't be created in datasets and can't be referenced in dataflows, lenses, or dashboards. Consider providing a default
value for null values, like "n/a" or "empty."

IN THIS SECTION:

Numeric-Value Handling in Datasets

Analytics internally stores numeric values in datasets as long values. For example, it stores the number “3,200.99" with a scale of 2"
as “320099". The user interface converts the stored value back to decimal notation to display the number as “3200.99.”

Data Integration Numeric-Value Handling in Datasets

Date Handling in Datasets

When Analytics loads dates into a dataset, it breaks up each date into multiple fields, such as day, week, month, quarter, and year,
based on the calendar year. For example, if you extract dates from a CreateDate field, Analytics generates date fields such as
CreateDate Day and CreateDate Week.If yourfiscal year differs from the calendar year, you can enable Analytics to
generate fiscal date fields as well.

Numeric-Value Handling in Datasets

Analytics internally stores numeric values in datasets as long values. For example, it stores the number “3,200.99" with a scale of 2" as
“320099". The user interface converts the stored value back to decimal notation to display the number as “3200.99."

The maximum numeric value that can be stored in a dataset is 36,028,797,018,963,967 and the minimum numeric value is
-36,028,797,018,963,968.

Warning: If a numeric value is not within this range, you might receive unexpected results. For example, if you try to load the
value 3.7E-16 with a scale of 16 into a dataset, Analytics tries to store the value as 37000000000000000. However, because this
value exceeds the maximum, Analytics fails to load the entire record. In addition, if you perform a query that aggregates
measures—Ilike sum or group by—and the resulting value exceeds the maximum, the value overflows and Analytics returns an
incorrect result.

Date Handling in Datasets

When Analytics loads dates into a dataset, it breaks up each date into multiple fields, such as day, week, month, quarter, and year, based
on the calendar year. For example, if you extract dates from a CreateDate field, Analytics generates date fields such as
CreateDate Day and CreateDate Week.lIfyourfiscal year differs from the calendar year, you can enable Analytics to generate
fiscal date fields as well.

Analytics generates the following date fields.

Field Name Field Type Description

<date field name>_Second Text Number of seconds. If the date contains no
seconds, valueis '0.'

<date field name>_Minute Text Number of minutes. If the date contains no
minutes, value is ‘0.’

<date field name>_Hour Text Number of hours. If the date contains no
hours, value is 0.’

<date field name>_Day Text Day of the month.

<date field name>_Week Text Week number in calendar year.
<date field name>_Month Text Month number in calendar year.
<date field name>_Quarter Text Quarter number in calendar year.
<date field name>_Year Text Calendar year.

<date field name>_Week_Fiscal Text Week number in fiscal year.
<date field name>_Month_Fiscal Text Month number in fiscal year.
<date field name>_Quarter_Fiscal Text Quarter number in fiscal year.

Data Integration Date Handling in Datasets

Field Name Field Type Description
<date field name>_Year_Fiscal Text Fiscal year.
<date field name>_sec_epoch Numeric Number of seconds that have elapsed since

January 1, 1970 (midnight UTC).

<date field name>_day_epoch Numeric Number of days that have elapsed since
January 1, 1970 (midnight UTC).

You can set metadata attributes to control how dates are loaded into datasets and to enable Analytics to generate fiscal date fields. You
set the metadata attributes in the sfdcDigest transformation parameters for Salesforce data or in the metadata file for external data.

@ Important: Before loading dates from an external data file, ensure that you review the date format requirements here. Also,
ensure that the column names in the external data file do not conflict with the generated date field names. For example, if you
load a CSV with column Create Date, Analytics generates the Create Date Year field in the dataset. If the CSV also
had a field named Create Date Year, Analytics would throw an error because the names conflict.

Fiscal Periods in Analytics

If the calendar and fiscal year differ, you can enable Analytics to generate the fiscal date fields in the dataset in addition to calendar date
fields. To enable Analytics to generate fiscal date fields, set the £iscalMonthOf fset attribute to a value other than'0'. You set this
attribute for each date column for which you want to generate fiscal date fields. If you set the offset to '0' or you do not specify a value,
Analytics does not generate any fiscal date fields.

Additionally, to configure the fiscal periods, set the following metadata attributes for each date column:

fiscalMonthOffset
In addition to enabling the generation of fiscal date fields, this attribute also determines the first month of the fiscal year. You specify
the difference between the first month of the fiscal year and first month of the calendar year (January) in fiscalMonthOffset.
For example, if your fiscal year begins in April, set fiscalMonthOffset to'3"

isYearEndFiscalYear
Because the fiscal year can start in one calendar year and end in another, you must specify which year to use for the fiscal year. The
isYearEndFiscalYear attribute indicates whether the fiscal year is the year in which the fiscal year ends or begins.

To see how this works, let's look at a couple of examples.If isYearEndFiscalYear =true (oryou do not specify this attribute),
then the fiscal year is the year in which the fiscal year ends. As shown in the following diagram, any dates between 4/1/2015 and
3/31/2016 are part of the fiscal year 2016 because the fiscal year ends in 2016.

e 2015 Calendar Year * 2016 Calendar Year ———»
1172015 1172016 11172017

o————— 7016 Fiscal Year
4/1/2015 33172016

If isYearEndFiscalYear =false, then the fiscal year is the year in which the fiscal year begins. As shown in the following
diagram, any dates between 4/1/2015 and 3/31/2016 are part of the fiscal year 2015 because the fiscal year begins in 2015.

https://developer.salesforce.com/docs/atlas.en-us.208.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_reference.htm
https://developer.salesforce.com/docs/atlas.en-us.208.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_reference.htm

Data Integration Dataflow JSON

e—————— 2015 Calendar Year . 2016 Calendar Year — e
1172015 11172016 1172017

2015 Fiscal Year — =
4172015 33172016

Week Numbering in Analytics

For each date loaded into a dataset, Analytics generates the corresponding week number for the calendar year and, if applicable, fiscal
year. Similar to the SOQL function WEEK _IN YEAR,week 1inAnalyticsis January 1-January 7. (This is different from the UTC week ()
calculation.)

If needed, you can configure the week to start on a particular day of the week by setting the £irstDayOfWeek attribute. Forexample,
if January 1 is a Saturday and you configure the week to start on a Monday, then week 1 is January 1 - 2. Week 2 starts on Monday,
January 3. Week 3 starts January 10, the following Monday. Notice that week 1 can be a short week to ensure that the subsequent weeks
start on the specified day of the week.

Dataflow JSON

You can use the dataflow to create one or more datasets based on data from Salesforce objects or existing datasets. A dataflow is a set
of instructions that specifies what data to extract from Salesforce objects or datasets, how to transform the datasets, and which datasets
to make available for querying. With a dataflow, you can manipulate the extracted data and override the metadata before you load it
into a dataset. The dataflow runs on a daily schedule to continually refresh the data.

Analytics provides a default dataflow that contains some sample transformation logic. This dataflow is just a sample that you must
configure before running it.

I~ I N N
I\\ . s N
\> . , \>
</ N ,/) / P /
v
> = 1 1. 1
Dewnload the Edlit thae file te: Upload the edited Dataflow job runs Dataset created
dataflow definition file « Extract Salesforce objects dataflow definition file

* Define rew-level security for the dataset

To configure the dataflow, you add transformations to the dataflow definition file. A dataflow definition file is a JSON file that contains
transformations that represent the dataflow logic. You can add transformations to determine what data to extract, how to transform
datasets, and which datasets to register to make available for queries.

After you configure the dataflow, you upload the new dataflow definition file to Analytics.

By default, the dataflow doesn't run automatically. To start running the dataflow on the schedule, you must manually start the dataflow
first. After the first job runs, the dataflow job runs on the daily schedule. The dataflow runs on a daily schedule to capture the latest
changes to Salesforce data and changes in the dataflow logic.

You can also stop, reschedule, and monitor dataflow jobs.

SEE ALSO:

Create Datasets with a Dataflow

Data Integration Dataset Builder

Dataset Builder

Use the dataset builder to create a single dataset based on data from one or more related Salesforce objects. With the dataset builder
you simply point and click to identify and select related Salesforce objects.

After you select the data to include in the dataset, the dataset builder generates and appends the associated JSON to the dataflow
definition file. The dataset is created the next time the dataflow runs. The data in the dataset refreshes each time the dataflow runs.

SEE ALSO:

Create a Dataset with the Dataset Builder

Wave Connector for Excel Data

The Salesforce Wave Connector makes it easy to import data from Microsoft Excel 2013 to Analytics.

The Wave Connector is available as an app for Excel 2013 on the desktop and Excel Online in Office 365. The Connector is available as
an app from the Microsoft Apps for Office store or your organization’s private app catalog. After you install the Connector just point and
click to import data from Excel to Salesforce.

SEE ALSO:

Install the Wave Connector Excel App

Upload External Data from the User Interface

You can use the upload user interface to create a single dataset based on external data. You can upload an external data file in a .csv,
.gz, or zip format. To refresh the data, you can overwrite the data in the dataset by uploading a new external data file.

When Analytics loads any data into a dataset, it also adds metadata about each column of data. For example, metadata can include the
field type, precision, scale, and default value.

For external data, Analytics infers metadata about each column of data in the external data file unless you specify different metadata
attributes in a metadata file. A metadata file is a JSON file that describes the structure of an external data file. For example, you can use
a metadata file to explicitly set the field type and default value for a specific column of external data. If no metadata file is provided when
you upload external data, Analytics treats every column as a dimension and sets the field type to ‘Text.' This impacts the type of queries
that can be placed on the dataset because you can't perform mathematical calculations on dataset columns with a Text field type. You
can only perform mathematical calculations on dataset columns with a Numeric field type.

After you create a dataset based on an external data file, you can edit the dataset to apply a new metadata file. This enables you to
change the metadata attributes of each column.

@ Note: Analytics temporarily stores the uploaded CSV and metadata files for processing only. After a dataset is created, Analytics
purges the files.

SEE ALSO:

Create a Dataset with External Data

Data Integration External Data API

External Data API

You can use the External Data API to create a single dataset based on external data in the .csv format. You can also use the API to edit
the dataset by uploading a new .csv file. When you edit the dataset, you can choose to overwrite all records, append records, update
records, or delete records.

For more information about the External Data API, see the Analytics External Data APl Developer Guide.

https://resources.docs.salesforce.com/208/latest/en-us/sfdc/pdf/bi_dev_guide_ext_data.pdf

CREATE DATASETS WITH A DATAFLOW

You can use a dataflow to create one or more datasets based on data from Salesforce objects, replicated objects, or existing datasets.

IN THIS SECTION:

1. Design the Dataflow
Before you start creating the dataflow, think about the dataflow design. Consider what data to make available for queries, where to
extract the data from, and whether you need to transform the extracted data to get the data you want.

2. Configure the Dataflow Through the Definition File
You can configure the dataflow by adding transformations directly to the dataflow definition file.

3. Startand Stop a Dataflow
You can manually start a dataflow job to load the data into datasets immediately. You can also stop the job while it's running. You
can run a maximum of 24 dataflow jobs during a rolling 24-hour period.

4. Monitor a Dataflow Job

Use the Monitor tab in the data manager to monitor dataflow jobs to ensure that they complete successfully or to troubleshoot
them if they fail.

5. Schedule a Dataflow
After you run a dataflow job for the first time, it runs on a daily schedule, by default. You can schedule by hour, week, or month, on
specific days of the week or dates in the month. You might change the schedule to ensure that the data is available by a particular
time or to run the job during non-business hours. You can also unschedule a dataflow.

Design the Dataflow

Before you start creating the dataflow, think about the dataflow design. Consider what data to make available for queries, where to
extract the data from, and whether you need to transform the extracted data to get the data you want.

Toillustrate some key design decisions, let's consider an example. In this example, the goal is to create a dataset called “Won Opportunities.”
The dataset will contain opportunity details, including the account name for each opportunity.

To create this dataset, you design the following dataflow:
Transform Datasets

Extract Data Register Datasets

Opportunity

Create Datasets with a Dataflow Configure the Dataflow Through the Definition File

The dataflow extracts opportunity data from the Opportunity object and extracts the account name from the Account object. For each
extracted object, the dataflow creates a new dataset.

The dataflow then transforms the datasets created from the extracted data. First, the dataflow joins the opportunity and account data
into a new dataset. Next, the dataflow filters the records based on the opportunity stage so that the dataset contains only won opportunities.
Each time the dataflow transforms a dataset, it creates a new dataset.

Finally, because you want users to be able to query won opportunities only, you configure the dataflow to register the final dataset only.
However, if you wanted, you could register any dataset created by the dataflow and register as many datasets as you like.

Carefully choose which datasets to register because:

e The total number of rows in all registered datasets cannot exceed 250 million per platform license.

e Users that have access to registered datasets can query their data. Although, you can apply row-level security on a dataset to restrict
access to records.

Configure the Dataflow Through the Definition File

You can configure the dataflow by adding transformations directly to the dataflow definition file. EDITIONS

A dataflow definition file is a JSON file that contains transformations that represent the dataflow

logic. The dataflow definition file must be saved with UTF-8 encoding. Available in Salesforce
Before you can configure a dataflow to process external data, you must upload the external data Class',c and Lightning
. Experience.
to Analytics.
1 Available for an extra costin
In Analytics, click the gear icon (ﬁ) and then click Data Manager. Enterprise, Performance,

2. C(lick the Dataflows & Recipes tab. ond.UnIin?ited Ediions. Also
available in Developer

3. Download the existingdataflow definition file by clicking Download in the actions menu. Edition.

USER PERMISSIONS

To edit the dataflow
definition file:

e Edit Wave Analytics
Dataflows

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Create Datasets with a Dataflow Configure the Dataflow Through the Definition File

7 Data Manager

Vonitor '0 Prepare Datasets with Dataflows and Recipes Croate Datatiow
» Cleanse, transform, and combine data from multiple sources.
s Dataflows &
“" Recipes
DATAFLOWS DATASET RECIPES
Datasets
Setup Default Salesforce Dataflow The next run is Apr 23, 2017 at 12:00 PM
Last Modified By: Admin User SalesEdgeEltWorkflow - Run by Integration User
Edit
o Download
+, Upload
P Start

—J
f@ Schedule
@

Unschedule

4. Make a backup copy of the existing dataflow definition file before you modify it.

Analytics doesn't retain previous versions of the file. If you make a mistake, you can upload the previous version to roll back your
changes.

5. Add each transformation as a node in the dataflow definition file, using a JSON editor.

For example, based on the design in the previous step, you can add the following transformation nodes:

{

"Extract_ Opportunities": ({
"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [
{ "name": "Id" },

{ "name": "Name" 1},
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "OwnerId" }
1
}
}I
"Extract_AccountDetails": ({
"action": "sfdcDigest",
"parameters": {
"object": "Account",
"fields": [
{ "name": "Id" },
{ "name": "Name" }
1
}
}I

"Transform Augment OpportunitiesWithAccountDetails": ({
"action": "augment",

10

Create Datasets with a Dataflow

"parameters": {
"left": "Extract Opportunities",
"left key": ["AccountId"],
"relationship": "OpptyAcct",
"right": "Extract AccountDetails",
"right key": ["Id"],
"right select": [

"Name"

by
"Transform Filter Opportunities": {
"action": "filter",
"parameters": {
"filter": "StageName:EQ:Closed Won",

Configure the Dataflow Through the Definition File

"source": "Transform Augment OpportunitiesWithAccountDetails"

by
"Register_ Dataset_ WonOpportunities": ({
"action": "sfdcRegister",
"parameters": {
"alias": "WonOpportunities",
"name": "WonOpportunities",
"source": "Transform Filter Opportunities"”

}

See Transformations for Analytics Dataflows for more about each transformation and its JSON.

@ Note: The JSON keys and values are case-sensitive. Each bolded key in the example JSON is the node name for a transformation.
Each node contains an action value, which identifies the transformation type. The order in which you add the transformations
to the dataflow definition file doesn't matter. Analytics determines the order in which to process the transformations by

traversing the dataflow to determine the dependencies among them.

@ Important: Node names must be unigue in a dataflow definition file, and can’t contain space or tab characters. Consider that
node names are not treated as case sensitive, so names such as “Extract_Opportunities” and “extract_opportunities” are not

unique in the same definition file.

6. Before you save the dataflow definition file, use a JSON validation tool to verify that the JSON is valid.

An error occurs if you try to upload the dataflow definition file with invalid JSON. You can find JSON validation tools on the internet.

7. Save the dataflow definition file with UTF-8 encoding, and then close the file.

8. Inthe Dataflow view of the Monitor tab, click Upload from the action menu to upload the updated dataflow definition file.

@ Note: Uploading the dataflow definition file does not affect any running dataflow jobs and does not automatically start the

dataflow job.

You can now start the dataflow on demand or wait for it to run on the schedule. Users cannot query the registered datasets until the

dataflow runs.

If you have enabled replication, you can create multiple dataflows, in addition to the default dataflow, and configure them in the same
way. Look out for the Create Dataflow button in the Dataflows & Recipes tab of the data manager after you enable replication. See

#bi_integrate_replication__bi_integrate_replication.

n

#bi_integrate_replication__bi_integrate_replication

Create Datasets with a Dataflow

Start and Stop a Dataflow

A Data Manager

Monitor " Prepare Datasets with Dataflows and Recipes
» Cleanse, transform, and combine data from multiple sources.
» Dataflows &
Recipes
DATAFLOWS DATASET RECIPES
Datasets
Setup Default Salesforce Dataflow The next run is Aug 28, 2017 at 7:00 AM

Last Modified By: Admin User SalesEdgeEltWorkf

low - Hun by Integration User

@ Note: Your org can have up to 20 dataflows. This number includes the default dataflow, and app dataflows such as the Sales
Analytics and Service Analytics dataflows. Keep in mind that dataflows that take longer than 2 minutes to run count towards your

24-hour dataflow run limit.

Start and Stop a Dataflow

You can manually start a dataflow job to load the data into datasets immediately. You can also stop
the job while it's running. You can run a maximum of 24 dataflow jobs during a rolling 24-hour
period.

@ Nofe: By default, the dataflow doesn't run automatically. To start running the dataflow on
the schedule, you must manually start the dataflow first. After the first job runs, the dataflow
job runs on the daily schedule.

1.
In Analytics, click the gear icon (¢) and then click Data Manager.
The data manager opens on the Monitor tab, with the Jobs view selected by default.

2. (lick the Dataflows & Recipes tab.

12

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To start a dataflow job:

e Edit Wave Analytics
Dataflows

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Create Datasets with a Dataflow Start and Stop a Dataflow

Y Data Manager

Monitor ." Prepare Datasets with Dataflows and Recipes P —

Cleanse, transform, and combine data from multiple sources.
» Dataflows &
Recipes
DATAFLOWS ~ DATASET RECIPES
Datasets

Setup Default Salesforce Dataflow The next run is Apr 23, 2017 at 12:00 PM
SalesEdgeEltWorkflow - Run by Integration User

Last Modified By: Admin User

& Edit

@ Schedule

@ Unschedule

3. (lick Start in the actions menu to start the dataflow job.
The dataflow job is added to the job queue. The Start action is grayed out while the dataflow job runs.
4. After the job completes, Analytics sends an email notification to the user who created the dataflow.

The email notification indicates whether the job completed successfully. It also shows job details like start time, end time, duration,
and number of processed rows. If the job failed, the notification shows the reason for the failure.

@ Nofe: If the dataflow creator is not an active user, the notification is sent to the user who last modified the dataflow schedule
or definition file.

To stop a dataflow job that is currently running, click # next to the job status.
If you click Start to restart a stopped dataflow, the job starts over—the dataflow job does not resume from the point at which it

was stopped.

You can monitor the dataflow job on the Monitor tab to determine when the dataflow completes. After the dataflow completes
successfully, refresh the Analytics home page to view the registered datasets.

13

Create Datasets with a Dataflow

Monitor a Dataflow Job

Monitor a Dataflow Job

Use the Monitor tab in the data manager to monitor dataflow jobs to ensure that they complete
successfully or to troubleshoot them if they fail.

The Dataflow View on the Monitor tab shows the status, start time, and duration of the last 10
dataflow jobs and retains the last 7 days of history. To help you troubleshoot a failed job, you can
view error messages about the job, view the run-time details about every transformation that is
processed, and download error logs where available.

| Dataflow View

d

v |

Default Salesforce Dataflow
Last M

odified By: Jon Oatham SalesEdgeEltW,

Runs every 8 hours - next run at 5:00 PM
Vorkflow - Run by Integration User

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To access the data monitor:

e Edit Wave Analytics
Dataflows, Upload
External Data to Wave
Analytics, or Manage
Wave Analytics

To download an error log:

e Edit Wave Analytics
Dataflows and View All
Data

h: Today at 1.04 PM -

START TIME hd DURATION STATUS MESSAGE
(# Today at 9:00 AM 16 seconds Successfu
E Today at 1:00 AM 97 secands Efnjﬁg,E;Tgitfﬁ:fﬁ:jﬂx;Pm some rows failed. Download the error log from the data
2 |

NODE NAME START TIME DURATION STATUS NODE TYPE INPUT ROWS
salesData Today at 1:00 AM 22 seconds Successful sfdcDigest 706
Derived_Fields Today at 1:00 AM 0 seconds computeExpression 706
optimize-Register_Catego... Today at 1:00 AM 0 seconds Successful iml'zer N/A
Register_CategorizedSales Today at 1:00 AM 3 seconds Successfu sfdcRegister N/A

In Analytics, click the gear icon ($) and then click Data Manager.

14

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Create Datasets with a Dataflow Schedule a Dataflow
The data manager opens on the Monitor tab, with the Jobs view selected by default.
2. Select Dataflow View (1).

Click © tosee the latest status of a job.

Each job can have one of these statuses.

Status Description

Running The job is running.

Failed The job failed.

Successful The job completed successfully.

Warning The job completed successfully, but some rows failed.

4. |[fthe dataflow job fails, expand the job node (2) and review the run-time details for every transformation that was processed.

5. Ifan error log is available for a node, click the download log button (3) to download a CSV file containing the failed rows.

@ Note: Error logs display the data from rows that have failed to load. To maintain data security and prevent unauthorized
access to this data, only users with the "View All Data" permission can download error logs.

6. If there’s a problem with the dataflow logic, edit the dataflow definition file, upload it, and then run the dataflow again.

Schedule a Dataflow

Afteryou run a dataflow job for the first time, it runs on a daily schedule, by default. You can schedule EDITIONS
by hour, week, or month, on specific days of the week or dates in the month. You might change
the schedule to ensure that the data is available by a particular time or to run the job during
non-business hours. You can also unschedule a dataflow.

Available in Salesforce
Classic and Lightning

1. Experience.
In Analytics, click the gear icon (¢) and then click Data Manager.

The data manager opens on the Monitor tab, with the Jobs view selected by default. Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

2. C(lick the Dataflows & Recipes tab.

USER PERMISSIONS

To schedule or unschedule
a dataflow job:

e Edit Wave Analytics
Dataflows

15

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Create Datasets with a Dataflow

Y Data Manager

Prepare Datasets with Dataflows and Recipes

Monitor

K4

DATAFLOWS

» Dataflows &
Recipes

Datasets

Setup

Create Dataflow

Cleanse, transform, and combine data from multiple sources.

DATASET RECIPES

Default Salesforce Dataflow
Last Modified By: Admin User

The next run is Apr 23, 2017 at 12:00 PM

SalesEdgeEltWorkflow - Run by Integration User
& Edit
1, Upload
P Start
Schedule

[
@ Unschedule

3. Click Schedule in the actions menu (1) to view or modify the schedule of the dataflow job.

The scheduler appears.

Schedule a Dataflow

4. From the Schedule by picklist, select the time frame that you want to schedule by and complete the other settings.

By Hour

Run the dataflow at specified hourly intervals, starting at the time you select on the selected days.

Schedule by Hour

Startat 6:00 am v

Send email notifications

Schedule for '‘Default Salesforce Dataflow!

America/Los_Angeles

Stop queuing at a specific time

5:00pm ~ America/Los_Angeles
Runevery 1 ~ Hour(s)
Su] Tu W Th

[v 3

Sa

X

@ Nofte: Select Stop queuing at a specific time to stop the dataflow from running after a certain time each day. For
example, set a job to start at 8:00 am, run every hour, and stop after 6:00 pm to restrict runs to just office hours.

By Week

Run the dataflow at the time you select on the selected days.

16

Create Datasets with a Dataflow Schedule a Dataflow

Schedule for 'Default Salesforce Dataflow’ >

Schedule by \Week w

Startat §:00 am i3 America/los_Angeles

su MM BT EBw ETh EF Sa

Send email notifications

By Month
Run the dataflow on a specific day or days each month. By default, you can schedule the job to run on a relative day each month,
for example, the first Monday. If you want the job to run on a specific date or dates, click select specific dates and then select

from the list.
Schedule on a Relative Date Schedule on Specific Dates
Schecdule for 'Default Salesforce Dataflow’ X Schedule for 'Default Salesforce Dataflow’ x
Schedule by Month v Schedule by Month i3

Startat 6:00am ~ America/los_Angeles Startat §:00 am ~ Ametica/los_Angeles

Onthe 1gt Monday ~ of every month ondates 2 Date(s) Selected v every month
1v =
Or select specific dates Orselectr 5 es

Send email netifications Sende 3., cations

4

5. Select Send email notifications if you want to send a notification when the dataflow runs. Send a notification every time the dataflow
runs, only when there are warnings, or only when the dataflow fails.

17

Create Datasets with a Dataflow Schedule a Dataflow

Or select relative dates

Send email notifications

To joatham@salesforce.con

Netify on Warnings w

Warnings

Always

Failures
[

@ Nofe: Email notifications are sent to the dataflow creator.

6. Click Save.

18

DATAFLOW TRANSFORMATION REFERENCE

Transformations for Analytics Dataflows

A transformation refers to the manipulation of data. You can add transformations to a dataflow to extract data from Salesforce objects
or datasets, transform datasets that contain Salesforce or external data, and register datasets.

For example, you can use transformations to join data from two related datasets and then register the resulting dataset to make it
available for queries.

IN THIS SECTION:

append Transformation
The append transformation combines records from multiple datasets into a single dataset.

augment Transformation

The augment transformation augments an input dataset by combining columns from another related dataset. The resulting,
augmented dataset enables queries across both related input datasets. For example, you can augment the Account dataset with
the User dataset to enable a query to return account records and the full names of the account owners.

computeExpression Transformation

The computeExpression transformation enables you to add derived fields to a dataset. The values for derived fields aren't extracted
from the input data source. Instead, Analytics generates the values using a SAQL expression, which can be based on one or more
fields from the input data or other derived fields. For example, you can use an expression to assign a value to a field, concatenate
text fields, or perform mathematical calculations on numeric fields.

computeRelative Transformation

You can use the computeRelative transformation to analyze trends in your data by adding derived fields to a dataset based on values
in other rows. For example, to analyze sales pipeline trends, create derived fields that calculate the number of days an opportunity
remains in each stage. You can also calculate the changes to the opportunity amount throughout the stages of the opportunity.

delta Transformation

The delta transformation calculates changes in the value of a measure column in a dataset over a period of time. The delta
transformation generates an output column in the dataset to store the delta for each record. Create deltas to make it easier for
business analysts to include them in queries.

dim2mea Transformation

The dim2mea transformation creates a new measure based on a dimension. The transformation adds the new measure column to
the dataset. The transformation also preserves the dimension to ensure that existing lenses and dashboards don't break if they use
the dimension.

edgemart Transformation

The edgemart transformation gives the dataflow access to an existing, registered dataset, which can contain Salesforce data, external
data, or a combination of the two. Use this transformation to reference a dataset so that its data can be used in subsequent
transformations in the dataflow. You can use this transformation and the augment transformation together to join an existing dataset
with a new dataset.

filter Transformation
Thefilter transformation removes records from an existing dataset. You define a filter condition that specifies which records to retain
in the dataset.

19

Dataflow Transformation Reference append Transformation

flatten Transformation

The flatten transformation flattens hierarchical data. For example, you can flatten the Salesforce role hierarchy to implement row-level
security on a dataset based on the role hierarchy.

sfdcDigest Transformation

The sfdcDigest transformation generates a dataset based on data that it extracts from a Salesforce object. You specify the Salesforce
object and fields from which to extract data. You might choose to exclude particular fields that contain sensitive information or that
aren't relevant for analysis.

sfdcRegister Transformation

The sfdcRegister transformation registers a dataset to make it available for queries. Users cannot view or run queries against unregistered
datasets.

update Transformation

The update transformation updates the specified field values in an existing dataset based on data from another dataset, which we'll
callthe lookup dataset. The transformation looks up the new values from corresponding fields in the lookup dataset. The transformation
stores the results in a new dataset.

append Transformation

The append transformation combines records from multiple datasets into a single dataset.

Consider the following rules when using this transformation.

e This transformation does not remove duplicate records.

e Allinput datasets must have the same structure—the corresponding columns must be in the same order and have the same name

and field type.

@ Example: Let’s look at an example. Each month, you create a dataset that contains the month’s sales targets. Now, you want a
holistic view of sales targets for all months. To do that, you create the following dataflow definition file to merge the existing
datasets into a single dataset.

{
"Extract SalesTargets 2014Jan": ({

"action": "edgemart",

"parameters": { "alias": "SalesTargets 2014Jan" }
s
"Extract SalesTargets 2014Feb": ({

"action": "edgemart",

"parameters": { "alias": "SalesTargets 2014Feb" }
}y
"Extract SalesTargets 2014Mar": ({

"action": "edgemart",

"parameters": { "alias": "SalesTargets 2014Mar" }
by
"Append SalesTargets 2014Quarterl": ({

"action": "append",

"parameters": {

"sources": [

"Extract SalesTargets 2014Jan",

20

Dataflow Transformation Reference

"Extract SalesTargets 2014Feb",
"Extract SalesTargets 2014Mar"

by
"Register AllSalesTargets": ({

"action": "sfdcRegister",
"parameters": {
"alias": "AllSalesTargets",
"name": "AllSalesTargets",
"source": "Append SalesTargets 20l14Quarterl"

}

augment Transformation

After you create the single dataset, you can use date filters to analyze the sales targets by month, quarter, or year.

IN THIS SECTION:

append Parameters

When you define an append transformation, you set the action attribute to append and specify the parameters.

append Parameters

When you define an append transformation, you set the action attribute to append and specify the parameters.

The following table describes the input parameters.

Parameter Required?
sources Yes
SEE ALSO:

append Transformation

augment Transformation

Value

Nodes in the dataflow definition file that
identify the datasets that you want to
merge.

The augment transformation augments an input dataset by combining columns from another related dataset. The resulting, augmented
dataset enables queries across both related input datasets. For example, you can augment the Account dataset with the User dataset

to enable a query to return account records and the full names of the account owners.

When you create the transformation, you identify each input dataset as the left or right dataset and specify the relationship between
them. Analytics combines all the columns of the left dataset with only the specified columns from the right dataset. (Keep in mind that
each dataset can't have more than 5,000 columns.) Analytics adds the relationship to column names from the right dataset, which is

useful when the left and right datasets have columns with the same names.

21

Dataflow Transformation Reference augment Transformation

For each record in the left dataset, the augment transformation performs a lookup to find a matching record in the right dataset. To
match related records, the augment transformation uses a match condition. You specify the match condition based on a key from each
dataset. For example:

"left key": ["Id"],"right key": ["Prod ID"]

A key can be a single-column key or a composite key. For a match condition based on a composite key, the keys for both datasets must
have the same number of columns, specified in the same order.

O Tip: To augment more than two datasets, augment two datasets at a time. For example, to augment three datasets, augment
the first two datasets, and then augment the resulting dataset with the third dataset.

@ Example: Let's look at an example of the augment transformation. In this example, you want to extract data from the Opportunity
and Accounts objects, and then match the data based on the account ID field.

Opportunity Account
Id — Id

Mame Mame
Amount
StageMame
CloseDate
Accountld
Ownerld

You create the following dataflow definition file.

{
"Extract Opportunity": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" 1},
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "AccountId" 1},
{ "name": "OwnerId" }
]
}
I
"Extract AccountDetails": ({
"action": "sfdcDigest",
"parameters": {
"object": "Account",
"fields": [
{ "name": "Id" },
{ "name": "Name" }

}y
"Augment OpportunitiesWithAccountDetails": ({

22

Dataflow Transformation Reference

"action": "augment",
"parameters": {
"operation": "LookupSingleValue",
"left": "Extract Opportunity",
"left key": [
"AccountId"
] r
"relationship": "OpptyAcct",
"right": "Extract AccountDetails",
"right key": [
nggn

1,

"right select": ["Name"]

I
"Register OpportunityDetails": ({

"action": "sfdcRegister",
"parameters": {
"alias": "Opportunity Account",
"name": "Opportunity Account",
"source": "Augment OpportunitiesWithAccountDetails"

}

augment Transformation

After you run the dataflow, Analytics creates and registers the Opportunity_Account dataset. It also adds the relationship as a

prefix to all columns from the right dataset.

Opportunity_Account

Id
Mame
Amount

CloseDate
Accountld
Ownerld
OpptyAcct.Id
OpptyAcct Name

IN THIS SECTION:

Special Cases for Matching Records with the augment Transformation

StageName —— Opportunity Columns

F— Account Columns

For each record in the left dataset, the augment transformation performs a lookup to find a matching record in the right dataset.
However, it's critical that you understand how the augment transformation handles special cases when matching records.

augment Parameters

When you define an augment transformation, you set the action attribute to augment and specify the parameters.

23

Dataflow Transformation Reference augment Transformation

Special Cases for Matching Records with the augment Transformation

Foreach record in the left dataset, the augment transformation performs a lookup to find a matching record in the right dataset. However,
it's critical that you understand how the augment transformation handles special cases when matching records.

Let's look at some examples that illustrate some special cases.

Handling Null Keys

When a record in the left dataset contains a null key, Analytics doesn't perform a lookup to match the record. Instead, Analytics appends
the right columns and inserts null for dimensions (including dates) and '0' for measures.

Let's look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price,", and match
the records based on the Id and Prodid fields.

Product | Price
Id MName Prodid |Pricebook |UnitPrice
Prodl | Table Prodl |Standard 1000
Prod2 | Craie Prod2 |Standacd 450
mulf anch pull Curstom 0
[Pred3 [standard 700

Analytics doesn’t match the last record because the product ID is null. Instead, Analytics inserts a null for the Price.Pricebook
dimension and '0' for the Price.UnitPrice measure. Here's the resulting dataset after the augment.

[“id""Prod1", "Mame"™"Table", "Price.Pricebook":"Standard”, “Price.UnitPrice™ 1000],
[“id""Prod2", "Mame""Chair", "Price.Pricebook":"Standard”, "Price.UnitPrica™ 450],
["id"mit, "Mame"™"Banch", | "Price.Pricebook":null, "Price.UnitPrice™0]

Handling Empty Keys
Analytics matches empty-value left keys and empty-value right keys.

Let's look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price,", and match
the records based on the Id and ProdId fields.

Product Price
Id Mame Prodid |Pricebook |UnitPrice
Prod1 |Table Frodl |Standard 1000
Prod2 | Chair Prod? |Standard 450
" Bench n Custom g00
il Standard 700

Analytics matches the last record in the Product dataset with the third record in the Price dataset because they both have empty values
("). Here's the resulting dataset after the augment.

24

Dataflow Transformation Reference augment Transformation

{ "id""Prod1”, "Name":"Table", "Price.Pricebook":"Standard”, "Price UnitPrice™ 1000 },
{ “id%"Prod2", "Name";"Chair", "“Price.Pricebook":"Standard”, "Price UnitPrice™450],
[“id™"™, "Mame";"Bench", |"F"|:E- Pricebook":"Custom®, "Price.UnitPrice™:800])

Handling Non-Unique Keys
Although it's recommended, the left key doesn't have to be unique. If multiple records have the same left key, Analytics creates the same
values for the appended columns.

Let’s look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price,", and match
the records based on the Id and Prodid fields.

Product Price
[:] Name Prodid |Pricebook |UnitPrice
Prodl |Takle Prodl |Standard 1000
Prod2 |Chair Prod2 |Standard 450
Prod2 [Chair Prod3 |Standard 700

Analytics matches the records in the Product dataset with records in the Price dataset. Here's the resulting dataset after the augment.

£ "id""Prod1", "Mame";"Table", "Price.Pricebook";"Standard", "Price.UnitPrice; 1000 1,
f"id" " "Prad2", |"Mame";"Chair", "Price.Pricebook™"Standard", "Price.UnitPrice’:450 1},
f1hd" " Prod2”, |"Name": "Chair", "Price.Pricebook™"Standard”, "Price.UnitPrice™:450 }

Handling No Match

If left key doesn't have a match in the right dataset, Analytics appends the right columns and inserts null for dimensions (including dates)
and '0' for measures.

Let's look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price,", and match
the records based on the Id and ProdId fields.

Product Price
Id Name Prodid |Pricebook |UnitPrice
Prodl |Table Prad4 |Standard 1000
ProdZ |Chair ProdS |Standard 450
Prod3 [Bench

Because no keys match, Analytics doesn't match any records in the Product dataset with records in the Price dataset. Here's the resulting
dataset after the augment.

{ "id""Prod1", "Mame":"Tahle", "Price.Priceboak" nulf, "Price.UnitPrice’:0 },
£ Mid" " "Prod2”, "Mame""Chair", "Price.Pricebook™ suff, "Price.UnitPrice™0 J,
{"id""Prod3", "Mame";"Bench", "Price.Priceboak"; nudf, "Price.UnitPrice’0]}

25

Dataflow Transformation Reference augment Transformation

Handling Multiple Matches

If the left dataset has a one-to-many relationship with the right dataset, Analytics might find multiple matches for a left record. What

Analytics does with multiple matches depends on the specified augment operation. You can specify one of the following operations to
handle the multiple-match case:

LookupSingleValue
The augment transformation returns results from a single row. Analytics randomly selects one row from the list of matched rows.

@ Nofte: Each time you run the dataflow, Analytics can return different results depending on the returned row.

Let's look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price," set the
operation to LookupSingleValue, and match the records based on the Id and ProdId fields.

Product Price
Iel MName Prodid |Pricebook |UnitPrice
Prodl |Takle Prodl |Standard 1000
Prod2 |Chair Prod2 |Standard 450
Prod3 [Bench Prod3 ||Custom 800
Prod3 ||5tandard 700

Although there are multiple rows for Prod3 in the Price dataset, Analytics randomly chooses one matching row and returns values
based on that row. Here's the resulting dataset after the augment if Analytics chooses the first Prod3 row.

£ Mid""Prod1”, "Name™"Table", "Price.Pricebook":"Standard”, "Price.UnitPrice™ 1000 },
{"id" " Prod2", "Name""Chair", "Price.Pricebook';"Standard", "Price.UnitPrice’;450 1,
£ id""Prad3”, "Name":"Bench”J|"Price.Pricebook”:"Custom", "Price.UnitPrice":800 |}

LookupMultiValue
Analytics returns results from all matched rows.

Let's look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price," set the
operation to LookupMul tiValue, and match the records based on the Td and ProdId fields.

Product Price
[:] Name Prodid |Pricebook |UnitPrice
Prodl |Takle Prodl |Standard 1000
Prod2 |Chair Prod2 |Standard 450
Prod3 [Bench Prod3 ||Custom 800
Prod3 ||5tandard 700

Because the lookup returns multiple rows for Prod3, the dimension Price.Pricebook field in the resulting dataset becomes
amulti-value field, showing all dimension values. The measure field Price.UnitPrice contains 1500, which is the sum of 800
and 700. Here's the resulting dataset after the augment.

{ "id""Prod1", "Mame":"Table", "Price.Priceboak™"Standard", "Price.UnitPrice": 1000 L
{ "id""Prod2", "MName":"Chair", "Price.Pricebogk:"Standard", "Price.lUnitPrice:450 1
"id":"Prod3", "Mame":;"Bench", |"Price.Pricebook";"Custom", ”F‘riCE.F‘riCebDDk”:"Standard"Jl |"Price.UnitPrice":1500 1

26

Dataflow Transformation Reference augment Transformation

augment Parameters

When you define an augment transformation, you set the action attribute to augment and specify the parameters.

The following table describes the input parameters.

Parameter Required? Value

operation No Indicates what the transformation does if it
matches multiple rows in the right dataset
with a row in the left. Valid values:

® LookupSingleValue.Returns
values from one of the matched rows.
If you don't specify the operation
parameter, the transformation uses this
operation.

® LookupMultiValue.Returns
values from all matched rows.

For more information about each operation,
see Special Cases for Matching Records with
the augment Transformation.

left Yes Node in the dataflow definition file that

identifies the left dataset. This is one of two

input sources for this transformation.
left_key Yes Key column in the left dataset used to
augment the datasets. If you use a
composite key, the left and right keys must
have the same number of columns in the
same order. For a composite key, use the
following syntax:

["Key Columnl", "Key
Column2", .., "Key ColumnN"]

@ Note: The left or right key can't be
a multi-value field.

right Yes Node in the dataflow definition file that
identifies the right dataset. This is one of
two input sources for this transformation.

relationship Yes Relationship between the left and right
datasets. The dataflow adds the relationship
to the beginning of the right column names
in the output dataset to make the column
names unique and descriptive.

27

Dataflow Transformation Reference computeExpression Transformation

Parameter Required? Value

right_select Yes An array of column names from the right
dataset that you want to include in the
output dataset. The dataflow adds the
relationship as a prefix to the column name
to determine the name of the right column
in the output dataset.

right_key Yes Key column in the right dataset used to
augment the datasets. If you use a
composite key, the left and right keys must
have the same number of columns in the
same order.

SEE ALSO:

augment Transformation

computeExpression Transformation

The computeExpression transformation enables you to add derived fields to a dataset. The values for derived fields aren't extracted from
the input data source. Instead, Analytics generates the values using a SAQL expression, which can be based on one or more fields from
the input data or other derived fields. For example, you can use an expression to assign a value to a field, concatenate text fields, or
perform mathematical calculations on numeric fields.

@ Note: The computeExpression and computeRelative transformations are similar, but they have a key difference. The
computeExpression transformation performs calculations based on other fields within the same row. The computeRelative
transformation performs calculations based on the previous and next values of the same field in other rows.

Consider the following guidelines when creating a computeExpression transformation:
* You caninclude only the following SAQL operators and functions in the expression:

- Arithmetic operators
-~ (Case operator
- String operator

— Date functions

e The values of the derived field must match its specified type. For example, set the type of the derived field to Text if the values
are strings.

e Analytics calculates the values of derived fields in the order in which they are listed in the JSON. Thus, if you create a derived field
based on other derived fields in the same computeExpression transformation, the input derived fields must be listed first. For example,
Derived_A must be listed before Derived_B in the following computeExpression transformation JSON snippet:

"CreateDerivedFields": {
"action": "computeExpression",
"parameters": {

"source": "sourceNode",
"mergeWithSource": false,
"computedFields": [

{

28

https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_operators_arithmetic.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_operators_case.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_operators_string.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_functions_date.htm

Dataflow Transformation Reference computeExpression Transformation

"name": "Derived A",
"type": "Text",
"label": "Derived Field A",
"saglExpression": "\"hello \""},
{
"name": "Derived B",
"type": "Text",
"label": "Derived Field B Dependent on Field A",
"saglExpression": "Derived A + \"world\""}

® You can choose whether the resulting dataset includes only the derived fields, or includes the input and derived fields.

@ Example: Let's look at an example. You want to create a dataset based on Salesforce opportunity data. You create a dataflow
that extracts the Id and Amount fields from the Opportunity object. In addition, you also want to add the following derived fields
to the dataset: Modifiedld, SalesTax, FinalPrice, and ValueCategory. For the derived fields, you will:

e Append “SFDC" to each opportunity Id to get a new modified Id.
e (alculate the sales tax based on an 8% tax rate.
e (alculate the final price by adding the amount and sales tax.

e (ategorize opportunities into low-, medium-, and high-value buckets based on the calculated final price.

You create the following dataflow definition.

{
"salesData": {
"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{"name": "Amount"},
{"name": "Id"}1}},
"Derived Fields": {
"action": "computeExpression",
"parameters": {
"source": "salesData",
"mergeWithSource": true,
"computedFields": [
{
"name": "ModifiedId",
"type": "Text",
"saglExpression": "\"SFDC\" + Id"},

"name": "SalesTax",

"type": "Numeric",

"precision": 18,

"defaultvalue": "0",

"scale": 5,

"saglExpression": "Amount * 0.08"},

"name": "FinalPrice",
"type": "Numeric",

29

Dataflow Transformation Reference computeExpression Transformation

"precision": 18,
"defaultvalue": "0",
"scale": 5,
"saglExpression": "Amount + SalesTax"},
{
"name": "ValueCategory",
"type": "Text",
"saglExpression": "case when FinalPrice < 1000 then \"Low\" when

FinalPrice >= 1000 and FinalPrice < 2000 then \"Medium\" else \"High\" end"}
]

by

"Register CategorizedSales": {
"action": "sfdcRegister",
"parameters": {

"alias": "Categorized Sales",
"name": "Categorized Sales",
"source": "Derived Fields" }
}
1
IN THIS SECTION:

computekxpression Parameters

When you define a computeExpression transformation, you set the action attribute to computeExpression. You also specify
the parameters for the input source and the expression used to generate the values.

computeExpression Parameters

When you define a computeExpression transformation, you set the action attribute to computeExpression. You also specify the
parameters for the input source and the expression used to generate the values.

You can specify parameters in the following sections of the computeExpression node: parameters and computedFields.

Parameters

The following table describes the parameters in the parameters section.

Parameter Required? Value

source Yes Node in the dataflow definition file that
identifies the input source for this
transformation.
mergeWithSource No Indicates whether the input fields are
included with the derived fields in the
resulting dataset. When true, the resulting
dataset contains all input fields from the
source and the newly generated derived
fields. When false, the resulting dataset

30

Dataflow Transformation Reference

Parameter

computedFields

computedFields

Required?

Yes

computeExpression Transformation

Value

contains the derived fields only. Default is
true.

Attributes and expression used to generate
derived fields in the dataset. See
computedFields.

The following table describes the attributes in the computedFields section. Italso describes optional attributes that you can provide
to override the field metadata to make the data appear differently in a dataset. For example, Analytics can replace null values in a field

with a default value.

Parameter

name

type

label

saqlExpression

format

precision

Required?

Yes

Yes

No

Yes

Yes (for Date fields only)

Yes (for Numeric fields only)

31

Value
API'name of the generated field.

@ Nofe: The APl names must be
unique. Otherwise, the dataflow fails
to run.

Analytics field type associated with the field.
Valid types are Text, Numeric, or Date.

Example:

"type": "Text"

The display name of the generated field that
appears in the Analytics user interface. Can
be up to 255 characters. Defaults to input
field name if not specified.

SAQL expression used to calculate the value
for the derived field. The expression can be
based on input fields or other derived fields
in the transformation.

Example:

"saglExpression":"toDate (birth day,
\ "yyyy_M_d\ ") "

Format of the derived date field. For
information about formats, see the Analytics
External Data Format Reference.

The maximum number of digits in a numeric
value, or the length of a text value. For

https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_reference.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_reference.htm

Dataflow Transformation Reference computeRelative Transformation

Parameter Required? Value

numeric values: Includes all numbers to the
left and to the right of the decimal point
(but excludes the decimal point character).
Value must be between 1and 18, inclusive.
For text values: Value defaults to 255
characters, and must be between 1 and
32,000 characters, inclusive.

Example:

"precision": 10

scale Yes (for Numeric fields only) The number of digits to the right of the

decimal point in a numeric value. Must be
less than the precision value. Value must be
between 0 and 17 characters, inclusive.

Example:

"scale": 2

defaultValue No For text and numeric fields that can be null.

Default value that replaces a null value for
the specified field.

SEE ALSO:

computeExpression Transformation

computeRelative Transformation

You can use the computeRelative transformation to analyze trends in your data by adding derived fields to a dataset based on values
in other rows. For example, to analyze sales pipeline trends, create derived fields that calculate the number of days an opportunity
remains in each stage. You can also calculate the changes to the opportunity amount throughout the stages of the opportunity.

@ Nofe: The computeExpression and computeRelative transformations are similar, but the computeExpression transformation
performs calculations based on fields within the same row. The computeRelative transformation performs calculations based on
the same field in other rows—particularly the current, first, previous, or next rows.

When you define a computeRelative transformation, you specify a source transformation as the input, partition the records, and sort the
records within each partition. For example, you can use sfdcDigest to extract opportunity history records, and then use computeRelative
to calculate changes in each opportunity over time. You can partition opportunity records by opportunity ID, and then chronologically
sort records within each partition to correctly identify the previous and next values.

@ Example: Let'slook atan example. To perform trending analysis on the sales pipeline, create a dataflow that contains the following
transformations.

sfdcDigest transformation
Extracts the following data from the OpportunityHistory object.

32

Dataflow Transformation Reference

OpportunityHistory Object

Opportunityld CreatedDate StageName Amount |CloseDate
00630000003JrtHEAAK. [2005-11-23T20:24:09.000Z |Closed Wan 36938 [11/15/2005
006300000035YADAA4 |2005-11-08T18:47:18.000Z |Present/Demo/Quote [4200 12/3/2005
00630000003Yx9BAAS [2005-11-23T01:06:57.000Z |Present/Demo/Quote |71500 |11/30/2005
00630000003JsMcAAK |2005-10-28T18:12:06.000Z |Negotiation/Review [18750 |11/15/2005
00630000003Yx9BAAS [2005-11-25T18:03:46.000Z |Closed Wan 5832 11/23/2005
00630000003Yx9BAAS |2005-11-23T01:07:46.000Z |Present/Demo/Quote (7128 11/30/2005
00630000003JrtHBAAK. [2005-11-03T21:53:36.000Z |Negotiation/Review |20148 |11/15/2005
0063000000352AZAA4 |2005-11-08T19:44:27.000Z |Present/Demo/Quote [141120 |12/16/2005
00630000003JrtHBAAK. [2005-10-17T22:28:33.000Z |Present/Demo/Quote |42900 |11/15/2005
00630000003JsMcAAK |2005-10-17T23:30:20.000Z |Negotiation/Review [18750 |10/31/2005
006300000030G95AAG [2005-10-28T17:45:30.000Z |Present/Demo/Quote |52000 |11/30/2005

computeRelative Transformation

computeRelative transformation
Performs the following tasks:

Partitions the extracted records by opportunity ID.

Within each partition, sorts the extracted records by CreatedDate in ascending order. Sorting by CreatedDate ensures that
the changes that occur for each opportunity are listed in chronological order.

Adds the following derived fields to the final dataset.

OpportunityCreatedDate
Determines the date that the opportunity was first created. You can use this date with the actual close date to determine
the number of days required to close the sale. The goal is to shorten the sales cycle to recognize revenue.

ValidToDate
Determines the date to which the state of the opportunity is valid. You can use this field to determine the time period
for which the opportunity details are valid in each record.

AmountPrev
Determines the previous amount of the opportunity. You can use this field to determine if the values of opportunities
are increasing or decreasing, which can affect whether you hit your sales targets.

CloseDatePrev
Determines the previous expected close date for the opportunity. You can use this field to analyze how the expected
close date changes over the sales cycle of the opportunity. If the expected close date keeps getting pushed out, identify
the issues that are causing the longer sales cycle.

sfdcRegister transformation
Registers the final dataset that contains the extracted fields from the sfdcDigest transformation and the derived fields from
computeRelative transformation.

You create the following dataflow definition.

{

"extractOppHistory": {
"action": "sfdcDigest",
"parameters": {

"object": "OpportunityHistory",
"fields": [
{"name": "OpportunityId"},
{"name": "CreatedDate"},
{"name": "StageName"},
{"name": "Amount"},
{"name": "CloseDate"}

33

Dataflow Transformation Reference

by

"computeTrending": {
"action": "computeRelative",
"parameters": {
"partitionBy": ["OpportunityId"],
"orderBy": [

{
"name" :"CreatedDate",
"direction":"asc"

1,
"computedFields": [

{

"name": "OpportunityCreatedDate",
"expression": {
"sourceField": "CreatedDate",
"offset": "first ()",
"default": "current ()"
}
by
{
"name": "ValidToDate",
"expression": {
"sourceField": "CreatedDate",
"offset": "next ()",
"default": "3000-01-01T00:00:00.000z"
}
}I
{
"name": "AmountPrev",
"expression": {
"sourceField": "Amount",
"offset": "previous()",
"default": "O"
}
s
{
"name": "CloseDatePrev",
"expression": {
"sourceField": "CloseDate",
"offset": "previous()",
"default": "01/01/1970"
}
}
1y
"source": "extractOppHistory"

}y
"Register OppportunityHistory Dataset": ({

"action": "sfdcRegister",
"parameters": {
"alias": "SalesPipelineTrending",
"name": "Sales Pipeline Trending",

34

computeRelative Transformation

Dataflow Transformation Reference

}

"source":

The dataflow runs and creates the following dataset.

"computeTrending"

computeRelative Transformation

Sales Pipeline Trending Dataset

Opportunityld CreatedDate StageName Amount [CloseDate |OpportunityCreatedDate |ValidToDate AmountPrev |CloseDatePrev
00630000003JrHEAAK 2005-10-17T22:28:33.000Z |Present/Demo/Quote [429000 |[11/15/2005 |2005-10-17T22:28:33.000Z |2005-11-03T21:563:36.000Z |0 1/1/1970
00630000003JrHBAAK [2005-11-03T21:53:36.000Z |MNegotiation/Review |201480 |11/15/2005 |2005-10-17T22:28:33.000Z [2005-11-23T20:24:09.000Z 429000 11/15/2005
00630000003JrHBAAK [2005-11-23T20:24:09.000Z |Closed Waon 369380 |11/15/2005 |2005-10-17T22:28:33.000Z [3000-01-01T00:00:00.000Z 201480 1115/2005
00630000003JsMcAAK [2005-10-17T23:30-20.000Z |MNegotiation/Review [187500 |10/31/2005 |2005-10-17T23:30:20.000Z [2005-10-28T18:12:06.000Z |0 1/1/1970
00630000003JsMcAAK [2005-10-28T18:12:06.000Z |MNegotiation/Review [187500 |11/15/2005 |2005-10-17T23:30:20.000Z [3000-01-01T00:00:00.000Z 187500 10/31/2005
006300000030G9I5AAG [2005-10-28T17:45:30.000Z |Present/Demo/Quote |520000 |11/30/2005 |2005-10-28T17:45:30.000Z |3000-01-01T00:00:00.000Z |0 1111970
00630000003SYADAA4 [2005-11-08T18:47:-18 0002 |Present/Demo/Quote (42000 |12/3/2005 |2005-11-08T18:47:18.000Z [3000-01-01T00:00:00.000Z |0 1/1/1970
00630000003SZAZAAL [2005-11-08T19:44:27.000Z |Present/Demo/Quote |1411200|12/16/2005 |2005-11-08T19:44:27.000Z |3000-01-01T00:00:00.000Z |0 1/1/1970
00630000003Yx9BAAS [2005-11-23T01:06:57.000Z |Present/Demo/Quote |715000 |11/30/2005 |2005-11-23T01:06:57.000Z |2005-11-23T01:07:46.000Z |0 1111970
00630000003Yx9BAAS [2005-11-23T01:07-46.000Z |Present/Demo/Quote (71280 |11/30/2005 |2005-11-23T01:06:57.000Z [2005-11-25T18:03:46.000Z |715000 11/30/2005
00630000003Yx9BAAS [2005-11-26T18:03:46.000Z |Closed Wan 58320 |11/23/2005 |2005-11-23T01:06:57.000Z |3000-01-01T00:00:00.000Z |71280 11/30/2005

Notice that Analytics partitions the records by opportunity ID and then sorts the records in ascending order based on the CreatedDate
field within each partition. Analytics can now use the previous and next rows within each partition to determine changes in field
values in the dataset.

IN THIS SECTION:

computeRelative Parameters

When you define a computeRelative transformation, you set the action attribute to computeRelative. You also specify the
parameters for the input source, partition-by field, sort field, and derived field definitions.

computeRelative Parameters

When you define a computeRelative transformation, you set the action attribute to computeRelative. You also specify the
parameters for the input source, partition-by field, sort field, and derived field definitions.

You can specify parameters in the following sections of the computeRelative node.

Parameters

The following table describes the parameters in the parameters section.

Parameter Required? Value

source Yes Node in the dataflow definition file that identifies the input source for this
transformation.

partitionBy Yes API name of the field used to partition the records in the dataset. Specify one
partition-by field only.

orderBy Yes

Field used to sort the records within each partition and the sort order: ascending
(asc) or descending (desc). Specify one sort field only.

35

Dataflow Transformation Reference computeRelative Transformation

Parameter Required? Value
Example:
"orderBy": [
{
"name" :"CreatedDate",
"direction":"asc"
}
]
computedFields Yes

A list of definitions for derived fields.

Example:

"computedFields": [
{

"name": "OpportunityCreatedDate",
"expression": {
"sourceField": "CreatedDate",
"offset": "first()",
"default": "current ()"
}
by
{
"name": "AmountPrev",
"expression": {
"sourceField": "Amount",
"offset": "previous()",
"default": "O"

]

See computedFields.

computedFields

The following table describes the attributes in the computedFields section.

Parameter Required? Value

hame ves APl name of the derived field to add to the dataset. The name must be unique

in the dataset.

@ Note: If the name is not unique, the dataflow fails to run.

Expression Yes Expression attributes used to calculate the value for the derived field. The

expression can be based on input fields or other derived fields in the
transformation.

36

Dataflow Transformation Reference

Parameter

expression

Required?

computeRelative Transformation

Value

Example:

"expression": {
"sourceField": "CloseDate",
"offset": "previous()",
"default": "01/01/1970"

See expression.

The following table describes the attributes in the expression section.

Parameter
sourceField

offset

Required?
Yes

Yes

Value

API name of the input field from the source node that's used in the expression.

The function used in the expression. You can use the following functions:

current ()
Gets the value from the current record.

Example:
"offset": "current ()"

first()
Gets the value from the first record in the partition, like the first CreateDate
for an opportunity.

Example:
"offset": "first()"
next ()

Gets the value from the next record.

Example:

"offset": "next ()"

previous ()
Gets the value from the previous record.

Example:

"offset": "previous ()"
@ Nofte: Derived fields are computed in the order that they're defined. The
calculation of a derived field can be based on the value from another

derived field aslong as it has already been defined. For example, next ()
can't access the value of a derived field in the next row.

37

Dataflow Transformation Reference

Parameter Required?
default Yes (for numeric fields
only)

delta Transformation

delta Transformation

Value

O Tip: To get the correct results when using the previous () and
next () functions, the computeRelative transformation requires you
to sort the records.

The default value if one can't be calculated. For example, you can specify a default
value when no previous or next value exists. You can insert a constant value or
current () asa default value.

Examples:

"default": "3000-01-01T00:00:00.000z"

"default": "current ()"

The delta transformation calculates changes in the value of a measure column in a dataset over a period of time. The delta transformation
generates an output column in the dataset to store the delta for each record. Create deltas to make it easier for business analysts to

include them in queries.

@ Nofe: The delta transformation isn't supported when null measure handling is enabled and dataflows containing delta
transformations fail. Use computeRelative and computeExpression transformations instead in your dataflows, to
calculate changes in measure values over time. For an example, see
#bi_integrate_enable_null_measures__bi_integrate_enable_null_measures.

The delta transformation calculates each delta value by comparing the value in each record with the value in the previous record. Because
records might not be sorted, the delta transformation orders the records before computing the delta values. To do this, the transformation
sorts the data by the specified dimension, and then by the specified epoch date column.

@ Note: When Analytics processes dates, it creates the following epoch date columns for each date processed:

Epoch Time Column

<date_column_name>_sec_epoch

<date_column_name>_day_epoch

Description

For example, if the date column is CloseDate, the generated
epoch second column is CloseDate_sec_epoch. This column
provides the number of seconds that have elapsed since January
1, 1970 (midnight UTC/GMT).

For example, if the date column is CloseDate, the generated
epoch day column is CloseDate_day_epoch. This column
provides the number of days that have elapsed since January
1, 1970 (midnight UTC/GMT).

@ Example: Let’s look at an example. You want to create an OppHistoryDelta dataset that contains opportunity history from the
OpportunityHistory object and also calculates the deltas for opportunity amounts.

The OpportunityHistory object contains the following data.

38

#bi_integrate_enable_null_measures__bi_integrate_enable_null_measures

Dataflow Transformation Reference

Opportunityld CloseDate StageName
1 1/1/2014 New

2 1/1/2014 New

2 2/1/2014 ClosedWon

1 3/1/2014 ClosedWon

You create the following dataflow definition.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "OpportunityHistory",
"fields": [
{ "name": "OpportunityId" },
{ "name": "CloseDate" },
{ "name": "StageName" },
{ "name": "Amount" }

br
"Calculate Delta": ({

"action": "delta",

"parameters": {
"dimension": "OpportunityId",
"epoch": "CloseDate day epoch",
"inputMeasure": "Amount",
"outputMeasure": "DeltaAmount",
"source": "Extract Opportunities"

I
"Register Dataset": {

"action": "sfdcRegister",
"parameters": {
"alias": "OppHistoryDelta",
"name": "OppHistoryDelta",
"source": "Calculate Delta"

}

delta Transformation

Amount
100
100
200

100

To calculate the delta values for each opportunity amount, the delta transformation sorts the records by the dimension

(Opportunityld) first, and then by time (CloseDate_day_epoch) as shown here.

OpportunitylD CloseDate StageName
1 1/1/2014 New
1 3/1/2014 ClosedWon

39

Amount
100

100

Dataflow Transformation Reference

OpportunitylD CloseDate
2 1/1/2014
2 2/1/2014

StageName

delta Transformation

Amount
100

200

After the records are sorted, for each dimension (Opportunityld), the transformation compares the previous value to the next value
to determine the delta for each record. The transformation creates the following dataset.

Opportunityld CloseDate
1 1/1/2014
1 3/1/2014
2 1/1/2014
2 2/1/2014

StageName

New

ClosedWon

New

ClosedWon

Amount DeltaAmount
100 0

100 0

100 0

200 100

For the first record of each dimension, the transformation inserts ‘0’ for the delta value.

Nofte: If an opportunity contains multiple changes on the same day, you must sort the records on a shorter time interval.
In this case, sort on CloseDate_sec_epoch column. Otherwise, records might not be sorted correctly, which means delta

values will be incorrect.

IN THIS SECTION:

delta Parameters

When you define a delta transformation, you set the action attribute to delta and specify the parameters.

delta Parameters

When you define a delta transformation, you set the action attribute to delta and specify the parameters.

The following table describes the input parameters:

Parameter

dimension

epoch

inputMeasure

outputMeasure

Required?

Yes

Yes

Yes

Yes

40

Value

Dimension column in the dataset used to
sort records when calculating the delta
values.

Epoch date column in the dataset used to
sort records within each dimension when
calculating delta values.

Measure column on which you want to
calculate the delta.

Name of the output column that contains
the delta value.

Dataflow Transformation Reference

Parameter Required?
source Yes
SEE ALSO:

delta Transformation

dim2mea Transformation

dim2mea Transformation

Value

Node in the dataflow definition file that
contains the dataset to which you want to
add the delta column.

The dim2mea transformation creates a new measure based on a dimension. The transformation adds the new measure column to the
dataset. The transformation also preserves the dimension to ensure that existing lenses and dashboards don't break if they use the

dimension.

If the transformation cannot create a measure from a dimension, the transformation populates the measure with the specified default

value. If no default value is provided, the transformation inserts ‘0.’

@ Example: Let's look at an example. Your Opportunity object contains a custom text field called StageVal

¢, which contains the

opportunity amount at a particular stage. Because this is a text field, Analytics loads this data as a dimension. However, you'd like
to create a measure from this dimension to enable users to perform calculations on stage amount.

You create the following dataflow definition.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" 1},
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "StageVal c" }
]
}
by
"Create Measure From Dimension": {
"action": "dim2mea",
"parameters": {
"dimension": "Stageval c",
"measure": "StageValue",
"measureDefault": "0",
"measureType": "long",
"source": "Extract Opportunities”

by

"Register The Dataset": ({
"action": "sfdcRegister",
"parameters": {

4

Dataflow Transformation Reference

"alias":
"name" :

"source":

IN THIS SECTION:

dim2mea Parameters

"OpportunitiesWithConvertedMeasure",
"OpportunitiesWithConvertedMeasure",
"Create Measure From Dimension"

edgemart Transformation

When you define a dim2mea transformation, you set the action attribute to dim2mea and specify the parameters.

dim2mea Parameters

When you define a dim2mea transformation, you set the action attribute to dim2mea and specify the parameters.

The following table describes the input parameters:

Parameter

dimension

measure

measureDefault

measureType

source

SEE ALSO:

dim2mea Transformation

Required?

Yes

Yes

Yes

Yes

Yes

edgemart Transformation

The edgemart transformation gives the dataflow access to an existing, registered dataset, which can contain Salesforce data, external
data, ora combination of the two. Use this transformation to reference a dataset so that its data can be used in subsequent transformations
in the dataflow. You can use this transformation and the augment transformation together to join an existing dataset with a new dataset.

Value

Dimension column in the dataset from
which you want to create the measure.

Name of the output measure. This column
name must be unique within the dataset.
Do not use the same name as the dimension
because the transformation preserves the
dimension in the dataset.

Default value for the measure if the
transformation is unable to create a measure
from a dimension.

Type of measure. Valid value: “long”

Node in the dataflow definition file that
contains the dataset to which you want to
add the measure.

Dataflow Transformation Reference edgemart Transformation

@ Example: Let's look atan example. You would like to compare the final sales amount against the opportunity amount to determine
if heavy discounts were offered to close deals. You previously created and registered the FinalSales dataset. The FinalSales dataset
contains the final sale amount of each opportunity that was closed and won.

Table 1: FinalSales Dataset

OpplID UpdateDate StageName SaleAmount
1 1/1/2014 ClosedWon 100,000
2 11/1/2013 ClosedWon 150,000
3 2/1/2014 ClosedWon 200,000

You would now like to create a dataset that contains opportunity information from the Opportunity object. Then, you would like
to join the data from the existing FinalSales dataset with the Opportunity dataset.

You create the following dataflow definition.

{

"Extract Opportunities": {

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" }

}y
"Extract Final Sales Data": {
"action": "edgemart",
"parameters": { "alias": "FinalSales" }
by
"Combine Opportunities FinalSales": {
"action": "augment",
"parameters": {
"left": "Extract Opportunities",
"left key": ["Id"],
"relationship": "Opportunity",
"right": "Extract Final Sales Data",
"right key": ["OppID"],
"right select": ["SaleAmount"]

b
"Register Opportunity FinalSales Dataset": ({

"action": "sfdcRegister",

"parameters": {
"alias": "OpportunityVersusFinalSales",
"name": "OpporunityVersusFinalSales",
"source": "Combine Opportunities FinalSales"

43

Dataflow Transformation Reference filter Transformation

IN THIS SECTION:

edgemart Parameters
When you define an edgemart transformation, you set the action attribute to edgemart and specify the parameters.

edgemart Parameters

When you define an edgemart transformation, you set the action attribute to edgemart and specify the parameters.

The following table describes the input parameter:

Parameter Required? Value

alias Yes APl name of the dataset from which you
want to extract data. To determine the API
name of a dataset, edit the dataset and view
the system name.

SEE ALSO:

edgemart Transformation

filter Transformation

The filter transformation removes records from an existing dataset. You define a filter condition that specifies which records to retain in
the dataset.

@ Example: Let's look at an example. You would like to create a dataset that contains only opportunities that were Closed Won.
First, you extract all opportunities from the Opportunity object. Next, you filter the records so that you only include opportunities
with a Closed Won stage name.

You create the following dataflow definition.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" 1},
{ "name": "StageName" 1},
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

by
"Filter Opportunities": {

"action": "filter",
"parameters": {
"filter": "StageName:EQ:Closed Won",

44

Dataflow Transformation Reference

"source": "Extract Opportunities"
}
}r
"Register My Won Oppportunities Dataset":
"action": "sfdcRegister",
"parameters": {
"alias": "MyWonOpportunities",
"name": "MyWonOpportunities",
"source": "Filter Opportunities"”
}
}
}
IN THIS SECTION:

filter Parameters

filter Transformation

When you define a filter transformation, you set the action attribute to £i1lter and specify the parameters.

filter Expression Syntax

You create afilter expression in the filter transformation based on one or more dimensions in a dataset.

filter Parameters

When you define afilter transformation, you set the action attribute to £i1lter and specify the parameters.

The following table describes the input parameters:

Parameter Required?
filter Yes
source Yes

SEE ALSO:

filter Transformation

filter Expression Syntax

Value

Filter expression that specifies which records
to include in the new dataset. See filter
Expression Syntax.

Node in the dataflow definition file that
contains the dataset that you want to filter.

You create a filter expression in the filter transformation based on one or more dimensions in a dataset.

@ Nofte: String comparisons in a filter expression are case-sensitive.

You can use the following types of filter expressions:

Filter Expression Syntax Description

dim:EQ:value

45

True if the dimension and value are equal.

Dataflow Transformation Reference flatten Transformation

Filter Expression Syntax Description

Example: "filter": "StageName:EQ:Closed Won"

dim:RwvalO:vall True if the left dimension falls within the specified range between

val0 and val.

Example: "filter": "EmployeeId:R:100:1000"
dim:Rval True if the dimension is greater than or equal to the value based
on binary sort order. For example, this is true when the dimension
is 'City" and the value is 'Anderson’ because ' 'City' > 'Anderson’).

Example: "filter": "LastName:R:Li"
dim:R:val True if the dimension is less than or equal to the value based on
binary sort order.

Example: "filter": "LastName:R::Levy"

dim:N:val True if the dimension and value are not equal.

Example: "filter": "RoleName:N:Manager"

dirn:EQvall|val2 True if the dimension equals values val1 or val2. This filter

expression uses the logical OR operator (). You can compare the
dimension value against more than two values. For example, to
compare against three values, use the following syntax:
dim1:EQual1|val2|val3.

Example: "filter": "Lead
Status:EQ:0Open|Contacted"

dim1:EQvall, dim2:EQval2 True if dimension dim1 equals value val1 and dimension dim2

equals value val2. This filter expression uses the logical AND
operator (,). You can compare more than two dimensions. For
example, to compare three dimensions, use the following syntax:
dim1:EQ:val1,dim2:EQ:val2,dim3:EQ:val3.

Example: "filter": "Lead
Status:EQ:Qualified,Rating:EQ:Hot"

SEE ALSO:

filter Transformation

flatten Transformation

The flatten transformation flattens hierarchical data. For example, you can flatten the Salesforce role hierarchy to implement row-level
security on a dataset based on the role hierarchy.

46

Dataflow Transformation Reference

flatten Transformation

When you configure the flatten transformation to flatten a hierarchy, you specify the field that contains every node in the hierarchy and
the field that contains their corresponding parent based on the hierarchy. The flatten transformation generates one record for each
hierarchy node, which we refer to as the “self ID.” Each record contains two generated columns that store the hierarchy for each self ID
node. One column contains a comma-separated list of all ancestors for each node in the hierarchy. The other column contains the

hierarchy path.

See the Roles and RolePath columns in the following flattened dataset to see how ancestors are stored.

Role ID (Self ID)
1

2

30

Role Name
Salesperson 1
Salesperson 2
Salesperson 3
Regional Manager 1
Regional Manager 2
Vice President 1
Vice President 2

CEO

Parent Role ID

20
20
30
30

Not applicable

Roles
10, 20, 30
10, 20, 30
11,20, 30
20, 30
20,30

30

30

Not applicable

RolePath
\T0\20\30
\T0\20\30
\TT\20\30
\20\30
\20\30
\30

\30

Not applicable

You can also configure the flatten transformation to include the self ID node in the generated hierarchy columns. The following dataset

shows the self ID in bold.

Role ID (Self ID)
1

2

30

Role Name
Salesperson 1
Salesperson 2
Salesperson 3
Regional Manager 1
Regional Manager 2
Vice President 1
Vice President 2

CEO

Parent Role ID

20
20
30
30

Not applicable

Roles
1,10, 20, 30
2,10, 20, 30
3,11, 20,30
10,20, 30
11,20, 30
20,30
21,30

30

RolePath
\T\10\20\30
\2\10\20\30
\3\T11\20\30
\10\20\30
\T1\20\30
\20\30
\21\30

30

@ Example: Let's look at an example. You want to create a dataset that contains all opportunities. For each opportunity, you want
toinclude user and role information about the opportunity owner. Also, to implement row-level security based on the role hierarchy,
each opportunity record must also contain a list of all ancestors above each opportunity owner based on the role hierarchy. To
generate the list of ancestors, use the flatten transformation to flatten the role hierarchy.

47

Dataflow Transformation Reference flatten Transformation

You create the following dataflow definition file:

{
"Extract Opportunity": {

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" 1},
{ "name": "StageName" 1},
{ "name": "AccountId" },
{ "name": "OwnerId" }
]
}
by
"Extract User": ({
"action": "sfdcDigest",
"parameters": {
"object": "User",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Department" 1},
{ "name": "UserRoleId" }
]
}
s
"Extract UserRole": {
"action": "sfdcDigest",
"parameters": {
"object": "UserRole",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "ParentRoleId" }

Yo
"Flatten UserRole": {

"action": "flatten",

"parameters": {
"source": "Extract UserRole",
"self field": "Id",
"parent field": "ParentRoleId",
"multi field": "Roles",

"path field": "RolePath",
"include self id":false

I

"Augment User FlattenUserRole": ({
"action": "augment",
"parameters": {

48

Dataflow Transformation Reference

by

"left": "Extract User",
"left key": ["UserRoleId"],
"relationship": "Role",
"right": "Flatten UserRole",
"right key": ["Id"],
"right select": [

"Id",

"Name",

"Roles",

"RolePath"

"Augment Opportunity UserWithRoles": {

by

"action": "augment",
"parameters": {

"left": "Extract Opportunity",
"left key": ["OwnerId"],
"right": "Augment User FlattenUserRole",
"relationship": "Owner",
"right select": [

"Name",

"Department",

"Role.Id",

"Role.Name",

"Role.Roles",

"Role.RolePath"
1,
"right key": ["Id"]

"Register OpportunityWithRoles Dataset": {

"action": "sfdcRegister",
"parameters": {
"alias": "OppRoles",
"name": "OppRoles",
"source": "Augment Opportunity UserWithRoles",
"rowLevelSecurityFilter": "'Owner.Role.Roles' ==

== \"SUser.Id\""
}

}
}

\"$User.UserRoleId\"

flatten Transformation

['] "OwnerId'

To flatten the Salesforce role hierarchy, the flatten transformation uses the following input fields from the UserRole object.

Id

Id identifies each node in the Salesforce role hierarchy.

ParentRoleld

ParentRoleld identifies the parent as defined in the role hierarchy.

After traversing through each parent-child relationship in the UserRole object, the flatten transformation generates one record for
each role ID. Each record contains all ancestor roles for each role in the hierarchy. The flatten transformation generates two output
columns—~Roles and RolePath—to store all ancestor roles for each role.

49

Dataflow Transformation Reference flatten Transformation

IN THIS SECTION:

flatten Parameters
When you define a flatten transformation, you set the action attribute to £1atten and specify the parameters.

flatten Parameters

When you define a flatten transformation, you set the action attribute to £1atten and specify the parameters.

The following table describes the input parameters:

Parameter Required? Value

include_self_id No Indicates whether to include the self ID node in the generated
multi_field and path_field columns. Valid values are false
(default) and true.

self_field Yes Name of the input field that identifies each node in the hierarchy.

parent_field Yes Name of the input field that identifies the direct parent of each
node in the hierarchy. For example, the Regional Manager 1 role
is the parent of the Salesperson 1 role in a role hierarchy.

multi_field Yes Name of the multi-value output field that contains a list of all

ancestors in the hierarchy, in order from the lowest to the highest
level. The flatten transformation creates this field and generates
the list of ancestors for each node in the hierarchy. For example,
for Salesperson 1 role, the hierarchy of ancestors is: Sales
Manager 1, Regional Manager 1, Vice
President 1, CEO.

path_field Yes A string representation of the multi-field field, separated by
backslashes. This output field contains the hierarchical path of all
ancestors in the hierarchy, in order from the lowest to the highest
level. The flatten transformation creates this field and generates
the ancestry path for each node in the hierarchy. For example, for
a salesperson role in a role hierarchy, the value is: Sales
Manager 1\Regional Manager 1\Vice President
1\CEO.

source Yes Node in the dataflow definition file that contains the hierarchical
data that you want to flatten. This node is the input source for this
transformation and it must contain the input fields mapped to
self_field and parent_field.

50

Dataflow Transformation Reference sfdcDigest Transformation

@ Nofte: By default, the multi_field and path_field fields are created as system fields, which aren't visible in the user interface. To
make the fields appear in the user interface, set the IsSystemField metadataattributeto false foreachfieldin the flatten
transformation. For more information about metadata attributes, see Overriding Metadata Generated by a Transformation.

SEE ALSO:

flatten Transformation

sfdcDigest Transformation

The sfdcDigest transformation generates a dataset based on data that it extracts from a Salesforce object. You specify the Salesforce
object and fields from which to extract data. You might choose to exclude particular fields that contain sensitive information or that
aren't relevant for analysis.

When you upload the dataflow definition file, Analytics validates access to Salesforce objects and fields based on the user profile of the
Integration User. If the user profile does not have read access to a field or object, the upload fails.

At run time, Analytics runs the dataflow as the Integration User. Again, Analytics validates access to the objects and fields based on the
profile of the Integration User. For example, if the dataflow tries to extract data from a custom field on which the Integration User does
not have read access, the dataflow job fails.

@ Note: The Integration User is a preconfigured user that is created when Analytics is enabled in your organization. If you or the
Integration User need permission on a Salesforce object or field, ask the administrator to grant access.

For more information about preconfigured users in Analytics, see the Analytics Security Implementation Guide.

@ Example: Let's look at an example. You would like to create a dataset that contains all opportunities from the Opportunity object.

You create the following dataflow definition.

{

"Extract Opportunities": ({
"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",

"fields": [

{ "name": "Id" },

"name": "Name" 1},
"name": "Amount" 1},
"name": "StageName" },
"name": "CloseDate" 1},
"name": "AccountId" },
"name": "OwnerId" },

e N e

"name": "OpportunitySupportTeamMembers c" }

by
"Register Opportunities Dataset": {
"action": "sfdcRegister",
"parameters": {
"alias": "Opportunities",
"name": "Opportunities",
"source": "Extract Opportunities”

51

Dataflow Transformation Reference sfdcDigest Transformation

Considerations When Using the sfdcDigest Transformation

e (Consider dataset storage limits when extracting data. For example, a dataset can contain a maximum of 5,000 fields, so be selective
when choosing fields. See Analytics Limits.

e The sfdcDigest transformation runs a SOQL query to extract data from a Salesforce object, and so is subject to SOQL limits. If the
query exceeds any of these limits, it may return no results or cause the dataflow job to fail. For example, The length of the SOQL
query cannot exceed 20,000 characters. To reduce the SOQL query length, consider breaking up the extract into two or more
sfdcDigest transformations and then use the augment transformation to combine the results. For example, you might create one
sfdcDigest transformation to extract half of the fields and create another sfdcDigest transformation to extract the remaining fields.
See SOQL and SOSL Limits.

IN THIS SECTION:

Filtering Records Extracted from a Salesforce Object

Add afilter to the sfdcDigest transformation to extract a subset of all records from a Salesforce object. You can filter records to reduce
the number of extracted and processed records, exclude records that contain irrelevant or sensitive data, and increase dataflow
performance.

Overriding Salesforce Field Metadata

You can override the field metadata that the sfdcDigest transformation extracts from a Salesforce object to make the data appear
differently in a dataset. For example, Analytics can add a default value to records that have missing values for a field.

Unsupported Salesforce Objects and Fields in Analytics

The sfdcDigest transformation can't extract data from all Salesforce objects and fields. Consider these limitations before configuring
the extraction of Salesforce objects.

sfdcDigest Parameters

When you define an sfdcDigest transformation, you set the action attribute to sfdcDigest and specify the parameters for the
object and fields that you want to extract. Optionally, you can also specify parameters to filter the records extracted from the Salesforce
object.

Filtering Records Extracted from a Salesforce Object

Add a filter to the sfdcDigest transformation to extract a subset of all records from a Salesforce object. You can filter records to reduce
the number of extracted and processed records, exclude records that contain irrelevant or sensitive data, and increase dataflow
performance.

Afilter consists of one or more filter conditions, where each filter condition compares a field value to a value. For example, Amount
>= 1000000. You can also apply SOQL functions on the field value in a filter condition, like CALENDAR YEAR (CreatedDate)
= 2011.You can add multiple filter conditions using logical operators AND, OR, and NOT. You can also use a backslash (\) to escape
double quotes included in strings.

The sfdcDigest transformation extracts all records for which the filteris true. If you configured the sfdcDigest transformation for incremental
extraction, the filter applies to data extracted during the incremental run only—Analytics doesn't apply the filter to records that were
previously loaded into the dataset. If you add an invalid filter, the dataflow fails at run time.

For each instance of sfdcDigest, you can use one of the following types of filters:

e Structured filter

52

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_limits.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.208.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_soslsoql.htm

Dataflow Transformation Reference sfdcDigest Transformation

e Advanced filter

O Tip: Are you trying to decide whether to use a filter in the sfdcDigest transformation or use a filter transformation? Use a filter
transformation to filter records at any point in the dataflow. For example, you can add it after the dataflow joins two datasets.
However, to reduce the number of rows processed in the dataflow and optimize dataflow performance, add the filter closest to
the point at which records are extracted—when possible, add the filter in the sfdcDigest transformation.

IN THIS SECTION:

Structured Filter in sfdcDigest Transformation
You define a structured filter using JSON syntax.

Advanced Filter in sfdcDigest Transformation

You define an advanced filter using a Salesforce Object Query Language (SOQL) WHERE clause expression. Use an advanced filter
only if you are familiar with SOQL.

SEE ALSO:

sfdcDigest Transformation

Structured Filter in sfdcDigest Transformation
You define a structured filter using JSON syntax.

A structured filter uses the following JSON syntax for each filter condition.

{

"field": "<field name>",
"operator": "<operator>",
"value": "<value>"|"["<value 1>", "<value 2>"]1",

"isQuoted": true|false}

The value can be a number, date, string, list of strings, or date literal. Analytics automatically quotes strings unless you set i sQuoted
to true, which indicates that the string is already quoted.

You can use one of the following operators in a filter condition.

Operator Comment

Filter condition is true if the value in the field equals the specified
value. String comparisons using the equals operator are
case-insensitive.

Example:

"filterConditions": [
{
"field": "OwnerId",
"operator": "=",
"value": "a07B00000012HYu"
}

53

https://developer.salesforce.com/docs/atlas.en-us.208.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_dateformats.htm

Dataflow Transformation Reference

Operator

sfdcDigest Transformation

Comment

Filter condition is true if the value in the field does not equal the
specified value.

Example (using backslashes to escape double quotes in a string
value):

"filterConditions": [
{
"field": "Nickname c",
"operator": "!=",
"Value": "\"Sammy\""

}

Filter condition is true if the value in the field is greater than the
specified value.

Example:

"filterConditions": [
{
"field": "Amount",
"operator": ">",
"value": "100000"
}

Filter condition is true if the value in the field is less than the
specified value.

Example (using a date literal):

"filterConditions": [

{

"field": "CloseDate",
"operator": "<",
"value": "THIS MONTH",

"isQuoted": false

}

Filter condition is true if the value in the field is greater than or
equal to the specified value.

Example:
"filterConditions": [
{
"field": "Amount",
"operator": ">=",

"value": "100000"

Dataflow Transformation Reference

Operator

LIKE

sfdcDigest Transformation

Comment

Filter condition is true if the value in the field is less than or equal
to the specified value.

Example (using a SOQL function):

"filterConditions": [
{
"field": "CALENDAR YEAR (CreatedDate)",
"operator": "<=",
"value": "2015",
"isQuoted": true
}

Filter condition is true if the value in the field matches the specified
value. The LIKE operator is similar to the LIKE operator in SQL; it
provides a mechanism for matching partial text strings and supports
wildcards.

e The % and _ wildcards are supported for the LIKE operator.
e The % wildcard matches zero or more characters.

e The _ wildcard matches exactly one character.

e The LIKE operator is supported for string fields only.

e The LIKE operator performs a case-insensitive match.

e The LIKE operator supports escaping of special characters %
or _. Use a backslash (\) to escape special characters.

Example:

"filterConditions": [

{

"field": "FirstName",
"operator": "LIKE",
"value": "Chris%"

}

Filter condition is true if the value in the field equals any one of the
values in the specified list. You can specify a quoted or non-quoted
list of values. If the list is quoted, set i sQuoted to true.

Example:

"filterConditions": [
{
"field": "StageName",
"operator": "IN",

55

Dataflow Transformation Reference sfdcDigest Transformation

Operator Comment

"value": ["Closed Won", "Closed Lost"]

}

NOTIN Filter condition is true if the value in the field does not equal any

of the values in the specified list.

Example:

"filterConditions": [
{
"field": "BillingState",
"operator": "NOT IN",
"value": ["California", "New York"]

}

INCLUDES For picklist or multi-select picklist fields only. Filter condition is true

if the value in the picklist field includes the specified value.

Example:

"filterConditions": [
{
"field": "BillingState",
"operator": "INCLUDES",
"value": ["California"]

}

EXCLUDES For picklist or multi-select picklist fields only. Filter condition is true

if the value in the picklist field excludes the specified value.

Example:

"filterConditions": [
{
"field": "BillingState",
"operator": "EXCLUDES",
"value": ["California", "New York"]

}

Let’s look at a few examples of structured filters.

@ Example: Let’s look at an example with a basic structured filter. To perform pipeline analysis on opportunities in fiscal quarter 2
of fiscal year 2015, you create this dataflow definition file to create the relevant dataset.

{
"Extract Filtered Opportunities": {

56

Dataflow Transformation Reference

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "AccountId" 1},
{ "name": "Amount" 1},
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "OwnerId" 1},
{ "name": "FiscalYear" },
{ "name": "FiscalQuarter" 1},
{ "name": "SystemModstamp" }
1,
"filterConditions": [
{
"field": "FiscalYear",
"operator": "=",
"value": "2015"
by
{
"field": "FiscalQuarter",
"operator": "=",
"value": "2"
}
]
}
}I
"Register Opportunities Dataset": {
"action": "sfdcRegister",
"parameters": {
"alias": "Opportunities 2015Q2",
"name": "Opportunities 2015Q2",
"source": "Extract Filtered Opportunities"”

}

sfdcDigest Transformation

@ Nofe: Ifyou do not specify a logical operator for multiple filter conditions—as is the case in this example—Analytics applies

AND between the conditions.

Example: Let's look at an example of a structured filter with a logical operator. To help forecast expected revenue, you create
this dataflow to view all opportunities that have either closed or have greater than 90% probability of closing.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "AccountId" },

57

Dataflow Transformation Reference

{ "name": "Amount" 1},
{ "name": "StageName" 1},
{ "name": "CloseDate" },
{ "name": "OwnerId" },
{ "name": "Probability" },
{ "name": "FiscalYear" },
{ "name": "FiscalQuarter" }
1,
"filterConditions": [
{
"operator": "OR",
"conditions": [
{
"field": "StageName",
"operator": "=",
"value": "Closed Won"
by
{
"field": "Probability",
"operator": ">=",
"value": "90"
}
]
}
]
}
by
"Register Opportunities Dataset": {
"action": "sfdcRegister",
"parameters": {
"alias": "OpportunitiesExpectedToWin",
"name": "OpportunitiesExpectedToWin",
"source": "Extract Opportunities"

sfdcDigest Transformation

@ Example: Finally, let's look at an example of a structured filter with nested logical operators. You create this dataflow to view all
opportunities that closed in the current fiscal quarter and are owned by either one of your two direct reports.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "AccountId" 1},
{ "name": "Amount" 1},
{ "name": "StageName" },
{ "name": "CloseDate" 1},
{ "name": "OwnerId" 1},
{ "name": "FiscalYear" },

58

Dataflow Transformation Reference

{ "name": "FiscalQuarter" }
] 14
"filterConditions": [
{
"operator": "AND",
"conditions": [
{
"field": "CloseDate",
"operator": "=",

"value": "THIS FISCAL QUARTER",

"isQuoted": false

"value": "00540000000HfUZ"

"value": "00540000000HfV4"

"operator": "OR",
"conditions": [
{
"field": "OwnerId",
"operator": "="
by
{
"field": "OwnerId",
"operator": "=",
t
1
}
1
}
1
}
by
"Register Opportunities Dataset": {
"action": "sfdcRegister",
"parameters": {
"alias": "DirectReport Opportunities",
"name": "DirectReport Opportunities",
"source": "Extract Opportunities"”

Advanced Filter in sfdcDigest Transformation

sfdcDigest Transformation

You define an advanced filter using a Salesforce Object Query Language (SOQL) WHERE clause expression. Use an advanced filter only

if you are familiar with SOQL.

@ Example: Let's look atan example of an advanced filter. You want to extract only opportunity records that are owned by a specific

user and that have either high value or a high probability of closing. You create this dataflow.

{
"Extract Filtered Opportunities": {
"action": "sfdcDigest",

59

Dataflow Transformation Reference

"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" },
{ "name": "AccountId" },
{ "name": "Amount" 1},
{ "name": "StageName" },
{ "name": "CloseDate" 1},
{ "name": "Probability" },
{ "name": "OwnerId" }
1,
"complexFilterConditions": "OwnerId = '00540000000HfUz"

OR Probability > 75)"
}
by

"Register Opportunities Dataset": {
"action": "sfdcRegister",
"parameters": {
"alias": "FilteredOpportunities",
"name": "FilteredOpportunities",
"source": "Extract Filtered Opportunities"”

Overriding Salesforce Field Metadata

sfdcDigest Transformation

(Amount > 100000

You can override the field metadata that the sfdcDigest transformation extracts from a Salesforce object to make the data appear
differently in a dataset. For example, Analytics can add a default value to records that have missing values for a field.

You can add the following field parameters to the sfdcDigest transformation to override the field metadata:

e defaultValue

* type

e fiscalMonthOffset

e isYearEndFiscalYear
o firstDayOfWeek

e isMultiValue

e multiValueSeparator
e precision

® scale

For a description of each of these field parameters, see Field Parameters. For information about using metadata attributes to configure

dates, see Date Handling in Datasets.

@ Example: Let’s look at an example. You would like to override metadata extracted from the Opportunity object.

You add the bold text in the following dataflow definition to override field metadata from the Opportunity object.

{

"Extract Opportunities": ({

60

Dataflow Transformation Reference

SEE ALSO:

"action": "sfdcDigest",

"parameters": {
"object": "Opportunity",
"fields": [

{
{
{

by
{
{

by
{
{
{

"name": "Id4d" },

"name": "Name" 1},

"name": "Amount",
"defaultvalue":O0,
"precision":18,

"scale":2
"name": "StageName" },
"name": "CloseDate",

"fiscalMonthOffset":9,
"firstDayOfWeek":2,
"isYearEndFiscalYear":true

"name" :"AccountId" 1},
"name" : "OwnerId" 1},

"name": "OpportunitySupportTeamMembers c",

"type":"Text",
"isMultiValue": true,
"multivalueSeparator":",",
"precision":255

"Register Opportunities Dataset":({

"action":"sfdcRegister",
"parameters": {

"alias":"Opportunities",
"name" :"Opportunities",
"source":"Extract Opportunities"

sfdcDigest Transformation

Unsupported Salesforce Objects and Fields in Analytics

sfdcDigest Transformation

The sfdcDigest transformation can't extract data from all Salesforce objects and fields. Consider these limitations before configuring the
extraction of Salesforce objects.

For information about all Salesforce objects and fields, see the Object Reference for Salesforce and Force.com.

61

https://developer.salesforce.com/docs/atlas.en-us.208.0.object_reference.meta/object_reference/

Dataflow Transformation Reference

Unsupported Obijects

The sfdcDigest transformation can't extract data from these Salesforce objects.

ActivityMetric
ApexEmailNotification
AuthProvider
BrandTemplate
ChatterConversation
ChatterConversationMember
ChatterMessage
ConnectedApplication
ContentFolderLink
ContentWorkspace
ContentWorkspaceDoc
ContentWorkspaceMember
ContentWorkspacePermission
CopyExport
CorsWhitelistEntry
DataAssessmentFieldMetric
DataAssessmentMetric
DataAssessmentValueMetric
DataHubSetupData
DataHubSetupDefinition
DirectMessage
DirectMessageFeed
DirectMessageMember
EmailCapture
EmailDomainKey
EmailServicesAddress
EmailServicesFunction
EmailTemplate
EnvironmentHub
EnvironmentHublnvitation
EnvironmentHubMemberRel
EventType
EventTypeParameter
FeedPollChoice
FeedPollVote
KnowledgeArticle

KnowledgeArticleVersion

KnowledgeArticleVersionHistory

sfdcDigest Transformation

Dataflow Transformation Reference sfdcDigest Transformation

e KnowledgeArticleViewStat
e KnowledgeArticleVoteStat
e |eadChangekvent

e LoginGeo

e LoginHistory

e ModelFactor

e NetworkActivityAudit

e NetworkModeration

e OrganizationProperty

e OrgWideEmailAddress

e Packagelicense

e PartnerNetworkSynclLog

® ReputationLevel

e ReputationlLevellocalization
e ReputationPointsRule

e SalesforcelgUser

e SampledEntity

e SandOminfo

e SandOminfoDetail

e SandOmObserver

e Scorelntelligence

e SearchPromotionRule

e SecurityCustomBaseline

e SelfServiceUser

e SsoUserMapping

e TenantSecret

e TwoFactorinfo

e TwoFactorTempCode

e UserPackagelicense

e UserProvAccount

e UserProvAccountStaging

e UserProvisioningConfig

e UserProvisioninglLog

e UserProvisioningRequest

e UserProvisioningRequestOwnerSharingRule
e UserProvisioningRequestShare
e UserProvMockTarget

e UserRecordAccess

e VerificationHistory

e VoiceUserLine

63

Dataflow Transformation Reference

e VoiceUserLineOwnerSharingRule

e \oiceUserLineShare

e \oiceVendorlLine

e VoiceVendorlLineOwnerSharingRule

e \oiceVendorLineShare
e WebLink

e WebLinkLocalization

@ Nofe: The sfdcDigest transformation doesn't support extracts from BigObjects.

sfdcDigest Transformation

The sfdcDigest transformation cannot extract data from external objects created in Salesforce. External objects are similar to custom

objects, except that they map to data located outside Salesforce.

If you include an unsupported or inaccessible object in the sfdcDigest transformation, the dataflow fails at run time with an error message.

Unsupported Fields

The sfdcDigest transformation can't extract data from these fields.

Object
Account
ActionPlanltem

AuthSession

CaseArticle

Contact

ContentDocument
CustomPerson__p
DocumentAttachmentMap
EmailMessage
EmailRoutingAddress
EnvironmentHubMember
ExternalEventMapping
InstalledMobileApp

Lead

KnowledgeArticle

Network

Unsupported Fields
CleanStatus
[temld

e |oginGeold
e |oginHistoryld

KnowledgeArticleld

e (CanAllowPortalSelfReg
e (leanStatus
Parentld

Title

Parentld

Activityld
EmailServicesAddressld
EnvironmentHubld
Eventld
ConnectedApplicationld
CleanStatus

MasterLanguage

e (CaseCommentEmailTemplateld

64

Dataflow Transformation Reference

Object

Organization

PermissionSet

PermissionSetLicense

Profile

ThirdPartyAccountLink

User

WorkBadge

WorkBadgeDefinition

sfdcDigest Transformation

Unsupported Fields

ChangePasswordEmailTemplateld
ForgotPasswordEmailTemplateld

WelcomeEmailTemplateld

SelfServiceEmailUserOnCaseCreationTemplateld
SelfServiceNewCommentTemplateld
SelfServiceNewPassTemplateld
SelfServiceNewUserTemplateld
WebToCaseAssignedEmailTemplateld
WebToCaseCreatedEmailTemplateld
WebToCaseEmailTemplateld
WebToleadEmailTemplateld

PermissionsEditEvent

PermissionsEditTask

MaximumPermissionsEditEvent

MaximumPermissionsEditTask

PermissionsEditEvent

PermissionsEditTask

SsoProviderld

LastPasswordChangeDate

UserPreferencesEnableVoicePilot

Rewardld

RewardFundld

If you include a field with an unsupported field in the sfdcDigest transformation, the dataflow ignores the field.

In addition, Salesforce recommends that you do not extract data from the MayEdit field of the Account object. Extracting data from this
field significantly decreases performance and can cause the dataflow to fail.

Unsupported Field Types

The sfdcDigest transformation can't extract data from fields with these field types.

° Dbase6d

e composite (like address and location)

e data category group reference

e encrypted string

65

Dataflow Transformation Reference sfdcDigest Transformation

If you include a field with an unsupported field type in the sfdcDigest transformation, the dataflow ignores the field.

SEE ALSO:

sfdcDigest Transformation

sfdcDigest Parameters

When you define an sfdcDigest transformation, you set the action attribute to s fdcDigest and specify the parameters for the object
and fields that you want to extract. Optionally, you can also specify parameters to filter the records extracted from the Salesforce object.

You can specify parameters in the following sections of the sfdcDigest node: parameters, fields, and filterConditions.

Parameters

The following table describes the parameters in the parameters section.

Parameter Required? Value

object Yes API'name of the Salesforce object from
which you want to extract data. This object
is the input source for this transformation.
The sfdcDigest transformation doesn't
support extraction from all Salesforce
objects.

incremental No Performs an incremental extraction, which
extracts only changes to the Salesforce
object since the last dataflow run. Valid
values: true or false.

Nofe: Incremental extraction is
available if you have enabled
replication.

fullRefreshToken No Performs a one-time full extraction to
synchronize the data in the dataset with
data in the Salesforce object. Specify any
value for this parameter.

After the full extraction, the dataflow
performs an incremental extraction each
time thereafter even though the
fullRefreshToken parameteris
included in the dataflow definition. To run
a full extraction again, change the value of
the fullRefreshToken parameterto
a different value.

Note: Incremental extraction is
available if you have enabled
replication.

66

Dataflow Transformation Reference sfdcDigest Transformation

Parameter Required? Value

fields Yes An array of names of all fields from which
you want to extract data from the specified
Salesforce object. The sfdcDigest
transformation doesn't support extraction
from all field types.

See Field Attributes.

filterConditions No Afilter that restricts the records extracted
from the specified Salesforce object. The
sfdcDigest transformation extracts all
records from the Salesforce object for which
thefilteris true. You can specify a structured
or advanced filter.

See Filter Conditions Parameters.

complexFilterConditions No For advanced filters only. A SOQL WHERE
clause used to filter records extracted from
the specified Salesforce object.

Field Attributes

The following table describes the attributesinthe £ields section. It also describes optional attributes that you can provide to override
the field metadata. You can override the metadata that the sfdcDigest transformation extracts from a Salesforce object to make the data
appear differently in a dataset. For example, Analytics can add a default value to records that have missing values for a field. If you don't
override the values, Analytics gets the values from Salesforce.

Attribute Required? Value

name Yes APIname of the field in the Salesforce object
that you want to include in the dataset. You
can specify multiple fields.

defaultvalue No For text and numeric fields that can be null.
Default value that replaces a null value for
the specified field.

type No

Analytics field type associated with the
specified field. Valid types are Text, Numeric,
or Date. Any value, including numeric
values, can be Text. For example, by default,
fiscal quarter from Salesforce objects is
Number. However, you can change it to
Text. Specify a type to override the type
determined by Analytics.

67

Dataflow Transformation Reference sfdcDigest Transformation

Attribute Required? Value

Example:

"type": "Text"
fiscalMonthOffset No

For date fields only. The difference, in
months, between the first month of the
fiscal year and the first month of the
calendar year (January). For example, if the
fiscal year starts in January, the offset is 0. If
the fiscal year starts in October, the offset is
9.

Example:

"fiscalMonthOffset": 9

@ Nofte: This attribute also controls
whether Analytics generates fiscal
date fields. To generate fiscal date
fields,set fiscalMonthOffset
to a value other than 0.

For more information, see Date Handling in
Datasets.

isYeartndFiscalYear No For date fields only. Indicates whether the

fiscal year is the year in which the fiscal year
ends or begins. Because the fiscal year can
start in one calendar year and end in
another, you must specify which year to use
for the fiscal year.

e Iftrue, then the fiscal year is the year in
which the fiscal year ends. The default
is true.

e Iffalse, then the fiscal year is the year in
which the fiscal year begins.

Example:
"isYearEndFiscalYear": true

This field is relevant only when
fiscalMonthOffset isgreater than
0.

For more information, see Date Handling in

Datasets.

firstDayOfWeek No For date fields only. The first day of the week
for the calendar year and, if applicable, fiscal
year. Use 0 to set the first day to be Sunday,

68

Dataflow Transformation Reference sfdcDigest Transformation

Attribute Required? Value

1 to set the first day to be Monday, and so
on. Use -1 to set the first day to be on
January 1. The defaultis -1.

Example:
"firstDayOfWeek": 0

For more information, see Date Handling in
Datasets.

isMultivalue No For text fields only. Indicates whether the

specified field has multiple values.

Example:

"isMultivValue": false

multiValueSeparator No For text fields only. Character used to

separate multiple values in the specified
field when isMultiValue equals true. This
value defaults to a semicolon ;) if you do
not specify a value and isMultiValue equals
true. Set to null when isMultiValue equals
false.

Example:

"multiValueSeparator": ";"

precision No The maximum number of digits in a numeric

value, or the length of a text value. For
numeric values: Includes all numbers to the
left and to the right of the decimal point
(but excludes the decimal point character).
Value must be between 1 and 18, inclusive.
For text values: Value defaults to 255
characters, and must be between 1 and
32,000 characters, inclusive.

Example:

"precision": 10

scale No The number of digits to the right of the

decimal point in a numeric value. Must be
less than the precision value. Value must be
between 0 and 17 characters, inclusive.

Example:

"scale": 2

69

Dataflow Transformation Reference sfdcDigest Transformation

Filter Conditions Parameters

The following table describes the structured filter parameters inthe filterConditions section. These parameters do not apply
to advanced filters.

Parameter Required? Value

field No The field in the Salesforce object on which
you want to apply a filter condition. Each
filter condition in a structured filter uses the
following syntax:

{

"field": "<field name>",
"operator": "<operator>",
"value": "<value>",

"isQuoted": true|false}

operator No The purpose depends on the context.

® operator canbeusedasa
comparison operator-like =, <, and
IN—that compares the field value against
a constant value.

e operator canalso be usedasa
logical operator (AND, OR, or NOT) that
links multiple filter conditions together.

In the example below, the bold
operator is the logical operator. The
other instances of operator are
comparison operators.

"filterConditions": [
{
"operator": "OR",
"conditions": [
{
"field":
"StageName",
"operator": "=",
"value": "Closed
Won"
by
{
"field":
"Probability",
"operator":
ns=n,
"value": "90"

70

Dataflow Transformation Reference

Parameter Required?
value No
isQuoted No
conditions No

SEE ALSO:

sfdcDigest Transformation

Filtering Records Extracted from a Salesforce Object

sfdcRegister Transformation

sfdcRegister Transformation

Value

The value used in a filter condition.

Indicates whether you quoted the string
value in a filter condition.

Example with quoted values:

"filterConditions": [
{
"field": "StageName",
"operator": "IN",
"value": " ('Closed Won',
'Closed Lost')",
"isQuoted": true
}
]

Example with non-quoted values:

"filterConditions": [
{
"field": "StageName",
"operator": "IN",
"value": ["Closed Won",
"Closed Lost"],
"isQuoted": false
}
]

If you don't include isQuoted for a filter on
a string value, Analytics assumes that the
string value is not quoted and adds the
quotes for you.

Use to specify a logical operator to link
multiple filter conditions together.

The sfdcRegister transformation registers a dataset to make it available for queries. Users cannot view or run queries against unregistered

datasets.

71

Dataflow Transformation Reference

You don't need to register all datasets. For example, you don't need to register an intermediate dataset that is used to build another
dataset and does not need to be queried. In addition, you don't need to register datasets that are created when you upload external
data because Analytics automatically registers these datasets for you.

Carefully choose which datasets to register because:

e The total number of rows in all registered datasets cannot exceed 250 million per platform license.

e Users that have access to registered datasets can query their data. Although, you can apply row-level security on a dataset to restrict

access to records.

@ Example: Let's look at an example. You create a dataflow that extracts opportunities from the Opportunity object. To register
the dataset, name it "Opportunities," and apply row-level security on it, you add the sfdcRegister transformation as shown in the
following dataflow definition file.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters":
"object": "Opportunity",
"fields": [
{ "name": "Id" 1},
{ "name": "Name" 1},
{ "name": "Amount" 1},
{ "name": "StageName" },
{ "name": "CloseDate" 1},
{ "name": "AccountId" },
{ "name": "OwnerId" }

}y

"Register Oppportunities Dataset":

"action": "sfdcRegister",
"parameters":
"alias": "Opportunities",
"name": "Opportunities",
"source":

"rowLevelSecurityFilter":

IN THIS SECTION:

sfdcRegister Parameters

When you define an sfdcRegister transformation, you set the action attribute to sfdcRegister and specify the parameters.

sfdcRegister Parameters

When you define an sfdcRegister transformation, you set the action attribute to sfdcRegister and specify the parameters.

"Extract Opportunities",
"'"OwnerId'

The following table describes the input parameters:

sfdcRegister Transformation

= \"$User.Id\""

Dataflow Transformation Reference

Parameter

alias

name

source

rowlevelSecurityFilter

SEE ALSO:

sfdcRegister Transformation

Required?

Yes

Yes

Yes

No

73

sfdcRegister Transformation

Value

API name of the registered dataset. This
name can contain only underscores and
alphanumeric characters, and must be
unique among other dataset aliases in your
organization. It must begin with a letter, not
include spaces, not end with an underscore,
and not contain two consecutive
underscores. It also cannot exceed 80
characters.

Display name of the registered dataset. The
name cannot exceed 80 characters.

@ Note: To change the name after
you create the dataset, you must edit
the dataset.

Node in the dataflow definition file that
identifies the dataset that you want to
register. This is the input source for this
transformation.

The predicate used to apply row-level
security on the dataset when the dataset is
first created.

Example: "rowlLevelSecurityFilter":
"Ownerld' == "SUser.Id""

@ Nofte: To change the predicate after
you create the dataset, you must edit
the dataset.

When entering the predicate in the
Register transformation of the

dataflow JSON, you must escape the
double quotes around string values.

After the dataset is created, Analytics ignores
it's security predicate setting in the dataflow.
To change the security predicate for an
existing dataset, edit the dataset in the user
interface.

Dataflow Transformation Reference update Transformation

update Transformation

The update transformation updates the specified field values in an existing dataset based on data from another dataset, which we'll call
the lookup dataset. The transformation looks up the new values from corresponding fields in the lookup dataset. The transformation
stores the results in a new dataset.

When you create the transformation, you specify the keys that are used to match records between the two datasets. To dictate which
field in the lookup dataset updates the field in the source dataset, you also map the corresponding fields from both datasets.

@ Example: Let's look at an example. You have an existing Accounts dataset that contains account information—Id, Name, and
AnnualRevenue. Unfortunately, some of the account names in the dataset are now incorrect because of a series of mergers and
acquisitions. To quickly update the account names in the dataset, you perform the following tasks.

1. Create a .csv file that contains the new account names and associated account IDs for accounts that have name changes.
2. Upload the .csv file to create a dataset called UpdatedAccountNames.

3. Create a dataflow definition file to update account names in the Accounts dataset by looking up the new account names in
the UpdatedAccountNames dataset.

Accounts UpdatedAccountNames
Id AccountlD
Keys
Name - NewAccountName
Replace

AnnualRevenue

You create the following dataflow definition file.

{

"Extract AccountDetails": ({
"action": "sfdcDigest",
"parameters": {

"object": "Account",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "AnnualRevenue" }

s
"Extract UpdatedAccountNames": {
"action": "edgemart",
"parameters": { "alias": "UpdatedAccountNames" }
s
"Update AccountRecords": {

"action": "update",
"parameters": {
"left": "Extract AccountDetails",
"right": "Extract UpdatedAccountNames",
"left key": ["Id"],
"right key": ["AccountID"],
"update columns": { "Name": "NewAccountName" }

74

Dataflow Transformation Reference update Transformation

by
"Register UpdatedAccountRecords": {

"action": "sfdcRegister",
"parameters": {

"alias": "Accounts",

"name": "Accounts",

"source": "Update AccountRecords"

@ Example: Let’s look at another example, where a composite key is used to match records between both datasets. In this case,
you match records using the account ID and account name fields.

You create the following dataflow definition file.

{

"Extract AccountDetails": ({
"action": "sfdcDigest",
"parameters": {

"object": "Account",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "AnnualRevenue" }

by
"Extract UpdatedAccountNames": {
"action": "edgemart",
"parameters": { "alias": "UpdatedAccountNames" }
s
"Update AccountRecords": ({
"action": "update",
"parameters": {
"left": "Extract AccountDetails",
"right": "Extract UpdatedAccountNames",
"left key": ["Id","Name"],
"right_key": ["AccountId", "NewAccountName"],
"update columns": {
"Name": "NewAccountName",
"CreatedDate":"NewCreatedDate",
"AnnualRevenue":"NewAnnualRevenue"

by
"Register UpdatedAccountRecords": {

"action": "sfdcRegister",
"parameters": {

"alias": "Accounts",

"name": "Accounts",

"source": "Update AccountRecords"

75

Dataflow Transformation Reference update Transformation

IN THIS SECTION:

update Parameters
When you define an update transformation, you set the action attribute to update and specify the parameters.

update Parameters

When you define an update transformation, you set the action attribute to update and specify the parameters.

The following table describes the input parameters.

Parameter Required? Value

left Yes Node in the dataflow definition file that
identifies the dataset that contains the
records that you want to update.

right Yes Node in the dataflow definition file that
identifies the lookup dataset that contains
the new values.

left_key Yes Key column in the left dataset used to match
records in the other dataset. If you use a
composite key, the left and right keys must
have the same number of columns in the
same order. For an example, see update
Transformation on page 74.

right_key Yes Key column in the right dataset used to
match records in the other dataset. If you
use a composite key, the left and right keys
must have the same number of columns in
the same order.

update_columns No An array of corresponding columns between

the left and right datasets. Use the following
syntax: "update columns": {
"LeftColumnl":
"RightColumnl",
"LeftColumn2":
"RightColumn2", ...
"LeftColumnN":
"RightColumnN" }.The value from
right column replaces the value from the
corresponding left column. The field types
of the left and right column must match.

@ Note: Ifyou specify a column name
that does not exist, the dataflow fails.

If you do not specify this parameter, the
transformation updates the left dataset

76

Dataflow Transformation Reference Overriding Metadata Generated by a Transformation

Parameter Required? Value

by matching all columns in the right dataset
with those in the left. In this case, the right
column names must match exactly with the
left column names. Otherwise, an error
might occur.

SEE ALSO:

update Transformation

Overriding Metadata Generated by a Transformation

Optionally, you can override the metadata that is generated by a transformation. You can override EDITIONS
object and field attributes. For example, you can change a field name that is extracted from a
Salesforce object so that it appears differently in the dataset. To override the metadata, add the
overrides to the Schema section of the transformation in the dataflow definition file.

Available in: Salesforce
Classic and Lightning
In the Schema section, you can override the metadata attributes for one object only. Experience

The Schema section in this sample sfdcDigest transformation contains metadata overrides: Available for an additional
cost in: Enterprise,
Performance, and
Unlimited Editions

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Name" 1},
{ "name": "Amount" }

]

br

"schema": {
"objects": [

{
"label":"Sales Opportunities",
"fields": [
{
"name": "Amount",
"label": "Opportunity Amount"
}
1
}

77

Dataflow Transformation Reference

Obiject Atiributes

You can override the following object attributes.

Obiject Attribute

label

description

fields

Field Attributes

You can override attributes of each specified dataset field.

Field Attribute

name

label

description

isSystemField

Type
String

String

String

Boolean

Overriding Metadata Generated by a Transformation

Type Description
String The display name for the object. Can be up to 40 characters.
Example:
"label": "Sales Data"
String The description of the object. Must be less than 1,000 characters.
Add a description to annotate an object in the dataflow definition file. This
description is not visible to users in the Analytics user interface.
Example:
"description": "The SalesData object tracks basic
sales data."
Array

The array of fields for this object.

Description

Name of the field in the dataset. Identifies the field that you want to override.

Examples:
"name": "Amount"
"name": "Role.Name"

The display name for the field. Can be up to 255 characters.
Example:

"label": "Opportunity Amount"

The description of the field. Must be less than 1,000 characters.

Add a description to annotate a field in the dataflow definition file. This description is not visible
to users in the Analytics user interface.

Example:

"description": "The Amount field contains the opportunity
amount."

Indicates whether this field is a system field to be excluded from query results.

Example:

78

Dataflow Transformation Reference Overriding Metadata Generated by a Transformation

Field Attribute Type Description

"isSystemField": false

format String The display format of the numeric value.
Examples:
"format": "S$#,##0.00" (Numeric)

For more information about valid formats, see Numeric Formats.

Numeric Formats

An example of a typical numeric value is $1,000,000.99, which is represented as $#,##0.00. You are required to specify the precision and
scale of the number. The format is specified by using the following symbols:

Symbol Meaning
0 One digit. Use to add leading or trailing Os, like #, ##4# .00 for $56,375.00.
Adds zero or one digit

Default symbol used as the decimal separator. Use the decimalSeparator field to
set the decimal separator to a different symbol.

- Minus sign
) Grouping separator

$ Currency sign

Nofte: The format for numeric values isn't used in data ingestion. It is used only to specify how numeric values are formatted when
displayed in the Ul. Also, you can't override date formats.

@ Example: Let’s consider an example where you want to override the following object and field attributes that the sfdcDigest
transformation extracts from the Opportunity object.
Object/Field Attribute Changes
Opportunity object e (Change the object label to "Sales Opportunities”
e Add an object description

d field e (Change the field label to "Opportunity Id"
e Hide the field from queries

Amount field e (Change the field label to "Opportunity Amount"
e Change the format to $#,##0.00

CloseDate field

e (Change the field label to "Closing Date"

79

Dataflow Transformation Reference Overriding Metadata Generated by a Transformation

To override the attributes, you add the Schema section with the override values to sfdcDigest in the dataflow definition file.

{

"Extract Opportunities": ({

"action": "sfdcDigest",
"parameters": {
"object": "Opportunity",
"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" },
{ "name": "StageName" 1},
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "OwnerId" }
]
}r
"schema": {
"objects": [

{

"label":"Sales Opportunities",

"description": "These are all sales opportunities.",
"fields": [
{
"name": "Id",
"label": "Opportunity Id",

"isSystemField": true

"name": "Amount",
"label": "Opportunity Amount",
"format": "S#,##0.00"
}r
{
"name": "CloseDate",
"label": "Closing Date"
}
]
}
]
}
by
"Register Dataset Opportunities": {
"action": "sfdcRegister",
"parameters": {
"source": "Extract Opportunities",
"alias": "Opportunities",
"name": "Opportunities"

}

80

CREATE A DATASET WITH THE DATASET BUILDER

You can use the dataset builder to create a single dataset based on data from one or more Salesforce
objects. The dataset builder generates and appends the associated JSON to the dataflow definition
file. The dataset is created the next time the dataflow runs. The data in the dataset refreshes each
time the dataflow runs. You can also edit the dataflow definition file to add transformations that
manipulate the dataset.

1. On the home page or on an app page, click Create > Dataset.

2. Select Salesforce as the data source, and then click Continue.
The dataset builder opens in a new Analytics tab.

) Dataset Builder ®

Q, Pick an sObject ta start

Name

Accepted Event Relation
Account

Account Contact Role
Account Feed

Account Histary
Account Partner
Account Share
Additional Directory Mumber
Announcement

Apex Class

Apex Debug Log

Apex Job

Apex Test Queue ltem

Apex Test Result

3. Select the root object.

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available for an additional
cost in: Enterprise,
Performance, and
Unlimited Editions

USER PERMISSIONS

To access the dataset

builder:

e Edit Wave Analytics
Dataflows

The root object is the lowest level child object that you can add to the canvas. After you select the root object, you can add only
parent objects of the root object—you can't add it's children objects. To change the root object, refresh the page and start over.

4. Hover over the root object, and then click .

The Select Fields dialog box appears. By default, the Fields tab appears and shows all available object fields from which you can

extract data.

81

Create a Dataset with the Dataset Builder

Opportunity v
Root

Select Fields RELATIONSHIPS
Q, Searct name or me ®

Name Type

-
Amount currency [l
Close Date date
Closed boolean
Created Date datetime
Deleted boolean
Description textarea
Division ID picklist
Fiscal Peried string .
Fiscal Quarter int
Fiscal Year int
Forecast Category picklist
Forecast Category picklist
Has Line ltem boolean
Is Locked boolean .

@ Nofe: You can view this dialog box for any object included in the canvas.
5. Inthe Fields tab, select the fields from which you want to extract data.
To locate fields more quickly, you can search for them or sort them by name or type.

@ Important: You must select at least one field for each object that you add to the canvas. If you add an object and don't add
any of it's fields, the dataflow fails at run time.

6. Inthe Relationships tab, click Join to add the related objects to the canvas.
When you add a related object, the related object appears in the canvas.

Account -
Account ID
Opportunity (12) - User -
Root Created By ID
Select Related Objects FIELDS [3) RELATIONSHIPS (3)
User -
- name or me x Owner ID

Action Related Field Related Object Type

DELI Account ID Account Std
Created By ID User Std
JOIN Last Medified By ... User Std

Cwner ID User Std

o o
m m
= =
m m| [m

JOIN Price Book ID Pricebook2 Std

Create a Dataset with the Dataset Builder

7. Toremove a related object, click Delete.

O Warning: When you delete a related object, you also delete all objects that descend from the related object in the diagram.
For example, if you delete Account shown below, you delete the branch that contains Account and User.

Salesforce Ana |ytic5 Cindy Cheng ? Analytics

D pataset puilder x

Create Dataset

Account (1)

Account ID

Contact

Contact ID

8. Foreach related object, select the fields from which you want to extract data.

9. To move the entire diagram, select a white space in the canvas and drag it.

You might need to move the diagram to view a different section of the diagram.

10. 76 view all objects included in the canvas, click | = .
The Selected Objects dialog box shows a tree structure of all objects included in the canvas. The root object appears at the top of
the tree.

° Dataset Builder x
=]

Selected Objects

Case (3] [Root)
Account (1) (Account 1D)
User [Cwner D)

Contact [Contact 10 Account (1)
Account ID

Group (Owner D)

Owener 1D

If you select one of the objects, the dataset builder focuses on the object by placing the object in the center of the canvas.

11 To view the associated JSON, click
When you create the dataset, the dataset builder appends the JSON to the dataflow definition file.

83

Create a Dataset with the Dataset Builder

12. Click Create Dataset.
13. Enter the name of the dataset, and select the app that will contain the dataset if it's not already selected.
@ Nofte: If you enter a dataset name that is already used, when you create the dataset, the dataset builder appends a number

to the dataset name. For example, if you entered MyOpportunities, the dataset builder creates MyOpportunities1. The dataset
name cannot exceed 80 characters.

14. Click Create.
The dataset builder appends the underlying JSON to the dataflow definition file. The dataset is created the next time the dataflow
runs. You can manually run the dataflow to immediately create the dataset.

84

INSTALL THE WAVE CONNECTOR EXCEL APP

The Wave Connector app gives users a fast, easy way to import data from Excel 2013 into Salesforce

Analytics..

T T

Line Column

.
I
Fiwotlrat

a Spaikinee

[a
b Opporientytalus
mer Ciger Cipprly
art Open Opply
mier Open Oppty
act Proipect
ort Opcn Oppty
mer Dpen Oppty
mer Customer Mo Cppty
e Open Opply
mer Cigen Opply
sier Cistamar Mo Dppty
mer Open Oppty
et Proipect
meor Open Oppty
act Open Oppty
st Open Opply
mer Open Opply
mer Customer Mo Cpply
art Open Oppty
art Open Oppty
act Open Oppty
ot Praspect
mer Dpen Oppty
mer Customer Mo Cppty
e Cpern Opply
sier Customer Mo Cppty
mer Customar e Dppty
mer Customer Mo Cppty
micr Open Oppty
mcr Customer Mo Cppty
mer Customer Mo Cppty
mer Customer Mo Gppty
mer Customer Mo Cpply
sner Open Opply
sier Custemer Me Dppty
mier Customar Mo Cppty
mier Dpen Oppty
mer Customer Mo Oppty
mer Open Oppty
art Open Opply
mer Cusiomer Mo Cpply
sner Ciistamar Mo Dty
art Prospect
mer Customar Mo Cppty
mer Open Oppty

M= o BEC A4

g=h

Wi Slicer Twezine Appailnk Tost Header Worddit Sgnatun: Dige
Loss Boee B booder - Lime =~
Fikzis Links Tl
3 [x]] 5 T L W

Equation Spmz]

T Q

Aymbaki

85

USER PERMISSIONS

To import data from Excel

2013 to Analytics :
¢ Upload External Data to
Analytics

Salesfarce Wave Connector fo.. = ¥

&>

wWave connecior

ssubbucmdschoom -

-~
Get Started —
Thae Waw Connec ke # wany B crwale
chitasets for Sal esforce Mmalkitics Ooud wing data
n Looel. beef drag o select dabs in Docel, name
your clataset, and chck Submet Dt The dats you
szbected vl ke nstantly inpoited b Saleslenes.,
B Voo Datapst
bverthlyrietngLesd | mion
Data Suhaction
Columna 13
Forwes: T1HAS /R
Lo
lmad Coont Mumerie A
LampeigndilE e
SlarlDatn Dl A
Zreduct T
Losaiion Tt _
sad Srrrce Tt
LrnaiAiddress L
Aeunt D Tzt
{imbemer T
L*)

Install the Wave Connector Excel App

If you use Excel 2013 on the desktop or Office 365, the Office Online version of Excel, the Wave Connector gives you a great way to get
your data into Salesforce Analytics. After installing the Connector, you just select data from Excel, click Submit, and the Connector does
the work for you, importing the data to Analytics and creating a dataset.

Here's how to install the Connector:

1. Open Excel, either on your desktop or in Office Online.
Open the Insert tab.

Click Apps for Office.

Search for the Wave Connector, and click to install it.

ok W

Enter your Salesforce credentials to open the Connector.

Once you've installed the Connector, follow the instructions in the Connector window to create datasets based on Excel data. Opening
the Connector automatically logs you in to Salesforce Analytics. Click the Connector Help icon for complete information about using
the app.

86

CREATE A DATASET WITH EXTERNAL DATA

Create a Dataset with External Data

You can either upload external data through the user interface or through the External Data API to
create a dataset. When you upload an external data file (in .csv, .gz, or .zip format), you can also
provide a metadata file. A metadata file contains metadata attributes that describe the structure of
the data in the external data file. If you upload a .csv from the user interface, Analytics automatically
generates the metadata file, which you can preview and change. If you do not provide a metadata
file, Analytics imports all external data file columns as dimensions.

0 Tip: Analytics temporarily stores the uploaded CSV and metadata files for processing only.
After the datasets are created, Analytics purges the files. If you want to use the files again
later, keep a copy.

Before uploading external data files, review the format requirements and examples of the .csv and
metadata files in the Analytics External Data Format Reference.

@ Note: You can also use the the External Data APl to upload external data files. Use the API
to take advantage of additional features, like performing incremental extracts and performing
append, delete, and upsert operations. For more information about the External Data API,
see the External Data APl Developer's Guide.

1. Onthe home or app page, click Create > Dataset.
2. Select CSV File as the data source and click Continue.

3. Type the name of your dataset in the Dataset Name field.

The name cannot exceed 80 characters.

4. Ifyou want to create the dataset in a different app, change the app in the App drop-down list.

5. Click CSV.
6. Addthe .csvfile.

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To upload external data:
e Upload External Data to
Wave Analytics

After you add the .csv file, Analytics automatically generates and adds the corresponding metadata file.

87

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.208.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format
https://developer.salesforce.com/docs/atlas.en-us.208.0.bi_dev_guide_ext_data.meta/bi_dev_guide_ext_data/

Create a Dataset with External Data

f Salesforce Analytics Admin User

Dataset »®

ExternalData_Targets.csv

Add Metadata File (JSON)

ExternalData_Targets json

Dataset Name
Sales Targets 2015

App

Shared App ~

Add External Data File (CSV) {Max: 500 MB)

X Select file or drag file here...

Create Dataset

Create a Dataset with External Data

o ? Analytics v

@ Nofe: Instead of using the generated metadata file, if you want, you can upload a different metadata file that you created
from scratch. If you upload your own metadata file, the Preview Data button is disabled.

7. Perform the following tasks to change the metadata attributes in the generated metadata file.

a. Click Preview Data to view and change the required metadata attributes.

f Salesforce Analytics Admin User

Dataset x

CSV File: ExternalData_Targets.csv Metadata File: ExternalData_Targets.json

Tony Santos Midwest
Lucy Timmer MNortheast
Lucy Timmer Nertheast
Bill Rolley Midwest
Keith Laz Southwest
Lucy Timmer Southeast

10000

50000

0

15000

35000

40000

v a ? Analytics v

1717201
171201
121172013
171201
1720m

1717201

b. Clicka column name to change it. The column name is the display name in the dataset. The column name cannot exceed 40

characters.

88

Create a Dataset with External Data Create a Dataset with External Data

Midwest

Northeast

¢. Click the column header to change other attributes for the column.

e

Midwest

Northeast

You can change the attributes for measure and date columns only.

Data type Data type Data type

DIMENSION MEASURE

DATE MEASURE

Scale @ Format
0 dd/MM/yyyy v
Precision @

18 Apply to All Date Columns

Default Value

0

Apply to All Measure Columns

d. Toapply the changes to all other columns of the same data type, click Apply to All <data type> Columns.

e. (lick Submit to save the metadata changes to the metadata file.

@ Nofte: If there are errors, the Submit button is grayed out.

f. Click OK to close the confirmation message.

g. To change optional metadata attributes, click [&] to download the metadata file, edit the file, and then upload it.

8. C(lick Create Dataset.
Your data files are scheduled for upload. It might take some time to process the data upload job; you can monitor its status in the
data monitor. If upload is successful, the new dataset is available from the home or app page.

9. (lick Continue to dismiss the confirmation message.

89

Create a Dataset with External Data Rules for Automatic Generation of a Metadata File

IN THIS SECTION:

Rules for Automatic Generation of a Metadata File
When you upload a CSV file from the user interface, Analytics automatically generates the metadata file as long as the CSV file meets
certain requirements.

Rules for Automatic Generation of a Metadata File

When you upload a CSV file from the user interface, Analytics automatically generates the metadata file as long as the CSV file meets
certain requirements.

To enable Analytics to generate the metadata file, a CSV file must meet the following requirements.

e The file type must be .csv, not .gz or zip.
e The file must contain one row for the column header and at least one record.

e The CSV file must meet all Analytics requirements as mentioned in the Analytics External Data Format Reference.

Analytics generates the metadata attributes for each CSV column based on the first 100 rows in the CSV file. Analytics uses the following
rules to convert the CSV column names to field labels.

e Replaces special characters and spaces with underscores. For example, "Stage Name" becomes "Stage_Name."

e Replaces consecutive underscores with one underscore, except when column name ends with "__c." For example, "stage*&name’
becomes "stage_name."

1

e Prefixes the field label with "X" when the first character of the column name is numeric. For example, "30Day" becomes "X30Day.'

e Replaces the field name with "Column" + column number when all characters in the column name are not alphanumeric. For
example, the fourth column name "*&A*(&*(%" becomes "Column4."

e Deletes underscores at the beginning and end of the field label to ensure that it doesn't start or end with an underscore.
e Increments the derived field label if the label is the same as an existing label. For example, if "X2" already exists, uses "X21," "X22,"
"X23."

O Tip: You can download the generated metadata file to change the metadata settings, and then upload it to apply the changes.
You can download the metadata file when you create or edit a dataset.

SEE ALSO:

Create a Dataset with External Data

90

https://developer.salesforce.com/docs/atlas.en-us.208.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format

Create a Dataset with External Data

Monitor an External Data Upload

Monitor an External Data Upload

When you upload an external data file, Analytics kicks off a job that uploads the data into the
specified dataset. You can use the data monitor to monitor and troubleshoot the upload job.

The Jobs view (1) of the data monitor shows the status, start time, and duration of each dataflow
job and external data upload job. It shows jobs for the last 7 days and keeps the logs for 30 days.

EDITIONS

Available in Salesforce
Classic and Lightning

Experience.

Availabl

e for an extra costin

Enterprise, Performance,

and Unl
availabl
Edition.

imited Editions. Also
e in Developer

USER PERMISSIONS

To access the data monitor:

e Edit Wave Analytics
Dataflows, Upload
External Data to Wave

Ana

lytics, or Manage

Wave Analytics

Analytics

Salesfarce AnalyticsAadminuser

Last refresh: Teday at 8:42 AM

Dataflow Start Time v Duration Status

Default Salesf... Today at 7:36 AM 24 seconds Successful

Default Salesf... Yesterday at 7:39 AM O howurs, 10... Failed

E Sales_Targets... 2 Days Ago at 5:34 AM O hours, 1 ... Failed
Node Name Start Time Duration

lcad 2 Days Ageo at 9:34 AM 0 hours, 1 minute
digest NfA N/A
optimize-register NfA NfA
register N/A N/A

In Analytics, click the gear icon ($) and then click Data Manager.

Hide

File Uploads

Message

Queue wait time exceeded limi

Error executing node load [roo

Node Type Status
sfdcFetch arror
cavDigest pending
optimizer pending
sfdcRegister pending

| v

The data manager opens on the Monitor tab, with the Jobs view selected by default. The Jobs view displays dataflow and upload
jobs. It displays each upload job name as <dataset name upload £low>.You can hover ajob to view the entire name.

@ Note: To view external data upload jobs in the Jobs view, Show in the File Uploads field (2) must be selected. It's selected

by default.

91

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Create a Dataset with External Data

Monitor an External Data Upload

To see the latest status of a job, click the Refresh Jobs button (N,

Each job can have one of the following statuses.

Status
Queued
Running
Failed
Successful

Warning

Description

The job is in queue to start.

The job is running.

The job failed.

The job completed successfully.

The job completed successfully, but some rows failed.

3. To view the run-time details for a job, expand the job node (3).
The run-time details display under the job. In the run-time details section, scroll to the right to view information about the rows that

were proce

ssed.

4. Totroubleshoot a job that has failed rows, view the error message. Also, click the download button (1) in the run-time details section
to download the error log.

@ Note: Only the user who uploaded the external data file can see the download button.

@ Wave Analytics My Private App x
Jobs View hd = | Last refresh: Today at 2:29 PM File Uploads Hide
Dataflow Start Time hd Duration Status Message
© Temp Upload ... Today at 2:26 PM 0 hours, 2 ... The job completed sucessfully, £
Status Input Rows Processed Input Rows Failed Output Rows Processed Output Rows Failed
success N/A N/A N/A N/A
warning N/A N/A 11 1
success N/A N/A N/A N/A
success N/A N/A N/A N/A
4 1
The error log contains a list of failed rows.
@ ExternalFileWorkflow06Y40000000005mEAA_digest.csv
A B c p | e | F
1 |row arror File_Name Page Views View_Date Authenticated
2| 7 (column: Page_Views) strconv.ParseFloat: parsing "Text": invalid syntax about:blank Text 5/1/2015 No
3
| 4 |

92

Create a Dataset with External Data Monitor an External Data Upload

5. To troubleshoot a failed job, view the error message and the run-time details.

93

EDIT A DATASET

USER PERMISSIONS

To view a dataset edit page:

To update a dataset name, app, and
extended metadata:

To delete a dataset:

Use Analytics AND Editor access to the
dataset's app

Use Analytics AND Editor access to the
dataset's app

Use Analytics AND Editor access to the

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,

and Unlimited Editions. Also
available in Developer

Upload External Data to Analytics AND Editor Edition.
access to the dataset's app

dataset’'s app

To upload and preview data:

To edit a dataset security predicate: Edit Wave Analytics Dataflows

You can edit a dataset to change the dataset name, app, security predicate, or extended metadata (XMD) file associated with the dataset.
For datasets created from an external data file, you can also upload a new external data file or metadata file to update the data or
metadata.

If you add an external data file, Analytics generates and adds the corresponding metadata file. To make further changes to the metadata,
you can click Preview Data or download and edit the generated metadata file. You can also upload your own metadata file to overwrite
the generated file.

1. On the home or app page, click the Datasets tab.
2. Hover over the dataset that you want to edit, and then click Edit.

3. Configure the following options if applicable.

Option Description

Dataset Name Enter a new name if you'd like to change the name of the dataset.

The name cannot exceed 80 characters.

App Select a new app if you'd like to move the dataset to a different
app.

Add Extended Metadata File (JSON) Specify an extended metadata file if you'd like to customize the

formatting of dashboards associated with the dataset.

Refer to Extended Metadata (XMD) Reference for information about
extended metadata files.

Add External Data File (CSV) Specify an external data file if you'd like to replace the existing

data in the dataset with data from the external data file.
Maximum file size is 500 MB. You can upload a .CSV, .GZ, or .ZIP
file.

94

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Edit a Dataset

Option

Add Metadata File (JSON)

Security Predicate

Sharing Source

Description

Refer to Analytics External Data Format Reference for information
about external data files and metadata files.

Specify a metadata file if you'd like to redefine the structure of
the external data file. If you upload a new metadata file, you must
also upload the corresponding external data file.

Refer to Analytics External Data Format Reference for information
about metadata files.

Add a security predicate if you'd like to apply row-level security
on the dataset.

For information about predicates, see Row-Level Security for
Datasets.

If you have enabled sharing inheritance, specify the object from
which you want to inherit sharing for this dataset. You can't
specify a sharing source for datasets created from CSV files, or if
you are using a security predicate.

See Salesforce Sharing Inheritance for Datasets.

4. Ifyou uploaded a new .csv file, click Preview Data to view and change the required metadata attributes.

You can change the optional metadata later.

@ Note: The Preview Data button is disabled if you uploaded your own metadata file.

After you click Preview Data, the preview page appears.

N Salesforce Analytics Admin User v & 2 Analytics v

Dataset x

CSV File: ExternalData_Targets.csv Metadata File: ExternalData_Targets.json

Tony Santos Midwest
Lucy Timmer MNortheast
Lucy Timmer Nertheast
Bill Rolley Midwest
Keith Laz Southwest
Lucy Timmer Southeast

5. Foreach column:

95

10000 1717201
50000 171201
0 121172013
15000 1717201
35000 171201
40000 1720m

Edit a Dataset

a. (licka column name to change it. The column name is the display name in the dataset. The column name cannot exceed 40
characters.

Midwest

Northeast

b. Click the column header to change other required attributes for the column.

A/

Midwest

Northeast

You can change the attributes for measure and date columns only.

Data type Data type Data type
DIMENSION MEASURE DATE MEASURE
Scale @ Format
0 dd/MM/yyyy v
Precision @

18 Apply to All Date Columns

Default Value

0

Apply to All Measure Columns

¢. Toapply the changes to all other columns of the same data type, click Apply to All <data type> Columns.
6. Click Submit to save the metadata changes in the preview page to the metadata file.

@ Nofe: The Submit button is grayed out if there are errors.

7. (lick OK to close the confirmation message.

8. To change optional metadata attributes—which are not visible in the preview page—click [&] to download the metadata file, edit
the file, and then upload it.

9. (lick Update Dataset.

96

Edit a Dataset

10. Click Continue to dismiss the confirmation message.

97

DELETE A DATASET

Delete unnecessary datasets from your My Private App or in shared apps on which you have at least EDITIONS
Editor access. Removing datasets reduces clutter and helps you avoid reaching your org's limit for
rows across registered datasets.

Available in Salesforce
When you delete a dataset, Analytics permanently deletes the dataset and doesn't delete the Classic and Lightning
corresponding lenses or dashboards that reference the dataset. Lenses and dashboards that reference Experience.

a deleted dataset will no longer be available. As a result, Salesforce.com recommends that you
remove the associated lenses and dashboards before you delete a dataset.

Available for an extra costin
Enterprise, Performance,

If a dataflow transformation —like edgemart or sfdcRegister— references the dataset, you must and Unlimited Editions. Also
remove the reference before you can delete the dataset. For example, to delete the “Opportunities” available in Developer
dataset, you must remove the sfdcRegister transformation from the dataflow snippet shown below. Edition.

USER PERMISSIONS

To delete a dataset:

e Use Analytics AND Editor
access to the dataset's

app

"Register Dataset": {

"action": "sfdcRegister",
"parameters": {
"alias": "Opportunities",
"name": "Opportunities",
"source": "Extract Opportunities"

b
-}

O Warning: You can't recover a deleted dataset.

1. On the home or app page, click the Datasets tab.
2. Hover over the dataset that you want to delete, and then click Edit.

3. (lick Delete Dataset.
If applicable, Analytics shows a list of all lenses and dashboards that reference the dataset and that you have access to view. After
you delete the dataset, any lens or dashboard that reference the dataset will become unusable.

4. C(lick Delete Permanently and confirm.

98

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

ROW-LEVEL SECURITY FOR DATASETS

If an Analytics user has access to a dataset, they have access to all records in the dataset, by default. However, you can implement
row-level security on a dataset to restrict access to records. Some records might contain sensitive data that shouldn’t be accessible by
everyone.

To implement row-level security for a dataset, you can either define a security predicate, or you can turn on Sharing Inheritance and
specify from which objects sharing rules should be migrated. Sharing inheritance currently suppports Accounts, Opportunities, Orders,
Cases, and custom objects.

IN THIS SECTION:

Security Predicates for Datasets

Applying a predicate to a dataset is more than just defining the predicate expression. You also need to consider how the predicate
is dependent on the information in the dataset and where to define the predicate expression.

Row-Level Security Example based on Record Ownership

Let’s look at an example where you create a dataset based on a CSV file and then implement row-level security based on record
ownership. In this example, you will create a dataset that contains sales targets for account owners. To restrict access on each record
in the dataset, you will create a security policy where each user can view only sales targets for accounts that they own. This process
requires multiple steps that are described in the sections that follow.

Row-Level Security Example based on Opportunity Teams

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on an
opportunity team. In this example, you will create a dataset that contains only opportunities associated with an opportunity team.
To restrict access on each record in the dataset, you will create a security policy where only opportunity members can view their
opportunity. This process requires multiple steps that are described in the sections that follow.

Row-Level Security Example based on Role Hierarchy and Record Ownership

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on the
Salesforce role hierarchy and record ownership. In this example, you will create a dataset that contains all opportunities. To restrict
access on each record in the dataset, you will create a security policy where each user can view only opportunities that they own or
that are owned by their subordinates based on the Salesforce role hierarchy. This process requires multiple steps that are described
in the sections that follow.

Row-Level Security Example Based on Territory Management

Let's look at an example where you create a dataset based on Salesforce data and then implement row-level security based on your
defined territories. In this example, you determine what model you use for territory management, so you can later review sample
JSON for that dataset. To restrict access on each record in the dataset, you will create a security predicate where each user can view
only data appropriate for the territory to which they belong.

Salesforce Sharing Inheritance for Datasets
Use sharing inheritance to allow Analytics to use the same sharing rules for your datasets as Salesforce uses for your objects.

SEE ALSO:

sfdcRegister Transformation

sfdcRegister Parameters

99

Row-Level Security for Datasets Security Predicates for Datasets

Security Predicates for Datasets

Applying a predicate to a dataset is more than just defining the predicate expression. You also need to consider how the predicate is
dependent on the information in the dataset and where to define the predicate expression.

Define a predicate for each dataset on which you want to restrict access to records. A predicate is a filter condition that defines row-level
access to records in a dataset.

When a user submits a query against a dataset that has a predicate, Analytics checks the predicate to determine which records the user
has access to. If the user doesn't have access to a record, Analytics does not return that record.

The predicate is flexible and can model different types of security policies. For example, you can create predicates based on:

e Record ownership. Enables each user to view only records that they own.

e Management visibility. Enables each user to view records owned or shared by their subordinates based on a role hierarchy.

e Team or account collaboration. Enables all members of a team, like an opportunity team, to view records shared with the team.

e Combination of different security requirements. For example, you might need to define a predicate based on the Salesforce role
hierarchy, teams, and record ownership.

The type of security policy you implement depends on how you want to restrict access to records in the dataset.
Warning: If row-level security isn't applied to a dataset, any user that has access to the dataset can view all records in the dataset.

You can create a predicate expression based on information in the dataset. For example, to enable each user to view only dataset records
that they own, you can create a predicate based on a dataset column that contains the owner for each record. If needed, you can load
additional data into a dataset required by the predicate.

The location where you define the predicate varies.

e To apply a predicate on a dataset created from a dataflow, add the predicate in the rowLevelSecurityFilter field of the Register
transformation. The next time the dataflow runs, Analytics will apply the predicate.

e Toapply a predicate on a dataset created from an external data file, define the predicate in the rowLevelSecurityFilter field in the
metadata file associated with the external data file. Analytics applies the predicate when you upload the metadata file and external
datafile. If you already created the dataset from a external data file, you can edit the dataset to apply or change the predicate.

Row-Level Security Example based on Record Ownership

Let's look at an example where you create a dataset based on a CSV file and then implement row-level security based on record ownership.
In this example, you will create a dataset that contains sales targets for account owners. To restrict access on each record in the dataset,
you will create a security policy where each user can view only sales targets for accounts that they own. This process requires multiple
steps that are described in the sections that follow.

@ Nofte: Although this example is about applying a predicate to a dataset created from a CSV file, this procedure can also be applied
to a dataset that is created from Salesforce data.

IN THIS SECTION:

1. Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create a Targets dataset that contains all
sales targets.

2. Determine Row-Level Security for Dataset
Now it's time to think about row-level security. How will you restrict access to each record in this dataset?

100

Row-Level Security for Datasets Determine Which Data to Include in the Dataset

3. Add the Predicate to the Metadata File

For a dataset created from a CSV file, you can specify the predicate in the metadata file associated with the CSV file or when you edit
the dataset.

4. Create the Dataset
Now that you updated the metadata file with the predicate, you can create the dataset.

5. Test Row-Level Security for the Dataset
You must verify that the predicate is applied properly and that each user can see their own sales targets.

Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create a Targets dataset that contains all sales
targets.

You will obtain sales targets from the CSV file shown below.

AccountOwner Region Target TargetDate
Tony Santos Midwest 10000 1/1/2011
Lucy Timmer Northeast 50000 1/1/2011
Lucy Timmer Northeast 0 12/1/2013
Bill Rolley Midwest 15000 1/1/2011
Keith Laz Southwest 35000 1/1/2011
Lucy Timmer Southeast 40000 1/1/2011

If you were to create the dataset without implementing row-level security, any user that had access to the dataset would be able to see
the sales targets for all account owners. For example, as shown below, Keith would be able to view the sales targets for all account
owners.

Salesforce Analytics Keith Laz ~ ®& 2 Analytics
= SalesTargets »
<v > ¢ O o ~
bar length Sroup Calor

Count of Rows deMessuee by Account Owne..and Region =kcraup

i
o
Uy

Y Fiter

Count of Rows

Account Owner Region Region

Carmen Solarto Southwest Midwest .
northeast [l
Faredoon Bhujwala MNaorthe ast
Southeast

Geoff Bellow Midwest Southwest .

|

Gianna Giachetti Midwest

Indirasingh Southeast

101

Row-Level Security for Datasets Determine Row-Level Security for Dataset

You need to apply row-level security to restrict access to records in this dataset.

Determine Row-Level Security for Dataset

Now it's time to think about row-level security. How will you restrict access to each record in this dataset?
You decide to implement the following predicate on the dataset.

'AccountOwner' == "$User.Name"

@ Nofte: All predicate examples in this document escape the double quotes because it's required when you enter the predicate in
the Register transformation or metadata file.This predicate implements row-level security based on record ownership. Based on
the predicate, Analytics returns a sales target record when the user who submits the query on the dataset is the account owner.

Let's take a deeper look into the predicate expression:

e AccountOwner refers to the dataset column that stores the full name of the account owner for each sales target.

e SUser.Name refers to the Name column of the User object that stores the full name of each user. Analytics performs a lookup to get
the full name of the user who submits each query.

@ Nofe: The lookup returns a match when the names in AccountOwner and SUser.Name match exactly—they must have the same
case.

Add the Predicate to the Metadata File

For a dataset created from a CSVfile, you can specify the predicate in the metadata file associated with the CSV file or when you edit the
dataset.

You must escape the double quotes around string values when entering a predicate in the metadata file.

In this example, you add the predicate to the metadata file shown below.

{
"fileFormat": {
"charsetName": "UTF-8",
"fieldsDelimitedBy": ", ",
"fieldsEnclosedBy": "\"",
"numberOfLinesToIgnore": 1 },
"objects": [

{

"name": "Targets",
"fullyQualifiedName": "Targets",
"label": "Targets",
"rowLevelSecurityFilter": "'AccountOwner' == \"$User.Name\"",
"fields": [
{
"name": "AccountOwner",
"fullyQualifiedName": "Targets.AccountOwner",
"label": "Account Owner",
"type": "Text"
I
{
"name": "Region",
"fullyQualifiedName": "Targets.Region",

102

Row-Level Security for Datasets

"label": "Region",

"type": "Text"

"name": "Target",
"fullyQualifiedName": "Targets
"label": "Target",

"type": "Numeric",
"precision": 16,

"scale": O,

"defaultvalue": "0",

"format": null

"name": "TargetDate",
"fullyQualifiedName": "Targets
"label": "TargetDate",
"description": "",

"type": "Date",

"format": "dd/MM/yy HH:mm:ss",
"isSystemField": false,

"fiscalMonthOffset": 0O

Create the Dataset

Now that you updated the metadata file with the predicate, you can create the dataset.

.Target",

.TargetDate",

O Warning: Ifyou wish to perform the steps in this sample implementation, perform the steps

To create the dataset, perform the following steps.

1.
2.
3.

In Analytics, go to the home page.
Click Create > Dataset
Click CSV.

The following screen appears.

in a non-production environment. Ensure that these changes do not impact other datasets
that you already created.

103

Create the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To upload a CSV and
metadata file:

e Upload External Data to
Wave Analytics

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Test Row-Level Security for the Dataset

Salesforce Analytics Manuel Castro v o ? Analytics

Dataset x

Add CSV or gz or ZIP File {Max: 500 MB)

X SelectFile

Add JSON Schema File

X, Select File

Create Dataset

Dataset Name

Enter Dataset Name

App

My Private App ~

Select the CSV file and metadata (schema) file.
In the Dataset Name field, enter “SalesTarget” as the name of the dataset.

Optionally, choose a different app where you want to store the dataset.

N o v o»

Click Create Dataset.

Analytics confirms that the upload is successful and then creates a job to create the dataset. You can view the SalesTarget dataset
after the job completes successfully.

8. To verify that the job completes successfully, perform the following steps:

a.
Click the gear icon ($) and then select Data Monitor to open the data monitor.
By default, the Jobs View of the data monitor appears. It shows the statuses of dataflow and external data upload jobs.

b.
Click the Refresh Jobs button (') to view the latest statuses of the jobs.

Test Row-Level Security for the Dataset

You must verify that the predicate is applied properly and that each user can see their own sales EDITIONS

targets.

1. Log in to Analytics as Keith. Available in Salesforce

2. Open the SalesTargets dataset. CIOSS',C and Lightning
Experience.

As shown in the following lens, notice that Keith can see only his sales target.
Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

104

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Row-Level Security Example based on Opportunity Teams

#H Salesforce Analytics Keihlaz v © ? Analytics =
= SalesTargets x
< v > C n o
bar length Group Color
Count of Rows =eMeaswre by Account Owne and Region =Grou = -3 :=
Y Filter
(t of Rows

Account Owner Region Region

Row-Level Security Example based on Opportunity Teams

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on an
opportunity team. In this example, you will create a dataset that contains only opportunities associated with an opportunity team. To
restrict access on each record in the dataset, you will create a security policy where only opportunity members can view their opportunity.
This process requires multiple steps that are described in the sections that follow.

IN THIS SECTION:

1.

Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create an OppTeamMember dataset that
contains only opportunities associated with an opportunity team.

Design the Dataflow to Load the Data

Now it's time to figure out how the dataflow will extract the Salesforce data and load it into a dataset. You start by creating this
high-level design for the dataflow.

Determine Row-Level Security for the Dataset

Now it's time to think about row-level security. How will you restrict access to each record in this dataset?

Modify the Dataflow Based on Row-Level Security
It's now time to add the predicate in the dataflow definition file.

Create the Dataset
Now that you have the final dataflow definition file, you can create the dataset.

Test Row-Level Security for the Dataset
You must verify that the predicate is applied properly and that each user can see the appropriate opportunities.

105

Row-Level Security for Datasets Determine Which Data to Include in the Dataset

Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create an EDITIONS
OppTeamMember dataset that contains only opportunities associated with an opportunity team.

You will obtain opportunities from the Opportunity object and the opportunity teams from the Available in Salesforce
OpportunityTeamMember object. Both are Salesforce objects. Classic and Lightning
Experience.

In this example, your Salesforce organization has the following opportunity team and users.
Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer

o] 8

East_Sales West_Sales | § Edition.
Bill = Lucy
NJ_Sales ; ‘ NY_Sales ‘ [CA_Sales ‘ ‘ WA_Sales ‘
Tony H Joe John Mary
Opportunity Team :
Your organization also contains the following opportunities, most of which are owned by Keith.
(H\j All Opportunities v | Edit | Delete | Create New View JpFeed | = @
New Opportunity || [€3 A|B|C|DIE[FIG|H|I[J|KILIM|N|O|P|@|R[S|T|U|V|W|X|Y]|Z|Oter AN
Action Opportunity Name + Account Name Amount Close Date Stage Opportunity Owner Alias
Edit| Del | €% Acc - 1000 Widgets Acc_salesrep 9/4/2014 Prospecting Tony
Edit| Del | @@ Acme- 1,200 Widgets Acme $140,000.00 61472012 Value Propaosition Keith
Edit| Del | g Acme- 200 Widgets — Acme $20,000.00 10/13/2012 Prospecting Keith
Edit| Del | @ Acme - 600 Widgets ~ Acme §70,000.00 8102012 Needs Analysis Keith
Edit| Del | @@ ESales 01 East Sales acc 01 9/4/2014 Prospecting Bill
Edit| Del | g Global Media -400... Global Media $40,000.00 71372012 Id. Decision Makers Keith
Edit| Del | @ salesforce.com - 1 salesforce.com $100,000.00 61472012 Megotiation/Review Keith
Edit| Del |) salesforce.com-2... salesforce.com §20,000.00 8/12/2012 Value Propasition Keith
Edit| Del | g salesforce.com - 50... Global Media $50,000.00 5/12/2012 Closed Won Keith
Edit| Del | @ salesforce.com - 50 Global Media $500,000.00 51272012 Closed Won Keith
Edit| Del | @@ West Sales 01 West Sales Acc 01 9/4/2014 Prospecting Lucy

Acc - 1000 Widgets is the only opportunity shared by an opportunity team. Bill is the Sales Manager for this opportunity. Tony is the
opportunity owner.

106

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets

Design the Dataflow to Load the Data

Now it's time to figure out how the dataflow will extract the Salesforce data and load it into a dataset.

You start by creating this high-level design for the dataflow.

Opportunity

Qpportunity
TeamMember

OppTeam

Member

The dataflow will extract data from the Opportunity and OpportunityTeamMember objects, join
the data, and then load it into the OppTeamMember dataset.

Design the Dataflow to Load the Data

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

Now let's implement that design in JSON, which is the format of the dataflow definition file. A dataflow definition file contains
transformations that extract, transform, and load data into a dataset.

Based on the design, you create the JSON shown below.

{

"Extract OpportunityTeamMember": {

"action":
"parameters":
"object":
"fields": [
{ "name":
{ "name":
{ "name":

by

"sfdcDigest",
{

"OpportunityTeamMember",

"Name" } ,
"OpportunityId" },
"UserId" }

"Extract Opportunity": ({

"action":
"parameters":
"object":
"fields": [
{ "name":
{ "name":
{ "name":
{ "name":
{ "name":
{ "name":

b

"sfdcDigest",

{
"Opportunity",

"Idan o},

"Name" 1},
"Amount" },
"StageName" 1},
"AccountId" 1},
"OwnerId" }

"Augment OpportunityTeamMember Opportunity": {

"action":
"parameters":
"left":
"left key":

"augment",

{

"Extract OpportunityTeamMember",

[

"OpportunityId"

i

"relationship":

"TeamMember",

107

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Design the Dataflow to Load the Data

"right": "Extract Opportunity",
"right key": [
" Idll

1,
"right select": [
"Name", "Amount"

by

"Register Dataset": {

"action": "sfdcRegister",
"parameters": {
"alias": "OppTeamMember",
"name": "OppTeamMember",
"source": "Augment OpportunityTeamMember Opportunity",

"rowLevelSecurityFilter": ""

}

If you were to run this dataflow, Analytics would generate a dataset with no row-level security. As a result, any user that has access to
the dataset would be able to see the opportunity shared by the opportunity team.

For example, as shown below, Lucy would be able to view the opportunity that belongs to an opportunity team of which she is not a
member.

Salesforce Analytics Lucy Timmer

= OppleamMember ®
{wv > C A o

bar length

Count of Rows = measue =+ croup

1}
o
I|||

Y Fiter

Count of Rows

You need to apply row-level security to restrict access to records in this dataset.

108

Row-Level Security for Datasets Determine Row-Level Security for the Dataset

Determine Row-Level Security for the Dataset

Now it's time to think about row-level security. How will you restrict access to each record in this EDITIONS
dataset?

Available in Salesforce
Classic and Lightning
Experience.

You decide to implement the following predicate on the dataset.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

'UserId' == "S$User.Id"

This predicate compares the Userld column in the dataset against the ID of the user running a query against the dataset. The Userld
column in the dataset contains the user ID of the team member associated with each opportunity. To determine the ID of the user
running the query, Analytics looks up the ID of the user making the query in the User object.

For each match, Analytics returns the record to the user.

Modify the Dataflow Based on Row-Level Security

It's now time to add the predicate in the dataflow definition file. EDITIONS

You add the predicate to the Register transformation that registers the OppTeamMember dataset

as shown below. Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

"Extract OpportunityTeamMember": {

"action": "sfdcDigest",
"parameters": {
"object": "OpportunityTeamMember",
"fields": [
{ "name": "Name" },
{ "name": "OpportunityId" },
{ "name": "UserId" }

}
}y

"Extract Opportunity": {

"action": "sfdcDigest",

109

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Modify the Dataflow Based on Row-Level Security

"parameters": {

"object": "Opportunity",

"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" 1},
{ "name": "StageName" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

by
"Augment OpportunityTeamMember Opportunity": {
"action": "augment",
"parameters": {
"left": "Extract OpportunityTeamMember",
"left key": [
"OpportunityId"
1,
"relationship": "TeamMember",
"right": "Extract Opportunity",
"right key": [
nggn
Iy
"right select": [
"Name", "Amount"

I
"Register Dataset": {

"action": "sfdcRegister",
"parameters": {
"alias": "OppTeamMember",
"name": "OppTeamMember",
"source": "105 Augment OpportunityTeamMember Opportunity",
"rowLevelSecurityFilter": "'UserId' == \"$User.Id\""

110

Row-Level Security for Datasets

Create the Dataset

Now that you have the final dataflow definition file, you can create the dataset.

O Warning: If you wish to perform the steps in this sample implementation, verify that you
have all required Salesforce objects and fields, and perform the steps in a non-production
environment. Ensure that these changes do notimpact other datasets that you already created.
Also, always make a backup of the existing dataflow definition file before you make changes

because you cannot retrieve old versions of the file.

To create the dataset, perform the following steps.

1.

In Analytics, click the gearicon ($) and then select Data Monitor to open the data monitor.

The Jobs view of the data monitor appears by default.

2. Select Dataflow View.

3. Click the actions list (1) for the dataflow and then select Download to download the existing

dataflow definition file.

Create the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To download, upload, run,

and monitor a dataflow:

e Edit Wave Analytics
Dataflows

¥4 Data Manager

» Dataflows &
Recipes

Datasets

Setup

\J
Manitor
’,

Prepare Datasets with Dataflows and Recipes

Cleanse, transform, and combine data from multiple sources.

DATAFLOWS DATASET RECIPES

Default Salesforce Dataflow

Last Madified By: Admin User

Create Dataflow

The next run is Apr 23, 2017 at 12:00 PM
SalesEdgeEltWorkflow - Run by

by Integration User

Edit

Upload
Start
Schedule

Unschedule

4. Open the dataflow definition file in a JSON or text editor.

5. Add the JSON determined in the previous step.

6. Before you save the dataflow definition file, use a JSON validation tool to verify that the JSON is valid.

An error occurs if you try to upload the dataflow definition file with invalid JSON. You can find JSON validation tool on the internet.

7. Save and close the dataflow definition file.

8. In the Dataflow View of the data monitor, click the actions list for the dataflow and then select Upload.

9. Select the updated dataflow definition file and click Upload.

10. In the Dataflow View of the data monitor, click the actions list for the dataflow and then select Run to run the dataflow job.

11. -
Click the Refresh Jobs button (' *) to view the latest status of the dataflow job.

m

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Test Row-Level Security for the Dataset

You can view the OppTeamMember dataset after the dataflow job completes successfully.

@ Nofte: If you are adding a predicate to a dataset that was previously created, each user must log out and log back in for the
predicate to take effect.

Test Row-Level Security for the Dataset

You must verify that the predicate is applied properly and that each user can see the appropriate EDITIONS
opportunities.

1. Login to Analytics as Lucy. Available in Salesforce
Classic and Lightning

2. Open the OppTeamMember opportunity. Experience

Notice that Lucy can't view the opportunity associated with the opportunity team anymore

because she is not a member of the team. Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

Salesforce Analytics Lucy Timmer v &

& OppTeamMember x

< v > C B o ~

bar length Group

Count of Opportu.. #wmeaswe by Opportunity Team.. = eew

iiii
o
I|||

Y Filter

No results meet those criteria. Try changing your filters.

3. Log outand now log in as Bill.
Bill can view the opportunity that is shared by the opportunity team of which he is a member.

f Salesforce Analytics BilRoley v @ ? Analytics v
& OppTeamMember x

< v > C a - ~
bar length Group

Count of Oppertu.. #measwe by Opportunity Team.. =eew

i
o
Iy

Y Filter

Count of Opportunity ID

Opportunity Team Member Name

N2

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Row-Level Security Example based on Role Hierarchy and

Record Ownership

Row-Level Security Example based on Role Hierarchy and Record
Ownership

Let's look at an example where you create a dataset based on Salesforce data and then implement row-level security based on the
Salesforce role hierarchy and record ownership. In this example, you will create a dataset that contains all opportunities. To restrict access
on each record in the dataset, you will create a security policy where each user can view only opportunities that they own or that are
owned by their subordinates based on the Salesforce role hierarchy. This process requires multiple steps that are described in the sections
that follow.

IN THIS SECTION:

1.

Determine Which Data to Include in the Dataset
First, determine what data you want to include in the dataset. For this example, you will create the OppRoles dataset that contains
all opportunities as well as user details about each opportunity owner, such as their full name, division, and title.

2. Design the Dataflow to Load the Data
Now it's time to figure out how the dataflow will extract the data and load it into a dataset. You start by creating this high-level
design for the dataflow.
3. Determine Row-Level Security for the Dataset
Now it's time to think about row-level security. How will you restrict access to each record in this dataset?
4. Modify the Dataflow Based on Row-Level Security
Now it's time to modify the dataflow definition file to account for the predicate.
5. Create the Dataset
Now that you have the final dataflow definition file, you can create the dataset.
6. Test Row-Level Security for the Dataset
You must verify that the predicate is applied properly and that each user can see the appropriate opportunities.
SEE ALSO:

flatten Parameters

Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create the EDITIONS

OppRoles dataset that contains all opportunities as well as user details about each opportunity
owner, such as their full name, division, and title.

Available in Salesforce

You will obtain opportunities from the Opportunity object and user details from the User object. Classic and Lightning
Both are objects in Salesforce. Experience.
In this example, your Salesforce organization has the following role hierarchy and users. Available for an extra costin

Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

13

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Design the Dataflow to Load the Data

VP_Sales g
eith

el

East_Sales

il bt
‘ NJ_Sales ‘ I NY_Sales ‘ ‘ CA_Sales ‘ ‘ WA_Sales ‘
8 a3 8 §
Tony Joe John Mary

Also, your organization contains the following opportunities, most of which are owned by Keith.

Cv‘ All Opportunities v | Edit | Delete | Create New View - Feed = @
New Opportunity || [€) AlB|C|IDIE|F|GIH|I[J|K|LIM|N[O|P|@|R[S|T|U|V|W|X|Y|Z]|Other AN
Action Opportunity Name + Account Name Amount Close Date Stage Opportunity Owner Alias
Edit| Del | @ Acc- 1000 Widgets Acc_salesrep 9/4/2014 Prospecting Tony
Edit] Del | @@ Acme - 1,200 Widgets Acme $140,000.00 61472012 Walue Proposition Keith
Edit] Del | @@ Acme - 200 Widgets ~ Acme $20,000.00 10M113/2012 Prospecting Keith
Edit| Del | @ Acme - 600 Widgets ~ Acme $70,000.00 ano/2012 Needs Analysis Keith
Edit| Del | §9 ESales 01 East Sales acc 01 9/4/2014 Prospecting Bill
Edit| Del| @@ Global Media-400... Global Media $40,000.00 7132012 Id. Decision Makers ~ Keith
Edit| Del | @ salesforce.com - 1. salesforce.com $100,000.00 61472012 Negut\alinniReuie(w Keith
Edit] Del | @@ salesforce.com-2. . salesforce.com $20,000.00 81122012 Walue Proposition Keith
Edit| Del | @@ salesforce.com - 50... Global Media $50,000.00 5M2/2012 Closed Won Keith
Edit| Del | @ salesforce.com - 50 . Global Media $500,000.00 51212012 Closed Won Keith
Edit] Del | @ West Sales 01 West Sales Acc 01 9/4/2014 Prospecting Lucy

Design the Dataflow to Load the Data

Now it's time to figure out how the dataflow will extract the data and load it into a dataset. You EDITIONS
start by creating this high-level design for the dataflow.

Available in Salesforce
Classic and Lightning
Opportunity Experience.

L » |OppRaoles Available for an extra costin

Enterprise, Performance,
User ——— and Unlimited Editions. Also
available in Developer
Edition.

The dataflow will extract data from the Opportunity and User objects, join the data, and then load
it into the OppRoles dataset.

Now let's implement that design in JSON, which is the format of the dataflow definition file. A dataflow definition file contains
transformations that extract, transform, and load data into a dataset.

Based on the design, you create the JSON shown below.

{
"Extract Opportunity": {
"action": "sfdcDigest",

114

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets

"parameters": {

"object": "Opportunity",

"fields": [
{ "name": "Id" },
{ "name": "Name" 1},
{ "name": "Amount" },
{ "name": "StageName" 1},
{ "name": "AccountId" },
{ "name": "OwnerId" }
]

}

}y
"Extract User": {

"action": "sfdcDigest",

"parameters": {

"object": "User",

"fields": [
{ "name": "Id" 1},
{ "name": "Username" 1},
{ "name": "LastName" },
{ "name": "FirstName" },
{ "name": "Name" 1},
{ "name": "CompanyName" 1},
{ "name": "Division" },
{ "name": "Department" },
{ "name": "Title" 1},
{ "name": "Alias" },
{ "name": "CommunityNickname"
{ "name": "UserType" },
{ "name": "UserRoleId" }
]

}y

"Augment Opportunity User": ({

"action": "augment",

"parameters'

"left":

l: {
"Extract Opportunity",

"left key": [
"OwnerId"

i
"right":

"Extract User",

"relationship": "Owner",

"right select": [

"Name"

Iy

"right key": [

n"Tg"

by

"Register": {

"action": "sfdcRegister",
"parameters": {
"alias": "OppRoles",

by

15

Design the Dataflow to Load the Data

Row-Level Security for Datasets Determine Row-Level Security for the Dataset

"name": "OppRoles",
"source": "Augment Opportunity User",
"rowLevelSecurityFilter": ""

}

If you were to run this dataflow, Analytics would generate a dataset with no row-level security. As a result, any user that has access to
the dataset would be able to view all opportunities. For example, as shown below, Bill would be able to view all opportunities, including
those owned by his manager Keith.

Salesforce Analytics BilRolley v @ ? Analytics
& OppRoles x
{v> C a o -~
bar length Group

ii
o
n

Count of Opportu... =messwe by Name reouw

Y Fitter

Count of Opportunity ID

=)

Name

Acme - 1,200 Widgets

Acme - 200 Widgets

Acme - 600 Widgets
ESales_01

Global Media - 400 Widgets
West_Sales_01

salesforce.com - 1,000 Widgets
salesforce.com - 2,000 Widgets
salesforce.com - 500 Widgets

salesforce.com - 5000 Widgets

salesrep

You need to apply row-level security to restrict access to records in this dataset.

Determine Row-Level Security for the Dataset

Now it's time to think about row-level security. How will you restrict access to each record in this EDITIONS

dataset?

You decide to implement the following predicate on the dataset. Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

'ParentRolelIDs' == "S$User.UserRoleId" || 'OwnerId' == "S$User.Id"

116

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Modify the Dataflow Based on Row-Level Security

@ Note: The current dataflow doesn't contain logic to create a dataset column named “ParentRolelDs.” ParentRolelDs is a placeholder
for the name of a column that will contain this information. In the next step, you will modify the dataflow to add this column to
the dataset. This column name will change based on how you configure the dataflow.

Based on the predicate, Analytics returns an opportunity record if:

e The user who submits the query is a parent of the opportunity owner based on the Salesforce role hierarchy. Analytics determines
this based on their role IDs and the role hierarchy.

e Or, the user who submits the query on the dataset is the opportunity owner.

Let's examine both parts of this predicate.

Predicate Part Description

ParentRolelDs’ == "SUser.UserRoleld e ParentRolelDs refers to a dataset column that contains a

comma-separated list of role IDs of all users above the
opportunity owner based on the role hierarchy. You will create
this dataset column in the next section.

e SUser.UserRoleld refers to the UserRoleld column of the User
object. Analytics looks up the user role ID of the user who
submits the query from the User object.

Ownerld' == "SUser.d e QOwnerld refers to the dataset column that contains the user

ID of the owner of each opportunity.

e SUserld refers to the Id column of the User object. Analytics
looks up the user ID of the user who submits the query from
the User object.

Modify the Dataflow Based on Row-Level Security

Now it's time to modify the dataflow definition file to account for the predicate. EDITIONS

In this scenario, you have to make changes to the dataflow based on the predicate.

Available in Salesforce
Classic and Lightning
Experience.

e Addacolumn in the dataset that stores a comma-separated list of the role IDs of all parents for
each opportunity owner. When you defined the predicate in the previous step, you temporarily
referred to this column as “ParentRolelDs.” To add the column, you redesign the dataflow as
shown in the following diagram: Available for an extra costin

Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

n7

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets

Opportunity -
sfdcDigest

User -
sfdcDigest

UserRole -
sfdcDigest

OO

Modify the Dataflow Based on Row-Level Security

flatten

The new dataflow design contains the following changes:

— Extracts the role IDs from the UserRole object.

augment

sfdcRegister

augmenkt

— Uses the Flatten transformation to generate a column that stores a comma-separated list of the role IDs of all parents of each
user. When you determined the predicate in the previous step, you temporarily referred to this column as “ParentRolelDs.”

- Link the new column to the OppRoles dataset.

e Add the predicate to the Register transformation that registers the OppRoles dataset.

You modify the dataflow as shown below.

{

"Extract Opportunity": ({
: "sfdcDigest",

"action"

"parameters":

"object":

"fields": [
"nameﬂ -
"name" .

{

{
{
{
{
{

by

{

"name" :

"name" .
"name" :
"name":

"Extract User": {

"action":

"parameters":

"object":

"fields": [

{

{
{
{
{
{
{
{
{
{
{

{

"name" :

"name" :
"name":
"name":

"name" :

"name" :
"name":
"name":

"name" :

"name" :

"name":

"Opportunity",

"Ida" i,

"Name" 1},
"Amount" 1},
"StageName" },
"AccountId" },
"OwnerId" }

"sfdcDigest",

llUser",

"Ida" },
"Username" 1},
"LastName" },
"FirstName" 1},
"Name" 1},
"CompanyName" 1},
"Division" },
"Department" 1},
"Title" 1},
"Alias" },
"CommunityNickname"

by

18

Row-Level Security for Datasets

{ "name":
{ "name":

"UserType" 1},
"UserRoleId" }

by
"Extract UserRole": {

"action": "sfdcDigest",
"parameters": {
"object": "UserRole",
"fields": [
{ "name": "Id" },
{ "name": "ParentRoleId" },
{ "name": "RollupDescription" 1},
{ "name": "OpportunityAccessForAccountOwner"
{ "name": "CaseAccessForAccountOwner" 1},
{ "name": "ContactAccessForAccountOwner" },
{ "name": "ForecastUserId" },
{ "name": "MayForecastManagerShare" 1},
{ "name": "LastModifiedDate" },
{ "name": "LastModifiedById" },
{ "name": "SystemModstamp" },
{ "name": "DeveloperName" },
{ "name": "PortalAccountId" 1},
{ "name": "PortalType" },
{ "name": "PortalAccountOwnerId" }

br
"Flatten UserRole": {

"action": "flatten",
"parameters": {
"multi field": "Roles",
"parent field": "ParentRoleId",
"path field": "RolePath",
"self field": "Id",
"source": "Extract UserRole"

by
"Augment User FlattenUserRole": ({
"augment",
"parameters": {
"left": "Extract User",
"left key": [
"UserRoleId"
I
"relationship": "Role",
"right": "Flatten UserRole",
"right key": [
nggn
1,
"right select": [
"Roles",
"RolePath"

"action":

19

Modify the Dataflow Based on Row-Level Security

b

Row-Level Security for Datasets

}y
"Augment Opportunity UserWithRoles": {
"action": "augment",
"parameters": {
"left": "Extract Opportunity",
"left key": [
"OwnerId"
1,
"right": "Augment User FlattenUserRole",
"relationship": "Owner",
"right select": [
"Name",
"Role.Roles",
"Role.RolePath"
1,
"right key": [
nogn

b
"Register": {

"action": "sfdcRegister",
"parameters": {
"alias": "OppRoles",
"name": "OppRoles",
"source": "Augment Opportunity UserWithRoles",
"rowLevelSecurityFilter": "'Owner.Role.Roles'
== \"$User.Id\""

}

}

Modify the Dataflow Based on Row-Level Security

= \"S$User.UserRoleId\" || 'OwnerId'

@ Nofe: In this example, the dataset has columns Owner.Role.Roles and Ownerld. A user can view the values of these columns for

each record to which they have access.

120

Row-Level Security for Datasets

Create the Dataset

Now that you have the final dataflow definition file, you can create the dataset.

O Warning: If you wish to perform the steps in this sample implementation, verify that you
have all required Salesforce objects and fields, and perform the steps in a non-production
environment. Ensure that these changes do notimpact other datasets that you already created.
Also, always make a backup of the existing dataflow definition file before you make changes

because you cannot retrieve old versions of the file.

To create the dataset, perform the following steps.

1.

In Analytics, click the gearicon ($) and then select Data Monitor to open the data monitor.

The Jobs View of the data monitor appears by default.

2. Select Dataflow View.

3. Click the actions list (1) for the dataflow and then select Download to download the existing

dataflow definition file.

Create the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To download, upload, run,

and monitor a dataflow:

e Edit Wave Analytics
Dataflows

¥4 Data Manager

» Dataflows &
Recipes

Datasets

Setup

\J
Manitor
’,

Prepare Datasets with Dataflows and Recipes

Cleanse, transform, and combine data from multiple sources.

DATAFLOWS DATASET RECIPES

Default Salesforce Dataflow

Last Madified By: Admin User

Create Dataflow

The next run is Apr 23, 2017 at 12:00 PM
SalesEdgeEltWorkflow - Run by

by Integration User

Edit

Upload
Start
Schedule

Unschedule

4. Open the dataflow definition file in a JSON or text editor.

5. Add the JSON determined in the previous step.

6. Before you save the dataflow definition file, use a JSON validation tool to verify that the JSON is valid.

An error occurs if you try to upload the dataflow definition file with invalid JSON. You can find JSON validation tool on the internet.

7. Save and close the dataflow definition file.

8. In the Dataflow View of the data monitor, click the actions list for the dataflow and then select Upload.

9. Select the updated dataflow definition file and click Upload.

10. In the Dataflow View of the data monitor, click the actions list for the dataflow and then select Run to run the dataflow job.

11. -
Click the Refresh Jobs button (' *) to view the latest status of the dataflow job.

121

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Test Row-Level Security for the Dataset

You can view the OppRoles dataset after the dataflow job completes successfully.

@ Nofte: If you are adding a predicate to a dataset that was previously created, each user must log out and log back in for the
predicate to take effect.

Test Row-Level Security for the Dataset

You must verify that the predicate is applied properly and that each user can see the appropriate EDITIONS
opportunities.

1. Login to Analytics as Bill. Available in Salesforce
. Classic and Lightning
2. Open the OppRol tunity.
pen the OppRoles opportunity Experience.

Notice that Bill can't see his manager Keith’s opportunities anymore. Now, he can see only his

opportunity and his subordinate Tony's opportunity. Available for an extra costin
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

Salesforce Analytics Bill Rolley v & ?

{ v > C a o
bar length Group Color
Count of Oppo... #Measwre by Name and Opportunity.Ow. = Greus = k- :=
Y Fitter

Count of Opportunity 1D

Name Opportunity. OwnerFull Name Opportunity. Owne._ame
Tony Santos [l

3. Logoutand now log in as Keith.

As expected, Keith can still see all opportunities.

122

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security for Datasets Row-Level Security Example Based on Territory Management

Salesforce Analytics

bar length Group Color

il
o
I|||

Count of Oppo... drMeasure by Name and Opportunity.Ow. =+ Group

Y Fitter
Count of Opportunity 1D
Name Opportunity.Owner.Full Name Opportunity.Owne...ame
keith Laz [l
Lucy Timmer
West_Sales_01 Lucy Timmer

Row-Level Security Example Based on Territory Management

Let's look at an example where you create a dataset based on Salesforce data and then implement row-level security based on your
defined territories. In this example, you determine what model you use for territory management, so you can later review sample JSON
for that dataset. To restrict access on each record in the dataset, you will create a security predicate where each user can view only data
appropriate for the territory to which they belong.

Territory management is an account sharing system that grants access to accounts based on the characteristics of the accounts. It enables
your company to structure your Salesforce data and users the same way you structure your sales territories.

If your organization has a private sharing model, you might have granted users access to accounts based on criteria such as postal code,
industry, revenue, or a custom field that is relevant to your business. Perhaps you also need to generate forecasts for these diverse
categories of accounts. Territory management solves these business needs and provides a powerful solution for structuring your users,
accounts, and their associated contacts, opportunities, and cases.

IN THIS SECTION:

1. Determine How You Use Territory Management

When working with security related to territory management, it helps to know how your organization implements territory
management. Usually, one of 2 methods are used. Either accounts are assigned to regions manually, following some
organization-specific precedence, or the organization use’s Salesforce's territory hierarchy feature.

123

Row-Level Security for Datasets Determine How You Use Territory Management

2. Create the DataSet
Now we look at sample JSON code that describes territory management in a dataset.

3. Create the Security Predicate
Now we can apply a security predicate to filter the dataset.

Determine How You Use Territory Management

When working with security related to territory management, it helps to know how your organization implements territory management.
Usually, one of 2 methods are used. Either accounts are assigned to regions manually, following some organization-specific precedence,
or the organization use’s Salesforce's territory hierarchy feature.

The manual process

Manually Assigned Accounts Add Accounts
Action Account Name Billing State/Province Phone Type Account Owner Alias Owner Alias
Remove Santa's Workshop North Pale Alser

For this example, any account with a Billing State or Province that is North Pole is manually assigned to the Canada region.

Territory Management hierarchies

124

Row-Level Security for Datasets Create the DataSet

Your Organization's Territory Hierarchy

Collapse All Expand All
= ¥G TM Demo
i Add Territory
El Asia Edit| Del
© " Add Territory
B China Edit| Del
i " Add Territory
E‘ South-East Asia Edit| Dal
© " Add Territory
B South-West Asia Edit| Del
i * Add Territory
El Europe Edit| Del
© " Add Territory
E' Eastern Europe Edit| Del
i " Add Territory
B Western Europe Edit| Del
_ “ Add Territory
E' Latin America Edit| Del
i i Add Territory
E‘ Central America Edit| Dal
© " Add Territory
B E':muth America Edit| Del

! Add Territory

B North America Edit| Del

© Add Territory

E' Canada Edit| Del

i " Add Territory

E‘ Mexico Edit| Dal

© " Add Territory

B United States Edit| Del

Add Territory

For this example, we have a user called North America VP who needs access to all accounts in the Canada, Mexico, and US territories.
We also have a user called Rep1 Canada who should only have access to the accounts in the Canada territory, not Mexico or US, and
nowhere above in the hierarchy.

Create the DataSet

Now we look at sample JSON code that describes territory management in a dataset.

In this example, territory management data is stored on the following objects and fields.

125

Row-Level Security for Datasets Create the DataSet

o

/d
/ Name
AccountShare § BillingCountry
-'-‘ *and any other fields you may want in your dataset

1d \

RowCause [

UserOrGrounld N .

Accountld Group Territory*** UserTerritorv User
Type id Territorvid id
Id Name Userld Name
Relatedid ParentTerritorvid

***Territories can be nested, so you will need to flatten Territory before joining it to the Group and UserTerritorv objects

Here is an example JSON file for this dataset.

{

"Extract AccountShare": {
"action": "sfdcDigest",
"parameters": {

"object": "AccountShare",
"fields": [
{ "name": "Id"},
{ "name": "RowCause"},
{ "name": "UserOrGroupId"},
{ "name": "AccountId"}

}
}I
"Extract Group": {
"action": "sfdcDigest",
"parameters": {
"object": "Group",
"fields": [
{ "name": "Name"},
{ "name": "Type"},
{ "name": "Id"},
{ "name": "RelatedId"}

}
}I
"Extract Territory": {
"action": "sfdcDigest",
"parameters": {
"object": "Territory",
"fields": [
{ "name": "Id"},
{ "name": "Name"},
{ "name": "ParentTerritoryId"}

}
}I
"Extract User Territory": ({
"action": "sfdcDigest",
"parameters": {
"object": "UserTerritory",
"fields": [

126

Row-Level Security for Datasets

{ "name": "TerritoryId"},
{ "name": "UserId"}
]
}
I
"Extract User": ({
"action": "sfdcDigest",
"parameters": {
"object": "User",
"fields": [
{ "name": "Id"},
{ "name": "Name"}
]
}
by
"Extract Account": {
"action": "sfdcDigest",
"parameters": {
"object": "Account",
"fields": [
{ "name": "Id"},
{ "name": "Name"},
{ "name": "BillingCountry"}
]
}
}y
"Augment TerritoryUsers": ({
"action": "augment",
"parameters": {
"left": "Extract Territory",
"left key": [
nggn
1y
"relationship": "TerritoryId",
"right": "Extract User Territory",
"right key": [
"TerritoryId"

1,

"right select": [
"UserId"

1,

"operation": "LookupMultiValue"

}
by

"Augment AccountShare To Territory Groups":

"action": "augment",
"parameters": {

"left": "Augment AccountShare To Account",

"left key": [
"UserOrGroupId"
I

"relationship": "UserOrGroupId",

"right": "Extract Group",
"right key": [

Create the DataSet

Row-Level Security for Datasets Create the DataSet

"

1,

"right select": [
"Name",
"RelatedId"

}
ty
"Augment AccountShare To Territory": {
"action": "augment",
"parameters": {
"left": "Augment AccountShare To Territory Groups",
"left key": [
"UserOrGroupId.RelatedId"
1,

"relationship": "Territory",
"right": "Augment TerritoryUsers",
"right key": [

" Id"

1,

"right select": [
"TerritoryId.UserId"

I

"operation": "LookupMultiValue"
}
by
"Augment AccountShare To Account": {
"action": "augment",
"parameters": {
"left": "Extract AccountShare",
"left key": [
"AccountId"
I
"relationship": "AccountId",
"right": "Extract Account",
"right key": [
nggn

1,
"right select": [

"Name"
]
}
}y
"Register Territory GroupUsers": ({
"action": "sfdcRegister",
"parameters": {
"alias": "Register Territory GroupUsers",
"name": "Register Territory GroupUsers",
"source": "Augment AccountShare To Territory"

}

When run, this JSON file results in a list of accounts. In this example, a list of 5:

128

Row-Level Security for Datasets Create the Security Predicate

gt Greup

Count of Rows +mesue by Accountld Name +eewe = & =
= Fiter

Count of Rows

Accountld Name
Acme

Global Media
Barta Rico Beach

Santa's Workshap

“ “ ‘
|

salesforce.com

Create the Security Predicate
Now we can apply a security predicate to filter the dataset.

Using this example, the following security predicate on the dataset enforces the territory management security rules.

'Territory.TerritoryId.UserId' == "$User.Id" || 'UserOrGroupId' == "S$User.Id"

@ Nofe: Update the dataset, and then log out of and back in to the org so you see the changes.

Now you see only 2 accounts - Global Media because it is in the Canada territory, and Santa’s Workshop because of the manual rule.

bar length Group

Count of Rows +wmeaswe by Accountld Name +Gew = & =
= Filter
Count of Rows

Accountld Name

Global Media

Santa's Warkshop

Salesforce Sharing Inheritance for Datasets

Use sharing inheritance to allow Analytics to use the same sharing rules for your datasets as Salesforce uses for your objects.

As a Salesforce administrator, you have likely set up sharing rules to suit your user hierarchy, so users have access to data appropriate to
their role. Your organization has invested a lot of time and money to get this right. But what about Analytics?

Analytics has long had its own row-level security solution: security predicates. Analytics administrators typically use predicates to carefully
replicate their Salesforce security settings.

Salesforce has introduced the first phase of support for sharing inheritance in Analytics. For supported objects, Analytics administrators
no longer need to use security predicates to try to replicate the row-level security settings they used in Salesforce. You can enable the
sharing inheritance feature in Analytics, and specify which objects use it when creating your datasets during the ELT (Extract Load and
Transform) process, or when editing existing datasets. Your Salesforce sharing settings will be honored in Analytics.

@ Note:

e (Changes to security settings (rowlLevelSharingSource or rowLevelSecurityFilter) in a dataflow have no effect on datasets that
already exist. You must change those settings on the edit dataset page.

129

Row-Level Security for Datasets Is Sharing Right For My Analytics Org?

e There is a 2000 row limit for datasets using the sharing inheritance feature. For example, if a user can see more than 2000
Opportunity records but does not have "view all data" permissions, then they will not be able to query a dataset inheriting
sharing from the Opportunity object.

Refer to the Sharing Settings documentation for more information about sharing settings and rules.

IN THIS SECTION:
Is Sharing Right For My Analytics Org?

Sharing inheritance is being rolled out in phases. Try it first to see whether it is appropriate for your org.

Setting Up Sharing Inheritance
Setting up sharing inheritance in Analytics is straightforward. Enable it for your org, and then specify which datasets should inherit
sharing rules.

Is Sharing Right For My Analytics Org?

Sharing inheritance is being rolled out in phases. Try it first to see whether it is appropriate for your org.

As with any new feature customers might consider enabling, we recommend that they thoroughly test in a Sandbox environment before
rolling out to production. It is important to test against your org’s security model and data. Complex security models where users have
access to alarge number of rows may have performance implications. It's important to test your particular use cases to make sure sharing
inheritance works for you.

This is the first stage in a phased roll out of sharing for Analytics. We support five of the most heavily used objects: Accounts, Opportunities,
Orders, Cases, and custom objects. If you use other objects—such as Campaign, Idea, Site, and so on—those will still need to employ
security predicates. Subsequent stages of the feature rollout will add support for more objects.

It's important to note that you must apply the sharing feature to each dataset. Sharing isn't automatically applied to all datasets. It isn't
applied by default to new datasets. If an existing dataset has a security predicate, sharing won't override it. You must apply sharing to
each dataset manually. A dataset can have either sharing or a security predicate, but not both.

@ Note:

e (Changes to security settings (rowlLevelSharingSource or rowLevelSecurityFilter) in a dataflow have no effect on datasets that
already exist. You must change those settings on the edit dataset page.

e There is a 2000 row limit for datasets using the sharing inheritance feature. For example, if a user can see more than 2000
Opportunity records but does not have "view all data" permissions, then they will not be able to query a dataset inheriting
sharing from the Opportunity object.

Setting Up Sharing Inheritance

Setting up sharing inheritance in Analytics is straightforward. Enable it for your org, and then specify which datasets should inherit
sharing rules.

To enable sharing in Analytics, and to configure it for specific datasets, follow these steps.
1. In Setup, click in the quick find box and type Analytics.
2. Under Analytics, click Settings.

3. Select Enable Wave Sharing Inheritance and click Save.

130

#managing_the_sharing_model

Row-Level Security for Datasets Setting Up Sharing Inheritance

Wave Analytics Settings

Configure Wave Analytics Settings

Settings | = Required Information

L

L

Enable Replication

Show preview thumbnails for lenses and dashboards with row level-security enabled |
Enable Wave Analytics for Communities | ;

Enable the Wave API for all Wave users | §

Enable Wave Dashboard Designer | §

Enable Wave Template Support

DEnabIe Wave Sharing Inheritance | ;

4. Foreach dataset that you want to inherit sharing, specify the “source” object from which this sharing comes. You can do this in three

ways.

Through the Dataflow (When Creating New Datasets Only)
Add the "rowLevelSharingSource" parameter to the "sfdcRegister" node parameters for the dataset. See the
Analytics sfdcRegister help page for details.

The rowLevelSharingSource parametertakes a string, which should be the APl name for the object from which sharing
isinherited. In the following example, the parameter specifies that the Salesforce sharing rules on the Opportunity object should
be inherited. Changes to security settings in a dataflow have no effect on datasets that already exist. You must change those
settings on the edit dataset page.

"Register Opportunity":({

"action":"register",

"parameters": {

"label":"Opportunity with Security",
"name":"Opportunity with Security",
"rowLevelSharingSource" :"Opportunity"
s

"sources": [

"Extract Opportunity"

]

}

Through the Dataset Edit Page (For Existing Datasets)
Edit the dataset, and enter the APl name for the object in the Sharing Source field.

131

https://help.salesforce.com/articleView?id=bi_integrate_register_transformation.htm&language=en_US

Row-Level Security for Datasets Setting Up Sharing Inheritance

€ Analytics Browse X Dataset X

Update Extended Metadata

Add Extended Metadata File (JSON)
Opp_Trend.xmd.json &
L Select file or drag file here...

The extended metadata file must use XMD 2.0 syntax. Learn More

Update Data

Dataset Name
Add External Data File (CSV) (Max: 500 MB)

Opp Trend £ Select file or drag file here...
A

o Add Metadata File (JSON)

My Private App ~

X Select file or drag file here...

System Name: Opp_Trend Use the metadata file to specify the field type: text, number, or date.

Owner: Admin User

Created On: Feb 23, 2017

Security
Configure Actions I Security Predicate
Delete Dataset I Enter a security predicate...

Sharing Source

Opportunity{

Update Dataset

See Edit a Dataset on page 94 for help with editing a dataset.

@ Note: Consider the following when adding a sharing source through the dataset edit page.
e Sharing inheritance is not supported for datasets created from CSV files. Specifying a sharing source generates an error.
e Don't specify both a security predicate and a sharing source. This generates an error.

e Specifying an incorrect name or an unsupported object generates an error. Account, Opportunity, Order, Case, and
custom objects are supported.

Through the REST API (For Existing Datasets)

The sharingSource propertyonthe /wave/datasets/${datasetId}/versions/${versionId} endpoint
specifies the object from which sharing rules are inherited for that dataset version.

132

SECURITY PREDICATE REFERENCE

Predicate Expression Syntax for Datasets

You must use valid syntax when defining the predicate expression.
The predicate expression must have the following syntax:
<dataset column> <operator> <value>

For example, you can define the following predicate expression for a dataset:
'UserId' == "$User.Id"
You can create more complex predicate expressions such as:
(‘Expected Revenue’ > 4000 || ‘Stage Name’ == "Closed Won") && ‘isDeleted’ != "False"

Consider the following requirements for the predicate expression:
e The expression is case-sensitive.
e The expression cannot exceed 1,000 characters.

e There must be at least one space between the dataset column and the operator, between the operator and the value, and before
and after logical operators. This expression is not valid: ‘Revenue’ >100. It must have spaces like this: ‘Revenue’ > 100.

If you try to apply a predicate to a dataset and the predicate is not valid, an error appears when any user tries to query the dataset.

IN THIS SECTION:

Dataset Columns in a Predicate Expression
You include at least one dataset column as part of the predicate expression.

Values in a Predicate Expression

The value in the predicate expression can be a string literal or number literal. It can also be a field value from the User object in
Salesforce.

Escape Sequences
You can use the backslash character (\) to escape characters in column names and string values in a predicate expression.

Character Set Support

Analytics supports UTF-8 characters in dataset column names and values in a predicate expression. Analytics replaces non-UTF-8
characters with the UTF-8 symbol (6). If Analytics has to replace a non-UTF-8 character in a predicate expression, users may
experience unexpected query results.

Special Characters
Certain characters have a special meaning in Analytics.

Operators
You can use comparison operators and logical operators in predicate expressions.

133

Security Predicate Reference Dataset Columns in a Predicate Expression

Dataset Columns in a Predicate Expression

You include at least one dataset column as part of the predicate expression.
Consider the following requirements for dataset columns in a predicate expression:

e Column names are case-sensitive.

e Column names must be enclosed in single quotes (). For example, 'Region' == "South"

@ Note: A set of characters in double quotes is treated as a string rather than a column name.

e Single quotes in column names must be escaped. For example, ' Team\'s Name' == "West Region Accounts"

Values in a Predicate Expression

The value in the predicate expression can be a string literal or number literal. It can also be a field value from the User object in Salesforce.

Consider the following requirements for each value type.

Value Type Requirements Predicate Expression Examples
string literal Enclose in double quotes and escape the "Owner' —— "Amber"
double quotes.
® 'Stage Name' == "Closed
Won"

number literal Can be a float or long datatype. Do not

i ® 'Expected Revenue' >=
enclose in quotes.

2000.00
® 'NetLoss' < -10000

field value When referencing a field from the User
object, use the SUser.[field] syntax. Use the
APl name for the field.

® 'Owner.Role' ==
"SUser.UserRoleId"

® 'GroupID' ==

You can specify standard or custom fields

of type string, number, or multi-value
picklist. @ Note: Supported User object field

value types are string, number, and
multi-value picklist. Other types (for
example, boolean) are not
supported.

"$User.UserGroupId c"

When you define a predicate for a dataset,
you must have read access on all User object
fields used to create the predicate
expression.

However, when a user queries a dataset that
has a predicate based on the User object,
Analytics uses the access permissions of the
Insights Security User to evaluate the
predicate expression based on the User
object.

134

Security Predicate Reference Escape Sequences

Value Type Requirements Predicate Expression Examples

@ Note: By default, the Security User
does not have access permission on
custom fields of the User object.

To grant the Security User read
access on a field, set field-level
security on the field in the user
profile of the Security User.

Escape Sequences

You can use the backslash character (\) to escape characters in column names and string values in a predicate expression.

You can use the \ escape sequence to escape a single quote in a column name. For example:
‘Team\’s Name’ == "West Region Accounts"

You can use the following escape sequences for special characters in string values.

Sequence Meaning

\b One backspace character

\n New line

\r Carriage return

\t Tab

\Z CTRL+Z (ASCII 26)

\" One double-quote character
\\ One backslash character

\0 One ASCII null character

Character Set Support

Analytics supports UTF-8 characters in dataset column names and values in a predicate expression. Analytics replaces non-UTF-8 characters

with the UTF-8 symbol (9). If Analytics has to replace a non-UTF-8 character in a predicate expression, users may experience unexpected
query results.

Special Characters

Certain characters have a special meaning in Analytics.

135

Security Predicate Reference

Character

1

Operators

You can use comparison operators and logical operators in predicate expressions.

IN THIS SECTION:

Comparison Operators

Name

Single quote

Double quote

Parentheses

Dollar sign

Period

Comparison operators return true or false.

Operators

Description

Encloses a dataset column namein a
predicate expression.

Example predicate expression:

'Expected Revenue' >=
2000.00

Encloses a string value or field value in a
predicate expression.

Example predicate expression:
'OpportunityOwner' ==
"Michael Vesti"

Enforces the order in which to evaluate a
predicate expression.

Example predicate expression:

("Expected Revenue' > 4000

|| 'Stage Name' == "Closed
Won") && 'isDeleted' !=
"False"

Identifies the Salesforce objectin a predicate
expression.

@ Note: You can only use the User
object in a predicate expression.

Example predicate expression:

'Owner.Role' ==
"SUser.UserRoleId"

Separates the object name and field name
in a predicate expression.

Example predicate expression:

'Owner' == "$User.UserId"

Security Predicate Reference Operators

Logical Operators
Logical operators return true or false.

Comparison Operators

Comparison operators return true or false.

Analytics supports the following comparison operators.

Operator Name Description

- Equals Trueif the operands are equal. String comparisons that use the equals operator are case-sensitive.

Example predicate expressions:

'Stage Name' == "Closed Won"
I= Not equals . . .
True if the operands are not equal. String comparisons that use the not equals operator are
case-sensitive.
Example predicate expression:
'isDeleted' != "False"
< Less than True if the left operand is less than the right operand.
Example predicate expression:
'Revenue' < 100
<= Less or equal True if the left operand is less than or equal to the right operand.
> Greater than True if the left operand is greater than the right operand.
>= Greater or equal True if the left operand is greater than or equal to the right operand.
in Multi-value list filter

True if the left operand exists in the list of strings substituted for a multi-value picklist (field value).
Example predicate expression:
'Demog' in ["$User.Demographic c"]

Inthisexample, Demographic cisoftype multiPicklistField.Duringevaluation,
the multi-value picklist field is substituted by a list of strings, with 1 string per user-selected item.

@ Note: Comma-separated lists are not supported within the square-bracket construct.

You can use the <, <=, >, and >= operators with measure columns only.

Logical Operators

Logical operators return true or false.

Analytics supports the following logical operators.

137

Security Predicate Reference

Operator Name
&& Logical AND
I Logical OR

Sample Predicate Expressions for Datasets

Description

True if both operands are true.
Example predicate expression:

'Stage Name' == "Closed Won" &&
isDeleted" I="False"

True if either operand is true.
Example predicate expression:

'Expected_Revenue' > 4000 || 'Stage Name'

=="Closed Won"

Sample Predicate Expressions for Datasets

Review the samples to see how to structure a predicate expression.

The samples are based on the following Opportunity dataset.

Opportunity Expected_Rev Owner OwnerRolelD Stage_Name IsDeleted
OppA 2000.00 Bill 20 Prospecting True
OppB 3000.00 Joe 22 Closed Won False
OppC 1000.00 i egpyTe 36 Closed Won False
OppD 5000.00 O'Fallon 18 Prospecting True

OppE Joe 22 Closed Won True

Let's take a look at some examples to understand how to construct a predicate expression.

Predicate Expression

'OwnerRoleID' == "$User.UserRoleId"

'Expected Rev' > 1000 && 'Expected Rev' <=
3000

'Owner' = "Joe" || 'Owner' = "Bill"

("Expected Rev' > 4000 ||
"Closed Won") &&

'Stage Name' ==
'isDeleted' != "False"

'Stage Name' == "Closed Won" &&

'Expected Rev' > 70000
'Owner' == "P“gﬁﬁﬂd

'Owner' == "O\’Fallon"

Details

Checks column values in the User object.

Parentheses specify the order of operations.

String contains Unicode characters.

Single quote in a string requires the escape character.

138

Security Predicate Reference Sample Predicate Expressions for Datasets

Predicate Expression Details

'Stage Name' == "" Checks for an empty string.

139

	Data Integration
	Datasets
	Numeric-Value Handling in Datasets
	Date Handling in Datasets

	Dataflow JSON
	Dataset Builder
	Wave Connector for Excel Data
	Upload External Data from the User Interface
	External Data API

	Create Datasets with a Dataflow
	Design the Dataflow
	Configure the Dataflow Through the Definition File
	Start and Stop a Dataflow
	Monitor a Dataflow Job
	Schedule a Dataflow

	Dataflow Transformation Reference
	Transformations for Analytics Dataflows
	append Transformation
	append Parameters

	augment Transformation
	Special Cases for Matching Records with the augment Transformation
	augment Parameters

	computeExpression Transformation
	computeExpression Parameters

	computeRelative Transformation
	computeRelative Parameters

	delta Transformation
	delta Parameters

	dim2mea Transformation
	dim2mea Parameters

	edgemart Transformation
	edgemart Parameters

	filter Transformation
	filter Parameters
	filter Expression Syntax

	flatten Transformation
	flatten Parameters

	sfdcDigest Transformation
	Filtering Records Extracted from a Salesforce Object
	Structured Filter in sfdcDigest Transformation
	Advanced Filter in sfdcDigest Transformation

	Overriding Salesforce Field Metadata
	Unsupported Salesforce Objects and Fields in Analytics
	sfdcDigest Parameters

	sfdcRegister Transformation
	sfdcRegister Parameters

	update Transformation
	update Parameters

	Overriding Metadata Generated by a Transformation

	Create a Dataset with the Dataset Builder
	Create a Dataset with External Data
	Create a Dataset with External Data
	Rules for Automatic Generation of a Metadata File

	Monitor an External Data Upload

	Edit a Dataset
	Delete a Dataset
	Row-Level Security for Datasets
	Security Predicates for Datasets
	Row-Level Security Example based on Record Ownership
	Determine Which Data to Include in the Dataset
	Determine Row-Level Security for Dataset
	Add the Predicate to the Metadata File
	Create the Dataset
	Test Row-Level Security for the Dataset

	Row-Level Security Example based on Opportunity Teams
	Determine Which Data to Include in the Dataset
	Design the Dataflow to Load the Data
	Determine Row-Level Security for the Dataset
	Modify the Dataflow Based on Row-Level Security
	Create the Dataset
	Test Row-Level Security for the Dataset

	Row-Level Security Example based on Role Hierarchy and Record Ownership
	Determine Which Data to Include in the Dataset
	Design the Dataflow to Load the Data
	Determine Row-Level Security for the Dataset
	Modify the Dataflow Based on Row-Level Security
	Create the Dataset
	Test Row-Level Security for the Dataset

	Row-Level Security Example Based on Territory Management
	Determine How You Use Territory Management
	Create the DataSet
	Create the Security Predicate

	Salesforce Sharing Inheritance for Datasets
	Is Sharing Right For My Analytics Org?
	Setting Up Sharing Inheritance

	Security Predicate Reference
	Predicate Expression Syntax for Datasets
	Dataset Columns in a Predicate Expression
	Values in a Predicate Expression
	Escape Sequences
	Character Set Support
	Special Characters
	Operators
	Comparison Operators
	Logical Operators

	Sample Predicate Expressions for Datasets

